Effect on fan flow characteristics of length and axial location of a cascade thrust reverser
NASA Technical Reports Server (NTRS)
Dietrich, D. A.
1975-01-01
A series of static tests were conducted on a model fan with a diameter of 14.0 cm to determine the fan operating characteristics, the inlet static pressure contours, the fan-exit total and static pressure contours, and the fan-exit pressure distortion parameters associated with the installation of a partial-circumferential-emission cascade thrust reverser. The tests variables included the cascade axial length, the axial location of the reverser, and the type of fan inlet. It was shown that significant total and static pressure distortions were produced in the fan aft duct, and that some configurations induced a static pressure distortion at the fan face. The amount of flow passed by the fan and the level of the flow distortions were dependent upon all the variables tested.
Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1988-01-01
Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.
NASA Technical Reports Server (NTRS)
Schnell, W. C.
1982-01-01
The jet induced effects of several exhaust nozzle configurations (axisymmetric, and vectoring/modulating varients) on the aeropropulsive performance of a twin engine V/STOL fighter design was determined. A 1/8 scale model was tested in an 11 ft transonic tunnel at static conditions and over a range of Mach Numbers from 0.4 to 1.4. The experimental aspects of the static and wind-on programs are discussed. Jet effects test techniques in general, fow through balance calibrations and tare force corrections, ASME nozzle thrust and mass flow calibrations, test problems and solutions are emphasized.
Choi, Seungbeom; Jo, Jeong-Wan; Kim, Jaeyoung; Song, Seungho; Kim, Jaekyun; Park, Sung Kyu; Kim, Yong-Hoon
2017-08-09
Here, we report static and dynamic water motion-induced instability in indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) and its effective suppression with the use of a simple, solution-processed low-k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer. The liquid-contact electrification effect, in which an undesirable drain current modulation is induced by a dynamic motion of a charged liquid such as water, can cause a significant instability in IGZO TFTs. It was found that by adopting a thin (∼44 nm) FPR passivation layer for IGZO TFTs, the current modulation induced by the water-contact electrification was greatly reduced in both off- and on-states of the device. In addition, the FPR-passivated IGZO TFTs exhibited an excellent stability to static water exposure (a threshold voltage shift of +0.8 V upon 3600 s of water soaking), which is attributed to the hydrophobicity of the FPR passivation layer. Here, we discuss the origin of the current instability caused by the liquid-contact electrification as well as various static and dynamic stability tests for IGZO TFTs. On the basis of our findings, we believe that the use of a thin, solution-processed FPR passivation layer is effective in suppressing the static and dynamic water motion-induced instabilities, which may enable the realization of high-performance and environment-stable oxide TFTs for emerging wearable and skin-like electronics.
Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao
2017-04-26
Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.
Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao
2017-01-01
Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812
Cyclic Fatigue of Brittle Materials with an Indentation-Induced Flaw System
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Salem, Jonathan A.
1996-01-01
The ratio of static to cyclic fatigue life, or 'h ratio', was obtained numerically for an indentation flaw system subjected to sinusoidal loading conditions. Emphasis was placed on developing a simple, quick lifetime prediction tool. The solution for the h ratio was compared with experimental static and cyclic fatigue data obtained from as-indented 96 wt.% alumina specimens tested in room-temperature distilled water.
Single Event Upset in Static Random Access Memories in Atmospheric Neutron Environments
NASA Astrophysics Data System (ADS)
Arita, Yutaka; Takai, Mikio; Ogawa, Izumi; Kishimoto, Tadafumi
2003-07-01
Single-event upsets (SEUs) in a 0.4 μm 4 Mbit complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) were investigated in various atmospheric neutron environments at sea level, at an altitude of 2612 m mountain, at an altitude of commercial airplane, and at an underground depth of 476 m. Neutron-induced SEUs increase with the increase in altitude. For a device with a borophosphosilicate glass (BPSG) film, SEU rates induced by thermal neutrons increase with the decrease in the cell charge of a memory cell. A thermal neutron-induced SEU is significant in SRAMs with a small cell charge. With the conditions of small cell charge, thermal neutron-induced SEUs account for 60% or more of the total neutron-induced SEUs. The SEU rate induced by atmospheric thermal neutrons can be estimated by an acceleration test using 252Cf.
Fatigue of notched fiber composite laminates. Part 2: Analytical and experimental evaluation
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Mclaughlin, P. V., Jr.; Pipes, R. B.
1976-01-01
The analytical/experimental correlation study was performed to develop an understanding of the behavior of notched Boron/epoxy laminates subjected to tension/tension fatigue loading. It is postulated that the fatigue induced property changes (stiffness as well as strength) of the laminate can be obtained from the lamina fatigue properties. To that end, the Boron/epoxy lamina static and fatigue data (lifetime, residual stiffness and strength) were obtained initially. The longitudinal and transverse tension data were determined from the (0) and (90) laminate tests while the in-plane shear data were obtained from the (+ or - 45) sub s laminates. The static tests obtained the notched strength and mode of failure while the fatigue tests determined lifetime, damage propagation and residual strength. The failure in static tension occurred in a transverse crack propagation mode.
Brittleness Effect on Rock Fatigue Damage Evolution
NASA Astrophysics Data System (ADS)
Nejati, Hamid Reza; Ghazvinian, Abdolhadi
2014-09-01
The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.
NASA Technical Reports Server (NTRS)
Hackett, J. E.; Praytor, E. B.
1972-01-01
Theoretical studies are made of three dimensional turbulent boundary layer behavior on fixed grounds and on moving grounds of the type used in wind tunnel tests. It is shown that, for several widely-varying STOL configurations, the ground static pressure distributions possess a remarkable degree of fore-aft symmetry about the center of lift. At low Renolds number, corresponding to small-tunnel testing, the boundary layer displacement surface reflects to a large degree the symmetry of the pressure distribution. For this reason, induced incidence at the model is small for unseparated ground flow. At high Reynolds number, the displacement thickness decrease aft of the static pressure maximum is noticeably more rapid than the corresponding rise. This is attributed to trailing-vortex-induced spanwise pumping within the boundary layer.
Biocompatibility and Cytotoxic Evaluation of New Sorbent Cartridges for Blood Hemoperfusion.
Pomarè Montin, Diego; Ankawi, Ghada; Lorenzin, Anna; Neri, Mauro; Caprara, Carlotta; Ronco, Claudio
2018-06-08
The use of adsorption cartridges for hemoperfusion (HP) is rapidly evolving. For these devices, the potential induced cytotoxicity is an important issue. The aim of this study was to investigate potential in vitro cytotoxic effects of different sorbent cartridges, HA130, HA230, HA330, HA380 (Jafron, China), on U937 monocytes. Monocytes were exposed to the sorbent material in static and dynamic manners. In static test, cell medium samples were collected after 24 h of incubation in the cartridges. In dynamic test, HP modality has been carried out and samples at 30, 60, 90, and 120 min were collected. Compared to control samples, there was no evidence of increased necrosis or apoptosis in monocytes exposed to the cartridges both in the static and dynamic tests. Our in vitro testing suggests that HA cartridges carry an optimal level of biocompatibility and their use in HP is not associated with adverse reactions or signs of cytotoxicity. © 2018 S. Karger AG, Basel.
Experimental system for the control of surgically induced infections
NASA Technical Reports Server (NTRS)
Tevebaugh, M. D.
1971-01-01
The development tests to be performed on the experimental system are described in detail. The test equipment, conditions, and procedures are given. The portable clean room tests include assembly, collapsability, portability, and storage; laminar flow rate; static pressure; air flow pattern; and electrostatic buildup. The other tests are on the ventilation system, human factors evaluation, electrical subsystem, and material compatibility.
Choi, Ho-Suk; Shin, Won-Seob; Bang, Dae-Hyouk; Choi, Sung-Jin
2017-03-01
The aims of this work were to determine whether game-based constraint-induced movement therapy (CIMT) is effective at improving balance ability in patients with stroke, and to provide clinical knowledge of game-based training that allows application of CIMT to the lower extremities. Thirty-six patients with chronic stroke were randomly assigned to game-based CIMT (n = 12), general game-based training (n = 12), and conventional (n = 12) groups. All interventions were conducted 3 times a week for 4 weeks. The static balance control and weight-bearing symmetry were assessed, and the Functional Reach Test (FRT), modified Functional Reach Test (mFRT), and Timed Up and Go (TUG) test were performed to evaluate balance ability. All 3 groups showed significant improvement in anterior-posterior axis (AP-axis) distance, sway area, weight-bearing symmetry, FRT, mFRT, and TUG test after the intervention (P < 0.05). Post hoc analysis revealed significant differences in AP-axis, and sway area, weight-bearing symmetry of the game-based CIMT group compared with the other group (P < 0.05). Although the general game-based training and the game-based CIMT both improved on static and dynamic balance ability, game-based CIMT had a larger effect on static balance control, weight-bearing symmetry, and side-to-side weight shift.
Study of stator-vane fluctuating pressures in a turbofan engine for static and flight tests
NASA Technical Reports Server (NTRS)
Mueller, A. W.
1984-01-01
As part of a program to study the fan noise generated from turbofan engines, fluctuating surface pressures induced by fan-rotor wakes were measured on core- and bypass-stator outlet guide vanes of a modified JT15D-1 engine. Tests were conducted with the engine operating on an outdoor test stand and in flight. The amplitudes of pressures measured at fan-rotor blade-passage fundamental frequencies were generally higher and appeared less stable for the static tests than for the flight tests. Fluctuating pressures measured at the blade-passage frequency of the high-speed core compressor were interpreted to be acoustic; however, disturbance trace velocities for either the convected rotor wakes or acoustic pressures were difficult to interpret because of the complex environment.
The surface and deep structure of the waterfall illusion.
Wade, Nicholas J; Ziefle, Martina
2008-11-01
The surface structure of the waterfall illusion or motion aftereffect (MAE) is its phenomenal visibility. Its deep structure will be examined in the context of a model of space and motion perception. The MAE can be observed following protracted observation of a pattern that is translating, rotating, or expanding/contracting, a static pattern appears to move in the opposite direction. The phenomenon has long been known, and it continues to present novel properties. One of the novel features of MAEs is that they can provide an ideal visual assay for distinguishing local from global processes. Motion during adaptation can be induced in a static central grating by moving surround gratings; the MAE is observed in the static central grating but not in static surrounds. The adaptation phase is local and the test phase is global. That is, localised adaptation can be expressed in different ways depending on the structure of the test display. These aspects of MAEs can be exploited to determine a variety of local/global interactions. Six experiments on MAEs are reported. The results indicated that relational motion is required to induce an MAE; the region adapted extends beyond that stimulated; storage can be complete when the MAE is not seen during the storage period; interocular transfer (IOT) is around 30% of monocular MAEs with phase alternation; large field spiral patterns yield MAEs with characteristic monocular and binocular interactions.
Kim, Kyungmok; Ko, Joon Soo
2016-01-01
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating. PMID:28773873
Kim, Kyungmok; Ko, Joon Soo
2016-09-03
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.
Enhanced subliminal emotional responses to dynamic facial expressions.
Sato, Wataru; Kubota, Yasutaka; Toichi, Motomi
2014-01-01
Emotional processing without conscious awareness plays an important role in human social interaction. Several behavioral studies reported that subliminal presentation of photographs of emotional facial expressions induces unconscious emotional processing. However, it was difficult to elicit strong and robust effects using this method. We hypothesized that dynamic presentations of facial expressions would enhance subliminal emotional effects and tested this hypothesis with two experiments. Fearful or happy facial expressions were presented dynamically or statically in either the left or the right visual field for 20 (Experiment 1) and 30 (Experiment 2) ms. Nonsense target ideographs were then presented, and participants reported their preference for them. The results consistently showed that dynamic presentations of emotional facial expressions induced more evident emotional biases toward subsequent targets than did static ones. These results indicate that dynamic presentations of emotional facial expressions induce more evident unconscious emotional processing.
Vibration control in statically indeterminate adaptive truss structures
NASA Technical Reports Server (NTRS)
Baycan, C. M.; Utku, Senol; Wada, Ben K.
1993-01-01
In this work vibration control of statically indeterminate adaptive truss structures is investigated. Here, the actuators (i.e., length adjusting devices) that are used for vibration control, work against the axial forces caused by the inertial forces. In statically determinate adaptive trusses no axial force is induced by the actuation. The control problem in statically indeterminate trusses may be dominated by the actuation-induced axial element forces. The creation of actuation-induced axial forces puts the system to a higher energy state, thus aggravates the controls. It is shown that by the usage of sufficient number of slave actuators in addition to the actual control actuators, the actuation-induced axial element forces can be nullified, and the control problem of the statically indeterminate adaptive truss problem is reduced to that of a statically determinate one. It is also shown that the usage of slave actuators saves a great amount of control energy and provides robustness for the controls.
True Triaxial Experimental Study of Rockbursts Induced By Ramp and Cyclic Dynamic Disturbances
NASA Astrophysics Data System (ADS)
Su, Guoshao; Hu, Lihua; Feng, Xiating; Yan, Liubin; Zhang, Gangliang; Yan, Sizhou; Zhao, Bin; Yan, Zhaofu
2018-04-01
A modified rockburst testing system was utilized to reproduce rockbursts induced by ramp and cyclic dynamic disturbances with a low-intermediate strain rate of 2 × 10-3-5 × 10-3 s-1 in the laboratory. The experimental results show that both the ramp and cyclic dynamic disturbances play a significant role in inducing rockbursts. In the tests of rockbursts induced by a ramp dynamic disturbance, as the static stress before the dynamic disturbance increases, both the strength of specimens and the kinetic energy of the ejected fragments first increase and then decrease. In the tests of rockbursts induced by a cyclic dynamic disturbance, there exists a rockburst threshold of the static stress and the dynamic disturbance amplitude, and the kinetic energy of the ejected fragments first increases and then decreases as the cyclic dynamic disturbance frequency increases. The main differences between rockbursts induced by ramp dynamic disturbances and those induced by cyclic dynamic disturbances are as follows: the rockburst development process of the former is characterized by an impact failure feature, while that of the latter is characterized by a fatigue failure feature; the damage evolution curve of the specimen of the former has a leap-developing form with a significant catastrophic feature, while that of the latter has an inverted S-shape with a remarkable fatigue damage characteristic; the energy mechanism of the former involves the ramp dynamic disturbance giving extra elastic strain energy to rocks, while that of the latter involves the cyclic dynamic disturbance decreasing the ultimate energy storage capacity of rocks.
Auditory motion-specific mechanisms in the primate brain
Baumann, Simon; Dheerendra, Pradeep; Joly, Olivier; Hunter, David; Balezeau, Fabien; Sun, Li; Rees, Adrian; Petkov, Christopher I.; Thiele, Alexander; Griffiths, Timothy D.
2017-01-01
This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI). We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream. PMID:28472038
Investigation of advanced thrust vectoring exhaust systems for high speed propulsive lift
NASA Technical Reports Server (NTRS)
Hutchison, R. A.; Petit, J. E.; Capone, F. J.; Whittaker, R. W.
1980-01-01
The paper presents the results of a wind tunnel investigation conducted at the NASA-Langley research center to determine thrust vectoring/induced lift characteristics of advanced exhaust nozzle concepts installed on a supersonic tactical airplane model. Specific test objectives include: (1) basic aerodynamics of a wing body configuration, (2) investigation of induced lift effects, (3) evaluation of static and forward speed performance, and (4) the effectiveness of a canard surface to trim thrust vectoring/induced lift forces and moments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Di-xian, E-mail: luodixian_2@163.com; Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan; First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan
Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different staticmore » pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were upregulated. Conclusion: Static pressures stimulate ox-LDL-induced cholesterol accumulation in cultured VSMCs through decreasing caveolin-1 expression via inducing the maturation and nuclear translocation of SREBP-1.« less
Experimental investigation and damage assessment in a post tensioned concrete beam
NASA Astrophysics Data System (ADS)
Limongelli, Maria; Siegert, Dominique; Merliot, Erick; Waeytens, Julien; Bourquin, Frederic; Vidal, Roland; Le Corvec, Veronique; Guegen, Ivan; Cottineau, Louis-Marie
2017-04-01
This paper presents the results of an experimental campaign carried out on a prestressed concrete beam in the realm of the project SIPRIS (Systèmes Intelligents pour la Prévention des Risques Structurels), aimed to develop intelligent systems for the prevention of structural risk related to the aging of large infrastructures. The specimen was tested in several configurations aimed to re-produce several different phases of the 'life' of the beam: in the original undamaged state, under an increasing loss of tension in the cables, during and after cracking induced by a point load, after a strengthening intervention, after new cracking of the 'repaired' beam. Damage was introduced in a controlled way by means of three-point static bending tests. The transverse point loads were ap-plied at several different sections along the beam axis. Before and after each static test, the dy-namical response of the beam was measured under sine-sweep and impact tests by an extensive set of accelerometers deployed along the beam axis. The availability of both static and dynamic tests allows to investigate and compare their effectiveness to detect damages in the tensioned beam and to reliably identify the evolution of damage. The paper discusses the tests program and some results relevant to the dynamic characterization of the beam in the different phases.
Apparent diffusion coefficient measurement in a moving phantom simulating linear respiratory motion.
Kwee, Thomas C; Takahara, Taro; Muro, Isao; Van Cauteren, Marc; Imai, Yutaka; Nievelstein, Rutger A J; Mali, Willem P T M; Luijten, Peter R
2010-10-01
The aim of this study was to examine the effect of simulated linear respiratory motion on apparent diffusion coefficient (ADC) measurements. Six rectangular test tubes (14 × 92 mm) filled with either water, tomato ketchup, or mayonnaise were positioned in a box containing agarose gel. This box was connected to a double-acting pneumatic cylinder, capable of inducing periodic linear motion in the long-axis direction of the magnetic bore (23-mm stroke). Diffusion-weighted magnetic resonance imaging was performed for both the static and moving phantoms, and ADC measurements were made in the six test tubes in both situations. In the three test tubes whose long axes were parallel to the direction of motion, ADCs agreed well between the moving and static phantom situations. However, in two test tubes that were filled with fluids that had a considerably lower diffusion coefficient than the surrounding agarose gel, and whose long axes were perpendicular to the direction of motion, the ADCs agreed poorly between the moving and static phantom situations. ADC measurements of large homogeneous structures are not affected by linear respiratory motion. However, ADC measurements of inhomogeneous or small structures are affected by linear respiratory motion due to partial volume effects.
Could the negative effects of static stretching in warm-up be restored by sport specific exercise?
Bengtsson, Victor; Yu, Ji-Guo; Gilenstam, Kajsa
2017-04-13
Static stretching (SS) is widely used in warm-up as it is generally believed to increase mobility and reduce the risk of injury; however, SS has been shown to induce transient negative effects on subsequent muscle performance. Interestingly, recent studies have shown that sport specific exercise could restore SS-induced negative effects on certain sports, especially of explosive muscular performance. Whether sport specific exercise could restore SS-induced negative effects on isokinetic muscle performance remains unclear. The present study conducted two different warm-ups: 2-component warm-up and 3-component warm-up on 15 university students. Both protocols contained low intensity aerobic exercise and sport specific exercise, whereas the 3-component warm-up also contained SS which has been previously proven to induce negative effects on subsequent muscle performance. After the warm-ups, the subjects performed an isokinetic test on a Biodex. To make the sport specific exercise mimic the subsequent test, both included concentric isokinetic knee extension. During the tests, muscle performance of peak torque, mean power, and total work was recorded. Comparison of the measurements on each parameter between the two warm-ups was performed using paired t test. The comparisons did not reveal any significant difference in the measurement of any parameter between the two different warm-up protocols, and calculation of Cohen's revealed small effect sizes on all of the three variables. On basis of the present results and that the SS could induce transient negative effects on subsequent muscle performance, we concluded that the negative effects of the SS on the variables were restored by the isokinetic contractions.
NASA Technical Reports Server (NTRS)
Mineck, R. E.
1977-01-01
Tests were conducted in the Langley V/STOL tunnel to determine the effect of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft. A 1/6-scale model with a 4-blade articulated rotor was used to determine the effect of the rotor wake for the compound configuration. Data were obtained over a range of angles of attack, angles of sideslip, auxiliary engine thrusts, rotor collective pitch angles, and rotor tip-path plane angles for several main-rotor advance ratios. Separate results are presented for the forces and moments on the airframe, the wing, and the tail. An analysis of the test data indicates significant changes in the aerodynamic characteristics. The rotor wake increases the longitudinal static stability, the effective dihedral, and the lateral static stability of the airframe. The rotor induces a downwash on the wing. This downwash decreases the wing lift and increases the drag. The asymmetrical rotor wake induces a differential lift across the wing and a subsequent rolling moment. These rotor induced effects on the wing become smaller with increasing forward speed.
Gnat, Rafał; Saulicz, Edward
2008-03-01
This study evaluates the hypothesis that triggering and eliminating induced static pelvic asymmetry (SPA) may be followed by immediate change in functional asymmetry of the lumbo-pelvo-hip complex. Repeated measures experimental design with 2 levels of independent variable, that is, induced SPA triggered and induced SPA eliminated, was implemented. Three series of measurements were performed, that is, baseline, after triggering SPA, and after eliminating SPA. A group of 84 subjects with no initial symptoms of SPA was studied. Different forms of mechanical stimulation were applied aiming to induce SPA, and the 2 manual stretching-manipulating techniques were performed aiming to eliminate it. A hand inclinometer was used to measure SPA in standing posture. Selected ranges of motion of the hip joints and lumbar spine were used to depict functional asymmetry of the lumbo-pelvo-hip complex. The functional asymmetry indices for individual movements were calculated. Repeated measures design of analysis of variance, dependent data Student t test, and linear Pearson's correlation test were used. Assessment of the SPA showed its significant increase between baseline and series 2 measurements, with a subsequent significant decrease between series 2 and series 3 measurements. Values of the functional asymmetry indices changed accordingly, that is, they increased significantly between series 1 and series 2 and had returned to their initial level in series 3 measurements. Induced SPA shows considerable association with functional asymmetry of the lumbo-pelvo-hip complex.
Characteristics on electodynamic suspension simulator with HTS levitation magnet
NASA Astrophysics Data System (ADS)
Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.
2009-10-01
High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.
Personality traits and individual differences predict threat-induced changes in postural control.
Zaback, Martin; Cleworth, Taylor W; Carpenter, Mark G; Adkin, Allan L
2015-04-01
This study explored whether specific personality traits and individual differences could predict changes in postural control when presented with a height-induced postural threat. Eighty-two healthy young adults completed questionnaires to assess trait anxiety, trait movement reinvestment (conscious motor processing, movement self-consciousness), physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under low and high postural threat conditions. Personality traits and individual differences significantly predicted height-induced changes in static, but not anticipatory postural control. Individuals less prone to taking physical risks were more likely to lean further away from the platform edge and sway at higher frequencies and smaller amplitudes. Individuals more prone to conscious motor processing were more likely to lean further away from the platform edge and sway at larger amplitudes. Individuals more self-conscious about their movement appearance were more likely to sway at smaller amplitudes. Evidence is also provided that relationships between physical risk-taking and changes in static postural control are mediated through changes in fear of falling and physiological arousal. Results from this study may have indirect implications for balance assessment and treatment; however, further work exploring these factors in patient populations is necessary. Copyright © 2015 Elsevier B.V. All rights reserved.
Induced matter brane gravity and Einstein static universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydarzade, Y.; Darabi, F., E-mail: heydarzade@azaruniv.edu, E-mail: f.darabi@azaruniv.edu
We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and themore » stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.« less
Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke
2011-05-27
The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on mycotoxin production by A. alternata. Copyright © 2011 Elsevier B.V. All rights reserved.
QM-8 final performance evaluation report: SEALS, volume 4
NASA Technical Reports Server (NTRS)
Nelsen, L. V.
1989-01-01
The Space Shuttle Redesigned Solid Rocket Motor (RSRM) static test of Qualification Motor-8 (QM-8) was conducted. The QM-8 test article was the fifth full-scale, full-duration test, and the third qualification motor to incorporate the redesigned case field joint and nozzle-to-case joint. This was the second static test conducted in the T-97 test facility, which is equipped with actuators for inducing external side loads to a 360 degree external tank (ET) attach ring during test motor operation, and permits heating/cooling of an entire motor. The QM-8 motor was cooled to a temperature which ensured that the maximum propellant mean bulk temperature (PMBT) of 40 F was achieved at firing. All test results are not included, but rather, the performance of the metal case, field joints, and nozzle-to-case joint is addressed. The involvement is studied of the Structural Applications and Structural Design Groups with the QM-8 test which includes: assembly procedures of the field and nozzle-to-case joints, joint leak check results, structural test results, and post-test inspection evaluations.
NASA Technical Reports Server (NTRS)
Nairn, John A.
1992-01-01
A combined analytical and experimental study was conducted to analyze microcracking, microcrack-induced delamination, and longitudinal splitting in polymer matrix composites. Strain energy release rates, calculated by a variational analysis, were used in a failure criterion to predict microcracking. Predictions and test results were compared for static, fatigue, and cyclic thermal loading. The longitudinal splitting analysis accounted for the effects of fiber bridging. Test data are analyzed and compared for longitudinal splitting and delamination under mixed-mode loading. This study emphasizes the importance of using fracture mechanics analyses to understand the complex failure processes that govern composite strength and life.
Wake-Induced Aerodynamics on a Trailing Aircraft
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Lesieutre, Daniel J.; Kelly, Michael J.
2016-01-01
NASA conducted flight tests to measure the exhaust products from alternative fuels using a DC-8 transport aircraft and a Falcon business jet. An independent analysis of the maximum vortex-induced loads on the Falcon in the DC-8 wake was conducted for pre-flight safety analysis and to define safe trail distances for the flight tests. Static and dynamic vortex-induced aerodynamic loads on the Falcon were predicted at a matrix of locations aft of the DC-8 under flight-test conditions, and the maximum loads were compared with design limit loads to assess aircraft safety. Trajectory simulations for the Falcon during close encounters with the DC-8 wake were made to study the vortex-induced loads during traverses of the DC-8 primary trailing vortex. A parametric study of flight traverses through the trailing vortex was conducted to assess Falcon flight behavior and motion characteristics.
NASA Astrophysics Data System (ADS)
Brown, M. R. M.; Ge, S.
2017-12-01
Increased pore pressure decreasing the effective stress on a critically stressed fault has been the accepted mechanism for injection-induced seismicity. This, however, is an over simplified approach that does not take into account the coupled hydro-mechanical effects. In addition, this approach leaves out a possible key stressor in the system, the earthquakes. Earthquakes are known to interact with each other by Coulomb static stress transfer, the process of permanent stress change caused by movement on a fault. In areas of induced seismicity, many small to moderate earthquakes can occur adding to the stress in the system via Coulomb static stress transfer. Here we ask: Is the Coulomb static stress transfer from the earthquakes as important as the pore pressure increase or stress changes caused by coupled hydro-mechanical processes? Is there a point where the Coulomb static stress transfer from the earthquakes becomes the controlling process for inducing future earthquakes? How does the effect of many small earthquakes compare to a few larger events in terms of Coulomb static stress transfer? In this study, we use hydrologic and coupled hydro-mechanical models and USGS Coulomb 3 to assess the importance of induced earthquakes in terms of the stress change in the system. Realistic scenarios of wastewater injection and earthquake magnitude-frequency distributions are used to develop generic models. Model variables and data are varied to evaluate the range of possible outcomes. Preliminary results show that the stress change associated with injection is of the same order of magnitude as the cumulative Coulomb static stress change of a series of small (1
Induced over voltage test on transformers using enhanced Z-source inverter based circuit
NASA Astrophysics Data System (ADS)
Peter, Geno; Sherine, Anli
2017-09-01
The normal life of a transformer is well above 25 years. The economical operation of the distribution system has its roots in the equipments being used. The economy being such, that it is financially advantageous to replace transformers with more than 15 years of service in the second perennial market. Testing of transformer is required, as its an indication of the extent to which a transformer can comply with the customers specified requirements and the respective standards (IEC 60076-3). In this paper, induced over voltage testing on transformers using enhanced Z source inverter is discussed. Power electronic circuits are now essential for a whole array of industrial electronic products. The bulky motor generator set, which is used to generate the required frequency to conduct the induced over voltage testing of transformers is nowadays replaced by static frequency converter. First conventional Z-source inverter, and second an enhanced Z source inverter is being used to generate the required voltage and frequency to test the transformer for induced over voltage test, and its characteristics is analysed.
NASA Technical Reports Server (NTRS)
Mcdevitt, J. B.; Okuno, A. F.
1985-01-01
The supercritical flows at high subsonic speeds over a NACA 0012 airfoil were studied to acquire aerodynamic data suitable for evaluating numerical-flow codes. The measurements consisted primarily of static and dynamic pressures on the airfoil and test-channel walls. Shadowgraphs were also taken of the flow field near the airfoil. The tests were performed at free-stream Mach numbers from approximately 0.7 to 0.8, at angles of attack sufficient to include the onset of buffet, and at Reynolds numbers from 1 million to 14 million. A test action was designed specifically to obtain two-dimensional airfoil data with a minimum of wall interference effects. Boundary-layer suction panels were used to minimize sidewall interference effects. Flexible upper and lower walls allow test-channel area-ruling to nullify Mach number changes induced by the mass removal, to correct for longitudinal boundary-layer growth, and to provide contouring compatible with the streamlines of the model in free air.
NASA Astrophysics Data System (ADS)
Chen, Dongju; Huo, Chen; Cui, Xianxian; Pan, Ri; Fan, Jinwei; An, Chenhui
2018-05-01
The objective of this work is to study the influence of error induced by gas film in micro-scale on the static and dynamic behavior of a shaft supported by the aerostatic bearings. The static and dynamic balance models of the aerostatic bearing are presented by the calculated stiffness and damping in micro scale. The static simulation shows that the deformation of aerostatic spindle system in micro scale is decreased. For the dynamic behavior, both the stiffness and damping in axial and radial directions are increased in micro scale. The experiments of the stiffness and rotation error of the spindle show that the deflection of the shaft resulting from the calculating parameters in the micro scale is very close to the deviation of the spindle system. The frequency information in transient analysis is similar to the actual test, and they are also higher than the results from the traditional case without considering micro factor. Therefore, it can be concluded that the value considering micro factor is closer to the actual work case of the aerostatic spindle system. These can provide theoretical basis for the design and machining process of machine tools.
Trailing Vortex-Induced Loads During Close Encounters in Cruise
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Lesieutre, Daniel J; Kelly, Michael J.
2015-01-01
The trailing vortex induced aerodynamic loads on a Falcon 20G business jet flying in the wake of a DC-8 are predicted to provide a preflight estimate of safe trail distances during flight test measurements in the wake. Static and dynamic loads on the airframe flying in the near wake are shown at a matrix of locations, and the dynamic motion of the Falcon 20G during traverses of the DC-8 primary trailing vortex is simulated. Safe trailing distances for the test flights are determined, and optimum vortex traverse schemes are identified to moderate the motion of the trailing aircraft during close encounters with the vortex wake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paggi, A., E-mail: alpaggi@tenaris.com; Angella, G.; Donnini, R.
Static and metadynamic recrystallization of an AISI 304L austenitic stainless steel was investigated at 1100 °C and 10{sup −} {sup 2} s{sup −} {sup 1} strain rate. The kinetics of recrystallization was determined through double hit compression tests. Two strain levels were selected for the first compression hit: ε{sub f} = 0.15 for static recrystallization (SRX) and 0.25 for metadynamic recrystallization (MDRX). Both the as-deformed and the recrystallized microstructures were investigated through optical microscopy and electron back-scattered diffraction (EBSD) technique. During deformation, strain induced grain boundary migration appeared to be significant, producing a square-like grain boundary structure aligned along themore » directions of the maximum shear stresses in compression. EBSD analysis revealed to be as a fundamental technique that the dislocation density was distributed heterogeneously in the deformed grains. Grain growth driven by surface energy reduction was also investigated, finding that it was too slow to explain the experimental data. Based on microstructural results, it was concluded that saturation of the nucleation sites occurred in the first stages of recrystallization, while grain growth driven by strain induced grain boundary migration (SIGBM) dominated the subsequent stages. - Highlights: • Recrystallization behavior of a stainless steel was investigated at 1100 °C. • EBSD revealed that the dislocation density distribution was heterogeneous during deformation. • Saturation of nucleation sites occurred in the first stages of recrystallization. • Strain induced grain boundary migration (SIGBM) effects were significant. • Grain growth driven by SIGBM dominated the subsequent stages.« less
Effects of Static Stretching and Playing Soccer on Knee Laxity.
Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen
2015-11-01
This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P < 0.0005) and after playing soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.
Experimental characterization of composites. [load test methods
NASA Technical Reports Server (NTRS)
Bert, C. W.
1975-01-01
The experimental characterization for composite materials is generally more complicated than for ordinary homogeneous, isotropic materials because composites behave in a much more complex fashion, due to macroscopic anisotropic effects and lamination effects. Problems concerning the static uniaxial tension test for composite materials are considered along with approaches for conducting static uniaxial compression tests and static uniaxial bending tests. Studies of static shear properties are discussed, taking into account in-plane shear, twisting shear, and thickness shear. Attention is given to static multiaxial loading, systematized experimental programs for the complete characterization of static properties, and dynamic properties.
76 FR 28131 - Federal Motor Vehicle Safety Standards; Motorcycle Helmets
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
..., this final rule sets a quasi-static load application rate for the helmet retention system; revises the... Analysis and Conclusion e. Quasi-Static Retention Test f. Helmet Conditioning Tolerances g. Other... it as a quasi-static test, instead of a static test. Specifying the application rate will aid...
Static structure of active Brownian hard disks
NASA Astrophysics Data System (ADS)
de Macedo Biniossek, N.; Löwen, H.; Voigtmann, Th; Smallenburg, F.
2018-02-01
We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.
Chen, Zefeng; Wang, Zhao; Li, Xinming; Lin, Yuxuan; Luo, Ningqi; Long, Mingzhu; Zhao, Ni; Xu, Jian-Bin
2017-05-23
The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 -3 kPa -1 and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.
NASA Technical Reports Server (NTRS)
Ziegler, H.; Woller, P. T.
1973-01-01
Procedures have been developed for determining the flow field about jets with velocity stratification exhausting into a crossflow. Jets with three different types of exit velocity stratification have been considered: (1) jets with a relatively high velocity core; (2) jets with a relatively low velocity core; and (3) jets originating from a vaned nozzle. The procedure developed for a jet originating from a high velocity core nozzle is to construct an equivalent nozzle having the same mass flow and thrust but having a uniform exit velocity profile. Calculations of the jet centerline and induced surface static pressures have been shown to be in good agreement with test data for a high velocity core nozzle. The equivalent ideal nozzle has also been shown to be a good representation for jets with a relatively low velocity core and for jets originating from a vaned nozzle in evaluating jet-induced flow fields. For the singular case of a low velocity core nozzle, namely a nozzle with a dead air core, and for the vaned nozzle, an alternative procedure has been developed. The internal mixing which takes place in the jet core has been properly accounted for in the equations of motion governing the jet development. Calculations of jet centerlines and induced surface static pressures show good agreement with test data these nozzles.
NASA Technical Reports Server (NTRS)
Ballin, M. G.
1982-01-01
The feasibility of using static wind tunnel tests to obtain information about spin damping characteristics of an isolated general aviation aircraft tail was investigated. A representative tail section was oriented to the tunnel free streamline at angles simulating an equilibrium spin. A full range of normally encountered spin conditions was employed. Results of parametric studies performed to determine the effect of spin damping on several tail design parameters show satisfactory agreement with NASA rotary balance tests. Wing and body interference effects are present in the NASA studies at steep spin attitudes, but agreement improves with increasing pitch angle and spin rate, suggesting that rotational flow effects are minimal. Vertical position of the horizontal stabilizer is found to be a primary parameter affecting yaw damping, and horizontal tail chordwise position induces a substantial effect on pitching moment.
NASA Technical Reports Server (NTRS)
Whitaker, Mike
1991-01-01
Severe precipitation static problems affecting the communication equipment onboard the P-3B aircraft were recently studied. The study was conducted after precipitation static created potential safety-of-flight problems on Naval Reserve aircraft. A specially designed flight test program was conducted in order to measure, record, analyze, and characterize potential precipitation static problem areas. The test program successfully characterized the precipitation static interference problems while the P-3B was flown in moderate to extreme precipitation conditions. Data up to 400 MHz were collected on the effects of engine charging, precipitation static, and extreme cross fields. These data were collected using a computer controlled acquisition system consisting of a signal generator, RF spectrum and audio analyzers, data recorders, and instrumented static dischargers. The test program is outlined and the computer controlled data acquisition system is described in detail which was used during flight and ground testing. The correlation of test results is also discussed which were recorded during the flight test program and those measured during ground testing.
A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Douglas, Michael J.
2001-01-01
The need for a static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were carried out and compared. Square specimens of many sizes and thickness were utilized to cover the array of types of low velocity impact events. Laminates with a n/4 stacking sequence were employed since this is by the most common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections, contact stresses and both to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation can be used to represent a low velocity impact event.
Cao, Dong-Yuan; Pickar, Joel G.
2014-01-01
We determined whether spinal manipulation could prevent and/or reverse the decrease and increase in paraspinal muscle spindle responsiveness caused respectively by lengthening and shortening histories of the lumbar muscles. Single unit spindle activity from multifidus and longissimus muscles was recorded in the L6 dorsal root in anesthetized cats. Muscle history was created and spinal manipulation delivered (thrust amplitude: 1.0mm, duration: 100ms) using a feedback-controlled motor attached to the L6 spinous process. Muscle spindle discharge to a fixed vertebral position (static test) and to vertebral movement (dynamic test) was evaluated following the lengthening and shortening histories. For the static test, changes in muscle spindle responsiveness were significantly less when spinal manipulation followed muscle history (p<0.01), but not when spinal manipulation preceded it (p>0.05). For the dynamic test, spinal manipulation did not significantly affect the history-induced change in muscle spindle responsiveness. Spinal manipulation may partially reverse the effects of muscle history on muscle spindle signaling of vertebral position. PMID:24932019
A Simplified Test for Blanching Susceptibility of Copper Alloys
NASA Technical Reports Server (NTRS)
Thomas-Ogbuji, Linus U.; Humphrey, Donald; Setlock, John
2003-01-01
GRCop-84 (Cu-8Cr-4Nb) is a dispersion-strengthened alloy developed for space-launch rocket engine applications, as a liner for the combustion chamber and nozzle ramp. Its main advantage over rival alloys, particularly NARloy-Z (Cu-Ag-Zr), the current liner alloy, is in high temperature mechanical properties. Further validation required that the two alloys be compared with respect to service performance and durability. This has been done, under conditions resembling those expected in reusable launch engine applications. GRCop-84 was found to have a superior resistance to static and cyclic oxidation up to approx. 700 C. In order to improve its performance above 700 C, Cu-Cr coatings have also been developed and evaluated. The major oxidative issue with Cu alloys is blanching, a mode of degradation induced by oxidation-reduction fluctuations in hydrogen-fueled engines. That fluctuation cannot be addressed with conventional static or cyclic oxidation testing. Hence, a further evaluation of the alloy substrates and Cu-Cr coating material necessitated our devising a test protocol that involves oxidaton-reduction cycles. This paper describes the test protocols used and the results obtained.
Standardization of motion sickness induced by left-right and up-down reversing prisms
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Vanderploeg, J. M.; Brumley, E. A.; Kolafa, J. J.; Wood, S. J.
1990-01-01
Reversing prisms are known to produce symptoms of motion sickness, and have been used to provide a chronic stimulus for training subjects on symptom recognition and regulation. However, testing procedures with reversing prisms have not been standardized. A set of procedures were evaluated which could be standardized using prisms for provocation and to compare the results between Right/Left Reversing Prisms (R/L-RP) and Up/Down Reversing Prisms (U/D-RP). Fifteen subjects were tested with both types of prisms using a self paced walking course throughout the laboratory with work stations established at specified intervals. The work stations provided tasks requiring eye-hand-foot coordination and various head movements. Comparisons were also made between these prism tests and two other standardized susceptibility tests, the KC-135 parabolic static chair test and the Staircase Velocity Motion Test (SVMT). Two different types of subjective symptom reports were compared. The R/L-RP were significantly more provocative than the U/D-RP. The incidence of motion sickness symptoms for the R/L-RP was similar to the KC-135 parabolic static chair test. Poor correlations were found between the prism tests and the other standardized susceptibility tests, which might indicate that different mechanisms are involved in provoking motion sickness for these different tests.
40 CFR 53.64 - Test procedure: Static fractionator test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test procedure: Static fractionator test. 53.64 Section 53.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Performance Characteristics of Class II Equivalent Methods for PM2.5 § 53.64 Test procedure: Static...
40 CFR 53.64 - Test procedure: Static fractionator test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test procedure: Static fractionator test. 53.64 Section 53.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Performance Characteristics of Class II Equivalent Methods for PM2.5 § 53.64 Test procedure: Static...
NASA Technical Reports Server (NTRS)
Smiley, Robert F; Horne, Walter B
1957-01-01
The vertical force-deflection characteristics were experimentally determined for a pair of 56-inch-diameter tires under static and drop-test conditions with and without prerotation. For increasing force, the tires were found to be least stiff for static tests, almost the same as for the static case for prerotation drop tests as long as the tires remain rotating, and appreciably stiffer for drop tests without prerotation.
NASA Astrophysics Data System (ADS)
Salvador, Israel Irone
The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models (98 to 161 mm in diameter), probably due to the more efficient delivery of laser-induced blast wave energy across the 2D model's larger impulse surface area. Next, the hypersonic campaign was carried out, subjecting the 2D model to nominal Mach numbers ranging from 6 to 10. Again, time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. These visualizations of inlet and absorption chamber flowfields, enabled the qualitative analysis of important phenomena impacting laser-propelled hypersonic airbreathing flight. The laser-induced breakdown took an elongated vertically-oriented geometry, occurring off-surface and across the inlet's mid-channel---quite different from the static case in which the energy was deposited very near the shroud under-surface. The shroud under-surface pressure data indicated laser-induced increases of 0.7-0.9 bar with laser pulse energies of ˜170 J, off-shroud induced breakdown condition, and Mach number of 7. The results of this research corroborate the feasibility of laser powered, airbreathing flight with infinite specific impulse (Isp=infinity): i.e., without the need for propellant injection at the laser focus. Additionally, it is shown that further reductions in inlet air working fluid velocity---with attendant increases in static pressure and density---is necessary to generate higher absorption chamber pressure and engine impulse. Finally, building on lessons learned from the present work, the future research plan is laid out for: a) the present 2D model with full inlet forebody, exploring higher laser pulse energies and multi-pulse phenomena; b) a smaller, redesigned 2D model; c) a 254 mm diameter axisymmetric Lightcraft model; and, d) a laser-electromagnetic accelerator model, designed around a 2-Tesla pulsed electromagnet contracted under the present program.
Assessment of Marine Coatings at a Central California Static Immersion Test Site
2016-10-27
VA 220600-6218 RE: Contract Number N00014-15-1-2321 Assessment of Marine Coatings at a Central California Static Immersion Test Site Principal...Technical Report 05/01/2015 - 07/29/2016 Assessment of Marine Coatings at a Central California Static Immersion Test Site Dean E. Wendt Cal Poly...to test the relationships between the recruitment of fouling organisms to intersite panels and water quality parameters. The static immersion site
Effect of inlet disturbances on fan inlet noise during a static test
NASA Technical Reports Server (NTRS)
Bekofske, K. L.; Sheer, R. E., Jr.; Wang, J. C. F.
1977-01-01
Measurements of fan rotor inlet noise taken during static test situations are at variance with aircraft engine flight data. In particular, static tests generally yield a significantly higher tone at blade passage frequency than that measured during flight. To explain this discrepancy, the extent of the influence of inlet ground vortices and large-scale inlet turbulence on the forward-radiated fan noise measured at a static test facility was investigated. While such inlet disturbances were generated intentionally in an anechoic test chamber, far-field acoustic measurements and inlet flow-field hot-film mappings of a fan rotor were obtained. Experimental results indicate that the acoustic effect of such disturbances appears to be less severe for supersonic than for subsonic tip speeds. Further, a reverse flow that occurs on the exterior cowl in static test facilities appears to be an additional prime candidate for creating inlet disturbances and causing variance between flight and static acoustic data.
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
33 CFR 183.580 - Static pressure test for fuel tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...
GENERAL VIEW LOOKING NORTHWEST AT THE SATURN V STATIC TEST ...
GENERAL VIEW LOOKING NORTHWEST AT THE SATURN V STATIC TEST FACILITY. THIS TEST FACILITY WAS DESIGNED TO RESIST THE 12 MILLION POUNDES OF THRUST GENERATED BY THE THE SATURN V FIRST STAGE ENGINE CLUSTER. - Marshall Space Flight Center, Saturn V S-IC Static Test Facility, West Test Area, Huntsville, Madison County, AL
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Hodge, A. J.
1997-01-01
Low velocity dropweight impact tests were conducted on carbon/epoxy laminates under various boundary conditions. The composite plates were 8-ply (+45,0,-45,90)s laminates supported in a clamped-clamped/free-free configuration with varying amounts of in-plane load, N(sub x), applied. Specimens were impacted at energies of 3.4, 4.5, and 6 Joules (2.5, 3.3, and 4.4 ft-lb). The amount of damage induced into the specimen was evaluated using instrumented impact techniques, x-ray inspection, and cross-sectional photomicroscopy. Some static identation tests were performed to examine if the impact events utilized in this study were of a quasi-static nature and also to gain insight into the shape of the deflected surface at various impact load combinations. Load-displacement curves from these tests were compared to those of the impact tests, as was damage determined from x-ray inspection. The finite element technique was used to model the impact event and determine the stress field within the laminae. Results showed that for a given impact energy level, more damage was induced into the specimen as the external in-plane load, N(sub x), was increased. The majority of damage observed consisted of back face splitting of the matrix parallel to the fibers in that ply, associated with delaminations emanating from these splits. The analysis showed qualitatively the results of impact conditions on maximum load of impact, maximum transverse deflection, and first failure mode and location.
Comparative Tests of Pitot-static Tubes
NASA Technical Reports Server (NTRS)
Merriam, Kenneth G; Spaulding, Ellis R
1935-01-01
Comparative tests were made on seven conventional Pitot-static tubes to determine their static, dynamic, and resultant errors. The effect of varying the dynamic opening, static opening, wall thickness, and inner-tube diameter was investigated. Pressure-distribution measurements showing stem and tip effects were also made. A tentative design for a standard Pitot-static tube for use in measuring air velocity is submitted.
Finite element modeling of ROPS in static testing and rear overturns.
Harris, J R; Mucino, V H; Etherton, J R; Snyder, K A; Means, K H
2000-08-01
Even with the technological advances of the last several decades, agricultural production remains one of the most hazardous occupations in the United States. Death due to tractor rollover is a prime contributor to this hazard. Standards for rollover protective structures (ROPS) performance and certification have been developed by groups such as the Society of Automotive Engineers (SAE) and the American Society of Agricultural Engineers (ASAE) to combat these problems. The current ROPS certification standard, SAE J2194, requires either a dynamic or static testing sequence or both. Although some ROPS manufacturers perform both the dynamic and static phases of SAE J2194 testing, it is possible for a ROPS to be certified for field operation using static testing alone. This research compared ROPS deformation response from a simulated SAE J2194 static loading sequence to ROPS deformation response as a result of a simulated rearward tractor rollover. Finite element analysis techniques for plastic deformation were used to simulate both the static and dynamic rear rollover scenarios. Stress results from the rear rollover model were compared to results from simulated static testing per SAE J2194. Maximum stress values from simulated rear rollovers exceeded maximum stress values recorded during simulated static testing for half of the elements comprising the uprights. In the worst case, the static model underpredicts dynamic model results by approximately 7%. In the best case, the static model overpredicts dynamic model results by approximately 32%. These results suggest the need for additional experimental work to characterize ROPS stress levels during staged overturns and during testing according to the SAE standard.
Reinhardt-Rutland, A H
2003-07-01
Induced motion is the illusory motion of a static stimulus in the opposite direction to a moving stimulus. Two types of induced motion have been distinguished: (a) when the moving stimulus is distant from the static stimulus and undergoes overall displacement, and (b) when the moving stimulus is pattern viewed within fixed boundaries that abut the static stimulus. Explanations of the 1st type of induced motion refer to mediating phenomena, such as vection, whereas the 2nd type is attributed to local processing by motion-sensitive neurons. The present research was directed to a display that elicited induced rotational motion with the characteristics of both types of induced motion: the moving stimulus lay within fixed boundaries, but the inducing and induced stimuli were distant from each other. The author investigated the properties that distinguished the two types of induced motion. In 3 experiments, induced motion persisted indefinitely, interocular transfer of the aftereffect of induced motion was limited to about 20%, and the time-course of the aftereffect of induced motion could not be attributed to vection. Those results were consistent with fixed-boundary induced motion. However, they could not be explained by local processing. Instead, the results might reflect the detection of object motion within a complex flow-field that resulted from the observer's motion.
NASA Technical Reports Server (NTRS)
Paulson, J. W.; Whitten, P. D.; Stumpfl, S. C.
1982-01-01
A wind-tunnel investigation incorporating both static and wind-on testing was conducted in the Langley 4- by 7-Meter Tunnel to determine the effects of vectored thrust along with spanwise blowing on the low-speed aerodynamics of an advanced fighter configuration. Data were obtained over a large range of thrust coefficients corresponding to takeoff and landing thrust settings for many nozzle configurations. The complete set of static thrust data and the complete set of longitudinal aerodynamic data obtained in the investigation are presented. These data are intended for reference purposes and, therefore, are presented without analysis or comment. The analysis of the thrust-induced effects found in the investigation are not discussed.
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static pressure test. 7.307 Section 7.307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...
A Comparison of Quasi-Static Indentation to Low-Velocity Impact
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Douglas, M. J.
2000-01-01
A static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low-velocity impact tests were carried out and compared. Square specimens of many sizes and thicknesses were utilized to cover the array of types of low velocity impact events. Laminates with a pi/4 stacking sequence were employed since this is by far the most common type of engineering laminate. Three distinct flexural rigidities -under two different boundary conditions were tested in order to obtain damage ranging from that due to large deflection to contact stresses and levels in-between to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low-velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area, and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low-velocity impact tests, indicating that static indentation can be used to represent a low-velocity impact event.
Orifice-induced pressure error studies in Langley 7- by 10-foot high-speed tunnel
NASA Technical Reports Server (NTRS)
Plentovich, E. B.; Gloss, B. B.
1986-01-01
For some time it has been known that the presence of a static pressure measuring hole will disturb the local flow field in such a way that the sensed static pressure will be in error. The results of previous studies aimed at studying the error induced by the pressure orifice were for relatively low Reynolds number flows. Because of the advent of high Reynolds number transonic wind tunnels, a study was undertaken to assess the magnitude of this error at high Reynolds numbers than previously published and to study a possible method of eliminating this pressure error. This study was conducted in the Langley 7- by 10-Foot High-Speed Tunnel on a flat plate. The model was tested at Mach numbers from 0.40 to 0.72 and at Reynolds numbers from 7.7 x 1,000,000 to 11 x 1,000,000 per meter (2.3 x 1,000,000 to 3.4 x 1,000,000 per foot), respectively. The results indicated that as orifice size increased, the pressure error also increased but that a porous metal (sintered metal) plug inserted in an orifice could greatly reduce the pressure error induced by the orifice.
Reduction of Orifice-Induced Pressure Errors
NASA Technical Reports Server (NTRS)
Plentovich, Elizabeth B.; Gloss, Blair B.; Eves, John W.; Stack, John P.
1987-01-01
Use of porous-plug orifice reduces or eliminates errors, induced by orifice itself, in measuring static pressure on airfoil surface in wind-tunnel experiments. Piece of sintered metal press-fitted into static-pressure orifice so it matches surface contour of model. Porous material reduces orifice-induced pressure error associated with conventional orifice of same or smaller diameter. Also reduces or eliminates additional errors in pressure measurement caused by orifice imperfections. Provides more accurate measurements in regions with very thin boundary layers.
Design, Fabrication and Test of Composite Curved Frames for Helicopter Fuselage Structure
NASA Technical Reports Server (NTRS)
Lowry, D. W.; Krebs, N. E.; Dobyns, A. L.
1984-01-01
Aspects of curved beam effects and their importance in designing composite frame structures are discussed. The curved beam effect induces radial flange loadings which in turn causes flange curling. This curling increases the axial flange stresses and induces transverse bending. These effects are more important in composite structures due to their general inability to redistribute stresses by general yielding, such as in metal structures. A detailed finite element analysis was conducted and used in the design of composite curved frame specimens. Five specimens were statically tested and compared with predicted and test strains. The curved frame effects must be accurately accounted for to avoid premature fracture; finite element methods can accurately predict most of the stresses and no elastic relief from curved beam effects occurred in the composite frames tested. Finite element studies are presented for comparative curved beam effects on composite and metal frames.
Technical Evaluation Motor No. 10 (TEM-10)
NASA Technical Reports Server (NTRS)
1993-01-01
Technical Evaluation Motor No. 10 (TEM-10) was static fired on 27 Apr. 1993 at the Thiokol Corporation full-scale motor static test bay, T-24. This final test report documents the procedures, performance, and results of the static test firing of TEM-10. All observations, discussions, conclusions, and recommendations contained are final. Included is a presentation and discussion of TEM-10 performance, anomalies, and test results in concurrence with the objectives outlined in CTP-0110, Revision D, Space Shuttle Technical Evaluation Motor No. 10 (TEM-10) Static Fire Test Plan.
Wind-Tunnel Tests of Seven Static-Pressure Probes at Transonic Speeds
NASA Technical Reports Server (NTRS)
Capone, Francis J.
1961-01-01
Wind-tunnel tests have been conducted to determine the errors of 3 seven static-pressure probes mounted very close to the nose of a body of revolution simulating a missile forebody. The tests were conducted at Mach numbers from 0.80 to 1.08 and at angles of attack from -1.7 deg to 8.4 deg. The test Reynolds number per foot varied from 3.35 x 10(exp 6) to 4.05 x 10(exp 6). For three 4-vane, gimbaled probes, the static-pressure errors remained constant throughout the test angle-of-attack range for all Mach numbers except 1.02. For two single-vane, self-rotating probes having two orifices at +/-37.5 deg. from the plane of symmetry on the lower surface of the probe body, the static-pressure error varied as much as 1.5 percent of free-stream static pressure through the test angle-of- attack range for all Mach numbers. For two fixed, cone-cylinder probes of short length and large diameter, the static-pressure error varied over the test angle-of-attack range at constant Mach numbers as much as 8 to 10 percent of free-stream static pressure.
[The role of acoustic impedance test in the diagnosis for occupational noise induced deafness].
Chen, H; Xue, L J; Yang, A C; Liang, X Y; Chen, Z Q; Zheng, Q L
2018-01-20
Objective: To investigate the characteristics of acoustic impedance test and its diagnostic role for occupational noise induced deafness, in order to provide an objective basis for the differential diagnosis of occupational noise induced deafness. Methods: A retrospective study was conducted to investigate the cases on the diagnosis of occupational noise-induced deafness in Guangdong province hospital for occupational disease prevention and treatment from January 2016 to January 2017. A total of 198 cases (396 ears) were divided into occupation disease group and non occupation disease group based on the diagnostic criteria of occupational noise deafness in 2014 edition, acoustic conductivity test results of two groups were compared including tympanograms types, external auditory canal volume, tympanic pressure, static compliance and slope. Results: In the occupational disease group, 204 ears were found to have 187 ears (91.67%) of type A, which were significantly higher than those in the non occupational disease group 143/192 (74.48%) , the difference was statistically significant (χ(2)=21.038, P <0.01). Detection of Ad or As type, occupation disease group in other type were 16/204 (7.84%) , 3/204 (1.47%) , were lower than Ad or As type of occupation disease group (15.63%) , other type (9.38%) , the differences were statistically significant[ (χ(2)=5.834, P <0.05) , (χ(2)=12.306, P <0.01) ]. Occupation disease group canal volume average (1.68±0.39) ml higher than that of non occupation disease group (1.57 ± 0.47) ml, the difference was statistically significant ( t =2.756, P <0.01) ; occupation disease group mean static compliance (1.06±0.82) ml higher than that of non occupation disease group (0.89±0.64) ml. The difference was statistically singificant ( t =2.59, P <0.01) . Conclusion: We observed that acoustic impedance test had obvious auxiliary function in the differential diagnosis of occupational noise induced deafness, More than 90% of the confirmed cases showed an A-form tympanograms, it is one of the objective examination methods which can be used in the differential diagnosis of pseudo deafness.
Davidović, A; Huntington, E H; Frater, M R
2009-07-01
For some nonlinear systems the performance can improve with an increasing noise level. Such noise-induced improvement in static nonlinearities is of great interest for practical applications since many systems can be modeled in that way (e.g., sensors, quantizers, limiters, etc.). We present experimental evidence that noise-induced performance improvement occurs in those systems as a consequence of discretization in time with the achievable signal-to-noise ratio (SNR) gain increasing with decreasing ratio of input noise bandwidth and total measurement bandwidth. By modifying the input noise bandwidth, noise-induced improvement with SNR gain larger than unity is demonstrated in a system where it was not previously thought possible. Our experimental results bring closer two different theoretical models for the same class of nonlinearities and shed light on the behavior of static nonlinear discrete-time systems.
NASA Astrophysics Data System (ADS)
Zhuang, Weimin; Ao, Wenhong
2018-03-01
Damage propagation induced failure is a predominant damage mechanism. This study is aimed at assessing the damage state and damage propagation induced failure with different stacking angles, of woven carbon fiber/epoxy laminates subjected to quasi-static tensile and bending load. Different stages of damage processing and damage behavior under the bending load are investigated by Scanning Electron Microscopy (SEM). The woven carbon fiber/epoxy laminates which are stacked at six different angles (0°, 15°, 30°, 45°, 60°, 75°) with eight plies have been analyzed: [0]8, [15]8, [30]8, [45]8, [60]8, [75]8. Three-point bending test and quasi-static tensile test are used in validating the woven carbon fiber/epoxy laminates’ mechanical properties. Furthermore, the damage propagation and failure modes observed under flexural loading is correlated with flexural force and load-displacement behaviour respectively for the laminates. The experimental results have indicated that [45]8 laminate exhibits the best flexural performance in terms of energy absorption duo to its pseudo-ductile behaviour but the tensile strength and flexural strength drastically decreased compared to [0]8 laminate. Finally, SEM micrographs of specimens and fracture surfaces are used to reveal the different types of damage of the laminates with different stacking angles.
Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Kwon, Young S.; Sankar, Bhavani V.
1992-01-01
Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.
Space Shuttle Flight Support Motor no. 1 (FSM-1)
NASA Technical Reports Server (NTRS)
Hughes, Phil D.
1990-01-01
Space Shuttle Flight Support Motor No. 1 (FSM-1) was static test fired on 15 Aug. 1990 at the Thiokol Corporation Static Test Bay T-24. FSM-1 was a full-scale, full-duration static test fire of a redesigned solid rocket motor. FSM-1 was the first of seven flight support motors which will be static test fired. The Flight Support Motor program validates components, materials, and manufacturing processes. In addition, FSM-1 was the full-scale motor for qualification of Western Electrochemical Corporation ammonium perchlorate. This motor was subjected to all controls and documentation requirements CTP-0171, Revision A. Inspection and instrumentation data indicate that the FSM-1 static test firing was successful. The ambient temperature during the test was 87 F and the propellant mean bulk temperature was 82 F. Ballistics performance values were within the specified requirements. The overall performance of the FSM-1 components and test equipment was nominal.
LLNL small-scale static spark machine: static spark sensitivity test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, M F; Simpson, L R
1999-08-23
Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less
Technical Evaluation Motor No. 7 (TEM-07)
NASA Technical Reports Server (NTRS)
Hugh, Phil
1991-01-01
Technical Evaluation Motor Number 7 (TEM-7) was a full scale, full-duration static test firing of a high performance motor (HPM) configuration solid rocket motor (SRM) with nozzle vectoring. The static test fire occurred on 11 December 1990 at the Thiokol Corporation Static Test Bay T-97. Documented here are the procedures, performance, and results available through 22 January 1991. Critical post test hardware activities and assessment of the test data are not complete. A completed test report will be submitted 60 days after the test date. Included here is a presentation and discussion of the TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107 Revision A, Space Shuttle Technical Evaluation Motor number 7 (TEM-07) Static Fire Test Plan.
24. "GAFFTC 29 SEP 60, F106B STATIC TEST 1." Test ...
24. "G-AFFTC 29 SEP 60, F-106B STATIC TEST 1." Test of the Convair sled escape system at static test site east of Station "50". File no. 11,988-60. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA
Bragin, Denis E; Statom, Gloria; Nemoto, Edwin M
2016-01-01
We previously suggested that the discrepancy between a critical cerebral perfusion pressure (CPP) of 30 mmHg, obtained by increasing intracranial pressure (ICP), and 60 mmHg, obtained by decreasing arterial pressure, was due to pathological microvascular shunting at high ICP [1], and that the determination of the critical CPP by the static cerebral blood flow (CBF) autoregulation curve is not valid with intracranial hypertension. Here, we demonstrated that induced dynamic ICP reactivity (iPRx), and cerebrovascular reactivity (CVRx) tests accurately identify the critical CPP in the hypertensive rat brain, which differs from that obtained by the static autoregulation curve. Step changes in CPP from 70 to 50 and 30 mmHg were made by increasing ICP using an artificial cerebrospinal fluid reservoir connected to the cisterna magna. At each CPP, a transient 10-mmHg increase in arterial pressure was induced by bolus intravenous dopamine. iPRx and iCVRx were calculated as ΔICP/Δ mean arterial pressure (MAP) and as ΔCBF/ΔMAP, respectively. The critical CPP at high ICP, obtained by iPRx and iCVRx, is 50 mmHg, where compromised capillary flow, transition of blood flow to nonnutritive microvascular shunts, tissue hypoxia, and brain-blood barrier leakage begin to occur, which is higher than the 30 mmHg determined by static autoregulation.
Flight evaluation of an engine static pressure noseprobe in an F-15 airplane
NASA Technical Reports Server (NTRS)
Foote, C. H.; Jaekel, R. F.
1981-01-01
The flight testing of an inlet static pressure probe and instrumented inlet case produced results consistent with sea-level and altitude stand testing. The F-15 flight test verified the basic relationship of total to static pressure ratio versus corrected airflow and automatic distortion downmatch with the engine pressure ratio control mode. Additionally, the backup control inlet case statics demonstrated sufficient accuracy for backup control fuel flow scheduling, and the station 6 manifolded production probe was in agreement with the flight test station 6 tota pressure probes.
Palmer, Ty B; Agu-Udemba, Chinonye C; Palmer, Bailey M
2018-02-01
This study aimed to examine the acute effects of straight-leg raise (SLR) static stretching on passive stiffness and postural balance in healthy, elderly men. An additional aim of this study was to examine the relationships between stiffness and balance at baseline (prior to stretching) and the relationships between the stretch-induced changes in these variables. Eleven elderly men (age = 69 ± 6 years; height = 177 ± 7 cm; mass = 83 ± 13 kg) underwent postural balance and passive stiffness assessments before and after: 1) a stretching treatment consisting of four, 15-s SLR static stretches performed by the primary investigator and 2) a control treatment consisting of no static stretching. Passive stiffness was calculated from the slopes of the initial (phase 1) and final (phase 2) portions of the angle-torque curve. Unilateral postural balance was assessed on the right leg using a commercially designed balance testing device, which provides a measurement of static stability based on the overall stability index (OSI). The slope coefficients and OSI values decreased from pre- to post-treatment for the stretching intervention (P = 0.015 and 0.018, respectively); however, there were no changes for the control (P = 0.654 and 0.920). For the stretching intervention, a significant positive relationship was observed between OSI and the slope coefficient of phase 1 at baseline (r = 0.619; P = 0.042). A significant positive relationship was also observed between the stretched-induced changes in OSI and the slope coefficient of phase 1 (r = 0.731; P = 0.011). No relationship was observed between OSI and the slope coefficient of phase 2 at baseline (r = 0.262; P = 0.437) nor was there a relationship between the changes in these variables (r = 0.419; P = 0.200). A short, practical bout of SLR static stretching may be an effective intervention for reducing passive stiffness and improving postural balance in healthy, elderly men.
22. STATIC TEST TOWER VIEW OF TEST CELLS AND F1 ...
22. STATIC TEST TOWER VIEW OF TEST CELLS AND F-1 TEST LOCK DOWN FOR ENGINE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Evaluation of Relationship between Trunk Muscle Endurance and Static Balance in Male Students
Barati, Amirhossein; SafarCherati, Afsaneh; Aghayari, Azar; Azizi, Faeze; Abbasi, Hamed
2013-01-01
Purpose Fatigue of trunk muscle contributes to spinal instability over strenuous and prolonged physical tasks and therefore may lead to injury, however from a performance perspective, relation between endurance efficient core muscles and optimal balance control has not been well-known. The purpose of this study was to examine the relationship of trunk muscle endurance and static balance. Methods Fifty male students inhabitant of Tehran university dormitory (age 23.9±2.4, height 173.0±4.5 weight 70.7±6.3) took part in the study. Trunk muscle endurance was assessed using Sørensen test of trunk extensor endurance, trunk flexor endurance test, side bridge endurance test and static balance was measured using single-limb stance test. A multiple linear regression analysis was applied to test if the trunk muscle endurance measures significantly predicted the static balance. Results There were positive correlations between static balance level and trunk flexor, extensor and lateral endurance measures (Pearson correlation test, r=0.80 and P<0.001; r=0.71 and P<0.001; r=0.84 and P<0.001, respectively). According to multiple regression analysis for variables predicting static balance, the linear combination of trunk muscle endurance measures was significantly related to the static balance (F (3,46) = 66.60, P<0.001). Endurance of trunk flexor, extensor and lateral muscles were significantly associated with the static balance level. The regression model which included these factors had the sample multiple correlation coefficient of 0.902, indicating that approximately 81% of the variance of the static balance is explained by the model. Conclusion There is a significant relationship between trunk muscle endurance and static balance. PMID:24800004
NASA Astrophysics Data System (ADS)
Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri
2018-01-01
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.
Static, noise, and transition tests of a combined-surface-blowing V/STOL lift/propulsion system
NASA Technical Reports Server (NTRS)
Schoen, A. H.; Kolesar, C. E.; Schaeffer, E. G.
1977-01-01
Efficient thrust vectoring and high levels of circulatory lift were obtained in tests of a half model V/STOL airplane by using a type of externally blown jet flap in which the jet exhaust from wing-mounted cruise fans is directed over both upper and lower surfaces of a flapped wing. Approximately 90% thrust recovery with 87 deg of thrust vectoring was achieved under static conditions using 89 deg of trailing edge flap deflection. The approximately 10% loss appears to be associated primarily with pressure losses due to the flap brackets or slot entries. The jet induced lift was shown to be 55% of the theoretical value for a fullspan jet-flapped wing, even though only 27.5% of the wingspan was immersed in the jet. Steady rate of descent capability in excess of 1,000 feet per minute is predicted. The possibility of significant aerodynamic-noise cancelling when blowing over both surfaces at high velocities is indicated.
Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.
Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka
2013-09-07
The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.
CARS Temperature Measurements in a Hypersonic Propulsion Test Facility
NASA Technical Reports Server (NTRS)
Jarrett, Olin, Jr.; Smith, M. W.; Antcliff, R. R.; Northam, G. Burt; Cutler, A. D.; Capriotti, D. P.; Taylor, D. J.
1990-01-01
Nonintrusive diagnostic measurements were performed in the supersonic reacting flow of the Hypersonic Propulsion Test Cell 2 at NASA-Langley. A Coherent Anti-stokes Raman Spectroscopy (CARS) system was assembled specifically for the test cell environment. System design considerations were: (1) test cell noise and vibration; (2) contamination from flow field or atmospheric borne dust; (3) unwanted laser or electrically induced combustion (inside or outside the duct); (4) efficient signal collection; (5) signal splitting to span the wide dynamic range present throughout the flow field; (6) movement of the sampling volume in the flow; and (7) modification of the scramjet model duct to permit optical access to the reacting flow with the CARS system. The flow in the duct was a nominal Mach 2 flow with static pressure near one atmosphere. A single perpendicular injector introduced hydrogen into the flow behind a rearward facing step. CARS data was obtained in three planes downstream of the injection region. At least 20 CARS data points were collected at each of the regularly spaced sampling locations in each data plane. Contour plots of scramjet combustor static temperature in a reacting flow region are presented.
8. STATIC TEST TOWER NORTHWEST ELEVATION FROM THE POWER ...
8. STATIC TEST TOWER - NORTHWEST ELEVATION FROM THE POWER PLANT TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
NASA Technical Reports Server (NTRS)
Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)
2001-01-01
This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.
Error analysis and prevention of cosmic ion-induced soft errors in static CMOS RAMs
NASA Astrophysics Data System (ADS)
Diehl, S. E.; Ochoa, A., Jr.; Dressendorfer, P. V.; Koga, P.; Kolasinski, W. A.
1982-12-01
Cosmic ray interactions with memory cells are known to cause temporary, random, bit errors in some designs. The sensitivity of polysilicon gate CMOS static RAM designs to logic upset by impinging ions has been studied using computer simulations and experimental heavy ion bombardment. Results of the simulations are confirmed by experimental upset cross-section data. Analytical models have been extended to determine and evaluate design modifications which reduce memory cell sensitivity to cosmic ions. A simple design modification, the addition of decoupling resistance in the feedback path, is shown to produce static RAMs immune to cosmic ray-induced bit errors.
NASA Technical Reports Server (NTRS)
Snider, H. L.; Reeder, F. L.; Dirkin, W. J.
1972-01-01
Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
Performance study of winglets on tapered wing with curved trailing edge
NASA Astrophysics Data System (ADS)
Ara, Ismat; Ali, Mohammad; Islam, Md. Quamrul; Haque, M. Nazmul
2017-06-01
Induced drag is the result of wingtip vortex produced from generating lift by finite wing. It is one of the main drags that an aircraft wing encounters during flight. It hampers aircraft performance by increasing fuel consumption and reducing endurance, range and speed. Winglets are used to reduce the induced drag. They weakens wingtip vortex and thus reduces induced drag. This paper represents the experimental investigation to reduce induced drag using winglet at the wingtip. A model of tapered wing with curved trailing edge (without winglet) as well as two similar wings with blended winglet and double blended winglet are prepared using NACA 4412 aerofoil in equal span and surface area. All the models are tested in a closed circuit subsonic wind tunnel at air speed of 108 km/h (0.09 Mach). Reynolds number of the flow is 2.28 × 105 on the basis of average chord length of the wings. The point surface static pressures at different angles of attack from -4° to 24° are measured for each of the wing and winglet combinations through different pressure tapings by using a multi-tube water manometer. From the static pressure distribution, lift coefficient, drag coefficient and lift to drag ratio of all models are calculated. From the analysis of calculated values, it is found that both winglets are able to minimize induced drag; however, the tapered curved trailing edge span with blended winglet provides better aerodynamic performance.
20. UNCOVERED TEST CELL AT THE STATIC TEST TOWER ON ...
20. UNCOVERED TEST CELL AT THE STATIC TEST TOWER ON THE WEST SIDE WHERE F-1 ENGINE WAS TESTED. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
2016-08-01
quasi -static mechanical properties, deformation behavior, and damage mechanisms in HSHDC and compare the behavior with VHSC. 2. Develop experimental ...using the experimental setup described in Chapter 6. The quasi -static strain rate was approximately 10-4/s. All panels tested have nominal dimensions...ER D C TR -1 6- 13 Force Protection Basing; TeCD 1a Equipment and Protocols for Quasi -Static and Dynamic Tests of Very-High-Strength
Stieglitz, John D; Mager, Edward M; Hoenig, Ronald H; Alloy, Matthew; Esbaugh, Andrew J; Bodinier, Charlotte; Benetti, Daniel D; Roberts, Aaron P; Grosell, Martin
2016-11-01
Key differences in the developmental process of pelagic fish embryos, in comparison to embryos of standard test fish species, present challenges to obtaining sufficient control survival needed to successfully perform traditional toxicity testing bioassays. Many of these challenges relate to the change in buoyancy, from positive to negative, of pelagic fish embryos that occurs just prior to hatch. A novel exposure system, the pelagic embryo-larval exposure chamber (PELEC), has been developed to conduct successful bioassays on the early life stages (ELSs; embryos/larvae) of pelagic fish. Using this unique recirculating upwelling system, it was possible to significantly improve control survival in pelagic fish ELS bioassays compared to commonly used static exposure methods. Results demonstrate that control performance of mahi-mahi (Coryphaena hippurus) embryos in the PELEC system, measured as percent survival after 96-hrs, significantly outperformed agitated static exposure and static exposure systems. Similar significant improvements in 72-hr control survival were obtained with yellowfin tuna (Thunnus albacares). The PELEC system was subsequently used to test the effects of photo-induced toxicity of crude oil to mahi-mahi ELSs over the course of 96-hrs. Results indicate a greater than 9-fold increase in toxicity of Deepwater Horizon (DWH) crude oil during co-exposure to ambient sunlight compared to filtered ambient sunlight, revealing the importance of including natural sunlight in 96-hr DWH crude oil bioassays as well as the PELEC system's potential application in ecotoxicological assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fatigue-induced balance impairment in young soccer players.
Pau, Massimiliano; Ibba, Gianfranco; Attene, Giuseppe
2014-01-01
Although balance is generally recognized to be an important feature in ensuring good performance in soccer, its link with functional performance remains mostly unexplored, especially in young athletes. To investigate changes in balance induced by fatigue for unipedal and bipedal static stances in young soccer players. Crossover study. Biomechanics laboratory and outdoor soccer field. Twenty-one male soccer players (age = 14.5 ± 0.2 years, height = 164.5 ± 5.6 cm, mass = 56.8 ± 6.8 kg). Static balance was assessed with postural-sway analysis in unipedal and bipedal upright stance before and after a fatigue protocol consisting of a repeated sprint ability (RSA) test (2 × 15-m shuttle sprint interspersed with 20 seconds of passive recovery, repeated 6 times). On the basis of the center-of-pressure (COP) time series acquired during the experimental tests, we measured sway area, COP path length, and COP maximum displacement and velocity in the anteroposterior and mediolateral directions. Fatigue increased all sway values in bipedal stance and all values except COP velocity in the mediolateral direction in unipedal stance. Fatigue index (calculated on the basis of RSA performance) was positively correlated with fatigue/rest sway ratio for COP path length and COP velocity in the anteroposterior and mediolateral directions for nondominant single-legged stance. Fatigued players exhibited reduced performance of the postural-control system. Participants with better performance in the RSA test appeared less affected by balance impairment, especially in single-legged stance.
Comparison of the aerodynamic characteristics of an ablating and nonablating blunted conical body
NASA Technical Reports Server (NTRS)
Kruse, R. L.
1973-01-01
The influence of ablation on the aerodynamic characteristics of a blunted slender cone was investigated. Plastic models were launched in free flight at ablating conditions. The results were compared with results of similar tests using metal nonablating models. Ablation was found to decrease the dynamic stability and the drag, but had little effect on static stability and lift. The plastic models appeared to experience ablation-induced roll.
Performance characteristics of a wedge nozzle installed on an F-18 propulsion wind tunnel model
NASA Technical Reports Server (NTRS)
Petit, J. E.; Capone, F. J.
1979-01-01
The results of two-dimensional wedge non-axisymmetric nozzle (2D-AIN) tests to determine its performance relative to the baseline axisymmetric nozzle using an F-18 jet effects wind tunnel model are presented. Configurations and test conditions simulated forward thrust-minus drag, thrust vectoring/induced lift, and thrust reversing flight conditions from Mach .6 to 1.20 and attack angles up to 10 degrees. Results of the model test program indicate that non-axisymmetric nozzles can be installed on a twin engine fighter aircraft model with equivalent thrust minus drag performance as the baseline axisymmetric nozzles. Thrust vectoring capability of the non-axisymmetric nozzles provided significant jet-induced lift on the nozzle/aftbody and horizontal tail surfaces. Thrust reversing panels deployed from the 2D-AIN centerbody wedge were very effective for static and inflight operation
18. STATIC TEST TOWER VIEW FROM REMOVABLE LEVEL DOWN ...
18. STATIC TEST TOWER - VIEW FROM REMOVABLE LEVEL DOWN TOWARDS GANTRY CRANE AND THREE TEST CELLS. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES STRUCTURAL DYNAMICS TEST STAND COLD CALIBRATION TEST STAND AND COMPONENTS TEST LAB. - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
BPM Motors in Residential Gas Furnaces: What are theSavings?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, James; Franco, Victor; Lekov, Alex
2006-05-12
Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured staticmore » pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.« less
Azarpaikan, Atefeh; Taheri Torbati, Hamidreza
2017-10-23
The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, M J; Tosten, M H
1989-01-01
Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent onmore » the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.« less
Evaluation of Geosynthetic-Reinforced Flexible Pavements using Static Plate Load Tests
DOT National Transportation Integrated Search
2010-01-01
This study focuses on the response of full-scale geogrid-reinforced flexible pavements to static surface loading. Specifically, static plate load (SPL) tests were performed on a low-volume, asphalt pavement frontage road in Eastern Arkansas, USA (the...
Static mechanical strain induces capillary endothelial cell cycle re-entry and sprouting.
Zeiger, A S; Liu, F D; Durham, J T; Jagielska, A; Mahmoodian, R; Van Vliet, K J; Herman, I M
2016-08-16
Vascular endothelial cells are known to respond to a range of biochemical and time-varying mechanical cues that can promote blood vessel sprouting termed angiogenesis. It is less understood how these cells respond to sustained (i.e., static) mechanical cues such as the deformation generated by other contractile vascular cells, cues which can change with age and disease state. Here we demonstrate that static tensile strain of 10%, consistent with that exerted by contractile microvascular pericytes, can directly and rapidly induce cell cycle re-entry in growth-arrested microvascular endothelial cell monolayers. S-phase entry in response to this strain correlates with absence of nuclear p27, a cyclin-dependent kinase inhibitor. Furthermore, this modest strain promotes sprouting of endothelial cells, suggesting a novel mechanical 'angiogenic switch'. These findings suggest that static tensile strain can directly stimulate pathological angiogenesis, implying that pericyte absence or death is not necessarily required of endothelial cell re-activation.
NASA Astrophysics Data System (ADS)
Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia
2017-04-01
One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field, El Salvador. Geothermics, 52, 98-111, doi: 10.1016/j.geothermics.2013.09.008. Acknowledgements: This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and by the Ministry of Science and Higher Education of Poland under project no. 500-10-27.
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES POWER PLANT TEST STAND AND SATURN V TEST STAND IN THE WEST TEST AREA (FAR BACKGROUND). - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements
NASA Technical Reports Server (NTRS)
Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)
2003-01-01
Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.
13. TOP OF STATIC TEST TOWER VIEW OF STEEL TRUSS ...
13. TOP OF STATIC TEST TOWER VIEW OF STEEL TRUSS STRUCTURE AND OVERHEAD CRANE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
A Static Burst Test for Composite Flywheel Rotors
NASA Astrophysics Data System (ADS)
Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred
2016-06-01
High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.
Modeling the Fluid Withdraw and Injection Induced Earthquakes
NASA Astrophysics Data System (ADS)
Meng, C.
2016-12-01
We present an open source numerical code, Defmod, that allows one to model the induced seismicity in an efficient and standalone manner. The fluid withdraw and injection induced earthquake has been a great concern to the industries including oil/gas, wastewater disposal and CO2 sequestration. Being able to numerically model the induced seismicity is long desired. To do that, one has to consider at lease two processes, a steady process that describes the inducing and aseismic stages before and in between the seismic events, and an abrupt process that describes the dynamic fault rupture accompanied by seismic energy radiations during the events. The steady process can be adequately modeled by a quasi-static model, while the abrupt process has to be modeled by a dynamic model. In most of the published modeling works, only one of these processes is considered. The geomechanicists and reservoir engineers are focused more on the quasi-static modeling, whereas the geophysicists and seismologists are focused more on the dynamic modeling. The finite element code Defmod combines these two models into a hybrid model that uses the failure criterion and frictional laws to adaptively switch between the (quasi-)static and dynamic states. The code is capable of modeling episodic fault rupture driven by quasi-static loading, e.g. due to reservoir fluid withdraw and/or injection, and by dynamic loading, e.g. due to the foregoing earthquakes. We demonstrate a case study for the 2013 Azle earthquake.
Investigation of two pitot-static tubes at supersonic speeds
NASA Technical Reports Server (NTRS)
Hasel, Lowell E; Coletti, Donald E
1948-01-01
The results of tests at a Mach number of 1.94 of an ogives-nose cylindrical pitot-static tube and similar tests at Mach numbers of 1.93 and 1.62 of a service pitot-static tube to determine body static pressures and indicated Mach numbers are presented and discussed. The radial pressure distribution on the cylindrical bodies is compared with that calculated by an approximate theory.
37. VIEW LOOKING SOUTH AT THE STATIC TEST TOWER. THIS ...
37. VIEW LOOKING SOUTH AT THE STATIC TEST TOWER. THIS VIEW SHOWS TWO MAJOR CHANGES TO THE STATIC TEST TOWER: THE ADDITION OF THE NASA LOGO TO THE FACADE AND THE ADDITION OF THE UPPER STAGES TO THE JUPITER MISSILE IN THE WEST POSITION ON THE TOWER TO REPRESENT THE JUNO II CONFIGURATION. 1961, PHOTOGRAPHER UNKNOWN, FRED ORDWAY COLLECTION, U. S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
24. CLOSEUP OF MOUNT FOR F1 ENGINE ON STATIC TEST ...
24. CLOSE-UP OF MOUNT FOR F-1 ENGINE ON STATIC TEST TOWER WITH STRUCTURAL DYNAMICS TEST STAND IN DISTANCE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
NASA Technical Reports Server (NTRS)
Schnell, W. C.; Ordonez, G. W.
1981-01-01
A 1/8 scale jet-effects model was tested in the NASA Ames 11 ft transonic tunnel at static conditions and over a range of Mach numbers from 0.4 to 1.4. The data presented show that significant differences in aeropropulsion performance can be expected by varying the exhaust nozzle type and its geometric parameters on a V/STOL underwing nacelle installation.
Failure mechanics in low-velocity impacts on thin composite plates
NASA Technical Reports Server (NTRS)
Elber, W.
1983-01-01
Eight-ply quasi-isotropic composite plates of Thornel 300 graphite in Narmco 5208 epoxy resin (T300/5208) were tested to establish the degree of equivalence between low-velocity impact and static testing. Both the deformation and failure mechanics under impact were representable by static indentation tests. Under low-velocity impacts such as tool drops, the dominant deformation mode of the plates was the first, or static, mode. Higher modes are excited on contact, but they decay significantly by the time the first-mode load reaches a maximum. The delamination patterns were observed by X-ray analysis. The areas of maximum delamination patterns were observed by X-ray analysis. The areas of maximum delamination coincided with the areas of highest peel stresses. The extent of delamination was similar for static and impact tests. Fiber failure damage was established by tensile tests on small fiber bundles obtained by deplying test specimens. The onset of fiber damage was in internal plies near the lower surface of the plates. The distribution and amount of fiber damage was similar fo impact and static tests.
38. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST ...
38. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST BAY AND EXHAUST PIT, LOOKING WEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
37. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST ...
37. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST BAY AND EXHAUST PIT, LOOKING SOUTHWEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Waldinger, Marcel D; Venema, Pieter L; van Gils, Ad P G; Schweitzer, Dave H
2009-10-01
Systematic study of dysesthetic and paresthetic regions contributing to persistent genital arousal in women with restless genital syndrome (ReGS) is needed for its clinical management. To investigate distinct localizations of ReGS. Twenty-three women, fulfilling all five criteria of persistent genital arousal disorder were included into the study. In-depth interviews, routine and hormonal investigations, electroencephalographs, and magnetic resonance imaging (MRI) of brain and pelvis were performed in all women. The localizations of genital sensations were investigated by physical examination of the ramus inferior of the pubic bone (RIPB) and by sensory testing of the skin of the genital area with a cotton swab (genital tactile mapping test or GTM test). Sensitivity of RIPB, GTM test. Of 23 women included in the study, 18(78%), 16(69%), and 12(52%) reported restless legs syndrome, overactive bladder syndrome, and urethra hypersensitivity. Intolerance of tight clothes and underwear (allodynia or hyperpathia) was reported by 19 (83%) women. All women were diagnosed with ReGS. Sitting aggravated ReGS in 20(87%) women. In all women, MRI showed pelvic varices of different degree in the vagina (91%), labia minora and/or majora (35%), and uterus (30%). Finger touch investigation of the dorsal nerve of the clitoris (DNC) along the RIPB provoked ReGS in all women. Sensory testing showed unilateral and bilateral static mechanical Hyperesthesia on various trigger points in the dermatome of the pudendal nerve, particularly in the part innervated by DNC, including pelvic bone. In three women, sensory testing induced an uninhibited orgasm during physical examination. ReGS is highly associated with pelvic varices and with sensory neuropathy of the pudendal nerve and DNC, whose symptoms are suggestive for small fiber neuropathy (SFN). Physical examination for static mechanical Hyperesthesia is a diagnostic test for ReGS and is recommended for all individuals with complaints of persistent restless genital arousal in absence of sexual desire.
Speed and direction changes induce the perception of animacy in 7-month-old infants
Träuble, Birgit; Pauen, Sabina; Poulin-Dubois, Diane
2014-01-01
A large body of research has documented infants’ ability to classify animate and inanimate objects based on static or dynamic information. It has been shown that infants less than 1 year of age transfer animacy-specific expectations from dynamic point-light displays to static images. The present study examined whether basic motion cues that typically trigger judgments of perceptual animacy in older children and adults lead 7-month-olds to infer an ambiguous object’s identity from dynamic information. Infants were tested with a novel paradigm that required inferring the animacy status of an ambiguous moving shape. An ambiguous shape emerged from behind a screen and its identity could only be inferred from its motion. Its motion pattern varied distinctively between scenes: it either changed speed and direction in an animate way, or it moved along a straight path at a constant speed (i.e., in an inanimate way). At test, the identity of the shape was revealed and it was either consistent or inconsistent with its motion pattern. Infants looked longer on trials with the inconsistent outcome. We conclude that 7-month-olds’ representations of animates and inanimates include category-specific associations between static and dynamic attributes. Moreover, these associations seem to hold for simple dynamic cues that are considered minimal conditions for animacy perception. PMID:25346712
Technical Evaluation Motor no. 5 (TEM-5)
NASA Technical Reports Server (NTRS)
Cook, M.
1990-01-01
Technical Evaluation Motor No. 5 (TEM-5) was static test fired at the Thiokol Corporation Static Test Bay T-97. TEM-5 was a full scale, full duration static test fire of a high performance motor (HPM) configuration solid rocket motor (SRM). The primary purpose of TEM static tests is to recover SRM case and nozzle hardware for use in the redesigned solid rocket motor (RSRM) flight program. Inspection and instrumentation data indicate that the TEM-5 static test firing was successful. The ambient temperature during the test was 41 F and the propellant mean bulk temperature (PMBT) was 72 F. Ballistics performance values were within the specified requirements. The overall performance of the TEM-5 components and test equipment was nominal. Dissembly inspection revealed that joint putty was in contact with the inner groove of the inner primary seal of the ignitor adapter-to-forward dome (inner) joint gasket; this condition had not occurred on any previous static test motor or flight RSRM. While no qualification issues were addressed on TEM-5, two significant component changes were evaluated. Those changes were a new vented assembly process for the case-to-nozzle joint and the installation of two redesigned field joint protection systems. Performance of the vented case-to-nozzle joint assembly was successful, and the assembly/performance differences between the two field joint protection system (FJPS) configurations were compared.
Aman, Urooj; Subhan, Fazal; Shahid, Muhammad; Akbar, Shehla; Ahmad, Nisar; Ali, Gowhar; Fawad, Khwaja; Sewell, Robert D E
2016-02-24
Passiflora incarnata is widely used as an anxiolytic and sedative due to its putative GABAergic properties. Passiflora incarnata L. methanolic extract (PI-ME) was evaluated in an animal model of streptozotocin-induced diabetic neuropathic allodynia and vulvodynia in rats along with antinociceptive, anxiolytic and sedative activities in mice in order to examine possible underlying mechanisms. PI-ME was tested preliminary for qualitative phytochemical analysis and then quantitatively by proximate and GC-MS analysis. The antinociceptive property was evaluated using the abdominal constriction assay and hot plate test. The anxiolytic activity was performed in a stair case model and sedative activity in an open field test. The antagonistic activities were evaluated using naloxone and/or pentylenetetrazole (PTZ). PI-ME was evaluated for prospective anti-allodynic and anti-vulvodynic properties in a rat model of streptozotocin induced neuropathic pain using the static and dynamic testing paradigms of mechanical allodynia and vulvodynia. GC-MS analysis revealed that PI-ME contained predominant quantities of oleamide (9-octadecenamide), palmitic acid (hexadecanoic acid) and 3-hydroxy-dodecanoic acid, among other active constituents. In the abdominal constriction assay and hot plate test, PI-ME produced dose dependant, naloxone and pentylenetetrazole reversible antinociception suggesting an involvement of opioidergic and GABAergic mechanisms. In the stair case test, PI-ME at 200 mg/kg increased the number of steps climbed while at 600 mg/kg a significant decrease was observed. The rearing incidence was diminished by PI-ME at all tested doses and in the open field test, PI-ME decreased locomotor activity to an extent that was analagous to diazepam. The effects of PI-ME were antagonized by PTZ in both the staircase and open field tests implicating GABAergic mechanisms in its anxiolytic and sedative activities. In the streptozotocin-induced neuropathic nociceptive model, PI-ME (200 and 300 mg/kg) exhibited static and dynamic anti-allodynic effects exemplified by an increase in paw withdrawal threshold and paw withdrawal latency. PI-ME relieved only the dynamic component of vulvodynia by increasing flinching response latency. These findings suggest that Passiflora incarnata might be useful for treating neuropathic pain. The antinociceptive and behavioural findings inferring that its activity may stem from underlying opioidergic and GABAergic mechanisms though a potential oleamide-sourced cannabimimetic involvement is also discussed.
Some observations on loss of static strength due to fatigue cracks
NASA Technical Reports Server (NTRS)
Illg, Walter; Hardrath, Herbert F
1955-01-01
Static tensile tests were performed on simple notched specimens containing fatigue cracks. Four types of aluminum alloys were investigated: 2024-T3(formerly 24S-T3) and 7075-T6(formerly 75S-T6) in sheet form, and 2024-T4(formerly 24S-T4) and 7075-T6(formerly 75S-T6) in extruded form. The cracked specimens were tested statically under four conditions: unmodified and with reduced eccentricity of loading by three methods. Results of static tests on C-46 wings containing fatigue cracks are also reported.
Mensch, Christopher D; Davis, Harrison B; Blue, Jeffrey T
2015-01-01
The purpose of this work was to investigate the susceptibility of an aluminum adjuvant and an aluminum-adjuvanted native outer membrane vesicle (nOMV) vaccine formulation to freeze/thaw-induced agglomeration using static light scattering and micro-flow Imaging analysis; and to evaluate the use of propylene glycol as a vaccine formulation excipient by which freeze/thaw-induced agglomeration of a nOMV vaccine formulation could be mitigated. Our results indicate that including 7% v/v propylene glycol in an nOMV containing aluminum adjuvanted vaccine formulation, mitigates freeze/thaw-induced agglomeration. We evaluated the effect of freeze-thawing on an aluminum adjuvant and an aluminum adjuvanted native outer membrane vesicle (nOMV) vaccine formulation. Specifically, we characterized the freeze/thaw-induced agglomeration through the use of static light scattering, micro-flow imaging, and cryo-electron microscopy analysis. Further, we evaluated the use of 0-9% v/v propylene glycol as an excipient which could be included in the formulation for the purpose of mitigating the agglomeration induced by freeze/thaw. The results indicate that using 7% v/v propylene glycol as a formulation excipient is effective at mitigating agglomeration of the nOMV vaccine formulation, otherwise induced by freeze-thawing. © PDA, Inc. 2015.
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1980-01-01
In order to aid in the design of the National Transonic Facility (NTF) control system, test section/plenum response studies were carried out in a 0.186 scale model of the NTF high speed duct. Two types of disturbances, those induced by the model and those induced by the compressor inlet guide vanes were simulated. Some observations with regard to the test section/plenum response tests are summarized as follows. A resonance frequency for the test section/plenum area of the tunnel of approximately 50 Hz was observed for Mach numbers from 0.40 to 0.90. However, since the plenum is 3.1 times (based on volume) too large for the scaled size of the test section, care must be taken in extrapolating these data to NTF conditions. The plenum pressure data indicate the existence of pressure gradients in the plenum. The test results indicate that the difference between test section static pressure and plenum pressure is dependent on test section flow conditions. Plenum response to inlet guide vane type disturbances appears to be slower than plenum response to test section disturbances.
NASA Technical Reports Server (NTRS)
Buchholz, R. E.
1972-01-01
The results are presented that were obtained from a wind tunnel tests to improve space shuttle booster baseline lateral-directional stability, control characteristics, and cruise engine location optimization. Tests were conducted in a 7 x 10-foot transonic wind tunnel. The model employed was a 0.015-scale replica of a space shuttle booster. The three major objectives of this test were to determine the following: (1) force, static stability, and control effectiveness characteristics for varying angles of positive and negative wing dihedral and various combinations of wing tip and centerline dorsal fins; (2) force and static stability characteristics of cruise engines location on the body below the high aerodynamic canard; and (3) control effectiveness for the low-mounted wing configuration. The wing dihedral study was conducted at a cruise Mach number of 0.40 and simulated altitude of 10,000 feet. Portions of the test were conducted to determine the control surfaces stability and control characteristics over the Mach number range of 0.4 to 1.2. The aerodynamic characteristics determined are based on a unit Reynolds number of approximately 2 million per foot. Boundary layer trip strips were employed to induce boundary layer transition.
Balance Performance Is Task Specific in Older Adults.
Dunsky, Ayelet; Zeev, Aviva; Netz, Yael
2017-01-01
Balance ability among the elderly is a key component in the activities of daily living and is divided into two types: static and dynamic. For clinicians who wish to assess the risk of falling among their elderly patients, it is unclear if more than one type of balance test can be used to measure their balance impairment. In this study, we examined the association between static balance measures and two dynamic balance field tests. One hundred and twelve community-dwelling older adults (mean age 74.6) participated in the study. They underwent the Tetrax static postural assessment and then performed the Timed Up and Go (TUG) and the Functional Reach (FR) Test as dynamic balance tests. In general, low-moderate correlations were found between the two types of balance tests. For women, age and static balance parameters explained 28.1-40.4% of the variance of TUG scores and 14.6-24% of the variance of FR scores. For men, age and static balance parameters explained 9.5-31.2% of the variance of TUG scores and 23.9-41.7% of the variance of FR scores. Based on our findings, it is suggested that a combination of both static and dynamic tests be used for assessing postural balance ability.
32. VIEW LOOKING EAST AT THE STATIC TEST TOWER WHILE ...
32. VIEW LOOKING EAST AT THE STATIC TEST TOWER WHILE A JUPITER MISSILE IS BEING POSITIONED ONTO THE TEST TOWER. DATE AND PHOTOGRAPHER UNKNOWN, MSFC PHOTO LAB. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
[Static posturography versus clinical tests in elderly people with vestibular pathology].
Ortuño-Cortés, Miguel A; Martín-Sanz, Eduardo; Barona-de Guzmán, Rafael
2008-01-01
Balance can be quantified by clinical tests and through instrumental studies. The objective of this paper is to determine the correlation between static posturography and 4 clinical tests of balance in elderly people with vestibular disorders and to identify its capability to discriminate the groups studied. 60 patients with vestibular disorders and 60 healthy subjects performed 4 clinical tests (one leg standing with opened eyes, Timed Up and Go, Tinetti and Berg tests) and a static posturography analysis (NedSVE/IBV system) under 4 conditions: Romberg Test, Eyes Open (REO), Romberg Test, Eyes Closed (REC), Romberg Test on Foam with Eyes Open (RFEO), and Romberg Test on Foam with Eyes Closed (RFEC). RFEO correlated best with the clinical tests and RFEC was the worst. RFEO distinguished between healthy individuals and decompensated patients. RFEO gave the best information about postural balance in the elderly. RFEC was not useful. Static posturography can be useful to distinguish vestibular compensation status.
Fatigue-Induced Balance Impairment in Young Soccer Players
Pau, Massimiliano; Ibba, Gianfranco; Attene, Giuseppe
2014-01-01
Context: Although balance is generally recognized to be an important feature in ensuring good performance in soccer, its link with functional performance remains mostly unexplored, especially in young athletes. Objective: To investigate changes in balance induced by fatigue for unipedal and bipedal static stances in young soccer players. Design: Crossover study. Setting: Biomechanics laboratory and outdoor soccer field. Patients or Other Participants: Twenty-one male soccer players (age = 14.5 ± 0.2 years, height = 164.5 ± 5.6 cm, mass = 56.8 ± 6.8 kg). Intervention(s): Static balance was assessed with postural-sway analysis in unipedal and bipedal upright stance before and after a fatigue protocol consisting of a repeated sprint ability (RSA) test (2 × 15-m shuttle sprint interspersed with 20 seconds of passive recovery, repeated 6 times). Main Outcome Measure(s): On the basis of the center-of-pressure (COP) time series acquired during the experimental tests, we measured sway area, COP path length, and COP maximum displacement and velocity in the anteroposterior and mediolateral directions. Results: Fatigue increased all sway values in bipedal stance and all values except COP velocity in the mediolateral direction in unipedal stance. Fatigue index (calculated on the basis of RSA performance) was positively correlated with fatigue/rest sway ratio for COP path length and COP velocity in the anteroposterior and mediolateral directions for nondominant single-legged stance. Conclusions: Fatigued players exhibited reduced performance of the postural-control system. Participants with better performance in the RSA test appeared less affected by balance impairment, especially in single-legged stance. PMID:24568227
Martian Atmospheric Pressure Static Charge Elimination Tool
NASA Technical Reports Server (NTRS)
Johansen, Michael R.
2014-01-01
A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR Appendix E to Part 43 - Altimeter System Test and Inspection
Code of Federal Regulations, 2011 CFR
2011-01-01
... made that would affect the relationship between air pressure in the static pressure system and true ambient static air pressure for any flight condition. (b) Altimeter: (1) Test by an appropriately rated... inspections required by § 91.411 shall comply with the following: (a) Static pressure system: (1) Ensure...
Patel, Dipesh E; Cumberland, Phillippa M; Walters, Bronwen C; Russell-Eggitt, Isabelle; Brookes, John; Papadopoulos, Maria; Khaw, Peng Tee; Viswanathan, Ananth C; Garway-Heath, David; Cortina-Borja, Mario; Rahi, Jugnoo S
2018-02-01
There is limited evidence to support the development of guidance for visual field testing in children with glaucoma. To compare different static and combined static/kinetic perimetry approaches in children with glaucoma. Cross-sectional, observational study recruiting children prospectively between May 2013 and June 2015 at 2 tertiary specialist pediatric ophthalmology centers in London, England (Moorfields Eye Hospital and Great Ormond Street Hospital). The study included 65 children aged 5 to 15 years with glaucoma (108 affected eyes). A comparison of test quality and outcomes for static and combined static/kinetic techniques, with respect to ability to quantify glaucomatous loss. Children performed perimetric assessments using Humphrey static (Swedish Interactive Thresholding Algorithm 24-2 FAST) and Octopus combined static tendency-oriented perimetry/kinetic perimetry (isopter V4e, III4e, or I4e) in a single sitting, using standardized clinical protocols, administered by a single examiner. Information was collected about test duration, completion, and quality (using automated reliability indices and our qualitative Examiner-Based Assessment of Reliability score). Perimetry outputs were scored using the Aulhorn and Karmeyer classification. One affected eye in 19 participants was retested with Swedish Interactive Thresholding Algorithm 24-2 FAST and 24-2 standard algorithms. Sixty-five children (33 girls [50.8%]), with a median age of 12 years (interquartile range, 9-14 years), were tested. Test quality (Examiner-Based Assessment of Reliability score) improved with increasing age for both Humphrey and Octopus strategies and were equivalent in children older than 10 years (McNemar test, χ2 = 0.33; P = .56), but better-quality tests with Humphrey perimetry were achieved in younger children (McNemar test, χ2 = 4.0; P = .05). Octopus and Humphrey static MD values worse than or equal to -6 dB showed disagreement (Bland-Altman, mean difference, -0.70; limit of agreement, -7.74 to 6.35) but were comparable when greater than this threshold (mean difference, -0.03; limit of agreement, -2.33 to 2.27). Visual field classification scores for static perimetry tests showed substantial agreement (linearly weighted κ, 0.79; 95% CI, 0.65-0.93), although 25 of 80 (31%) were graded with a more severe defect for Octopus static perimetry. Of the 7 severe cases of visual field loss (grade 5), 5 had lower kinetic than static classification scores. A simple static perimetry approach potentially yields high-quality results in children younger than 10 years. For children older than 10 years, without penalizing quality, the addition of kinetic perimetry enabled measurement of far-peripheral sensitivity, which is particularly useful in children with severe visual field restriction.
Achieving high-density states through shock-wave loading of precompressed samples
Jeanloz, Raymond; Celliers, Peter M.; Collins, Gilbert W.; Eggert, Jon H.; Lee, Kanani K. M.; McWilliams, R. Stewart; Brygoo, Stéphanie; Loubeyre, Paul
2007-01-01
Materials can be experimentally characterized to terapascal pressures by sending a laser-induced shock wave through a sample that is precompressed inside a diamond-anvil cell. This combination of static and dynamic compression methods has been experimentally demonstrated and ultimately provides access to the 10- to 100-TPa (0.1–1 Gbar) pressure range that is relevant to planetary science, testing first-principles theories of condensed matter, and experimentally studying a new regime of chemical bonding. PMID:17494771
29. SATURN ROCKET ENGINE LOCATED ON NORTH SIDE OF STATIC ...
29. SATURN ROCKET ENGINE LOCATED ON NORTH SIDE OF STATIC TEST STAND - DETAILS OF THE EXPANSION NOZZLE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
A Study on the Rheological Properties of Recycled Rubber-Modified Asphalt Mixtures
Karacasu, Murat; Er, Arzu
2015-01-01
Using waste rubber in asphalt mixes has become a common practice in road construction. This paper presents the results of a study on the rheological characteristics of rubber-modified asphalt (RMA) concrete under static and dynamic loading conditions. A number of static and dynamic creep tests were conducted on RMA mix specimens with different rubber sizes and contents, and a series of resonant column tests were conducted to evaluate the shear modulus and damping values. To simulate the stress-strain response of traffic-induced loading, the measurements were taken for different confining pressures and strain levels. The results of the study indicated that rubber modification increases stiffness and damping ratio, making it a very attractive material for use in road construction. However the grain size of the rubber is very important. Although RMA may cost up to 100% more than regular asphalt, the advantages it brings, such as an increased service life of the road and proper waste utilization contributing to a more sustainable infrastructure, may justify the added cost. PMID:25695096
NASA Technical Reports Server (NTRS)
Ludi, LeRoy H.
1959-01-01
Flight tests have been conducted with a single-rotor helicopter, one blade of which was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses, to determine the effects of transition, landing approaches, and partial-power vertical descents on the rotor-blade bending and torsional moments. In addition, ground tests were conducted to determine the effects of static droop-stop pounding on the rotor-blade moments. The results indicate that partial-power vertical descents and landing approaches produce rotor-blade moments that are higher than the moments encountered in any other flight condition investigated to date with this equipment. Decelerating through the transition region in level flight was found to result in higher vibratory moments than accelerating through this region. Deliberately induced static droop-stop pounding produced flapwise bending moments at the 14-percent-radius station which were as high as the moments experienced in landing approaches and partial-power vertical descents.
GENERAL VIEW LOOKING SOUTH AT THE SATURN I STATIC TEST ...
GENERAL VIEW LOOKING SOUTH AT THE SATURN I STATIC TEST STAND. NOTE THE FIRST STAGE OF THE SATURN I ROCKET ON DISPLAY TO THE LEFT OF THE TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
NASA Astrophysics Data System (ADS)
Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus
2013-05-01
Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.
Mitigating Upsets in SRAM Based FPGAs from the Xilinix Virtex 2 Family
NASA Technical Reports Server (NTRS)
Swift, Gary M.; Yui, Candice C.; Carmichael, Carl; Koga, Rocky; George, Jeffrey S.
2003-01-01
This slide presentation reviews the single event upset static testing of the Virtex II field programmable gate arrays (FPGA) that were tested in protons and heavy-ions. The test designs and static and dynamic test results are reviewed.
Pilot Study: Foam Wedge Chin Support Static Tolerance Testing
2017-10-24
AFRL-SA-WP-SR-2017-0026 Pilot Study : Foam Wedge Chin Support Static Tolerance Testing Austin M. Fischer, BS1; William W...COVERED (From – To) April – October 2017 4. TITLE AND SUBTITLE Pilot Study : Foam Wedge Chin Support Static Tolerance Testing 5a. CONTRACT NUMBER...prototype to mitigate the increase in helmet weight and forward center of gravity. The purpose of this pilot study was to determine the feasibility and
Dynamic Breaking Tests of Airplane Parts
NASA Technical Reports Server (NTRS)
Hertel, Heinrich
1933-01-01
The static stresses of airplane parts, the magnitude of which can be determined with the aid of static load assumptions, are mostly superposed by dynamic stresses, the magnitude of which has been but little explored. The object of the present investigation is to show how the strength of airplane parts can best be tested with respect to dynamic stresses with and without superposed static loading, and to what extent the dynamic strength of the parts depends on their structural design. Experimental apparatus and evaluation methods were developed and tried for the execution of vibration-strength tests with entire structural parts both with and without superposed static loading. Altogether ten metal spars and spar pieces and two wooden spars were subjected to vibration breaking tests.
NASA Technical Reports Server (NTRS)
Boyden, Richmond P.; Dress, David A.; Fox, Charles H., Jr.; Huffman, Jarrett K.; Cruz, Christopher I.
1993-01-01
The paper describes the procedure used for and the results obtained of wind-tunnel tests of the National Aerospace Plane (NASP) configuration, which were conducted in the NASA Langley Research Center High Speed Tunnel using a blended body NASP configuration designed by the research center. Static and dynamic stability characteristics were measured at Mach numbers 0.3, 0.6, and 0.8. In addition to tests of the baseline configuration, component buildup tests with a canard surface and with a body flap were carried out. Results demonstrated a positive static stability of the baseline configuration, except at the higher angles of attack at Mach 0.8. A good agreement was found between the inphase dynamic parameters and the corresponding static data.
Effect of microstructure on static and dynamic mechanical properties of high strength steels
NASA Astrophysics Data System (ADS)
Qu, Jinbo
The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited much better dynamic factor values. This may suggest that solid solution strengthening should be more utilized in the design of crashworthy dual phase steels.
NASA Astrophysics Data System (ADS)
Ansari, Rafat R.; King, James F.; Seeberger, Teri; Clark, John I.
2003-07-01
Cataractogenesis is a risk factor for space travelers. Here on earth, half of all blindness is due to cataracts. At this time, the only known treatment is surgical removal of the lens. In this paper, we present static and dynamic light scattering (DLS) measurements of early onset of cataract before it has any effect on vision and to test the effectiveness of pantethine as an anticataract agent in reversing cataracts. In this preliminary study, experiments were conducted on 12 rodents. Static measurements were performed by scanning the animal eye (cornea to retina) at a laser power of 80 microwatts to collect photons or scattered intensity in steps of 10 microns. The rodents studied were control, selenite injected, and selenite plus pantethine injected. Selenite was used to induce cataracts. Static and dynamic changes (increase in light scatter and crystalline size) in the lenses are quantitatively measured as early as 1 day post selenite injections. Scattering intensity and DLS measurements from lenses of animals administered pantethine resembled controls. These subtle molecular changes are not noticeable when the animals are examined with conventional ophthalmic instruments because their lenses remain transparent. Acknowledgements: Technical support from C.Ganders, University of Washington, Seattle, NEI research grant EY04542 (JIC) and support under a NASA-NEI/NIH interagency agreement (RRA) are greatly appreciated. JFK works for QSS Inc. at NASA GRC.
Total Ionizing Dose Influence on the Single-Event Upset Sensitivity of 130-nm PD SOI SRAMs
NASA Astrophysics Data System (ADS)
Zheng, Qiwen; Cui, Jiangwei; Liu, Mengxin; Zhou, Hang; Liu, Mohan; Wei, Ying; Su, Dandan; Ma, Teng; Lu, Wu; Yu, Xuefeng; Guo, Qi; He, Chengfa
2017-07-01
Effect of total ionizing dose (TID) on single-event upset (SEU) hardness of 130 nm partially depleted (PD) silicon-on-insulator (SOI) static random access memories (SRAMs) is investigated in this paper. The measurable synergistic effect of TID on SEU sensitivity of 130-nm PD SOI SRAM was observed in our experiment, even though that is far less than micrometer and submicrometer devices. Moreover, SEU cross section after TID irradiation has no dependence on the data pattern that was applied during TID exposure: SEU cross sections are characterized by TID data pattern and its complement data pattern are decreased consistently rather than a preferred state and a nonpreferred state as micrometer and sub-micrometer SRAMs. The memory cell test structure allowing direct measurement of static noise margin (SNM) under standby operation was designed using identical memory cell layout of SRAM. Direct measurement of the memory cell SNM shows that both data sides' SNM is decreased by TID, indicating that SEU cross section of 130-nm PD SOI SRAM will be increased by TID. And, the decreased SNM is caused by threshold shift in memory cell transistors induced by “radiation-induced narrow channel effect”.
Understanding the ballistic event : Methodology and observations relevant to ceramic armour
NASA Astrophysics Data System (ADS)
Healey, Adam
The only widely-accepted method of gauging the ballistic performance of a material is to carry out ballistic testing; due to the large volume of material required for a statistically robust test, this process is very expensive. Therefore a new test, or suite of tests, that employ widely-available and economically viable characterisation methods to screen candidate armour materials is highly desirable; in order to design such a test, more information on the armour/projectile interaction is required. This work presents the design process and results of using an adapted specimen configuration to increase the amount of information obtained from a ballistic test. By using a block of ballistic gel attached to the ceramic, the fragmentation generated during the ballistic event was captured and analysed. In parallel, quasi-static tests were carried out using ring-on-ring biaxial disc testing to investigate relationships between quasi-static and ballistic fragment fracture surfaces. Three contemporary ceramic armour materials were used to design the test and to act as a baseline; Sintox FA alumina, Hexoloy SA silicon carbide and 3M boron carbide. Attempts to analyse the post-test ballistic sample non-destructively using X-ray computed tomography (XCT) were unsuccessful due to the difference in the density of the materials and the compaction of fragments. However, the results of qualitative and quantitative fracture surface analysis using scanning electron microscopy showed similarities between the fracture surfaces of ballistic fragments at the edges of the tile and biaxial fragments; this suggests a relationship between quasi-static and ballistic fragments created away from the centre of impact, although additional research will be required to determine the reason for this. Ballistic event-induced porosity was observed and quantified on the fracture surfaces of silicon carbide samples, which decreased as distance from centre of impact increased; upon further analysis this porosity was linked to the loss of a boron-rich second phase. Investigating why these inclusions are lost and the extent of the effect of this on ballistic behaviour may have important implications for the use of multi-phase ceramic materials as armour.
Strategy for Alternative Occupant Volume Testing
DOT National Transportation Integrated Search
2009-10-20
This paper describes plans for a series of quasi-static : compression tests of rail passenger equipment. These tests are : designed to evaluate the strength of the occupant volume under : static loading conditions. The research plan includes a detail...
Elastic moduli of a Brownian colloidal glass former
NASA Astrophysics Data System (ADS)
Fritschi, S.; Fuchs, M.
2018-01-01
The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.
Dynamic and Quasi-Static Grade Crossing Collision Tests
DOT National Transportation Integrated Search
2009-03-02
To support the development of a proposed rule [1], a fullscale : dynamic test and two full-scale quasi-static tests have : been performed on the posts of a state-of-the-art (SOA) end : frame. These tests were designed to evaluate the dynamic and : qu...
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1989-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1988-01-01
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.
35. VIEW LOOKING NORTHWEST AT THE STATIC TEST TOWER. A ...
35. VIEW LOOKING NORTHWEST AT THE STATIC TEST TOWER. A 'DUMMY' SATURN I BOOSTER IS BEING HOISTED INTO THE TEST STAND TO TEST THE MATING OF THE BOOSTER AND THE TEST STAND. EARLY 1960, PHOTOGRAPHER UNKNOWN, MSFC PHOTO LAB. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Dynamic Mesh CFD Simulations of Orion Parachute Pendulum Motion During Atmospheric Entry
NASA Technical Reports Server (NTRS)
Halstrom, Logan D.; Schwing, Alan M.; Robinson, Stephen K.
2016-01-01
This paper demonstrates the usage of computational fluid dynamics to study the effects of pendulum motion dynamics of the NASAs Orion Multi-Purpose Crew Vehicle parachute system on the stability of the vehicles atmospheric entry and decent. Significant computational fluid dynamics testing has already been performed at NASAs Johnson Space Center, but this study sought to investigate the effect of bulk motion of the parachute, such as pitching, on the induced aerodynamic forces. Simulations were performed with a moving grid geometry oscillating according to the parameters observed in flight tests. As with the previous simulations, OVERFLOW computational fluid dynamics tool is used with the assumption of rigid, non-permeable geometry. Comparison to parachute wind tunnel tests is included for a preliminary validation of the dynamic mesh model. Results show qualitative differences in the flow fields of the static and dynamic simulations and quantitative differences in the induced aerodynamic forces, suggesting that dynamic mesh modeling of the parachute pendulum motion may uncover additional dynamic effects.
34. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE ...
34. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE AND TOP OF TEST BAY, LOOKING NORTHEAST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
33. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE ...
33. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE AND UPPER LEVEL OF TEST BAY, LOOKING NORTH - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Technical Evaluation Motor No. 7 (TEM-7)
NASA Technical Reports Server (NTRS)
Hughes, Phil
1991-01-01
The Technical Evaluation Motor No. 7 (TEM-7) test was a full-scale, full duration static test firing of a high performance motor-configuration solid rocket motor with nozzle vectoring. The final test report documents the procedures, performance, and results of the static test firing of TEM-7. All observations, discussions, conclusions, and recommendations included in the report are complete and final except for the TEM-7 fixed housing unbond investigation. A presentation and discussion of TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107, Rev A, Space Shuttle Technical Evaluation Motor No. 7 (TEM-7) Static Fire Test Plan are included.
Static test induced loads verification beyond elastic limit
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1996-01-01
Increasing demands for reliable and least-cost high-performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total-inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.
Static test induced loads verification beyond elastic limit
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1996-01-01
Increasing demands for reliable and least-cost high performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large, high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.
30 CFR 18.67 - Static-pressure tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static-pressure tests. 18.67 Section 18.67 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18...
33. VIEW LOOKING SOUTH AT THE STATIC TEST TOWER DURING ...
33. VIEW LOOKING SOUTH AT THE STATIC TEST TOWER DURING A TEST OF THE PROPULSION SYSTEM OF A JUPITER MISSILE. DATE AND PHOTOGRAPHER UNKNOWN. FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Deep flaws in weldments of aluminum and titanium
NASA Technical Reports Server (NTRS)
Masters, J. N.; Engstrom, W. L.; Bixler, W. D.
1974-01-01
Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy.
40 CFR 53.65 - Test procedure: Loading test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... performing the test in § 53.62 (full wind tunnel test), § 53.63 (wind tunnel inlet aspiration test), or § 53... particle delivery system shall consist of a static chamber or a low velocity wind tunnel having a.... The mean velocity in the test section of the static chamber or wind tunnel shall not exceed 2 km/hr...
1963-12-05
The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB Static Test Stand which had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961 the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.
1963-12-01
The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB static test stand that had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961, the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.
The role of visual representation in physics learning: dynamic versus static visualization
NASA Astrophysics Data System (ADS)
Suyatna, Agus; Anggraini, Dian; Agustina, Dina; Widyastuti, Dini
2017-11-01
This study aims to examine the role of visual representation in physics learning and to compare the learning outcomes of using dynamic and static visualization media. The study was conducted using quasi-experiment with Pretest-Posttest Control Group Design. The samples of this research are students of six classes at State Senior High School in Lampung Province. The experimental class received a learning using dynamic visualization and control class using static visualization media. Both classes are given pre-test and post-test with the same instruments. Data were tested with N-gain analysis, normality test, homogeneity test and mean difference test. The results showed that there was a significant increase of mean (N-Gain) learning outcomes (p <0.05) in both experimental and control classes. The averages of students’ learning outcomes who are using dynamic visualization media are significantly higher than the class that obtains learning by using static visualization media. It can be seen from the characteristics of visual representation; each visualization provides different understanding support for the students. Dynamic visual media is more suitable for explaining material related to movement or describing a process, whereas static visual media is appropriately used for non-moving physical phenomena and requires long-term observation.
Commuter rail seat testing and analysis of facing seats
DOT National Transportation Integrated Search
2003-12-01
Tests have been conducted on the Bombardier back-to-back commuter rail car seat in a facing-seat configuration to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load defle...
Hirt, Christian; Papadimitropoulos, Adam; Muraro, Manuele G; Mele, Valentina; Panopoulos, Evangelos; Cremonesi, Eleonora; Ivanek, Robert; Schultz-Thater, Elke; Droeser, Raoul A; Mengus, Chantal; Heberer, Michael; Oertli, Daniel; Iezzi, Giandomenica; Zajac, Paul; Eppenberger-Castori, Serenella; Tornillo, Luigi; Terracciano, Luigi; Martin, Ivan; Spagnoli, Giulio C
2015-09-01
Anticancer compound screening on 2D cell cultures poorly predicts "in vivo" performance, while conventional 3D culture systems are usually characterized by limited cell proliferation, failing to produce tissue-like-structures (TLS) suitable for drug testing. We addressed engineering of TLS by culturing cancer cells in porous scaffolds under perfusion flow. Colorectal cancer (CRC) HT-29 cells were cultured in 2D, on collagen sponges in static conditions or in perfused bioreactors, or injected subcutaneously in immunodeficient mice. Perfused 3D (p3D) cultures resulted in significantly higher (p < 0.0001) cell proliferation than static 3D (s3D) cultures and yielded more homogeneous TLS, with morphology and phenotypes similar to xenografts. Transcriptome analysis revealed a high correlation between xenografts and p3D cultures, particularly for gene clusters regulating apoptotic processes and response to hypoxia. Treatment with 5-Fluorouracil (5-FU), a frequently used but often clinically ineffective chemotherapy drug, induced apoptosis, down-regulation of anti-apoptotic genes (BCL-2, TRAF1, and c-FLIP) and decreased cell numbers in 2D, but only "nucleolar stress" in p3D and xenografts. Conversely, BCL-2 inhibitor ABT-199 induced cytotoxic effects in p3D but not in 2D cultures. Our findings advocate the importance of perfusion flow in 3D cultures of tumor cells to efficiently mimic functional features observed "in vivo" and to test anticancer compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Moore, M. T.; Doyle, V. L.
1977-01-01
Outdoor static and 40 x 80 FT wind tunnel tests of the J79-15 engine/nacelle system with the conic nozzle and 32-chute exhaust suppressor were conducted to acquire the data necessary to evaluate the simulated in-flight signature of an engine-size 32-chute exhaust nozzle suppressor using the 40 x 80 ft wind tunnel and to study possible engine core noise contamination of the jet signature. The tests are described and and a sampling of the data acquired is presented. Included are aero performance summaries, as-measured and composite 1/3 OBSPL spectra for the 70 ft sideline high and low mics from the outdoor static tests, sideline traverse spectra and internal noise measurements from both the outdoor static and the 40 x 80 ft wind tunnel tests.
Stretch-Induced Reductions in Throwing Performance Are Attenuated by Warm-up Before Exercise.
Mascarin, Naryana C; Vancini, Rodrigo L; Lira, Claudio A B; Andrade, Marilia S
2015-05-01
Recent investigations have suggested that static stretching (SS) performed before exercise reduces muscular performance. However, it is yet unknown whether dynamic warm-up exercises performed together with SS may actually minimize the detrimental acute effects of stretching on muscular performance. This study aimed to assess the effects of static shoulder stretching exercises, dynamic warm-up exercises, or both together, on muscular performance evaluated by ball throwing. Twenty-one female handball players (age: 16.2 ± 1.0 years [range: 14-18 years], height: 167.0 ± 10.0 cm [range: 158-179 cm], and body mass: 63.3 ± 7.6 kg [range: 50.4-77.4 kg]) performed SS, dynamic warm-up exercises or both, targeting the muscles of the upper limbs. Thereafter, medicine ball throwing distance and handball ball throwing speed tests were performed. Static stretching performed before the medicine ball throwing test reduced performance when compared with the warm-up exercises (95% confidence interval [CI] = 0.02-0.17, p ≤ 0.05, effect size [ES] = 0.34). When a warm-up exercise routine was added to SS, the detrimental effects of SS were abolished (95% CI = -0.01 to 0.18, p > 0.05, ES = 0.31). The throwing speed was the same over the 3 conditions. In conclusion, warm-up exercises performed together with SS abolished the impairment in medicine ball throwing distance. We recommend that athletes perform warm-up exercises together with SS before activity to avoid detrimental effects on muscle strength.
Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran
2012-01-01
Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.
Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran
2012-01-01
Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483
Study of the influence of hole quality on composite materials
NASA Technical Reports Server (NTRS)
Pengra, J. J.
1980-01-01
The influence of hole quality on the structural behavior of composite materials was investigated. From an industry survey it was determined that the most frequent imperfections encountered during hole fabrication are chipout, delamination, and oversize conditions. These hole flaw types were generated in critical areas of static, compression, and fatigue specimens fabricated from T300/5208 graphite/epoxy system. The specimens were tested in static and cyclic pin bearing modes in addition to compression loading. Results of these tests are presented and discussed. The hole chipout defect reduced the static and cyclic endurance characteristics. Oversize holes also lowered the cyclic pin bearing endurance, but had no influence of the static pin bearing characteristics. Delamination had no insignificant influence on the static tension and cyclic pin bearing characteristics. Compression tests demonstrated a deleterious effect for chipout of delamination defects. Hole quality requirements proposed are discussed.
Bensoussan, Sandy; Cornil, Maude; Meunier-Salaün, Marie-Christine; Tallet, Céline
2016-01-01
Although animals rarely use only one sense to communicate, few studies have investigated the use of combinations of different signals between animals and humans. This study assessed for the first time the spontaneous reactions of piglets to human pointing gestures and voice in an object-choice task with a reward. Piglets (Sus scrofa domestica) mainly use auditory signals–individually or in combination with other signals—to communicate with their conspecifics. Their wide hearing range (42 Hz to 40.5 kHz) fits the range of human vocalisations (40 Hz to 1.5 kHz), which may induce sensitivity to the human voice. However, only their ability to use visual signals from humans, especially pointing gestures, has been assessed to date. The current study investigated the effects of signal type (visual, auditory and combined visual and auditory) and piglet experience on the piglets’ ability to locate a hidden food reward over successive tests. Piglets did not find the hidden reward at first presentation, regardless of the signal type given. However, they subsequently learned to use a combination of auditory and visual signals (human voice and static or dynamic pointing gestures) to successfully locate the reward in later tests. This learning process may result either from repeated presentations of the combination of static gestures and auditory signals over successive tests, or from transitioning from static to dynamic pointing gestures, again over successive tests. Furthermore, piglets increased their chance of locating the reward either if they did not go straight to a bowl after entering the test area or if they stared at the experimenter before visiting it. Piglets were not able to use the voice direction alone, indicating that a combination of signals (pointing and voice direction) is necessary. Improving our communication with animals requires adapting to their individual sensitivity to human-given signals. PMID:27792731
Bensoussan, Sandy; Cornil, Maude; Meunier-Salaün, Marie-Christine; Tallet, Céline
2016-01-01
Although animals rarely use only one sense to communicate, few studies have investigated the use of combinations of different signals between animals and humans. This study assessed for the first time the spontaneous reactions of piglets to human pointing gestures and voice in an object-choice task with a reward. Piglets (Sus scrofa domestica) mainly use auditory signals-individually or in combination with other signals-to communicate with their conspecifics. Their wide hearing range (42 Hz to 40.5 kHz) fits the range of human vocalisations (40 Hz to 1.5 kHz), which may induce sensitivity to the human voice. However, only their ability to use visual signals from humans, especially pointing gestures, has been assessed to date. The current study investigated the effects of signal type (visual, auditory and combined visual and auditory) and piglet experience on the piglets' ability to locate a hidden food reward over successive tests. Piglets did not find the hidden reward at first presentation, regardless of the signal type given. However, they subsequently learned to use a combination of auditory and visual signals (human voice and static or dynamic pointing gestures) to successfully locate the reward in later tests. This learning process may result either from repeated presentations of the combination of static gestures and auditory signals over successive tests, or from transitioning from static to dynamic pointing gestures, again over successive tests. Furthermore, piglets increased their chance of locating the reward either if they did not go straight to a bowl after entering the test area or if they stared at the experimenter before visiting it. Piglets were not able to use the voice direction alone, indicating that a combination of signals (pointing and voice direction) is necessary. Improving our communication with animals requires adapting to their individual sensitivity to human-given signals.
DOT National Transportation Integrated Search
1996-10-01
Tests have been conducted on Amtrak's traditional passenger seat to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load-deflection characteristics of the seat. Dynamic tes...
Anti-Le-Chatelet behavior driven by strong natural light
NASA Astrophysics Data System (ADS)
Antonyuk, B. P.
2007-01-01
We show that strong incoherent broad band light causes positive feedback in response to a static electric field in random media: electric current flows in opposite to a voltage drop direction; static polarization is induced in opposition to an applied electric field. This type of the electron motion amplifies the external action revealing anti-Le-Chatelet behavior. The applied static electric field is amplified up to the domain of optical damage of a silica glass ≈10 7 V/cm.
NASA Technical Reports Server (NTRS)
Yuska, J. A.; Diedrich, J. H.
1972-01-01
Test data are presented for a 38-cm (15-in.) diameter, 1.28 pressure ratio model VTOL lift fan installed in a two-dimensional wing and tested in a 2.74-by 4.58-meter (9-by 15-ft)V/STOL wind tunnel. Tests were run with and without exit louvers over a wide range of crossflow velocities and wing angle of attack. Tests were also performed with annular-inlet vanes, inlet bell-mouth surface disconuities, and fences to induce fan windmilling. Data are presented on the axial force of the fan assembly and overall wing forces and moments as measured on force balances for various static and crossflow test conditions. Midspan wing surface pressure coefficient data are also given.
NASA Astrophysics Data System (ADS)
Cocco, M.
2001-12-01
Earthquake stress changes can promote failures on favorably oriented faults and modify the seismicity pattern over broad regions around the causative faults. Because the induced stress perturbations modify the rate of production of earthquakes, they alter the probability of seismic events in a specified time window. Comparing the Coulomb stress changes with the seismicity rate changes and aftershock patterns can statistically test the role of stress transfer in earthquake occurrence. The interaction probability may represent a further tool to test the stress trigger or shadow model. The probability model, which incorporate stress transfer, has the main advantage to include the contributions of the induced stress perturbation (a static step in its present formulation), the loading rate and the fault constitutive properties. Because the mechanical conditions of the secondary faults at the time of application of the induced load are largely unkown, stress triggering can only be tested on fault populations and not on single earthquake pairs with a specified time delay. The interaction probability can represent the most suitable tool to test the interaction between large magnitude earthquakes. Despite these important implications and the stimulating perspectives, there exist problems in understanding earthquake interaction that should motivate future research but at the same time limit its immediate social applications. One major limitation is that we are unable to predict how and if the induced stress perturbations modify the ratio between small versus large magnitude earthquakes. In other words, we cannot distinguish between a change in this ratio in favor of small events or of large magnitude earthquakes, because the interaction probability is independent of magnitude. Another problem concerns the reconstruction of the stressing history. The interaction probability model is based on the response to a static step; however, we know that other processes contribute to the stressing history perturbing the faults (such as dynamic stress changes, post-seismic stress changes caused by viscolelastic relaxation or fluid flow). If, for instance, we believe that dynamic stress changes can trigger aftershocks or earthquakes years after the passing of the seismic waves through the fault, the perspective of calculating interaction probability is untenable. It is therefore clear we have learned a lot on earthquake interaction incorporating fault constitutive properties, allowing to solve existing controversy, but leaving open questions for future research.
A microcomputer-based testing station for dynamic and static testing of protective relay systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.J.; Li, R.J.; Gu, J.C.
1995-12-31
Dynamic and static relay performance testing before installation in the field is a subject of great interest to utility relay engineers. The common practice in utility testing of new relays is to put the new unit to be tested in parallel with an existing functioning relay in the system, wait until an actual transient occurs and then observe and analyze the performance of new relay. It is impossible to have a thorough test of the protective relay system through this procedure. An equipment, Microcomputer-Based Testing Station (or PC-Based Testing Station), that can perform both static and dynamic testing of themore » relay is described in this paper. The Power System Simulation Laboratory at the University of Texas at Arlington is a scaled-down, three-phase, physical power system which correlates well with the important components for a real power system and is an ideal facility for the dynamic and static testing of protective relay systems. A brief introduction to the configuration of this laboratory is presented. Test results of several protective functions by using this laboratory illustrate the usefulness of this test set-up.« less
NASA Technical Reports Server (NTRS)
Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.
1989-01-01
Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.
Sliding enhances fluid and solute transport into buried articular cartilage contacts.
Graham, B T; Moore, A C; Burris, D L; Price, C
2017-12-01
Solutes and interstitial water are naturally transported from cartilage by load-induced interstitial fluid pressures. Fluid and solute recovery during joint articulation have been primarily attributed to passive diffusion and mechanical 'pumping' from dynamic loading. This paper tests if the sliding action of articulation is a significant and independent driver of fluid and solute transport in cartilage. The large osteochondral samples utilized in the present study preserve the convergent wedges necessary for physiological hydrodynamics. Following static load-induced fluid exudation and prior to sliding, a fluorescent solute (AlexaFluor 633) was added to the lubricant bath. In situ confocal microscopy was used to quantify the transport of solute from the bath into the buried stationary contact area (SCA) during sliding. Following static exudation, significant reductions in friction and strain during sliding at 60 mm/s were accompanied by significant solute transport into the inaccessible center of the buried contact; no such transport was detected for the 0- or 1 mm/s sliding conditions. The results suggest that external hydrodynamic pressures from sliding induced advective flows that carried solutes from the bath toward the center of contact. These results provide the first direct evidence that the action of sliding is a significant contributor to fluid and solute recovery by cartilage. Furthermore, they indicate that the sliding-induced transport of solutes into the buried interface was orders of magnitude greater than that attributable to diffusion alone, a result with critical implications for disease prevention and tissue engineering. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Structural testing for static failure, flutter and other scary things
NASA Technical Reports Server (NTRS)
Ricketts, R. H.
1983-01-01
Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.
Wind Tunnel Testing of Various Disk-Gap-Band Parachutes
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Mineck, Raymond E.; Keller, Donald F.; Bobskill, Maria V.
2003-01-01
Two Disk-Gap-Band model parachute designs were tested in the NASA Langley Transonic Dynamics Tunnel. The purposes of these tests were to determine the drag and static stability coefficients of these two model parachutes at various subsonic Mach numbers in support of the Mars Exploration Rover mission. The two model parachute designs were designated 1.6 Viking and MPF. These model parachute designs were chosen to investigate the tradeoff between drag and static stability. Each of the parachute designs was tested with models fabricated from MIL-C-7020 Type III or F-111 fabric. The reason for testing model parachutes fabricated with different fabrics was to evaluate the effect of fabric permeability on the drag and static stability coefficients. Several improvements over the Viking-era wind tunnel tests were implemented in the testing procedures and data analyses. Among these improvements were corrections for test fixture drag interference and blockage effects, and use of an improved test fixture for measuring static stability coefficients. The 1.6 Viking model parachutes had drag coefficients from 0.440 to 0.539, while the MPF model parachutes had drag coefficients from 0.363 to 0.428. The 1.6 Viking model parachutes had drag coefficients 18 to 22 percent higher than the MPF model parachute for equivalent fabric materials and test conditions. Model parachutes of the same design tested at the same conditions had drag coefficients approximately 11 to 15 percent higher when manufactured from F-111 fabric as compared to those fabricated from MIL-C-7020 Type III fabric. The lower fabric permeability of the F-111 fabric was the source of this difference. The MPF model parachutes had smaller absolute statically stable trim angles of attack as compared to the 1.6 Viking model parachutes for equivalent fabric materials and test conditions. This was attributed to the MPF model parachutes larger band height to nominal diameter ratio. For both designs, model parachutes fabricated from F-111 fabric had significantly greater statically stable absolute trim angles of attack at equivalent test conditions as compared to those fabricated from MILC-7020 Type III fabric. This reduction in static stability exhibited by model parachutes fabricated from F-111 fabric was attributed to the lower permeability of the F-111 fabric. The drag and static stability coefficient results were interpolated to obtain their values at Mars flight conditions using total porosity as the interpolating parameter.
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
30 CFR 7.307 - Static pressure test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...
Embedded data collector (EDC) phase II load and resistance factor design (LRFD).
DOT National Transportation Integrated Search
2015-09-01
A total of 16 static load test results was collected in Florida and Louisiana. New static load tests on five test piles : in Florida (four of which were voided) were monitored with Embedded Data Collector (EDC) instrumentation and : contributed to th...
Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading
NASA Astrophysics Data System (ADS)
Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis
2015-09-01
The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.
Automated assessment of pain in rats using a voluntarily accessed static weight-bearing test.
Kim, Hung Tae; Uchimoto, Kazuhiro; Duellman, Tyler; Yang, Jay
2015-11-01
The weight-bearing test is one method to assess pain in rodent animal models; however, the acceptance of this convenient method is limited by the low throughput data acquisition and necessity of confining the rodents to a small chamber. We developed novel data acquisition hardware and software, data analysis software, and a conditioning protocol for an automated high throughput static weight-bearing assessment of pain. With this device, the rats voluntarily enter the weighing chamber, precluding the necessity to restrain the animals and thereby removing the potential stress-induced confounds as well as operator selection bias during data collection. We name this device the Voluntarily Accessed Static Incapacitance Chamber (VASIC). Control rats subjected to the VASIC device provided hundreds of weight-bearing data points in a single behavioral assay. Chronic constriction injury (CCI) surgery and paw pad injection of complete Freund's adjuvant (CFA) or carrageenan in rats generated hundreds of weight-bearing data during a 30 minute recording session. Rats subjected to CCI, CFA, or carrageenan demonstrated the expected bias in weight distribution favoring the un-operated leg, and the analgesic effect of i.p. morphine was demonstrated. In comparison with existing methods, brief water restriction encouraged the rats to enter the weighing chamber to access water, and an infrared detector confirmed the rat position with feet properly positioned on the footplates, triggering data collection. This allowed hands-off measurement of weight distribution data reducing operator selection bias. The VASIC device should enhance the hands-free parallel collection of unbiased weight-bearing data in a high throughput manner, allowing further testing of this behavioral measure as an effective assessment of pain in rodents. Copyright © 2015. Published by Elsevier Inc.
Automated assessment of pain in rats using a voluntarily accessed static weight-bearing test
Kim, Hung Tae; Uchimoto, Kazuhiro; Duellman, Tyler; Yang, Jay
2015-01-01
The weight-bearing test is one method to assess pain in rodent animal models; however, the acceptance of this convenient method is limited by the low throughput data acquisition and necessity of confining the rodents to a small chamber. New methods We developed novel data acquisition hardware and software, data analysis software, and a conditioning protocol for an automated high throughput static weight-bearing assessment of pain. With this device, the rats voluntarily enter the weighing chamber, precluding the necessity to restrain the animals and thereby removing the potential stress-induced confounds as well as operator selection bias during data collection. We name this device the Voluntarily Accessed Static Incapacitance Chamber (VASIC). Results Control rats subjected to the VASIC device provided hundreds of weight-bearing data points in a single behavioral assay. Chronic constriction injury (CCI) surgery and paw pad injection of complete Freund's adjuvant (CFA) or carrageenan in rats generated hundreds of weight-bearing data during a 30 minute recording session. Rats subjected to CCI, CFA, or carrageenan demonstrated the expected bias in weight distribution favoring the un-operated leg, and the analgesic effect of i.p. morphine was demonstrated. In comparison with existing methods, brief water restriction encouraged the rats to enter the weighing chamber to access water, and an infrared detector confirmed the rat position with feet properly positioned on the footplates, triggering data collection. This allowed hands-off measurement of weight distribution data reducing operator selection bias. Conclusion The VASIC device should enhance the hands-free parallel collection of unbiased weight-bearing data in a high throughput manner, allowing further testing of this behavioral measure as an effective assessment of pain in rodents. PMID:26143745
NASA Astrophysics Data System (ADS)
Zhu, Ning; Sun, Shou-Guang; Li, Qiang; Zou, Hua
2014-12-01
One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions. This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains. The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames. Moreover, a force-measuring frame is designed and manufactured based on the quasi-static load series. The load decoupling model of the quasi-static load series is then established via calibration tests. Quasi-static load-time histories, together with online tests and decoupling analysis, are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line. The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm. The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.
Many-body excitations and deexcitations in trapped ultracold bosonic clouds
NASA Astrophysics Data System (ADS)
Theisen, Marcus; Streltsov, Alexej I.
2016-11-01
We employ the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method to study excited states of interacting Bose-Einstein condensates confined by harmonic and double-well trap potentials. Two approaches to access excitations, one static and the other dynamic, are investigated and contrasted. In static simulations the low-lying excitations are computed by utilizing a linear-response theory constructed on top of a static MCTDHB solution (LR-MCTDHB). Complimentarily, we propose two dynamic protocols that address excitations by propagating the MCTDHB wave function. In particular, we investigate dipolelike oscillations induced by shifting the origin of the confining potential and breathinglike excitations by quenching the frequency of a parabolic part of the trap. To contrast static predictions and dynamic results we compute the time evolution and regard the respective Fourier transform of several local and nonlocal observables. Namely, we study the expectation value of the position operator
Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890
Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.
40. 500,000 POUND STATIC TEST FACILITY: DISTANT VIEW WITH BLOCKHOUSE ...
40. 500,000 POUND STATIC TEST FACILITY: DISTANT VIEW WITH BLOCKHOUSE IN FOREGROUND, LOOKING SOUTHEAST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Code of Federal Regulations, 2012 CFR
2012-07-01
... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...
Rectifier cabinet static breaker
Costantino, Jr, Roger A.; Gliebe, Ronald J.
1992-09-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Dorwald, F.
1982-01-01
The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.
2017-12-01
to effectively attract and retain millennials is in question. Stale marketing and static testing processes may be contributing to smaller hiring pools...ABSTRACT Modern-day fire service methods’ ability to effectively attract and retain millennials is in question. Stale marketing and static testing... Marketing of the Testing Process ..............................................................50 Table 6. Type of Testing Process
Characterizing the Hazard of a Wake Vortex Encounter
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.; Brandon, Jay; Greene, George; Rivers, Robert; Shah, Gautam; Stewart, Eric; Stuever, Robert
1998-01-01
The National Aeronautics and Space Administration (NASA) is conducting research with the goal of enabling safe improvements in the capacity of the nation's air transportation system. The wake vortex upset hazard is an important factor in establishing the minimum safe spacing between aircraft during landing and take-off operations, thus impacting airport capacity. Static and free-flight wind tunnel tests and flight tests have provided an extensive data set for improved understanding of vortex encounter dynamics and simulation. Piloted and batch simulation studies are also ongoing to establish a first-order hazard metric and determine the limits of an operationally acceptable wake induced upset. This paper outlines NASA's research in these areas.
Effects of Antiparasitic Treatment on Dynamically and Statically Tested Cognitive Skills over Time
ERIC Educational Resources Information Center
Grigorenko, Elena L.; Sternberg, Robert J.; Jukes, Mathew; Alcock, Katie; Lambo, Jane; Ngorosho, Damaris; Nokes, Catherine; Bundy, Donald A.
2006-01-01
The main objective of this work was to investigate two testing procedures, repeated static tests and dynamic testing, that can more clearly demonstrate the impact of treatment for parasites in children. Rural Tanzanian children were assessed for the presence/absence and burden of helminth parasites and assigned to one of three…
Characterization of Friction Joints Subjected to High Levels of Random Vibration
NASA Technical Reports Server (NTRS)
deSantos, Omar; MacNeal, Paul
2012-01-01
This paper describes the test program in detail including test sample description, test procedures, and vibration test results of multiple test samples. The material pairs used in the experiment were Aluminum-Aluminum, Aluminum- Dicronite coated Aluminum, and Aluminum-Plasmadize coated Aluminum. Levels of vibration for each set of twelve samples of each material pairing were gradually increased until all samples experienced substantial displacement. Data was collected on 1) acceleration in all three axes, 2) relative static displacement between vibration runs utilizing photogrammetry techniques, and 3) surface galling and contaminant generation. This data was used to estimate the values of static friction during random vibratory motion when "stick-slip" occurs and compare these to static friction coefficients measured before and after vibration testing.
NASA Technical Reports Server (NTRS)
Bielawa, Richard L.; Hefner, Rachel E.; Castagna, Andre
1991-01-01
The results are presented of an analytic and experimental research program involving a Sikorsky S-55 helicopter tail cone directed ultimately to the improved structural analysis of airframe substructures typical of moderate sized helicopters of metal semimonocoque construction. Experimental static strain and dynamic shake-testing measurements are presented. Correlation studies of each of these tests with a PC-based finite element analysis (COSMOS/M) are described. The tests included static loadings at the end of the tail cone supported in the cantilever configuration as well as vibrational shake-testing in both the cantilever and free-free configurations.
1967-09-09
This photograph depicts the F-1 engine firing in the Marshall Space Flight Center’s F-1 Engine Static Test Stand. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. It is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.
NASA Astrophysics Data System (ADS)
Al-Rawashdeh, S. M.; Jaghoub, M. I.
2018-04-01
In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Hunter, Craig A.
1999-01-01
An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-geometry exhaust nozzle incorporating porous cavities for shock-boundary layer interaction control. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and 27 porous configurations. For the porous configurations, the effects of percent open porosity, hole diameter, and cavity depth were determined. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. Porous configurations were capable of controlling off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. The ability of the porous nozzle concept to alternately alleviate separation or encourage stable separation of exhaust flow through shock-boundary layer interaction control offers tremendous off-design performance benefits for fixed-geometry nozzle installations. In addition, the ability to encourage separation on one divergent flap while alleviating it on the other makes it possible to generate thrust vectoring using a fixed-geometry nozzle.
NASA Astrophysics Data System (ADS)
Weng, Hanli; Li, Youping
2017-04-01
The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.
Lung parenchyma remodeling in a murine model of chronic allergic inflammation.
Xisto, Debora G; Farias, Luciana L; Ferreira, Halina C; Picanço, Miguel R; Amitrano, Daniel; Lapa E Silva, Jose R; Negri, Elnara M; Mauad, Thais; Carnielli, Denise; Silva, Luiz Fernando F; Capelozzi, Vera L; Faffe, Debora S; Zin, Walter A; Rocco, Patricia R M
2005-04-15
This study tested the hypotheses that chronic allergic inflammation induces not only bronchial but also lung parenchyma remodeling, and that these histologic changes are associated with concurrent changes in respiratory mechanics. For this purpose, airway and lung parenchyma remodeling were evaluated by quantitative analysis of collagen and elastin, immunohistochemistry (smooth-muscle actin expression, eosinophil, and dendritic cell densities), and electron microscopy. In vivo (airway resistance, viscoelastic pressure, and static elastance) and in vitro (tissue elastance, resistance, and hysteresivity) respiratory mechanics were also analyzed. BALB/c mice were sensitized with ovalbumin and exposed to repeated ovalbumin challenges. A marked eosinophilic infiltration was seen in lung parenchyma and in large and distal airways. Neutrophils, lymphocytes, and dendritic cells also infiltrated the lungs. There was subepithelial fibrosis, myocyte hypertrophy and hyperplasia, elastic fiber fragmentation, and increased numbers of myofibroblasts in airways and lung parenchyma. Collagen fiber content was increased in the alveolar walls. The volume proportion of smooth muscle-specific actin was augmented in distal airways and alveolar duct walls. Airway resistance, viscoelastic pressure, static elastance, and tissue elastance and resistance were significantly increased. In conclusion, prolonged allergen exposure induced remodeling not only of the airway wall but also of the lung parenchyma, leading to in vivo and in vitro mechanical changes.
Hart, Roger C; Herring, G C; Balla, R Jeffrey
2007-06-15
Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
NASA Astrophysics Data System (ADS)
Grachev, A. I.
2018-04-01
Rotation of a spherical particle in a static electric field and under steady irradiation that induces an electric dipole moment in the particle is studied for the first time. Along with the general treatment of the phenomenon, we analyze possible mechanisms underlying the photoinduction of dipole moment in the particle. Estimations of the angular velocity and the power expended by the rotating particle are provided. The indicated characteristics reach their maximum values if the size of particles is within the range of 10 nm to 10 μm.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Reducing and Inducing Convection in Ge-Si Melts with Static Magnetic Field
NASA Technical Reports Server (NTRS)
Szofran, Frank R.
1999-01-01
Results of a study of the effectiveness of using static magnetic fields to reduce convection in Ge-Si melts will be presented. Lenz's law causes a retardation of convection when a static magnetic field is applied to an electrically conducting liquid. However, during the solidification of a solid-solution system such as Ge-Si, the interface is neither isothermal nor isoconcentrational. The variation of temperature and chemical composition along the interface causes thermoelectric currents to be generated within the solidifying material (and the container if it is electrically conductive). These currents, in the presence of a magnetic field, can cause movement (stirring, convection) in the melt which can exceed convection induced by normal thermosolutal mechanisms. Crystals have been grown by both the Bridgman and floating-zone methods. Clear evidence for the existence of this thermoelectromagnetic convection, especially in the case of Si floating-zone growth, will be presented.
Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Christopher T.
We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.
Damage and fracture in fabric-reinforced composites under quasi-static and dynamic bending
NASA Astrophysics Data System (ADS)
Ullah, H.; Harland, A. R.; Silberschmidt, V. V.
2013-07-01
Fabric-reinforced polymer composites used in sports products can be exposed to different in-service conditions such as large deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such behaviour needs adequate means of analysis and investigation, the main approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests were carried out to characterise the behaviour of a CFRP material under large-deflection bending, first in quasi-static and then in dynamic conditions. Izod-type impact bending tests were performed on un-notched specimens of CFRP using a Resil impactor to assess the transient response and energy absorbing capability of the material. X-ray micro computed tomography (micro-CT) was used to analyse various damage modes in the tested specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply and intra-ply delamination such as tow debonding, and fabric fracture were the prominent damage modes both in quasi-static and dynamic test specimens. However, the inter-ply damage was localised at impact location in dynamically tested specimens, whereas in the quasi-static specimens, it spread almost over the entire interface.
51. 500,000 POUND STATIC TEST FACILITY: CLOSEUP VIEW FROM EAST ...
51. 500,000 POUND STATIC TEST FACILITY: CLOSE-UP VIEW FROM EAST SHOWING MOVABLE OBSERVATION MIRRORS WITH TRACKS - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Pile Driving Analysis for Pile Design and Quality Assurance
DOT National Transportation Integrated Search
2017-08-01
Driven piles are commonly used in foundation engineering. The most accurate measurement of pile capacity is achieved from measurements made during static load tests. Static load tests, however, may be too expensive for certain projects. In these case...
Radar cross section models for limited aspect angle windows
NASA Astrophysics Data System (ADS)
Robinson, Mark C.
1992-12-01
This thesis presents a method for building Radar Cross Section (RCS) models of aircraft based on static data taken from limited aspect angle windows. These models statistically characterize static RCS. This is done to show that a limited number of samples can be used to effectively characterize static aircraft RCS. The optimum models are determined by performing both a Kolmogorov and a Chi-Square goodness-of-fit test comparing the static RCS data with a variety of probability density functions (pdf) that are known to be effective at approximating the static RCS of aircraft. The optimum parameter estimator is also determined by the goodness of-fit tests if there is a difference in pdf parameters obtained by the Maximum Likelihood Estimator (MLE) and the Method of Moments (MoM) estimators.
Test load verification through strain data analysis
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1995-01-01
A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Test may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.
How a GNSS Receiver Is Held May Affect Static Horizontal Position Accuracy
Weaver, Steven A.; Ucar, Zennure; Bettinger, Pete; Merry, Krista
2015-01-01
The static horizontal position accuracy of a mapping-grade GNSS receiver was tested in two forest types over two seasons, and subsequently was tested in one forest type against open sky conditions in the winter season. The main objective was to determine whether the holding position during data collection would result in significantly different static horizontal position accuracy. Additionally, we wanted to determine whether the time of year (season), forest type, or environmental variables had an influence on accuracy. In general, the F4Devices Flint GNSS receiver was found to have mean static horizontal position accuracy levels within the ranges typically expected for this general type of receiver (3 to 5 m) when differential correction was not employed. When used under forest cover, in some cases the GNSS receiver provided a higher level of static horizontal position accuracy when held vertically, as opposed to held at an angle or horizontally (the more natural positions), perhaps due to the orientation of the antenna within the receiver, or in part due to multipath or the inability to use certain satellite signals. Therefore, due to the fact that numerous variables may affect static horizontal position accuracy, we only conclude that there is weak to moderate evidence that the results of holding position are significant. Statistical test results also suggest that the season of data collection had no significant effect on static horizontal position accuracy, and results suggest that atmospheric variables had weak correlation with horizontal position accuracy. Forest type was found to have a significant effect on static horizontal position accuracy in one aspect of one test, yet otherwise there was little evidence that forest type affected horizontal position accuracy. Since the holding position was found in some cases to be significant with regard to the static horizontal position accuracy of positions collected in forests, it may be beneficial to have an understanding of antenna positioning within the receiver to achieve the greatest accuracy during data collection. PMID:25923667
How a GNSS Receiver Is Held May Affect Static Horizontal Position Accuracy.
Weaver, Steven A; Ucar, Zennure; Bettinger, Pete; Merry, Krista
2015-01-01
The static horizontal position accuracy of a mapping-grade GNSS receiver was tested in two forest types over two seasons, and subsequently was tested in one forest type against open sky conditions in the winter season. The main objective was to determine whether the holding position during data collection would result in significantly different static horizontal position accuracy. Additionally, we wanted to determine whether the time of year (season), forest type, or environmental variables had an influence on accuracy. In general, the F4Devices Flint GNSS receiver was found to have mean static horizontal position accuracy levels within the ranges typically expected for this general type of receiver (3 to 5 m) when differential correction was not employed. When used under forest cover, in some cases the GNSS receiver provided a higher level of static horizontal position accuracy when held vertically, as opposed to held at an angle or horizontally (the more natural positions), perhaps due to the orientation of the antenna within the receiver, or in part due to multipath or the inability to use certain satellite signals. Therefore, due to the fact that numerous variables may affect static horizontal position accuracy, we only conclude that there is weak to moderate evidence that the results of holding position are significant. Statistical test results also suggest that the season of data collection had no significant effect on static horizontal position accuracy, and results suggest that atmospheric variables had weak correlation with horizontal position accuracy. Forest type was found to have a significant effect on static horizontal position accuracy in one aspect of one test, yet otherwise there was little evidence that forest type affected horizontal position accuracy. Since the holding position was found in some cases to be significant with regard to the static horizontal position accuracy of positions collected in forests, it may be beneficial to have an understanding of antenna positioning within the receiver to achieve the greatest accuracy during data collection.
Seethaler, Pamela M.; Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.
2015-01-01
The purpose of this study was to assess the added value of dynamic assessment (DA) beyond more conventional static measures for predicting individual differences in year-end 1st-grade calculation (CA) and word-problem (WP) performance, as a function of limited English proficiency (LEP) status. At the start of 1st grade, students (129 LEP; 163 non-LEP) were assessed on a brief static mathematics test, an extended static mathematics test, static tests of domain-general abilities associated with CAs and WPs (vocabulary; reasoning), and DA. Near end of 1st grade, they were assessed on CA and WP. Regression analyses indicated that the value of the predictor depends on the predicted outcome and LEP status. In predicting CAs, the extended mathematics test and DA uniquely explained variance for LEP children, with stronger predictive value for the extended mathematics test; for non-LEP children, the extended mathematics test was the only significant predictor. However, in predicting WPs, only DA and vocabulary were uniquely predictive for LEP children, with stronger value for DA; for non-LEP children, the extended mathematics test and DA were comparably uniquely predictive. Neither the brief static mathematics test nor reasoning was significant in predicting either outcome. The potential value of a gated screening process, using an extended mathematics assessment to predict CAs and using DA to predict WPs, is discussed. PMID:26523068
Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels
NASA Technical Reports Server (NTRS)
Groen, Joseph M.; Johnson, Aldie E., Jr.
1959-01-01
Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.
Flowfield measurements in the NASA Lewis Research Center 9- by 15-foot low-speed wind tunnel
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
1989-01-01
An experimental investigation was conducted in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel to determine the flow characteristics in the test section during wind tunnel operation. In the investigation, a 20-probe horizontally-mounted Pitot-static flow survey rake was used to obtain cross-sectional total and static pressure surveys at four axial locations in the test section. At each axial location, the cross-sectional flowfield surveys were made by repositioning the Pitot-static flow survey rake vertically. In addition, a calibration of the new wind tunnel rake instrumentation, used to determine the wind tunnel operating conditions, was performed. Boundary laser surveys were made at three axial locations in the test section. The investigation was conducted at tunnel Mach numbers 0.20, 0.15, 0.10, and 0.05. The test section profile results from the investigation indicate that fairly uniform total pressure profiles (outside the test section boundary layer) and fairly uniform static pressure and Mach number profiles (away from the test section walls and downstream of the test section entrance) exist throughout in the wind tunnel test section.
Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.
2004-01-01
Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.
Static Force-Deflection Properties of Automobile Steering Components
DOT National Transportation Integrated Search
1987-06-01
This report provides the static force-deflection test results for 28 steering columns and 24 steering wheels used in domestic and import passener cars from model year 1975 to 1985. The steering columns and wheels tested include approzimately 90 perce...
1964-12-01
At the Marshall Space Flight Center (MSFC), the fuel tank assembly for the Saturn V S-IC-T (static test stage) fuel tank assembly is mated to the liquid oxygen (LOX) tank in building 4705. This stage underwent numerous static firings at the newly-built S-IC Static Test Stand at the MSFC west test area. The S-IC (first) stage used five F-1 engines that produced a total thrust of 7,500,000 pounds as each engine produced 1,500,000 pounds of thrust. The S-IC stage lifted the Saturn V vehicle and Apollo spacecraft from the launch pad.
Effects of static tensile load on the thermal expansion of Gr/PI composite material
NASA Technical Reports Server (NTRS)
Farley, G. L.
1981-01-01
The effect of static tensile load on the thermal expansion of Gr/PI composite material was measured for seven different laminate configurations. A computer program was developed which implements laminate theory in a piecewise linear fashion to predict the coupled nonlinear thermomechanical behavior. Static tensile load significantly affected the thermal expansion characteristics of the laminates tested. This effect is attributed to a fiber instability micromechanical behavior of the constituent materials. Analytical results correlated reasonably well with free thermal expansion tests (no load applied to the specimen). However, correlation was poor for tests with an applied load.
Space Shuttle SRM development. [Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Brinton, B. C.; Kilminster, J. C.
1979-01-01
The successful static test of the fourth Development Space Shuttle Solid Rocket Motor (SRM) in February 1979 concluded the development testing phase of the SRM Project. Qualification and flight motors are currently being fabricated, with the first qualification motor to be static tested. Delivered thrust-time traces on all development motors were very close to predicted values, and both specific and total impulse exceeded specification requirements. 'All-up' static tests conducted with a solid rocket booster equipment on development motors achieved all test objectives. Transportation and support equipment concepts have been proven, baselining is complete, and component reusability has been demonstrated. Evolution of the SRM transportation support equipment, and special test equipment designs are reviewed, and development activities discussed. Handling and processing aspects of large, heavy components are described.
Slider thickness promotes lubricity: from 2D islands to 3D clusters
NASA Astrophysics Data System (ADS)
Guerra, Roberto; Tosatti, Erio; Vanossi, Andrea
2016-05-01
The sliding of three-dimensional clusters and two-dimensional islands adsorbed on crystal surfaces represents an important test case to understand friction. Even for the same material, monoatomic islands and thick clusters will not as a rule exhibit the same friction, but specific differences have not been explored. Through realistic molecular dynamics simulations of the static friction of gold on graphite, an experimentally relevant system, we uncover as a function of gold thickness a progressive drop of static friction from monolayer islands, that are easily pinned, towards clusters, that slide more readily. The main ingredient contributing to this thickness-induced lubricity appears to be the increased effective rigidity of the atomic contact, acting to reduce the cluster interdigitation with the substrate. A second element which plays a role is the lateral contact size, which can accommodate the solitons typical of the incommensurate interface only above a critical contact diameter, which is larger for monolayer islands than for thick clusters. The two effects concur to make clusters more lubric than islands, and large sizes more lubric than smaller ones. These conclusions are expected to be of broader applicability in diverse nanotribological systems, where the role played by static, and dynamic, friction is generally quite important.
Slider thickness promotes lubricity: from 2D islands to 3D clusters.
Guerra, Roberto; Tosatti, Erio; Vanossi, Andrea
2016-06-07
The sliding of three-dimensional clusters and two-dimensional islands adsorbed on crystal surfaces represents an important test case to understand friction. Even for the same material, monoatomic islands and thick clusters will not as a rule exhibit the same friction, but specific differences have not been explored. Through realistic molecular dynamics simulations of the static friction of gold on graphite, an experimentally relevant system, we uncover as a function of gold thickness a progressive drop of static friction from monolayer islands, that are easily pinned, towards clusters, that slide more readily. The main ingredient contributing to this thickness-induced lubricity appears to be the increased effective rigidity of the atomic contact, acting to reduce the cluster interdigitation with the substrate. A second element which plays a role is the lateral contact size, which can accommodate the solitons typical of the incommensurate interface only above a critical contact diameter, which is larger for monolayer islands than for thick clusters. The two effects concur to make clusters more lubric than islands, and large sizes more lubric than smaller ones. These conclusions are expected to be of broader applicability in diverse nanotribological systems, where the role played by static, and dynamic, friction is generally quite important.
Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males
Bandy, William D.
2004-01-01
Objective: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). Design and Setting: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. Subjects: A total of 69 subjects, with a mean age of 16.45 ± 0.96 years and with limited hamstring flexibility (defined as 20° loss of knee extension measured with the thigh held at 90° of hip flexion) were recruited for this study. Measurements: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. Results: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67°) and both the eccentric-training (gain = 12.79°) and static-stretching (gain = 12.05°) groups. No difference was found between the eccentric and static-stretching groups. Conclusions: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles. PMID:15496995
Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males.
Nelson, Russell T; Bandy, William D
2004-09-01
OBJECTIVE: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). DESIGN AND SETTING: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. SUBJECTS: A total of 69 subjects, with a mean age of 16.45 +/- 0.96 years and with limited hamstring flexibility (defined as 20 degrees loss of knee extension measured with the thigh held at 90 degrees of hip flexion) were recruited for this study. MEASUREMENTS: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. RESULTS: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67 degrees ) and both the eccentric-training (gain = 12.79 degrees ) and static-stretching (gain = 12.05 degrees ) groups. No difference was found between the eccentric and static-stretching groups. CONCLUSIONS: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles.
A Passive Cavity Concept for Improving the Off-Design Performance of Fixed-Geometry Exhaust Nozzles
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Gunther, Christopher L.; Hunter, Craig A.
1996-01-01
An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to study a passive cavity concept for improving the off-design performance of fixed-geometry exhaust nozzles. Passive cavity ventilation (through a porous surface) was applied to divergent flap surfaces and tested at static conditions in a sub-scale, nonaxisymmetric, convergent-divergent nozzle. As part of a comprehensive investigation, force, moment and pressure measurements were taken and focusing schlieren flow visualization was obtained for a baseline configuration and D passive cavity configurations. All tests were conducted with no external flow and high-pressure air was used to simulate jet-exhaust flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable shock-induced boundary-layer separation at off-design conditions, which came about through the natural tendency of overexpanded exhaust flow to satisfy conservation requirements by detaching from the nozzle divergent flaps. Passive cavity ventilation added the ability to control off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. Separation alleviation offers potential for installed nozzle performance benefits by reducing drag at forward flight speeds, even though it may reduce off-design static thrust efficiency as much as 3.2 percent. Encouraging stable separation of the exhaust flow offers significant performance improvements at static, low NPR and low Mach number flight conditions by improving off-design static thrust efficiency as much as 2.8 percent. By designing a fixed-geometry nozzle with fully porous divergent flaps, where both cavity location and percent open porosity of the flaps could be varied, passive flow control would make it possible to improve off-design nozzle performance across a wide operating range. In addition, the ability to encourage separation on one flap while alleviating it on the other makes it possible to generate thrust vectoring in the nozzle through passive flow control.
Kordi, Ramin; Mazaheri, Reza; Rostami, Mohsen; Mansournia, Mohammad Ali
2012-01-01
The pathophysiology of primary benign exertional headache (EH) is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP) and heart rate (HR) of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15) and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12) were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC) and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-12-26
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-01-01
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398
[Research progress on mechanical performance evaluation of artificial intervertebral disc].
Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang
2018-03-01
The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.
Safety Study of Transcranial Static Magnetic Field Stimulation (tSMS) of the Human Cortex.
Oliviero, A; Carrasco-López, M C; Campolo, M; Perez-Borrego, Y A; Soto-León, V; Gonzalez-Rosa, J J; Higuero, A M; Strange, B A; Abad-Rodriguez, J; Foffani, G
2015-01-01
Transcranial static magnetic field stimulation (tSMS) in humans reduces cortical excitability. The objective of this study was to determine if prolonged tSMS (2 h) could be delivered safely in humans. Safety limits for this technique have not been described. tSMS was applied for 2 h with a cylindric magnet on the occiput of 17 healthy subjects. We assessed tSMS-related safety aspects at tissue level by measuring levels of neuron-specific enolase (NSE, a marker of neuronal damage) and S100 (a marker of glial reactivity and damage). We also included an evaluation of cognitive side effects by using a battery of visuomotor and cognitive tests. tSMS did not induce any significant increase in NSE or S100. No cognitive alteration was detected. Our data indicate that the application of tSMS is safe in healthy human subjects, at least within these parameters. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo
2017-05-01
Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.
NASA Technical Reports Server (NTRS)
Nguyen, L. T.; Ogburn, M. E.; Gilbert, W. P.; Kibler, K. S.; Brown, P. W.; Deal, P. L.
1979-01-01
A real-time piloted simulation was conducted to evaluate the high-angle-of-attack characteristics of a fighter configuration based on wind-tunnel testing of the F-16, with particular emphasis on the effects of various levels of relaxed longitudinal static stability. The aerodynamic data used in the simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative low-speed combat maneuvering. Results of the investigation show that the airplane with the basic control system was resistant to the classical yaw departure; however, it was susceptible to pitch departures induced by inertia coupling during rapid, large-amplitude rolls at low airspeed. The airplane also exhibited a deep-stall trim which could be flown into and from which it was difficult to recover. Control-system modifications were developed which greatly decreased the airplane susceptibility to the inertia-coupling departure and which provided a reliable means for recovering from the deep stall.
Mechanical and Functional Properties of Nickel Titanium Adhesively Bonded Joints
NASA Astrophysics Data System (ADS)
Niccoli, F.; Alfano, M.; Bruno, L.; Furgiuele, F.; Maletta, C.
2014-07-01
In this study, adhesive joints made up of commercial NiTi sheets with shape memory capabilities are analyzed. Suitable surface pre-treatments, i.e., degreasing, sandblasting, and chemical etching, are preliminary compared in terms of surface roughness, surface energy, and substrate thinning. Results indicate that chemical etching induces marked substrate thinning without substantial gains in terms of surface roughness and free energy. Therefore, adhesive joints with degreased and sandblasted substrates are prepared and tested under both static and cyclic conditions, and damage development within the adhesive layer is monitored in situ using a CCD camera. Sandblasted specimens have a significantly higher mechanical static strength with respect to degreased ones, although they essentially fail in similar fashion, i.e., formation of microcracks followed by decohesion along the adhesive/substrate interface. In addition, the joints show a good functional response with almost complete shape memory recovery after thermo-mechanical cycling, i.e., a small accumulation of residual deformations occurs. The present results show that adhesive bonding is a viable joining technique for NiTi alloys.
Parametric analysis of swept-wing geometry with sheared wing tips
NASA Technical Reports Server (NTRS)
Fremaux, C. M.; Vijgen, P. M. H. W.; Van Dam, C. P.
1990-01-01
A computational parameter study is presented of potential reductions in induced drag and increases in lateral-directional stability due to sheared wing tips attached to an untwisted wing of moderate sweep and aspect ratio. Sheared tips are swept and tapered wing-tip devices mounted in the plane of the wing. The induced-drag results are obtained using an inviscid, incompressible surface-panel method that models the nonlinear effects due to the deflected and rolled-up wake behind the lifting surface. The induced-drag results with planar sheared tips are compared to straight-tapered tip extensions and nonplanar winglet geometries. The lateral-directional static-stability characteristics of the wing with sheared tips are estimated using a quasi-vortex-lattice method. For certain combinations of sheared-tip sweep and taper, both the induced efficiency of the wing and the relevant static-stability derivatives are predicted to increase compared to the wing with a straight-tapered tip modification.
NASA Astrophysics Data System (ADS)
Akpınar, Ercan
2014-08-01
This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30 students, and the control group of 27 students. The control group received normal instruction in which the teacher provided instruction by means of lecture, discussion and homework. Whereas in the experiment group, dynamic and interactive animations based on POE were used as a presentation tool. Data collection tools used in the study were static electricity concept test and open-ended questions. The static electricity concept test was used as pre-test before the implementation, as post-test at the end of the implementation and as delay test approximately 6 weeks after the implementation. Open-ended questions were used at the end of the implementation and approximately 6 weeks after the implementation. Results indicated that the interactive animations used as presentation tools were more effective on the students' understanding of static electricity concepts compared to normal instruction.
Characterization of Triaxial Braided Composite Material Properties for Impact Simulation
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.
2009-01-01
The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Bangert, L. S.
1982-01-01
An investigation was conducted in the Langley 16 foot Transonic Tunnel and in the static test facility of that tunnel to determine the effects of divergent flap ventilation of an axisymmetric nozzle on nozzle internal (static) and wind on performance. Tests were conducted at 0 deg angle of attack at static conditions and at Mach numbers from 0.6 to 1.2. Ratios of jet total pressure to free stream static pressure were varied from 1.0 (jet off) to approximately 14.0 depending on Mach number. The results of this study indicate that divergent flap ventilation generally provided large performance benefits at overexpanded nozzle conditions and performance reductions at underexpanded nozzle conditions when compared to the baseline (unventilated) nozzles. Ventilation also reduced the peak static and wind on performance levels.
Measuring Cognitive Load in Test Items: Static Graphics versus Animated Graphics
ERIC Educational Resources Information Center
Dindar, M.; Kabakçi Yurdakul, I.; Inan Dönmez, F.
2015-01-01
The majority of multimedia learning studies focus on the use of graphics in learning process but very few of them examine the role of graphics in testing students' knowledge. This study investigates the use of static graphics versus animated graphics in a computer-based English achievement test from a cognitive load theory perspective. Three…
Quantification and Compensation of Eddy-Current-Induced Magnetic Field Gradients
Spees, William M.; Buhl, Niels; Sun, Peng; Ackerman, Joseph J.H.; Neil, Jeffrey J.; Garbow, Joel R.
2011-01-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or 6-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom’s free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner’s gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. PMID:21764614
Quantification and compensation of eddy-current-induced magnetic-field gradients.
Spees, William M; Buhl, Niels; Sun, Peng; Ackerman, Joseph J H; Neil, Jeffrey J; Garbow, Joel R
2011-09-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or six-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom's free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner's gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. Copyright © 2011 Elsevier Inc. All rights reserved.
Static electricity: A literature review
NASA Astrophysics Data System (ADS)
Crow, Rita M.
1991-11-01
The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.
Karkabounas, Spyridon; Havelas, Konstantinos; Kostoula, Olga K; Vezyraki, Patra; Avdikos, Antonios; Binolis, Jayne; Hatziavazis, George; Metsios, Apostolos; Verginadis, Ioannis; Evangelou, Angelos
2006-01-01
In this study we investigated the effects of low intensity static radiofrequency electromagnetic field (EMF) causing no thermal effects, on leiomyosarcoma cells (LSC), isolated from tumors of fifteen Wistar rats induced via a 3,4-benzopyrene injection. Electromagnetic resonance frequencies measurements and exposure of cells to static EMF were performed by a device called multi channel dynamic exciter 100 V1 (MCDE). The LSC were exposed to electromagnetic resonance radiofrequencies (ERF) between 10 kHz to 120 kHz, for 45 min. During a 24h period, after the exposure of the LSC to ERF, there was no inhibition of cells proliferation. In contrast, at the end of a 48 h incubation period, LSC proliferation dramatically decreased by more than 98% (P<0.001). At that time, the survived LSC were only 2% of the total cell population exposed to ERF, and under the same culture conditions showed significant decrease of proliferation. These cells were exposed once again to ERF for 45 min (totally 4 sessions of exposure, of 45 min duration each) and tested using a flow cytometer. Experiments as above were repeated five times. It was found that 45% of these double exposed to ERF, LSC (EMF cells) were apoptotic and only a small percentage 2%, underwent mitosis. In order to determinate their metastatic potential, these EMF cells were also counted and tested by an aggregometer for their ability to aggregate platelets and found to maintain this ability., since they showed no difference in platelet aggregation ability compared to the LSC not exposed to ERF (control cells). In conclusion, exposure of LSC to specific ERF, decreases their proliferation rate and induces cell apoptosis. Also, the LSC that survived after exposed to ERF, had a lower proliferation rate compared to the LSC controls (P<0.05) but did not loose their potential for metastases (platelet aggregation ability). The non-malignant SMC were not affected by the EMF exposure (P<0.4). The specific ERF generated from the MCDE electronic device, used in this study, is safe for humans and animals, according to the international safety standards.
Static pile load tests on driven piles into Intermediate-Geo Materials.
DOT National Transportation Integrated Search
2016-09-01
The Wisconsin Department of Transportation (WisDOT) has concerns with both predicting pile lengths and pile capacities for H-piles driven into Intermediate-Geo Materials (IGM). The goal of the research was to perform 7 static axial load tests at 7 lo...
Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1
NASA Technical Reports Server (NTRS)
Rebells, Clarence A.
1988-01-01
This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.
Ordnung, Madeleine; Hoff, Maike; Kaminski, Elisabeth; Villringer, Arno; Ragert, Patrick
2017-01-01
Several studies investigating the relationship between physical activity and cognition showed that exercise interventions might have beneficial effects on working memory, executive functions as well as motor fitness in old adults. Recently, movement based video games (exergames) have been introduced to have the capability to improve cognitive function in older adults. Healthy aging is associated with a loss of cognitive, as well as sensorimotor functions. During exergaming, participants are required to perform physical activities while being simultaneously surrounded by a cognitively challenging environment. However, only little is known about the impact of exergame training interventions on a broad range of motor, sensory, and cognitive skills. Therefore, the present study aims at investigating the effects of an exergame training over 6 weeks on cognitive, motor, and sensory functions in healthy old participants. For this purpose, 30 neurologically healthy older adults were randomly assigned to either an experimental (ETG, n = 15, 1 h training, twice a week) or a control group (NTG, n = 15, no training). Several cognitive tests were performed before and after exergaming in order to capture potential training-induced effects on processing speed as well as on executive functions. To measure the impact of exergaming on sensorimotor performance, a test battery consisting of pinch and grip force of the hand, tactile acuity, eye-hand coordination, flexibility, reaction time, coordination, and static balance were additionally performed. While we observed significant improvements in the trained exergame (mainly in tasks that required a high load of coordinative abilities), these gains did not result in differential performance improvements when comparing ETG and NTG. The only exergaming-induced difference was a superior behavioral gain in fine motor skills of the left hand in ETG compared to NTG. In an exploratory analysis, within-group comparison revealed improvements in sensorimotor and cognitive tasks (ETG) while NTG only showed an improvement in a static balance test. Taken together, the present study indicates that even though exergames might improve gaming performance, our behavioral assessment was probably not sensitive enough to capture exergaming-induced improvements. Hence, we suggest to use more tailored outcome measures in future studies to assess potential exergaming-induced changes. PMID:28420973
Assessment of current AASHTO LRFD methods for static pile capacity analysis in Rhode Island soils.
DOT National Transportation Integrated Search
2013-07-01
This report presents an assessment of current AASHTO LRFD methods for static pile capacity analysis in Rhode : Island soils. Current static capacity methods and associated resistance factors are based on pile load test data in sands : and clays. Some...
Impact evaluation of composite floor sections
NASA Technical Reports Server (NTRS)
Boitnott, Richard L.; Fasanella, Edwin L.
1989-01-01
Graphite-epoxy floor sections representative of aircraft fuselage construction were statically and dynamically tested to evaluate their response to crash loadings. These floor sections were fabricated using a frame-stringer design typical of present aluminum aircraft without features to enhance crashworthiness. The floor sections were tested as part of a systematic research program developed to study the impact response of composite components of increasing complexity. The ultimate goal of the research program is to develop crashworthy design features for future composite aircraft. Initially, individual frames of six-foot diameter were tested both statically and dynamically. The frames were then used to construct built-up floor sections for dynamic tests at impact velocities of approximately 20 feet/sec to simulate survivable crash velocities. In addition, static tests were conducted to gain a better understanding of the failure mechanisms seen in the dynamic tests.
NASA Astrophysics Data System (ADS)
Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.
2006-03-01
There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.
Static charge outside chamber induces dielectric breakdown of solid-state nanopore membranes
NASA Astrophysics Data System (ADS)
Matsui, Kazuma; Goto, Yusuke; Yanagi, Itaru; Yanagawa, Yoshimitsu; Ishige, Yu; Takeda, Ken-ichi
2018-04-01
Reducing device capacitance is effective for decreasing current noise observed in a solid-state nanopore-based DNA sequencer. On the other hand, we have recently found that voltage stress causes pinhole-like defects in such low-capacitance devices. The origin of voltage stress, however, has not been determined. In this research, we identified that a dominant origin is static charge on the outer surface of a flow cell. Even though the outer surface was not in direct contact with electrolytes in the flow cell, the charge induces high voltage stress on a membrane according to the capacitance coupling ratio of the flow cell to the membrane.
1967-08-01
This photograph is a view of the Saturn V S-IC-5 (first) flight stage static test firing at the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. Begirning operations in 1966, the MTF has two test stands, a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 407-foot-high test stand for the static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
NASA Astrophysics Data System (ADS)
Hallali, N.; Clerc, P.; Fourmy, D.; Gigoux, V.; Carrey, J.
2016-07-01
Studies with transplanted tumors in animals and clinical trials have provided the proof-of-concept of magnetic hyperthermia (MH) therapy of cancers using iron oxide nanoparticles. Interestingly, in several studies, the application of an alternating magnetic field (AMF) to tumor cells having internalized and accumulated magnetic nanoparticles (MNPs) into their lysosomes can induce cell death without detectable temperature increase. To explain these results, among other hypotheses, it was proposed that cell death could be due to the high-frequency translational motion of MNPs under the influence of the AMF gradient generated involuntarily by most inductors. Such mechanical actions of MNPs might cause cellular damages and participate in the induction of cell death under MH conditions. To test this hypothesis, we developed a setup maximizing this effect. It is composed of an anti-Helmholtz coil and two permanent magnets, which produce an AMF gradient and a superimposed static MF. We have measured the MNP heating power and treated tumor cells by a standard AMF and by an AMF gradient, on which was added or not a static magnetic field. We showed that the presence of a static magnetic field prevents MNP heating and cell death in standard MH conditions. The heating power of MNPs in an AMF gradient is weak, position-dependent, and related to the presence of a non-zero AMF. Under an AMF gradient and a static field, no MNP heating and cell death were measured. Consequently, the hypothesis that translational motions could be involved in cell death during MH experiments is ruled out by our experiments.
Iwasaki, Koji; Sudo, Hideki; Kasahara, Yasuhiko; Yamada, Katsuhisa; Ohnishi, Takashi; Tsujimoto, Takeru; Iwasaki, Norimasa
2016-10-01
To determine the in vivo effects of multiple local anesthetic injections of 0.5% bupivacaine on normal and osteoarthritic articular cartilage. Rats with normal knee joints received an intra-articular injection of 0.9% saline solution or 0.5% bupivacaine in their right knees joint once a week for 5 consecutive weeks, starting 4 weeks after the beginning of the experiment. Rats were humanely killed at 8, 16, and 24 weeks. In a parallel experiment, rats underwent anterior cruciate ligament transection to induce osteoarthritic changes. These rats were subjected to the same protocol as those with normal knee joints, starting 4 weeks after the procedure. Static weight-bearing tests were performed on both hind limbs to evaluate changes in weight-bearing ability throughout the experiments. Rats were humanely killed at 8 and 16 weeks. Cell viability was assessed with confocal microscopy, using samples from the distal femur. Histologic assessment of osteoarthritis was performed using samples from the tibial plateau based on the Osteoarthritis Research Society International (OARSI) cartilage histopathology assessment system (i.e., OARSI score). Static weight-bearing tests showed no significant changes after intra-articular injection of saline solution or bupivacaine, and bupivacaine injection did not increase weight bearing compared with saline solution injection, regardless of whether there were osteoarthritic changes. There were also no significant differences in cell viability, cell density, or OARSI scores between the saline solution and bupivacaine groups at each time point, regardless of whether osteoarthritic changes were induced. This study suggested that single or intermittent intra-articular bupivacaine injections might not have deleterious effects on either osteoarthritic or normal joints. There is no strong evidence that intra-articular bupivacaine injection induces degenerative changes in articular cartilage. Therefore, these results may apply to normal and osteoarthritic joints. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Yu, Kai; Andruschak, Paula; Yeh, Han Hung; Grecov, Dana; Kizhakkedathu, Jayachandran N
2018-06-01
The information regarding the nature of protein corona (and its changes) and cell binding on biomaterial surface under dynamic conditions is critical to dissect the mechanism of surface-induced thrombosis. In this manuscript, we investigated the nature of protein corona and blood cell binding in heparinized recalcified human plasma, platelet rich plasma and whole blood on three highly hydrophilic antifouling polymer brushes, (poly(N, N-dimethylacrylamide) (PDMA), poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) using an in vitro blood loop model at comparable arterial and venous flow, and static conditions. A fluid dynamics model was used initially to better understand the resulting flow patterns in a vertical channel containing the substrates to arrive at the placement of the substrates within the blood loop. The protein binding on the brush modified substrates was determined using ellipsometry, fluorescence microscopy and the nature of the protein corona was investigated using mass spectrometry based proteomics. The flow elevated fouling on brush coated surface from blood. The extent of plasma protein adsorption and platelet adhesion onto PDMA brush was lower than other surfaces in both static and flow conditions. The profiles of adsorbed protein corona showed strong dependence on the test conditions (static vs. flow), and the chemistry of the polymer brushes. Specially, the PDMA brush under flow conditions was more enriched with coagulation proteins, complement proteins, vitronectin and fibronectin but was less enriched with serum albumin. Apolipoprotein B-100 and complement proteins were the most abundant proteins seen on PMPC and PHPMA surfaces under both flow and static conditions, respectively. Unlike PDMA brush, the flow conditions did not affect the composition of protein corona on PMPC and PHPMA brushes. The nature of the protein corona formed in flow conditions influenced the platelet and red blood cell binding. The dependence of shear stress on platelet adhesion from platelet rich plasma and whole blood highlights the contribution of red blood cells in enhancing platelet adhesion on the surface under high shear condition. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hermita, N.; Suhandi, A.; Syaodih, E.; Samsudin, A.; Isjoni; Johan, H.; Rosa, F.; Setyaningsih, R.; Sapriadil; Safitri, D.
2017-09-01
We have already constructed and implemented the diagnostic test formed in the four tier test to diagnose pre-service elementary teachers’ misconceptions about static electricity. The method which is utilized in this study is 3D-1I (Define, Design, Develop and Implementation) conducted to the pre-service elementary school teachers. The number of respondents involved in the study is 78 students of PGSD FKIP Universitas Riau. The data was collected by administering diagnostic test items in the form of four tier test. The result indicates that there are several misconceptions related to static electricity concept, these include: 1) Electrostatic objects cannot attract neutral objects, 2) A neutral object is an object that does not contain an electrical charge, and 3) the magnitude of the tensile force between two charged objects depends on the size of the charge. Moreover, the research’s results establish that the diagnostic test is able to analyse number of misconceptions and classify level of understanding pre-service elementary school teachers that is scientific knowledge, misconception, lack knowledge, and error. In conclusion, the diagnostic test item in the form of four tier test has already been constructed and implemented to diagnose students’ conceptions on static electricity.
Effects of Static Stretching on Squat Performance in Division I Female Athletes
HEISEY, CLARE F.; KINGSLEY, J. DEREK
2016-01-01
Static stretching was once recognized as a method of preparation for physical activity that would inhibit performance and increase risk of injury. However, a growing body of research suggests that static stretching may not have an inhibitory effect. Regardless, the data have not examined gender differences or the fatigue index (FI) and flexibility effects of static stretching on the back squat over multiple sets. Therefore, the purpose of this study was to examine the relationship between a static-stretch condition (SC) and control condition (CC) on flexibility and the FI of Division I female athletes during 4 sets of the back squat. Eighteen subjects (mean ± SD; age 20 ± 1 yrs; height 164.5 ± 14.6 cm; mass 74.1 ± 26.8 kg; waist circumference 73.2 ± 5.4 cm) participated in 3 testing days over the course of 3 weeks. Each subject’s 1RM back squat was assessed during the first day of testing and verified during the second. On the third testing day, subjects assigned to the SC held 3 lower-body stretches twice for 30 second intervals and those assigned to the CC rested during the corresponding 7 minutes and 50 second time period. The subjects also performed a fatiguing squat protocol consisting of 4 sets of maximum repetitions on the third day of testing. A significant (p=0.04) interaction was noted for flexibility. No significant interaction (p=0.41) was observed between the FI of the CC (41.8 ± 24.1%) or the SC (27.6 ± 45.2%). These results indicate that static stretching does not have a significant effect on multiple sets of the back squat. Therefore, coaches may allow their athletes to engage in static stretching prior to resistance exercise ad libitum. PMID:27766127
NASA Astrophysics Data System (ADS)
Yang, Jinping; Li, Peizhen; Yang, Youfa; Xu, Dian
2018-04-01
Empirical mode decomposition (EMD) is a highly adaptable signal processing method. However, the EMD approach has certain drawbacks, including distortions from end effects and mode mixing. In the present study, these two problems are addressed using an end extension method based on the support vector regression machine (SVRM) and a modal decomposition method based on the characteristics of the Hilbert transform. The algorithm includes two steps: using the SVRM, the time series data are extended at both endpoints to reduce the end effects, and then, a modified EMD method using the characteristics of the Hilbert transform is performed on the resulting signal to reduce mode mixing. A new combined static-dynamic method for identifying structural damage is presented. This method combines the static and dynamic information in an equilibrium equation that can be solved using the Moore-Penrose generalized matrix inverse. The combination method uses the differences in displacements of the structure with and without damage and variations in the modal force vector. Tests on a four-story, steel-frame structure were conducted to obtain static and dynamic responses of the structure. The modal parameters are identified using data from the dynamic tests and improved EMD method. The new method is shown to be more accurate and effective than the traditional EMD method. Through tests with a shear-type test frame, the higher performance of the proposed static-dynamic damage detection approach, which can detect both single and multiple damage locations and the degree of the damage, is demonstrated. For structures with multiple damage, the combined approach is more effective than either the static or dynamic method. The proposed EMD method and static-dynamic damage detection method offer improved modal identification and damage detection, respectively, in structures.
Response, analysis, and design of pile groups subjected to static & dynamic lateral loads.
DOT National Transportation Integrated Search
2003-06-01
Static and dynamic lateral load tests were performed on four full-scale pile groups driven at four different spacings. P-multipliers to account for group : interaction effects were back-calculated for each test. P-multipliers were found to be a funct...
Static RAM data recorder for flight tests
NASA Astrophysics Data System (ADS)
Stoner, D. C.; Eklund, T. F. F.
A static random access memory (RAM) data recorder has been developed to recover strain and acceleration data during development tests of high-speed earth penetrating vehicles. Bilevel inputs are also available for continuity measurements. An iteration of this system was modified for use on water entry evaluations.
Static Evaluation of a NAVSTAR GPS (Magnavox Z-Set) Receiver - May-September 1979
DOT National Transportation Integrated Search
1980-05-01
The report documents the results of the static testing of a NAVSTAR Global Positioning System (GPS) single channel sequential receiver (Magnavox Z-Set). These tests were performed at the Coast Guard District 11 office in Long Beach, CA from May to Se...
Technology advancement of the static feed water electrolysis process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.
1977-01-01
A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.
NASA Technical Reports Server (NTRS)
Lopez, Armando E.; Buell, Donald A.; Tinling, Bruce E.
1959-01-01
Wind-tunnel measurements were made of the static and dynamic rotary stability derivatives of an airplane model having sweptback wing and tail surfaces. The Mach number range of the tests was from 0.23 to 0.94. The components of the model were tested in various combinations so that the separate contribution to the stability derivatives of the component parts and the interference effects could be determined. Estimates of the dynamic rotary derivatives based on some of the simpler existing procedures which utilize static force data were found to be in reasonable agreement with the experimental results at low angles of attack. The results of the static and dynamic measurements were used to compute the short-period oscillatory characteristics of an airplane geometrically similar to the test model. The results of these calculations are compared with military flying qualities requirements.
Static and yawed-rolling mechanical properties of two type 7 aircraft tires
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.; Mccarty, J. L.
1981-01-01
Selected mechanical properties of 18 x 5.5 and 49 x 17 size, type 7 aircraft tires were evaluated. The tires were subjected to pure vertical loads and to combined vertical and lateral loads under both static and rolling conditions. Parameters for the static tests consisted of tire load in the vertical and lateral directions, and parameters for the rolling tests included tire vertical load, yaw angle, and ground speed. Effects of each of these parameters on the measured tire characteristics are discussed and, where possible, compared with previous work. Results indicate that dynamic tire properties under investigation were generally insensitive to speed variations and therefore tend to support the conclusion that many tire dynamic characteristics can be obtained from static and low speed rolling tests. Furthermore, many of the tire mechanical properties are in good agreement with empirical predictions based on earlier research.
Fatigue tests on big structure assemblies of concorde aircraft
NASA Technical Reports Server (NTRS)
Nguyen, V. P.; Perrais, J. P.
1972-01-01
Fatigue tests on structural assemblies of the Concorde supersonic transport aircraft are reported. Two main sections of the aircraft were subjected to pressure, mechanical load, and thermal static tests. The types of fatigue tests conducted and the results obtained are discussed. It was concluded that on a supersonic aircraft whose structural weight is a significant part of the weight analysis, many fatigue and static strength development tests should be made and fatigue and thermal tests of the structures are absolutely necessary.
Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force.
Alizadeh Ebadi, Leyla; Çetin, Ebru
2018-03-13
The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles' isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.
Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force
Çetin, Ebru
2018-01-01
The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.
Nelson-Wong, Erika; Appell, Ryan; McKay, Mike; Nawaz, Hannah; Roth, Joanna; Sigler, Robert; Third, Jacqueline; Walker, Mark
2012-04-01
Falls are a leading contributor to disability in older adults. Increased muscle co-contraction in the lower extremities during static and dynamic balance challenges has been associated with aging, and also with a history of falling. Co-contraction during static balance challenges has not been previously linked with performance on clinical tests designed to ascertain fall risk. The purpose of this study was to investigate the relationship between co-contraction about the ankle during static balance challenges with fall risk on a commonly used dynamic balance assessment, the Four Square Step Test (FSST). Twenty-three volunteers (mean age 73 years) performed a series of five static balance challenges (Romberg eyes open/closed, Sharpened Romberg eyes open/closed, and Single Leg Standing) with continuous electromyography (EMG) of bilateral tibialis anterior and gastrocnemius muscles. Participants then completed the FSST and were categorized as 'at-risk' or 'not-at-risk' to fall based on a cutoff time of 12 s. Co-contraction was quantified with co-contraction index (CCI). CCI during narrow base conditions was positively correlated with time to complete FSST. High CCIs during all static balance challenges with the exception of Romberg stance with eyes closed were predictive of being at-risk to fall based on FSST time, odds ratio 19.3. The authors conclude that co-contraction about the ankle during static balance challenges can be predictive of performance on a dynamic balance test.
Efficient calculation of many-body induced electrostatics in molecular systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, Keith, E-mail: kmclaugh@mail.usf.edu; Cioce, Christian R.; Pham, Tony
Potential energy functions including many-body polarization are in widespread use in simulations of aqueous and biological systems, metal-organics, molecular clusters, and other systems where electronically induced redistribution of charge among local atomic sites is of importance. The polarization interactions, treated here via the methods of Thole and Applequist, while long-ranged, can be computed for moderate-sized periodic systems with extremely high accuracy by extending Ewald summation to the induced fields as demonstrated by Nymand, Sala, and others. These full Ewald polarization calculations, however, are expensive and often limited to very small systems, particularly in Monte Carlo simulations, which may require energymore » evaluation over several hundred-thousand configurations. For such situations, it shall be shown that sufficiently accurate computation of the polarization energy can be produced in a fraction of the central processing unit (CPU) time by neglecting the long-range extension to the induced fields while applying the long-range treatments of Ewald or Wolf to the static fields; these methods, denoted Ewald E-Static and Wolf E-Static (WES), respectively, provide an effective means to obtain polarization energies for intermediate and large systems including those with several thousand polarizable sites in a fraction of the CPU time. Furthermore, we shall demonstrate a means to optimize the damping for WES calculations via extrapolation from smaller trial systems.« less
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Jeracki, Robert J.
1988-01-01
An experimental investigation was conducted in the NASA Lewis 10- by 10-Foot Supersonic Wind Tunnel during subsonic tunnel operation in the aerodynamic cycle to determine the test section flow characteristics near the Advanced Turboprop Project propeller model plane of rotation. The investigation used an eight-probe pitot static flow survey rake to measure total and static pressures at two locations in the wind tunnel: the test section and the bellmouth section (upstream of the two-dimensional flexible-wall nozzle). A cone angularity probe was used to measure any flow angularity in the test section. The evaluation was conducted at tunnel Mach numbers from 0.10 to 0.35 and at three operating altitudes from 2,000 to 50,000 ft. which correspond to tunnel reference total pressures from 1960 to 245 psfa, respectively. The results of this experimental investigation indicate a total-pressure loss area in the center of the test section and a static-pressure gradient from the test section centerline to the wall. These total and static pressure differences were observed at all tunnel operating altitudes and diminished at lower tunnel velocities. The total-pressure loss area was also found in the bellmouth section, which indicates that the loss mechanism is not the tunnel flexible-wall nozzle. The flow in the test section is essentially axial since very small flow angles were measured. The results also indicate that a correction to the tunnel total and static pressures must be applied in order to determine accurate freestream conditions at the test section centerline.
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.
1995-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.
NASA Astrophysics Data System (ADS)
Wang, Jian; Zhu, Wei; Xiao, Hong; Zhang, Liang-liang; Qin, Hao; Yu, Yue
2018-02-01
Grain refinement is a critical approach to improve the strength of materials without damaging the toughness. The grains of deformation-induced ferrite are considerably smaller than those of proeutectoid ferrite. Grain refinement is crucial to the application of deformation-induced ferrite. The composition of ferrite and bainite or martensite is important in controlling the performance of X70HD pipeline steel, and cooling significantly influences the control of their ratio and grain size. By analyzing the static and dynamic phase-transition points using Gleeble-3800 thermal simulator, thermal simulations were performed through two-stage deformations in the austenite zone. Ferrite transformation rules were studied with thermal simulation tests under different deformation and cooling parameters based on the actual production of cumulative deformation. The influence of deformation parameters on the microstructure transformation was analyzed. Numerous fine-grain deformation-induced ferrites were obtained by regulating various parameters, including deformation temperature, strain rate, cooling rate, final cooling temperature and other parameters. Results of metallographic observation and microtensile testing revealed that the selection of appropriate parameters can refine the grains and improve the performance of the X70HD pipeline steel.
DOT National Transportation Integrated Search
1980-05-01
The report documents the results of the static testing of a NAVSTAR Global Positioning System (GPS) single channel sequential receiver (Magnavox Z-Set). These tests were performed at the Coast Guard District 11 office in Long Beach, CA from May to Se...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
19. HISTORIC VIEW OF MAX VALIER IN AN EARLY STATIC ...
19. HISTORIC VIEW OF MAX VALIER IN AN EARLY STATIC TEST. THE ROCKET IS SITTING ON A SCALE. VALIER IS MEASURING THRUST BY ADDING WEIGHT LIKE THE ONE IN HIS RIGHT HAND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1967-10-01
Workmen at the Marshall Space Flight Center's (MSFC's) dock on the Ternessee River unload S-IB-211, the flight version of the Saturn IB launch vehicle's first stage, from the NASA barge Palaemon. Between December 1967 and April 1968, the stage would undergo seven static test firings in MSFC's S-IB static test stand.
1967-10-01
Workmen at the Marshall Space Flight Center's (MSFC's) dock on the Ternessee River unload S-IB-211, the flight version of the Saturn IB launch vehicle's first stage, from the NASA barge Palaemon. Between December 1967 and April 1968, the stage would undergo seven static test firings in Marshall's S-IB static test stand.
NASA Astrophysics Data System (ADS)
Wang, Rui; Tomikawa, Yoshihiro; Nakamura, Takuji; Huang, Kaiming; Zhang, Shaodong; Zhang, Yehui; Yang, Huigen; Hu, Hongqiao
2016-10-01
The mechanism to explain the variations of tropopause and tropopause inversion layer (TIL) in the Arctic region during a sudden stratospheric warming (SSW) in 2009 was studied with the Modern-Era Retrospective analysis for Research and Applications reanalysis data and GPS/Constellation Observing system for Meteorology, Ionosphere, and Climate (COSMIC) temperature data. During the prominent SSW in 2009, the cyclonic system changed to the anticyclonic system due to the planetary wave with wave number 2 (wave2). The GPS/COSMIC temperature data showed that during the SSW in 2009, the tropopause height in the Arctic decreased accompanied with the tropopause temperature increase and the TIL enhancement. The variations of the tropopause and TIL were larger in higher latitudes. A static stability analysis showed that the variations of the tropopause and TIL were associated with the variations of the residual circulation and the static stability due to the SSW. Larger static stability appeared in the upper stratosphere and moved downward to the narrow region just above the tropopause. The descent of strong downward flow was faster in higher latitudes. The static stability tendency analysis showed that the strong downward residual flow induced the static stability change in the stratosphere and around the tropopause. The strong downwelling in the stratosphere was mainly induced by wave2, which led to the tropopause height and temperature changes due to the adiabatic heating. Around the tropopause, a pair of downwelling above the tropopause and upwelling below the tropopause due to wave2 contributed to the enhancement of static stability in the TIL immediately after the SSW.
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
Measurement of the static and dynamic coefficients of a cross-type parachute in subsonic flow
NASA Technical Reports Server (NTRS)
Shpund, Zalman; Levin, Daniel
1991-01-01
An experimental parametric investigation of the aerodynamic qualities of cross-type parachutes was performed in a subsonic wind tunnel, using a new experimental technique. This investigation included the measurement of the static and dynamic aerodynamic coefficients, utilizing the measuring apparatus modified specifically for this type of testing. It is shown that the static aerodynamic coefficients of several configurations are in good agreement with available data, and assisted in validating the experimental technique employed. Two configuration parameters were varied in the static tests, the cord length and the canopy aspect ratio, with both parameters having a similar effect on the drag measurement, i.e., any increase in either of them increased the effective blocking area, and therefore the axial force.
Oriented Scintillation Spectrometer Experiment (OSSE). Revision A. Volume 1
1988-05-19
SYSTEM-LEVEL ENVIRONMENTAL TESTS ................... 108 3.5.1 OPERATION REPORT, PROOF MODEL STRUCTURE TESTS.. .108 3.5.1.1 PROOF MODEL MODAL SURVEY...81 3-21 ALIGNMENT ERROR BUDGET, FOV, A4 ................ 82 3-22 ALIGNMENT ERROR BUDGET, ROTATION AXIS, A4 ...... 83 3-23 OSSE PROOF MODEL MODAL SURVEY...PROOF MODEL MODAL SURVEY .................. 112 3-27-1 OSSE PROOF MODEL STATIC LOAD TEST ............. 116 3-27-2 OSSE PROOF MODEL STATIC LOAD TEST
1964-10-01
Test firing of the Saturn I S-I Stage (S-1-10) at the Marshall Space Flight Center. This test stand was originally constructed in 1951 and sometimes called the Redstone or T tower. In l961, the test stand was modified to permit static firing of the S-I/S-IB stages, which produced a total thrust of 1,600,000 pounds. The name of the stand was then changed to the S-IB Static Test Stand.
NASA Technical Reports Server (NTRS)
Jaeck, C. L.
1976-01-01
A test was conducted in the Boeing Large Anechoic Chamber to determine static jet noise source locations of six baseline and suppressor nozzle models, and establish a technique for extrapolating near field data into the far field. The test covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K.
1965-04-01
S-IB-1, the first flight version of the Saturn IB launch vehicle's first stage (S-IB stage), undergoes a full-duration static firing in Saturn IB static test stand at the Marshall Space Flight Center (MSFC) on April 13, 1965. Developed by the MSFC and built by the Chrysler Corporation at the Michoud Assembly Facility (MAF) in New Orleans, Louisiana, the 90,000-pound booster utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds. Between April 1965 and July 1968, MSFC performed thirty-two static tests on twelve different S-IB stages.
NASA Technical Reports Server (NTRS)
1973-01-01
The results of a study to define criteria and techniques of design, analysis and test which permit the use of a single major structural test article for performing dynamic, fatigue, and static testing are presented. The criteria developed is applicable to both space vehicles and aircraft structures operating in the subsonic or supersonic regime. The feasibility of such an approach was demonstrated by defining test interactions, compatibilities and incompatibilities between the three different types of tests. The results of the study indicate that the single test article concept is feasible with a testing sequence of dynamic test followed by a fatigue and static test.
On Restructurable Control System Theory
NASA Technical Reports Server (NTRS)
Athans, M.
1983-01-01
The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.
Static Thrust and Power Characteristics of Six Full-Scale Propellers
NASA Technical Reports Server (NTRS)
Hartman, Erwin P; Biermann, David
1940-01-01
Static thrust and power measurements were made of six full-scale propellers. The propellers were mounted in front of a liquid-cooled-engine nacelle and were tested at 15 different blade angles in the range from -7 1/2 degrees to 35 degrees at 0.75r. The test rig was located outdoors and the tests were made under conditions of approximately zero wind velocity.
Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series
NASA Technical Reports Server (NTRS)
Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil
2014-01-01
To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load.In this overview, the 6m HIAD static load test series will be discussed in detail, including the 6m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally initial results and conclusions from the test series.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.
Perception of socket alignment perturbations in amputees with transtibial prostheses.
Boone, David A; Kobayashi, Toshiki; Chou, Teri G; Arabian, Adam K; Coleman, Kim L; Orendurff, Michael S; Zhang, Ming
2012-01-01
A person with amputation's subjective perception is the only tool available to describe fit and comfort to a prosthetist. However, few studies have investigated the effect of alignment on this perception. The aim of this article is to determine whether people with amputation could perceive the alignment perturbations of their prostheses and effectively communicate them. A randomized controlled perturbation of angular (3 and 6 degrees) and translational (5 and 10 mm) alignments in the sagittal (flexion, extension, and anterior and posterior translations) and coronal (abduction, adduction, and medial and lateral translations) planes were induced from an aligned condition in 11 subjects with transtibial prostheses. The perception was evaluated when standing (static) and immediately after walking (dynamic) using software that used a visual analog scale under each alignment condition. In the coronal plane, Friedman test demonstrated general statistical differences in static (p < 0.001) and dynamic (p < 0.001) measures of perceptions with angular perturbations. In the sagittal plane, it also demonstrated general statistical differences in late-stance dynamic measures of perceptions (p < 0.001) with angular perturbations, as well as in early-stance dynamic measures of perceptions (p < 0.05) with translational perturbations. Fisher exact test suggested that people with amputation's perceptions were good indicators for coronal angle malalignments but less reliable when defining other alignment conditions.
Propfan test assessment propfan propulsion system static test report
NASA Technical Reports Server (NTRS)
Orourke, D. M.
1987-01-01
The propfan test assessment (PTA) propulsion system successfully completed over 50 hours of extensive static ground tests, including a 36 hour endurance test. All major systems performed as expected, verifying that the large-scale 2.74 m diameter propfan, engine, gearbox, controls, subsystems, and flight instrumentation will be satisfactory with minor modifications for the upcoming PTA flight tests on the GII aircraft in early 1987. A test envelope was established for static ground operation to maintain propfan blade stresses within limits for propfan rotational speeds up to 105 percent and power levels up to 3880 kW. Transient tests verified stable, predictable response of engine power and propfan speed controls. Installed engine TSFC was better than expected, probably due to the excellent inlet performance coupled with the supercharging effect of the propfan. Near- and far-field noise spectra contained three dominant components, which were dependent on power, tip speed, and direction. The components were propfan blade tones, propfan random noise, and compressor/propfan interaction noise. No significant turbine noise or combustion noise was evident.
NASA Technical Reports Server (NTRS)
Edighoffer, H. H.
1979-01-01
A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.
Dynamic testing in schizophrenia: does training change the construct validity of a test?
Wiedl, Karl H; Schöttke, Henning; Green, Michael F; Nuechterlein, Keith H
2004-01-01
Dynamic testing typically involves specific interventions for a test to assess the extent to which test performance can be modified, beyond level of baseline (static) performance. This study used a dynamic version of the Wisconsin Card Sorting Test (WCST) that is based on cognitive remediation techniques within a test-training-test procedure. From results of previous studies with schizophrenia patients, we concluded that the dynamic and static versions of the WCST should have different construct validity. This hypothesis was tested by examining the patterns of correlations with measures of executive functioning, secondary verbal memory, and verbal intelligence. Results demonstrated a specific construct validity of WCST dynamic (i.e., posttest) scores as an index of problem solving (Tower of Hanoi) and secondary verbal memory and learning (Auditory Verbal Learning Test), whereas the impact of general verbal capacity and selective attention (Verbal IQ, Stroop Test) was reduced. It is concluded that the construct validity of the test changes with dynamic administration and that this difference helps to explain why the dynamic version of the WCST predicts functional outcome better than the static version.
Rac1 mediates laminar shear stress-induced vascular endothelial cell migration
Huang, Xianliang; Shen, Yang; Zhang, Yi; Wei, Lin; Lai, Yi; Wu, Jiang; Liu, Xiaojing; Liu, Xiaoheng
2013-01-01
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases. PMID:24430179
NASA Astrophysics Data System (ADS)
Kwan, Matthew P.
This work demonstrates that inserting nanomolecular layers (NMLs) can profoundly change and/or lead to novel electronic and mechanical properties of metal-ceramic interfaces. The first set of results demonstrate that organophosphonate NMLs up to 1.8 nm thick can alter metal work functions by +/- 0.6 eV. This work function change is a strong function of the NML terminal groups (methyl, mercaptan, carboxylic acid, or phosphonic acid), morphology (up right, lying down, or mixed orientation), and the nature of the bonding (covalent, polar, or Van der Waals) between NML and the adjacent layers. Additionally, while NML-ceramic bond type and strength can influence and counteract the effect of NML morphology, the metal-NML bond appears to be independent of the morphology of the NML underlayer. The second set of results demonstrate that inserting an organosilane NML at a metal-ceramic interface can lead to multifold fracture toughening under both static (stress corrosion) and cyclic loads (fatigue) tested in four-point bend. Nanolayer-induced interface strengthening during static loading activates metal plasticity above the metal yield strength, leading to two-fold fracture toughening. Metal plasticity-induced toughening increases as temperature is increased up to 85 °C due to decreasing yield stress. In the fatigue fracture tests I report for the first time a loading-frequency-dependent tripling in fracture toughening in the 75-300 Hz range upon inserting a mercapto-silane NML at the weakest interface of a ceramic-polymer-metal-ceramic stack. This unusual behavior arises from the NML strengthened interface enabling load transfer to- and plasticity in the polymer layer, while the fatigue toughening magnitude and frequency range are determined by polymer rheology.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Johnston, William M., Jr.
2014-01-01
Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.
ERIC Educational Resources Information Center
Ladera, Celso L.; Donoso, Guillermo
2011-01-01
A short conducting pipe that hangs from a weak spring is forced to oscillate by the magnetic field of a surrounding coaxial coil that has been excited by a low-frequency current source in the presence of an additional static magnetic field. Induced oscillating currents appear in the pipe. The pipe motion becomes damped by the dragging forces…
NASA Technical Reports Server (NTRS)
Mclaughlin, M. D.
1977-01-01
Classical drag equations were used to calculate total and induced drag and ratios of stabilizer lift to wing lift for a variety of conventional and canard configurations. The Flight efficiencies of such configurations that are trimmed in pitch and have various values of static margin are evaluated. Classical calculation methods are compared with more modern lifting surface theory.
NASA Technical Reports Server (NTRS)
Tobin, Brian W.; Leeper-Woodford, Sandra K.; Hashemi, Brian B.; Smith, Scott M.; Sams, Clarence F.; Paloski, W. H. (Technical Monitor)
2000-01-01
The present studies were designed to determine effects of microgravity upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF - alpha) activity and indices of insulin and fuel homeostasis of pancreatic islets of Langerhans. Islets (1726+/-117,150 u IEU) from Wistar Furth rats were treated as: 1) HARV (High Aspect Ratio Vessel cell culture) , 2) HARV plus LPS 3) static culture, 4) static culture plus LPS TNF-alpha (L929 cytotoxicity assay) was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (p<0.05). A decrease in insulin concentration was demonstrated in the LPS stimulated HARV culture (p<0.05). We observed a greater glucose concentration and increased disappearance of arginine in islets cultured in HARVs. While nitrogenous compound analysis indicated a ubiquitous reliance upon glutamine in all experimental groups, arginine was converted to ornithine at a two-fold greater rate in the islets cultured in the HARV microgravity paradigm (p<0.05). These studies demonstrate alterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF activity in the HARV paradigm. These alterations in fuel homeostasis may be promulgated by gravity averaged cell culture methods or by three dimensional cell assembly.
NASA Technical Reports Server (NTRS)
Tobin, Brian W.; Leeper-Woodford, Sandra K.; Hashemi, Brian B.; Smith, Scott M.; Sams, Clarence F.
2001-01-01
The present studies were designed to determine effects of a microgravity model system upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF-alpha) activity and indices of insulin and fuel homeostasis of pancreatic islets of Langerhans. Islets (1726+/-1 17,150 u IEU) from Wistar Furth rats were treated as: 1) HARV (High Aspect Ratio Vessel cell culture) , 2) HARV plus LPS, 3) static culture, 4) static culture plus LPS. TNF-alpha (L929 cytotoxicity assay) was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (p<0.05). A decrease in insulin concentration was demonstrated in the LPS stimulated HARV culture (p<0.05). We observed a greater glucose concentration and increased disappearance of arginine in islets cultured in HARVs. While nitrogenous compound analysis indicated a ubiquitous reliance upon glutamine in all experimental groups, arginine was converted to ornithine at a two-fold greater rate in the islets cultured in the HARV microgravity model system (p<0.05). These studies demonstrate alterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF activity in the HARV. These alterations in fuel homeostasis may be promulgated by gravity averaged cell culture methods or by three dimensional cell assembly.
Repelling, binding, and oscillating of two-particle discrete-time quantum walks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qinghao; Li, Zhi-Jian, E-mail: zjli@sxu.edu.cn
In this paper, we investigate the effects of particle–particle interaction and static force on the propagation of probability distribution in two-particle discrete-time quantum walk, where the interaction and static force are expressed as a collision phase and a linear position-dependent phase, respectively. It is found that the interaction can lead to boson repelling and fermion binding. The static force also induces Bloch oscillation and results in a continuous transition from boson bunching to fermion anti-bunching. The interplays of particle–particle interaction, quantum interference, and Bloch oscillation provide a versatile framework to study and simulate many-particle physics via quantum walks.
Flight-test data on the static fore-and-aft stability of various German airplanes
NASA Technical Reports Server (NTRS)
Hubner, Walter
1933-01-01
The static longitudinal stability of an airplane with locked elevator is usually determined by analysis and model tests. The present report proposes to supply the results of such measurements. The method consisted of recording the dynamic pressure versus elevator displacement at different center-of-gravity positions in unaccelerated flight.
40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)
Code of Federal Regulations, 2014 CFR
2014-07-01
... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)
Code of Federal Regulations, 2013 CFR
2013-07-01
... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)
Code of Federal Regulations, 2012 CFR
2012-07-01
... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
NASA Technical Reports Server (NTRS)
Pennock, A. P.; Swift, G.; Marbert, J. A.
1975-01-01
Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.
Structural integrity of a confinement vessel for testing nuclear fuels for space propulsion
NASA Astrophysics Data System (ADS)
Bergmann, V. L.
Nuclear propulsion systems for rockets could significantly reduce the travel time to distant destinations in space. However, long before such a concept can become reality, a significant effort must be invested in analysis and ground testing to guide the development of nuclear fuels. Any testing in support of development of nuclear fuels for space propulsion must be safely contained to prevent the release of radioactive materials. This paper describes analyses performed to assess the structural integrity of a test confinement vessel. The confinement structure, a stainless steel pressure vessel with bolted flanges, was designed for operating static pressures in accordance with the ASME Boiler and Pressure Vessel Code. In addition to the static operating pressures, the confinement barrier must withstand static overpressures from off-normal conditions without releasing radioactive material. Results from axisymmetric finite element analyses are used to evaluate the response of the confinement structure under design and accident conditions. For the static design conditions, the stresses computed from the ASME code are compared with the stresses computed by the finite element method.
Lopes, Hélio P; Britto, Izabelle M O; Elias, Carlos N; Machado de Oliveira, Julio C; Neves, Mônica A S; Moreira, Edson J L; Siqueira, José F
2010-09-01
This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (P<.001). Instrument separation occurred at the point of maximum flexure within the artificial canals, i.e., the midpoint of the curved canal segment. SEM analysis revealed that fractured surfaces exhibited characteristics of the ductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Jorrakate, Chaiyong; Kongsuk, Jutaluk; Pongduang, Chiraprapa; Sadsee, Boontiwa; Chanthorn, Phatchari
2015-01-01
[Purpose] The aim of the present study was to investigate the effect of yoga training on static and dynamic standing balance in obese individuals with poor standing balance. [Subjects and Methods] Sixteen obese volunteers were randomly assigned into yoga and control groups. The yoga training program was performed for 45 minutes per day, 3 times per week, for 4 weeks. Static and dynamic balance were assessed in volunteers with one leg standing and functional reach tests. Outcome measures were tested before training and after a single week of training. Two-way repeated measure analysis of variance with Tukey’s honestly significant difference post hoc statistics was used to analyze the data. [Results] Obese individuals showed significantly increased static standing balance in the yoga training group, but there was no significant improvement of static or dynamic standing balance in the control group after 4 weeks. In the yoga group, significant increases in static standing balance was found after the 2nd, 3rd, and 4th weeks. Compared with the control group, static standing balance in the yoga group was significantly different after the 2nd week, and dynamic standing balance was significantly different after the 4th week. [Conclusion] Yoga training would be beneficial for improving standing balance in obese individuals with poor standing balance. PMID:25642038
View looking north west showing the boom, top of the ...
View looking north west showing the boom, top of the center mast and boom angle reeving of the 175-ton derrick. Note in the background of the view, just above the center mast is the F-1 Static-Test Stand used for test firing the Saturn V engines and subsequent program's engine testing. Also in the background center is the Redstone Static Test Stand (center right) and it's cold calibration tower (center left). - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Abramowitch, Steven D.; Zhang, Xiaoyan; Curran, Molly; Kilger, Robert
2010-01-01
Background Over fifty-percent of anterior cruciate ligament reconstructions are performed using semitendinosus and gracilis tendon autografts. Despite their increased use, there remains little quantitative data on their mechanical behavior. Therefore, the objective of this study was to investigate the quasi-static mechanical and nonlinear viscoelastic properties of human semitendinosus and gracilis tendons, as well as the variation of these properties along their length. Methods Specimens were subjected to a series of uniaxial tensile tests: one-hour static stress-relaxation test, 30-cycle cyclic stress-relaxation test and load to failure test. To describe the nonlinear viscoelastic behavior, the quasi-linear viscoelastic theory was utilized to model data from the static stress relaxation experiment. Findings The constants describing the viscoelastic behavior were similar between the proximal and distal halves of the gracilis tendon. The proximal half of the semitendinosus tendon, however, had a greater viscous response than its distal half, which was also significantly higher than the proximal gracilis tendon. In terms of the quasi-static mechanical properties, the properties were similar between the proximal and distal halves of the semitendinosus tendon. However, the distal gracilis tendon showed a significantly higher tangent modulus and ultimate stress compared to its proximal half, which was also significantly higher than the distal semitendinosus tendon. Interpretation The results of this study demonstrate differences between the semitendinosus and gracilis tendons in terms of their quasi-static mechanical and nonlinear viscoelastic properties. These results are important for establishing surgical preconditioning protocols and graft selection. PMID:20092917
NASA Astrophysics Data System (ADS)
Chitnis, Parag V.; Lee, Paul; Mamou, Jonathan; Allen, John S.; Böhmer, Marcel; Ketterling, Jeffrey A.
2011-04-01
Polymer-shelled micro-bubbles are employed as ultrasound contrast agents (UCAs) and vesicles for targeted drug delivery. UCA-based delivery of the therapeutic payload relies on ultrasound-induced shell rupture. The fragility of two polymer-shelled UCAs manufactured by Point Biomedical or Philips Research was investigated by characterizing their response to static overpressure. The nominal diameters of Point and Philips UCAs were 3 μm and 2 μm, respectively. The UCAs were subjected to static overpressure in a glycerol-filled test chamber with a microscope-reticule lid. UCAs were reconstituted in 0.1 mL of water and added over the glycerol surface in contact with the reticule. A video-microscope imaged UCAs as glycerol was injected (5 mL/h) to vary the pressure from 2 to 180 kPa over 1 h. Neither UCA population responded to overpressure until the rupture threshold was exceeded, which resulted in abrupt destruction. The rupture data for both UCAs indicated three subclasses that exhibited different rupture behavior, although their mean diameters were not statistically different. The rupture pressures provided a measure of UCA fragility; the Philips UCAs were more resilient than Point UCAs. Results were compared to theoretical models of spherical shells under compression. Observed variations in rupture pressures are attributed to shell imperfections. These results may provide means to optimize polymeric UCAs for drug delivery and elucidate associated mechanisms.
Earthquake-induced static stress change on magma pathway in promoting the 2012 Copahue eruption
NASA Astrophysics Data System (ADS)
Bonali, F. L.
2013-11-01
It was studied how tectonic earthquake-induced static stress changes could have contributed to favouring the 22 December 2012 major eruption at Copahue volcano, Chile. Numerical modelling indicates that the vertical N60°E-striking magma pathway below Copahue was affected by a normal stress reduction induced by the Mw 8.8 Chile earthquake of 27 February 2010. A sensitivity analysis suggests that N-, NE- and E-striking vertical planes are affected by normal stress decrease (maximum at the NE-striking plane), and that also a possible inclined N60°E plane is affected by this reduction. Copahue did not have any magmatic event since 2000. Seismic signals of awakening started in April 2012 and the first volcanic event occurred on July 2012. Thus, it is here suggested a possible earthquake-induced feedback effect on the crust below the volcanic arc up to at least 3 years after a large subduction earthquake, favouring new eruptions.
Interaction mechanisms and biological effects of static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals,more » there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.« less
Emotional facial activation induced by unconsciously perceived dynamic facial expressions.
Kaiser, Jakob; Davey, Graham C L; Parkhouse, Thomas; Meeres, Jennifer; Scott, Ryan B
2016-12-01
Do facial expressions of emotion influence us when not consciously perceived? Methods to investigate this question have typically relied on brief presentation of static images. In contrast, real facial expressions are dynamic and unfold over several seconds. Recent studies demonstrate that gaze contingent crowding (GCC) can block awareness of dynamic expressions while still inducing behavioural priming effects. The current experiment tested for the first time whether dynamic facial expressions presented using this method can induce unconscious facial activation. Videos of dynamic happy and angry expressions were presented outside participants' conscious awareness while EMG measurements captured activation of the zygomaticus major (active when smiling) and the corrugator supercilii (active when frowning). Forced-choice classification of expressions confirmed they were not consciously perceived, while EMG revealed significant differential activation of facial muscles consistent with the expressions presented. This successful demonstration opens new avenues for research examining the unconscious emotional influences of facial expressions. Copyright © 2016 Elsevier B.V. All rights reserved.
AMD3100 ameliorates cigarette smoke-induced emphysema-like manifestations in mice.
Barwinska, Daria; Oueini, Houssam; Poirier, Christophe; Albrecht, Marjorie E; Bogatcheva, Natalia V; Justice, Matthew J; Saliba, Jacob; Schweitzer, Kelly S; Broxmeyer, Hal E; March, Keith L; Petrache, Irina
2018-05-10
We have shown that cigarette smoke (CS)-induced pulmonary emphysema-like manifestations are preceded by marked suppression of the number and function of bone marrow hematopoietic progenitor cells (HPC). To investigate if a limited availability of HPC may contribute to CS-induced lung injury, we used an FDA-approved antagonist of the interactions of SDF-1 with its receptor CXCR4 to promote intermittent HPC mobilization and tested its ability to limit emphysema-like injury following chronic CS. We administered AMD3100 (5mg/kg) to mice during a chronic CS exposure protocol of up to 24 weeks. AMD3100 treatment did not affect either lung SDF-1 levels, which were reduced by CS, or lung inflammatory cell counts. However, AMD3100 markedly improved CS-induced bone marrow HPC suppression and significantly ameliorated emphysema-like endpoints such as alveolar airspace size, lung volumes, and lung static compliance. These results suggest that antagonism of SDF-1 binding to CXCR4 is associated with protection of both bone marrow and lungs during chronic CS exposure, thus encouraging future studies of potential therapeutic benefit of AMD3100 in emphysema.
Static and dynamic strain energy release rates in toughened thermosetting composite laminates
NASA Technical Reports Server (NTRS)
Cairns, Douglas S.
1992-01-01
In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of examining rate-dependent behavior for determining the longevity of structures manufactured from composite materials.
A comparison of two reciprocating instruments using bending stress and cyclic fatigue tests.
Scelza, Pantaleo; Harry, Davidowicz; Silva, Licinio Esmeraldo da; Barbosa, Igor Bastos; Scelza, Miriam Zaccaro
2015-01-01
The aim of this study was to comparatively evaluate the bending resistance at 45º, the static and dynamic cyclic fatigue life, and the fracture type of the WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) 25-08 and Reciproc (VDW, Munich, Germany) 25-08 instruments. A total of 60 nickel-titanium (NiTi) instruments (30 Reciproc and 30 WaveOne) from three different lots, each of which was 25 mm in length, were tested. The bending resistance was evaluated through the results of a cantilever-bending test conducted using a universal testing machine. Static and dynamic cyclic fatigue testing was conducted using a custom-made device. For the static and dynamic tests, a cast Ni-Cr-Mo-Ti alloy metal block with an artificial canal measuring 1.77 mm in diameter and 20.00 mm in total length was used. A scanning electron microscope was used to determine the type of fracture. Statistical analyses were performed on the results. The WaveOne instrument was less flexible than the Reciproc (p < 0.05). The Reciproc instrument showed better resistance in the static and dynamic cyclic fatigue tests (p < 0.05). The transverse cross-section and geometry of the instruments were important factors in their resistance to bending and cyclic fracture. Both of the instruments showed ductile-type fracture characteristics. It can be concluded that the Reciproc 25-08 instrument was more resistant to static and dynamic cyclic fatigue than the WaveOne 25-08 instrument, while the WaveOne 25-08 instrument was less flexible. Bending and resistance to cyclic fracture were influenced by the instruments' geometries and transverse cross-sections. Both of the instruments showed ductile-type fracture characteristics.
Static and dynamic balance of children and adolescents with sensorineural hearing loss.
Melo, Renato de Souza; Marinho, Sônia Elvira Dos Santos; Freire, Maryelly Evelly Araújo; Souza, Robson Arruda; Damasceno, Hélio Anderson Melo; Raposo, Maria Cristina Falcão
2017-01-01
To assess the static and dynamic balance performance of students with normal hearing and with sensorineural hearing loss. A cross-sectional study assessing 96 students, 48 with normal hearing and 48 with sensorineural hearing loss of both sexes, aged 7 and 18 years. To evaluate static balance, Romberg, Romberg-Barré and Fournier tests were used; and for the dynamic balance, we applied the Unterberger test. Hearing loss students showed more changes in static and dynamic balance as compared to normal hearing, in all tests used (p<0.001). The same difference was found when subjects were grouped by sex. For females, Romberg, Romberg-Barré, Fournier and Unterberger test p values were, respectively, p=0.004, p<0.001, p<0.001 and p=0.023; for males, the p values were p=0.009, p<0.001, p<0.001 and p=0.002, respectively. The same difference was observed when students were classified by age. For 7 to 10 years old students, the p values for Romberg, Romberg-Barré and Fournier tests were, respectively, p=0.007, p<0.001 and p=0.001; for those aged 11 and 14 years, the p values for Romberg, Romberg-Barré, Fournier and Unterberger tests were p=0.002, p<0.001, p<0.001 and p=0.015, respectively; and for those aged 15 and 18 years, the p values for Romberg-Barré, Fournier and Unterberger tests were, respectively, p=0.037, p<0.001 and p=0.037. Hearing-loss students showed more changes in static and dynamic balance comparing to normal hearing of same sex and age groups.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-10-18
To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-01-01
AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249
ERIC Educational Resources Information Center
SUTTON, MACK C.
THIS SELF-INSTRUCTIONAL PROGRAMED TEXT IS FOR INDIVIDUAL STUDENT USE IN STUDYING STATIC CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS AND HAS BEEN TESTED BY STUDENT USE. THE OBJECTIVE OF THE COURSE IS TO HELP THE ELECTRICAL-TECHNICIAN DEVELOP AN UNDERSTANDING OF STATIC CONTROL…
Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process
NASA Astrophysics Data System (ADS)
Bayat, N.; Ebrahimi, G. R.; Momeni, A.; Ezatpour, H. R.
2018-02-01
Single- and two-step hot compression experiments were carried out on 16Cr25Ni6Mo superaustenitic stainless steel in the temperature range from 950 to 1150°C and at a strain rate of 0.1 s-1. In the two-step tests, the first pass was interrupted at a strain of 0.2; after an interpass time of 5, 20, 40, 60, or 80 s, the test was resumed. The progress of dynamic recrystallization at the interruption strain was less than 10%. The static softening in the interpass period increased with increasing deformation temperature and increasing interpass time. The static recrystallization was found to be responsible for fast static softening in the temperature range from 950 to 1050°C. However, the gentle static softening at 1100 and 1150°C was attributed to the combination of static and metadynamic recrystallizations. The correlation between calculated fractional softening and microstructural observations showed that approximately 30% of interpass softening could be attributed to the static recovery. The microstructural observations illustrated the formation of fine recrystallized grains at the grain boundaries at longer interpass time. The Avrami kinetics equation was used to establish a relationship between the fractional softening and the interpass period. The activation energy for static softening was determined as 276 kJ/mol.
Alphabus Mechanical Validation Plan and Test Campaign
NASA Astrophysics Data System (ADS)
Calvisi, G.; Bonnet, D.; Belliol, P.; Lodereau, P.; Redoundo, R.
2012-07-01
A joint team of the two leading European satellite companies (Astrium and Thales Alenia Space) worked with the support of ESA and CNES to define a product line able to efficiently address the upper segment of communications satellites : Alphabus Starting in 2009 and up to 2011 the mechanical validation of the Alphabus platform has been obtained thanks to static tests performed on dedicated static model and to environmental test performed on the first satellite based on Alphabus: Alphasat I-XL. The mechanical validation of the Alphabus platform presented an excellent opportunity to improve the validation and qualification process, with respect to static, sine vibrations, acoustic and L/V shock environment, minimizing recurrent cost of manufacturing, integration and testing. A main driver on mechanical testing is that mechanical acceptance testing at satellite level will be performed with empty tanks due to technical constraints (limitation of existing vibration devices) and programmatic advantages (test risk reduction, test schedule minimization). In this paper the impacts that such testing logic have on validation plan are briefly recalled and its actual application for Alphasat PFM mechanical test campaign is detailed.
Piezoelectric Bolt Breakers and Bolt Fatigue Testers
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Barengoltz, Jack; Heckman, Vanessa
2008-01-01
A proposed family of devices for inducing fatigue in bolts in order to break the bolts would incorporate piezoelectric actuators into resonant fixtures as in ultrasonic/ sonic drills/corers and similar devices described in numerous prior NASA Tech Briefs articles. These devices were originally intended primarily for use as safer, more-reliable, more-versatile alternatives to explosive bolts heretofore used to fasten spacecraft structures that must subsequently be separated from each other quickly on command during flight. On Earth, these devices could be used for accelerated fatigue testing of bolts. Fatigue theory suggests that a bolt subjected to both a constant-amplitude dynamic (that is, oscillatory) stress and a static tensile stress below the ultimate strength of the bolt material will fail faster than will a bolt subjected to only the dynamic stress. This suggestion would be applied in a device of the proposed type. The device would be designed so that the device and the bolt to be fatigue-tested or broken would be integral parts of an assembly (see figure). The static tension in the tightened bolt would apply not only the clamping force to hold the joined structures (if any) together but also the compression necessary for proper operation of the piezoelectric actuators as parts of a resonant structural assembly. The constant-amplitude dynamic stress would be applied to the bolt by driving the piezoelectric actuators with a sinusoidal voltage at the resonance frequency of longitudinal vibration of the assembly. The amplitude of the excitation would be made large enough so that the vibration would induce fatigue in the bolt within an acceptably short time. In the spacecraft applications or in similar terrestrial structural-separation applications, devices of the proposed type would offer several advantages over explosive bolts: Unlike explosive bolts, the proposed devices would be reusable, could be tested before final use, and would not be subject to catastrophic misfire. In fatigue-testing applications, devices of the proposed type would offer advantages of compactness and low cost, relative to conventional fatigue- testing apparatuses. In both structural- separation and fatigue-testing applications, bolts to be broken or tested could be instrumented with additional ultrasonic transducers for monitoring of pertinent physical properties and of fatigue failure processes.
Investigation of flaw geometry and loading effects on plane strain fracture in metallic structures
NASA Technical Reports Server (NTRS)
Hall, L. R.; Finger, R. W.
1971-01-01
The effects on fracture and flaw growth of weld-induced residual stresses, combined bending and tension stresses, and stress fields adjacent to circular holes in 2219-T87 aluminum and 5AI-2.5Sn(ELI) titanium alloys were evaluated. Static fracture tests were conducted in liquid nitrogen; fatigue tests were performed in room air, liquid nitrogen, and liquid hydrogen. Evaluation of results was based on linear elastic fracture mechanics concepts and was directed to improving existing methods of estimating minimum fracture strength and fatigue lives for pressurized structure in spacecraft and booster systems. Effects of specimen design in plane-strain fracture toughness testing were investigated. Four different specimen types were tested in room air, liquid nitrogen and liquid hydrogen environments using the aluminum and titanium alloys. Interferometry and holograph were used to measure crack-opening displacements in surface-flawed plexiglass test specimens. Comparisons were made between stress intensities calculated using displacement measurements, and approximate analytical solutions.
Wind tunnel test of musi VI bridge
NASA Astrophysics Data System (ADS)
Permata, Robby; Andika, Matza Gusto; Syariefatunnisa, Risdhiawan, Eri; Hermawan, Budi; Noordiana, Indra
2017-11-01
Musi VI Bridge is planned to cross the Musi River in Palembang City, South Sumatera Province, Indonesia. The main span is a steel arch type with 200 m length and side span length is 75 m. Finite element analysis results showed that the bridge has frequency ratio for torsional and heaving mode (torsional frequency/heaving frequency)=1.14. This close to unity value rises concern about aerodynamic behaviour and stability of the bridge deck under wind loading. Sectional static and free vibration wind tunnel test were performed to clarify this phenomena in B2TA3 facility in Serpong, Indonesia. The test followed the draft of Guide of Wind Tunnel Test for Bridges developed by Indonesian Ministry of Public Works. Results from wind tunnel testing show that the bridge is safe from flutter instability and no coupled motion vibration observed. Therefore, low value of frequency ratio has no effect to aerodynamic behaviour of the bridge deck. Vortex-induced vibration in heaving mode occurred in relatively low wind velocity with permissible maximum amplitude value.
NASA Technical Reports Server (NTRS)
Strout, F. G.
1978-01-01
A JT8D-17R engine with inverted primary and fan flows was tested under static conditions as well as in the NASA Ames 40 by 80 Foot Wind Tunnel to determine static and flight noise characteristics, and flow profile of a large scale engine. Test and analysis techniques developed by a previous model and JT8D engine test program were used to determine the in-flight noise. The engine with inverted flow was tested with a conical nozzle and with a plug nozzle, 20 lobe nozzle, and an acoustic shield. Wind tunnel results show that forward velocity causes significant reduction in peak PNL suppression relative to uninverted flow. The loss of EPNL suppression is relatively modest. The in-flight peak PNL suppression of the inverter with conical nozzle was 2.5 PNdb relative to a static value of 5.5 PNdb. The corresponding EPNL suppression was 4.0 EPNdb for flight and 5.0 EPNdb for static operation. The highest in-flight EPNL suppression was 7.5 EPNdb obtained by the inverter with 20 lobe nozzle and acoustic shield. When compared with the JT8D engine with internal mixer, the inverted flow configuration provides more EPNL suppression under both static and flight conditions.
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-01-01
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model. PMID:28753912
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-07-19
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model.
Quasi-Static Calibration Method of a High-g Accelerometer
Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng
2017-01-01
To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743
NASA Technical Reports Server (NTRS)
Middleton, Troy F.; Balla, Robert Jeffrey; Baurle, Robert A.; Wilson, Lloyd G.
2011-01-01
A scramjet isolator model test apparatus is being assembled in the Isolator Dynamics Research Lab (IDRL) at the NASA Langley Research Center in Hampton, Virginia. The test apparatus is designed to support multiple measurement techniques for investigating the flow field in a scramjet isolator model. The test section is 1-inch high by 2-inch wide by 24-inch long and simulates a scramjet isolator with an aspect ratio of two. Unheated, dry air at a constant stagnation pressure and temperature is delivered to the isolator test section through a Mach 2.5 planar nozzle. The isolator test section is mechanically back-pressured to contain the resulting shock train within the 24-inch isolator length and supports temperature, static pressure, and high frequency pressure measurements at the wall. Additionally, nonintrusive methods including laser-induced thermal acoustics (LITA), spontaneous Raman scattering, particle image velocimetry, and schlieren imaging are being incorporated to measure off-wall fluid dynamic, thermodynamic, and transport properties of the flow field. Interchangeable glass and metallic sidewalls and optical access appendages permit making multiple measurements simultaneously. The measurements will be used to calibrate computational fluid dynamics turbulence models and characterize the back-pressured flow of a scramjet isolator. This paper describes the test apparatus, including the optical access appendages; the physics of the LITA method; and estimates of LITA measurement uncertainty for measurements of the speed of sound and temperature.
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Capone, Francis J.
1989-01-01
An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.
Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Reubush, David E.
1987-01-01
A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1990-01-01
Wind tunnel investigations were conducted on a generic cruciform canard-controlled missile configuration. The model featured fixed or free-rolling tail-fin afterbodies to provide an expanded aerodynamic data base with particular emphasis on alleviating large induced rolling moments and/or for providing canard roll control throughout the entire test angle-of-attack range. The tests were conducted in the NASA Langley Unitary Plan Wind Tunnel at Mach numbers from 2.50 to 3.50 at a constant Reynolds number per foot of 2.00 x 10 to the 6th. Selected test results are presented to show the effects of a fixed or free-rolling tail-fin afterbody on the static longitudinal and lateral-directional aerodynamic characteristics of a canard-controlled missile with pitch, yaw, and roll control at model roll angles of 0 deg and 45 deg.
A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.
1979-01-01
The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... persons regarding the FAA's intent to prepare an EIS that will evaluate the potential environmental... launches per year (12 launches per vertical launch facility), as well as up to 24 static fire engine tests or wet dress rehearsals per year (12 static fire engine tests or wet dress rehearsals per vertical...
ERIC Educational Resources Information Center
Nishimura, Trisha Sugita; Busse, Randy T.
2015-01-01
General and special education teachers (N = 125) completed the Scale of Teachers' Attitudes towards Inclusive Classrooms (STATIC). The internal consistency of the instrument was strong with an alpha of 0.89. The measure demonstrated excellent test-retest reliability (r = 0.99) and a dependent t-test was non-significant, indicating mean group…
1985-07-01
mg/l)* Scud (Gammarus fasciatus) 1100 mg/l (840-1300 mg/l)* Algae - FC-203 concentrations mg/I did not prevent the growth of Chlorella ...gairdneri) 1800 mg/l Static Test Marine Organisms 96-Hr. LC 5 0 Mummichog (Fundulus heteroclitus) 1820 mg/l Static Test Grass shrimp (Palaemonetes vulgaris
NASA Astrophysics Data System (ADS)
Nihei, Tatsuya; Nishioka, Hidetoshi; Kawamura, Chikara; Nishimura, Masahiro; Edamatsu, Masayuki; Koda, Masayuki
In order to introduce the performance based design of pile foundation, vertical stiffness of pile is one of the important design factors. Although it had been es timated the vertical stiffness of pile had the displacement-level dependency, it had been not clarified. We compared the vertical stiffness of pile measured by two loading conditions at pile foundation of the railway viaduct. Firstly, we measured the vertical stiffness at static loading test under construction of the viaduct. Secondly, we measured the vertical stiffness at the time of train passing. So, we recognized that the extrapolation of the displacement level dependency in static loading test could evaluate the vertical stiffness of pile during train passing.
Simulation of Flight-Type Engine Fan Noise in the NASA-Lewis 9X15 Anechoic Wind Tunnel
NASA Technical Reports Server (NTRS)
Heidmann, M. F.; Dietrich, D. A.
1976-01-01
Flight type noise as contrasted to the usual ground static test noise exhibits substantial reductions in the time unsteadiness of tone noise, and in the mean level of tones calculated to be nonpropagating or cut-off. A model fan designed with cuttoff of the fundamental tone was acoustically tested in the anechoic wind tunnel under both static and tunnel flow conditions. The properties that characterize flight type noise were progressively simulated with increasing tunnel flow. The distinctly lobed directivity pattern of propagating rotor/stator interaction modes was also observed. Excess noise attributed to the ingestion of the flow disturbances that prevail near most static test facilities is substantially reduced with tunnel flow.
Soft errors in commercial off-the-shelf static random access memories
NASA Astrophysics Data System (ADS)
Dilillo, L.; Tsiligiannis, G.; Gupta, V.; Bosser, A.; Saigne, F.; Wrobel, F.
2017-01-01
This article reviews state-of-the-art techniques for the evaluation of the effect of radiation on static random access memory (SRAM). We detailed irradiation test techniques and results from irradiation experiments with several types of particles. Two commercial SRAMs, in 90 and 65 nm technology nodes, were considered as case studies. Besides the basic static and dynamic test modes, advanced stimuli for the irradiation tests were introduced, as well as statistical post-processing techniques allowing for deeper analysis of the correlations between bit-flip cross-sections and design/architectural characteristics of the memory device. Further insight is provided on the response of irradiated stacked layer devices and on the use of characterized SRAM devices as particle detectors.
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1977-01-01
Experimental data obtained in an investigation of the mixing of an underexpanded hydrogen jet in a supersonic flow both with and without combustion are presented. Tests were conducted in a Mach 2 test stream with both air and nitrogen as test media. Total temperature of the test stream was 2170 K, and static exit pressure was about one atmosphere. The static pressure at the exit of the hydrogen injector's Mach 2 nozzle was about two atmospheres. Primary measurements included shadowgraphs and pitot pressure surveys of the flow field. Pitot surveys and wall static pressures were measured for the case where the entire flow was shrouded. The results are compared to similar experimental data and theoretical predictions for the matched pressure case.
Static Corrosion Test of Porous Iron Material with Polymer Coating
NASA Astrophysics Data System (ADS)
Markušová-Bučková, Lucia; Oriňaková, Renáta; Oriňak, Andrej; Gorejová, Radka; Kupková, Miriam; Hrubovčáková, Monika; Baláž, Matej; Kováľ, Karol
2016-12-01
At present biodegradable implants received increased attention due to their use in various fields of medicine. This work is dedicated to testing of biodegradable materials which could be used as bone implants. The samples were prepared from the carbonyl iron powder by replication method and surface polymer film was produced through sol-gel process. Corrosion testing was carried out under static conditions during 12 weeks in Hank's solution. The quantity of corrosion products increased with prolonging time of static test as it can be concluded from the results of EDX analysis. The degradation of open cell materials with polyethylene glycol coating layer was faster compared to uncoated Fe sample. Also the mass losses were higher for samples with PEG coating. The polymer coating brought about the desired increase in degradation rate of porous iron material.
NASA Astrophysics Data System (ADS)
Qian, Ye
Characterization of structural rebuilding and shear migration in cementitious materials in consideration of thixotropy Ye Qian From initial contact with water until hardening, and deterioration, cement and concrete materials are subjected to various chemical and physical transformations and environmental impacts. This thesis focuses on the properties during the fresh state, shortly after mixing until the induction period. During this period flow history, including shearing and resting, and hydration both play big roles in determining the rheological properties. The rheological properties of cement and concrete not only affect the casting and pumping process, but also very critical for harden properties and durability properties. Compared with conventional concrete, self-consolidating concrete (SCC) can introduce many advantages in construction application. These include readiness to apply, decreasing labor necessary for casting, and enhancing hardened properties. However, challenges still remain, such as issues relating to formwork pressure and multi-layer casting. Each of these issues is closely related to the property of thixotropy. From the microstructural point of view, thixotropy is described as structural buildup (flocculation) under rest and breakdown (deflocculation) under flow. For SCC, as well as other concrete systems, it is about balancing sufficient flowability during casting and rate of structural buildup after placement for the application at hand. For instance, relating to the issue of SCC formwork, it is ideal for the material to be highly flowable to achieve rapid casting, but then exhibit high rate of structural buildup to reduce formwork pressure. This can reduce the cost of formwork and reduce the risk of formwork failure. It is apparent that accurately quantifying the two aspects of thixotropy, i.e. structuration and destructuration, is key to tackling these challenges in field application. Thus, the overall objective of my doctoral study is to improve quantification of key parameters tied to thixotropy that we have identified to be important: static yield stress, cohesion and degree of shear-induced particle migration. The two main contributions are as follows: Firstly, I quantified structuration of fresh paste and mortar systems by measuring static yield stress. After an extensive review of various rheological methods to probe viscoelastic properties of yield stress fluids, I selected, developed, and implemented a creep recovery protocol. Creep results were supplemented by low-amplitude oscillatory shear results, and supported that the measured static yield stress corresponds to the solid-liquid transition. This improved quantification of static yield stress can help better understand the effect of mix composition on SCC formwork pressure development, as well as static segregation and stability. Since the static yield stress is measured before the structure is broken down, the effects of sand migration are eliminated. This study also analyzed effects of other supplementary cementitous materials such as nanoclay and fly ash. Results showed that nanoclay effectively increases static yield stress and structuration rate, while fly ash decreases static yield stress. To complement this investigation, I studied cohesion using the probe tack test, as cohesion is widely cited to be closely related to formwork pressure. I verified that probe tack test is a quick and useful method to measure static cohesion. Results showed that nanoclay increased cohesion dramatically while fly ash did not have an apparent effect on cohesion. Secondly, I developed an empirical model to fit the stress decay process under constant shear rate, For mortar systems, the stress decay can be attributed to two mechanisms: colloidal destructuration and sand migration. Such a model could be used to characterize particle migration and dynamic segregation, a critical issue for casting applications. In addition, shear induced particle migration is a widely recognized challenge in characterizing mortars and concretes through shear rheological methods. Therefore this model can help determine the range of shear rates within which migration can be minimized to guide the design of protocols for dynamic rheological characterization and to ultimately develop design strategies to minimize mitigation. Compared with currently existing methods, this model provides a faster approach to quantify the sand migration process, including kinetics.
Dynamic and static fatigue of a machinable glass ceramic
NASA Technical Reports Server (NTRS)
Magida, M. B.; Forrest, K. A.; Heslin, T. M.
1984-01-01
The dynamic and static fatigue behavior of a machinable glass ceramic was investigated to assess its susceptibility to stress corrosion-induced delayed failure. Fracture mechanics techniques were used to analyze the results so that lifetime predictions for components of this material could be made. The resistance to subcritical crack growth of this material was concluded to be only moderate and was found to be dependent on the size of its microstructure.
Ma, Qingyu; He, Bin
2007-08-21
A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.
The Clinical Relevance of Force Platform Measures in Multiple Sclerosis: A Review
Prosperini, Luca; Pozzilli, Carlo
2013-01-01
Balance impairment and falls are frequent in patients with multiple sclerosis (PwMS), and they may occur even at the earliest stage of the disease and in minimally impaired patients. The introduction of computer-based force platform measures (i.e., static and dynamic posturography) has provided an objective and sensitive tool to document both deficits and improvements in balance. By using more challenging test conditions, force platform measures can also reveal subtle balance disorders undetectable by common clinical scales. Furthermore, posturographic techniques may also allow to reliably identify PwMS who are at risk of accidental falls. Although force platform measures offer several theoretical advantages, only few studies extensively investigated their role in better managing PwMS. Standardised procedures, as well as clinical relevance of changes detected by static or dynamic posturography, are still lacking. In this review, we summarized studies which investigated balance deficit by means of force platform measures, focusing on their ability in detecting patients at high risk of falls and in estimating rehabilitation-induced changes, highlighting the pros and the cons with respect to clinical scales. PMID:23766910
Trasonic Cascade Wind Tunnel Modification and Initial Tests.
1980-06-01
27.57 Mathr 1.432 la No. 2 t S atic Pressure = 14.040 P.-ptg= .2686 Mach= 1.510 laz~r t~o. 29 Static Pressure= 13.946 p.ptO .26f2 Macha 1.513 T tp...54 Mach = 1.475 3. Ho. 45 Static Pressure t 12.811 PPto= .2451 Mach = 1.572 Tap No. 46 Static Pressures 12.563 P/Ptow .2403 Macha 1.586 Table c-i...T al) tNo. 64 Static Pressure- 11.981 P,/PtO= .2292 Macha 1.61:3 Twi:. No. 65 Static Pressure= 11.726 P’PtG= .2243 Mach= 1.632 af l N. 66 Sttatic
Damage assessment in reinforced concrete using nonlinear vibration techniques
NASA Astrophysics Data System (ADS)
Van Den Abeele, K.; De Visscher, J.
2000-07-01
Reinforced concrete (RC) structures are subject to microcrack initiation and propagation at load levels far below the actual failure load. In this paper, nonlinear vibration techniques are applied to investigate stages of progressive damage in RC beams induced by static loading tests. At different levels of damage, a modal analysis is carried out, assuming the structure to behave linearly. At the same time, measurement of resonant frequencies and damping ratios as function of vibration amplitude are performed using a frequency domain technique as well as a time domain technique. We compare the results of the linear and nonlinear techniques, and value them against the visual damage evaluation.
Summary report of the Lightning and Static Electricity Committee
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1979-01-01
Lightning protection technology as applied to aviation and identifying these technology needs are presented. The flight areas of technical needs include; (1) the need for In-Flight data on lightning electrical parameters; (2) technology base and guidelines for protection of advanced systems and structures; (3) improved laboratory test techniques; (4) analysis techniques for predicting induced effects; (5) lightning strike incident data from General Aviation; (6) lightning detection systems; (7) obtain pilot reports of lightning strikes; and (8) better training in lightning awareness. The nature of each problem, timeliness, impact of solutions, degree of effort required, and the roles of government and industry in achieving solutions are discussed.
Fatigue Life of Postbuckled Structures with Indentation Damages
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Bisagni, Chiara
2016-01-01
The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.
NASA Technical Reports Server (NTRS)
Fu, Qi; Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Diedrich, Andre; Cox, James F.; Zuckerman, Julie H.; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi;
2002-01-01
Astronauts returning to Earth have reduced orthostatic tolerance and exercise capacity. Alterations in autonomic nervous system and neuromuscular function after spaceflight might contribute to this problem. In this study, we tested the hypothesis that exposure to microgravity impairs autonomic neural control of sympathetic outflow in response to peripheral afferent stimulation produced by handgrip and a cold pressor test in humans. We studied five astronauts approximately 72 and 23 days before, and on landing day after the 16 day Neurolab (STS-90) space shuttle mission, and four of the astronauts during flight (day 12 or 13). Heart rate, arterial pressure and peroneal muscle sympathetic nerve activity (MSNA) were recorded before and during static handgrip sustained to fatigue at 40 % of maximum voluntary contraction, followed by 2 min of circulatory arrest pre-, in- and post-flight. The cold pressor test was applied only before (five astronauts) and during flight (day 12 or 13, four astronauts). Mean (+/- S.E.M.) baseline heart rates and arterial pressures were similar among pre-, in- and post-flight measurements. At the same relative fatiguing force, the peak systolic pressure and mean arterial pressure during static handgrip were not different before, during and after spaceflight. The peak diastolic pressure tended to be higher post- than pre-flight (112 +/- 6 vs. 99 +/- 5 mmHg, P = 0.088). Contraction-induced rises in heart rate were similar pre-, in- and post-flight. MSNA was higher post-flight in all subjects before static handgrip (26 +/- 4 post- vs. 15 +/- 4 bursts min(-1) pre-flight, P = 0.017). Contraction-evoked peak MSNA responses were not different before, during, and after spaceflight (41 +/- 4, 38 +/- 5 and 46 +/- 6 bursts min(-1), all P > 0.05). MSNA during post-handgrip circulatory arrest was higher post- than pre- or in-flight (41 +/- 1 vs. 33 +/- 3 and 30 +/- 5 bursts min(-1), P = 0.038 and 0.036). Similarly, responses of MSNA and blood pressure to the cold pressor test were well maintained in-flight. We conclude that modulation of muscle sympathetic neural outflow by muscle metaboreceptors and skin nociceptors is preserved during short duration spaceflight.
Structural Testing of a 6m Hypersonic Inflatable Aerodynamic Decelerator System
NASA Technical Reports Server (NTRS)
Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.
2015-01-01
NASA is developing low ballistic coefficient technologies to support the Nations long-term goal of landing humans on Mars. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current and future launch vehicle fairing limitations. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) are being developed to circumvent this limitation and are now considered a leading technology to enable landing of heavy payloads on Mars. At the beginning of 2014, a 6m diameter HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify its structural performance under flight-relevant loads. The inflatable structure was constructed into a 60 degree sphere-cone configuration using nine inflatable torus segments composed of fiber-reinforced thin films. The inflatable tori were joined together using adhesives and high-strength textile woven structural straps. These straps help distribute the load throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials that are designed to protect the inflatable structure from heat loads that would be seen in flight during atmospheric entry. A custom test fixture was constructed to perform the static load test series. The fixture consisted of a round structural tub with enough height and width to allow for displacement of the HIAD test article as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The rigid centerbody of the HIAD was mounted to a pedestal in the center of the structural tub. Using an impermeable membrane draped over the HIAD test article, an airtight seal was created with the top rim of the static load tub. This seal allowed partial vacuum to be pulled beneath the HIAD resulting in a uniform static pressure load applied to the outer surface. Using this technique, the test article was subjected to loads of up to 50,000lbs. During the test series an extensive amount of instrumentation was used to provide a rich data set, including deflected shape, structural strap loads, torus cord loads, inflation pressures, and applied static load. In this paper the 2014 6m HIAD static load test series will be discussed in detail, including the design of the 6m HIAD test article, the test setup, and test execution. Analysis results will be described supporting the conclusions that were drawn from the test series..
Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan
2014-09-01
An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.
Stress shadows - a controversial topic
NASA Astrophysics Data System (ADS)
Lasocki, Stanislaw; Karakostas, Vassilis G.; Papadimitriou, Eletheria E.; Orlecka-Sikora, Beata
2010-05-01
The spatial correlation between the positive Coulomb stress changes and the subsequent seismic activity has been firmly confirmed in many recent studies. If, however, the static stress transfer is a consistent expression of interaction between earthquakes one should also observe a decrease of the activity in the zones of negative stress changes. Instead, the existence of stress shadows is poorly evidenced and may be questioned. We tested the influence of the static stress changes associated with the coseismic slip of the 1995 Mw6.5 Kozani-Grevena (Greece) earthquake on locations of its aftershocks. The study was based on a detailed slip model for the main shock and accurate locations and reliable fault plane solutions of an adequate number of the aftershocks. We developed a statistical testing method, which tested whether the proportions of aftershocks located inside areas determined by a selected criterion on the static stress change could be attained if there were no effect of the stress change due to the main shock on aftershock locations. The areas of stress change were determined at the focus of every aftershock. The distribution of test statistic was constructed with the use of a two-dimensional nonparametric, kernel density estimator of the reference epicenter distribution. The tests highly confidently indicated a rise in probability to locate aftershocks inside areas of positive static stress change, which supported the hypothesis on the triggering effect in these areas. Furthermore, it was evidenced that a larger stress increase caused a stronger triggering effect. The analysis, however, did not evidence the existence of stress shadows inside areas of negative stress change. Contrary to expectations, the tests indicated a significant increase of the probability of event location in the areas of a stress decrease of more than or equal to 5.0 and 10.0 bar. It turned out that for areas of larger absolute stress change this probability increased regardless of the sign of the change though distinctly more in areas of positive than of negative change. In the case of seismicity accompanying underground mining exploitation the coseismic stress changes expressed in terms of the Coulomb failure function are at least of one order smaller than those for earthquakes. Furthermore, they are only a small component of the total stress field variations in mining rockmass, which are mainly controlled by the mining process. Nevertheless, our studies of the induced seismicity in the Rudna mine in the Legnica-Głogow Copper District in Poland showed that the influence of the Coulomb stress changes on locations of subsequent events was statistically significant. We analyzed series of seismic events quantifying the triggering and inhibiting effect by the proportion of events in the series whose locations were consistent with the stress increased and stress decreased zones, respectively. It was found out that more than 60 per-cent of the analyzed seismic events occurred in areas where stress was enhanced due to the occurrence of previous events. The significance of this result was determined by comparing it with 2000 results of the same analysis carried out on the random permutations of the original series of events. The test indicated that the locations in positive stress changes areas were preferred statistically significantly when the stress changes exceeded 0.05 bar. However, no statistically significant inhibiting effect of negative static stress changes, within the considered range of these changes, was ascertained. Here we present details of these two studies and discuss possible reasons behind the negative conclusions on the existence of stress shadows.
39. VIEW OF CHRYSLER WORKERS LOADING A SATURN IB BOOSTER ...
39. VIEW OF CHRYSLER WORKERS LOADING A SATURN IB BOOSTER INTO THE EAST POSITION ON THE STATIC TEST TOWER. AS THE MAIN CONTRACTOR OF THE SATURN IB BOOSTER, CHRYSLER TOOK OVER OPERATIONS OF THE EAST POSITION OF THE STATIC TEST TOWER IN 1963. THAT SAME YEAR, THE WEST POSITION OF THE TEST TOWER WAS MODIFIED (AS SEEN IN THE PHOTO) FOR RESEARCH AND DEVELOPMENT TESTS OF THE SATURN V BOOSTER'S ENGINE, THE F-1. MARCH 1963, MSFC PHOTO LAB. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Correlation of AH-1G airframe test data with a NASTRAN mathematical model
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.
1976-01-01
Test data was provided for evaluating a mathematical vibration model of the Bell AH-1G helicopter airframe. The math model was developed and analyzed using the NASTRAN structural analysis computer program. Data from static and dynamic tests were used for comparison with the math model. Static tests of the fuselage and tailboom were conducted to verify the stiffness representation of the NASTRAN model. Dynamic test data were obtained from shake tests of the airframe and were used to evaluate the NASTRAN model for representing the low frequency (below 30 Hz) vibration response of the airframe.
Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei
2018-02-28
Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).
Sader, John E; Lu, Jianing; Mulvaney, Paul
2014-11-01
Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.
Constitutive equation of friction based on the subloading-surface concept
Ueno, Masami; Kuwayama, Takuya; Suzuki, Noriyuki; Yonemura, Shigeru; Yoshikawa, Nobuo
2016-01-01
The subloading-friction model is capable of describing static friction, the smooth transition from static to kinetic friction and the recovery to static friction after sliding stops or sliding velocity decreases. This causes a negative rate sensitivity (i.e. a decrease in friction resistance with increasing sliding velocity). A generalized subloading-friction model is formulated in this article by incorporating the concept of overstress for viscoplastic sliding velocity into the subloading-friction model to describe not only negative rate sensitivity but also positive rate sensitivity (i.e. an increase in friction resistance with increasing sliding velocity) at a general sliding velocity ranging from quasi-static to impact sliding. The validity of the model is verified by numerical experiments and comparisons with test data obtained from friction tests using a lubricated steel specimen. PMID:27493570
Bressel, Eadric; Yonker, Joshua C; Kras, John; Heath, Edward M
2007-01-01
Context: How athletes from different sports perform on balance tests is not well understood. When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Objective: To compare static and dynamic balance among collegiate athletes competing or training in soccer, basketball, and gymnastics. Design: A quasi-experimental, between-groups design. Independent variables included limb (dominant and nondominant) and sport played. Setting: A university athletic training facility. Patients or Other Participants: Thirty-four female volunteers who competed in National Collegiate Athletic Association Division I soccer (n = 11), basketball (n = 11), or gymnastics (n = 12). Intervention(s): To assess static balance, participants performed 3 stance variations (double leg, single leg, and tandem leg) on 2 surfaces (stiff and compliant). For assessment of dynamic balance, participants performed multidirectional maximal single-leg reaches from a unilateral base of support. Main Outcome Measure(s): Errors from the Balance Error Scoring System and normalized leg reach distances from the Star Excursion Balance Test were used to assess static and dynamic balance, respectively. Results: Balance Error Scoring System error scores for the gymnastics group were 55% lower than for the basketball group (P = .01), and Star Excursion Balance Test scores were 7% higher in the soccer group than the basketball group (P = .04). Conclusions: Gymnasts and soccer players did not differ in terms of static and dynamic balance. In contrast, basketball players displayed inferior static balance compared with gymnasts and inferior dynamic balance compared with soccer players. PMID:17597942
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Tong, Yang; Jin, Ke
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...
2018-06-16
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Bokov, P; Delclaux, C
2016-02-01
Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Yucel, Deniz Sanliyuksel; Baba, Alper
2016-08-01
The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.
NASA Astrophysics Data System (ADS)
Quintal, Beatriz; Steeb, Holger; Frehner, Marcel; Schmalholz, Stefan M.
2011-01-01
The finite element method is used to solve Biot's equations of consolidation in the displacement-pressure (u - p) formulation. We compute one-dimensional (1-D) and two-dimensional (2-D) numerical quasi-static creep tests with poroelastic media exhibiting mesoscopic-scale heterogeneities to calculate the complex and frequency-dependent P wave moduli from the modeled stress-strain relations. The P wave modulus is used to calculate the frequency-dependent attenuation (i.e., inverse of quality factor) and phase velocity of the medium. Attenuation and velocity dispersion are due to fluid flow induced by pressure differences between regions of different compressibilities, e.g., regions (or patches) saturated with different fluids (i.e., so-called patchy saturation). Comparison of our numerical results with analytical solutions demonstrates the accuracy and stability of the algorithm for a wide range of frequencies (six orders of magnitude). The algorithm employs variable time stepping and an unstructured mesh which make it efficient and accurate for 2-D simulations in media with heterogeneities of arbitrary geometries (e.g., curved shapes). We further numerically calculate the quality factor and phase velocity for 1-D layered patchy saturated porous media exhibiting random distributions of patch sizes. We show that the numerical results for the random distributions can be approximated using a volume average of White's analytical solution and the proposed averaging method is, therefore, suitable for a fast and transparent prediction of both quality factor and phase velocity. Application of our results to frequency-dependent reflection coefficients of hydrocarbon reservoirs indicates that attenuation due to wave-induced flow can increase the reflection coefficient at low frequencies, as is observed at some reservoirs.
NASA Astrophysics Data System (ADS)
Kozłowska, Maria; Orlecka-Sikora, Beata; Kwiatek, Grzegorz; Boettcher, Margaret S.; Dresen, Georg
2015-01-01
Static stress changes following large earthquakes are known to affect the rate and distribution of aftershocks, yet this process has not been thoroughly investigated for nanoseismicity and picoseismicity at centimeter length scales. Here we utilize a unique data set of M ≥ -3.4 earthquakes following a Mw 2.2 earthquake in Mponeng gold mine, South Africa, that was recorded during a quiet interval in the mine to investigate if rate- and state-based modeling is valid for shallow, mining-induced seismicity. We use Dieterich's (1994) rate- and state-dependent formulation for earthquake productivity, which requires estimation of four parameters: (1) Coulomb stress changes due to the main shock, (2) the reference seismicity rate, (3) frictional resistance parameter, and (4) the duration of aftershock relaxation time. Comparisons of the modeled spatiotemporal patterns of seismicity based on two different source models with the observed distribution show that while the spatial patterns match well, the rate of modeled aftershocks is lower than the observed rate. To test our model, we used three metrics of the goodness-of-fit evaluation. The null hypothesis, of no significant difference between modeled and observed seismicity rates, was only rejected in the depth interval containing the main shock. Results show that mining-induced earthquakes may be followed by a stress relaxation expressed through aftershocks located on the rupture plane and in regions of positive Coulomb stress change. Furthermore, we demonstrate that the main features of the temporal and spatial distributions of very small, mining-induced earthquakes can be successfully determined using rate- and state-based stress modeling.
Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading
NASA Astrophysics Data System (ADS)
Armaghani, Seyamend Bilind
Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences between static and dynamic behavior, Preliminary three point bending testing was conducted to determine the parameters for the final experiments. Static bending testing was conducted on the bare, plywood composite, and fiberglass composite steel tubing. The point of these experiments was to produce a Moment vs. Rotation plot to determine the specimens' maximum moments and their associated rotation, as that is when the steel buckles and fails. The dynamic three point bending experiments were conducted using the impact loading apparatus and had the same purpose as the static experiments. For both static and dynamic experiments, the performances of the different types of specimens were compared based upon their Moment vs. Rotation plots. This will determine the effect that the composite has on the rotation and maximum moment at which the tubing fails. After conducting these experiments, amplification factors were established for each specimen by comparing the maximum moment and their associated rotation between static and dynamic testing. lambda was calculated to quantify the ratio between the static and dynamic maximum moments. beta was used to quantify the ratio between the rotation needed to produce the maximum moment between static and dynamic events. A small amplification factor denotes that material performs well under impact loading and the material doesn't experience dramatic change in behavior during dynamic events. Amplification factors were compared between the bare, plywood, and fiberglass composite steel tubing in order to evaluate the performance of the composites. After comparing the amplification factors of the different types of tubing, recommendations can be made. Fiberglass and plywood composite were shown to be valuable because it decreased the effect of dynamic forces as beta was reduced by a factor of 2 in comparison to bare tubing. Based upon the amplification factors, it was recommended to use 14 gauge fiberglass composite tubing as Paratransit bus structural members because it was affected the least by dynamic loading.
NASA Astrophysics Data System (ADS)
Liang, Qingguo; Li, Jie; Li, Dewu; Ou, Erfeng
2013-01-01
The vibrations of existing service tunnels induced by blast-excavation of adjacent tunnels have attracted much attention from both academics and engineers during recent decades in China. The blasting vibration velocity (BVV) is the most widely used controlling index for in situ monitoring and safety assessment of existing lining structures. Although numerous in situ tests and simulations had been carried out to investigate blast-induced vibrations of existing tunnels due to excavation of new tunnels (mostly by bench excavation method), research on the overall dynamical response of existing service tunnels in terms of not only BVV but also stress/strain seemed limited for new tunnels excavated by the full-section blasting method. In this paper, the impacts of blast-induced vibrations from a new tunnel on an existing railway tunnel in Xinjiang, China were comprehensively investigated by using laboratory tests, in situ monitoring and numerical simulations. The measured data from laboratory tests and in situ monitoring were used to determine the parameters needed for numerical simulations, and were compared with the calculated results. Based on the results from in situ monitoring and numerical simulations, which were consistent with each other, the original blasting design and corresponding parameters were adjusted to reduce the maximum BVV, which proved to be effective and safe. The effect of both the static stress before blasting vibrations and the dynamic stress induced by blasting on the total stresses in the existing tunnel lining is also discussed. The methods and related results presented could be applied in projects with similar ground and distance between old and new tunnels if the new tunnel is to be excavated by the full-section blasting method.
NASA Technical Reports Server (NTRS)
Bedard, A. J., Jr.; Nishiyama, R. T.
1993-01-01
Instruments developed for making meteorological observations under adverse conditions on Earth can be applied to systems designed for other planetary atmospheres. Specifically, a wind sensor developed for making measurements within tornados is capable of detecting induced pressure differences proportional to wind speed. Adding strain gauges to the sensor would provide wind direction. The device can be constructed in a rugged form for measuring high wind speeds in the presence of blowing dust that would clog bearings and plug passages of conventional wind speed sensors. Sensing static pressure in the lower boundary layer required development of an omnidirectional, tilt-insensitive static pressure probe. The probe provides pressure inputs to a sensor with minimum error and is inherently weather-protected. The wind sensor and static pressure probes have been used in a variety of field programs and can be adapted for use in different planetary atmospheres.
NASA Astrophysics Data System (ADS)
Nishiyama, Randall T.; Bedard, Alfred J., Jr.
1991-09-01
There are many areas of need for accurate measurements of atmospheric static pressure. These include observations of surface meteorology, airport altimeter settings, pressure distributions around buildings, moving measurement platforms, as well as basic measurements of fluctuating pressures in turbulence. Most of these observations require long-term observations in adverse environments (e.g., rain, dust, or snow). Currently, many pressure measurements are made, of necessity, within buildings, thus involving potential errors of several millibars in mean pressure during moderate winds, accompanied by large fluctuating pressures induced by the structure. In response to these needs, a 'Quad-Disk' pressure probe for continuous, outdoor monitoring purposes was designed which is inherently weather-protected. This Quad-Disk probe has the desirable features of omnidirectional response and small error in pitch. A review of past static pressure probes contrasts design approaches and capabilities.
Comparison of User Performance with Interactive and Static 3d Visualization - Pilot Study
NASA Astrophysics Data System (ADS)
Herman, L.; Stachoň, Z.
2016-06-01
Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.
Calibration of a pitot-static rake
NASA Technical Reports Server (NTRS)
Stump, H. P.
1977-01-01
A five-element pitot-static rake was tested to confirm its accuracy and determine its suitability for use at Langley during low-speed tunnel calibration primarily at full-scale tunnel. The rake was tested at one airspeed of 74 miles per hour (33 meters per second) and at pitch and yaw angles of 0 to + or - 20 degrees in 4 deg increments.
Energy loss of α-particle moving in warm dense deuterium plasma: Role of local field corrections
NASA Astrophysics Data System (ADS)
Fu, Zhen-Guo; Wang, Zhigang; Zhang, Ping
2017-11-01
We theoretically study the energy loss of α-particles traveling in the warm dense plasma (WDP) of deuterium (D) with temperatures from 10 to 100 eV and electron number densities from 1023 to 1024 cm-3. Beyond the random phase approximation (RPA) model, the extended Mermin dielectric function (MDF) model including the static and dynamic local field corrections (LFC) is employed in the calculations. Compared with the static LFC, the dynamic LFC introduced in the extended MDF model gives rise to a more significant departure from the RPA result. For the plasma conditions focused in this work, the departure induced by dynamic LFC reaches almost ˜ 30 % , which may be detected in the inertial confinement fusion (ICF) related experiment. Moreover, we find that the effect of static e-e collision may be of importance (unimportance) for the WDP of D with a temperature of tens (hundreds) of eV. Our findings may be important for ICF ignition since the uncertainty induced by the correlation effects between plasma component particles is crucial for the prediction of α-particle heating in fusion plasmas.
Parachute Aerodynamics From Video Data
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Queen, Eric M.; Cruz, Juan R.
2005-01-01
A new data analysis technique for the identification of static and dynamic aerodynamic stability coefficients from wind tunnel test video data is presented. This new technique was applied to video data obtained during a parachute wind tunnel test program conducted in support of the Mars Exploration Rover Mission. Total angle-of-attack data obtained from video images were used to determine the static pitching moment curve of the parachute. During the original wind tunnel test program the static pitching moment curve had been determined by forcing the parachute to a specific total angle-of -attack and measuring the forces generated. It is shown with the new technique that this parachute, when free to rotate, trims at an angle-of-attack two degrees lower than was measured during the forced-angle tests. An attempt was also made to extract pitch damping information from the video data. Results suggest that the parachute is dynamically unstable at the static trim point and tends to become dynamically stable away from the trim point. These trends are in agreement with limit-cycle-like behavior observed in the video. However, the chaotic motion of the parachute produced results with large uncertainty bands.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.
2015-01-01
Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.
Zhang, Kai; Ding, Wei; Sun, Wei; Sun, Xiao-jiang; Xie, You-zhuan; Zhao, Chang-qing; Zhao, Jie
2016-01-01
Low back pain is associated with intervertebral disc degeneration (IVDD) due to cellular loss through apoptosis. Mechanical factors play an important role in maintaining the survival of the annulus fibrosus (AF) cells and the deposition of extracellular matrix. However, the mechanisms that excessive mechanical forces lead to AF cell apoptosis are not clear. The present study was to look for how AF cells sense mechanical changes. In vivo experiments, the involvement of mechanoreceptors in apoptosis was examined by RT-PCR and/or immunoblotting in the lumbar spine of rats subjected to unbalanced dynamic and static forces. In vitro experiments, we investigated apoptotic signaling pathways in untransfected and transfected AF cells with the lentivirus vector for rat β1 integrin overexpression after cyclic stretch. Apoptosis in AF cells was assessed using flow cytometry, Hoechst 33258 nuclear staining. Western blotting was used to analyze expression of β1 integrin and caspase-3 and ERK1/2 MAPK signaling molecules. In the rat IVDD model, unbalanced dynamic and static forces induced apoptosis of disc cells, which corresponded to decreased expression of β1 integrin. Cyclic stretch-induced apoptosis in rat AF cells correlated with the activation of caspase-3 and with decreased levels of β1 integrin and the phosphorylation levels of ERK1/2 activation level. However, the overexpression of β1 integrin in AF cells ameliorated cyclic stretch-induced apoptosis and decreased caspase-3 activation. Furthermore, ERK1/2-specific inhibitor promotes apoptosis in vector β1-infected AF cells. These results suggest that the disruption of β1 integrin signaling may underlie disc cell apoptosis induced by mechanical stress. Further work is necessary to fully elucidate the pathophysiological mechanisms that underlie IVDD caused by unbalanced dynamic and static forces.
NASA Astrophysics Data System (ADS)
Wang, B.; Harrington, R. M.; Liu, Y.; Kao, H.
2016-12-01
The largest suspected fracking-induced earthquake to date occurred near Fort St. John, British Columbia on August 17, 2015, with a reported magnitude of Mw 4.6. Here we estimate the static stress released by the mainshock and the five cataloged aftershocks using new data from eight broadband seismometers installed approximately 50km from the hypocenter of the mainshock, at distances much closer than the Natural Resources Canada regional seismic stations. The estimated cross-correlation coefficient among the 5 cataloged earthquakes is 0.35 or greater. We will present seismic moment (M0) and spectral corner frequency (fc) values estimated using both individual earthquake spectra and spectral ratios to correct for travel-path attenuation and site effects. Static stress drop and scaled energy value calculations based on the estimated moment and corner frequency values will be presented, as well as focal mechanisms for the largest events with adequate station coverage. We will also use a multi-station matched-filter approach to detect additional uncataloged earthquakes on continuous waveforms for a period of two months after the mainshock. Using the results of the matched-filter approach, we will present the aftershock magnitude distribution and locations. The results of our detection and location calculations will be compared to reported fracking parameters, such as fluid injection pressure and duration, to determine their correlation with the spatial and temporal distribution of aftershocks. The objective of this study is to relate operational parameters to earthquake occurrence in order to help to develop procedures to understand the mechanisms responsible for fracking induced earthquakes, their relation to the maximum induced magnitude, and to reduce potential hazards of anthropogenically induced seismic activity.
NASA Technical Reports Server (NTRS)
Olsson, W. J.
1982-01-01
The results of a flight loads test of the JT9D-7 engine are presented. The goals of this test program were to: measure aerodynamic and inertia loads on the engine during flight, explore the effects of airplane gross weight and typical maneuvers on these flight loads, simultaneously measure the changes in engine running clearances and performance resulting from the maneuvers, make refinements of engine performance deterioration prediction models based on analytical results of the tests, and make recommendations to improve propulsion system performance retention. The test program included a typical production airplane acceptance test plus additional flights and maneuvers to encompass the range of flight loads in revenue service. The test results indicated that aerodynamic loads, primarily at take-off, were the major cause of rub-indicated that aerodynamic loads, primarily at take-off, were the major cause of rub-induced deterioration in the cold sectin of the engine. Differential thermal expansion between rotating and static parts plus aerodynamic loads combined to cause blade-to-seal rubs in the turbine.
Subjective visual vertical assessment with mobile virtual reality system.
Ulozienė, Ingrida; Totilienė, Milda; Paulauskas, Andrius; Blažauskas, Tomas; Marozas, Vaidotas; Kaski, Diego; Ulozas, Virgilijus
2017-01-01
The subjective visual vertical (SVV) is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions - static, dynamic and an immersive real-world ("boat in the sea") SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two controllers (P<0.01). The median of virtual reality-induced dizziness for both devices was 0.7. The mobile virtual reality based system for implementation of subjective visual vertical test, is accurate and applicable in the clinical environment. The gamepad-based virtual object control method was preferred by the users. The tests were well tolerated with low dizziness scores in the majority of patients. Copyright © 2018 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.
NASA Astrophysics Data System (ADS)
Montesano, John
The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and the corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental and the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.
Dynamic and static fatigue behavior of sintered silicon nitrides
NASA Technical Reports Server (NTRS)
Chang, J.; Khandelwal, P.; Heitman, P. W.
1987-01-01
The dynamic and static fatigue behavior of Kyocera SN220M sintered silicon nitride at 1000 C was studied. Fractographic analysis of the material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 41 MPa/min. Under conditions of static fatigue this material also displayed SCG at stresses below 345 MPa. SCG appears to be controlled by microcracking of the grain boundaries. The crack velocity exponent (n) determined from both dynamic and static fatigue tests ranged from 11 to 16.
NASA Technical Reports Server (NTRS)
Green, Del L.; Walker, Eric L.; Everhart, Joel L.
2006-01-01
Minimization of uncertainty is essential to extend the usable range of the 15-psid Electronically Scanned Pressure [ESP) transducer measurements to the low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources inducing much of this uncertainty requires a well defined and controlled calibration method. Employing such a controlled calibration system, several studies were conducted that provide quantitative information detailing the required controls needed to minimize environmental and human induced error sources. Results of temperature, environmental pressure, over-pressurization, and set point randomization studies for the 15-psid transducers are presented along with a comparison of two regression methods using data acquired with both 0.36-psid and 15-psid transducers. Together these results provide insight into procedural and environmental controls required for long term high-accuracy pressure measurements near 0.01 psia in the hypersonic testing environment using 15-psid ESP transducers.
NASA Technical Reports Server (NTRS)
Green, Del L.; Walker, Eric L.; Everhart, Joel L.
2006-01-01
Minimization of uncertainty is essential to extend the usable range of the 15-psid Electronically Scanned Pressure (ESP) transducer measurements to the low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources inducing much of this uncertainty requires a well defined and controlled calibration method. Employing such a controlled calibration system, several studies were conducted that provide quantitative information detailing the required controls needed to minimize environmental and human induced error sources. Results of temperature, environmental pressure, over-pressurization, and set point randomization studies for the 15-psid transducers are presented along with a comparison of two regression methods using data acquired with both 0.36-psid and 15-psid transducers. Together these results provide insight into procedural and environmental controls required for long term high-accuracy pressure measurements near 0.01 psia in the hypersonic testing environment using 15-psid ESP transducers.
Water Ingestion into Axial Flow Compressors. Part III. Experimental Results and Discussion
1981-10-01
total pressure, static pressure, and temperature at both compressor inlet and outlet. A United Sensor model PDC-12-G-l0-KL pitot-static pressure probe...Test Compressor inlet and outlet temperatures during water injection tests: United Sensor and Control Corp. type TK-8-CiA-36’-F Aspirate...ured utilizing standard aspirated thermocouples, namely an United Sensor and Control Corp. type TK-8-C/A-36-F. The Test Compressor out- let
NASA Astrophysics Data System (ADS)
Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.
2002-12-01
The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.
Static Fatigue of a Siliconized Silicon Carbide
1987-03-01
flexitral stress rupture and stepped temperature stress rupture (STSR) testing were performed to assess the static fatigue and creep resistances. Isothermal... stress rupture experiments were performed at 1200 0C in air for com- parison to previous results. - 10 STSR experiments 15 were under deadweight...temperature and stress levels that static fatigue and creep processes are active. The applied stresses were computed on the basis of the elastic
Rood, Akkie; Hannink, Gerjon; Lenting, Anke; Groenen, Karlijn; Koëter, Sander; Verdonschot, Nico; van Kampen, Albert
2015-10-01
Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixation. Static MPFL reconstruction is most commonly used. However, dynamic reconstruction deforms more easily and presumably functions more like the native MPFL. The aim of the study was to evaluate the effect of the different MPFL fixation techniques on patellofemoral pressures compared with the native situation. The hypothesis was that dynamic reconstruction would result in patellofemoral pressures closer to those generated in an intact knee. Controlled laboratory study. Seven fresh-frozen knee specimens were tested in an in vitro knee joint loading apparatus. Tekscan pressure-sensitive films fixed to the retropatellar cartilage measured mean patellofemoral and peak pressures, contact area, and location of the center of force (COF) at fixed flexion angles from 0° to 110°. Four different conditions were tested: intact, dynamic, partial dynamic, and static MPFL reconstruction. Data were analyzed using linear mixed models. Static MPFL reconstruction resulted in higher peak and mean pressures from 60° to 110° of flexion (P < .001). There were no differences in pressure between the 2 different dynamic reconstructions and the intact situation (P > .05). The COF in the static reconstruction group moved more medially on the patella from 50° to 110° of flexion compared with the other conditions. The contact area showed no significant differences between the test conditions. After static MPFL reconstruction, the patellofemoral pressures in flexion angles from 60° to 110° were 3 to 5 times higher than those in the intact situation. The pressures after dynamic MPFL reconstruction were similar as compared with those in the intact situation, and therefore, dynamic MPFL reconstruction could be a safer option than static reconstruction for stabilizing the patella. This study showed that static MPFL reconstruction results in higher patellofemoral pressures and thus enhances the chance of osteoarthritis in the long term, while dynamic reconstruction results in more normal pressures. © 2015 The Author(s).
NASA Technical Reports Server (NTRS)
Re, R. J.; Leavitt, L. D.
1984-01-01
The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested.
Analytical modeling of transport aircraft crash scenarios to obtain floor pulses
NASA Technical Reports Server (NTRS)
Wittlin, G.; Lackey, D.
1983-01-01
The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.
The use of wind tunnel facilities to estimate hydrodynamic data
NASA Astrophysics Data System (ADS)
Hoffmann, Kristoffer; Tophøj Rasmussen, Johannes; Hansen, Svend Ole; Reiso, Marit; Isaksen, Bjørn; Egeberg Aasland, Tale
2016-03-01
Experimental laboratory testing of vortex-induced structural oscillations in flowing water is an expensive and time-consuming procedure, and the testing of high Reynolds number flow regimes is complicated due to the requirement of either a large-scale or high-speed facility. In most cases, Reynolds number scaling effects are unavoidable, and these uncertainties have to be accounted for, usually by means of empirical rules-of-thumb. Instead of performing traditional hydrodynamic measurements, wind tunnel testing in an appropriately designed experimental setup may provide an alternative and much simpler and cheaper framework for estimating the structural behavior under water current and wave loading. Furthermore, the fluid velocities that can be obtained in a wind tunnel are substantially higher than in a water testing facility, thus decreasing the uncertainty from scaling effects. In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.
Knutsen, Ashleen R; Borkowski, Sean L; Ebramzadeh, Edward; Flanagan, Colleen L; Hollister, Scott J; Sangiorgio, Sophia N
2015-09-01
Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650 N in compression, 395 N in compression-shear, and 0.25 Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris
2013-01-01
Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.
Thermal stabilization of static single-mirror Fourier transform spectrometers
NASA Astrophysics Data System (ADS)
Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.
2017-05-01
Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.
NASA Technical Reports Server (NTRS)
Tobin, Brian W.a; Leeper-Woodford, Sandra K.
1999-01-01
The present studies were carried out to determine the influence of a ground based microgravity paradigm, utilizing the High Aspect Ratio Vessel (HARV) cell culture upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF-alpha) production of pancreatic islets of Langerhans. An additional aim was to elucidate alterations in insulin secretion and glucose utilization using the HARV low shear, gravity averaged vector, cell culture technique. Islets were isolated (1726 +/- 117, 150 micron islet equivalent units) from Wistar Furth rats and assigned to four treatment groups: 1) HARV, 2) HARV plus LPS, 3) static culture, 4) static culture plus LPS. Following 48 hours of culture, insulin concentration was increased in both HARV and static cultures (p<0.05). Islet medium from HARV and static cultures were assayed for TNF-alpha (L929 cytotoxicity assay) and was measured at selected time points for 48 hours. TNF-alpha was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (p<0.05). This is a novel observation and indicates that TNF producing cells are present in islets and that LPS stimulates TNF secretion in isolated islets. A decrease in insulin concentration was demonstrated in the islet medium of the LPS stimulated HARV culture (p<0.05). That TNF-alpha is associated with a decreased insulin secretion is intriguing, both as it relates to in-flight investigations, and as it may provide insight into the pathophysiology of Type I and Type 11 diabetes. Glucose concentration in islet medium was lesser throughout the experiment in static cultures, suggesting a decreased reliance upon glucose as a metabolic substrate in the islets cultured in HARVS. In conclusion, the present studies demonstrate alterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF production in the microgravity HARV paradigm. Additionally, alterations in fuel homeostasis may be promulgated by HARV culture. The clinical and physiological significance of these observations remains to be determined.
NASA Technical Reports Server (NTRS)
Stewart, V. R.
1979-01-01
The characteristics were determined of a lift cruise fan V/STOL multi-mission configuration in the near proximity to the edge of a small flat surface representation of a ship deck. Tests were conducted at both static and forward speed test conditions. The model (0.12 scale) tested was a four fan configuration with modifications to represent a three fan configuration. Analysis of data showed that the deck edge effects were in general less critical in terms of differences from free air than a full deck (in ground effect) configuration. The one exception to this was when the aft edge of the deck was located under the center of gravity. This condition, representative of an approach from the rear, showed a significant lift loss. Induced moments were generally small compared to the single axis control power requirements, but will likely add to the pilot work load.
THE RELATIONSHIP BETWEEN VARIOUS MODES OF SINGLE LEG POSTURAL CONTROL ASSESSMENT
Schmitz, Randy
2012-01-01
Purpose/Background: While various techniques have been developed to assess the postural control system, little is known about the relationship between single leg static and functional balance. The purpose of the current study was to determine the relationship between the performance measures of several single leg postural stability tests. Methods: Forty six recreationally active college students (17 males, 29 females, 21±3 yrs, 173±10 cm) performed six single leg tests in a counterbalanced order: 1) Firm Surface-Eyes Open, 2) Firm Surface-Eyes Closed, 3) Multiaxial Surface-Eyes Open, 4) Multiaxial Surface-Eyes Closed, 5) Star Excursion Balance Test (posterior medial reach), 6) Single leg Hop-Stabilization Test. Bivariate correlations were conducted between the six outcome variables. Results: Mild to moderate correlations existed between the static tests. No significant correlations existed involving either of the functional tests. Conclusions: The results indicate that while performance of static balance tasks are mildly to moderately related, they appear to be unrelated to functional reaching or hopping movements, supporting the utilization of a battery of tests to determine overall postural control performance. Level of Evidence: 3b PMID:22666640
Low-speed Aerodynamic Investigations of a Hybrid Wing Body Configuration
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.; Gatlin, Gregory M.; Jenkins, Luther N.; Murphy, Patrick C.; Carter, Melissa B.
2014-01-01
Two low-speed static wind tunnel tests and a water tunnel static and dynamic forced-motion test have been conducted on a hybrid wing-body (HWB) twinjet configuration. These tests, in addition to computational fluid dynamics (CFD) analysis, have provided a comprehensive dataset of the low-speed aerodynamic characteristics of this nonproprietary configuration. In addition to force and moment measurements, the tests included surface pressures, flow visualization, and off-body particle image velocimetry measurements. This paper will summarize the results of these tests and highlight the data that is available for code comparison or additional analysis.
Static investigation of several yaw vectoring concepts on nonaxisymmetric nozzles
NASA Technical Reports Server (NTRS)
Mason, M. L.; Berrier, B. L.
1985-01-01
A test has been conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the flow-turning capability and the effects on nozzle internal performance of several yaw vectoring concepts. Nonaxisymmetric convergent-divergent nozzles with throat areas simulating dry and afterburning power settings and single expansion ramp nozzles with a throat area simulating a dry power setting were modified for yaw thrust vectoring. Forward-thrust and pitch-vectored nozzle configurations were tested with each yaw vectoring concept. Four basic yaw vectoring concepts were investigated on the nonaxisymmetric convergent-divergent nozzles: (1) translating sidewall; (2) downstream (of throat) flaps; (3) upstream (of throat) port/flap; and (4) powered rudder. Selected combinations of the rudder with downstream flaps or upstream port/flap were also tested. A single yaw vectoring concept, post-exit flaps, was investigated on the single expansion ramp nozzles. All testing was conducted at static (no external flow) conditions and nozzle pressure ratios varied from 2.0 up to 10.0.
A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.
1992-01-01
A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.
Large Deformation Dynamic Bending of Composite Beams
NASA Technical Reports Server (NTRS)
Derian, E. J.; Hyer, M. W.
1986-01-01
Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.
Equilibrium disorders in workers exposed to mixed solvents.
Giorgianni, Concetto; Tanzariello, Mariagiuseppina; De Pasquale, Domenico; Brecciaroli, Renato; Spatari, Giovanna
2018-02-06
Organic solvents cause diseases of the vestibular system. However, little is known regarding the correlation between vestibular damage and exposure to organic solvents below threshold limit values. The best measure by which to evaluate vestibular disorders is static and dynamic posturography. The aim of this study was to evaluate equilibrium disorders via static and dynamic posturography in workers without clear symptoms and exposed to low doses of mixed solvents. 200 subjects were selected. Using an Otometrics device (Madsen, Denmark), all subjects endured static and dynamic posturography testing with both eyes-open and eyes-closed conditions. Results were compared with a control group of unexposed individuals. Based on the obtained data, the following results can be drawn: (a) subjects exposed to mixtures of solvents show highly significant differences regarding all static and dynamic posturography parameters in comparison to the control group; (b) posturography testing has proven to be a valid means by which to detect subliminal equilibrium disorders in subjects exposed to solvents. We can confirm that refinery workers exposed to mixtures of solvents can present subliminal equilibrium disorders. Early diagnosis of the latter is made possible by static and dynamic posturography.
Sequential Test Strategies for Multiple Fault Isolation
NASA Technical Reports Server (NTRS)
Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.
1997-01-01
In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.
Development of an advanced pitch active control system for a wide body jet aircraft
NASA Technical Reports Server (NTRS)
Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.
1984-01-01
An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.
NASA Technical Reports Server (NTRS)
Greathouse, James S.; Schwing, Alan M.
2015-01-01
This paper explores use of computational fluid dynamics to study the e?ect of geometric porosity on static stability and drag for NASA's Multi-Purpose Crew Vehicle main parachute. Both of these aerodynamic characteristics are of interest to in parachute design, and computational methods promise designers the ability to perform detailed parametric studies and other design iterations with a level of control previously unobtainable using ground or flight testing. The approach presented here uses a canopy structural analysis code to define the inflated parachute shapes on which structured computational grids are generated. These grids are used by the computational fluid dynamics code OVERFLOW and are modeled as rigid, impermeable bodies for this analysis. Comparisons to Apollo drop test data is shown as preliminary validation of the technique. Results include several parametric sweeps through design variables in order to better understand the trade between static stability and drag. Finally, designs that maximize static stability with a minimal loss in drag are suggested for further study in subscale ground and flight testing.
NASA Technical Reports Server (NTRS)
Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.
1992-01-01
A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.
Prolonged passive static stretching-induced innervation zone shift in biceps brachii.
Ye, Xin; Beck, Travis W; Wages, Nathan P
2015-05-01
The purpose of this study was to examine the influence of a bout of repeated and prolonged passive static stretching on the innervation zone (IZ) location of the human biceps brachii muscle. Eleven men performed 12 sets of 100-s passive stretches on their biceps brachii. Before (Pre) and immediately after (Post) the stretching intervention, isometric strength was tested during the maximal voluntary contractions (MVCs) of the forearm flexors. The subjects also performed several separate isometric forearm flexion muscle actions at 30%, 50%, and 70% of their predetermined MVCs for examining the locations of the IZ at different contraction intensities. The IZ was identified through multi-channel surface electromyographic (EMG) recordings from a linear electrode array. The stretching intervention induced an average of 10% isometric strength loss for the forearm flexors (mean±SD: Pre-MVC vs. Post-MVC=332.12±59.40 N vs. 299.53±70.51 N; p<0.001). In addition, the average IZ shift was nearly 4.5 mm in average in the proximal direction. However, this shift was not specific to the contraction intensity. We believe that the IZ shift was caused by the elongation of the entire muscle-tendon unit in the proximal direction. Therefore, caution should be taken when using surface EMG technique to examine possible changes in the EMG variables after a stretching protocol, as these variables can be contaminated by the shift of the IZ.
Taechasubamorn, Panada; Nopkesorn, Tawesak; Pannarunothai, Supasit
2010-12-01
To compare physical fitness between rice farmers with chronic low back pain (CLBP) and a healthy control group. Sixty-eight rice farmers with CLBP were matched according to age and sex with healthy farmers. All subjects underwent nine physical fitness tests for body composition, lifting capacity, static back extensor endurance, leg strength, static abdominal endurance, handgrip strength, hamstring flexibility, posterior leg and back muscles flexibility and abdominal flexibility. There was no significant difference between CLBP and healthy groups for all tests, except the static back extensor endurance. The back extensor endurance times of the CLBP group was significantly lower than that of the control group (p = 0.002). Static back extensor endurance is the deficient physical fitness in CLBP rice farmers. Back extensor endurance training should be emphasized in both prevention and rehabilitation programs.
Scaling Effects in Carbon/Epoxy Laminates Under Transverse Quasi-Static Loading
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Douglas, Michael J.; Estes, Eric E.
1999-01-01
Scaling effects were considered for 8, 16, 32, and 64 ply IM-7/8551-7 carbon/epoxy composites plates transversely loaded to the first significant load drop by means of both a quasi-static and an equivalent impact force. The resulting damage was examined by x-ray and photomicroscopy analysis. Load-deflection curves were generated for the quasi-static tests and the resulting indentation depth was measured. Results showed that the load-deflection data scaled well for most of the various thicknesses of plates. However, damage did not scale as well. No correlation could be found between dent depth and any of the other parameters measured in this study. The impact test results showed that significantly less damage was formed compared to the quasi- static results for a given maximum transverse load. The criticality of ply-level scaling (grouping plies) was also examined.
NASA Technical Reports Server (NTRS)
1996-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is a common task in the aerospace industry. Often, these problems are solved by static analysis with inertia relief. This technique allows for a free-free static analysis by balancing the applied loads with the inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus the displacement-dependent loads. A launch vehicle being acted upon by an aerodynamic loading can have such applied loads. The final displacements of such systems are commonly determined with iterative solution techniques. Unfortunately, these techniques can be time consuming and labor intensive. Because the coupled system equations for free-free systems with displacement-dependent loads can be written in closed form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. An MSC/NASTRAN (MacNeal-Schwendler Corporation/NASA Structural Analysis) DMAP (Direct Matrix Abstraction Program) Alter was used to include displacement-dependent loads in static analysis with inertia relief. It efficiently solved a common aerospace problem that typically has been solved with an iterative technique.
Strength of Rocks Affected by Deformation Enhanced Grain Growth
NASA Astrophysics Data System (ADS)
Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.
2005-12-01
One way of looking into the possibility of long-term strength changes in the lithosphere is to study transient effects resulting from modifications of the microstructure of rocks. It is generally accepted that mechanical weakening may occur due to progressive grain size refinement resulting from dynamic recrystallization. A decrease in grain size may induce a switch from creep controlled by grain size insensitive dislocation mechanisms to creep governed by grain size sensitive (GSS) mechanisms involving diffusion and grain boundary sliding processes. This switch forms a well-known scenario to explain localization in the lithosphere. However, fine-grained rocks in localized deformation zones are prone to grain coarsening due to surface energy driven grain boundary migration (SED-GBM). This might harden the rock, affecting its role in localizing strain in the long term. The question has arisen if grain growth by SED-GBM in a rock deforming in the GSS creep field can be significantly affected by strain. The broad aim of this study is to shed more light onto this. We have experimentally investigated the microstructural and strength evolution of fine-grained (~0.6 μm) synthetic forsterite and Fe-bearing olivine aggregates that coarsen in grain size while deforming by GSS creep at elevated pressure (600 MPa) and temperature (850-1000 °C). The materials were prepared by `sol-gel' method and contained 0.3-0.5 wt% water and 5-10 vol% enstatite. We performed i) static heat treatment tests of various time durations involving hot isostatic pressing (HIP), and ii) heat treatment tests starting with HIP and continuing with deformation up to 45% axial strain at strain rates in the range 4x10-7 - 1x10-4 s-1. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. In addition to the experiments, we studied microstructural evolution in simple two-dimensional numerical models, combining deformation and SED-GBM by means of the modeling package ELLE. Synthetic olivine samples that were heat treated without straining showed only minor grain growth. Presumably, the second phase (enstatite) and/or porosity remaining in the starting material after densification slowed down or inhibited SED-GBM in the static situation. In contrast, samples heat treated and deformed for time durations similar to those of the static tests demonstrated, at identical temperature, an increase in grain size with increasing strain up to a value twice that of the static counterpart. This grain coarsening was associated with continuous hardening of the material, witnessed by the stress-strain curves. A random lattice preferred orientation combined with a low stress sensitivity (n~2) suggested dominant GSS creep controlled by grain boundary sliding. A dynamic grain growth model involving an increase in the fraction of non-hexagonal grains, related to grain neighbor switching, appears applicable to the observed grain growth that is held responsible for the hardening. The ELLE numerical modeling demonstrated that a combination of SED-GBM and geometrical deformation of a 2D grain aggregate can indeed result in enhanced grain growth compared to static grain growth tests. The fraction of non-hexagonal grains was found to remain more or less constant during static grain growth but increased during deformation. We suggest that the application of the dynamic grain growth model to the long-term microstructural evolution of fine-grained lithospheric shear zones can further improve our understanding of the transient or permanent character of strain localizations and related rheological behavior.
Quasi-Static Viscoelasticity Loading Measurements of an Aircraft Tire
NASA Technical Reports Server (NTRS)
Mason, Angela J.; Tanner, John A.; Johnson, Arthur R.
1997-01-01
Stair-step loading, cyclic loading, and long-term relaxation tests were performed on an aircraft tire to observe the quasi-static viscoelastic response of the tire. The data indicate that the tire continues to respond viscoelastically even after it has been softened by deformation. Load relaxation data from the stair-step test at the 15,000-lb loading was fit to a monotonically decreasing Prony series.
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1989-01-01
Static laminate and tension-tension fatigue tests of IM7/8551-7 composite materials was performed. The Edge Delamination Test (EDT) was utilized to evaluate the temperature and preloading history effect on the critical strain energy release rate. Static and fatigue testing was performed at room temperature and 180 F (82 C). Three preloading schemes were used to precondition fatigue test specimens prior to performing the normal tension-tension fatigue EDT testing. Computer software was written to perform all fatigue testing while monitoring the dynamic modulus to detect the onset of delamination and record the test information for later retrieval and reduction.
Saturn V First Stage Lowered to the Ground After Static Test
NASA Technical Reports Server (NTRS)
1966-01-01
This vintage photograph shows the 138-foot long first stage of the Saturn V being lowered to the ground following a successful static test firing at Marshall Space flight Center's S-1C test stand. The firing provided NASA engineers information on the booster's systems. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
Testing parameters of TMR heads affected by dynamic-tester induced EMI
NASA Astrophysics Data System (ADS)
Kruesubthaworn, A.; Sivaratana, R.; Ungvichian, V.; Siritaratiwat, A.
2007-09-01
A variety of expected electromagnetic interference (EMI) sources of both radiated and conducted EMI emissions produced by a dynamic tester is studied. It is determined that the power cable connector of the robot arm radiates a significant electric field (E-field) of about 197 V/m at 1 foot away and an estimated calculation of the E-field of about 212 mV/m is at the spindle motor. These fields can be attenuated by about 20-30 dB when using a copper lined Faraday's cage. Furthermore, the study has revealed that the radiated EMI plays a more significant role than the conducted EMI. In addition, it is determined that out of seven selected testing parameters, the SGAW is rather more sensitive to EMI than conventional failure parameters, especially static glitche during the write cycle.
Noxious stimuli do not determine reflex cardiorespiratory effects in anesthetized rabbits.
Raimondi, G; Legramante, J M; Iellamo, F; Frisardi, G; Cassarino, S; Peruzzi, G
1996-12-01
The main purpose of this study is to examine whether the stimulation of an exclusively pain-sensing receptive field (dental pulp) could determine cardiorespiratory effects in animals in which the cortical integration of the peripheral information is abolished by deep anesthesia. In 15 anesthetized (alpha-chloralose and urethan) rabbits, low (3-Hz)- and high-frequency (100-Hz) electrical dental pulp stimulation was performed. Because this stimulation caused dynamic and static reflex contractions of the digastric muscles leading to jaw opening jaw-opening reflex (JOR); an indirect sign of algoceptive fiber activation], experimentally induced direct dynamic and static contractions of the digastric muscle were also performed. The low- and high-frequency stimulation of the dental pulp determined cardiovascular [systolic arterial pressure (SAP): -21.7 +/- 4.6 and 10.8 +/- 4.7 mmHg, respectively] and respiratory [pulmonary ventilation (VE): 145.1 +/- 44.9 and 109.3 +/- 28.4 ml/min, respectively] reflex responses similar to those observed during experimentally induced dynamic (SAP: -17.5 +/- 4.2 mmHg; VE: 228.0 +/- 58.5 ml/min) and static (SAP: 5.8 +/- 1.5 mmHg; VE: 148.0 +/- 75.3 ml/min) muscular contractions. The elimination of digastric muscular contraction (JOR) obtained by muscular paralysis did away with the cardiovascular changes induced by dental pulp stimulation, the effectiveness of which in stimulating dental pulp receptors has been shown by recording trigeminal-evoked potentials in six additional rabbits. The main conclusion was that, in deeply anesthetized animals, an algesic stimulus is unable to determine cardiorespiratory effects, which appear to be exclusively linked to the stimulation of ergoreceptors induced by muscular contraction.
Vestibular afferent responses to linear accelerations in the alert squirrel monkey
NASA Technical Reports Server (NTRS)
Somps, Christopher J.; Schor, Robert H.; Tomko, David L.
1994-01-01
The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.
Characterization of static adhesion of human platelets in plasma to protein surfaces in microplates.
Eriksson, Andreas C; Whiss, Per A
2009-04-01
Platelet adhesion is a complex and important event for prevention of blood loss after vessel injury. This study investigated fundamental adhesive mechanisms occurring in an in-vitro assay developed for the measurement of static adhesion of human platelets in plasma. The aim was to gain methodological knowledge that could be used for interpretations of results from other studies using this specific assay. Involvement of adhesive receptors was investigated by the use of various antibodies as well as therapeutic drugs (abciximab, eptifibatide and tirofiban). Inhibitors of adenosine 5'-diphosphate receptors (cangrelor, MRS2179) and of thromboxane A(2) signalling (BM-531) were used to estimate the role of autocrine activation. Adhesion to collagen was found to be mainly mediated by alpha(2)beta(1) and to some extent by alpha(IIb)beta(3). Adhesion to fibrinogen was mediated by alpha(IIb)beta(3). In addition, adenosine 5'-diphosphate-induced adhesion to albumin was dependent on alpha(IIb)beta(3). Furthermore, experiments with cangrelor and BM-531 showed that the majority of the adhesive interactions tested were dependent on adenosine 5'-diphosphate or thromboxane A(2). We conclude that the mechanisms of adhesion measured by the static platelet adhesion assay are in accordance with the current knowledge regarding platelet activation and adhesion. Despite its simplicity, we suggest that this adhesion assay could be used as a screening device for the study of the influence of various surfaces and soluble substances on platelet adhesion.
NASA Astrophysics Data System (ADS)
Hood, Lon L.
2017-04-01
The Madden-Julian oscillation (MJO), also known as the 30-60 day oscillation, is the strongest of the intraseasonal climate oscillations in the tropics and has significant derivative effects on extratropical circulation and intraseasonal climate. It has recently been shown that the stratospheric quasi-biennial oscillation (QBO) modulates the amplitude of the boreal winter MJO such that MJO amplitudes are larger on average during the easterly phase (QBOE) than during the westerly phase (QBOW). A major possible mechanism is the decrease in static stability in the lowermost stratosphere under QBOE conditions resulting from relative upwelling associated with the QBO-induced meridional circulation. Here evidence is presented that tropical upwelling changes related to the 11 year solar cycle also modulate the boreal winter MJO. Based on 37.3 years of MJO amplitude data, the largest amplitudes and occurrence rates, and the weakest static stabilities in the tropical lower stratosphere, occur during the QBOE phase under solar minimum (SMIN) conditions while the smallest amplitudes and strongest static stabilities occur during the QBOW phase under solar maximum (SMAX) conditions. Conversely, when the QBO and solar forcings are opposed (QBOW/SMIN and QBOE/SMAX), the difference in occurrence rates becomes statistically insignificant. During the coming solar minimum, at least one additional winter in the QBOE/SMIN category should occur (possibly as early as 2017/2018) during which especially large MJO amplitudes are expected and an initial test of these results will be possible.
NASA Astrophysics Data System (ADS)
Yang, Quan
2001-10-01
This study, involving 154 undergraduate college students in China, was conducted to determine whether the surface structure of visual graphics affect content learning when the learner was a non-native English speaker and learning took place in a non-English speaking environment. Instruction with concrete animated graphics resulted in significantly higher achievement, when compared to instruction with concrete static, abstract static, abstract animated graphics or text only without any graphical illustrations. It was also found, unexpectedly, the text-only instruction resulted in the second best achievement, significantly higher than instruction with concrete static, abstract static, and abstract animated graphics. In addition, there was a significant interaction with treatment and test item, which indicated that treatment effects on graphic-specific items differed from those on definitional items. Additional findings indicated that relation to graphics directly or indirectly from the text that students studied had little impact on their performance in the posttests. Further, 51% of the participants indicated that they relied on some graphical images to answer the test questions and 19% relied heavily on graphics when completing the tests. In conclusion, concrete graphics when combined with animation played a significant role in enhancing ESL student performance and enabled the students to achieve the best learning outcomes as compared to abstract animated, concrete static, and abstract static graphics. This result suggested a significant innovation in the design and development of ESL curriculum in computer-based instruction, which would enable ESL students to perform better and achieve the expected outcomes in content area learning.
The static breaking technique for sustainable and eco-environmental coal mining.
Bing-yuan, Hao; Hui, Huang; Zi-jun, Feng; Kai, Wang
2014-01-01
The initiating explosive devices are prohibited in rock breaking near the goaf of the highly gassy mine. It is effective and applicable to cracking the hard roof with static cracking agent. By testing the static cracking of cubic limestone (size: 200 × 200 × 200 mm) with true triaxial rock mechanics testing machine under the effect of bidirectional stress and by monitoring the evolution process of the cracks generated during the acoustic emission experiment of static cracking, we conclude the following: the experiment results of the acoustic emission show that the cracks start from the lower part of the hole wall until they spread all over the sample. The crack growth rate follows a trend of "from rapidness to slowness." The expansion time is different for the two bunches of cracks. The growth rates can be divided into the rapid increasing period and the rapid declining period, of which the growth rate in declining period is less than that in the increasing period. Also, the growth rate along the vertical direction is greater than that of the horizontal direction. Then the extended model for the static cracking is built according to the theories of elastic mechanics and fracture mechanics. Thus the relation formula between the applied forces of cracks and crack expansion radius is obtained. By comparison with the test results, the model proves to be applicable. In accordance with the actual geological situation of Yangquan No. 3 Mine, the basic parameters of manpower manipulated caving breaking with static crushing are settled, which reaps bumper industrial effects.
do Nascimento, J A; Silva, C C; Dos Santos, H H; de Almeida Ferreira, J J; de Andrade, P R
2017-12-01
The aim of this study was to evaluate the postural control of obese young adults with normal body mass index during different static (bipedic and unipedic support) and dynamic postural conditions (gait velocity and limits of stability) in order to compare the static and dynamic balance of these individuals. A cross-sectional quantitative study was carried out to evaluate static and dynamic balance in 25 sedentary individuals. The sample was divided into two groups, 10 in the normal-weight group (24.70 ± 3.89 years and 21.5 ± 1.66 kg m -2 ) and 15 in the obese group (26.80 ± 5.16 years and 35.66 ± 4.29 kg m -2 ). Postural evaluation was performed through visual inspection, and balance analyses were performed using the Timed Up & Go test (TUGT) and Balance System (Biodex). Descriptive analyses, Fisher's exact test and Mann Whitney U-tests were performed using the Statistical Package for Social Sciences (SPSS - 20.0, Armonk, NY) software. Most of the obese volunteers presented postural alterations, such as head protrusion (47.6%), hyperkyphosis (46.7%) and hyperlordosis (26.7%). Medial-lateral dynamic displacement, risk of falls and mean time to perform the limits of stability test and TUGT were higher for obese subjects (P < 0.05), while there were no significant differences between the groups (P > 0.05) for static balance tests for either bipedal or unipedal tasks. The disadvantage presented by the young obese subjects occurs in dynamic activities, representing worse balance and an increase in time needed to accomplish these activities. © 2017 World Obesity Federation.
Palladium-chromium static strain gage for high temperature propulsion systems
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1991-01-01
The present electrical strain gage for high temperature static strain measurements is in its fine-wire and thin-film forms designed to be temperature-compensated on any substrate material. The gage element is of Pd-Cr alloy, while the compensator is of Pt. Because the thermally-induced apparent strain of this compensated wire strain gage is sufficiently small, with good reproducibility between thermal cycles to 800 C, output figures can be corrected within a reasonable margin of error.
Deformation behavior of welded steel sandwich panels under quasi-static loading
DOT National Transportation Integrated Search
2011-03-01
This report describes engineering studies that were conducted to examine the deformation behavior of flat, welded steel sandwich panels under two quasi-static loading conditions: (1) uniaxial compression; and (2) bending with an indenter. Testing and...
Measurement of the True Dynamic and Static Pressures in Flight
NASA Technical Reports Server (NTRS)
Kiel, Georg
1939-01-01
In this report, two reliable methods are presented, with the aid of which the undisturbed flight dynamic pressure and the true static pressure may be determined without error. These problems were solved chiefly through practical flight tests.
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2014 CFR
2014-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2013 CFR
2013-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2012 CFR
2012-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2011 CFR
2011-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
Static holes in the geometrically frustrated bow-tie ladder
NASA Astrophysics Data System (ADS)
Martins, George B.; Brenig, Wolfram
2008-10-01
We investigate the doping of a geometrically frustrated spin ladder with static holes by a complementary approach using exact diagonalization and quantum dimers. Results for thermodynamic properties, the singlet density of states, the hole-binding energy and the spin correlations will be presented. For the undoped systems the ground state is non-degenerate, with translationally invariant nearest-neighbor spin correlations. For the doped case, we find that static holes polarize their vicinity through a localization of singlets, reducing the frustration. This polarization induces short range repulsive forces between two holes and an oscillatory behavior of the long range two-hole energy. For most quantities investigated, we find very good agreement between the quantum dimer approach and the results from exact diagonalization.
NASA Technical Reports Server (NTRS)
Hermance, J. F.
1985-01-01
The Earth's magnetic field at MAGSAT altitudes not only has contributions from the Earth's core and static magnetization in the lithosphere, but also from external electric current systems in the ionosphere and magnetosphere, along with induced electric currents flowing in the conducting earth. Hermance assessed these last two contributions; the external time-varying fields and their associated internal counter-parts which are electromagnetically induced. It is readily recognized that during periods of magnetic disturbance, external currents often contribute from 10's to 100's of nanoteslas (gammas) to observations of the Earth's field. Since static anomalies from lithospheric magnetization are of this same magnitude or less, these external source fields must be taken into account when attempting to delineate gross structural features in the crust.
Red blood cell dynamics: from cell deformation to ATP release.
Wan, Jiandi; Forsyth, Alison M; Stone, Howard A
2011-10-01
The mechanisms of red blood cell (RBC) deformation under both static and dynamic, i.e., flow, conditions have been studied extensively since the mid 1960s. Deformation-induced biochemical reactions and possible signaling in RBCs, however, were proposed only fifteen years ago. Therefore, the fundamental relationship between RBC deformation and cellular signaling dynamics i.e., mechanotransduction, remains incompletely understood. Quantitative understanding of the mechanotransductive pathways in RBCs requires integrative studies of physical models of RBC deformation and cellular biochemical reactions. In this article we review the physical models of RBC deformation, spanning from continuum membrane mechanics to cellular skeleton dynamics under both static and flow conditions, and elaborate the mechanistic links involved in deformation-induced ATP release. This journal is © The Royal Society of Chemistry 2011
An empirical comparison of a dynamic software testability metric to static cyclomatic complexity
NASA Technical Reports Server (NTRS)
Voas, Jeffrey M.; Miller, Keith W.; Payne, Jeffrey E.
1993-01-01
This paper compares the dynamic testability prediction technique termed 'sensitivity analysis' to the static testability technique termed cyclomatic complexity. The application that we chose in this empirical study is a CASE generated version of a B-737 autoland system. For the B-737 system we analyzed, we isolated those functions that we predict are more prone to hide errors during system/reliability testing. We also analyzed the code with several other well-known static metrics. This paper compares and contrasts the results of sensitivity analysis to the results of the static metrics.
Construct validity of functional capacity tests in healthy workers
2013-01-01
Background Functional Capacity (FC) is a multidimensional construct within the activity domain of the International Classification of Functioning, Disability and Health framework (ICF). Functional capacity evaluations (FCEs) are assessments of work-related FC. The extent to which these work-related FC tests are associated to bio-, psycho-, or social factors is unknown. The aims of this study were to test relationships between FC tests and other ICF factors in a sample of healthy workers, and to determine the amount of statistical variance in FC tests that can be explained by these factors. Methods A cross sectional study. The sample was comprised of 403 healthy workers who completed material handling FC tests (lifting low, overhead lifting, and carrying) and static work FC tests (overhead working and standing forward bend). The explainable variables were; six muscle strength tests; aerobic capacity test; and questionnaires regarding personal factors (age, gender, body height, body weight, and education), psychological factors (mental health, vitality, and general health perceptions), and social factors (perception of work, physical workloads, sport-, leisure time-, and work-index). A priori construct validity hypotheses were formulated and analyzed by means of correlation coefficients and regression analyses. Results Moderate correlations were detected between material handling FC tests and muscle strength, gender, body weight, and body height. As for static work FC tests; overhead working correlated fair with aerobic capacity and handgrip strength, and low with the sport-index and perception of work. For standing forward bend FC test, all hypotheses were rejected. The regression model revealed that 61% to 62% of material handling FC tests were explained by physical factors. Five to 15% of static work FC tests were explained by physical and social factors. Conclusions The current study revealed that, in a sample of healthy workers, material handling FC tests were related to physical factors but not to the psychosocial factors measured in this study. The construct of static work FC tests remained largely unexplained. PMID:23758870
Matching novel face and voice identity using static and dynamic facial images.
Smith, Harriet M J; Dunn, Andrew K; Baguley, Thom; Stacey, Paula C
2016-04-01
Research investigating whether faces and voices share common source identity information has offered contradictory results. Accurate face-voice matching is consistently above chance when the facial stimuli are dynamic, but not when the facial stimuli are static. We tested whether procedural differences might help to account for the previous inconsistencies. In Experiment 1, participants completed a sequential two-alternative forced choice matching task. They either heard a voice and then saw two faces or saw a face and then heard two voices. Face-voice matching was above chance when the facial stimuli were dynamic and articulating, but not when they were static. In Experiment 2, we tested whether matching was more accurate when faces and voices were presented simultaneously. The participants saw two face-voice combinations, presented one after the other. They had to decide which combination was the same identity. As in Experiment 1, only dynamic face-voice matching was above chance. In Experiment 3, participants heard a voice and then saw two static faces presented simultaneously. With this procedure, static face-voice matching was above chance. The overall results, analyzed using multilevel modeling, showed that voices and dynamic articulating faces, as well as voices and static faces, share concordant source identity information. It seems, therefore, that above-chance static face-voice matching is sensitive to the experimental procedure employed. In addition, the inconsistencies in previous research might depend on the specific stimulus sets used; our multilevel modeling analyses show that some people look and sound more similar than others.
Vazini Taher, Amir; Parnow, Abdolhossein
2017-05-01
Different methods of warm-up may have implications in improving various aspects of soccer performance. The present study aimed to investigate acute effects of soccer specific warm-up protocols on functional performance tests. This study using randomized within-subject design, investigated the performance of 22 collegiate elite soccer player following soccer specific warm-ups using dynamic stretching, static stretching, and FIFA 11+ program. Post warm-up examinations consisted: 1) Illinois Agility Test; 2) vertical jump; 3) 30 meter sprint; 4) consecutive turns; 5) flexibility of knee. Vertical jump performance was significantly lower following static stretching, as compared to dynamic stretching (P=0.005). Sprint performance declined significantly following static stretching as compared to FIFA 11+ (P=0.023). Agility time was significantly faster following dynamic stretching as compared to FIFA 11+ (P=0.001) and static stretching (P=0.001). Knee flexibility scores were significantly improved following the static stretching as compared to dynamic stretching (P=016). No significant difference was observed for consecutive turns between three warm-up protocol. The present finding showed that a soccer specific warm-up protocol relied on dynamic stretching is preferable in enhancing performance as compared to protocols relying on static stretches and FIFA 11+ program. Investigators suggest that while different soccer specific warm-up protocols have varied types of effects on performance, acute effects of dynamic stretching on performance in elite soccer players are assured, however application of static stretching in reducing muscle stiffness is demonstrated.
Static tests of the propulsion system. [Propfan Test Assessment program
NASA Technical Reports Server (NTRS)
Withers, C. C.; Bartel, H. W.; Turnberg, J. E.; Graber, E. J.
1987-01-01
Advanced, highly-loaded, high-speed propellers, called propfans, are promising to revolutionize the transport aircraft industry by offering a 15- to 30-percent fuel savings over the most advanced turbofans without sacrificing passenger comfort or violating community noise standards. NASA Lewis Research Center and industry have been working jointly to develop the needed propfan technology. The NASA-funded Propfan Test Assessment (PTA) Program represents a key element of this joint program. In PTA, Lockheed-Georgia, working in concert with Hamilton Standard, Rohr Industries, Gulfstream Aerospace, and Allison, is developing a propfan propulsion system which will be mounted on the left wing of a modified Gulfstream GII aircraft and flight tested to verify the in-flight characteristics of a 9-foot diameter, single-rotation propfan. The propfan, called SR-7L, was designed and fabricated by Hamilton Standard under a separate NASA contract. Prior to flight testing, the PTA propulsion system was static tested at the Rohr Brown Field facility. In this test, propulsion system operational capability was verified and data was obtained on propfan structural response, system acoustic characteristics, and system performance. This paper reports on the results of the static tests.
NASA Technical Reports Server (NTRS)
Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet
1992-01-01
The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.
NASA Technical Reports Server (NTRS)
Dicicco, L. D.; Nowlin, Brent C.; Tirres, Lizet
1992-01-01
The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.
Kinect-based sign language recognition of static and dynamic hand movements
NASA Astrophysics Data System (ADS)
Dalawis, Rando C.; Olayao, Kenneth Deniel R.; Ramos, Evan Geoffrey I.; Samonte, Mary Jane C.
2017-02-01
A different approach of sign language recognition of static and dynamic hand movements was developed in this study using normalized correlation algorithm. The goal of this research was to translate fingerspelling sign language into text using MATLAB and Microsoft Kinect. Digital input image captured by Kinect devices are matched from template samples stored in a database. This Human Computer Interaction (HCI) prototype was developed to help people with communication disability to express their thoughts with ease. Frame segmentation and feature extraction was used to give meaning to the captured images. Sequential and random testing was used to test both static and dynamic fingerspelling gestures. The researchers explained some factors they encountered causing some misclassification of signs.
Large Deformation Dynamic Bending of Composite Beams
NASA Technical Reports Server (NTRS)
Derian, E. J.; Hyer, M. W.
1986-01-01
Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.
Spiderweb deformation induced by electrostatically charged insects
Ortega-Jimenez, Victor Manuel; Dudley, Robert
2013-01-01
Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture. PMID:23828093
Lateral-Torsional Buckling Instability Caused by Individuals Walking on Wood Composite I-Joists
NASA Astrophysics Data System (ADS)
Villasenor Aguilar, Jose Maria
Recent research has shown that a significant number of the falls from elevation occur when laborers are working on unfinished structures. Workers walking on wood I-joists on roofs and floors are prone to fall hazards. Wood I-joists have been replacing dimension lumber for many floor systems and a substantial number of roof systems in light-frame construction. Wood I-joists are designed to resist axial stresses on the flanges and shear stresses on the web while minimizing material used. However, wood I-joists have poor resistance to applied lateral and torsional loads and are susceptible to lateral-torsional buckling instability. Workers walking on unbraced or partially braced wood I-joists can induce axial and lateral forces as well as twist. Experimental testing demonstrated that workers cause lateral-torsional buckling instability in wood I-joists. However, no research was found related to the lateral-torsional buckling instability induced by individuals walking on the wood I-joists. Furthermore, no research was found considering the effects of the supported end conditions and partial bracing in the lateral-torsional buckling instability of wood I-joists. The goal of this research was to derive mathematical models to predict the dynamic lateral-torsional buckling instability of wood composite I-joists loaded by individuals walking considering different supported end conditions and bracing system configurations. The dynamic lateral-torsional buckling instability was analyzed by linearly combining the static lateral-torsional buckling instability with the lateral bending motion of the wood Ijoists. Mathematical models were derived to calculate the static critical loads for the simply supported end condition and four wood I-joist hanger supported end conditions. Additionally, mathematical models were derived to calculate the dynamic maximum lateral displacements and positions of the individual walking on the wood Ijoists for the same five different supported end conditions. Three different lean-on bracing systems were investigated, non-bracing, one-bracing, and two-bracing systems. Mathematical models were derived to calculate the amount of constraint due to the lean-on bracing system. The derived mathematical models were validated by comparison to data from testing for all supported end conditions and bracing systems. The predicted critical loads using the static buckling theoretical models for the non-bracing system and the static buckling theoretical models combined with the bracing theoretical models for the simply and hanger supported end conditions agreed well with the critical loads obtained from testing for the two wood I-joist sizes investigated. The predicted maximum lateral displacements and individual positions using the bending motion theoretical models for the simply and hanger supported end conditions agreed well with the corresponding maximum lateral displacements and individual positions obtained from testing for both wood I-joist sizes. Results showed that; a) the supported end condition influenced the critical loads, maximum lateral displacements and individual positions, b) the bracing system increased the critical loads and reduced the maximum lateral displacements, c) the critical load increased as the load position displaced away from the wood I-joist mid-span, d) the critical load reduced as the initial lateral displacement of the wood I-joist increased and e) the wood I-joist mid-span was the critical point in the dynamic lateral-torsional buckling instability.
NARC Rayon Replacement Program for the RSRM Nozzle, Phase IV Qualification and Implementation Status
NASA Technical Reports Server (NTRS)
Haddock, M. Reed; Wendel, Gary M.; Cook, Roger V.
2005-01-01
The Space Shuttle NARC Rayon Replacement Program has down-selected Enka rayon as a replacement for the obsolete NARC rayon in the nozzle carbon cloth phenolic (CCP) ablative insulators. Full qualification testing of the Enka rayon-based carbon cloth phenolic is underway, including processing, thmal/structural properties, and hot-fire subscale tests. Required thermal-structural capabilities, together with confidence in erosio/char performance in simulated and subscale hot fire tests such as Wright-Patterson Air Force Base Laser Hardened Materials Evaluation Laboratory testing, NASA-MSFC 24-inch motor tests, NASA-MSFC Solid Fuel Torch - Super Sonic Blast Tube, NASA-MSFC Plasma Torch Test Bed, ATK Thiokol Forty Pound Charge and NASA-MSFC MNASA justified the testing of the new Enka-rayon candidate on full-scale static test motors. The first RSRM full-scale static test motor nozzle, fabricated using the new Enka rayon-based CCP, was successfully demonstrated in June 2004. Two additional static test motors are planned with the new Enka rayon in the next two years along with additional A-basis property characterization. Process variation or "corner-of-the-box" testing together with cured and uncured aging studies are also planned as some of the pre-flight implementation activities with 5-year cured aging studies over-lapping flight hardware fabrication.
Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.
Tan, Wei; Twomey, John; Guo, Dongjie; Madhavan, Krishna; Li, Min
2010-06-01
Collagen I is an essential structural and mechanical building block of various tissues, and it is often used as tissue-engineering scaffolds. However, collagen-based constructs reconstituted in vitro often lacks robust fiber structure, mechanical stability, and molecule binding capability. To enhance these performances, the present study developed 3-D collagen-nanotube composite constructs with two types of functionalized carbon nanotubes, carboxylated nanotubes and covalently functionalized nanotubes (CFNTs). The influences of nanotube functionalization and loading concentration on the collagen fiber structure, mechanical property, biocompatibility, and molecule binding were examined. Results revealed that surface modification and loading concentration of nanotubes determined the interactions between nanotubes and collagen fibrils, thus altering the structure and property of nanotube-collagen composites. Scanning electron microscopy and confocal microscopy revealed that the incorporation of CFNT in collagen-based constructs was an effective means of restructuring collagen fibrils because CFNT strongly bound to collagen molecules inducing the formation of larger fibril bundles. However, increased nanotube loading concentration caused the formation of denser fibril network and larger aggregates. Static stress-strain tests under compression showed that the addition of nanotube into collagen-based constructs did not significantly increase static compressive moduli. Creep/recovery testing under compression revealed that CFNT-collagen constructs showed improved mechanical stability under continuous loading. Testing with endothelial cells showed that biocompatibility was highly dependent on nanotube loading concentration. At a low loading level, CFNT-collagen showed higher endothelial coverage than the other tested constructs or materials. Additionally, CFNT-collagen showed capability of binding to other biomolecules to enhance the construct functionality. In conclusion, functionalized nanotube-collagen composites, particularly CFNT-collagen composites, could be promising materials, which provide structural support showing bundled fibril structure, biocompatibility, multifunctionality, and mechanical stability, but rigorous control over chemical modification, loading concentration, and nanotube dispersion are needed.
Specific Stimuli Induce Specific Adaptations: Sensorimotor Training vs. Reactive Balance Training
Freyler, Kathrin; Krause, Anne; Gollhofer, Albert; Ritzmann, Ramona
2016-01-01
Typically, balance training has been used as an intervention paradigm either as static or as reactive balance training. Possible differences in functional outcomes between the two modalities have not been profoundly studied. The objective of the study was to investigate the specificity of neuromuscular adaptations in response to two balance intervention modalities within test and intervention paradigms containing characteristics of both profiles: classical sensorimotor training (SMT) referring to a static ledger pivoting around the ankle joint vs. reactive balance training (RBT) using externally applied perturbations to deteriorate body equilibrium. Thirty-eight subjects were assigned to either SMT or RBT. Before and after four weeks of intervention training, postural sway and electromyographic activities of shank and thigh muscles were recorded and co-contraction indices (CCI) were calculated. We argue that specificity of training interventions could be transferred into corresponding test settings containing properties of SMT and RBT, respectively. The results revealed that i) postural sway was reduced in both intervention groups in all test paradigms; magnitude of changes and effect sizes differed dependent on the paradigm: when training and paradigm coincided most, effects were augmented (P<0.05). ii) These specificities were accompanied by segmental modulations in the amount of CCI, with a greater reduction within the CCI of thigh muscles after RBT compared to the shank muscles after SMT (P<0.05). The results clearly indicate the relationship between test and intervention specificity in balance performance. Hence, specific training modalities of postural control cause multi-segmental and context-specific adaptations, depending upon the characteristics of the trained postural strategy. In relation to fall prevention, perturbation training could serve as an extension to SMT to include the proximal segment, and thus the control of structures near to the body’s centre of mass, into training. PMID:27911944
NASA Technical Reports Server (NTRS)
Brandon, J. M.; Murri, D. G.; Nguyen, L. T.
1986-01-01
A series of low-speed wind tunnel tests on a generic airplane model with a cylindrical fuselage were made to investigate the effects of forebody shape and fitness ratio, and fuselage/wing proximity on static and dynamic lateral/directional stability. In addition, some preliminary testing to determine the effectiveness of deflectable forebody strakes for high angle of attack yaw control was conducted. During the stability investigation, 11 forebodies were tested including three different cross-sectional shapes with fineness ratios of 2, 3, and 4. In addition, the wing was tested at two longitudinal positions to provide a substantial variation in forebody/wing proximity. Conventional force tests were conducted to determine static stability characteristics, and single-degree-of-freedom free-to-roll tests were conducted to study the wing rock characteristics of the model with the various forebodies. Flow visualization data were obtained to aid in the analysis of the complex flow phenomena involved. The results show that the forebody cross-sectional shape and fineness ratio and forebody/wing proximity can strongly affect both static and dynamic (roll) stability at high angles of attack. These characteristics result from the impact of these factors on forebody vortex development, the behavior of the vortices in sideslip, and their interaction with the wing flow field. Preliminary results from the deflectable strake investigation indicated that forebody flow control using this concept can provide very large yaw control moments at stall and post-stall angles of attack.
Arifin, Nooranida; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar
2014-04-01
The measurements of postural balance often involve measurement error, which affects the analysis and interpretation of the outcomes. In most of the existing clinical rehabilitation research, the ability to produce reliable measures is a prerequisite for an accurate assessment of an intervention after a period of time. Although clinical balance assessment has been performed in previous study, none has determined the intrarater test-retest reliability of static and dynamic stability indexes during dominant single stance. In this study, one rater examined 20 healthy university students (female=12, male=8) in two sessions separated by 7 day intervals. Three stability indexes--the overall stability index (OSI), anterior/posterior stability index (APSI), and medial/ lateral stability index (MLSI) in static and dynamic conditions--were measured during single dominant stance. Intraclass correlation coefficient (ICC), standard error measurement (SEM) and 95% confidence interval (95% CI) were calculated. Test-retest ICCs for OSI, APSI, and MLSI were 0.85, 0.78, and 0.84 during static condition and were 0.77, 0.77, and 0.65 during dynamic condition, respectively. We concluded that the postural stability assessment using Biodex stability system demonstrates good-to-excellent test-retest reliability over a 1 week time interval.
Statistics of Static Stress Earthquake Triggering
NASA Astrophysics Data System (ADS)
Nandan, S.; Ouillon, G.; Woessner, J.; Sornette, D.; Wiemer, S.
2014-12-01
A likely source of earthquake clustering is static and/or dynamic stresses transferred by individual events. Previous attempts to quantify the role of static stress generally considered only the stress changes caused by large events, and often discarded data uncertainties. We test the static stress change hypothesis empirically by considering all events of magnitude M≥ 2.1 and the uncertainties in location and focal mechanism in the focal mechanism catalog for Southern California between 1981 and 2010 (Yang et al., 2011). We quantify: How the waiting time between earthquakes (1) relates to the Coulomb stress change (2) induced by event Ei at the location of Ej; How significant is the Coulomb Index (CI), fraction of source-receiver pairs with positive ΔCFS interactions, conditioned on time and amplitude of ΔCFS, compared to a mean-field CI derived from the time-independent structure of the fault network. We approximate the waiting time distributions empirically by (3), which respectively consists of triggering and background rate components, tapered by an exponential term to model the finiteness of the catalog. We observe that K/(Bc^p ) (the ratio of the triggering to the background rates at t=0), the exponent p, and the Maxwell time τ all increase with |ΔCFS| and are significantly larger for positive than for negative ΔCFS's. τ varies between ~90 days and ~150 days (approximately 0.3 decades over 6 decades of variation in stress). It defines the time beyond which the memory of stress is overprinted by occurrence of other events. The CI values become significant above a threshold |ΔCFS|. The mean-field CI is 52%, while the maximum observed CI value is ~60%. Correcting for the focal plane ambiguity, those values become respectively ~55% and ~72%. Lastly, the CI values decrease with the waiting time and converge to the mean-field CI value. The increase of p-value and K/(Bc^p ) with |ΔCFS| contradicts the prediction of stress shadow regions where seismicity is suppressed if ΔCFS<0. Our results rather suggest a spatially ubiquitous triggering process compatible with dynamic triggering, modulated by the sign and amplitude of the static stress field. We also conclude that static stress-based forecasts should not be performed over time scales much larger than τ, which is of the order of few hundred days.
Disorder-induced amorphization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, N.Q.; Okamoto, P.R.; Li, Mo
1997-03-01
Many crystalline materials undergo a crystalline-to-amorphous (c-a) phase transition when subjected to energetic particle irradiation at low temperatures. By focusing on the mean-square static atomic displacement as a generic measure of chemical and topological disorder, we are led quite naturally to a generalized version of the Lindemann melting criterion as a conceptual framework for a unified thermodynamic approach to solid-state amorphizing transformations. In its simplest form, the generalized Lindemann criterion assumes that the sum of the static and dynamic mean-square atomic displacements is constant along the polymorphous melting curve so that c-a transformations can be understood simply as melting ofmore » a critically-disordered crystal at temperatures below the glass transition temperature where the supercooled liquid can persist indefinitely in a configurationally-frozen state. Evidence in support of the generalized Lindemann melting criterion for amorphization is provided by a large variety of experimental observations and by molecular dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds.« less
Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.
Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T
2001-05-01
Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.
Posturography and risk of recurrent falls in healthy non-institutionalized persons aged over 65.
Buatois, Séverine; Gueguen, René; Gauchard, Gérome C; Benetos, Athanase; Perrin, Philippe P
2006-01-01
A poor postural stability in older people is associated with an increased risk of falling. The posturographic tool has widely been used to assess balance control; however, its value in predicting falls remains unclear. The purpose of this prospective study was to determine the predictive value of posturography in the estimation of the risk of recurrent falls, including a comparison with standard clinical balance tests, in healthy non-institutionalized persons aged over 65. Two hundred and six healthy non-institutionalized volunteers aged over 65 were tested. Postural control was evaluated by posturographic tests, performed on static, dynamic and dynamized platforms (static test, slow dynamic test and Sensory Organization Test [SOT]) and clinical balance tests (Timed 'Up & Go' test, One-Leg Balance, Sit-to-Stand-test). Subsequent falls were monitored prospectively with self-questionnaire sent every 4 months for a period of 16 months after the balance testing. Subjects were classified prospectively in three groups of Non-Fallers (0 fall), Single-Fallers (1 fall) and Multi-Fallers (more than 2 falls). Loss of balance during the last trial of the SOT sensory conflicting condition, when visual and somatosensory inputs were distorted, was the best factor to predict the risk of recurrent falls (OR = 3.6, 95% CI = 1.3-10.11). Multi-Fallers showed no postural adaptation during the repetitive trials of this sensory condition, contrary to Non-Fallers and Single-Fallers. The Multi-Fallers showed significantly more sway when visual inputs were occluded. The clinical balance tests, the static test and the slow dynamic test revealed no significant differences between the groups. In a sample of non-institutionalized older persons aged over 65, posturographic evaluation by the SOT, especially with repetition of the same task in sensory conflicting condition, compared to the clinical tests and the static and dynamic posturographic test, appears to be a more sensitive tool to identify those at high-risk of recurrent falls. Copyright (c) 2006 S. Karger AG, Basel.
Downy mildews on ornamental plants and their control.
Skrzypczak, C
2006-01-01
Among downy mildews occurring on ornamentals in Poland the most dangerous are downy mildew of rose and downy mildew of German statice (Tartarian statice). Downy mildew of rose caused by Peronospora sparsa Berk. is a serious threat to commercial cultivation of cut roses, especially grown under plastic tunnels. Peronospora statices Lobik casual agent of German statice downy mildew can causes the total losses in the second year of statice cultivation more than 70%. Both pathogens are very difficult to control. Effectiveness of azoxystrobine, cymoxanil + famoxate, mancozeb, phosethyl aluminium, phosethyl aluminium + fenamidone, propamocarb in the control of P. sparsa and P. statices was presented. In the control of statice downy mildew none of tested compounds was able to control satisfactory the pathogen. Relatively the best results were obtained with mixture of fenamidone (88 microg/cm3) and phosethyl AL (1334 microg/cm3). In the control of rose downy mildew, the best results were obtained with phosethyl Al at concentration 1600 microg/cm3.
NASA Electronic Parts and Packaging (NEPP) Program
NASA Technical Reports Server (NTRS)
Agarwal, Shri
2012-01-01
Recent Findings from Audits, New Technology Data Reviews a) Disabled Chip Burn-ins A recent audit for a QML device discovered that the chip was disabled during the static burn-in, thus it was not drawing any current. Recommendation: For new SMDs add a statement within the burn-in paragraphs stating that the parts shall be kept in their enabled state during the burn-in. b) Class Q 160-hr/125oC Burn-in This is being interpreted as a static burn-in (even for CMOS technology). Recommendation: Provide clarification in MIL-STD-883, Test Method 5004. c) At Frequency (Dynamic) Burn-ins Test equipment limitation is being cited for not doing burn-ins at the application frequency. Recommendation: The burn-in task group to discuss and provide guidance. When the SMD says that the part can be used at 200 MHz, then doing burn-in at 6 MHz (cited as burn-in equipment limitation frequency) is not going to be meaningful! d) Two Static Burn-ins Some manufacturers are doing electrical testing between the two static burn-ins, whereas others do electricals after completing both static burn-ins. Recommendation: Provide clarification in MIL-STD-883, Test Method 5004. e) Thermal Imaging For a device with hot spots, the thermal resistance, junction-to-case, would be much higher than the guidelines given in MIL-STD-1835. One of the suppliers used thermal imaging to find hot spots on the die. Recommendation: Assign a task group to evaluate the effectiveness of thermal imaging at the product development stage.
Kibar, Sibel; Yardimci, Fatma Ö; Evcik, Deniz; Ay, Saime; Alhan, Aslıhan; Manço, Miray; Ergin, Emine S
2016-10-01
This randomized controlled study aims to determine the effect of pilates mat exercises on dynamic and static balance, hamstring flexibility, abdominal muscle activity and endurance in healthy adults. Female healthy volunteer university students randomly assigned into two groups. Group 1 followed a pilates program for an hour two times a week. Group 2 continued daily activities as control group. Dynamic and static balance were evaluated by Sport Kinesthetic Ability Trainer (KAT) 4000 device. Hamstring flexibility and abdominal endurance were determined by sit-and-reach test, curl-up test respectively. Pressure biofeedback unit (PBU) was used to measure transversus abdominis and lumbar muscle activity. The physical activity of the participants was followed by International Physical Activity Questionnaire-Short Form. Twenty-three subjects in pilates group and 24 control subjects completed the study. In pilates group, statistical significant improvements were observed in curl-up, sit-and-reach test, PBU scores at sixth week (P<0.001), and KAT static and dynamic balance scores (P<0.001), waist circumference (P=0.007) at eighth week. In the comparison between two groups, there were significant improvements in pilates group for sit-and-reach test (P=0.01) and PBU scores (P<0.001) at sixth week, additionally curl-up and static KAT scores progressed in eighth week (P<0.001). No correlation was found between flexibility, endurance, trunk muscle activity and balance parameters. An eight-week pilates training program has been found to have beneficial effect on static balance, flexibility, abdominal muscle endurance, abdominal and lumbar muscle activity. These parameters have no effect on balance.
Deformation behavior of welded steel sandwich panels under quasi-static loading
DOT National Transportation Integrated Search
2011-03-16
This paper summarizes basic research (i.e., testing and analysis) : conducted to examine the deformation behavior of flat-welded : steel sandwich panels under two types of quasi-static loading: : (1) uniaxial compression; and (2) bending through an i...
Magnetoacoustic Tomography with Magnetic Induction for Electrical Conductivity based Tissue imaging
NASA Astrophysics Data System (ADS)
Mariappan, Leo
Electrical conductivity imaging of biological tissue has attracted considerable interest in recent years owing to research indicating that electrical properties, especially electrical conductivity and permittivity, are indicators of underlying physiological and pathological conditions in biological tissue. Also, the knowledge of electrical conductivity of biological tissue is of interest to researchers conducting electromagnetic source imaging and in design of devices that apply electromagnetic energy to the body such as MRI. So, the need for a non-invasive, high resolution impedance imaging method is highly desired. To address this need we have studied the magnetoacoustic tomography with magnetic induction (MAT-MI) method. In MAT-MI, the object is placed in a static and a dynamic magnetic field giving rise to ultrasound waves. The dynamic field induces eddy currents in the object, and the static field leads to generation of acoustic vibrations from Lorentz force on the induced currents. The acoustic vibrations are at the same frequency as the dynamic magnetic field, which is chosen to match the ultrasound frequency range. These ultrasound signals can be measured by ultrasound probes and are used to reconstruct MAT-MI acoustic source images using possible ultrasound imaging approaches .The reconstructed high spatial resolution image is indicative of the object's electrical conductivity contrast. We have investigated ultrasound imaging methods to reliably reconstruct the MAT-MI image under the practical conditions of limited bandwidth and transducer geometry. The corresponding imaging algorithm, computer simulation and experiments are developed to test the feasibility of these different methods. Also, in experiments, we have developed a system with the strong static field of an MRI magnet and a strong pulsed magnetic field to evaluate MAT-MI in biological tissue imaging. It can be seen from these simulations and experiments that conductivity boundary images with millimeter resolution can be reliably reconstructed with MAT-MI. Further, to estimate the conductivity distribution throughout the object, we reconstruct a vector source image corresponding to the induced eddy currents. As the current source is uniformly present throughout the object, we are able to reliably estimate the internal conductivity distribution for a more complete imaging. From the computer simulations and experiments it can be seen that MAT-MI method has the potential to be a clinically applicable, high resolution, non-invasive method for electrical conductivity imaging.
Rosenblatt, Steven David; Crane, Benjamin Thomas
2015-01-01
A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.
NASA Technical Reports Server (NTRS)
Nelson, H. G.
1976-01-01
The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.
F-1 Engine for Saturn V Undergoing a Static Test
NASA Technical Reports Server (NTRS)
1964-01-01
The flame and exhaust from the test firing of an F-1 engine blast out from the Saturn S-IB Static Test Stand in the east test area of the Marshall Space Flight Center. A Cluster of five F-1 engines, located in the S-IC (first) stage of the Saturn V vehicle, provided over 7,500,000 pounds of thrust to launch the giant rocket. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
A unique facility for V/STOL aircraft hover testing
NASA Technical Reports Server (NTRS)
Culpepper, R. G.; Murphy, R. D.
1979-01-01
The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.
NASA Technical Reports Server (NTRS)
Sanchez, Christopher M.
2011-01-01
NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.
Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Bourne, N. K.; Brown, E. N.; Millett, J. C. F.; Gray, G. T.
2008-04-01
The high strain-rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in load bearing applications subject to extremes of pressure and strain rate. The current work presents two specific sets of experiments interrogating the effect of dynamic, high-pressure loading in the regime of the phase II to phase III pressure-induced crystalline phase transition in polytetrafluoroethylene (PTFE). These are gas-gun driven plate- and Taylor impact. Together these experiments highlight several effects associated with the dynamic, pressure-induced phase transitions in PTFE. An elevated release wave speed shows evidence of a pressure-induced phase change at a stress commensurate with that observed statically. It is shown that convergence between analytic derivations of release wave speed and the data requires the phase II to III transition to occur. Taylor impact is an integrated test that highlights continuum behavior that has origin in mesoscale response. There is a rapid transition from ductile to brittle behavior observed that occurs at a pressure consistent with this phase transition.
Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors
NASA Technical Reports Server (NTRS)
McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.
2003-01-01
Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.
The long-term reliability of static and dynamic quantitative sensory testing in healthy individuals.
Marcuzzi, Anna; Wrigley, Paul J; Dean, Catherine M; Adams, Roger; Hush, Julia M
2017-07-01
Quantitative sensory tests (QSTs) have been increasingly used to investigate alterations in somatosensory function in a wide range of painful conditions. The interpretation of these findings is based on the assumption that the measures are stable and reproducible. To date, reliability of QST has been investigated for short test-retest intervals. The aim of this study was to investigate the long-term reliability of a multimodal QST assessment in healthy people, with testing conducted on 3 occasions over 4 months. Forty-two healthy people were enrolled in the study. Static and dynamic tests were performed, including cold and heat pain threshold (CPT, HPT), mechanical wind-up [wind-up ratio (WUR)], pressure pain threshold (PPT), 2-point discrimination (TPD), and conditioned pain modulation (CPM). Systematic bias, relative reliability and agreement were analysed using repeated measure analysis of variance, intraclass correlation coefficients (ICCs3,1) and SE of the measurement (SEM), respectively. Static QST (CPT, HPT, PPT, and TPD) showed good-to-excellent reliability (ICCs: 0.68-0.90). Dynamic QST (WUR and CPM) showed poor-to-good reliability (ICCs: 0.35-0.61). A significant linear decrease over time was observed for mechanical QST at the back (PPT and TPD) and for CPM (P < 0.01). Static QST were stable over a period of 4 months; however, a small systematic decrease over time has been observed for mechanical QST. Dynamic QST showed considerable variability over time; in particular, CPM using PPT as the test stimulus did not show adequate reliability, suggesting that this test paradigm may be less useful for monitoring individuals over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruendell, B.D.; Barrows, E.S.; Borde, A.B.
1997-01-01
The objective of the bioassay reevaluation of the Hackensack River Federal Project was to reperform toxicity testing on proposed dredged material with current ammonia reduction protocols. Hackensack River was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were re-collected from the Hackensack River Project area in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by themore » USACE-NYD and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Hackensack River project area consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Hackensack River project area. Three composite sediments, representing each reach of the area proposed for dredging, were used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all three Hackensack River composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. Statistically significant mortality 10% over reference sediment was observed in the M. bahia static tests. 5 refs., 2 figs., 2 tabs.« less
Evaluation of dredged material proposed for ocean disposal from Arthur Kill Project Area, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruendell, B.D.; Barrows, E.S.; Borde, A.B.
1997-01-01
The objective of the bioassay reevaluation of Arthur Kill Federal Project was to reperform toxicity testing on proposed dredged material following current ammonia reduction protocols. Arthur Kill was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were recollected from the Arthur Kill Project areas in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by the USACE-NYDmore » and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Arthur Kill project areas consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Arthur Kill project area. Three composite sediments, representing each reach of the area proposed for dredging, was used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all Arthur Kill composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. M. bahia did not show statistically significant acute toxicity or a greater than 10% increase in mortality over reference sediment in static tests. 5 refs., 2 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting
2013-03-01
In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.
A short static-pressure probe design for supersonic flow
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.
1975-01-01
A static-pressure probe design concept was developed which has the static holes located close to the probe tip and is relatively insensitive to probe angle of attack and circumferential static hole location. Probes were constructed with 10 and 20 deg half-angle cone tips followed by a tangent conic curve section and a tangent cone section of 2, 3, or 3.5 deg, and were tested at Mach numbers of 2.5 and 4.0 and angles of attack up to 12 deg. Experimental results indicate that for stream Mach numbers of 2.5 and 4.0 and probe angle of attack within + or - 10 deg, values of stream static pressure can be determined from probe calibration to within about + or - 4 percent. If the probe is aligned within about 7 deg of the flow experimental results indicated, the stream static pressures can be determined to within 2 percent from probe calibration.