Sample records for station cces development

  1. Novel decomposition products of chlorophyll- a in continental shelf (Louisiana shelf) sediments: formation and transformation of carotenol chlorin esters

    NASA Astrophysics Data System (ADS)

    Chen, Nianhong; Bianchi, Thomas S.; Bland, John M.

    2003-06-01

    In April 2000, we collected box cores from five stations along a cross-shelf transect on the Louisiana (LA) continental shelf. Novel esters of carotenols and chlorins (carotenoid chlorin esters, CCEs), which are highly specific grazing markers, were identified in surface and deep sediments (>10 cm) from the LA shelf. Chlorophyll- a inventory indicated that CCEs are one of the major decay products of chlorophyll- a in shelf sediments. Abundances of total CCEs (9-18%) in surface sediments along the cross-shelf transect were comparable to the abundance of pheophytin- a, pyropheophytin- a, and total steryl chlorin esters (SCEs). Prior work has identified four CCEs which have dehydrated fucoxanthin/fucoxanthinol as a substitute alcohol of phytol. We report on four newly identified CCEs associated with nondehydrated fuxocanthin/fucoxanthinol esterified to (pyro)pheophorbide- a. These nondehydrated CCEs were generally present in lower concentrations than their dehydrated counterparts, but were detectable by atmospheric pressure chemical ionization (APCI) mass spectrometry coupled with high-performance liquid chromatography (HPLC). We attributed differences between this study and previous work to the time allowed for predepositional decay and grazing processes to occur. The rapid sedimentation of CCEs in the shallow water column (ca. 10 m) on the LA shelf allowed for effective burial of all CCEs compared to the deeper water column regions sampled by previous work. This speculation is supported by the fact that the concentrations of CCEs with nondehydrated fucoxanthin/fucoxanthinol were extremely low in sediments from the site on the outer LA shelf with a deeper (253 m) water column. We also tentatively identified an additional CCE and its isomer as fucoxanthinol didehydrate pyropheophorbide- a ester. We suggest that the formation and transformation of CCEs are primarily controlled by the following three biologically mediated reactions: demethoxycarbonylation, dehydration, and deacetylation. Our laboratory copepod grazing experiment also confirmed that CCEs can be excellent class-specific biomarkers of zooplankton grazing on phytoplankton.

  2. Genomic analysis of carboxyl/cholinesterase genes in the silkworm Bombyx mori

    PubMed Central

    2010-01-01

    Background Carboxyl/cholinesterases (CCEs) have pivotal roles in dietary detoxification, pheromone or hormone degradation and neurodevelopment. The recent completion of genome projects in various insect species has led to the identification of multiple CCEs with unknown functions. Here, we analyzed the phylogeny, expression and genomic distribution of 69 putative CCEs in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Results A phylogenetic tree of CCEs in B. mori and other lepidopteran species was constructed. The expression pattern of each B. mori CCE was also investigated by a search of an expressed sequence tag (EST) database, and the relationship between phylogeny and expression was analyzed. A large number of B. mori CCEs were identified from a midgut EST library. CCEs expressed in the midgut formed a cluster in the phylogenetic tree that included not only B. mori genes but also those of other lepidopteran species. The silkworm, and possibly also other lepidopteran species, has a large number of CCEs, and this might be a consequence of the large cluster of midgut CCEs. Investigation of intron-exon organization in B. mori CCEs revealed that their positions and splicing site phases were strongly conserved. Several B. mori CCEs, including juvenile hormone esterase, not only showed clustering in the phylogenetic tree but were also closely located on silkworm chromosomes. We investigated the phylogeny and microsynteny of neuroligins in detail, among many CCEs. Interestingly, we found the evolution of this gene appeared not to be conserved between B. mori and other insect orders. Conclusions We analyzed 69 putative CCEs from B. mori. Comparison of these CCEs with other lepidopteran CCEs indicated that they had conserved expression and function in this insect order. The analyses showed that CCEs were unevenly distributed across the genome of B. mori and suggested that neuroligins may have a distinct evolutionary history from other insect order. It is possible that such an uneven genomic distribution and a unique neuroligin evolution are shared with other lepidopteran insects. Our genomic analysis has provided novel information on the CCEs of the silkworm, which will be of value to understanding the biology, physiology and evolution of insect CCEs. PMID:20546589

  3. Novel carotenol chlorin esters in marine sediments and water column particulate matter

    NASA Astrophysics Data System (ADS)

    Goericke, Ralf; Shankle, Amy; Repeta, Daniel J.

    1999-09-01

    Novel esters of carotenols and chlorins (carotenol chlorin esters, CCEs) were found in recent sediments from the California Borderlands, Monterey Bay, and the Peru and Oman margins. The chlorins associated with CCEs were pheophorbide a and pyropheophorbide a, degradation products of chlorophyll a. Isofucoxanthin-dehydrate and isofucoxanthinol-dehydrate and possibly their isomers, degradation products of fucoxanthin, were the only carotenols associated with CCEs. This result is surprising, considering that at least 8 major degradation products of fucoxanthin are present in organic-rich marine sediments. The carotenols of CCEs are likely derived from diatoms as these are the primary source for fucoxanthin in the marine environment. In sediments studied by us, CCEs contributed approximately 10% to total solvent extractable chlorins. The high relative concentrations of CCEs in these sediments suggest that CCEs are an important degradation product of chlorophyll a in some marine environments; a pathway hitherto unrecognized. Off Oman and Southern California we found CCEs in water column suspended particulate matter when diatoms dominated the phytoplankton community. By analogy with sterol chlorin esters, we suggest that CCEs are primarily produced by enzymatically mediated transesterifications in crustaceans grazing on diatoms. We are currently studying if CCEs are biomarkers for the grazing of crustaceans on diatoms, an important pathway of carbon remineralization in the marine environment.

  4. Development and Validation of the College Campus Environment Scale (CCES): Promoting Positive College Experiences

    ERIC Educational Resources Information Center

    Fish, Marian C.; Gefen, Dalia R.; Kaczetow, Walter; Winograd, Greta; Futtersak-Goldberg, Rachel

    2016-01-01

    One of the essential factors related to student success and satisfaction with a higher education experience is the college environment in which learning takes place. The purpose of this study was to develop a scale, the College Campus Environment Scale (CCES), to measure characteristics of college campus environments valued by students. A model…

  5. Group Dynamics in the Interior Design Studio: Student Perceptions

    ERIC Educational Resources Information Center

    Hill, Caroline

    2008-01-01

    This article presents the findings of a study measuring the classroom climates in collegiate interior design studios and considers these findings within the group dynamics theory framework. Three groups of students completed the College Classroom Environment Scales (CCES) questionnaire. Five of the six CCES subscale F ratios were statistically…

  6. Predictive Value of Cumulative Blood Pressure for All-Cause Mortality and Cardiovascular Events

    NASA Astrophysics Data System (ADS)

    Wang, Yan Xiu; Song, Lu; Xing, Ai Jun; Gao, Ming; Zhao, Hai Yan; Li, Chun Hui; Zhao, Hua Ling; Chen, Shuo Hua; Lu, Cheng Zhi; Wu, Shou Ling

    2017-02-01

    The predictive value of cumulative blood pressure (BP) on all-cause mortality and cardiovascular and cerebrovascular events (CCE) has hardly been studied. In this prospective cohort study including 52,385 participants from the Kailuan Group who attended three medical examinations and without CCE, the impact of cumulative systolic BP (cumSBP) and cumulative diastolic BP (cumDBP) on all-cause mortality and CCEs was investigated. For the study population, the mean (standard deviation) age was 48.82 (11.77) years of which 40,141 (76.6%) were male. The follow-up for all-cause mortality and CCEs was 3.96 (0.48) and 2.98 (0.41) years, respectively. Multivariate Cox proportional hazards regression analysis showed that for every 10 mm Hg·year increase in cumSBP and 5 mm Hg·year increase in cumDBP, the hazard ratio for all-cause mortality were 1.013 (1.006, 1.021) and 1.012 (1.006, 1.018); for CCEs, 1.018 (1.010, 1.027) and 1.017 (1.010, 1.024); for stroke, 1.021 (1.011, 1.031) and 1.018 (1.010, 1.026); and for MI, 1.013 (0.996, 1.030) and 1.015 (1.000, 1.029). Using natural spline function analysis, cumSBP and cumDBP showed a J-curve relationship with CCEs; and a U-curve relationship with stroke (ischemic stroke and hemorrhagic stroke). Therefore, increases in cumSBP and cumDBP were predictive for all-cause mortality, CCEs, and stroke.

  7. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  8. Analysis of exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method.

    PubMed

    He, Qing; Hao, Yinping; Liu, Hui; Liu, Wenyi

    2018-01-01

    Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system.

  9. Analysis of exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method

    PubMed Central

    He, Qing; Liu, Hui; Liu, Wenyi

    2018-01-01

    Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system. PMID:29634742

  10. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W

    PubMed Central

    Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon

    2012-01-01

    During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162

  11. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Novikov, M. S.; Ivanov, D. P.; Novikov, S. I.; Shuvaev, S. A.

    2015-12-01

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20-30 kA, an operating temperature of 10-20 K, and a magnetic field on the winding of 12-15 T (prospectively ~20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet's casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  12. New Developments in Undergraduate Education in Public Health: Implications for Health Education and Health Promotion

    ERIC Educational Resources Information Center

    Barnes, Michael D.; Wykoff, Randy; King, Laura Rasar; Petersen, Donna J.

    2012-01-01

    The article provides an overview of efforts to improve public health and health education training and on the potential use of Critical Component Elements (CCEs) for undergraduate health education programs toward more consistent quality assurance across programs. Considered in the context of the Galway Consensus Conference, the authors discuss the…

  13. The Earth System Grid Center for Enabling Technologies (ESG-CET): Scaling the Earth System Grid to Petascale Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2007-09-27

    This report, which summarizes work carried out by the ESG-CET during the period April 1, 2007 through September 30, 2007, includes discussion of overall progress, period goals, highlights, collaborations and presentations. To learn more about our project, please visit the Earth System Grid website. In addition, this report will be forwarded to the DOE SciDAC project management, the Office of Biological and Environmental Research (OBER) project management, national and international stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), etc.), and collaborators. Themore » ESG-CET executive committee consists of David Bernholdt, ORNL; Ian Foster, ANL; Don Middleton, NCAR; and Dean Williams, LLNL. The ESG-CET team is a collective of researchers and scientists with diverse domain knowledge, whose home institutions include seven laboratories (ANL, LANL, LBNL, LLNL, NCAR, ORNL, PMEL) and one university (ISI/USC); all work in close collaboration with the project's stakeholders and domain researchers and scientists. During this semi-annual reporting period, the ESG-CET increased its efforts on completing requirement documents, framework design, and component prototyping. As we strove to complete and expand the overall ESG-CET architectural plans and use-case scenarios to fit our constituency's scope of use, we continued to provide production-level services to the community. These services continued for IPCC AR4, CCES, and CCSM, and were extended to include Cloud Feedback Model Intercomparison Project (CFMIP) data.« less

  14. In-School Sustainability Action: Climate Clever Energy Savers

    ERIC Educational Resources Information Center

    Buchanan, John; Schuck, Sandy; Aubusson, Peter

    2016-01-01

    The mandate for living sustainably is becoming increasingly urgent. This article reports on the Climate Clever Energy Savers (CCES) Program, a student-centred, problem- and project-based program in New South Wales, Australia, aimed at enabling school students to identify ways of reducing their schools' electricity consumption and costs. As part of…

  15. Is Collaborative, Community-Engaged Scholarship More Rigorous than Traditional Scholarship? On Advocacy, Bias, and Social Science Research

    ERIC Educational Resources Information Center

    Warren, Mark R.; Calderón, José; Kupscznk, Luke Aubry; Squires, Gregory; Su, Celina

    2018-01-01

    Contrary to the charge that advocacy-oriented research cannot meet social science research standards because it is inherently biased, the authors of this article argue that collaborative, community-engaged scholarship (CCES) must meet high standards of rigor if it is to be useful to support equity-oriented, social justice agendas. In fact, they…

  16. Method Development for Clinical Comprehensive Evaluation of Pediatric Drugs Based on Multi-Criteria Decision Analysis: Application to Inhaled Corticosteroids for Children with Asthma.

    PubMed

    Yu, Yuncui; Jia, Lulu; Meng, Yao; Hu, Lihua; Liu, Yiwei; Nie, Xiaolu; Zhang, Meng; Zhang, Xuan; Han, Sheng; Peng, Xiaoxia; Wang, Xiaoling

    2018-04-01

    Establishing a comprehensive clinical evaluation system is critical in enacting national drug policy and promoting rational drug use. In China, the 'Clinical Comprehensive Evaluation System for Pediatric Drugs' (CCES-P) project, which aims to compare drugs based on clinical efficacy and cost effectiveness to help decision makers, was recently proposed; therefore, a systematic and objective method is required to guide the process. An evidence-based multi-criteria decision analysis model that involved an analytic hierarchy process (AHP) was developed, consisting of nine steps: (1) select the drugs to be reviewed; (2) establish the evaluation criterion system; (3) determine the criterion weight based on the AHP; (4) construct the evidence body for each drug under evaluation; (5) select comparative measures and calculate the original utility score; (6) place a common utility scale and calculate the standardized utility score; (7) calculate the comprehensive utility score; (8) rank the drugs; and (9) perform a sensitivity analysis. The model was applied to the evaluation of three different inhaled corticosteroids (ICSs) used for asthma management in children (a total of 16 drugs with different dosage forms and strengths or different manufacturers). By applying the drug analysis model, the 16 ICSs under review were successfully scored and evaluated. Budesonide suspension for inhalation (drug ID number: 7) ranked the highest, with comprehensive utility score of 80.23, followed by fluticasone propionate inhaled aerosol (drug ID number: 16), with a score of 79.59, and budesonide inhalation powder (drug ID number: 6), with a score of 78.98. In the sensitivity analysis, the ranking of the top five and lowest five drugs remains unchanged, suggesting this model is generally robust. An evidence-based drug evaluation model based on AHP was successfully developed. The model incorporates sufficient utility and flexibility for aiding the decision-making process, and can be a useful tool for the CCES-P.

  17. Some Complexity Results About Packet Radio Networks

    DTIC Science & Technology

    1983-03-01

    divsio-muti-cces)schemes foP TD ^12A 1 660 SECURITY CLASSIFICATION OF THIS PAGE (ft* 60 IAD SZCURTY CLASSIFICATION Of THIS PAGE(Whan Data Entoted) -other...8217-21-. bbd bd a aK (a) (b) b-d b 0~~ C C (c) (d) Fig. 1. Situations in a PRN for which (c,d) conflicts with (a,b). -22- 12 3 3m 3m+1- 3m+2 Fig. 2. A

  18. A renewable commitment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McArthur, D.; Salaff, S.

    1997-06-01

    New initiatives favoring green power and wind energy are under way in Alberta, Quebec and Ontario. The Canadian government made a major commitment to green power in April when Anne McLellan, the federal minister of natural resources (NRCan), announced in Ottawa that the Canadian government has selected the City of Calgary Electric System (CCES) to acquire and distribute green power to certain federal buildings in Alberta. This will be the first federal procurement of its kind in Canada and the first supply of green power. NRCan will acquire up to 10 GWh per year of electricity generated by renewable sourcesmore » for NRCan buildings, while up to 3.1 GWh per year will go to Environment Canada buildings in Alberta. The announcement was made jointly by McLellan and Sergio Marchi, federal environment minister. CCES is a municipally owned distribution utility which supplies power to about 295,000 customer accounts in Calgary, whose population exceeds 750,000. While no details of the actual types of green power supply were available in late April, sources indicated that windpower was among the supply options under consideration. The Alberta Power Pool began on January 1, 1996, as a competitive wholesale pool providing the lowest cost power from competing suppliers. The pool is the most progressive and deregulated system in Canada, and now with an apparent mechanism to deliver green power, the pool could be a model for green power procurement in Canada.« less

  19. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis

    PubMed Central

    Hoy, Marjorie A.

    2016-01-01

    Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and carboxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J’ and J” clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J’ and J” clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis. PMID:27467523

  20. Characterizing the degree of convective clustering using radar reflectivity and its application to evaluating model simulations

    NASA Astrophysics Data System (ADS)

    Cheng, W. Y.; Kim, D.; Rowe, A.; Park, S.

    2017-12-01

    Despite the impact of mesoscale convective organization on the properties of convection (e.g., mixing between updrafts and environment), parameterizing the degree of convective organization has only recently been attempted in cumulus parameterization schemes (e.g., Unified Convection Scheme UNICON). Additionally, challenges remain in determining the degree of convective organization from observations and in comparing directly with the organization metrics in model simulations. This study addresses the need to objectively quantify the degree of mesoscale convective organization using high quality S-PolKa radar data from the DYNAMO field campaign. One of the most noticeable aspects of mesoscale convective organization in radar data is the degree of convective clustering, which can be characterized by the number and size distribution of convective echoes and the distance between them. We propose a method of defining contiguous convective echoes (CCEs) using precipitating convective echoes identified by a rain type classification algorithm. Two classification algorithms, Steiner et al. (1995) and Powell et al. (2016), are tested and evaluated against high-resolution WRF simulations to determine which method better represents the degree of convective clustering. Our results suggest that the CCEs based on Powell et al.'s algorithm better represent the dynamical properties of the convective updrafts and thus provide the basis of a metric for convective organization. Furthermore, through a comparison with the observational data, the WRF simulations driven by the DYNAMO large-scale forcing, similarly applied to UNICON Single Column Model simulations, will allow us to evaluate the ability of both WRF and UNICON to simulate convective clustering. This evaluation is based on the physical processes that are explicitly represented in WRF and UNICON, including the mechanisms leading to convective clustering, and the feedback to the convective properties.

  1. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3

    NASA Astrophysics Data System (ADS)

    Lee, Sungmin; Choi, Ki-Young; Lee, Sangik; Park, Bae Ho; Park, Je-Geun; Emergent Phenomena Group Team; Department of Physics, Konkuk University Collaboration

    We have investigated the tunneling transport of mono- and few-layers of MnPS3 by using conductive atomic force microscopy. Due to the band alignment of indium tin oxide/MnPS3/Pt-Ir tip junction, the key features of both Schottky junction and Fowler-Nordheim tunneling (FNT) were observed for all the samples with varying thickness. Using the FNT model and assuming the effective electron mass (0.5 me) of MnPS3, we estimate the tunneling barrier height to be 1.31 eV and the dielectric breakdown strength as 5.41 MV/cm. The work at the IBS CCES was supported by the research program of Institute for Basic Science. S.L. and B.H.P were supported by the National Research Foundation of Korea (NRF) Grants funded by the Korea government (MSIP).

  2. Thermal and optical aspects of glob-top design for phosphor converted white LED light sources

    NASA Astrophysics Data System (ADS)

    Sommer, Christian; Fulmek, Paul; Nicolics, Johann; Schweitzer, Susanne; Nemitz, Wolfgang; Hartmann, Paul; Pachler, Peter; Hoschopf, Hans; Schrank, Franz; Langer, Gregor; Wenzl, Franz P.

    2013-09-01

    For a systematic approach to improve the white light quality of phosphor converted light-emitting diodes (LEDs) for general lighting applications it is imperative to get the individual sources of error for correlated color temperature (CCT) reproducibility and maintenance under control. In this regard, it is of essential importance to understand how geometrical, optical and thermal properties of the color conversion elements (CCE), which typically consist of phosphor particles embedded in a transparent matrix material, affect the constancy of a desired CCT value. In this contribution we use an LED assembly consisting of an LED die mounted on a printed circuit board by chip-on-board technology and a CCE with a glob-top configuration on the top of it as a model system and discuss the impact of the CCE shape and size on CCT constancy with respect to substrate reflectivity and thermal load of the CCEs. From these studies, some general conclusions for improved glob-top design can be drawn.

  3. Low energy spin dynamics of rare-earth orthoferrites YFeO3 and LaFeO3

    NASA Astrophysics Data System (ADS)

    Park, Kisoo; Sim, Hasung; Leiner, Jonathan; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Yano, Shinichiro; Gardner, Jason; Park, Je-Geun

    YFeO3 and LaFeO3\\ are members of the rare-earth orthoferrites (RFeO3) family with Pbnm space group. With the strong superexchange interaction between Fe3 + ions, both compounds exhibit the room temperature antiferromagnetic order (TN >600 K) with a slight spin canting. Here we report low-energy magnetic excitation of YFeO3 and LaFeO3 using inelastic neutron scattering measurements, showing evidence of magnon mode splitting and a spin anisotropy gap at the zone center. Spin wave calculations with the spin Hamiltonian including both Dzyaloshinsky-Moriya interaction and single-ion anisotropy accounts for the observed features well. Our results offer insight into the underlying physics of other RFeO3\\ with magnetic rare-earth ions or related Fe3+-based multiferroic perovskites such as BiFeO3. The work at the IBS CCES (South Korea) was supported by the research program of the Institute for Basic Science (IBS-R009-G1).

  4. Imaging collector channel entrance with a new intraocular micro-probe swept-source optical coherence tomography.

    PubMed

    Xin, Chen; Chen, Xiaoya; Li, Meng; Shi, Yan; Wang, Huaizhou; Wang, Ruikang; Wang, Ningli

    2017-09-01

    To describe the use of a newly developed side-viewing catheter probe to provide the cross-sectional images of collector channel entrance (CCE), achieved by swept-source optical coherence tomography (SS-OCT). A side-viewing SS-OCT catheter probe was developed that has a core probe diameter of 0.15 mm and an outer diameter of 0.25 mm, for the purpose of imaging CCEs within eye globe. Cadaver eyes harvested from swine and human were used to demonstrate its feasibility. For porcine eyes, the probe imaged the CCE by accessing the region of the aqueous plexus (AP) as well as along the inner wall (IW) of the trabecular meshwork (TM). For human eyes, the CCE images were captured by placing the probe within the lumen of the Schlemm's canal (SC) and along its IW. With the optical coherence tomography (OCT) catheter probe, the CCE is well delineated as optically empty areas within the highly scattering sclera. In porcine eyes, images captured in the region of the AP demonstrate a large cavity with delicate tissue strands around the probe. The CCE can be identified at the outer margin of the AP. When imaged along the IW, the TM is discernable but difficult to be distinguished from the AP. In the human limbal regions, when placed within the lumen of the SC, the catheter probe fully occupies the potential space. TM is highly compact. The CCE can be identified at the outer wall of the SC. When imaged along the IW of TM, the SC and CCE can be identified. The intraocular SS-OCT catheter probe is feasible to provide the CCE images, indicating useful clinical applications to assist glaucoma surgery. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Effects of current crowding on light extraction efficiency of conventional GaN-based light-emitting diodes.

    PubMed

    Cao, Bin; Li, Shuiming; Hu, Run; Zhou, Shengjun; Sun, Yi; Gan, Zhiying; Liu, Sheng

    2013-10-21

    Current crowding effects (CCEs) on light extraction efficiency (LEE) of conventional GaN-based light-emitting diodes (LEDs) are analyzed through Monte Carlo ray-tracing simulation. The non-uniform radiative power distribution of the active layer of the Monte Carlo model is obtained based on the current spreading theory and rate equation. The simulation results illustrate that CCE around n-pad (n-CCE) has little effect on LEE, while CCE around p-pad (p-CCE) results in a notable LEE droop due to the significant absorption of photons emitted under p-pad. LEE droop is alleviated by a SiO₂ current blocking layer (CBL) and reflective p-pad. Compared to the conventional LEDs without CBL, the simulated LEE of LEDs with CBL at 20 A/cm² and 70 A/cm² is enhanced by 7.7% and 19.0%, respectively. It is further enhanced by 7.6% and 11.4% after employing a reflective p-pad due to decreased absorption. These enhancements are in accordance with the experimental results. Output power of LEDs with CBL is enhanced by 8.7% and 18.2% at 20 A/cm² and 70 A/cm², respectively. And the reflective p-pad results in a further enhancement of 8.9% and 12.7%.

  6. Definition of technology development missions for early space stations: Large space structures

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The testbed role of an early (1990-95) manned space station in large space structures technology development is defined and conceptual designs for large space structures development missions to be conducted at the space station are developed. Emphasis is placed on defining requirements and benefits of development testing on a space station in concert with ground and shuttle tests.

  7. Utilization of Space Station Freedom for technology research

    NASA Technical Reports Server (NTRS)

    Avery, Don E.

    1992-01-01

    Space Station Freedom presents a unique opportunity for technology developers to conduct research in the space environment. Research can be conducted in the pressurized volume of the Space Station's laboratories or attached to the Space Station truss in the vacuum of space. Technology developers, represented by the Office of Aeronautics and Space Technology (OAST), will have 12 percent of the available Space Station resources (volume, power, data, crew, etc.) to use for their research. Most technologies can benefit from research on Space Station Freedom and all these technologies are represented in the OAST proposed traffic model. This traffic model consists of experiments that have been proposed by technology developers but not necessarily selected for flight. Experiments to be flown in space will be selected through an Announcement of Opportunity (A.O.) process. The A.O. is expected to be released in August, 1992. Experiments will generally fall into one of the 3 following categories: (1) Individual technology experiments; (2) Instrumented Space Station; and (3) Guest investigator program. The individual technology experiments are those that do not instrument the Space Station nor directly relate to the development of technologies for evolution of Space Station or development of advanced space platforms. The Instrumented Space Station category is similar to the Orbiter Experiments Program and allows the technology developer to instrument subsystems on the Station or develop instrumentation packages that measure products or processes of the Space Station for the advancement of space platform technologies. The guest investigator program allows the user to request data from Space Station or other experiments for independent research. When developing an experiment, a developer should consider all the resources and infrastructure that Space Station Freedom can provide and take advantage of these to the maximum extent possible. Things like environment, accommodations, carriers, and integration should all be taken into account. In developing experiments at Langley Research Center, an iterative approach is proving useful. This approach uses Space Station utilization and subsystem experts to advise and critique experiment designs to take advantage of everything the Space Station has to offer. Also, solid object modeling and animation computer tools are used to fully visualize the experiment and its processes. This process is very useful for attached payloads and allows problems to be detected early in the experiment design phase.

  8. Space station operations task force. Panel 3 report: User development and integration

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  9. 1D spin chain of Cu2+ in Sr3CuPtO6 with possible Haldane physics

    NASA Astrophysics Data System (ADS)

    Leiner, Jonathan; Oh, Joosung; Kolesnikov, Alexander; Stone, Matthew; Le, Manh Duc; Cheong, Sang-Wook; Park, Je-Geun

    Antiferromagnetic spin chain systems have attracted considerable attention since the discovery of fractional spinon excitations in spin-half chain systems and Haldane gap phases in spin-one chain systems. It has been reported from bulk susceptibility and heat capacity measurements that the magnetic Cu2+ ions in Sr3CuPtO6 exhibit S=1/2 Heisenberg spin chain behavior with a substantial amount of AFM interchain coupling. Using the modern time-of-flight inelastic neutron scattering spectrometer SEQUOIA at the SNS, we have probed the magnetic excitation spectrum for a polycrystalline sample of Sr3CuPtO6. Modeling with linear spin wave theory accounts for the major features of the spinwave spectra, including a nondispersive intense magnon band at 8meV. The magnetic excitations broaden considerably as temperature is increased, persisting up to above 100K and displaying a broad transition as previously seen in the susceptibility data. No spin gap is observed in the dispersive spin excitations at low momentum transfer, which we argue is consistent with Haldane physics in an ideal uniform S=1/2 spin-chain system. The work at the IBS CCES (South Korea) was supported by the research program of the Institute for Basic Science (IBS-R009-G1). Research at the Spallation Neutron Source was sponsored by the Scientific User Facilities Division, US Department of Energy.

  10. The formation of a cold-core eddy in the East Australian Current

    NASA Astrophysics Data System (ADS)

    Macdonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.

    2016-02-01

    Cold-core eddies (CCEs) frequently form in western boundary currents and can affect continental shelf processes. It is not always clear, however, if baroclinic or barotropic instabilities contribute more to their formation. The Regional Ocean Modelling System (ROMS) is used to investigate the ocean state during the formation of a CCE in the East Australian Current (EAC) during October 2009. The observed eddy initially appeared as a small billow (approx. 50 km in length) that perturbed the landward edge of the EAC. The billow grew into a mesoscale CCE (approx. 100 km in diameter), diverting the EAC around it. A ROMS simulation with a realistic wind field reproduced a similar eddy. This eddy formed from negative vorticity waters found on the continental shelf south of the EAC separation point. A sensitivity analysis is performed whereby the impact of 3 different wind forcing scenarios, upwelling, downwelling, and no winds, are investigated. A CCE formed in all wind scenarios despite the wind induced changes in hydrographic conditions in the continental shelf and slope waters. As such, the source of energy for eddy formation did not come from the interactions of wind with the continental shelf waters. Analysis of strain and energy transformation confirms this by showing that the prevailing source of CCE energy was kinetic energy of the offshore EAC. These results clearly link the formation of the CCE to the swift flowing EAC and barotropic instabilities.

  11. Workshop on Instructional Features and Instructor/Operator Station Design for Training Systems.

    ERIC Educational Resources Information Center

    Ricard, G. L., Ed.; And Others

    These 19 papers review current research and development work related to the operation of the instructor's station of training systems, with emphasis on developing functional station specifications applicable to a variety of simulation-based training situations. Topics include (1) instructional features; (2) instructor/operator station research and…

  12. Kindergarten Stations for Interest and Skill Learning.

    ERIC Educational Resources Information Center

    1972

    An instructional plan for kindergarten involving learning or interest centers is presented. The plan involves the development of stations for individual interest and skill development, including testing of readiness tasks. The teacher must plan the activities for each station. In classsrooms with only one teacher, only one station should be set up…

  13. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  14. Design and development of electric vehicle charging station equipped with RFID

    NASA Astrophysics Data System (ADS)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  15. Space Station end effector strategy study

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Jensen, Robert L.; Willshire, Kelli F.; Satterthwaite, Robert E.

    1987-01-01

    The results of a study are presented for terminology definition, identification of functional requirements, technolgy assessment, and proposed end effector development strategies for the Space Station Program. The study is composed of a survey of available or under-developed end effector technology, identification of requirements from baselined Space Station documents, a comparative assessment of the match between technology and requirements, and recommended strategies for end effector development for the Space Station Program.

  16. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  17. Unpressurized Logistics Carriers for the International Space Station: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Robbins, William W., Jr.

    1999-01-01

    The International Space Station has been in development since 1984, and has recently begun on orbit assembly. Most of the hardware for the Space Station has been manufactured and the rest is well along in design. The major sets of hardware that are still to be developed for Space Station are the pallets and interfacing hardware for resupply of unpressurized spares and scientific payloads. Over the last ten years, there have been numerous starts, stops, difficulties and challenges encountered in this effort. The Space Station program is now entering the beginning of orbital operations. The Program is only now addressing plans to design and build the carriers that will be needed to carry the unpressurized cargo for the Space Station lifetime. Unpressurized carrier development has been stalled due to a broad range of problems that occurred over the years. These problems were not in any single area, but encompassed budgetary, programmatic, and technical difficulties. Some lessons of hindsight can be applied to developing carriers for the Space Station. Space Station teams are now attempting to incorporate the knowledge gained into the current development efforts for external carriers. In some cases, the impacts of these lessons are unrecoverable for Space Station, but can and should be applied to future programs. This paper examines the progress and problems to date with unpressurized carrier development identifies the lessons to be learned, and charts the course for finally accomplishing the delivery of these critical hardware sets.

  18. Space Station - An integrated approach to operational logistics support

    NASA Technical Reports Server (NTRS)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  19. A manned-machine space station construction concept

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Dorsey, J. T.; Rhodes, M. D.

    1984-01-01

    A design concept for the construction of a permanent manned space station is developed and discussed. The main considerations examined in developing the design concept are: (1) the support structure of the station be stiff enough to preclude the need for an elaborate on-orbit system to control structural response, (2) the station support structure and solar power system be compatible with existing technology, and (3) the station be capable of growing in a systematic modular fashion. The concept is developed around the assembly of truss platforms by pressure-suited astronauts operating in extravehicular activity (EVA), assisted by a machine (Assembly and Transport Vehicle, ATV) to position the astronauts at joint locations where they latch truss members in place. The ATV is a mobile platform that is attached to and moves on the station support structure using pegs attached to each truss joint. The operation of the ATV is described and a number of conceptual configurations for potential space stations are developed.

  20. Modular space station, phase B extension. Information management advanced development. Volume 5: Software assembly

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The development of uniform computer program standards and conventions for the modular space station is discussed. The accomplishments analyzed are: (1) development of computer program specification hierarchy, (2) definition of computer program development plan, and (3) recommendations for utilization of all operating on-board space station related data processing facilities.

  1. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  2. Space Station Program implications from the viewpoint of the Space Station Operations Task Force

    NASA Technical Reports Server (NTRS)

    Paules, Granville E.; Lyman, Peter; Shelley, Carl B.

    1987-01-01

    An operational concept for the Space Station which has been developed by the Space Station Operations Task Force is described. The operations functions are described, and the relationships of these functions to the overall framework for operations are defined. Product flows for the recommended framework are discussed, and the roles and responsibilities for the proposed operations organization during both the development and the mature operations phases of the Space Station Program are examined.

  3. Space Station data system analysis/architecture study. Task 1: Functional requirements definition, DR-5

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The initial task in the Space Station Data System (SSDS) Analysis/Architecture Study is the definition of the functional and key performance requirements for the SSDS. The SSDS is the set of hardware and software, both on the ground and in space, that provides the basic data management services for Space Station customers and systems. The primary purpose of the requirements development activity was to provide a coordinated, documented requirements set as a basis for the system definition of the SSDS and for other subsequent study activities. These requirements should also prove useful to other Space Station activities in that they provide an indication of the scope of the information services and systems that will be needed in the Space Station program. The major results of the requirements development task are as follows: (1) identification of a conceptual topology and architecture for the end-to-end Space Station Information Systems (SSIS); (2) development of a complete set of functional requirements and design drivers for the SSIS; (3) development of functional requirements and key performance requirements for the Space Station Data System (SSDS); and (4) definition of an operating concept for the SSIS. The operating concept was developed both from a Space Station payload customer and operator perspective in order to allow a requirements practicality assessment.

  4. A distributed planning concept for Space Station payload operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey

    1994-01-01

    The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.

  5. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.

  6. Raising the AIQ of the Space Station

    NASA Technical Reports Server (NTRS)

    Lum, Henry; Heer, Ewald

    1987-01-01

    Expert systems and robotics technologies are to be significantly advanced during the Space Station program. Artificial intelligence systems (AI) on the Station will include 'scars', which will permit upgrading the AI capabilities as the Station evolves to autonomy. NASA-Ames is managing the development of the AI systems through a series of demonstrations, the first, controlling a single subsystem, to be performed in 1988. The capabilities being integrated into the first demonstration are described; however, machine learning and goal-driven natural language understanding will not reach a prototype stage until the mid-1990s. Steps which will be taken to endow the computer systems with the ability to move from heuristic reasoning to factual knowledge, i.e., learning from experience, are explored. It is noted that the development of Space Station expert systems depends on the development of experts in Station operations, which will not happen until the Station has been used extensively by crew members.

  7. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  8. Space station, 1959 to . .

    NASA Astrophysics Data System (ADS)

    Butler, G. V.

    1981-04-01

    Early space station designs are considered, taking into account Herman Oberth's first space station, the London Daily Mail Study, the first major space station design developed during the moon mission, and the Manned Orbiting Laboratory Program of DOD. Attention is given to Skylab, new space station studies, the Shuttle and Spacelab, communication satellites, solar power satellites, a 30 meter diameter radiometer for geological measurements and agricultural assessments, the mining of the moons, and questions of international cooperation. It is thought to be very probable that there will be very large space stations at some time in the future. However, for the more immediate future a step-by-step development that will start with Spacelab stations of 3-4 men is envisaged.

  9. NASA space station automation: AI-based technology review

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  10. Suggestions and Procedures for Developing Teaching-Learning Stations. Revised.

    ERIC Educational Resources Information Center

    Hendren, Travis E.; Bryant, C. Douglas

    This booklet is a collection of outlines for various teaching-learning stations which were developed by 21 teachers during a three-week institute held in 1972 at Barnardsville, North Carolina. The purposes for such stations, which can be developed inexpensively by students and teachers on school property, are: (1) to create outdoor and…

  11. SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2011-04-02

    This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators andmore » stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.« less

  12. Central station market development strategies for photovoltaics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Federal market development strategies designed to accelerate the market penetration of central station applications of photovoltaic energy system are analyzed. Since no specific goals were set for the commercialization of central station applications, strategic principles are explored which, when coupled with specific objectives for central stations, can produce a market development implementation plan. The study includes (1) background information on the National Photovoltaic Program, photovoltaic technology, and central stations; (2) a brief market assessment; (3) a discussion of the viewpoints of the electric utility industry with respect to solar energy; (4) a discussion of commercialization issues; and (5) strategy principles. It is recommended that a set of specific goals and objectives be defined for the photovoltaic central station program, and that these goals and objectives evolve into an implementation plan that identifies the appropriate federal role.

  13. Central station market development strategies for photovoltaics

    NASA Astrophysics Data System (ADS)

    1980-11-01

    Federal market development strategies designed to accelerate the market penetration of central station applications of photovoltaic energy system are analyzed. Since no specific goals were set for the commercialization of central station applications, strategic principles are explored which, when coupled with specific objectives for central stations, can produce a market development implementation plan. The study includes (1) background information on the National Photovoltaic Program, photovoltaic technology, and central stations; (2) a brief market assessment; (3) a discussion of the viewpoints of the electric utility industry with respect to solar energy; (4) a discussion of commercialization issues; and (5) strategy principles. It is recommended that a set of specific goals and objectives be defined for the photovoltaic central station program, and that these goals and objectives evolve into an implementation plan that identifies the appropriate federal role.

  14. KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  15. Space Station needs, attributes and architectural options. Volume 2, book 1, part 1: Mission requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The baseline mission model used to develop the space station mission-related requirements is described as well as the 90 civil missions that were evaluated, (including the 62 missions that formed the baseline model). Mission-related requirements for the space station baseline are defined and related to space station architectural development. Mission-related sensitivity analyses are discussed.

  16. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  17. Space station full-scale docking/berthing mechanisms development

    NASA Technical Reports Server (NTRS)

    Burns, Gene C.; Price, Harold A.; Buchanan, David B.

    1988-01-01

    One of the most critical operational functions for the space station is the orbital docking between the station and the STS orbiter. The program to design, fabricate, and test docking/berthing mechanisms for the space station is described. The design reflects space station overall requirements and consists of two mating docking mechanism halves. One half is designed for use on the shuttle orbiter and incorporates capture and energy attenuation systems using computer controlled electromechanical actuators and/or attenuators. The mating half incorporates a flexible feature to allow two degrees of freedom at the module-to-module interface of the space station pressurized habitat volumes. The design concepts developed for the prototype units may be used for the first space station flight hardware.

  18. Growth requirements for multidiscipline research and development on the evolutionary space station

    NASA Technical Reports Server (NTRS)

    Meredith, Barry; Ahlf, Peter; Saucillo, Rudy; Eakman, David

    1988-01-01

    The NASA Space Station Freedom is being designed to facilitate on-orbit evolution and growth to accommodate changing user needs and future options for U.S. space exploration. In support of the Space Station Freedom Program Preliminary Requirements Review, The Langley Space Station Office has identified a set of resource requirements for Station growth which is deemed adequate for the various evolution options. As part of that effort, analysis was performed to scope requirements for Space Station as an expanding, multidiscipline facility for scientific research, technology development and commercial production. This report describes the assumptions, approach and results of the study.

  19. Apollo experience report: Crew station integration. Volume 1: Crew station design and development

    NASA Technical Reports Server (NTRS)

    Allen, L. D.; Nussman, D. A.

    1976-01-01

    An overview of the evolution of the design and development of the Apollo command module and lunar module crew stations is given, with emphasis placed on the period from 1964 to 1969. The organizational planning, engineering techniques, and documentation involved are described, and a detailed chronology of the meetings, reviews, and exercises is presented. Crew station anomalies for the Apollo 7 to 11 missions are discussed, and recommendations for the solution of recurring problems of crew station acoustics, instrument glass failure, and caution and warning system performance are presented. Photographs of the various crew station configurations are also provided.

  20. Research on station management in subway operation safety

    NASA Astrophysics Data System (ADS)

    Li, Yiman

    2017-10-01

    The management of subway station is an important part of the safe operation of urban subway. In order to ensure the safety of subway operation, it is necessary to study the relevant factors that affect station management. In the protection of subway safety operations on the basis of improving the quality of service, to promote the sustained and healthy development of subway stations. This paper discusses the influencing factors of subway operation accident and station management, and analyzes the specific contents of station management security for subway operation, and develops effective suppression measures. It is desirable to improve the operational quality and safety factor for subway operations.

  1. Space station evolution: Planning for the future

    NASA Technical Reports Server (NTRS)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-01-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  2. Space station evolution: Planning for the future

    NASA Astrophysics Data System (ADS)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-06-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  3. Definition of technology development missions for early space station satellite servicing, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  4. GSFC Technology Development Center Report

    NASA Technical Reports Server (NTRS)

    Himwich, Ed; Gipson, John

    2013-01-01

    This report summarizes the activities of the GSFC Technology Development Center (TDC) for 2012 and forecasts planned activities for 2013. The GSFC TDC develops station software including the Field System (FS), scheduling software (SKED), hardware including tools for station timing and meteorology, scheduling algorithms, and operational procedures. It provides a pool of individuals to assist with station implementation, check-out, upgrades, and training.

  5. Development, deployment, and evaluation of a remote monitoring system and a virtual weigh station : final report.

    DOT National Transportation Integrated Search

    2005-11-01

    In order to extend commercial vehicle enforcement coverage to routes that are not monitored by fixed weigh stations, Kentucky has developed and implemented a Remote Monitoring System (RMS) and a Virtual Weight Station (VWS). The RMS captures images o...

  6. Modular space station phase B extension integrated ground operations

    NASA Technical Reports Server (NTRS)

    Selegue, D. F.

    1971-01-01

    Requirements for development test, manufacturing, facilities, GSE, training, logistics support, and launch operations are described. The prime integrating requirement is the early establishment of a common data base and its use throughout the design, development, and operational life of the station. The common data base is defined, and the concept of its use is presented. Development requirements for the station modules and subsystems are outlined along with a master development phasing chart.

  7. International Space Station Environmental Control and Life Support System On-Orbit Station Development Test Objective Status

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Lewis, John F.; Gentry, Gregory

    2003-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the ECLS System On-Orbit Station Development Test Objective (SDTO) status from the start of assembly until the end of February 2003.

  8. Applicability of NASA Polar Technologies to British Antarctic Survey Halley VI Research Station

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    From 1993 through 1997 NASA and the National Science Foundation (NSF), developed a variety of environmental infrastructure technologies for use at the Amundsen-Scott South Pole Station. The objective of this program was to reduce the cost of operating the South Pole Station, reduce the environmental impact of the Station, and to increase the quality of life for Station inhabitants. The result of this program was the development of a set of sustainability technologies designed specifically for Polar applications. In the intervening eight years many of the technologies developed through this program have been commercialized and tested in extreme environments and are now available for use throughout Antarctica and circumpolar north. The objective of this document is to provide information covering technologies that might also be applicable to the British Antarctic Survey s (BAS) proposed new Halley VI Research Station. All technologies described are commercially available.

  9. A comparative analysis of high-speed rail station development into destination and multi-use facilities : the case of San Jose Diridon.

    DOT National Transportation Integrated Search

    2017-02-01

    As a burgeoning literature on high-speed rail development indicates, good station-area planning is a very important prerequisite for the eventual successful operation of a high-speed rail station; it can also trigger opportunities for economic develo...

  10. Integration of transit and land use : a study of Los Angeles rail transit stations

    DOT National Transportation Integrated Search

    2003-01-01

    This study focuses on transit-oriented development at rail transit stations in Los Angeles. It reviews the development of rail transit and land use in Los Angeles and looks at four specific station sites to see what is contributing to or hindering tr...

  11. Manned remote work station development article, executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The mission requirements for the manned remote work station (MRWS) flight article and the manned remote work station open cherry picker development test article is defined. Considerations are given for the near, mid, and far term use of the MRWS with emphasis on its ultimate application: constructing the Solar Power Satellite.

  12. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  13. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  14. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  15. KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  16. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  17. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  18. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  19. KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  20. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  1. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  2. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  3. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  4. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  5. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  6. KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  7. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  8. Proven, long-life hydrogen/oxygen thrust chambers for space station propulsion

    NASA Technical Reports Server (NTRS)

    Richter, G. P.; Price, H. G.

    1986-01-01

    The development of the manned space station has necessitated the development of technology related to an onboard auxiliary propulsion system (APS) required to provide for various space station attitude control, orbit positioning, and docking maneuvers. A key component of this onboard APS is the thrust chamber design. To develop the required thrust chamber technology to support the Space Station Program, the NASA Lewis Research Center has sponsored development programs under contracts with Aerojet TechSystems Company and with Bell Aerospace Textron Division of Textron, Inc. During the NASA Lewis sponsored program with Aerojet TechSystems, a 25 lb sub f hydrogen/oxygen thruster has been developed and proven as a viable candidate to meet the needs of the Space Station Program. Likewise, during the development program with Bell Aerospace, a 50 lb sub f hydrogen/oxygen Thrust Chamber has been developed and has demonstrated reliable, long-life expectancy at anticipated space station operating conditions. Both these thrust chambers were based on design criteria developed in previous thruster programs and successfully verified in experimental test programs. Extensive thermal analyses and models were used to design the thrusters to achieve total impulse goals of 2 x 10 to the 6th power lb sub f-sec. Test data for each thruster will be compared to the analytical predictions for the performance and heat transfer characteristics. Also, the results of thrust chamber life verification tests will be presented.

  9. Power components for the Space Station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of the Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  10. Power components for the space station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  11. Space station needs, attributes and architectural options study. Briefing material, mid-term review

    NASA Technical Reports Server (NTRS)

    1982-01-01

    User mission requirements and their relationship to the current space transportation system are examined as a means of assuring the infusion of corporate ideas and knowledge in the space station program. Specific tasks include developing strategies to develop user consistency; determine DOD implication and requirements; and foster industry involvement in the space station. Mission alternatives; accrued benefits; program options; system attributes and characteristics; and a recommended plan for space station evolution are covered.

  12. Preparedness of fire safety in underground train station: Comparison between train operators in Malaysia with other operators from the developed countries

    NASA Astrophysics Data System (ADS)

    Tajedi, Noor Aqilah A.; Sukor, Nur Sabahiah A.; Ismail, Mohd Ashraf M.; Shamsudin, Shahrul A.

    2017-10-01

    The purpose of this paper is to compare the fire evacuation plan and preparation at the underground train stations in the different countries. The methodology for this study was using the extended questionnaire survey to investigate the Rapid Rail Sdn Bhd, Malaysia's fire safety plan and preparation at the underground train stations. There were four sections in the questionnaire which included (i) background of the respondents, (ii) the details on the train stations, safety instruction and fire evacuation exercises (iii) technical systems, installation and equipment at the underground stations and (iv) procedures and technical changes related to fire safety that had been applied by the operators. Previously, the respondents from the different train operator services in the developed countries had completed the questionnaires. This paper extends the response from the Rapid Rail Sdn Bhd to compare the emergency procedures and preparation for fire event with the developed countries. As a result, this study found that the equipment and facilities that provided at the underground train stations that operated by Rapid Rail are relevant for fire safety procedures and needs. The main advantage for Rapid Rail is the underground stations were designed with two or more entrances/exits that may perform better evacuation compare to one main entrance/exit train stations in the other developed countries.

  13. Space Station Software Issues

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor); Beskenis, S. (Editor)

    1985-01-01

    Issues in the development of software for the Space Station are discussed. Software acquisition and management, software development environment, standards, information system support for software developers, and a future software advisory board are addressed.

  14. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Science.gov Websites

    will bring station costs down. Hydrogen infrastructure is also developing for buses, medium- and heavy . Infrastructure Development Learn about developing hydrogen fueling infrastructure. Maps & Data U.S

  15. Beyond the Baseline: Proceedings of the Space Station Evolution Symposium. Volume 2, Part 2; Space Station Freedom Advanced Development Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems. This publication consists of two volumes. Volume 1 contains the results of the advanced system studies with the emphasis on reference evolution configurations, system design requirements and accommodations, and long-range technology projections. Volume 2 reports on advanced development tasks within the Transition Definition Program. Products of these tasks include: engineering fidelity demonstrations and evaluations on Station development testbeds and Shuttle-based flight experiments; detailed requirements and performance specifications which address advanced technology implementation issues; and mature applications and the tools required for the development, implementation, and support of advanced technology within the Space Station Freedom Program.

  16. Space station needs, attributes, and architectural options: Technology development

    NASA Technical Reports Server (NTRS)

    Robert, A. C.

    1983-01-01

    The technology development of the space station is examined as it relates to space station growth and equipment requirements for future missions. Future mission topics are refined and used to establish a systems data base. Technology for human factors engineering, space maintenance, satellite design, and laser communications and tracking is discussed.

  17. A comparative analysis of high speed rail station development into destination and/or multi-use facilities : the case of San Jose Diridon.

    DOT National Transportation Integrated Search

    2017-02-01

    As a burgeoning literature on high-speed rail development indicates, good station-area planning is a very important prerequisite for the : eventual successful operation of a high-speed rail station; it can also trigger opportunities for economic deve...

  18. The NORSTAR Program: Space shuttle to space station

    NASA Technical Reports Server (NTRS)

    Fortunato, Ronald C.

    1988-01-01

    The development of G-325, the first high school student-run space flight project, is updated. An overview is presented of a new international program, which involves students from space station countries who will be utilizing Get Away Special technology to cooperatively develop a prototype experiment for controlling a space station research module environment.

  19. Improving Aircraft Refueling Procedures at Naval Air Station Oceana

    DTIC Science & Technology

    2012-06-01

    Station (NAS) Oceana, VA, using aircraft waiting time for fuel as a measure of performance. We develop a computer-assisted discrete-event simulation to...Station (NAS) Oceana, VA, using aircraft waiting time for fuel as a measure of performance. We develop a computer-assisted discrete-event simulation...server queue, with general interarrival and service time distributions gpm Gallons per minute JDK Java development kit M/M/1 Single-server queue

  20. Space station functional relationships analysis

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied, Barbra R.

    1988-01-01

    A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

  1. Report on the findings of the Japanese Investigative Team on US Space Station Design (Keidanren)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The objectives, itinerary and results of the Japanese Investigative Team on U.S. Space Station Design (Keidanren), consisting of members of the Space Development Promotion Council and representatives of Japanese industries involved in Japan's space station development effort are presented. This team visited NASA facilities in February, 1985. The objectives of the study team are to gather information on preliminary design efforts toward space station planning in Japan and the promotion of Japanese space related industries, as well as the evaluation of the present status of space environment exploitation in the U.S. This report is intended to be a basic reference for government agencies and industry in addressing the course of action to be taken in the future development of Japan's space station participation.

  2. Space station experiment definition: Long-term cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Jetley, R. L.; Scarlotti, R. D.

    1987-01-01

    The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.

  3. Space Station Mission Planning System (MPS) development study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Klus, W. J.

    1987-01-01

    The basic objective of the Space Station (SS) Mission Planning System (MPS) Development Study was to define a baseline Space Station mission plan and the associated hardware and software requirements for the system. A detailed definition of the Spacelab (SL) payload mission planning process and SL Mission Integration Planning System (MIPS) software was derived. A baseline concept was developed for performing SS manned base payload mission planning, and it was consistent with current Space Station design/operations concepts and philosophies. The SS MPS software requirements were defined. Also, requirements for new software include candidate programs for the application of artificial intelligence techniques to capture and make more effective use of mission planning expertise. A SS MPS Software Development Plan was developed which phases efforts for the development software to implement the SS mission planning concept.

  4. Large Deployable Reflector (LDR) system concept and technology definition study. Analysis of space station requirements for LDR

    NASA Astrophysics Data System (ADS)

    Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.

    1989-04-01

    A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.

  5. Large Deployable Reflector (LDR) system concept and technology definition study. Analysis of space station requirements for LDR

    NASA Technical Reports Server (NTRS)

    Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.

    1989-01-01

    A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.

  6. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    USGS Publications Warehouse

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  7. Space Station Freedom. A Foothold on the Future.

    ERIC Educational Resources Information Center

    David, Leonard

    This booklet describes the planning of the space station program. Sections included are: (1) "Introduction"; (2) "A New Era Begins" (discussing scientific experiments on the space station); (3) "Living in Space"; (4) "Dreams Fulfilled" (summarizing the history of the space station development, including the…

  8. Space Station Engineering and Technology Development. Proceedings of the Panel on Program Performance and Onboard Mission Control

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.

  9. Modelling and simulation of Space Station Freedom berthing dynamics and control

    NASA Technical Reports Server (NTRS)

    Cooper, Paul A.; Garrison, James L., Jr.; Montgomery, Raymond C.; Wu, Shih-Chin; Stockwell, Alan E.; Demeo, Martha E.

    1994-01-01

    A large-angle, flexible, multibody, dynamic modeling capability has been developed to help validate numerical simulations of the dynamic motion and control forces which occur during berthing of Space Station Freedom to the Shuttle Orbiter in the early assembly flights. This paper outlines the dynamics and control of the station, the attached Shuttle Remote Manipulator System, and the orbiter. The simulation tool developed for the analysis is described and the results of two simulations are presented. The first is a simulated maneuver from a gravity-gradient attitude to a torque equilibrium attitude using the station reaction control jets. The second simulation is the berthing of the station to the orbiter with the station control moment gyros actively maintaining an estimated torque equilibrium attitude. The influence of the elastic dynamic behavior of the station and of the Remote Manipulator System on the attitude control of the station/orbiter system during each maneuver was investigated. The flexibility of the station and the arm were found to have only a minor influence on the attitude control of the system during the maneuvers.

  10. GSFC contamination monitors for Space Station

    NASA Technical Reports Server (NTRS)

    Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.

    1988-01-01

    This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.

  11. Space station needs, attributes and architectural options: Study summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space station needs, attributes, and architectural options that affect the future implementation and design of a space station system are examined. Requirements for candidate missions are used to define functional attributes of a space station. Station elements that perform these functions form the basic station architecture. Alternative ways to accomplish these functions are defined and configuration concepts are developed and evaluated. Configuration analyses are carried to the point that budgetary cost estimates of alternate approaches could be made. Emphasis is placed on differential costs for station support elements and benefits that accrue through use of the station.

  12. KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  13. KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  14. Space Station engineering and technology development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Historical background, costs, organizational assignments, technology development, user requirements, mission evolution, systems analyses and design, systems engineering and integration, contracting, and policies of the space station are discussed.

  15. Personnel occupied woven envelope robot power

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Human Occupied Space Teleoperator (HOST) system currently under development utilizes a flexible tunnel/Stewart table structure to provide crew access to a pressurized manned work station or POD on the space station without extravehicular activity (EVA). The HOST structure facilitates moving a work station to multiple space station locations. The system has applications to orbiter docking, space station assembly, satellite servicing, space station maintenance, and logistics support. The conceptual systems design behind HOST is described in detail.

  16. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  17. A comparative analysis of high-speed rail station development into destination and multi-use facilities : the case of San Jose Diridon [summary].

    DOT National Transportation Integrated Search

    2017-02-01

    The authors reviewed the literature on planning intermodal transit facilities, extracting recommendations about station and station-area design and land uses, operation of transportation services, and policy actions for station-area planning. They al...

  18. International Space Station (ISS)

    NASA Image and Video Library

    1997-07-20

    Photograph shows the International Space Station Laboratory Module under fabrication at Marshall Space Flight Center (MSFC), Building 4708 West High Bay. Although management of the U.S. elements for the Station were consolidated in 1994, module and node development continued at MSFC by Boeing Company, the prime contractor for the Space Station.

  19. Standardized Curriculum for Service Station Retailing.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for service station retailing was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all service station retailing programs in the state. The guide contains objectives for service station retailing I and II courses.…

  20. The Impact of Satellites on Cable Communications.

    ERIC Educational Resources Information Center

    Chayes, Abram

    Two recent developments in communications satellite technology may speed the coming of cable TV (CATV) networks. First, increases in satellite power are reducing the cost of ground stations. Second, a connection between one ground station, the satellite, and any other ground station is no longer necessarily fixed. Now one station can communicate…

  1. Perspectives on energy storage wheels for space station application

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1984-01-01

    Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.

  2. The search for forest facts: a history of the Pacific Southwest Forest and Range Experiment Station, 1926–2000

    Treesearch

    Anthony Godfrey

    2013-01-01

    In 1926, the California Forest Experiment Station, which later became the Pacific Southwest (PSW) Research Station, was established at the University of California, Berkeley. Today, the PSW Research Station represents the research and development branch of the USDA Forest Service in California and Hawaii and the U.S.-affiliated Pacific Islands. The PSW Research Station...

  3. Space Station technology testbed: 2010 deep space transport

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and telepresence/kinetic processes), (3) subsystem tests of advanced nuclear power, nuclear propulsion and communication systems (using boom extensions, remote station-keeping platforms and mobile EVA crew and robots), and (4) logistics support (crew and equipment) and command and control of deep space transport assembly, maintenance, and refueling (using a station-keeping platform).

  4. Technical issues in the conduct of large space platform experiments in plasma physics and geoplasma sciences

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.

    1986-01-01

    Large, permanently-manned space platforms can provide exciting opportunities for discoveries in basic plasma and geoplasma sciences. The potential for these discoveries will depend very critically on the properties of the platform, its subsystems, and their abilities to fulfill a spectrum of scientific requirements. With this in mind, the planning of space station research initiatives and the development of attendant platform engineering should allow for the identification of critical science and technology issues that must be clarified far in advance of space station program implementation. An attempt is made to contribute to that process, with a perspective that looks to the development of the space station as a permanently-manned Spaceborne Ionospheric Weather Station. The development of this concept requires a synergism of science and technology which leads to several critical design issues. To explore the identification of these issues, the development of the concept of an Ionospheric Weather Station will necessarily touch upon a number of diverse areas. These areas are discussed.

  5. Definition of technology development missions for early space station satellite servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  6. Space station structures development

    NASA Technical Reports Server (NTRS)

    Teller, V. B.

    1986-01-01

    A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.

  7. Modular space station phase B extension period executive summary

    NASA Technical Reports Server (NTRS)

    Tischler, A. A.; Could, C. L.

    1972-01-01

    A narrative summary is presented of technical, programmatic, and planning information developed during the space station definition study extension period. The modular space station is emphasized, but tasks pertaining to shuttle sorties missions and information management advanced development are included. A series of program options considering technical, schedule, and programmatic alternatives to the baseline program are defined and evaluated.

  8. Conceptual design and evaluation of selected Space Station concepts, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space Station configuration concepts are defined to meet the NASA Headquarters Concept Development Group (CDG) requirements. Engineering and programmatic data are produced on these concepts suitable for NASA and industry dissemination. A data base is developed for input to the CDG's evaluation of generic Space Station configurations and for use in the critique of the CDG's generic configuration evaluation process.

  9. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  10. Wireless sensor network

    NASA Astrophysics Data System (ADS)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  11. Status of coral reef species at Chabahar Bay, Sistan and Baluchistan, Iran.

    PubMed

    Teymour, Rad A; Sanjani, M S

    2010-04-15

    This study was carried out in the coral growing zone at Chabahar Bay where it located at 25 degrees 17' N and 60 degrees 36'E. It is called horseshoe Bay, because of its semicircle shape. Some destroyer factors have been affected on the health of coral reefs in Chabahar Bay. Port constructions, dredging operations, spearfishing, anchorages and scuba diving activities were distinguished as the most important problems of coral reef in Chabahar Bay. This study was conducted in order to access Semi-Qualitative Indexes of corals in different areas of Chabahar Bay. Five stations were chosen in east and north part of the Bay, where the most construction activities happened. Rectangular Transect and CoralWatch Racket were used to determine the status of the corals. During study, two classes of Hexacoralia and Octocoralia with 15 families were recorded. Twenty one species of hard coral and 10 species of soft coral were recorded. Hexacoralia was recorded the higher number of family with 10 families and 21 species and Octocoralia was recorded the lower with 5 families and 10 species. Hard corals were dominant. The ranges of qualitative indexes showed, of five stations, three of them (stations 2, 4, 5) showed Good Development and two stations (stations 1, 3) showed Fair Development. For the Condition Index, two stations showed Good Condition (stations 1, 5) and two stations showed Fair Condition (stations 2, 3). Only station 4 showed Poor Condition. The ranges of the Succession Index Showed, four stations (stations 1, 2, 3, 4) were in Very poor Succession and one station (stations 5) showed Poor Succession.

  12. The TAVERNS emulator: An Ada simulation of the space station data communications network and software development environment

    NASA Technical Reports Server (NTRS)

    Howes, Norman R.

    1986-01-01

    The Space Station DMS (Data Management System) is the onboard component of the Space Station Information System (SSIS) that includes the computers, networks and software that support the various core and payload subsystems of the Space Station. TAVERNS (Test And Validation Environment for Remote Networked Systems) is a distributed approach for development and validation of application software for Space Station. The TAVERNS concept assumes that the different subsystems will be developed by different contractors who may be geographically separated. The TAVERNS Emulator is an Ada simulation of a TAVERNS on the ASD VAX. The software services described in the DMS Test Bed User's Manual are being emulated on the VAX together with simulations of some of the core subsystems and a simulation of the DCN. The TAVERNS Emulator will be accessible remotely from any VAX that can communicate with the ASD VAX.

  13. Space Station Software Recommendations

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor)

    1985-01-01

    Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.

  14. A simulation system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose A.; Shepherd, Chip

    1993-01-01

    America's next major step into space will be the construction of a permanently manned Space Station which is currently under development and scheduled for full operation in the mid-1990's. Most of the construction of the Space Station will be performed over several flights by suited crew members during an extravehicular activity (EVA) from the Space Shuttle. Once fully operational, EVA's will be performed from the Space Station on a routine basis to provide, among other services, maintenance and repair operations of satellites currently in Earth orbit. Both voice recognition and helmet-mounted display technologies can improve the productivity of workers in space by potentially reducing the time, risk, and cost involved in performing EVA. NASA has recognized this potential and is currently developing a voice-controlled information system for Space Station EVA. Two bench-model helmet-mounted displays and an EVA simulation program have been developed to demonstrate the functionality and practicality of the system.

  15. Space Station Displays and Controls Technology Evolution

    NASA Technical Reports Server (NTRS)

    Blackburn, Greg C.

    1990-01-01

    Viewgraphs on space station displays and controls technology evolution are presented. Topics covered include: a historical perspective; major development objectives; current development activities; key technology areas; and technology evolution issues.

  16. Automated electric power management and control for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Mellor, Pamela A.; Kish, James A.

    1990-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. It strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. An integrated approach to the power system command and control problem is defined and used to direct technology development in: diagnosis, security monitoring and analysis, battery management, and cooperative problem-solving for resource allocation. The prototype automated power system is developed using simulations and test-beds.

  17. Introduction to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard

    1992-01-01

    NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station Freedom in FY 92 was appropriated. For FY 93, NASA is seeking $2.25 billion for the program; the planned budget for FY 94 is $2.5 billion. Further alterations to the hardware configuration for Freedom would be a serious setback; NASA intends 'to stick with the current baseline' and continue planning for utilization.

  18. Space Station commercial user development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The commercial utilization of the space station is investigated. The interest of nonaerospace firms in the use of the space station is determined. The user requirements are compared to the space station's capabilities and a feasibility analysis of a commercial firm acting as an intermediary between NASA and the private sector to reduce costs is presented.

  19. Space Station - Government and industry launch joint venture

    NASA Astrophysics Data System (ADS)

    Nichols, R. G.

    1985-04-01

    After the development of the space transportation system over the last decade, the decision to launch a permanently manned space station was announced by President Reagan in his 1984 State of the Union Address. As a result of work performed by the Space Station Task Force created in 1982, NASA was able to present Congress with a plan for achieving the President's objective. The plan envisions a space station which would cost about $8 billion and be operational as early as 1992. The functions of the Space Station would include the servicing of satellites. In addition, the station would serve as a base for the construction of large space structures, and provide facilities for research and development. The Space Station design selected by NASA is the 'Power Tower', a 450-foot-long truss structure which will travel in orbit with its main axis perpendicular to the earth's surface. Attention is given to the living and working quarters for the crew, the location of earth observation equipment and astronomical instruments, and details regarding the employment of the Station.

  20. Space Station Freedom as an engineering experiment station: An overview

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  1. Rocky Mountain Research Station Part 1 [U.S. Forest Service scientists continue work with the Lincoln National Forest

    Treesearch

    Todd Rawlinson

    2010-01-01

    The Rocky Mountain Research Station (RMRS) is one of five regional Research Stations that make up the US Forest Service Research and Development organization. RMRS is organized into eight science program areas, with an overall mission to develop new and synthesize existing knowledge to foster improved management of natural resources. Scientists with the Wildlife and...

  2. Space Station Freedom operations costs

    NASA Technical Reports Server (NTRS)

    Accola, Anne L.; Williams, Gregory J.

    1988-01-01

    Measures to reduce the operation costs of the Space Station which can be implemented in the design and development stages are discussed. Operational functions are described in the context of an overall operations concept. The provisions for operations cost responsibilities among the partners in the Space Station program are presented. Cost estimating methodologies and the way in which operations costs affect the design and development process are examined.

  3. Space station automation study. Volume 1: Executive summary. Autonomous systems and assembly

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The purpose of the Space Station Automation Study (SSAS) was to develop informed technical guidance for NASA personnel in the use of autonomy and autonomous systems to implement space station functions.

  4. Waste Transfer Stations: Involved Citizens Make the Difference

    EPA Pesticide Factsheets

    Provides key information involved citizens will need to develop an opinion about a proposed or modified transfer station. Also provides ideas on how to get involved to enhance the value of the waste transfer station.

  5. Development and Performance of the Alaska Transportable Array Posthole Broadband Seismic Station

    NASA Astrophysics Data System (ADS)

    Aderhold, K.; Enders, M.; Miner, J.; Bierma, R. M.; Bloomquist, D.; Theis, J.; Busby, R. W.

    2017-12-01

    The final stations of the Alaska Transportable Array (ATA) will be constructed in 2017, completing the full footprint of 280 new and existing broadband seismic stations stretching across 19 degrees of latitude from western Alaska to western Canada. Through significant effort in planning, site reconnaissance, permitting and the considerable and concerted effort of field crews, the IRIS Alaska TA team is on schedule to successfully complete the construction of 194 new stations and upgrades at 28 existing stations over four field seasons. The station design and installation method was developed over the course of several years, leveraging the experience of the L48 TA deployments and existing network operators in Alaska as well as incorporating newly engineered components and procedures. A purpose-built lightweight drill was designed and fabricated to facilitate the construction of shallow boreholes to incorporate newly available posthole seismometers. This allowed for the development of a streamlined system of procedures to manufacture uniform seismic stations with minimal crew and minimal time required at each station location. A new station can typically be constructed in a single day with a four-person field crew. The ATA utilizes a hammer-drilled, cased posthole emplacement method adapted to the remote and harsh working environment of Alaska. The same emplacement design is implemented in all ground conditions to preserve uniformity across the array and eliminate the need for specialized mechanical equipment. All components for station construction are ideally suited for transport via helicopter, and can be adapted to utilize more traditional methods of transportation when available. This emplacement design delivers high quality data when embedded in bedrock or permafrost, reaching the low noise levels of benchmark permanent global broadband stations especially at long periods over 70 seconds. The TA will operate the network of real-time stations through at least 2019, with service trips planned on a "as needed" basis to continue providing greater than 95% data return.

  6. Express Payload Project - A new method for rapid access to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Uhran, Mark L.; Timm, Marc G.

    1993-01-01

    The deployment and permanent operation of Space Station Freedom will enable researchers to enter a new era in the 21st century, in which continuous on-orbit experimentation and observation become routine. In support of this objective, the Space Station Freedom Program Office has initiated the Express Payload Project. The fundamental project goal is to reduce the marginal cost associated with small payload development, integration, and operation. This is to be accomplished by developing small payload accommodations hardware and a new streamlined small payload integration process. Standardization of small payload interfaces, certification of small payload containers, and increased payload developer responsibility for mission success are key aspects of the Express Payload Project. As the project progresses, the principles will be applied to both pressurized payloads flown inside the station laboratories and unpressurized payloads attached to the station external structures. The increased access to space afforded by Space Station Freedom and the Express Payload Project has the potential to significantly expand the scope, magnitude, and success of future research in the microgravity environment.

  7. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  8. Identifying hub stations and important lines of bus networks: A case study in Xiamen, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhuge, Chengxiang; Yu, Xiaohua

    2018-07-01

    Hub stations and important lines play key roles in transfers between stations. In this paper, a node failure model is proposed to identify hub stations. In the model, we introduce two new indicators called neighborhood degree ratio and transfer index to evaluate the importance of stations, which consider neighborhood stations' degree of station and the initial transfer times between stations. Moreover, line accessibility is developed to measure the importance of lines in the bus network. Xiamen bus network in 2016 is utilized to test the model. The results show that the two introduced indicators are more effective to identify hub stations compared with traditional complex network indicators such as degree, clustering coefficient and betweenness.

  9. Definition of technology development missions for early space stations: Large space structures

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  10. A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

    NASA Technical Reports Server (NTRS)

    Savage, Paul D.; Connolly, J. P.; Navarro, B. J.

    1999-01-01

    Ames Research Center's Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.

  11. Impacts of urbanization and agricultural development on observed changes in surface air temperature over mainland China from 1961 to 2006

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Tang, Qiuhong; Xu, Di; Yang, Zhiyong

    2018-03-01

    A large proportion of meteorological stations in mainland China are located in or near either urban or agricultural lands that were established throughout the period of rapid urbanization and agricultural development (1961-2006). The extent of the impacts of urbanization and agricultural development on observed air temperature changes across different climate regions remains elusive. This study evaluates the surface air temperature trends observed by 598 meteorological stations in relation to the urbanization and agricultural development over the arid northwest, semi-arid intermediate, and humid southeast regions of mainland China based on linear regressions of temperature trends on the fractions of urban and cultivated land within a 3-km radius of the stations. In all three regions, the stations surrounded by large urban land tend to experience rapid warming, especially at minimum temperature. This dependence is particularly significant in the southeast region, which experiences the most intense urbanization. In the northwest and intermediate regions, stations surrounded by large cultivated land encounter less warming during the main growing season, especially at the maximum temperature changes. These findings suggest that the observed surface warming has been affected by urbanization and agricultural development represented by urban and cultivated land fractions around stations in with land cover changes in their proximity and should thus be considered when analyzing regional temperature changes in mainland China.

  12. The Electric Power System of the International Space Station: A Platform for Power Technology Development

    NASA Technical Reports Server (NTRS)

    Gietl, Eric B.; Gholdston, Edward W.; Manners, Bruce A.; Delventhal, Rex A.

    2000-01-01

    The electrical power system developed for the International Space Station represents the largest space-based power system ever designed and, consequently, has driven some key technology aspects and operational challenges. The full U.S.-built system consists of a 160-Volt dc primary network, and a more tightly regulated 120-Volt dc secondary network. Additionally, the U.S. system interfaces with the 28-Volt system in the Russian segment. The international nature of the Station has resulted in modular converters, switchgear, outlet panels, and other components being built by different countries, with the associated interface challenges. This paper provides details of the architecture and unique hardware developed for the Space Station, and examines the opportunities it provides for further long-term space power technology development, such as concentrating solar arrays and flywheel energy storage systems.

  13. DESIGN CONCEPT FOR AN ELEVATED SOUTH POLE STATION.

    DTIC Science & Technology

    Because of the failing condition of the present South Pole Station and the need for a station with a minimum life of 15 years, in 1960 the Laboratory...was requested to study design concepts for the South Pole Station. All concepts were to be com patible with the logistical and natural problems...composite design was selected as the most promising for the South Pole Station. Following this selection, a conceptual design was developed. The

  14. Adaption of space station technology for lunar operations

    NASA Technical Reports Server (NTRS)

    Garvey, J. M.

    1992-01-01

    Space Station Freedom technology will have the potential for numerous applications in an early lunar base program. The benefits of utilizing station technology in such a fashion include reduced development and facility costs for lunar base systems, shorter schedules, and verification of such technology through space station experience. This paper presents an assessment of opportunities for using station technology in a lunar base program, particularly in the lander/ascent vehicles and surface modules.

  15. Preparing a health care delivery system for Space Station

    NASA Technical Reports Server (NTRS)

    Logan, J. S.; Stewart, G. R.

    1985-01-01

    NASA's Space Station is viewed as the beginning of man's permanent presence in space. This paper presents the guidelines being developed by NASA's medical community in preparing a quality, permanent health care delivery system for Space Station. The guidelines will be driven by unique Space Station requirements such as mission duration, crew size, orbit altitude and inclination, EVA frequency and rescue capability. The approach will emphasize developing a health care system that is modular and flexible. It will also incorporate NASA's requirements for growth capability, commonality, maintainability, and advanced technology development. Goals include preventing unnecessary rescue attempts, as well as maintaining the health and safety of the crew. Proper planning will determine the levels of prevention, diagnosis, and treatment necessary to achieve these goals.

  16. Automation of the space station core module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.

  17. Development and Assessment of the Multiple Mini-Interview in a School of Pharmacy Admissions Model

    PubMed Central

    McLaughlin, Jacqueline E.; Singer, David; Lewis, Margaret; Dinkins, Melissa M.

    2015-01-01

    Objective. To describe the development, implementation, and evaluation of the multiple mini-interview (MMI) within a doctor of pharmacy (PharmD) admissions model. Methods. Demographic data and academic indicators were collected for all candidates who participated in Candidates’ Day (n=253), along with the score for each MMI station criteria (7 stations). A survey was administered to all candidates who completed the MMI, and another survey was administered to all interviewers to examine perceptions of the MMI. Results. Analyses suggest that MMI stations assessed different attributes as designed, with Cronbach alpha for each station ranging from 0.90 to 0.95. All correlations between MMI station scores and academic indicators were negligible. No significant differences in average station scores were found based on age, gender, or race. Conclusion. This study provides additional support for the use of the MMI as an admissions tool in pharmacy education. PMID:26089562

  18. Contamination assessment for OSSA space station IOC payloads

    NASA Technical Reports Server (NTRS)

    Chinn, S.; Gordon, T.; Rantanen, R.

    1987-01-01

    The results are presented from a study for the Space Station Planners Group of the Office of Space Sciences and Applications. The objectives of the study are: (1) the development of contamination protection requirements for protection of Space Station attached payloads, serviced payloads and platforms; and (2) the determination of unknowns or major impacts requiring further assessment. The nature, sources, and quantitative properties of the external contaminants to be encountered on the Station are summarized. The OSSA payload contamination protection requirements provided by the payload program managers are reviewed and the level of contamination awareness among them is discussed. Preparation of revisions to the contamination protection requirements are detailed. The comparative impact of flying the Station at constant atmospheric density rather than constant altitude is assessed. The impact of the transverse boom configuration of the Station on contamination is also assessed. The contamination protection guidelines which OSSA should enforce during their development of payloads are summarized.

  19. Space station automation study-satellite servicing, volume 2

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.

    1984-01-01

    Technology requirements for automated satellite servicing operations aboard the NASA space station were studied. The three major tasks addressed: (1) servicing requirements (satellite and space station elements) and the role of automation; (2) assessment of automation technology; and (3) conceptual design of servicing facilities on the space station. It is found that many servicing functions cloud benefit from automation support; and the certain research and development activities on automation technologies for servicing should start as soon as possible. Also, some advanced automation developments for orbital servicing could be effectively applied to U.S. industrial ground based operations.

  20. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee

    NASA Technical Reports Server (NTRS)

    Nunamaker, Robert R.; Willshire, Kelli F.

    1988-01-01

    The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.

  1. NASA space station automation: AI-based technology review. Executive summary

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.

  2. Math Work Stations: Independent Learning You Can Count On, K-2

    ERIC Educational Resources Information Center

    Diller, Debbie

    2011-01-01

    If you've ever questioned how to make math stations work, you'll find this photo-filled, idea-packed resource invaluable. This book extends Debbie Diller's best-selling work on literacy work stations and classroom design to the field of mathematics. In "Math Work Stations" you'll find ideas to help children develop conceptual understanding and…

  3. Space Station Freedom operations planning

    NASA Technical Reports Server (NTRS)

    Smith, Kevin J.

    1988-01-01

    This paper addresses the development of new planning methodologies which will evolve to serve the Space Station Freedom program; these planning processes will focus on the complex task of effectively managing the resources provided by the Space Station Freedom and will be made available to the diverse international community of space station users in support of their ongoing investigative activities.

  4. Monitoring productivity with multiple mist-net stations

    Treesearch

    C. John Ralph; Kimberly Hollinger; Sherri L. Miller

    2004-01-01

    We evaluated data from 22 mist-net capture stations operated over 5 to 13 years in northern California and southern Oregon, to help develop sampling designs for monitoring using mist nets. In summer, 2.6% of individuals were recaptured at other stations within 1 km of the original banding station, and in fall, 1.4% were recaptured nearby. We recommend...

  5. A customer-friendly Space Station

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1984-01-01

    This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.

  6. Space station environmental control and life support systems test bed program - an overview

    NASA Astrophysics Data System (ADS)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space Station ECLSS Test Bed Program. The Space Station ECLSS Test Bed Program, which is managed by the NASA, is designed to parallel and to provide continuing support to the Space Station Program. The prime objective of this multiphase test bed program is to provide viable, mature, and enhancing technical options in time for Space Station implementation. To accomplish this objective, NASA is actively continuing the development and testing of critical components and engineering preprototype subsystems for urine processing, washwater recovery, water quality monitoring, carbon dioxide removal and reduction, and oxygen generation. As part of the ECLSS Test Bed Program, these regenerative subsystems and critical components are tested in a development laboratory to characterize subsystem performance and to identify areas in which further technical development is required. Proven concepts are then selected for development into prototype subsystems in which flight issues such as packaging and maintenance are addressed. These subsystems then are to be assembled as an integrated system and installed in an integrated systems test bed facility for extensive unmanned and manned testing.

  7. Biomass power for rural development. Technical progress report, January 1, 1997--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firingmore » tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-II of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.« less

  8. Biomass power for rural development. Technical progress report, April 1, 1997--June 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firingmore » tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-H of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.« less

  9. Systematic RH genotyping and variant identification in French donors of African origin

    PubMed Central

    Kappler-Gratias, Sandrine; Auxerre, Carine; Dubeaux, Isabelle; Beolet, Marylise; Ripaux, Maryline; Le Pennec, Pierre-Yves; Pham, Bach-Nga

    2014-01-01

    Background RH molecular analysis has enabled the documentation of numerous variants of RHD and RHCE alleles, especially in individuals of African origin. The aim of the present study was to determine the type and frequency of D and/or RhCE variants among blood donors of African origin in France, by performing a systematic RH molecular analysis, in order to evaluate the implications for blood transfusion of patients of African origin. Materials and methods Samples from 316 African blood donors, whose origin was established by their Fy(a−b−) phenotype, were first analysed using the RHD and RHCE BeadChips Kit (BioArray Solutions, Immucor, Warren, NJ, USA). Sequencing was performed when necessary. Results RHD molecular analysis showed that 26.2% of donors had a variant RHD allele. It allowed the prediction of a partial D in 11% of cases. RHCE molecular analysis showed that 14.2% of donors had a variant RHCE allele or RH [RN or (C)ces] haplotype. A rare Rh phenotype associated with the loss of a high-prevalence antigen or partial RhCE antigens were predicted from RHCE molecular analysis in 1 (0.3%) and 17 (5%) cases, respectively. Discussion Systematic RHD and RHCE molecular analysis performed in blood donors of African origin provides transfusion-relevant information for individuals of African origin because of the frequency of variant RH alleles. RH molecular analysis may improve transfusion therapy of patients by allowing better donor and recipient matching, based not only on phenotypically matched red blood cell units, but also on units that are genetically matched with regards to RhCE variants. PMID:23867180

  10. Status of DSMT research program

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.

    1991-01-01

    The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.

  11. EXPRESS Rack Overview

    NASA Technical Reports Server (NTRS)

    Sledd, Annette M.; Mueller, Charles W.

    1999-01-01

    The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System, was developed to provide Space Station accommodations for small, subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data, command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify power and data interfaces at the development site, Functional Checkout Units to allow Payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the analytical and physical integration processes, and facilitates simpler ISS payload development. The EXPRESS Rack has also formed the basis for the U.S. Life Sciences payload racks on Space Station.

  12. The ISS EXPRESS Rack: An Innovative Approach of Rapid Integration

    NASA Technical Reports Server (NTRS)

    Sledd, Annette M.

    2000-01-01

    The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System, was developed to provide Space Station accommodations for small, subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data, command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify power and data interfaces at the development site, Functional Checkout Units to allow Payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the analytical and physical integration processes, and facilitates simpler ISS payload development. The EXPRESS Rack has also formed the basis for the U.S. Life Sciences payload racks and the Window Observational Research Facility on Space Station.

  13. Provision versus promotion to develop a handwashing station: the effect on desired handwashing behavior.

    PubMed

    Biswas, Debashish; Nizame, Fosiul Alam; Sanghvi, Tina; Roy, Sumitro; Luby, Stephen P; Unicomb, Leanne E

    2017-05-05

    Diarrhea prevalence increases from around the time that complementary foods are introduced. Improving caregiver's hand hygiene during food preparation could reduce complementary food contamination and enteric pathogen transmission. Washing hands with soap is more common when water and soap are together at a convenient location. We conducted a three-month pilot intervention to evaluate two options for setting up handwashing stations: i) provide a handwashing station, or ii) help the family to make their own from available materials. Additionally, we assessed the feasibility of this intervention to be integrated with a child feeding program. We conducted the intervention among two groups; 40 households received a free of cost handwashing station and another 40 households were motivated to place their own soap/soapy-water and water vessel near the food preparation and child feeding area. Community health workers encouraged caregivers to wash hands with soap/soapy-water before food preparation and feeding a child. They either assisted study participants to install the study-provided handwashing station at the recommended place or encouraged caregivers to develop their own. Field researchers assessed placement and composition of handwashing stations and the feasibility of integrating handwashing and nutrition messages. By end of the trial, 39/40 households developed their own handwashing station, comprising a bucket, mug and bar soap/soapy-water of which 60% (6/10) households were observed with a functional and complete handwashing station set. Observed handwashing with soap was detected among 8/10 households from the study-provided handwashing station group and 5/10 among households who had made their own handwashing station. Sixty-seven of the 76 caregivers recalled integrated intervention messages on social and health benefits of infant and young child feeding correctly; and all recalled key handwashing with soap times, before food preparation and feeding a child. Encouraging households to develop their own handwashing station with soap and water to place at a food preparation/child feeding location is feasible over the short term. In the absence of large-scale provision of handwashing stations, caregivers can be encouraged to create and use their own. Integrating handwashing with soap into a nutrition intervention was feasible and acceptable and should be considered by policy makers.

  14. Development of the HyStEP Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Terry A.; Ainscough, Christopher; Terlip, Danny

    2016-04-05

    With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part ofmore » the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device. The HyStEP Device is intended to be a surrogate for FCEVs that can be used to collect data on hydrogen station fueling performance. The device includes three Type IV 70 MPa tanks capable of storing a total of 9 kg H2 that are instrumented with pressure and temperature sensors. The tanks can be used individually or in parallel to simulate small, medium, and large fuel systems. The tanks are connected to a 70 MPa receptacle equipped with pressure and temperature sensor as well as infrared communications integrated with a data acquisition, analysis, and control system. The HyStEP Device is capable of performing tests defined in the test method standard CSA HGV 4.3 and providing the data needed to ensure that hydrogen stations meet the fueling protocol standard SAE J2601-2014. These include IrDA communication tests, fault detection tests, and communication and non-communication fueling.« less

  15. List of Publications of the U.S. Army Engineer Waterways Experiment Station. Volume 2

    DTIC Science & Technology

    1993-09-01

    Station List of Publications of the U.S. Army Engineer Waterways Experiment Station Volume II compiled by Research Library Information Management Division...Waterways Experiment Station for Other Agencies Air Base Survivability Systems Management Office Headquarters .............................. Z-1 Airport... manages , conducts, and coordinates research and development in the Information Management (IM) technology areas that include computer science

  16. A portable station for recording fire weather data

    Treesearch

    John R. Murray; Clive M. Countryman

    1968-01-01

    A portable station for recording fire weather data has been developed for use in wildland fires, prescribed burns, evaluating sites for fire weather stations, and fire research. Housed in a mechanic's tool box, the station weighs about 60 pounds. One man can have it ready to operate in about 15 minutes. The unit can record five weather variables, but additional...

  17. User assembly and servicing system for Space Station, an evolving architecture approach

    NASA Technical Reports Server (NTRS)

    Lavigna, Thomas A.; Cline, Helmut P.

    1988-01-01

    On-orbit assembly and servicing of a variety of scientific and applications hardware systems is expected to be one of the Space Station's primary functions. The hardware to be serviced will include the attached payloads resident on the Space Station, the free-flying satellites and co-orbiting platforms brought to the Space Station, and the polar orbiting platforms. The requirements for assembly and servicing such a broad spectrum of missions have led to the development of an Assembly and Servicing System Architecture that is composed of a complex array of support elements. This array is comprised of US elements, both Space Station and non-Space Station, and elements provided by Canada to the Space Station Program. For any given servicing or assembly mission, the necessary support elements will be employed in an integrated manner to satisfy the mission-specific needs. The structure of the User Assembly and Servicing System Architecture and the manner in which it will evolved throughout the duration of the phased Space Station Program are discussed. Particular emphasis will be placed upon the requirements to be accommodated in each phase, and the development of a logical progression of capabilities to meet these requirements.

  18. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In April 1985, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). The progress made by Levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology are described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 9, the Flight Telerobotic Servicer, the Advanced Development Program, and the Data Management System. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  19. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  20. Definition of satellite servicing technology development missions for early space stations. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Early space station accommodation, build-up of space station manipulator capability, on-orbit spacecraft assembly test and launch, large antenna structure deployment, service/refurbish satellite, and servicing of free-flying materials processing platform are discussed.

  1. QUALITY ASSURANCE MEASURES ASSOCIATED WITH CORAL REEF MONITORING

    EPA Science Inventory

    Systematic efforts began in 1997 to assess the incidence of coral diseases in the Florida Keys. Protocols were developed for the selection of permanent stations and for data collection methodology. Permanent stations and for data collection methodology. Permanent stations were es...

  2. Tunnel and Station Cost Methodology Volume II: Stations

    DOT National Transportation Integrated Search

    1981-01-01

    The main objective of this study was to develop a model for estimating the cost of subway station and tunnel construction. This report describes a cost estimating methodology for subway tunnels that can be used by planners, designers, owners, and gov...

  3. From 2001 to 1994: Political environment and the design of NASA's Space Station system

    NASA Technical Reports Server (NTRS)

    Fries, Sylvia Doughty

    1988-01-01

    The U.S. civilian space station, a hope of numerous NASA engineers since before the agency was founded in 1958 and promoted by NASA as the country's 'next logical step' into space, provides an excellent case study of the way public-sector research and development agencies continuously redefine new technologies in the absence of the market discipline that governs private-sector technological development. The number of space station design studies conducted since 1959, both internally by NASA or contracted by the agency to the aerospace industry, easily exceeds a hundred. Because of this, three clearly distinguishable examples are selected from the almost thirty-year history of space station design in NASA. Together these examples illustrate the difficulty of defining a new technological system in the public sector as that system becomes increasingly subject, for its development, to the vagaries of federal research and development politics.

  4. Automated Subsystem Control for Life Support System (ASCLSS)

    NASA Technical Reports Server (NTRS)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support Systems (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of space station subsystems. The automation system features a hierarchical and distributed real-time control architecture which places maximum controls authority at the lowest or process control level which enhances system autonomy. The ASCLSS demonstration system pioneered many automation and control concepts currently being considered in the space station data management system (DMS). Heavy emphasis is placed on controls hardware and software commonality implemented in accepted standards. The approach demonstrates successfully the application of real-time process and accountability with the subsystem or process developer. The ASCLSS system completely automates a space station subsystem (air revitalization group of the ASCLSS) which moves the crew/operator into a role of supervisory control authority. The ASCLSS program developed over 50 lessons learned which will aide future space station developers in the area of automation and controls..

  5. Recent developments of Loran-C in Europe

    NASA Technical Reports Server (NTRS)

    Leschiutta, Sigfrido; Rubiola, Enrico

    1990-01-01

    Even if recent developments, both technical and political, are affecting the satellite Global Positioning System (GPS) and GLONASS navigation systems, alone, in conjunction, or with a possible civilian overlay via INMARSAT or other satellites, time has proven that Loran-C can still be a viable solution for many problems. The aims here are twofold, to present a panorama of the most recent developments in the world and mostly in Europe, and to consider some technical aspects of two problems regarding the Mediterranean Sea chain. This chain is based on four stations, two in Italy, one in Spain and one in Turkey. The fate of the station in Turkey is known, in the sense that this station will not operate when the U.S. support will cease; the future of the Spanish station is not yet known, while Italy has expressed its intention to operate the two remaining stations. Consequently two problems need to be solved to assure at least the coverage of Italy and of the eastern Mediterranean Sea.

  6. Progress toward a cosmic dust collection facility on space station

    NASA Technical Reports Server (NTRS)

    Mackinnon, Ian D. R. (Editor); Carey, William C. (Editor)

    1987-01-01

    Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development.

  7. New developments in bait stations for control of pest Tephritids

    USDA-ARS?s Scientific Manuscript database

    Bait stations are being developed and tested as alternatives to broadcast pesticide application for control of a number of pest insects. This is an attract-and-kill pest management approach. With the development of female-targeted food-based synthetic attractants for tephritid fruit flies, a numbe...

  8. Automated subsystems control development. [for life support systems of space station

    NASA Technical Reports Server (NTRS)

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  9. Space Station Information Systems

    NASA Technical Reports Server (NTRS)

    Pittman, Clarence W.

    1988-01-01

    The utility of the Space Station is improved, the ability to manage and integrate its development and operation enhanced, and the cost and risk of developing the software for it is minimized by three major information systems. The Space Station Information System (SSIS) provides for the transparent collection and dissemination of operational information to all users and operators. The Technical and Management Information System (TMIS) provides all the developers with timely and consistent program information and a project management 'window' to assess the project status. The Software Support Environment (SSE) provides automated tools and standards to be used by all software developers. Together, these three systems are vital to the successful execution of the program.

  10. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  11. A facility for training Space Station astronauts

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.; Schmidt, James R.

    1992-01-01

    The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.

  12. Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Hackler, I. M.

    1986-01-01

    The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.

  13. Automatic tracer-dilution method used for stage-discharge ratings and streamflow hydrographs on small Iowa streams

    USGS Publications Warehouse

    Soenksen, P.J.

    1990-01-01

    Tracer-dilution discharge measurements were made during 14 flow periods at six stations from 1986 through 1988 water years. Ratings were developed at three stations with the aid of these measurements. A loop rating was identified at one station during rapidly-changing flow conditions. Incomplete mixing and dye loss to sediment apparently were problems at some stations. Stage hydrographs were recorded for 38 flows at seven stations. Limited data on background fluorescence during high flows were also obtained.

  14. EVA worksite analysis--use of computer analysis for EVA operations development and execution.

    PubMed

    Anderson, D

    1999-01-01

    To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.

  15. June and August median streamflows estimated for ungaged streams in southern Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2010-01-01

    Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.

  16. Satellite Weather Watch.

    ERIC Educational Resources Information Center

    Summers, R. Joe

    1982-01-01

    Describes an inexpensive (about $1,500) direct-readout ground station for use in secondary school science/mathematics programs. Includes suggested activities including, among others, developing map overlays, operating station equipment, interpreting satellite data, developing weather forecasts, and using microcomputers for data storage, orbit…

  17. The US space station and its electric power system

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald L.

    1988-01-01

    The United States has embarked on a major development program to have a space station operating in low earth orbit by the mid-1990s. This endeavor draws on the talents of NASA and most of the aerospace firms in the U.S. Plans are being pursued to include the participation of Canada, Japan, and the European Space Agency in the space station. From the start of the program these was a focus on the utilization of the space station for science, technology, and commercial endeavors. These requirements were utilized in the design of the station and manifest themselves in: pressurized volume; crew time; power availability and level of power; external payload accommodations; microgravity levels; servicing facilities; and the ability to grow and evolve the space station to meet future needs. President Reagan directed NASA to develop a permanently manned space station in his 1984 State of the Union message. Since then the definition phase was completed and the development phase initiated. A major subsystem of the space station is its 75 kW electric power system. The electric power system has characteristics similar to those of terrestrial power systems. Routine maintenance and replacement of failed equipment must be accomplished safely and easily and in a minimum time while providing reliable power to users. Because of the very high value placed on crew time it is essential that the power system operate in an autonomous mode to minimize crew time required. The power system design must also easily accommodate growth as the power demands by users are expected to grow. An overview of the U.S. space station is provided with special emphasis on its electrical power system.

  18. Space station automation study. Volume 1: Executive summary. Autonomous systems and assembly

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The space station automation study (SSAS) was to develop informed technical guidance for NASA personnel in the use of autonomy and autonomous systems to implement space station functions. The initial step taken by NASA in organizing the SSAS was to form and convene a panel of recognized expert technologists in automation, space sciences and aerospace engineering to produce a space station automation plan.

  19. Behavioral biology of mammalian reproduction and development for a space station

    NASA Technical Reports Server (NTRS)

    Alberts, J. R.

    1983-01-01

    Space Station research includes two kinds of adaption to space: somatic (the adjustments made by an organism, within its lifetime, in response to local conditions), and transgenerational adaption (continuous exposure across sequential life cycles of genetic descendents). Transgenerational effects are akin to evolutionary process. Areas of a life Sciences Program in a space station address the questions of the behavioral biology of mammalian reproduction and development, using the Norway rat as the focus of experimentation.

  20. Biomass power for rural development. Technical progress report, October 1--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill Power Station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the fourth quarter of 1997 the Consortium submitted a Phase-2 proposal. A few of the other more important milestones are outlined below. The first quarter of 1998 will be dominated by pre-planting activity in the spring.« less

  1. Computer-Assisted Laboratory Stations.

    ERIC Educational Resources Information Center

    Snyder, William J., Hanyak, Michael E.

    1985-01-01

    Describes the advantages and features of computer-assisted laboratory stations for use in a chemical engineering program. Also describes a typical experiment at such a station: determining the response times of a solid state humidity sensor at various humidity conditions and developing an empirical model for the sensor. (JN)

  2. Developments at Polish Seismological Network

    NASA Astrophysics Data System (ADS)

    Wiejacz, P.; Debski, W.; Lizurek, G.; Rudzinski, L.; Suchcicki, J.; Wiszniowski, J.

    2009-04-01

    Polish Seismological Network of the Institute of Geophysics, Polish Academy of Sciences, currently consists of 9 stations. Six of these stations are broadband. In 2008 one of the broadband stations has been moved from Warsaw city center out to a quieter site at the Central Geophysical Observatory at Belsk, thus the data has become useful for automatic data processing. Currently broadband seismic stations are spaced out to provide information from all of the territory of Poland. Automatic Seiscomp-2.5 detecting, locating and alerting system has been set up. Earthquakes that have taken place in 2004, namely the Kaliningrad and Podhale events, have caused concern about effectiveness of the network and quality of the recording. As result, the digitizer of the seismic station NIE - near the Podhale region - has been replaced in 2005, bringing the station up to the 24-bit standard and latest plans call to have the station upgraded to broadband. In the north, a new seismic station has been organized at Hel, however the site has proven to be extremely noisy. A broadband station is planned to be deployed in the north but an alternate location must be found. Further development plans call for establishment of a new 6-station short period subnetwork in and around the Upper Silesian Coal Basin to observe and readily locate local mining-induced seismic events. The ultimate goal is to provide ready and reliable information on all recorded seismic events and particularly those events from the territory of Poland. Reaching the goal requires however that a local seismic subnetwork be organized in and around the Lubin Copper Basin while the seismic station NIE be complemented by at least two stations in the immediate area where local seismicity takes place.

  3. An approach to the rationalization of streamflow data collection networks

    NASA Astrophysics Data System (ADS)

    Burn, Donald H.; Goulter, Ian C.

    1991-01-01

    A new procedure for rationalizing a streamflow data collection network is developed. The procedure is a two-phase approach in which in the first phase, a hierarchical clustering technique is used to identify groups of similar gauging stations. In the second phase, a single station from each identified group of gauging stations is selected to be retained in the rationalized network. The station selection phase is an inherently heuristic process that incorporates information about the characteristics of the individual stations in the network. The methodology allows the direct inclusion of user judgement into the station selection process in that it is possible to select more than one station from a group, if conditions warrant. The technique is demonstrated using streamflow gauging stations in and near the Pembina River basin, southern Manitoba, Canada.

  4. Space Station needs, attributes and architectural options. Volume 2, book 2, part 3: Communication system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Preliminary results of the study of the architecture and attributes of the RF communications and tracking subsystem of the space station are summarized. Only communications between the space station and other external elements such as TDRSS satellites, low-orbit spacecraft, OTV, MOTV, in the general environment of the space station are considered. The RF communications subsystem attributes and characteristics are defined and analyzed key issues are identified for evolution from an initial space station (1990) to a year 2000 space station. The mass and power characteristics of the communications subsystem for the initial space station are assessed as well as the impact of advanced technology developments. Changes needed to the second generation TDRSS to accommodate the evolutionary space station of the year 2000 are also identified.

  5. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  6. Using space for technology development - Planning for the Space Station era

    NASA Technical Reports Server (NTRS)

    Ambrus, Judith H.; Couch, Lana M.; Rosen, Robert R.; Gartrell, Charles F.

    1989-01-01

    Experience with the Shuttle and free-flying satellites as technology test-beds has shown the feasibility and desirability of using space assets as a facility for technology development. Thus, by the time the Space Station era will have arrived, the technologist will be ready for an accessible engineering facility in space. As the 21st century is approached, it is expected that virtually every flight to the Space Station Freedom will be required to carry one or more research, technology, and engineering experiments. The experiments planned will utilize both the pressurized volume, and the external payload attachment facilities. A unique, but extremely important, class of experiments will use the Space Station itself as an experimental vehicle. Based upon recent examination of possible Space Station Freedom assembly sequences, technology payloads may well utilize 20-30 percent of available resources.

  7. Optimal use of human and machine resources for Space Station assembly operations

    NASA Technical Reports Server (NTRS)

    Parrish, Joseph C.

    1988-01-01

    This paper investigates the issues involved in determining the best mix of human and machine resources for assembly of the Space Station. It presents the current Station assembly sequence, along with descriptions of the available assembly resources. A number of methodologies for optimizing the human/machine tradeoff problem have been developed, but the Space Station assembly offers some unique issues that have not yet been addressed. These include a strong constraint on available EVA time for early flights and a phased deployment of assembly resources over time. A methodology for incorporating the previously developed decision methods to the special case of the Space Station is presented. This methodology emphasizes an application of multiple qualitative and quantitative techniques, including simulation and decision analysis, for producing an objective, robust solution to the tradeoff problem.

  8. Space Station Engineering and Technology Development. Proceedings of the Panel on Solar Thermodynamics Research and Technology Development, July 31, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.

  9. Methods for estimating magnitude and frequency of peak flows for natural streams in Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Wilkowske, Chris D.; Wright, Shane J.

    2007-01-01

    Estimates of the magnitude and frequency of peak streamflows is critical for the safe and cost-effective design of hydraulic structures and stream crossings, and accurate delineation of flood plains. Engineers, planners, resource managers, and scientists need accurate estimates of peak-flow return frequencies for locations on streams with and without streamflow-gaging stations. The 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were estimated for 344 unregulated U.S. Geological Survey streamflow-gaging stations in Utah and nearby in bordering states. These data along with 23 basin and climatic characteristics computed for each station were used to develop regional peak-flow frequency and magnitude regression equations for 7 geohydrologic regions of Utah. These regression equations can be used to estimate the magnitude and frequency of peak flows for natural streams in Utah within the presented range of predictor variables. Uncertainty, presented as the average standard error of prediction, was computed for each developed equation. Equations developed using data from more than 35 gaging stations had standard errors of prediction that ranged from 35 to 108 percent, and errors for equations developed using data from less than 35 gaging stations ranged from 50 to 357 percent.

  10. A Simple Space Station Rescue Vehicle

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    1995-01-01

    Early in the development of the Space Station it was determined that there is a need to have a vehicle which could be used in the event that the Space Station crew need to quickly depart and return to Earth when the Space Shuttle is not available. Unplanned return missions might occur because of a medical emergency, a major Space Station failure, or if there is a long-term interruption in the delivery of logistics to the Station. The rescue vehicle ms envisioned as a simple capsule-type spacecraft which would be maintained in a dormant state at the Station for several years and be quickly activated by the crew when needed. During the assembly phase for the International Space Station, unplanned return missions will be performed by the Russian Soyuz vehicle, which can return up to three people. When the Station assembly is complete there will be a need for rescue capability for up to six people. This need might be met by an additional Soyuz vehicle or by a new vehicle which might come from a variety of sources. This paper describes one candidate concept for a Space Station rescue vehicle. The proposed rescue vehicle design has the blunt-cone shape of the Apollo command module but with a larger diameter. The rescue vehicle would be delivered to the Station in the payload bay of the Space Shuttle. The spacecraft design can accommodate six to eight people for a one-day return mission. All of the systems for the mission including deorbit propulsion are contained within the conical spacecraft and so there is no separate service module. The use of the proven Apollo re-entry shape would greatly reduce the time and cost for development and testing. Other aspects of the design are also intended to minimize development cost and simplify operations. This paper will summarize the evolution of rescue vehicle concepts, the functional requirements for a rescue vehicle, and describe the proposed design.

  11. Nickel-hydrogen batteries from Intelsat 5 to space station

    NASA Technical Reports Server (NTRS)

    Vanommering, G.; Applewhite, A. Z.

    1986-01-01

    The heritage of the Ni-H2 technology that makes the space station application feasible is discussed. It also describes a design for a potential space station Ni-H2 battery system. Specific design values presented here were developed by Ford Aerospace as part of the Rocketdyne team effort on the Phase B Definition and Preliminary Design of the Space Station Power System in support of NASA Lewis Research Center.

  12. Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models.

    PubMed

    Bilgili, Mehmet; Sahin, Besir; Sangun, Levent

    2013-01-01

    The aim of this study is to estimate the soil temperatures of a target station using only the soil temperatures of neighboring stations without any consideration of the other variables or parameters related to soil properties. For this aim, the soil temperatures were measured at depths of 5, 10, 20, 50, and 100 cm below the earth surface at eight measuring stations in Turkey. Firstly, the multiple nonlinear regression analysis was performed with the "Enter" method to determine the relationship between the values of target station and neighboring stations. Then, the stepwise regression analysis was applied to determine the best independent variables. Finally, an artificial neural network (ANN) model was developed to estimate the soil temperature of a target station. According to the derived results for the training data set, the mean absolute percentage error and correlation coefficient ranged from 1.45% to 3.11% and from 0.9979 to 0.9986, respectively, while corresponding ranges of 1.685-3.65% and 0.9988-0.9991, respectively, were obtained based on the testing data set. The obtained results show that the developed ANN model provides a simple and accurate prediction to determine the soil temperature. In addition, the missing data at the target station could be determined within a high degree of accuracy.

  13. Streamflow characteristics and trends in New Jersey, water years 1897-2003

    USGS Publications Warehouse

    Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.

    2005-01-01

    Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.

  14. Flywheel Energy Storage Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Wolff, Frederick J.

    2001-01-01

    A flywheel energy storage system was spun to 60,000 rpm while levitated on magnetic bearings. This system is being developed as an energy-efficient replacement for chemical battery systems. Used in groups, the flywheels can have two functions providing attitude control for a spacecraft in orbit as well as providing energy storage. The first application for which the NASA Glenn Research Center is developing the flywheel is the International Space Station, where a two-flywheel system will replace one of the nickel-hydrogen battery strings in the space station's power system. The 60,000-rpm development rotor is about one-eighth the size that will be needed for the space station (0.395 versus 3.07 kWhr).

  15. Space station: Cost and benefits

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.

  16. Space station MSFC-DPD-235/DR no. MA-05 phase C/D program development plan. Volume 2: Phase C/D, programmatic requirements

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design plan requirements define the design implementation and control requirements for Phase C/D of the Modular Space Station Project and specifically address the Initial Space Station phase of the Space Station Program (modular). It is based primarily on the specific objective of translating the requirements of the Space Station Program, Project, Interface, and Support Requirements and preliminary contract end x item specifications into detail design of the operational systems which comprise the initial space station. This document is designed to guide aerospace contractors in the planning and bidding for Phase C/D.

  17. Energy consumption analysis of the Venus Deep Space Station (DSS-13)

    NASA Technical Reports Server (NTRS)

    Hayes, N. V.

    1983-01-01

    This report continues the energy consumption analysis and verification study of the tracking stations of the Goldstone Deep Space Communications Complex, and presents an audit of the Venus Deep Space Station (DSS 13). Due to the non-continuous radioastronomy research and development operations at the station, estimations of energy usage were employed in the energy consumption simulation of both the 9-meter and 26-meter antenna buildings. A 17.9% decrease in station energy consumption was experienced over the 1979-1981 years under study. A comparison of the ECP computer simulations and the station's main watt-hour meter readings showed good agreement.

  18. Simple simulation training system for short-wave radio station

    NASA Astrophysics Data System (ADS)

    Tan, Xianglin; Shao, Zhichao; Tu, Jianhua; Qu, Fuqi

    2018-04-01

    The short-wave radio station is a most important transmission equipment of our signal corps, but in the actual teaching process, which exist the phenomenon of fewer equipment and more students, making the students' short-wave radio operation and practice time is very limited. In order to solve the above problems, to carry out shortwave radio simple simulation training system development is very necessary. This project is developed by combining hardware and software to simulate the voice communication operation and signal principle of shortwave radio station, and can test the signal flow of shortwave radio station. The test results indicate that this system is simple operation, human-machine interface friendly and can improve teaching more efficiency.

  19. A home away from home. [life support system design for Space Station

    NASA Technical Reports Server (NTRS)

    Powell, L. E.; Hager, R. W.; Mccown, J. W.

    1985-01-01

    The role of the NASA-Marshall center in the development of the Space Station is discussed. The tasks of the center include the development of the life-support system; the design of the common module, which will form the basis for all pressurized Space Station modules; the design and outfit of a common module for the Material and Technology Laboratory (MTL) and logistics use; accommodations for operations of the Orbit Maneuvering Vehicle (OMV) and the Orbit Transfer Vehicle (OTV); and the Space Station propulsion system. A description of functions and design is given for each system, with particular emphasis on the goals of safety, efficiency, automation, and cost effectiveness.

  20. Boiler plant training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peffley, R.E.

    Developing an operator training program depends on each individual power plant's operating characteristics. This paper deals with the development of the existing, workable program used at the Eckert and Erickson Stations - Board of Water and Light, Lansing, Michigan. The Eckert Station is a coal fired complex consisting of 3 to 45 MW, 3 to 80 MW, and 4 process steam boilers. This training program encompasses seven (7) operating classifications administered by a Head Operator. A similar program is employed at a single unit 160 MW Erickson Station, covering three (3) operating classifications.

  1. Commercial Development Plan for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The long term objective of the development plan for the International Space Station (ISS) is to establish the foundation for a marketplace and stimulate a national economy for space products and services in low-Earth orbit, where both demand and supply are dominated by the private sector. The short term objective is to begin the transition to private investment and offset a share of the public cost for operating the space shuttle fleet and space station through commercial enterprise in open markets.

  2. Life support and internal thermal control system design for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.

    1991-01-01

    A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.

  3. Site selection model for new metro stations based on land use

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Chen, Xuewu

    2015-12-01

    Since the construction of metro system generally lags behind the development of urban land use, sites of metro stations should adapt to their surrounding situations, which was rarely discussed by previous research on station layout. This paper proposes a new site selection model to find the best location for a metro station, establishing the indicator system based on land use and combining AHP with entropy weight method to obtain the schemes' ranking. The feasibility and efficiency of this model has been validated by evaluating Nanjing Shengtai Road station and other potential sites.

  4. A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams

    USGS Publications Warehouse

    Flynn, Robert H.

    2003-01-01

    The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.

  5. Biomass power for rural development. Technical progress report, July 1--September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the third quarter of 1997, much of the Consortium`s effort has focused on outreach activities, continued feedstock development, fuel supply planning, and fuel contract development, and preparation for 1998 scale-up activities. The Consortium also submitted a Phase-1 extension proposal during this period. A few of the more important milestones are outlined below. The fourth quarter of 1997 is expected to be dominated by Phase-II proposal efforts and planning for 1998 activities.« less

  6. Evaluating PRISM precipitation grid data as possible surrogates for station data at four sites in Oklahoma

    USDA-ARS?s Scientific Manuscript database

    The development of climate-sensitive decision support for agriculture or water resource management requires long time series of monthly precipitation for specific locations. Archived station data for many locations is available, but time continuity, quality, and spatial coverage of station data rem...

  7. Space station control moment gyro control

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo

    1987-01-01

    The potential large center-of-pressure to center-of-gravity offset of the space station makes the short term, within an orbit, variations in density of primary importance. The large range of uncertainty in the prediction of solar activity will penalize the design, developments, and operation of the space station.

  8. Automation and robotics for the Space Station - An ATAC perspective

    NASA Technical Reports Server (NTRS)

    Nunamaker, Robert R.

    1989-01-01

    The study of automation and robotics for the Space Station by the Advanced Technology Advisory Committee is surveyed. The formation of the committee and the methodology for the Space Station automation study are discussed. The committee's recommendations for automation and robotics research and development are listed.

  9. Using Radio Courses in the High School Curriculum.

    ERIC Educational Resources Information Center

    Hawkins, Ralph G.; Jackson, Susan

    1992-01-01

    Discussion of the development of educational radio focuses on high school radio stations. Problems with determining an accurate number of high school radio stations are considered; and the history of one station in Buffalo (Missouri), KBFL, is described, including details of the two-year broadcasting curriculum, funding, and job placement…

  10. GNSS Network Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Balodis, J.; Janpaule, I.; Haritonova, D.; Normand, M.; Silabriedis, G.; Zarinjsh, A.; Zvirgzds, J.

    2012-04-01

    Time series of GNSS station results of both the EUPOS®-RIGA and LATPOS networks has been developed at the Institute of Geodesy and Geoinformation (University of Latvia) using Bernese v.5.0 software. The base stations were selected among the EPN and IGS stations in surroundings of Latvia. In various day solutions the base station selection has been miscellaneous. Most frequently 5 - 8 base stations were selected from a set of stations {BOR1, JOEN, JOZE, MDVJ, METS, POLV, PULK, RIGA, TORA, VAAS, VISO, VLNS}. The rejection of "bad base stations" was performed by Bernese software depending on the quality of proper station data in proper day. This caused a reason of miscellaneous base station selection in various days. The results of time series are analysed. The question aroused on the nature of some outlying situations. The seasonal effect of the behaviour of the network has been identified when distance and elevation changes between stations has been analysed. The dependence from various influences has been recognised.

  11. NetMOD Version 2.0 Mathematical Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.; Young, Christopher J.; Chael, Eric P.

    2015-08-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each ofmore » the stations. From these signal-to-noise ratios (SNR), the probabilities of signal detection at each station and event detection across the network of stations can be computed given a detection threshold. The purpose of this document is to clearly and comprehensively present the mathematical framework used by NetMOD, the software package developed by Sandia National Laboratories to assess the monitoring capability of ground-based sensor networks. Many of the NetMOD equations used for simulations are inherited from the NetSim network capability assessment package developed in the late 1980s by SAIC (Sereno et al., 1990).« less

  12. Estimation of Missing Water-Level Data for the Everglades Depth Estimation Network (EDEN)

    USGS Publications Warehouse

    Conrads, Paul; Petkewich, Matthew D.

    2009-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and water-surface elevation models designed to provide scientists, engineers, and water-resource managers with current (2000-2009) water-depth information for the entire freshwater portion of the greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN and their goal of providing quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. To increase the accuracy of the daily water-surface elevation model, water-level estimation equations were developed to fill missing data. To minimize the occurrences of no estimation of data due to missing data for an input station, a minimum of three linear regression equations were developed for each station using different input stations. Of the 726 water-level estimation equations developed to fill missing data at 239 stations, more than 60 percent of the equations have coefficients of determination greater than 0.90, and 92 percent have an coefficient of determination greater than 0.70.

  13. Space station molecular sieve development

    NASA Technical Reports Server (NTRS)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  14. Skylab lessons learned as applicable to a large space station, 1967-1974. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.

    1976-01-01

    This report records some of the lessons learned during Skylab development. The approach taken is to list lessons which could have wide application in the development of a large space station. The lessons are amplified and explained in light of the background and experiences of the Skylab development.

  15. The Need and Opportunity for an Integrated Research, Development and Testing Station in the Alaskan High Arctic

    NASA Astrophysics Data System (ADS)

    Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Cahill, C. F.; Bendure, A.; Lucero, D. A.; Roesler, E. L.

    2016-12-01

    This presentation will make the case for development of a permanent integrated research and testing station at Oliktok Point, Alaska; taking advantage of existing assets and infrastructure, controlled airspace, an active UAS program and local partnerships. Arctic research stations provide critical monitoring and research on climate change for conditions and trends in the Arctic. The US Chair of the Arctic Council has increased awareness of gaps in our understanding of Artic systems, scarce monitoring, lack of infrastructure and readiness for emergency response. Less sea ice brings competition for commercial shipping and resource extraction. Search and rescue, pollution mitigation and safe navigation need real-time, wide-area monitoring to respond to events. Multi-national responses for international traffic will drive a greater security presence to protect citizens and sovereign interests. To address research and technology gaps, there is a national need for a High Arctic Station with an approach that partners stakeholders from science, safety and security to develop comprehensive solutions. The Station should offer year-round use, logistic support and access to varied ecological settings; phased adaptation to changing needs; and support testing of technologies such as multiple autonomous platforms, renewable energies and microgrids, and sensors in Arctic settings. We propose an Arctic Station at Oliktok Point, Alaska. Combined with the Toolik Field Station and Barrow Environmental Observatory, they form a US network of Arctic Stations. An Oliktok Point Station can provide complementary and unique assets that include: ocean access, and coastal and terrestrial systems; road access; controlled airspaces on land and ocean; nearby air facilities, medical and logistic support; atmospheric observations from an adjacent ARM facility; connections to Barrow and Toolik; fiber-optic communications; University of Alaska Fairbanks UAS Test Facility partnership; and an airstrip and hangar for UAS. World-class Arctic research requires year-round access and facilities. The US currently conducts most Arctic research at stations outside the US. A US Arctic Station network enables monitoring that is specific to the US Arctic, to predict and understand impacts that affect people, communities and the planet.

  16. Student understanding development in chemistry concepts through constructivist-informed laboratory and science camp process in secondary school

    NASA Astrophysics Data System (ADS)

    Pathommapas, Nookorn

    2018-01-01

    Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of chemistry teachers and researcher, 2) the percentage of students having understandings of chemistry concepts before and after learning at the four stations ranged from 15.92-54.23% and 83.89-97.02%, respectively, and 3)students' opinions of using their 21st century skills in the science camp after finishing the camp activities were at a high level of satisfactions, ranged from 4.09-4.47 of 5 rating scores.

  17. Ground terminal expert (GTEX). Part 2: Expert system diagnostics for a 30/20 Gigahertz satellite transponder

    NASA Technical Reports Server (NTRS)

    Durkin, John; Schlegelmilch, Richard; Tallo, Donald

    1992-01-01

    A research effort was undertaken to investigate how expert system technology could be applied to a satellite communications system. The focus of the expert system is the satellite earth station. A proof of concept expert system called the Ground Terminal Expert (GTEX) was developed at the University of Akron in collaboration with the NASA Lewis Research Center. With the increasing demand for satellite earth stations, maintenance is becoming a vital issue. Vendors of such systems will be looking for cost effective means of maintaining such systems. The objective of GTEX is to aid in diagnosis of faults occurring with the digital earth station. GTEX was developed on a personal computer using the Automated Reasoning Tool for Information Management (ART-IM) developed by the Inference Corporation. Developed for the Phase 2 digital earth station, GTEX is a part of the Systems Integration Test and Evaluation (SITE) facility located at the NASA Lewis Research Center.

  18. The development of the Canadian Mobile Servicing System Kinematic Simulation Facility

    NASA Technical Reports Server (NTRS)

    Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.

    1989-01-01

    Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.

  19. Oil and gas pipeline construction cost analysis and developing regression models for cost estimation

    NASA Astrophysics Data System (ADS)

    Thaduri, Ravi Kiran

    In this study, cost data for 180 pipelines and 136 compressor stations have been analyzed. On the basis of the distribution analysis, regression models have been developed. Material, Labor, ROW and miscellaneous costs make up the total cost of a pipeline construction. The pipelines are analyzed based on different pipeline lengths, diameter, location, pipeline volume and year of completion. In a pipeline construction, labor costs dominate the total costs with a share of about 40%. Multiple non-linear regression models are developed to estimate the component costs of pipelines for various cross-sectional areas, lengths and locations. The Compressor stations are analyzed based on the capacity, year of completion and location. Unlike the pipeline costs, material costs dominate the total costs in the construction of compressor station, with an average share of about 50.6%. Land costs have very little influence on the total costs. Similar regression models are developed to estimate the component costs of compressor station for various capacities and locations.

  20. TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    NASA Technical Reports Server (NTRS)

    Manner, David B.

    1990-01-01

    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system.

  1. Implementation of ionizing radiation environment requirements for Space Station

    NASA Technical Reports Server (NTRS)

    Boeder, Paul A.; Watts, John W.

    1993-01-01

    Proper functioning of Space Station hardware requires that the effects of high-energy ionizing particles from the natural environment and (possibly) from man-made sources be considered during design. At the Space Station orbit of 28.5-deg inclination and 330-440 km altitude, geomagnetically trapped protons and electrons contribute almost all of the dose, while galactic cosmic rays and anomalous cosmic rays may produce Single Event Upsets (SEUs), latchups, and burnouts of microelectronic devices. Implementing ionizing radiation environment requirements for Space Station has been a two part process, including the development of a description of the environment for imposing requirements on the design and the development of a control process for assessing how well the design addresses the effects of the ionizing radiation environment. We will review both the design requirements and the control process for addressing ionizing radiation effects on Space Station.

  2. Beyond the Baseline: Proceedings of the Space Station Evolution Symposium. Volume 1, Part 2; Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom Program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems.

  3. A solar station in Ica - Mutsumi Ishitsuka: a research center to improve education at the university and schools

    NASA Astrophysics Data System (ADS)

    Terrazas-Ramos, Raúl

    2012-07-01

    The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.

  4. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  5. An objective structured clinical exam to measure intrinsic CanMEDS roles.

    PubMed

    Kassam, Aliya; Cowan, Michèle; Donnon, Tyrone

    2016-01-01

    Background The CanMEDS roles provide a comprehensive framework to organize competency-based curricula; however, there is a challenge in finding feasible, valid, and reliable assessment methods to measure intrinsic roles such as Communicator and Collaborator. The objective structured clinical exam (OSCE) is more commonly used in postgraduate medical education for the assessment of clinical skills beyond medical expertise. Method We developed the CanMEDS In-Training Exam (CITE), a six-station OSCE designed to assess two different CanMEDS roles (one primary and one secondary) and general communication skills at each station. Correlation coefficients were computed for CanMEDS roles within and between stations, and for general communication, global rating, and total scores. One-way analysis of variance (ANOVA) was used to investigate differences between year of residency, sex, and the type of residency program. Results In total, 63 residents participated in the CITE; 40 residents (63%) were from internal medicine programs, whereas the remaining 23 (37%) were pursuing other specialties. There was satisfactory internal consistency for all stations, and the total scores of the stations were strongly correlated with the global scores r=0.86, p<0.05. Noninternal medicine residents scored higher in terms of the Professional competency overall, whereas internal medicine residents scored significantly higher in the Collaborator competency overall. Discussion The OSCE checklists developed for the assessment of intrinsic CanMEDS roles were functional, but the specific items within stations required more uniformity to be used between stations. More generic types of checklists may also improve correlations across stations. Conclusion An OSCE measuring intrinsic competence is feasible; however, further development of our cases and checklists is needed. We provide a model of how to develop an OSCE to measure intrinsic CanMEDS roles that educators may adopt as residency programs move into competency-based medical education.

  6. Linking ShakeMap and Emergency Managers in the Utah Region

    NASA Astrophysics Data System (ADS)

    Pankow, K.; Bausch, D.; Carey, B.

    2007-12-01

    In 2001, the University of Utah Seismograph Stations (UUSS) locally customized and began producing automatic ShakeMaps in Utah's Wasatch Front urban corridor as part of a new real-time earthquake information system developed under the Advanced National Seismic System. In 2005, motivated by requests from Utah's Division of Homeland Security and FEMA, ShakeMap capabilities were expanded to cover the entire Utah region. Now in 2007, ShakeMap capabilities throughout the region will again be enhanced by increased station coverage. The increased station coverage comes both from permanent stations funded by a state initiative and from the temporary deployment of EarthScope USArray stations. The state initiative will add ~22 strong-motion instruments and ~10 broadband instruments to the UUSS network. The majority of these stations will be located in southwestern Utah--one of the fastest growing regions in the U.S. EarthScope will evenly distribute 70 broadband stations in the region during 2007 that will be removed after 18 to 24 months. In addition to the enhanced station coverage for producing ShakeMaps in the Utah region, the transfer of information to the emergency response community is also being enhanced. First, tools are being developed that will link ShakeMap data with HAZUS loss-estimation software in near-real-time for rapid impact assessment. Second, ShakeMap scenarios are being used in conjunction with HAZUS loss-estimation software to produce customized maps for planning and preparedness exercises and also for developing templates that can be used following a significant regional earthquake. With the improvements to ShakeMap and the improved dialogue with the emergency managers, a suite of maps and information products were developed based on scenario earthquakes for training and exercise purposes. These products will be available in a timely fashion following a significant earthquake in the Utah region.

  7. Analysis of the streamflow-gaging station network in Ohio for effectiveness in providing regional streamflow information

    USGS Publications Warehouse

    Straub, D.E.

    1998-01-01

    The streamflow-gaging station network in Ohio was evaluated for its effectiveness in providing regional streamflow information. The analysis involved application of the principles of generalized least squares regression between streamflow and climatic and basin characteristics. Regression equations were developed for three flow characteristics: (1) the instantaneous peak flow with a 100-year recurrence interval (P100), (2) the mean annual flow (Qa), and (3) the 7-day, 10-year low flow (7Q10). All active and discontinued gaging stations with 5 or more years of unregulated-streamflow data with respect to each flow characteristic were used to develop the regression equations. The gaging-station network was evaluated for the current (1996) condition of the network and estimated conditions of various network strategies if an additional 5 and 20 years of streamflow data were collected. Any active or discontinued gaging station with (1) less than 5 years of unregulated-streamflow record, (2) previously defined basin and climatic characteristics, and (3) the potential for collection of more unregulated-streamflow record were included in the network strategies involving the additional 5 and 20 years of data. The network analysis involved use of the regression equations, in combination with location, period of record, and cost of operation, to determine the contribution of the data for each gaging station to regional streamflow information. The contribution of each gaging station was based on a cost-weighted reduction of the mean square error (average sampling-error variance) associated with each regional estimating equation. All gaging stations included in the network analysis were then ranked according to their contribution to the regional information for each flow characteristic. The predictive ability of the regression equations developed from the gaging station network could be improved for all three flow characteristics with the collection of additional streamflow data. The addition of new gaging stations to the network would result in an even greater improvement of the accuracy of the regional regression equations. Typically, continued data collection at stations with unregulated streamflow for all flow conditions that had less than 11 years of record with drainage areas smaller than 200 square miles contributed the largest cost-weighted reduction to the average sampling-error variance of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active gaging stations or the reactivation of discontinued gaging stations if the objective is to maximize the regional information content in the streamflow-gaging station network.

  8. Current Development at the Southern California Earthquake Data Center (SCEDC)

    NASA Astrophysics Data System (ADS)

    Appel, V. L.; Clayton, R. W.

    2005-12-01

    Over the past year, the SCEDC completed or is near completion of three featured projects: Station Information System (SIS) Development: The SIS will provide users with an interface into complete and accurate station metadata for all current and historic data at the SCEDC. The goal of this project is to develop a system that can interact with a single database source to enter, update and retrieve station metadata easily and efficiently. The system will provide accurate station/channel information for active stations to the SCSN real-time processing system, as will as station/channel information for stations that have parametric data at the SCEDC i.e., for users retrieving data via STP. Additionally, the SIS will supply information required to generate dataless SEED and COSMOS V0 volumes and allow stations to be added to the system with a minimum, but incomplete set of information using predefined defaults that can be easily updated as more information becomes available. Finally, the system will facilitate statewide metadata exchange for both real-time processing and provide a common approach to CISN historic station metadata. Moment Tensor Solutions: The SCEDC is currently archiving and delivering Moment Magnitudes and Moment Tensor Solutions (MTS) produced by the SCSN in real-time and post-processing solutions for events spanning back to 1999. The automatic MTS runs on all local events with magnitudes > 3.0, and all regional events > 3.5. The distributed solution automatically creates links from all USGS Simpson Maps to a text e-mail summary solution, creates a .gif image of the solution, and updates the moment tensor database tables at the SCEDC. Searchable Scanned Waveforms Site: The Caltech Seismological Lab has made available 12,223 scanned images of pre-digital analog recordings of major earthquakes recorded in Southern California between 1962 and 1992 at http://www.data.scec.org/research/scans/. The SCEDC has developed a searchable web interface that allows users to search the available files, select multiple files for download and then retrieve a zipped file containing the results. Scanned images of paper records for M>3.5 southern California earthquakes and several significant teleseisms are available for download via the SCEDC through this search tool.

  9. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results. Appendix D: Life sciences research facility requirements

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The purpose of this requirements document is to develop the foundation for concept development for the Life Sciences Research Facility (LSRF) on the Space Station. These requirements are developed from the perspective of a Space Station laboratory module outfitter. Science and mission requirements including those related to specimens are set forth. System requirements, including those for support, are detailed. Functional and design requirements are covered in the areas of structures, mechanisms, electrical power, thermal systems, data management system, life support, and habitability. Finally, interface requirements for the Command Module and Logistics Module are described.

  10. Turnaround operations analysis for OTV. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Anaylses performed for ground processing, both expendable and reusable ground-based Orbital Transfer Vehicles (OTVs) launched on the Space Transportation System (STS), a reusable space-based OTV (SBOTV) launched on the STS, and a reusable ground-based OTV (GBOTV) launched on an unmanned cargo vehicle and recovered by the Orbiter are summarized. Also summarized are the analyses performed for space processing the reusable SBOTV at the Space Station in low Earth orbit (LEO) as well as the maintenance and servicing of the SBOTV accommodations at the Space Station. In addition, the candidate OTV concepts, design and interface requirements, and the Space Station design, support, and interface requirements are summarized. A development schedule and associated costs for the required SBOTV accommodations at the Space Station are presented. Finallly, the technology development plan to develop the capability to process both GBOTVs and SBOTVs are summarized.

  11. Operations research investigations of satellite power stations

    NASA Technical Reports Server (NTRS)

    Cole, J. W.; Ballard, J. L.

    1976-01-01

    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

  12. Second AIAA/NASA USAF Symposium on Automation, Robotics and Advanced Computing for the National Space Program

    NASA Technical Reports Server (NTRS)

    Myers, Dale

    1987-01-01

    An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.

  13. Configuration management and software measurement in the Ground Systems Development Environment (GSDE)

    NASA Technical Reports Server (NTRS)

    Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo

    1992-01-01

    A set of functional requirements for software configuration management (CM) and metrics reporting for Space Station Freedom ground systems software are described. This report is one of a series from a study of the interfaces among the Ground Systems Development Environment (GSDE), the development systems for the Space Station Training Facility (SSTF) and the Space Station Control Center (SSCC), and the target systems for SSCC and SSTF. The focus is on the CM of the software following delivery to NASA and on the software metrics that relate to the quality and maintainability of the delivered software. The CM and metrics requirements address specific problems that occur in large-scale software development. Mechanisms to assist in the continuing improvement of mission operations software development are described.

  14. Automating Space Station operations planning

    NASA Technical Reports Server (NTRS)

    Ziemer, Kathleen A.

    1989-01-01

    The development and implementation of the operations planning processes for the Space Station are discussed. A three level planning process, consisting of strategic, tactical, and execution level planning, is being developed. The integration of the planning procedures into a tactical planning system is examined and the planning phases are illustrated.

  15. Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.

    2001-01-01

    The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.

  16. Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2008-01-01

    Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.

  17. Adaptive control applied to Space Station attitude control system

    NASA Technical Reports Server (NTRS)

    Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John

    1992-01-01

    This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.

  18. Space station: A step into the future

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1989-01-01

    The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.

  19. Low-flow-frequency characteristics for continuous-record streamflow stations in Minnesota

    USGS Publications Warehouse

    Arntson, A.D.; Lorenz, D.L.

    1987-01-01

    Annual and summer (May 1 to September 30) low-flow frequency curves are presented for 175 continuous-record streamflow stations in Minnesota. The curves were developed for all stations with 10 or more years of continuous record. The 1-, 7-, and 30-day low-flow discharges at selected recurrence intervals obtained from these curves are listed. Low-flow characteristics can and will vary for a station depending upon the number of years of record and the period gaged. When comparing low-flow characteristics between two or more stations, it should be remembered that no provisions were made to use concurrent periods of record for stations along the same stream.

  20. Capacity Building with CHIRPS Amidst a Station-Recording Crisis

    NASA Astrophysics Data System (ADS)

    Peterson, P.

    2016-12-01

    Station data are essential for improving the accuracy of satellite-derived rainfall products. However we face a severe reporting crisis as the number of available stations observations has declined precipitously. For example there were 2400 monthly stations available in Africa (excluding South Africa) in the 1980's, while at present there are about 500 stations (Figure 1). In this talk we describe how partnerships with regional and national collaborators can improve our collective ability to monitor food production and inform decision making. A high quality, long-term, high-resolution precipitation dataset is key for supporting agricultural drought monitoring, food security and early warning. Here we present the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) v2.0, developed by scientists at the University of California, Santa Barbara and the U.S. Geological Survey Earth Resources Observation and Science Center under the direction of Famine Early Warning Systems Network (FEWS NET). This quasi-global precipitation product is available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. The Climate Hazards Group (CHG) has developed an extensive database of in situ daily, pentadal, and monthly precipitation totals with over a billion daily observations worldwide. Under support from the USAID FEWS NET, CHG/USGS has developed a two way strategy for incorporating contributed station data while providing web-based visualization tools to partners in developing nations. For example, we are currently working with partners in Mexico (Conagua), Southern Africa (SASSCAL), Colombia (IDEAM), Somalia (SWALIM) and Ethiopia (NMA). These institutions provide in situ observations which enhance the CHIRPS. The CHIRPS is then placed in a web accessible geospatial database. Partners in these countries can then access and display this information using web based mapping tools. This provides a win-win collaboration, leading to improved globally accessible precipitation estimates and improved climate services in developing nations.

  1. Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams

    USGS Publications Warehouse

    Watson, Kara M.; Schopp, Robert D.

    2009-01-01

    Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed cooperatively by the U.S. Geological Survey and the Environmental Systems Research Institute, Inc., and was designed for national implementation. This web application has been recently implemented for use in New Jersey. This program used in conjunction with a geographic information system provides the computation of values for selected basin characteristics, estimates of flood magnitudes and frequencies, and statistics for stream locations in New Jersey chosen by the user, whether the site is gaged or ungaged.

  2. Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

    NASA Technical Reports Server (NTRS)

    Ray, Charles D.; Carrasquillo, Robyn L.; Minton-Summers, Silvia

    1997-01-01

    This paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station (ISS). Current activities include ECLSS computer model development, component design and development, subsystem integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.

  3. Shielding requirements for the Space Station habitability modules

    NASA Technical Reports Server (NTRS)

    Avans, Sherman L.; Horn, Jennifer R.; Williamsen, Joel E.

    1990-01-01

    The design, analysis, development, and tests of the total meteoroid/debris protection system for the Space Station Freedom habitability modules, such as the habitation module, the laboratory module, and the node structures, are described. Design requirements are discussed along with development efforts, including a combination of hypervelocity testing and analyses. Computer hydrocode analysis of hypervelocity impact phenomena associated with Space Station habitability structures is covered and the use of optimization techniques, engineering models, and parametric analyses is assessed. Explosive rail gun development efforts and protective capability and damage tolerance of multilayer insulation due to meteoroid/debris impact are considered. It is concluded that anticipated changes in the debris environment definition and requirements will require rescoping the tests and analysis required to develop a protection system.

  4. Space station MSFC-DPD-235/DR no. CM-03 specification, modular space station project, Part 1 CEI

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Contract engineering item specifications for the modular space station are presented. These specifications resulted from the development and allocations of requirements which are concise statements of performance or constraints on performance. Specifications contain requirements for functional performance and for the verification of design solutions.

  5. A study of space station needs, attributes and architectural options. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Steinbronn, O.

    1983-01-01

    Missions that will benefit from the development of a permanent manned space station are examined. The missions that will determine the space station architecture include spaceborne scientific experiments, space industrialization and commercialization, remote space operations, and U.S. national security. Architectural options and economic analysis are also presented.

  6. 20. MANUAL JACKING STATION UNIT 23 GORGE POWERHOUSE. JACKING FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. MANUAL JACKING STATION UNIT 23 GORGE POWERHOUSE. JACKING FOR UNITS 23, 22, AND 21 HAS BEEN AUTOMATED FOR MANY YEARS BUT THE MANUAL JACKING STATIONS REMAIN IN PLACE AND FUNCTIONAL, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  7. The +vbar breakout during approach to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Dunham, Scott D.

    1993-01-01

    A set of burn profiles was developed to provide bounding jet firing histories for a +vbar breakout during approaches to Space Station Freedom. The delta-v sequences were designed to place the Orbiter on a safe trajectory under worst case conditions and to try to minimize plume impingement on Space Station Freedom structure.

  8. Continuous turbidity monitoring in streams of northwestern California

    Treesearch

    Rand Eads; Jack Lewis

    2002-01-01

    Abstract - Redwood Sciences Laboratory, a field office of the USDA Forest Service, Pacific Southwest Research Station has developed and refined methods and instrumentation to monitor turbidity and suspended sediment in streams of northern California since 1996. Currently we operate 21 stations and have provided assistance in the installation of 6 gaging stations for...

  9. Process development for automated solar cell and module production. Task 4: Automated array assembly

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.

    1981-01-01

    The cell preparation station was installed in its new enclosure. Operation verification tests were performed. The detailed layout drawings of the automated lamination station were produced and construction began. All major and most minor components were delivered by vendors. The station framework was built and assembly of components begun.

  10. Forest productivity: an integrated research and development program

    Treesearch

    Daniel C. Dey; Thomas R. Crow; Don E. Riemenschneider

    2003-01-01

    In 2000, the North Central Research Station initiated the Forest Productivity Integrated Research Program (North Central Research Station 2001). This program combines the efforts of scientists from across the Station's 13 research work units to examine the current condition of the forests in the North Central Region and their prospects for producing wood and fiber...

  11. International Space Station: Meteoroid/Orbital Debris Survivability and Vulnerability

    NASA Technical Reports Server (NTRS)

    Graves, Russell

    2000-01-01

    This slide presentation reviews the surviability and vulnerability of the International Space Station (ISS) from the threat posed by meteoroid and orbital debris. The topics include: (1) Space station natural and induced environments (2) Meteoroid and orbital debris threat definition (3) Requirement definition (4) Assessment methods (5) Shield development and (6) Component vulnerability

  12. Guidelines for developing spacecraft maximum allowable concentrations for Space Station contaminants

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The National Aeronautics and Space Administration (NASA) is preparing to launch a manned space station by the year 1996. Because of concerns about the health, safety, and functioning abilities of the crews, NASA has requested that the National Research Council (NRC) through the Board on Environmental Studies and Toxicology (BEST) provide advice on toxicological matters for the space-station program. The Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants was established by the Committee on Toxicology (COT) to address NASA's concerns. Spacecraft maximum allowable concentrations (SMAC's) are defined as the maximum concentrations of airborne substances (such as gas, vapor, or aerosol) that will not cause adverse health effects, significant discomfort, or degradation in crew performance.

  13. Power-plant modernization program in Latvia. Desk Study Report No. 1. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-08-01

    The Government of Latvia has requested the U.S. Trade and Development Program's (TDP's) assistance in financing the cost of a feasibility study to develop a modernization program for its thermal power stations aimed at improving their performance and efficiency. The consultant will work with engineers and managers of Latvenergo, Latvia's power utility, to review the performance of the country's two thermal power stations and carry out a detailed study for the rehabilitation and modernization of the TEC-2 thermal power station in Riga. The overall goal of the program will be to maximize the output capacity of the country's two powermore » stations through the implementation of economically efficient rehabilitation projects.« less

  14. Some key considerations in evolving a computer system and software engineering support environment for the space station program

    NASA Technical Reports Server (NTRS)

    Mckay, C. W.; Bown, R. L.

    1985-01-01

    The space station data management system involves networks of computing resources that must work cooperatively and reliably over an indefinite life span. This program requires a long schedule of modular growth and an even longer period of maintenance and operation. The development and operation of space station computing resources will involve a spectrum of systems and software life cycle activities distributed across a variety of hosts, an integration, verification, and validation host with test bed, and distributed targets. The requirement for the early establishment and use of an apporopriate Computer Systems and Software Engineering Support Environment is identified. This environment will support the Research and Development Productivity challenges presented by the space station computing system.

  15. End-to-End Data System Architecture for the Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Mian, Arshad; Scimemi, Sam; Adeni, Kaiser; Picinich, Lou; Ramos, Rubin (Technical Monitor)

    1998-01-01

    The Space Station Biological Research Project (SSBRP) Is developing hardware referred to as the "facility" for providing life sciences research capability on the International Space Station. This hardware includes several biological specimen habitats, habitat holding racks, a centrifuge and a glovebox. An SSBRP end to end data system architecture has been developed to allow command and control of the facility from the ground, either with crew assistance or autonomously. The data system will be capable of handling commands, sensor data, and video from multiple cameras. The data will traverse through several onboard and ground networks and processing entities including the SSBRP and Space Station onboard and ground data systems. A large number of onboard and ground (,entities of the data system are being developed by the Space Station Program, other NASA centers and the International Partners. The SSBRP part of the system which includes the habitats, holding racks, and the ground operations center, User Operations Facility (UOF) will be developed by a multitude of geographically distributed development organizations. The SSBRP has the responsibility to define the end to end data and communications systems to make the interfaces manageable and verifiable with multiple contractors with widely varying development constraints and schedules. This paper provides an overview of the SSBRP end-to-end data system. Specifically, it describes the hardware, software and functional interactions of individual systems, and interface requirements among various entities of the end-to-end system.

  16. Astrophysical payload accommodation on the space station

    NASA Technical Reports Server (NTRS)

    Woods, B. P.

    1985-01-01

    Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.

  17. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with the ACTS satellite. The ACTS experiment's program proposed to validate Ka-band satellite and ground station technology. demonstrate future telecommunication services. demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals (Part 1) and the lessons learned throughout their six year operation including the inclined orbit phase of operations (Full Report). An overview of the Ka-band technology and components developed for the ACTS ground stations is presented. Next. the performance of the ground station technology and its evolution during the ACTS campaign are discussed to illustrate the technical tradeoffs made during the program and highlight technical advances by industry to support the ACTS experiments program and terminal operations. Finally. lessons learned during development and operation of the user terminals are discussed for consideration of commercial adoption into future Ka-band systems. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector based offset-fed antenna systems ranging in size from 0.35m to 3.4m antenna diameter. Gateway earth stations included two systems, referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET). The NGS provides tracking, telemetry, and control (TT&C) and Time Division Multiple Access (TDMA) network control functions. The LET supports technology verification and high data rate experiments. The ground stations successfully demonstrated many services and applications at Ka-band in three different modes of operation: circuit switched TDMA using the satellite on-board processor, satellite switched SS-TDMA applications using the on-board Microwave Switch Matrix (MSM), and conventional transponder (bent-pipe) operation. Data rates ranged from 4.8 kbps up to 622 Mbps. Experiments included: 1) low rate (4.8- 1 00's kbps) remote data acquisition and control using small earth stations, 2) moderate rate (1-45 Mbps) experiments included full duplex voice and video conferencing and both full duplex and asymmetric data rate protocol and network evaluation using mid-size ground stations, and 3) link characterization experiments and high data rate (155-622 Mbps) terrestrial and satellite interoperability application experiments conducted by a consortium of experimenters using the large transportable ground stations.

  18. Planning for the scientific use of the international Space Station complex

    NASA Technical Reports Server (NTRS)

    Halpern, R. E.

    1988-01-01

    Plans for the development of an international Space Station complex in cooperation with Japan, Canada, and the European Space Agency are reviewed. The discussion covers the planned uses of the Space Station, the principal research facilities, allocation of the resources available to the research facilities, and tactical and strategic planning related to the Space Station project. Particular attention is given to problems related to microgravity sciences and approaches to the solutions of these problems.

  19. Development of a preprototype trace contaminant control system. [for space stations

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The steady state contaminant load model based on shuttle equipment and material test programs, and on the current space station studies was revised. An emergency upset contaminant load model based on anticipated emergency upsets that could occur in an operational space station was defined. Control methods for the contaminants generated by the emergency upsets were established by test. Preliminary designs of both steady state and emergency contaminant control systems for the space station application are presented.

  20. A method to establish seismic noise baselines for automated station assessment

    USGS Publications Warehouse

    McNamara, D.E.; Hutt, C.R.; Gee, L.S.; Benz, H.M.; Buland, R.P.

    2009-01-01

    We present a method for quantifying station noise baselines and characterizing the spectral shape of out-of-nominal noise sources. Our intent is to automate this method in order to ensure that only the highest-quality data are used in rapid earthquake products at NEIC. In addition, the station noise baselines provide a valuable tool to support the quality control of GSN and ANSS backbone data and metadata. The procedures addressed here are currently in development at the NEIC, and work is underway to understand how quickly changes from nominal can be observed and used within the NEIC processing framework. The spectral methods and software used to compute station baselines and described herein (PQLX) can be useful to both permanent and portable seismic stations operators. Applications include: general seismic station and data quality control (QC), evaluation of instrument responses, assessment of near real-time communication system performance, characterization of site cultural noise conditions, and evaluation of sensor vault design, as well as assessment of gross network capabilities (McNamara et al. 2005). Future PQLX development plans include incorporating station baselines for automated QC methods and automating station status report generation and notification based on user-defined QC parameters. The PQLX software is available through the USGS (http://earthquake. usgs.gov/research/software/pqlx.php) and IRIS (http://www.iris.edu/software/ pqlx/).

  1. Modular space station, phase B extension. Information management advanced development. Volume 2: Communications terminal breadboard

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The design and development of the communications terminal breadboard for the modular space station are discussed. The subjects presented are: (1) history of communications terminal breadboard, (2) requirements analysis, (3) technology goals in terminal design, and (4) communications terminal board integration tests.

  2. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  3. Preparation of X-ray astronomy satellite experiment Development of computer programs for the Salyut-HEXE X-ray experiment ground station

    NASA Astrophysics Data System (ADS)

    Petrik, J.

    The engineering model of the Salyut-HEXE experiment is described. The detector system, electronics box, and ground station are addressed. The microprocessor system is considered, discussing the cards and presenting block diagrams of their functions. The telemetry is examined, including the various modes and the direct and indirect transmission modes. The ground station programs are discussed, including the tasks, program development, input and output programs, status, power supply, count rates, telemetry dump, hard copy, and checksum.

  4. Space Station ECLSS Integration Analysis

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) contract with NASA MSFC covered the time frame from 9 May 1985 to 31 Dec. 1992. The contract roughly covered the period of Space Station Freedom (SSF) development from early Phase B through Phase C/D Critical Design Review (CDR). During this time, McDonnell Douglas Aerospace-Huntsville (formerly McDonnell Douglas Space Systems Company) performed an analytical support role to MSFC for the development of analytical math models and engineering trade studies related to the design of the ECLSS for the SSF.

  5. Space station environmental control and life support systems conceptual studies

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Powell, L. E.

    1985-01-01

    It is pointed out that the establishment of a permanent manned Space Station requires the development of a comprehensive approach which combines new technologies and existing spacecraft subsystem capabilities into an optimum design. The present paper is concerned with studies which were conducted in connection with the development of the regenerative Environmental Control and Life Support Systems (ECLSS) for the Space Station. Attention is given to the current state of the ECLSS subsystems and system level analytical selection and group studies related to the integrated system conceptual design.

  6. Development of a Space Station Operations Management System

    NASA Technical Reports Server (NTRS)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  7. Development of a Space Station Operations Management System

    NASA Astrophysics Data System (ADS)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  8. Software technology testbed softpanel prototype

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The following subject areas are covered: analysis of using Ada for the development of real-time control systems for the Space Station; analysis of the functionality of the Application Generator; analysis of the User Support Environment criteria; analysis of the SSE tools and procedures which are to be used for the development of ground/flight software for the Space Station; analysis if the CBATS tutorial (an Ada tutorial package); analysis of Interleaf; analysis of the Integration, Test and Verification process of the Space Station; analysis of the DMS on-orbit flight architecture; analysis of the simulation architecture.

  9. Science and payload options for animal and plant research accommodations aboard the early Space Station

    NASA Technical Reports Server (NTRS)

    Hilchey, John D.; Arno, Roger D.; Gustan, Edith; Rudiger, C. E.

    1986-01-01

    The resources to be allocated for the development of the Initial Operational Capability (IOC) Space Station Animal and Plant Research Facility and the Growth Station Animal and Plant Vivarium and Laboratory may be limited; also, IOC accommodations for animal and plant research may be limited. An approach is presented for the development of Initial Research Capability Minilabs for animal and plant studies, which in appropriate combination and sequence can meet requirements for an evolving program of research within available accommodations and anticipated budget constraints.

  10. Shear-wave velocity characterization of the USGS Hawaiian strong-motion network on the Island of Hawaii and development of an NEHRP site-class map

    USGS Publications Warehouse

    Wong, Ivan G.; Stokoe, Kenneth; Cox, Brady R.; Yuan, Jiabei; Knudsen, Keith L.; Terra, Fabia; Okubo, Paul G.; Lin, Yin-Cheng

    2011-01-01

    To assess the level and nature of ground shaking in Hawaii for the purposes of earthquake hazard mitigation and seismic design, empirical ground-motion prediction models are desired. To develop such empirical relationships, knowledge of the subsurface site conditions beneath strong-motion stations is critical. Thus, as a first step to develop ground-motion prediction models for Hawaii, spectral-analysis-of-surface-waves (SASW) profiling was performed at the 22 free-field U.S. Geological Survey (USGS) strong-motion sites on the Big Island to obtain shear-wave velocity (VS) data. Nineteen of these stations recorded the 2006 Kiholo Bay moment magnitude (M) 6.7 earthquake, and 17 stations recorded the triggered M 6.0 Mahukona earthquake. VS profiling was performed to reach depths of more than 100 ft. Most of the USGS stations are situated on sites underlain by basalt, based on surficial geologic maps. However, the sites have varying degrees of weathering and soil development. The remaining strong-motion stations are located on alluvium or volcanic ash. VS30 (average VS in the top 30 m) values for the stations on basalt ranged from 906 to 1908 ft/s [National Earthquake Hazards Reduction Program (NEHRP) site classes C and D], because most sites were covered with soil of variable thickness. Based on these data, an NEHRP site-class map was developed for the Big Island. These new VS data will be a significant input into an update of the USGS statewide hazard maps and to the operation of ShakeMap on the island of Hawaii.

  11. Functional and immunohistochemical characterization of CCEae3a, a carboxylesterase associated with temephos resistance in the major arbovirus vectors Aedes aegypti and Ae. albopictus.

    PubMed

    Grigoraki, Linda; Balabanidou, Vassileia; Meristoudis, Christos; Myridakis, Antonis; Ranson, Hilary; Swevers, Luc; Vontas, John

    2016-07-01

    Temephos is a major organophosphate (OP) larvicide that has been used extensively for the control of Aedes albopictus and Aedes aegypti, the major vectors for viral diseases, such as dengue fever, zika and chikungunya. Resistance to temephos has been recently detected and associated with the upregulation of carboxylesterases (CCEs) through gene amplification, in both species. Here, we expressed the CCEae3a genes which showed the most striking up-regulation in resistant Aedes strains, using the baculovirus system. All CCEae3a variants encoded functional enzymes, with high activity and preference for p-nitrophenyl butyrate, a substrate that was shown capable to differentiate temephos resistant from susceptible Aedes larvae. Enzyme kinetic studies showed that CCEae3as from both Ae. aegypti and Ae. albopictus (CCEae3a_aeg and CCEae3a_alb, respectively) strongly interact with temephos oxon and slowly released the OP molecule, indicating a sequestration resistance mechanism. No difference was detected between resistant and susceptible CCEae3a_aeg variants (CCEae3a_aegR and CCEae3a_aegS, respectively), indicating that previously reported polymorphism is unlikely to play a role in temephos resistance. HPLC/MS showed that CCEae3as were able to metabolize temephos oxon to the temephos monoester [(4-hydroxyphenyl) sulfanyl] phenyl O,O-dimethylphosphorothioate. Western blot and immunolocalization studies, based on a specific antibody raised against the CCEae3a_alb showed that the enzyme is expressed at higher levels in resistant insects, primarily in malpighian tubules (MT) and nerve tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.

    2003-01-01

    Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.

  13. Operation of International Monitoring System Network

    NASA Astrophysics Data System (ADS)

    Nikolova, Svetlana; Araujo, Fernando; Aktas, Kadircan; Malakhova, Marina; Otsuka, Riyo; Han, Dongmei; Assef, Thierry; Nava, Elisabetta; Mickevicius, Sigitas; Agrebi, Abdelouaheb

    2015-04-01

    The IMS is a globally distributed network of monitoring facilities using sensors from four technologies: seismic, hydroacoustic, infrasound and radionuclide. It is designed to detect the seismic and acoustic waves produced by nuclear test explosions and the subsequently released radioactive isotopes. Monitoring stations transmit their data to the IDC in Vienna, Austria, over a global private network known as the GCI. Since 2013, the data availability (DA) requirements for IMS stations account for quality of the data, meaning that in calculation of data availability data should be exclude if: - there is no input from sensor (SHI technology); - the signal consists of constant values (SHI technology); Even more strict are requirements for the DA of the radionuclide (particulate and noble gas) stations - received data have to be analyzed, reviewed and categorized by IDC analysts. In order to satisfy the strict data and network availability requirements of the IMS Network, the operation of the facilities and the GCI are managed by IDC Operations. Operations has following main functions: - to ensure proper operation and functioning of the stations; - to ensure proper operation and functioning of the GCI; - to ensure efficient management of the stations in IDC; - to provide network oversight and incident management. At the core of the IMS Network operations are a series of tools for: monitoring the stations' state of health and data quality, troubleshooting incidents, communicating with internal and external stakeholders, and reporting. The new requirements for data availability increased the importance of the raw data quality monitoring. This task is addressed by development of additional tools for easy and fast identifying problems in data acquisition, regular activities to check compliance of the station parameters with acquired data by scheduled calibration of the seismic network, review of the samples by certified radionuclide laboratories. The DA for the networks of different technologies in 2014 is: Primary seismic (PS) network - 95.70%, Infrasound network (IS) - 97.68%, Hydroacoustic network (HA) - 88.78%, Auxiliary Seismic - 86.07%; Radionuclide Particulate - 83.01% and Radionuclide Noble Gas -75.06%. IDC's strategy for further improving operations and management of the stations and meeting DA requirements is: - further development of tools and procedures to effectively identify and support troubleshooting of problems by the Station Operators; - effective support to the station operators to develop tailored Operation and Maintenance plans for their stations; - focus on early identification of the raw data quality problems at the station in order to support timely resolution; - extensive training programme for station operators (joined effort of IDC and IMS).

  14. Completing and sustaining IMS network for the CTBT Verification Regime

    NASA Astrophysics Data System (ADS)

    Meral Ozel, N.

    2015-12-01

    The CTBT International Monitoring System is to be comprised of 337 facilities located all over the world for the purpose of detecting and locating nuclear test explosions. Major challenges remain, namely the completion of the network where most of the remaining stations have either environmental, logistical and/or political issues to surmont (89% of the stations have already been built) and the sustainment of a reliable and state-of the-art network covering 4 technologies - seismic, infrasound , hydroacoustic and radionuclide. To have a credible and trustworthy verification system ready for entry into force of the Treaty, the CTBTO is protecting and enhancing its investment of its global network of stations and is providing effective data to the International Data Centre (IDC) and Member States. Regarding the protection of the CTBTO's investment and enhanced sustainment of IMS station operations, the IMS Division is enhancing the capabilities of the monitoring system by applying advances in instrumentation and introducing new software applications that are fit for purpose. Some examples are the development of noble gas laboratory systems to process and analyse subsoil samples, development of a mobile noble gas system for onsite inspection purposes, optimization of Beta Gamma detectors for Xenon detection, assessing and improving the efficiency of wind noise reduction systems for infrasound stations, development and testing of infrasound stations with a self-calibrating capability, and research into the use of modular designs for the hydroacoustic network.

  15. Manned remote work station development article. Volume 3: Development test plan. Appendix A: Manufacturing requirements/schedule

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The tests and procedures for the manned remote work station (MRWS) open cherry picker (OCP) development test article (DTA) are described to validate systems requirements and performance specifications. A development test program is outlined to evaluate key design issues and man/machine interfaces when the MRWS OCP is used in a shuttle support role of satellite servicing and in orbit construction of large structures.

  16. Aerobrake assembly with minimum Space Station accommodation

    NASA Technical Reports Server (NTRS)

    Katzberg, Steven J.; Butler, David H.; Doggett, William R.; Russell, James W.; Hurban, Theresa

    1991-01-01

    The minimum Space Station Freedom accommodations required for initial assembly, repair, and refurbishment of the Lunar aerobrake were investigated. Baseline Space Station Freedom support services were assumed, as well as reasonable earth-to-orbit possibilities. A set of three aerobrake configurations representative of the major themes in aerobraking were developed. Structural assembly concepts, along with on-orbit assembly and refurbishment scenarios were created. The scenarios were exercised to identify required Space Station Freedom accommodations. Finally, important areas for follow-on study were also identified.

  17. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005022 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  18. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005023 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  19. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005031 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  20. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005016 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  1. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005019 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  2. Space Station Freedom food management

    NASA Technical Reports Server (NTRS)

    Whitehurst, Troy N., Jr.; Bourland, Charles T.

    1992-01-01

    This paper summarizes the specification requirements for the Space Station Food System, and describes the system that is being designed and developed to meet those requirements. Space Station Freedom will provide a mix of frozen, refrigerated, rehydratable, and shelf stable foods. The crew will pre-select preferred foods from an approved list, to the extent that proper nutrition balance is maintained. A galley with freezers, refrigerators, trash compactor, and combination microwave and convection ovens will improve crew efficiency and productivity during the long Space Station Freedom (SSF) missions.

  3. Expendable launch vehicle transportation for the Space Station

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.

    1988-01-01

    ELVs are presently evaluated as major components of the NASA Space Station's logistics transportation system, augmenting the cargo capacity of the Space Shuttle in support of Station productivity and operational flexibility. The ELVs in question are the Delta II, Atlas II, Titan III, Titan IV, Shuttle-C (unmanned cargo development), European Ariane 5, and Japanese H-II, as well as smaller launch vehicles and OTVs. Early definition of ELV program impacts will preclude the potentially excessive costs of future Space Station modifications.

  4. Space Station Needs, Attributes and Architectural Options. Contractor orientation briefings

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Requirements are considered for user missions involving life sciences; astrophysics, environmental observation; Earth and planetary exploration; materials processing; Spacelab payloads; technology development; and communications are analyzed. Plans to exchange data with potential cooperating nations and ESA are reviewed. The capability of the space shuttle to support space station activities are discussed. The status of the OAST space station technology study, conceptual architectures for a space station, elements of the space-based infrastructure, and the use of the shuttle external tank are also considered.

  5. Life science research objectives and representative experiments for the space station

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  6. Application of Risk-Based Inspection method for gas compressor station

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liang, Wei; Qiu, Zeyang; Lin, Yang

    2017-05-01

    According to the complex process and lots of equipment, there are risks in gas compressor station. At present, research on integrity management of gas compressor station is insufficient. In this paper, the basic principle of Risk Based Inspection (RBI) and the RBI methodology are studied; the process of RBI in the gas compressor station is developed. The corrosion loop and logistics loop of the gas compressor station are determined through the study of corrosion mechanism and process of the gas compressor station. The probability of failure is calculated by using the modified coefficient, and the consequence of failure is calculated by the quantitative method. In particular, we addressed the application of a RBI methodology in a gas compressor station. The risk ranking is helpful to find the best preventive plan for inspection in the case study.

  7. Inter-comparison of soil moisture sensors from the soil moisture active passive marena Oklahoma in situ sensor testbed (SMAP-MOISST)

    USDA-ARS?s Scientific Manuscript database

    The diversity of in situ soil moisture network protocols and instrumentation led to the development of a testbed for comparing in situ soil moisture sensors. Located in Marena, Oklahoma on the Oklahoma State University Range Research Station, the testbed consists of four base stations. Each station ...

  8. Modular space station, phase B extension. Program operations plan

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.

  9. Space Station in the 21st century - A social perspective

    NASA Technical Reports Server (NTRS)

    Bluth, B. J.

    1986-01-01

    A human factors and sociological consideration of Space Station crew facilities and interactions is presented which attempts to place the experiences of astronaut communities in the larger context of late 20th century industrial, economic, and cultural trends. Attention is given to the relationship of Space Station communities to 'Information Society' - related historical developments.

  10. Intelligent man/machine interfaces on the space station

    NASA Technical Reports Server (NTRS)

    Daughtrey, Rodney S.

    1987-01-01

    Some important topics in the development of good, intelligent, usable man/machine interfaces for the Space Station are discussed. These computer interfaces should adhere strictly to three concepts or doctrines: generality, simplicity, and elegance. The motivation for natural language interfaces and their use and value on the Space Station, both now and in the future, are discussed.

  11. Space Station needs, attributes and architectural options, volume 2, book 2, part 4: International reports

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The capabilities of the European Space Agency's SPAS and EURECA platforms for reference payload accommodation are considered. The instrument pointing subsystem, the position and hold mount, and the antenna pointing mechanism developed by Dornier are described. Relevant payloads for the space station are summarized and space station accommodation aspects are discussed.

  12. The Development of Tactical Leadership Exercises for SIMCAT

    DTIC Science & Technology

    1987-07-01

    Weapon Station (CWS) "* Engage Targets with a Caliber .50 Machinegun "* Fire the M239 or the M250 Grenade Launcher Other Tasks. The following tasks cannot...commander’s weapon station (CWS). - Engage targets with the coaxial machinegun from the commander’s weapon station (CWS). Fire the M239 or the M250 grenade

  13. Space station needs, attributes and architectural options. Volume 3, attachment 1, task 1: Mission requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development and systems architectural requirements of the space station program are described. The system design is determined by user requirements. Investigated topics include physical and life science experiments, commercial utilization, U.S. national security, and remote space operations. The economic impact of the space station program is analyzed.

  14. A study of space station needs, attributes and architectural options, volume 2, technical. Book 3: Economic benefits, costs and programmatics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The economic benefits, cost analysis, and industrial uses of the manned space station are investigated. Mission payload costs are examined in relation to alternative architectures and projected technological evolution. Various approaches to industrial involvement for financing, development, and marketing of space station resources are described.

  15. Photovoltaic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1990-01-01

    Space Station Freedom is described with special attention given to its electric power system. The photovoltaic arrays, the battery energy storage system, and the power management, and distribution system are also discussed. The current design of Freedom's power system and the system requirements, trade studies, and competing factors which lead to system selections are referenced. This will be the largest power system ever flown in space. This system represents the culmination of many developments that have improved system performance, reduced cost, and improved reliability. Key developments and their evolution into the current space station solar array design are briefly described. The features of the solar cell and the array including the development, design, test, and flight hardware production status are given.

  16. Photovoltaic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1990-01-01

    Space Station Freedom is described with special attention to its electric power system. The photovoltaic arrays, the battery energy storage system, and the power management and distribution system are also discussed. The current design of Freedom's power system and the system requirements, trade studies, and competing factors which lead to system selections are referenced. This will be the largest power system ever flown in space. This system represents the culmination of many developments that have improved system performance, reduced cost, and improved reliability. Key developments and their evolution into the current space station solar array design are briefly described. The features of the solar cell and the array including the development, design, test, and flight hardware production status are given.

  17. The resource envelope as a basis for space station management system scheduling

    NASA Technical Reports Server (NTRS)

    Bush, Joy; Critchfield, Anna

    1987-01-01

    The Platform Management System (PMS) Resource Envelope Scheduling System (PRESS) expert system prototype developed for space station scheduling is described. The purpose of developing the prototype was too investigate the resource envelope concept in a practical scheduling application, using a commercially available expert system shell. PRESS is being developed on an IBM PC/AT using Teknowledge, Inc.'s M.1 expert system shell.

  18. Manned remote work station development article. Volume 1, book 1: Flight article requirements. Appendix A: Mission requirements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The requirements for several configurations of flight articles are presented. These requirements provide the basis to design manned remote work station development test articles and establish tests and simulation objectives for the resolution of development issues. Mission system and subsystem requirements for four MRWS configurations included: open cherry picker; closed cherry picker; crane turret; and free flyer.

  19. Investigating health information needs of community radio stations and applying the World Wide Web to disseminate audio products.

    PubMed

    Snyders, Janus; van Wyk, Elmarie; van Zyl, Hendra

    2010-01-01

    The Web and Media Technologies Platform (WMTP) of the South African Medical Research Council (MRC) conducted a pilot project amongst community radio stations in South Africa. Based on previous research done in Africa WMTP investigated the following research question: How reliable is the content of health information broadcast by community radio stations? The main objectives of the project were to determine the 1) intervals of health slots on community radio stations, 2) sources used by community radio stations for health slots, 3) type of audio products needed for health slots, and 4) to develop a user friendly Web site in response to the stations' needs for easy access to audio material on health information.

  20. 23. Station Compressor Room 1 with Air Compressors and Accumulator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Station Compressor Room 1 with Air Compressors and Accumulator Tanks, view to the south. One of the two large station air compressor units used for depressing the draft tube water level is visible atop a concrete pedestal on the left side of photograph (the second identical compressor is located in an adjacent room). Two of the six station air accumulator tanks are visible in the background. The smaller station service air compressor is visible in right foreground of the photograph was installed in the early 1980s, and replaced the original station service air compressor. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  1. Surface-water hydrologic data for the Houston metropolitan area, Texas, water years 1990-95

    USGS Publications Warehouse

    Sneck-Fahrer, Debra A.; Liscum, Fred; East, Jeffery W.

    2003-01-01

    During water years 1990–95, data were collected at 24 U.S. Geological Survey streamflow-gaging stations, 21 rain gages, and 6 water-quality stations in the Houston metropolitan area, Texas. The data were collected as part of the Houston Urban Runoff Program, which began in water year 1964. Annual peaks were defined for the 24 streamflow-gaging stations in the study area. All stations had 10 or more years of record. Precipitation data from the 21 rain gages and discharge or stage data from 23 streamflow-gaging stations are available to develop storm hydrographs. One-hundred thirty-four samples were collected at six water-quality stations. The samples were analyzed for about 80 water-quality properties and constituents.

  2. Dynamic safety assessment of natural gas stations using Bayesian network.

    PubMed

    Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj

    2017-01-05

    Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. August median streamflow on ungaged streams in Eastern Coastal Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2004-01-01

    Methods for estimating August median streamflow were developed for ungaged, unregulated streams in eastern coastal Maine. The methods apply to streams with drainage areas ranging in size from 0.04 to 73.2 square miles and fraction of basin underlain by a sand and gravel aquifer ranging from 0 to 71 percent. The equations were developed with data from three long-term (greater than or equal to 10 years of record) continuous-record streamflow-gaging stations, 23 partial-record streamflow- gaging stations, and 5 short-term (less than 10 years of record) continuous-record streamflow-gaging stations. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record streamflow-gaging stations and short-term continuous-record streamflow-gaging stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term continuous-record streamflow-gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at streamflow-gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for different periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Thirty-one stations were used for the final regression equations. Two basin characteristics?drainage area and fraction of basin underlain by a sand and gravel aquifer?are used in the calculated regression equation to estimate August median streamflow for ungaged streams. The equation has an average standard error of prediction from -27 to 38 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -30 to 43 percent. Model error is larger than sampling error for both equations, indicating that additional or improved estimates of basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow at partial- record or continuous-record gaging stations range from 0.003 to 31.0 cubic feet per second or from 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in eastern coastal Maine, within the range of acceptable explanatory variables, range from 0.003 to 45 cubic feet per second or 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as drainage area and fraction of basin underlain by a sand and gravel aquifer increase.

  4. Rocky Mountain Research Station 2008-2012 National Fire Plan Investments

    Treesearch

    Erika Gallegos

    2013-01-01

    This report highlights selected accomplishments by the USDA Forest Service Rocky Mountain Research Station's Wildland Fire and Fuels Research & Development projects in support of the National Fire Plan from 2008 through 2012. These projects are examples of the broad range of knowledge and tools developed by National Fire Plan funding beginning in 2008.

  5. Space Station Water Processor Process Pump

    NASA Technical Reports Server (NTRS)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  6. Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy. Submitted to the Congress of the U.S. May 1991

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. The report describes the progress made by Levels 1, 2 and 3 of the Office Space Station in developing and applying advanced automation and robotics technology. Emphasis has been placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 11, the status of the Flight Telerobotic Servicer, and the status of the Advanced Development Program. In addition, an assessment is provided of the automation and robotics status of the Canadian Space Station Program.

  7. Minicomputer front end. [Modcomp II/CP as buffer between CDC 6600 and PDP-9 at graphics stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, J.A.

    1976-01-01

    Sandia Labs developed an Interactive Graphics System (SIGS) that was established on a CDC 6600 using a communication scheme based on the Control Data Corporation product IGS. As implemented at Sandia, the graphics station consists primarily of a PDP-9 with a Vector General display. A system is being developed which uses a minicomputer (Modcomp II/CP) as the buffer machine for the graphics stations. The original SIGS required a dedicated peripheral processor (PP) on the CDC 6600 to handle the communication with the stations; however, with the Modcomp handling the actual communication protocol, the PP is only assigned as needed tomore » handle data transfer within the CDC 6600 portion of SIGS. The new system will thus support additional graphics stations with less impact on the CDC 6600. This paper discusses the design philosophy of the system, and the hardware and software used to implement it. 1 figure.« less

  8. Strategic planning for the International Space Station

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.

    1990-01-01

    The concept for utilization and operations planning for the International Space Station Freedom was developed in a NASA Space Station Operations Task Force in 1986. Since that time the concept has been further refined to definitize the process and products required to integrate the needs of the international user community with the operational capabilities of the Station in its evolving configuration. The keystone to the process is the development of individual plans by the partners, with the parameters and formats common to the degree that electronic communications techniques can be effectively utilized, while maintaining the proper level and location of configuration control. The integration, evaluation, and verification of the integrated plan, called the Consolidated Operations and Utilization Plan (COUP), is being tested in a multilateral environment to prove out the parameters, interfaces, and process details necessary to produce the first COUP for Space Station in 1991. This paper will describe the concept, process, and the status of the multilateral test case.

  9. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).

  10. The challenge of the US Space Station

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.

    1985-01-01

    The U.S. Space Station program is described. The objectives of the present national space policy are reviewed. International involvement and commercial use of space are the two strategies involved in the development of the Space Station. The Space Station is to be a multifunctional, modular, permanent facility with manned and unmanned platforms. The functions of the Space Station for space research projects, such as material processing and electrophoresis, are examined. The infrastructure required for commercialization of space is analyzed. NASA's space policy aimed at stimulating space commerce is discussed. NASA's plans to reduce the financial, institutional, and technical risks of space research are studied.

  11. Present status and future of the sophisticated work station

    NASA Astrophysics Data System (ADS)

    Ishida, Haruhisa

    The excellency of the work station is explained, by comparing the functions of software and hardware of work station with those of personal computer. As one of the examples utilizing the functions of work station, desk top publishing is explained. By describing the competition between the Group of ATT · Sun Microsystems which intends to have the leadership by integrating Berkeley version which is most popular at this moment and System V version, and the group led by IBM, future of UNIX as OS of work station is predicted. Development of RISC processor, TRON Plan and Sigma Projects by MITI are also mentioned as its background.

  12. A demonstrator for an integrated subway protection system

    NASA Astrophysics Data System (ADS)

    Detoma, E.; Capetti, P.; Casati, G.; Billington, S.

    2008-04-01

    In 2006 SEPA has carried on the installation and tests of a demonstrator for an integrated subway protection system at a new subway station in the Naples, Italy) metropolitan area. Protection of a subway system is a difficult task given the amount of passengers transported every day. The demonstrator has been limited to non-intrusive detection techniques not to impair the passenger flow into the station. The demonstrator integrates several technologies and products that have been developed by SEPA or are already available on the market (MKS Instruments,...). The main purpose is to provide detection capabilities for attempts to introduce radioactive substances in the subway station, in order to foil possible attempts to place a dirty bomb, and threat detection and identification following release of chemical agents. The system integrates additional sensors such as video surveillance cameras and air flow sensing to complement the basic sensors suite. The need to protect sensitive installations such as subway stations has been highlighted by the series of terroristics actions carried out in recent years in the subway in London. However, given the number of passengers of a metro system, it is impossible to propose security techniques operating in ways similar to the screening of passengers in airports. Passengers screening and threat detection and identification must be quick, non-intrusive and capable of screening a large number of passengers to be applicable to mass transit systems. In 2005 SEPA, a small company operating in the field of trains video-surveillance systems and radiation detectors, started developing an integrated system to provide a comprehensive protection to subway stations, based on ready available or off-the-shelf components in order to quickly develop a reliable system with available technology. We ruled out at the beginning any new development in order to speed up the fielding of the system in less than one year. The system was developed with commercial sensors and deployed in a new station of the Naples metropolitan transit system in Mugnano. The station was particularly suitable for the demonstration since it is a new station that includes air venting control, water barriers (for fire and smoke containment) and a complete SCADA system to integrate technical and video surveillance operations. In order to protect the subway, we tackled four basic technologies, all readily available in-house or on the market: - radiation detection, to detect the introduction in the station of radionuclides, that may be dispersed by conventional explosive (a "dirty" bomb); - chemical agents detection and identification (after release), complemented with air speed and velocity sensors to estimate, track and predict the contamination plume; - video surveillance, integrated with the SCADA system and already available in the station.

  13. Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    USGS Publications Warehouse

    Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.

    1999-01-01

    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations.

  14. Development of Standard Station Interface for Comprehensive Nuclear Test Ban Treaty Organistation Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Dricker, I. G.; Friberg, P.; Hellman, S.

    2001-12-01

    Under the contract with the CTBTO, Instrumental Software Technologies Inc., (ISTI) has designed and developed a Standard Station Interface (SSI) - a set of executable programs and application programming interface libraries for acquisition, authentication, archiving and telemetry of seismic and infrasound data for stations of the CTBTO nuclear monitoring network. SSI (written in C) is fully supported under both the Solaris and Linux operating systems and will be shipped with fully documented source code. SSI consists of several interconnected modules. The Digitizer Interface Module maintains a near-real-time data flow between multiple digitizers and the SSI. The Disk Buffer Module is responsible for local data archival. The Station Key Management Module is a low-level tool for data authentication and verification of incoming signatures. The Data Transmission Module supports packetized near-real-time data transmission from the primary CTBTO stations to the designated Data Center. The AutoDRM module allows transport of seismic and infrasound signed data via electronic mail (auxiliary station mode). The Command Interface Module is used to pass the remote commands to the digitizers and other modules of SSI. A station operator has access to the state-of-health information and waveforms via an the Operator Interface Module. Modular design of SSI will allow painless extension of the software system within and outside the boundaries of CTBTO station requirements. Currently an alpha version of SSI undergoes extensive tests in the lab and onsite.

  15. Collaborative Software Development Approach Used to Deliver the New Shuttle Telemetry Ground Station

    NASA Technical Reports Server (NTRS)

    Kirby, Randy L.; Mann, David; Prenger, Stephen G.; Craig, Wayne; Greenwood, Andrew; Morsics, Jonathan; Fricker, Charles H.; Quach, Son; Lechese, Paul

    2003-01-01

    United Space Alliance (USA) developed and used a new software development method to meet technical, schedule, and budget challenges faced during the development and delivery of the new Shuttle Telemetry Ground Station at Kennedy Space Center. This method, called Collaborative Software Development, enabled KSC to effectively leverage industrial software and build additional capabilities to meet shuttle system and operational requirements. Application of this method resulted in reduced time to market, reduced development cost, improved product quality, and improved programmer competence while developing technologies of benefit to a small company in California (AP Labs Inc.). Many modifications were made to the baseline software product (VMEwindow), which improved its quality and functionality. In addition, six new software capabilities were developed, which are the subject of this article and add useful functionality to the VMEwindow environment. These new software programs are written in C or VXWorks and are used in conjunction with other ground station software packages, such as VMEwindow, Matlab, Dataviews, and PVWave. The Space Shuttle Telemetry Ground Station receives frequency-modulation (FM) and pulse-code-modulated (PCM) signals from the shuttle and support equipment. The hardware architecture (see figure) includes Sun workstations connected to multiple PCM- and FM-processing VersaModule Eurocard (VME) chassis. A reflective memory network transports raw data from PCM Processors (PCMPs) to the programmable digital-to-analog (D/A) converters, strip chart recorders, and analysis and controller workstations.

  16. Virtual workstations and telepresence interfaces: Design accommodations and prototypes for Space Station Freedom evolution

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1990-01-01

    An advanced human-system interface is being developed for evolutionary Space Station Freedom as part of the NASA Office of Space Station (OSS) Advanced Development Program. The human-system interface is based on body-pointed display and control devices. The project will identify and document the design accommodations ('hooks and scars') required to support virtual workstations and telepresence interfaces, and prototype interface systems will be built, evaluated, and refined. The project is a joint enterprise of Marquette University, Astronautics Corporation of America (ACA), and NASA's ARC. The project team is working with NASA's JSC and McDonnell Douglas Astronautics Company (the Work Package contractor) to ensure that the project is consistent with space station user requirements and program constraints. Documentation describing design accommodations and tradeoffs will be provided to OSS, JSC, and McDonnell Douglas, and prototype interface devices will be delivered to ARC and JSC. ACA intends to commercialize derivatives of the interface for use with computer systems developed for scientific visualization and system simulation.

  17. Automated delineation and characterization of watersheds for more than 3,000 surface-water-quality monitoring stations active in 2010 in Texas

    USGS Publications Warehouse

    Archuleta, Christy-Ann M.; Gonzales, Sophia L.; Maltby, David R.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality, developed computer scripts and applications to automate the delineation of watershed boundaries and compute watershed characteristics for more than 3,000 surface-water-quality monitoring stations in Texas that were active during 2010. Microsoft Visual Basic applications were developed using ArcGIS ArcObjects to format the source input data required to delineate watershed boundaries. Several automated scripts and tools were developed or used to calculate watershed characteristics using Python, Microsoft Visual Basic, and the RivEX tool. Automated methods were augmented by the use of manual methods, including those done using ArcMap software. Watershed boundaries delineated for the monitoring stations are limited to the extent of the Subbasin boundaries in the USGS Watershed Boundary Dataset, which may not include the total watershed boundary from the monitoring station to the headwaters.

  18. Design and development of a Space Station proximity operations research and development mockup

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1986-01-01

    Proximity operations (Prox-Ops) on-orbit refers to all activities taking place within one km of the Space Station. Designing a Prox-Ops control station calls for a comprehensive systems approach which takes into account structural constraints, orbital dynamics including approach/departure flight paths, myriad human factors and other topics. This paper describes a reconfigurable full-scale mock-up of a Prox-Ops station constructed at Ames incorporating an array of windows (with dynamic star field, target vehicle(s), and head-up symbology), head-down perspective display of manned and unmanned vehicles, voice- actuated 'electronic checklist', computer-generated voice system, expert system (to help diagnose subsystem malfunctions), and other displays and controls. The facility is used for demonstrations of selected Prox-Ops approach scenarios, human factors research (work-load assessment, determining external vision envelope requirements, head-down and head-up symbology design, voice synthesis and recognition research, etc.) and development of engineering design guidelines for future module interiors.

  19. The quantitative modelling of human spatial habitability

    NASA Technical Reports Server (NTRS)

    Wise, James A.

    1988-01-01

    A theoretical model for evaluating human spatial habitability (HuSH) in the proposed U.S. Space Station is developed. Optimizing the fitness of the space station environment for human occupancy will help reduce environmental stress due to long-term isolation and confinement in its small habitable volume. The development of tools that operationalize the behavioral bases of spatial volume for visual kinesthetic, and social logic considerations is suggested. This report further calls for systematic scientific investigations of how much real and how much perceived volume people need in order to function normally and with minimal stress in space-based settings. The theoretical model presented in this report can be applied to any size or shape interior, at any scale of consideration, for the Space Station as a whole to an individual enclosure or work station. Using as a point of departure the Isovist model developed by Dr. Michael Benedikt of the U. of Texas, the report suggests that spatial habitability can become as amenable to careful assessment as engineering and life support concerns.

  20. Space Station Freedom resource allocation accommodation of technology payload requirements

    NASA Technical Reports Server (NTRS)

    Avery, Don E.; Collier, Lisa D.; Gartrell, Charles F.

    1990-01-01

    An overview of the Office of Aeronautics, Exploration, and Technology (OAET) Space Station Freedom Technology Payload Development Program is provided, and the OAET Station resource requirements are reviewed. The requirements are contrasted with current proposed resource allocations. A discussion of the issues and conclusions are provided. It is concluded that an overall 20 percent resource allocation is appropriate to support OAET's technology development program, that some resources are inadequate even at the 20 percent level, and that bartering resources among U.S. users and international partners and increasing the level of automation may be viable solutions to the resource constraint problem.

  1. Phase C/D program development plan. Volume 1: Program plan

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Phase C/D definition of the Modular Space Station has been developed. The modular approach selected during the option period was evaluated, requirements were defined, and program definition and preliminary design were accomplished. The Space Station Project is covered in depth, the research applications module is limited to a project-level definition, and the shuttle operations are included for interface requirements identification, scheduling, and costing. Discussed in detail are: (1) baseline program and project descriptions; (2) phase project planning; (3) modular space station program schedule; (4) program management plan; (5) operations; (6) facilities; (7) logistics; and (8) manpower.

  2. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  3. Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2

    NASA Technical Reports Server (NTRS)

    Perkey, John K.

    1992-01-01

    The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.

  4. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  5. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Helba, Michael J.; Hill, Janeil B.

    1992-01-01

    The purpose of this research is to provide Space Station Freedom protective structures design insight through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. The goals of the research are: (1) to develop a Monte Carlo simulation tool which will provide top level insight for Space Station protective structures designers; (2) to develop advanced shielding concepts relevant to Space Station Freedom using unique multiple bumper approaches; and (3) to investigate projectile shape effects on protective structures design.

  6. Microbial identification system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Brown, Harlan D.; Scarlett, Janie B.; Skweres, Joyce A.; Fortune, Russell L.; Staples, John L.; Pierson, Duane L.

    1989-01-01

    The Environmental Health System (EHS) and Health Maintenance Facility (HMF) on Space Station Freedom will require a comprehensive microbiology capability. This requirement entails the development of an automated system to perform microbial identifications on isolates from a variety of environmental and clinical sources and, when required, to perform antimicrobial sensitivity testing. The unit currently undergoing development and testing is the Automated Microbiology System II (AMS II) built by Vitek Systems, Inc. The AMS II has successfully completed 12 months of laboratory testing and evaluation for compatibility with microgravity operation. The AMS II is a promising technology for use on Space Station Freedom.

  7. Electrodynamic Dust Shields on the International Space Station: Exposure to the Space Environment

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Hogue, M. D.; Johansen, M. R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2012-01-01

    Electrodynamic Dust Shields (EDS) have been in development at NASA as a dust mitigation method for lunar and Martian missions. An active dust mitigation strategy. such as that provided by the EDS, that can remove dust from surfaces, is of crucial importance to the planetary exploration program. We report on the development of a night experiment to fully ex pose four EDS panels to the space environment. This flight experiment is part of the Materials International Space Station experiment X(MISSE-X). an external platform on the International Space Station that will expose materials to the space environment.

  8. NASA Technical Management Report (533Q)

    NASA Technical Reports Server (NTRS)

    Klosko, S. M.; Sanchez, B. (Technical Monitor)

    2001-01-01

    The objective of this task is analytical support of the NASA Satellite Laser Ranging (SLR) program in the areas of SLR data analysis, software development, assessment of SLR station performance, development of improved models for atmospheric propagation and interpretation of station calibration techniques, and science coordination and analysis functions for the NASA led Central Bureau of the International Laser Ranging Service (ILRS). The contractor shall in each year of the five year contract: (1) Provide software development and analysis support to the NASA SLR program and the ILRS. Attend and make analysis reports at the monthly meetings of the Central Bureau of the ILRS covering data received during the previous period. Provide support to the Analysis Working Group of the ILRS including special tiger teams that are established to handle unique analysis problems. Support the updating of the SLR Bibliography contained on the ILRS web site; (2) Perform special assessments of SLR station performance from available data to determine unique biases and technical problems at the station; (3) Develop improvements to models of atmospheric propagation and for handling pre- and post-pass calibration data provided by global network stations; (4) Provide review presentation of overall ILRS network data results at one major scientific meeting per year; (5) Contribute to and support the publication of NASA SLR and ILRS reports highlighting the results of SLR analysis activity.

  9. [Development of innovative methods of electromagnetic field evaluation for portable radio-station].

    PubMed

    Rubtsova, N B; Perov, S Iu; Bogacheva, E V; Kuster, N

    2013-01-01

    The results of portable radio-station "Radiy-301" electromagnetic fields (EMF) emission measurement and specific absorption rate data evaluation has shown that workers' exposure EMF levels may elevate hygienic norms and hereupon can be health risk factor. Possible way of portable radio-station EMF dosimetry enhancement by means of domestic and international approaches harmonization is considered.

  10. International Space Station Alpha (ISSA) Integrated Traffic Model

    NASA Technical Reports Server (NTRS)

    Gates, R. E.

    1995-01-01

    The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements and crew rotation via spread sheets provide adequate benchmarks to assess cargo vehicle design and performance characteristics.

  11. International Space Station Research Plan: Assembly Sequence. Revised

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These viewgraphs discuss the International Space Station's Research Plan. The goals for the International Space Station Utilization are to provide a state-of-the-art research facility on which to study gravity's effects on physical, chemical, and biological systems. It is also an advanced testbed for technology and human exploration as well as a commercial platform for space research and development.

  12. Conveying International Space Station Science

    NASA Technical Reports Server (NTRS)

    Goza, Sharon P.

    2017-01-01

    Over 1,000 experiments have been completed, and others are being conducted and planed on the International Space Station (ISS). In order to make the information on these experiments accessible, the IGOAL develops mobile applications to easily access this content and video products to convey high level concepts. This presentation will feature the Space Station Research Explorer as well as several publicly available video examples.

  13. Space station automation study: Autonomous systems and assembly, volume 2

    NASA Technical Reports Server (NTRS)

    Bradford, K. Z.

    1984-01-01

    This final report, prepared by Martin Marietta Denver Aerospace, provides the technical results of their input to the Space Station Automation Study, the purpose of which is to develop informed technical guidance in the use of autonomous systems to implement space station functions, many of which can be programmed in advance and are well suited for automated systems.

  14. A study of space station needs, attributes, and architectural options, volume 2, technical. Book 2: Mission implementation concepts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space station systems characteristics and architecture are described. A manned space station operational analysis is performed to determine crew size, crew task complexity and time tables, and crew equipment to support the definition of systems and subsystems concepts. This analysis is used to select and evaluate the architectural options for development.

  15. VIEW-Station software and its graphical user interface

    NASA Astrophysics Data System (ADS)

    Kawai, Tomoaki; Okazaki, Hiroshi; Tanaka, Koichiro; Tamura, Hideyuki

    1992-04-01

    VIEW-Station is a workstation-based image processing system which merges the state-of-the- art software environment of Unix with the computing power of a fast image processor. VIEW- Station has a hierarchical software architecture, which facilitates device independence when porting across various hardware configurations, and provides extensibility in the development of application systems. The core image computing language is V-Sugar. V-Sugar provides a set of image-processing datatypes and allows image processing algorithms to be simply expressed, using a functional notation. VIEW-Station provides a hardware independent window system extension called VIEW-Windows. In terms of GUI (Graphical User Interface) VIEW-Station has two notable aspects. One is to provide various types of GUI as visual environments for image processing execution. Three types of interpreters called (mu) V- Sugar, VS-Shell and VPL are provided. Users may choose whichever they prefer based on their experience and tasks. The other notable aspect is to provide facilities to create GUI for new applications on the VIEW-Station system. A set of widgets are available for construction of task-oriented GUI. A GUI builder called VIEW-Kid is developed for WYSIWYG interactive interface design.

  16. Analysis of the U.S. geological survey streamgaging network

    USGS Publications Warehouse

    Scott, A.G.

    1987-01-01

    This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U.S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3,493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the streamflow records and the operating budget. The weighted standard error for all stations, with current operating procedures, was 19.9 percent. By altering field activities, as determined by the analyses, this could be reduced to 17.8 percent. The existing streamgaging networks in four Districts were further analyzed to determine the impacts that satellite telemetry would have on the cost effectiveness. Satellite telemetry was not found to be cost effective on the basis of hydrologic data collection alone, given present cost of equipment and operation.This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U. S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3, 493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the streamflow records and the operating budget. The weighted standard error for all stations, with current operating procedures, was 19. 9 percent. By altering field activities, as determined by the analyses, this could be reduced to 17. 8 percent. Additional study results are discussed.

  17. Knowledge-based system verification and validation

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1990-01-01

    The objective of this task is to develop and evaluate a methodology for verification and validation (V&V) of knowledge-based systems (KBS) for space station applications with high reliability requirements. The approach consists of three interrelated tasks. The first task is to evaluate the effectiveness of various validation methods for space station applications. The second task is to recommend requirements for KBS V&V for Space Station Freedom (SSF). The third task is to recommend modifications to the SSF to support the development of KBS using effectiveness software engineering and validation techniques. To accomplish the first task, three complementary techniques will be evaluated: (1) Sensitivity Analysis (Worchester Polytechnic Institute); (2) Formal Verification of Safety Properties (SRI International); and (3) Consistency and Completeness Checking (Lockheed AI Center). During FY89 and FY90, each contractor will independently demonstrate the user of his technique on the fault detection, isolation, and reconfiguration (FDIR) KBS or the manned maneuvering unit (MMU), a rule-based system implemented in LISP. During FY91, the application of each of the techniques to other knowledge representations and KBS architectures will be addressed. After evaluation of the results of the first task and examination of Space Station Freedom V&V requirements for conventional software, a comprehensive KBS V&V methodology will be developed and documented. Development of highly reliable KBS's cannot be accomplished without effective software engineering methods. Using the results of current in-house research to develop and assess software engineering methods for KBS's as well as assessment of techniques being developed elsewhere, an effective software engineering methodology for space station KBS's will be developed, and modification of the SSF to support these tools and methods will be addressed.

  18. An automated rendezvous and capture system design concept for the cargo transfer vehicle and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Fuchs, Ron; Marsh, Steven

    1991-01-01

    A rendezvous sensor system concept was developed for the cargo transfer vehicle (CTV) to autonomously rendezvous with and be captured by Space Station Freedom (SSF). The development of requirements, the design of a unique Lockheed developed sensor concept to meet these requirements, and the system design to place this sensor on the CTV and rendezvous with the SSF are described .

  19. Efficient placement of structural dynamics sensors on the space station

    NASA Technical Reports Server (NTRS)

    Lepanto, Janet A.; Shepard, G. Dudley

    1987-01-01

    System identification of the space station dynamic model will require flight data from a finite number of judiciously placed sensors on it. The placement of structural dynamics sensors on the space station is a particularly challenging problem because the station will not be deployed in a single mission. Given that the build-up sequence and the final configuration for the space station are currently undetermined, a procedure for sensor placement was developed using the assembly flights 1 to 7 of the rephased dual keel space station as an example. The procedure presented approaches the problem of placing the sensors from an engineering, as opposed to a mathematical, point of view. In addition to locating a finite number of sensors, the procedure addresses the issues of unobserved structural modes, dominant structural modes, and the trade-offs involved in sensor placement for space station. This procedure for sensor placement will be applied to revised, and potentially more detailed, finite element models of the space station configuration and assembly sequence.

  20. Space station propulsion requirements study

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  1. Comparison of conventional vs. modular hydrogen refueling stations and on-site production vs. delivery.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, Ethan S.; Pratt, Joseph William

    To meet the needs of public and private stakeholders involved in the development, construction, and operation of hydrogen fueling stations needed to support the widespread roll-out of hydrogen fuel cell electric vehicles, this work presents publicly available station templates and analyses. These ‘Reference Stations’ help reduce the cost and speed the deployment of hydrogen stations by providing a common baseline with which to start a design, enable quick assessment of potential sites for a hydrogen station, identify contributors to poor economics, and suggest areas of research. This work presents layouts, bills of materials, piping and instrumentation diagrams, and detailed analysesmore » of five new station designs. In the near term, delivered hydrogen results in a lower cost of hydrogen compared to on-site production via steam methane reforming or electrolysis, although the on-site production methods have other advantages. Modular station concepts including on-site production can reduce lot sizes from conventional assemble-on-site stations.« less

  2. Propagation Characteristics of International Space Station Wireless Local Area Network

    NASA Technical Reports Server (NTRS)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  3. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  4. Intelsat's small earth stations - Impact on the developing world

    NASA Astrophysics Data System (ADS)

    McDougal, Patrick

    1986-12-01

    This article offers a brief historical look at the progress in the use of small earth stations in the developing world, and a present status report on Intelsat's new service offerings, especially in the use of smaller earth station technology. Three experiments or series of experiments are discussed: those conducted on NASA's ATS (Applications Technology Satellite) series of satellites, India's SITE (Satellite Instructional Television Experiment), and the Rural Satellite Project sponsored by the U.S. Agency for International Development. Intelsat's contributions to the growth of telecommunications in the developing world include: domestic leases, VISTA and INTELNET services, Project SHARE, and some new strategies for the financing of telecommunications projects. The article concludes that it is only recently that some of the true benefits of satellite communications have been realized in the developing countries because of improvements in technology, reduction in costs, and diversity of service offerings.

  5. Catalog of seismograph stations operated in support of the ERDA Nevada Operations Office, January 1964 thru June 1976

    USGS Publications Warehouse

    Navarro, R.; Wuollet, Geraldine M.; Bradley, B.R.

    1977-01-01

    The seismograph stations listed in this catalog were established over the period January 1964 through June 1976 in support of the Energy Research and Development Administration, Nevada (ERDA/NV) underground weapons testing program at the Nevada Test Site (NTS), central Nevada, and Amchitka, Alaska. For station listings before 1964 see Coast and Geodetic Survey publication, "Seismic Data Summary Nuclear Detonation Program 1961 through 1963", by W. V. Mickey and T. R. Shugart, January 1964. Coordinates of stations instrumented for ERDA's Industrial Application Division (IAD, Plowshare) events are published in separate reports (Appendix A, page 66). In addition to the stations for monitoring the testing program, other stations established for specific seismicity studies, such as the Aleutian Seismicity Network, are also listed.

  6. Evaluation and trends of land cover, streamflow, and water quality in the North Canadian River Basin near Oklahoma City, Oklahoma, 1968–2009

    USGS Publications Warehouse

    Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod

    2011-01-01

    The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples collected at both streamflow-gaging stations. Annual frequencies of detection of 2,4-dichlorophenoxyacetic acid and bromacil increased with time. Annual frequencies of detection of atrazine, chlorpyrifos, diazinon, dichlorprop, and lindane decreased with time. Dissolved nitrogen and phosphorus concentrations were significantly greater in water samples collected at the Harrah station than at the Britton Road station, whereas specific conductance was greater at the Britton Road station. Concentrations of dissolved oxygen, biochemical oxygen demand, and fecal coliform bacteria were not significantly different between stations. Daily minimum, mean, and maximum specific conductance collected from continuous water-quality monitors were significantly greater at the Britton Road station than in water samples collected at the Harrah station. Daily minimum, maximum, and diurnal fluctuations of water temperature collected from continuous water-quality monitors were significantly greater at the Harrah station than at the Britton Road station. The daily maximums and diurnal range of dissolved oxygen concentrations were significantly greater in water samples collected at the Britton Road station than at the Harrah station, but daily mean dissolved oxygen concentrations in water at those streamflow-gaging stations were not significantly different. Daily mean and diurnal water temperature ranges increased with time at the Britton Road and Harrah streamflow-gaging stations, whereas daily mean and diurnal specific conductance ranges decreased with time at both streamflow-gaging stations from 1988–2009. Daily minimum dissolved oxygen concentrations collected from continuous water-quality monitors more frequently indicated hypoxic conditions at the Harrah station than at the Britton Road station after 1999. Fecal coliform bacteria counts in water decreased slightly from 1988–2009 at the Britton Road station. The Seasonal Kendall's tau test indicated significant downward trends in

  7. A Local Net Volume Equation for Iowa

    Treesearch

    Jerold T. Hahn

    1976-01-01

    As a part of the 1974 Forest Survey of Iowa, the Station''s Forst Resources Evaluatioin Research Staff developed a merchantable tree volume equation and tables of coefficients for Iowa. They were developed for both board-foot (International ?-inch rule) and cubic foot volumes, for several species and species groups of growing-stock trees. The equation and...

  8. Southern Research Station Global Change Research Strategy 2011-2019

    Treesearch

    Kier Klepzig; Zoe Hoyle; Stevin Westcott; Emrys Treasure

    2012-01-01

    In keeping with the goals of the Research and Development agenda of the Forest Service, U.S. Department of Agriculture (USDA), the Southern Research Station (SRS) provides the information and technology needed to develop best management practices for the forest lands of the Southern United States, where science-guided actions are needed to sustain ecosystem health,...

  9. Space station high gain antenna concept definition and technology development

    NASA Technical Reports Server (NTRS)

    Wade, W. D.

    1972-01-01

    The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.

  10. ISS Expedition 18 Lab-On-a-Chip Applications Development (LOCAD) OPS

    NASA Image and Video Library

    2009-01-10

    ISS018-E-018995 (10 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  11. Manned remote work station development article

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Flight article and associated design concepts are evaluated to meet fundamental requirements of a universal crew cabin to be used as a construction cherrypicker, a space crane turret, a railed work station, or a free flyer. Key technology developments are embodied into a simulation program. A schedule and simulation test plan matrix is given for the open cabin cherry picker.

  12. Science Sampler: The Use of Stations to Develop Inquiry Skills and Content for Rock Hounds

    ERIC Educational Resources Information Center

    Veal, William R.; Chandler, Anna T.

    2008-01-01

    Teaching the rock cycle can overwhelm even the most enthusiastic rock hound. As middle school science teachers, we constantly struggle with an appropriate balance between Earth system content and experiential activities. The authors have found that stations can be successfully employed to teach rock cycle content while reinforcing development of…

  13. Artificial intelligence and space power systems automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1987-01-01

    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.

  14. Lessons learned in creating spacecraft computer systems: Implications for using Ada (R) for the space station

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    1986-01-01

    Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.

  15. Space station protective coating development

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Hill, S. G.

    1989-01-01

    A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.

  16. LBR-2 Earth stations for the ACTS program

    NASA Technical Reports Server (NTRS)

    Oreilly, Michael; Jirberg, Russell; Spisz, Ernie

    1990-01-01

    The Low Burst Rate-2 (LBR-2) earth station being developed for NASA's Advanced Communications Technology Satellite (ACTS) is described. The LBR-2 is one of two earth station types that operate through the satellite's baseband processor. The LBR-2 is a small earth terminal (VSAT)-like earth station that is easily sited on a user's premises, and provides up to 1.792 megabits per second (MBPS) of voice, video, and data communications. Addressed here is the design of the antenna, the rf subsystems, the digital processing equipment, and the user interface equipment.

  17. The Space Station Freedom Flight Telerobotic Servicer - The design and evolution of a dexterous space robot

    NASA Technical Reports Server (NTRS)

    Mccain, Harry G.; Andary, James F.; Hewitt, Dennis R.; Haley, Dennis C.

    1990-01-01

    The Flight Telerobotic Servicer (FTS) will provide a telerobotic capability to the Space Station in the early assembly phases of the program and will be used for assembly, maintenance, and inspection throughout the lifetime of the Station. Here, the FTS design approach to the development of autonomous capabilities is discussed. The FTS telerobotic workstations for the Shuttle and Space Station, and facility for on-orbit storage are examined. The rationale of the FTS with regard to ease of operation, operational versatility, maintainability, safety, and control is discussed.

  18. Analog FM/FM versus digital color TV transmission aboard space station

    NASA Technical Reports Server (NTRS)

    Hart, M. M.

    1985-01-01

    Langley Research Center is developing an integrated fault tolerant network to support data, voice, and video communications aboard Space Station. The question of transmitting the video data via dedicated analog channels or converting it to the digital domain for consistancy with the test of the data is addressed. The recommendations in this paper are based on a comparison in the signal-to-noise ratio (SNR), the type of video processing required aboard Space Station, the applicability to Space Station, and how they integrate into the network.

  19. KSC-2012-1854

    NASA Image and Video Library

    2012-02-17

    International Space Station: The International Space Station, or ISS, was built by sixteen nations, including the United States, Canada, Russia, Japan, Brazil, and 11 European nations. Each participating country contributed its expertise. This project was based on cooperative agreements on the design, development, operation, and utilization of the space station. The ISS marked its 10th anniversary of continuous human occupation on Nov. 2, 2010. Since Expedition 1, which launched Oct. 31, 2000, and docked Nov. 2, the space station has been visited by 202 individuals. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  20. Photovoltaic power system for satellite Earth stations in remote areas: Project status and design description

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described.

  1. A design optimization process for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.; Fox, George; Duquette, William H.

    1990-01-01

    The Space Station Freedom Program is used to develop and implement a process for design optimization. Because the relative worth of arbitrary design concepts cannot be assessed directly, comparisons must be based on designs that provide the same performance from the point of view of station users; such designs can be compared in terms of life cycle cost. Since the technology required to produce a space station is widely dispersed, a decentralized optimization process is essential. A formulation of the optimization process is provided and the mathematical models designed to facilitate its implementation are described.

  2. Analysis on influencing factors of EV charging station planning based on AHP

    NASA Astrophysics Data System (ADS)

    Yan, F.; Ma, X. F.

    2016-08-01

    As a new means of transport, electric vehicle (EV) is of great significance to alleviate the energy crisis. EV charging station planning has a far-reaching significance for the development of EV industry. This paper analyzes the impact factors of EV charging station planning, and then uses the analytic hierarchy process (AHP) to carry on the further analysis to the influencing factors, finally it gets the weight of each influence factor, and provides the basis for the evaluation scheme of the planning of charging stations for EV.

  3. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  4. 48 CFR 1852.228-76 - Cross-waiver of liability for space station activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... product or process except when such development is for Space Station-related activities in implementation...) All activities related to ground support, test, training, simulation, or guidance and control...

  5. Implementation of a virtual link between power system testbeds at Marshall Spaceflight Center and Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv

    1990-01-01

    The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.

  6. Prototype space station automation system delivered and demonstrated at NASA

    NASA Technical Reports Server (NTRS)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support System (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of Space Station subsystems. The hierarchical and distributed real time controls system places the required controls authority at every level of the automation system architecture. As a demonstration of the automation technique, the ASCLSS system automated the Air Revitalization Group (ARG) of the Space Station regenerative Environmental Control and Life Support System (ECLSS) using real-time, high fidelity simulators of the ARG processess. This automation system represents an early flight prototype and an important test bed for evaluating Space Station controls technology including future application of ADA software in real-time control and the development and demonstration of embedded artificial intelligence and expert systems (AI/ES) in distributed automation and controls systems.

  7. The Medical Gopher — A Microcomputer Based Physician Work Station

    PubMed Central

    McDonald, Clement J.

    1984-01-01

    We've developed a microcomputer medical work station intended to reduce the physician's “gopher” work of fetching, reviewing, organizing and writing that consumes his day. The system requires extensive physician interaction; so we have developed a fast and consistent menu-oriented user interface. It provides facilities for entering prescriptions, orders, problems and other medical record information and for generating flowsheets, executing reminder rules, providing ad hoc retrievals and reporting facts about drugs, tests and differential diagnoses. Each work station is connected to a central server (currently a VAX 117/80) in a network configuration, but carries all of its own programs, tables and medical records for a few hundred patients, locally. This system is tested but not yet tried. Questions remain about physician's acceptance and the true usefullness of such a work station.

  8. Tsunami Size Distributions at Far-Field Locations from Aggregated Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2015-12-01

    The distribution of tsunami amplitudes at far-field tide gauge stations is explained by aggregating the probability of tsunamis derived from individual subduction zones and scaled by their seismic moment. The observed tsunami amplitude distributions of both continental (e.g., San Francisco) and island (e.g., Hilo) stations distant from subduction zones are examined. Although the observed probability distributions nominally follow a Pareto (power-law) distribution, there are significant deviations. Some stations exhibit varying degrees of tapering of the distribution at high amplitudes and, in the case of the Hilo station, there is a prominent break in slope on log-log probability plots. There are also differences in the slopes of the observed distributions among stations that can be significant. To explain these differences we first estimate seismic moment distributions of observed earthquakes for major subduction zones. Second, regression models are developed that relate the tsunami amplitude at a station to seismic moment at a subduction zone, correcting for epicentral distance. The seismic moment distribution is then transformed to a site-specific tsunami amplitude distribution using the regression model. Finally, a mixture distribution is developed, aggregating the transformed tsunami distributions from all relevant subduction zones. This mixture distribution is compared to the observed distribution to assess the performance of the method described above. This method allows us to estimate the largest tsunami that can be expected in a given time period at a station.

  9. Life sciences utilization of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambers, Lawrence P.

    1992-01-01

    Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.

  10. NASA's Next Generation Space Geodesy Network

    NASA Technical Reports Server (NTRS)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  11. Estimation of missing water-level data for the Everglades Depth Estimation Network (EDEN), 2013 update

    USGS Publications Warehouse

    Petkewich, Matthew D.; Conrads, Paul

    2013-01-01

    The Everglades Depth Estimation Network is an integrated network of real-time water-level gaging stations, a ground-elevation model, and a water-surface elevation model designed to provide scientists, engineers, and water-resource managers with water-level and water-depth information (1991-2013) for the entire freshwater portion of the Greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for the Everglades Depth Estimation Network in order for the Network to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. In a previous study, water-level estimation equations were developed to fill in missing data to increase the accuracy of the daily water-surface elevation model. During this study, those equations were updated because of the addition and removal of water-level gaging stations, the consistent use of water-level data relative to the North American Vertical Datum of 1988, and availability of recent data (March 1, 2006, to September 30, 2011). Up to three linear regression equations were developed for each station by using three different input stations to minimize the occurrences of missing data for an input station. Of the 667 water-level estimation equations developed to fill missing data at 223 stations, more than 72 percent of the equations have coefficients of determination greater than 0.90, and 97 percent have coefficients of determination greater than 0.70.

  12. Network capability estimation. Vela network evaluation and automatic processing research. Technical report. [NETWORTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snell, N.S.

    1976-09-24

    NETWORTH is a computer program which calculates the detection and location capability of seismic networks. A modified version of NETWORTH has been developed. This program has been used to evaluate the effect of station 'downtime', the signal amplitude variance, and the station detection threshold upon network detection capability. In this version all parameters may be changed separately for individual stations. The capability of using signal amplitude corrections has been added. The function of amplitude corrections is to remove possible bias in the magnitude estimate due to inhomogeneous signal attenuation. These corrections may be applied to individual stations, individual epicenters, ormore » individual station/epicenter combinations. An option has been added to calculate the effect of station 'downtime' upon network capability. This study indicates that, if capability loss due to detection errors can be minimized, then station detection threshold and station reliability will be the fundamental limits to network performance. A baseline network of thirteen stations has been performed. These stations are as follows: Alaskan Long Period Array, (ALPA); Ankara, (ANK); Chiang Mai, (CHG); Korean Seismic Research Station, (KSRS); Large Aperture Seismic Array, (LASA); Mashhad, (MSH); Mundaring, (MUN); Norwegian Seismic Array, (NORSAR); New Delhi, (NWDEL); Red Knife, Ontario, (RK-ON); Shillong, (SHL); Taipei, (TAP); and White Horse, Yukon, (WH-YK).« less

  13. Development and Certification of Ultrasonic Background Noise Test (UBNT) System for use on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Madaras, Eric I.

    2011-01-01

    As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment

  14. Evaluating a strategy to deliver vaccine to white-tailed deer at a landscape level

    USGS Publications Warehouse

    Fischer, Justin W.; Blass, Chad R.; Walter, W. David; Anderson, Charles W.; Lavelle, Michael J.; Hall, Wayne H.; VerCauterren, Kurt C.

    2016-01-01

    Effective delivery of vaccines and other pharmaceuticals to wildlife populations is needed when zoonotic diseases pose a risk to public health and natural resources or have considerable economic consequences. The objective of our study was to develop a bait-distribution strategy for potential delivery of oral bovine tuberculosis (bTB) vaccine to white-tailed deer (Odocoileus virginianus) where deer are reservoirs for the disease. During 17 February and 2 March 2011, we created a grid of experimental bait stations (n = 64) on Sandhill Wildlife Management Area, Wisconsin, USA, to assess station densities needed to attract and deliver placebo baits to free-ranging white-tailed deer and look for associations among deer density, number of bait stations per deer, and bait consumption. We placed 1 L of commercially available alfalfa cubes at bait stations 652 m apart, and monitored stations with motion-activated cameras for 5 days to document visitation and consumption by deer and nontarget species. Deer discovered 38% of all bait stations within 37 hr, on average (SE = 3.91 hr), and consumed variable amounts of bait at each station. Deer were documented in 94% of all photographs of wildlife at bait stations. We found no correlation between bait consumption and deer density or the number of bait stations per deer. We provide the first information on use of baits by free-ranging deer and nontarget wildlife to eventually vaccinate deer against bTB at a landscape level. The results of this study can further the development of strategies in delivery of pharmaceuticals to free-ranging white-tailed deer.

  15. Continuation of research into language concepts for the mission support environment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A concept for a more intuitive and graphically based Computation (Comp) Builder was developed. The Graphical Comp Builder Prototype was developed, which is an X Window based graphical tool that allows the user to build Comps using graphical symbols. Investigation was conducted to determine the availability and suitability of the Ada programming language for the development of future control center type software. The Space Station Freedom Project identified Ada as the desirable programming language for the development of Space Station Control Center software systems.

  16. Health promoting community radio in rural Bali: an impact evaluation.

    PubMed

    Waters, D; James, R; Darby, J

    2011-01-01

    This article reports and discusses the process and key recommendations of an evaluation of a community oriented radio station in a rural village in Bali, Indonesia. Community development and health promotion strategies were adopted with the purpose of positively impacting the health and social needs of the local community. The essential element of participation in communication for development was extended to the choice of an evaluation methodology that facilitated community empowerment. The Most Significant Change method was utilised to interview 74 participants (combination of individual interview and focus groups) and to provide the basis for the community itself to identify what it considered to be significant change brought about by the on-air and off-air interventions delivered by the radio station. The 2007 study found that, in contrast to the findings of a needs assessment in 2004, the community now largely valued the input of the radio station with community members stating they were 'very proud of the radio station'. Changes in community perceptions are considered attributable to the radio station adopting a health promotion/community development approach to a combination of on-air programming to support off-air activities within the community. The radio station is in a valuable position to continue making a positive contribution to the village of Tulikup and to the wider region of Bali. Heartline Bali FM made a positive impact on the quality of life of local people through a combination of strategically designed on- and off-air activities based on a community development and community participation approach to radio programming. Most Significant Change evaluation extended and strengthened the participatory dynamic of the 3 year project.

  17. MODEL-BASED HYDROACOUSTIC BLOCKAGE ASSESSMENT AND DEVELOPMENT OF AN EXPLOSIVE SOURCE DATABASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzel, E; Ramirez, A; Harben, P

    2005-07-11

    We are continuing the development of the Hydroacoustic Blockage Assessment Tool (HABAT) which is designed for use by analysts to predict which hydroacoustic monitoring stations can be used in discrimination analysis for any particular event. The research involves two approaches (1) model-based assessment of blockage, and (2) ground-truth data-based assessment of blockage. The tool presents the analyst with a map of the world, and plots raypath blockages from stations to sources. The analyst inputs source locations and blockage criteria, and the tool returns a list of blockage status from all source locations to all hydroacoustic stations. We are currently usingmore » the tool in an assessment of blockage criteria for simple direct-path arrivals. Hydroacoustic data, predominantly from earthquake sources, are read in and assessed for blockage at all available stations. Several measures are taken. First, can the event be observed at a station above background noise? Second, can we establish backazimuth from the station to the source. Third, how large is the decibel drop at one station relative to other stations. These observational results are then compared with model estimates to identify the best set of blockage criteria and used to create a set of blockage maps for each station. The model-based estimates are currently limited by the coarse bathymetry of existing databases and by the limitations inherent in the raytrace method. In collaboration with BBN Inc., the Hydroacoustic Coverage Assessment Model (HydroCAM) that generates the blockage files that serve as input to HABAT, is being extended to include high-resolution bathymetry databases in key areas that increase model-based blockage assessment reliability. An important aspect of this capability is to eventually include reflected T-phases where they reliably occur and to identify the associated reflectors. To assess how well any given hydroacoustic discriminant works in separating earthquake and in-water explosion populations it is necessary to have both a database of reference earthquake events and of reference in-water explosive events. Although reference earthquake events are readily available, explosive reference events are not. Consequently, building an in-water explosion reference database requires the compilation of events from many sources spanning a long period of time. We have developed a database of small implosive and explosive reference events from the 2003 Indian Ocean Cruise data. These events were recorded at some or all of the IMS Indian Ocean hydroacoustic stations: Diego Garcia, Cape Leeuwin, and Crozet Island. We have also reviewed many historical large in-water explosions and identified five that have adequate source information and can be positively associated to the hydrophone recordings. The five events are: Cannekin, Longshot, CHASE-3, CHASE-5, and IITRI-1. Of these, the first two are nuclear tests on land but near water. The latter three are in-water conventional explosive events with yields from ten to hundreds of tons TNT equivalent. The objective of this research is to enhance discrimination capabilities for events located in the world's oceans. Two research and development efforts are needed to achieve this: (1) improvement in discrimination algorithms and their joint statistical application to events, and (2) development of an automated and accurate blockage prediction capability that will identify all stations and phases (direct and reflected) from a given event that will have adequate signal to be used in a discrimination analysis. The strategy for improving blockage prediction in the world's oceans is to improve model-based prediction of blockage and to develop a ground-truth database of reference events to assess blockage. Currently, research is focused on the development of a blockage assessment software tool. The tool is envisioned to develop into a sophisticated and unifying package that optimally and automatically assesses both model and data based blockage predictions in all ocean basins, for all NDC stations, and accounting for reflected phases (Pulli et al., 2000). Currently, we have focused our efforts on the Diego Garcia, Cape Leeuwin and Crozet Island hydroacoustic stations in the Indian Ocean.« less

  18. Automated Meteor Detection by All-Sky Digital Camera Systems

    NASA Astrophysics Data System (ADS)

    Suk, Tomáš; Šimberová, Stanislava

    2017-12-01

    We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.

  19. RTK and DGPS measurements using INTERNET and GSM radiolink

    NASA Astrophysics Data System (ADS)

    Rogowski, J. B.; Rogowski, A.; Kujawa, L.

    2003-04-01

    The practical need for GNSS positioning in real time caused to develop the medium for data transmission. The DGPS correction could be transmitted on the area of a few hundreds kilometers (test in Polish Solec Kujawski radio station) on log waves. The RTK technique needs the greater flow capacity of the radio lines and shorter distance between the base stations. The RTK data from the base stations could be transmitted in the DARC system by the local stations on UKF channels, but the local stations are not interested in propagation of RTCM data. The experiences of RTK and DGPS measurements using data transmissions by INTERNET and GSM radio link are presented in the paper.

  20. GNSS station displacement analysis

    NASA Astrophysics Data System (ADS)

    Haritonova, Diana; Balodis, Janis; Janpaule, Inese; Normand, Madara

    2013-04-01

    Time series of GNSS station results of both the EUPOS®-Riga and LatPos networks have been developed at the Institute of Geodesy and Geoinformation (University of Latvia). The reference stations from EUREF Permanent Network (EPN) in surroundings of Latvia have been used and Bernese GPS Software, Version 5.0, in both static and kinematic modes was applied. The standard data sets were taken from IGS data base. The results of time series have been analysed and distinctive behaviour of daily and subdaily movements of EUPOS®-Riga and LatPos stations was identified. The reasons of dependence of GNSS station coordinate distribution on possible external factors such as seismic activity of some areas of Latvia and periodic processes were given.

  1. Crew interface with a telerobotic control station

    NASA Technical Reports Server (NTRS)

    Mok, Eva

    1987-01-01

    A method for apportioning crew-telerobot tasks has been derived to facilitate the design of a crew-friendly telerobot control station. To identify the most appropriate state-of-the-art hardware for the control station, task apportionment must first be conducted to identify if an astronaut or a telerobot is best to execute the task and which displays and controls are required for monitoring and performance. Basic steps that comprise the task analysis process are: (1) identify space station tasks; (2) define tasks; (3) define task performance criteria and perform task apportionment; (4) verify task apportionment; (5) generate control station requirements; (6) develop design concepts to meet requirements; and (7) test and verify design concepts.

  2. Dynamic loading and stress life analysis of permanent space station modules

    NASA Astrophysics Data System (ADS)

    Anisimov, A. V.; Krokhin, I. A.; Likhoded, A. I.; Malinin, A. A.; Panichkin, N. G.; Sidorov, V. V.; Titov, V. A.

    2016-11-01

    Some methodological approaches to solving several key problems of dynamic loading and structural strength analysis of Permanent Space Station (PSS)modules developed on the basis of the working experience of Soviet and Russian PSS and the International Space station (ISS) are presented. The solutions of the direct and semi-inverse problems of PSS structure dynamics are mathematically stated. Special attention is paid to the use of the results of ground structural strength tests of space station modules and the data on the actual flight actions on the station and its dynamic responses in the orbital operation regime. The procedure of determining the dynamics and operation life parameters of elements of the PSS modules is described.

  3. Space Station: Delays in dealing with space debris may reduce safety and increase costs

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The majority of NASA's current designs for protecting the space station and crew from debris are outdated and its overall debris protection strategy is insufficient. NASA's contractors have designed the station using a 1984 model of the space environment that is obsolete, significantly underestimating the increasing amount of debris that the station will encounter during its 30-year lifetime. In February 1992, NASA directed its space centers to incorporate an updated 1991 model into their designs. However, the agency has not yet made critical decisions on how to implement this change. Preliminary evaluations show that incorporating the 1991 model using currently established safety criteria could entail a major redesign of some components, with significant cost impact and schedule delays. NASA's overall protection strategy for space debris is insufficient. While NASA has concentrated its protection on shielding the space station from small debris and plans to augment this initial shielding in orbit, it has not yet developed designs or studied the cost and operational impact of augmenting its protection with additional shielding. Further, current designs do not provide the capability of warning or protecting the crew from imminent collision with mid-size debris. Finally, although some capabilities exist for maneuvering the station away from large debris, the agency lacks collision-avoidance plans and debris-tracking equipment. In developing a comprehensive strategy to protect the station from the more severe debris environment, NASA cannot avoid some difficult decisions. These decisions involve tradeoffs between how much the agency is willing to pay to protect the station, the schedule delays it may incur, and the risk to station safety it is willing to accept. It is important that these decisions be made before NASA completes its critical design reviews in early 1993. At that time key designs will be made final and manufacturing will begin. Without a comprehensive strategy, NASA will have decided to build the station, knowing the consequences of this decision on station and crew safety, and on life-cycle station cost.

  4. International Space Station Alpha (ISSA) Integrated Traffic Model

    NASA Technical Reports Server (NTRS)

    Gates, Robert E.

    1994-01-01

    The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements, and crew rotation via spread sheets provides adequate bench marks to assess cargo vehicle design and performance characteristics.

  5. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Wang, R.; Hurysz, B.; Luo, Z.

    1991-01-01

    The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards.

  6. Integrated dynamic analysis simulation of space stations with controllable solar arrays (supplemental data and analyses)

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    Space station and solar array data and the analyses which were performed in support of the integrated dynamic analysis study. The analysis methods and the formulated digital simulation were developed. Control systems for space station altitude control and solar array orientation control include generic type control systems. These systems have been digitally coded and included in the simulation.

  7. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  8. Assembly considerations for large reflectors

    NASA Technical Reports Server (NTRS)

    Bush, H.

    1988-01-01

    The technologies developed at LaRC in the area of erectable instructures are discussed. The information is of direct value to the Large Deployable Reflector (LDR) because an option for the LDR backup structure is to assemble it in space. The efforts in this area, which include development of joints, underwater assembly simulation tests, flight assembly/disassembly tests, and fabrication of 5-meter trusses, led to the use of the LaRC concept as the baseline configuration for the Space Station Structure. The Space Station joint is linear in the load and displacement range of interest to Space Station; the ability to manually assemble and disassemble a 45-foot truss structure was demonstrated by astronauts in space as part of the ACCESS Shuttle Flight Experiment. The structure was built in 26 minutes 46 seconds, and involved a total of 500 manipulations of untethered hardware. Also, the correlation of the space experience with the neutral buoyancy simulation was very good. Sections of the proposed 5-meter bay Space Station truss have been built on the ground. Activities at LaRC have included the development of mobile remote manipulator systems (which can traverse the Space Station 5-meter structure), preliminary LDR sun shield concepts, LDR construction scenarios, and activities in robotic assembly of truss-type structures.

  9. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  10. Validating the performance of vehicle classification stations.

    DOT National Transportation Integrated Search

    2012-05-01

    Vehicle classification is used in many transportation applications, e.g., infrastructure management and planning. Typical of most : developed countries, every state in the US maintains a network of vehicle classification stations to explicitly sort v...

  11. Development of Geospatial Map Based Election Portal

    NASA Astrophysics Data System (ADS)

    Gupta, A. Kumar Chandra; Kumar, P.; Vasanth Kumar, N.

    2014-11-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Election portal (GMEP) of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for pertain to planning and management of Department of Chief Electoral Officer, and as an election related information searching tools (Polling Station, Assembly and parliamentary constituency etc.,) for the citizens of NCTD. The GMEP is based on Client-Server architecture model. It has been developed using ArcGIS Server 10.0 with J2EE front-end on Microsoft Windows environment. The GMEP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMEP includes delimited precinct area boundaries of Voters Area of Polling stations, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMEP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of elections. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  12. Effectiveness of the New Hampshire stream-gaging network in providing regional streamflow information

    USGS Publications Warehouse

    Olson, Scott A.

    2003-01-01

    The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.

  13. Development of double-pair double difference location algorithm and its application to the regular earthquakes and non-volcanic tremors

    NASA Astrophysics Data System (ADS)

    Guo, H.; Zhang, H.

    2016-12-01

    Relocating high-precision earthquakes is a central task for monitoring earthquakes and studying the structure of earth's interior. The most popular location method is the event-pair double-difference (DD) relative location method, which uses the catalog and/or more accurate waveform cross-correlation (WCC) differential times from event pairs with small inter-event separations to the common stations to reduce the effect of the velocity uncertainties outside the source region. Similarly, Zhang et al. [2010] developed a station-pair DD location method which uses the differential times from common events to pairs of stations to reduce the effect of the velocity uncertainties near the source region, to relocate the non-volcanic tremors (NVT) beneath the San Andreas Fault (SAF). To utilize advantages of both DD location methods, we have proposed and developed a new double-pair DD location method to use the differential times from pairs of events to pairs of stations. The new method can remove the event origin time and station correction terms from the inversion system and cancel out the effects of the velocity uncertainties near and outside the source region simultaneously. We tested and applied the new method on the northern California regular earthquakes to validate its performance. In comparison, among three DD location methods, the new double-pair DD method can determine more accurate relative locations and the station-pair DD method can better improve the absolute locations. Thus, we further proposed a new location strategy combining station-pair and double-pair differential times to determine accurate absolute and relative locations at the same time. For NVTs, it is difficult to pick the first arrivals and derive the WCC event-pair differential times, thus the general practice is to measure station-pair envelope WCC differential times. However, station-pair tremor locations are scattered due to the low-precision relative locations. The ability that double-pair data can be directly constructed from the station-pair data means that double-pair DD method can be used for improving NVT locations. We have applied the new method to the NVTs beneath the SAF near Cholame, California. Compared to the previous results, the new double-pair DD tremor locations are more concentrated and show more detailed structures.

  14. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  15. Indicators to assess the environmental performances of an innovative subway station : example of Noisy-Champs

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J. M.; Charbonnier, L.; Versini, P. A.; Tchiguirinskaia, I.

    2017-12-01

    Noisy-Champs is a train station located in Noisy-le-Grand and Champs-sur-Marne, in the Paris urban area (France). Integrated into the Grand Paris Express project (huge development project to modernise the transport network around Paris), this station is going to be radically transformed and become a major hub. Designed by the architectural office Duthilleul, the new Noisy-Champs station aspires to be an example of an innovative and sustainable infrastructure. Its architectural precepts are indeed meant to improve its environmental performances, especially those related to storm water management, water consumption and users' thermal and hygrometric comfort. In order to assess and monitor these performances, objectives and associated indicators have been developed. They aim to be adapted for a specific infrastructure such as a public transport station. Analyses of pre-existing comfort simulations, blueprints and regulatory documents have led to identify the main issues for the Noisy-Champs station, focusing on its resilience to extreme events like droughts, heatwaves and heaxvy rainfalls. Both objectives and indicators have been proposed by studying the space-time variabilities of physical fluxes (heat, pollutants, radiation, wind and water) and passenger flows, and their interactions. Each indicator is linked to an environmental performance and has been determined after consultation of the different stakeholders involved in the rebuilding of the station. It results a monitoring program to assess the environmental performances of the station composed by both the indicators grid and their related objectives, and a measurement program detailing the nature and location of sensors, and the frequency of measurements.

  16. Engineering challenges of operating year-round portable seismic stations at high-latitude

    NASA Astrophysics Data System (ADS)

    Beaudoin, Bruce; Carpenter, Paul; Hebert, Jason; Childs, Dean; Anderson, Kent

    2017-04-01

    Remote portable seismic stations are, in most cases, constrained by logistics and cost. High latitude operations introduce environmental, technical and logistical challenges that require substantially more engineering work to ensure robust, high quality data return. Since 2006, IRIS PASSCAL has been funded by NSF to develop, deploy, and maintain a pool of polar specific seismic stations. Here, we describe our latest advancements to mitigate the challenges of high-latitude, year-round station operation. The IRIS PASSCAL program has supported high-latitude deployments since the late 1980s. These early deployments were largely controlled source, summer only experiments. In early 2000 PASSCAL users began proposing year-round deployments of broadband stations in some of the harshest environments on the planet. These early year-round deployments were stand-alone (no telemetry) stations largely designed to operate during summer months and then run as long as possible during the winter with hopes the stations would revive come following summer. In 2006 and in collaboration with UNAVCO, we began developing communications, power systems, and enclosures to extend recording to year-round. Since this initial effort, PASSCAL continued refinement to power systems, enclosure design and manufacturability, and real-time data communications. Several sensor and data logger manufacturers have made advances in cold weather performance and delivered newly designed instruments that have furthered our ability to successfully run portable stations at high-latitude with minimal logistics - reducing size and weight of instruments and infrastructure. All PASSCAL polar engineering work is openly shared through our website: www.passcal.nmt.edu/content/polar

  17. Space Station program status and research capabilities

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1995-01-01

    Space Station will be a permanent orbiting laboratory in space which will provide researchers with unprecedented opportunities for access to the space environment. Space Station is designed to provide essential resources of volume, crew, power, data handling and communications to accommodate experiments for long-duration studies in technology, materials and the life sciences. Materials and coatings for exposure research will be supported by Space Station, providing new knowledge for applications in Earthbased technology and future space missions. Space Station has been redesigned at the direction of the President. The redesign was performed to significantly reduce development, operations and utilization costs while achieving many of the original goals for long duration scientific research. An overview of the Space Station Program and capabilities for research following the redesign is presented below. Accommodations for pressurized and external payloads are described.

  18. Space Station

    NASA Image and Video Library

    1952-01-01

    This is a von Braun 1952 space station concept. In a 1952 series of articles written in Collier's, Dr. Wernher von Braun, then Technical Director of the Army Ordnance Guided Missiles Development Group at Redstone Arsenal, wrote of a large wheel-like space station in a 1,075-mile orbit. This station, made of flexible nylon, would be carried into space by a fully reusable three-stage launch vehicle. Once in space, the station's collapsible nylon body would be inflated much like an automobile tire. The 250-foot-wide wheel would rotate to provide artificial gravity, an important consideration at the time because little was known about the effects of prolonged zero-gravity on humans. Von Braun's wheel was slated for a number of important missions: a way station for space exploration, a meteorological observatory and a navigation aid. This concept was illustrated by artist Chesley Bonestell.

  19. The research of a solution on locating optimally a station for seismic disasters rescue in a city

    NASA Astrophysics Data System (ADS)

    Yao, Qing-Lin

    1995-02-01

    When the stations for seismic disasters rescue in future or the similars are designed on a network of communication line, the general absolute center of a graph needs to be solved to reduce the requirements in the number of stations and running parameters and to establish an optimal station in a sense distribution of the rescue arrival time by the way of locating optimally the stations. The existing solution on this problem was proposed by Edward (1978) in which, however, there is serious deviation. In this article, the work of Edward (1978) is developed in both formula and figure, more correct solution is proposed and proved. Then the result from the newer solution is contrasted with that from the older one in a instance about locating optimally the station for seismic disasters rescue.

  20. Space Station overall management approach for operations

    NASA Technical Reports Server (NTRS)

    Paules, G.

    1986-01-01

    An Operations Management Concept developed by NASA for its Space Station Program is discussed. The operational goals, themes, and design principles established during program development are summarized. The major operations functions are described, including: space systems operations, user support operations, prelaunch/postlanding operations, logistics support operations, market research, and cost/financial management. Strategic, tactical, and execution levels of operational decision-making are defined.

  1. Telescience Testbed Pilot Program

    NASA Technical Reports Server (NTRS)

    Gallagher, Maria L. (Editor); Leiner, Barry M. (Editor)

    1988-01-01

    The Telescience Testbed Pilot Program (TTPP) is intended to develop initial recommendations for requirements and design approaches for the information system of the Space Station era. Multiple scientific experiments are being performed, each exploring advanced technologies and technical approaches and each emulating some aspect of Space Station era science. The aggregate results of the program will serve to guide the development of future NASA information systems.

  2. Advanced Solar Observatory (ASO) accommodations requirements study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Results of an accommodations analysis for the Advanced Solar Observatory on Space Station Freedom are reported. Concepts for the High Resolution Telescope Cluster, Pinhole/Occulter Facility, and High Energy Cluster were developed which can be accommodated on Space Station Freedom. It is shown that workable accommodations concepts are possible. Areas of emphasis for the next stage of engineering development are identified.

  3. PASSCAL Instrument Center Support for Cryoseismology: Methodologies, Challenges, Development and Instrumentation

    NASA Astrophysics Data System (ADS)

    Beaudoin, B. C.; Anderson, K. R.; Bilek, S. L.; Carpenter, P.; Childs, D.; Chung, P.; Huerta, A. D.; Lingutla, N.; Nikolaus, K.; Winberry, J. P.

    2017-12-01

    Remote portable seismic stations are, in most cases, constrained by logistics and cost. High latitude operations introduce environmental, technical and logistical challenges that require substantially more engineering work to ensure robust, high quality data return. Since 2006, IRIS PASSCAL has been funded by NSF to develop, deploy, and maintain a pool of polar specific seismic stations. At roughly the same time, PASSCAL began supporting experiments specifically targeting glacier dynamics such as the mechanisms of subglacial hydrology, basal shear stress, ice stream stick slip mechanisms, and glacier seismicity. Although much of the development for high-latitude deployments was directly applicable to cryoseismology, these new experiments introduced a unique series of challenges including high ablation, standing water, and moving stations. Our polar development objectives have focused on: Reducing station power requirements, size and weight; Extending the operational temperature of a station; Simplifying logistics; Engineering solutions that are cost effective, manufacturable, serviceable and reusable; And, developing high-latitude communications for both state-of-health and data transmission. To these ends, PASSCAL continues testing new power storage technology, refining established power systems for lighter and smaller power banks, and exploring telemetry solutions to increase high-bandwidth communication options and abilities for remote seismic stations. Further enhancing PASSCAL's ability to support cryoseismology is a recent NSF funded collaborative effort lead by Central Washing University joined by IRIS and New Mexico Tech to build a Geophysical Earth Observatory for Ice Covered Environments (GEOICE). The GEOICE instrument, power system and other integrated ancillary components are designed to require minimal installation time and logistical load (i.e., size and weight), while maximizing ease-of-use in the field and optimizing costs of instrumentation and experiment consumables. The instrument capability will include a hybrid seismograph pool of broadband and intermediate elements, for observation of both long-period and intermediate-to-short-period signals, and a high-frequency node element.

  4. A simple 5-DOF walking robot for space station application

    NASA Technical Reports Server (NTRS)

    Brown, H. Benjamin, Jr.; Friedman, Mark B.; Kanade, Takeo

    1991-01-01

    Robots on the NASA space station have a potential range of applications from assisting astronauts during EVA (extravehicular activity), to replacing astronauts in the performance of simple, dangerous, and tedious tasks; and to performing routine tasks such as inspections of structures and utilities. To provide a vehicle for demonstrating the pertinent technologies, a simple robot is being developed for locomotion and basic manipulation on the proposed space station. In addition to the robot, an experimental testbed was developed, including a 1/3 scale (1.67 meter modules) truss and a gravity compensation system to simulate a zero-gravity environment. The robot comprises two flexible links connected by a rotary joint, with a 2 degree of freedom wrist joints and grippers at each end. The grippers screw into threaded holes in the nodes of the space station truss, and enable it to walk by alternately shifting the base of support from one foot (gripper) to the other. Present efforts are focused on mechanical design, application of sensors, and development of control algorithms for lightweight, flexible structures. Long-range research will emphasize development of human interfaces to permit a range of control modes from teleoperated to semiautonomous, and coordination of robot/astronaut and multiple-robot teams.

  5. Evaluation and application of regional turbidity-sediment regression models in Virginia

    USGS Publications Warehouse

    Hyer, Kenneth; Jastram, John D.; Moyer, Douglas; Webber, James S.; Chanat, Jeffrey G.

    2015-01-01

    Conventional thinking has long held that turbidity-sediment surrogate-regression equations are site specific and that regression equations developed at a single monitoring station should not be applied to another station; however, few studies have evaluated this issue in a rigorous manner. If robust regional turbidity-sediment models can be developed successfully, their applications could greatly expand the usage of these methods. Suspended sediment load estimation could occur as soon as flow and turbidity monitoring commence at a site, suspended sediment sampling frequencies for various projects potentially could be reduced, and special-project applications (sediment monitoring following dam removal, for example) could be significantly enhanced. The objective of this effort was to investigate the turbidity-suspended sediment concentration (SSC) relations at all available USGS monitoring sites within Virginia to determine whether meaningful turbidity-sediment regression models can be developed by combining the data from multiple monitoring stations into a single model, known as a “regional” model. Following the development of the regional model, additional objectives included a comparison of predicted SSCs between the regional model and commonly used site-specific models, as well as an evaluation of why specific monitoring stations did not fit the regional model.

  6. Space Station RT and E Utilization Study

    NASA Technical Reports Server (NTRS)

    Wunsch, P. K.; Anderson, P. H.

    1989-01-01

    Descriptive information on a set of 241 mission concepts was reviewed to establish preliminary Space Station outfitting needs for technology development missions. The missions studied covered the full range of in-space technology development activities envisioned for early Space Station operations and included both pressurized volume and attached payload requirements. Equipment needs were compared with outfitting plans for the life sciences and microgravity user communities, and a number of potential outfitting additions were identified. Outfitting implementation was addressed by selecting a strawman mission complement for each of seven technical themes, by organizing the missions into flight scenarios, and by assessing the associated outfitting buildup for planning impacts.

  7. Computer-aided controllability assessment of generic manned Space Station concepts

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J.; Deryder, L. J.; Heck, M. L.

    1984-01-01

    NASA's Concept Development Group assessment methodology for the on-orbit rigid body controllability characteristics of each generic configuration proposed for the manned space station is presented; the preliminary results obtained represent the first step in the analysis of these eight configurations. Analytical computer models of each configuration were developed by means of the Interactive Design Evaluation of Advanced Spacecraft CAD system, which created three-dimensional geometry models of each configuration to establish dimensional requirements for module connectivity, payload accommodation, and Space Shuttle berthing; mass, center-of-gravity, inertia, and aerodynamic drag areas were then derived. Attention was also given to the preferred flight attitude of each station concept.

  8. Knowledge-based machine vision systems for space station automation

    NASA Technical Reports Server (NTRS)

    Ranganath, Heggere S.; Chipman, Laure J.

    1989-01-01

    Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed.

  9. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  10. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  11. Space Station-Baseline Configuration With Callouts

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  12. A continuum model for dynamic analysis of the Space Station

    NASA Technical Reports Server (NTRS)

    Thomas, Segun

    1989-01-01

    Dynamic analysis of the International Space Station using MSC/NASTRAN had 1312 rod elements, 62 beam elements, 489 nodes and 1473 dynamic degrees of freedom. A realtime, man-in-the-loop simulation of such a model is impractical. This paper discusses the mathematical model for realtime dynamic simulation of the Space Station. Several key questions in structures and structural dynamics are addressed. First, to achieve a significant reduction in the number of dynamic degrees of freedom, a continuum equivalent representation of the Space Station truss structure which accounted for the unsymmetry of the basic configuration and resulted in the coupling of extensional and transverse deformation, is developed. Next, dynamic equations for the continuum equivalent of the Space Station truss structure are formulated using a matrix version of Kane's dynamical equations. Flexibility is accounted for by using a theory that accommodates extension, bending in two principal planes and shear displacement. Finally, constraint equations suitable for dynamic analysis of flexible bodies with closed loop configuration are developed and solution of the resulting system of equations is based on the zero eigenvalue theorem.

  13. Space Station

    NASA Image and Video Library

    1989-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  14. The Albuquerque Seismological Laboratory Data Quality Analyzer

    NASA Astrophysics Data System (ADS)

    Ringler, A. T.; Hagerty, M.; Holland, J.; Gee, L. S.; Wilson, D.

    2013-12-01

    The U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL) has several efforts underway to improve data quality at its stations. The Data Quality Analyzer (DQA) is one such development. The DQA is designed to characterize station data quality in a quantitative and automated manner. Station quality is based on the evaluation of various metrics, such as timing quality, noise levels, sensor coherence, and so on. These metrics are aggregated into a measurable grade for each station. The DQA consists of a website, a metric calculator (Seedscan), and a PostgreSQL database. The website allows the user to make requests for various time periods, review specific networks and stations, adjust weighting of the station's grade, and plot metrics as a function of time. The website dynamically loads all station data from a PostgreSQL database. The database is central to the application; it acts as a hub where metric values and limited station descriptions are stored. Data is stored at the level of one sensor's channel per day. The database is populated by Seedscan. Seedscan reads and processes miniSEED data, to generate metric values. Seedscan, written in Java, compares hashes of metadata and data to detect changes and perform subsequent recalculations. This ensures that the metric values are up to date and accurate. Seedscan can be run in a scheduled task or on demand by way of a config file. It will compute metrics specified in its configuration file. While many metrics are currently in development, some are completed and being actively used. These include: availability, timing quality, gap count, deviation from the New Low Noise Model, deviation from a station's noise baseline, inter-sensor coherence, and data-synthetic fits. In all, 20 metrics are planned, but any number could be added. ASL is actively using the DQA on a daily basis for station diagnostics and evaluation. As Seedscan is scheduled to run every night, data quality analysts are able to then use the website to diagnose changes in noise levels or other anomalous data. This allows for errors to be corrected quickly and efficiently. The code is designed to be flexible for adding metrics and portable for use in other networks. We anticipate further development of the DQA by improving the existing web-interface, adding more metrics, adding an interface to facilitate the verification of historic station metadata and performance, and an interface to allow better monitoring of data quality goals.

  15. Methods for estimating low-flow statistics for Massachusetts streams

    USGS Publications Warehouse

    Ries, Kernell G.; Friesz, Paul J.

    2000-01-01

    Methods and computer software are described in this report for determining flow duration, low-flow frequency statistics, and August median flows. These low-flow statistics can be estimated for unregulated streams in Massachusetts using different methods depending on whether the location of interest is at a streamgaging station, a low-flow partial-record station, or an ungaged site where no data are available. Low-flow statistics for streamgaging stations can be estimated using standard U.S. Geological Survey methods described in the report. The MOVE.1 mathematical method and a graphical correlation method can be used to estimate low-flow statistics for low-flow partial-record stations. The MOVE.1 method is recommended when the relation between measured flows at a partial-record station and daily mean flows at a nearby, hydrologically similar streamgaging station is linear, and the graphical method is recommended when the relation is curved. Equations are presented for computing the variance and equivalent years of record for estimates of low-flow statistics for low-flow partial-record stations when either a single or multiple index stations are used to determine the estimates. The drainage-area ratio method or regression equations can be used to estimate low-flow statistics for ungaged sites where no data are available. The drainage-area ratio method is generally as accurate as or more accurate than regression estimates when the drainage-area ratio for an ungaged site is between 0.3 and 1.5 times the drainage area of the index data-collection site. Regression equations were developed to estimate the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent duration flows; the 7-day, 2-year and the 7-day, 10-year low flows; and the August median flow for ungaged sites in Massachusetts. Streamflow statistics and basin characteristics for 87 to 133 streamgaging stations and low-flow partial-record stations were used to develop the equations. The streamgaging stations had from 2 to 81 years of record, with a mean record length of 37 years. The low-flow partial-record stations had from 8 to 36 streamflow measurements, with a median of 14 measurements. All basin characteristics were determined from digital map data. The basin characteristics that were statistically significant in most of the final regression equations were drainage area, the area of stratified-drift deposits per unit of stream length plus 0.1, mean basin slope, and an indicator variable that was 0 in the eastern region and 1 in the western region of Massachusetts. The equations were developed by use of weighted-least-squares regression analyses, with weights assigned proportional to the years of record and inversely proportional to the variances of the streamflow statistics for the stations. Standard errors of prediction ranged from 70.7 to 17.5 percent for the equations to predict the 7-day, 10-year low flow and 50-percent duration flow, respectively. The equations are not applicable for use in the Southeast Coastal region of the State, or where basin characteristics for the selected ungaged site are outside the ranges of those for the stations used in the regression analyses. A World Wide Web application was developed that provides streamflow statistics for data collection stations from a data base and for ungaged sites by measuring the necessary basin characteristics for the site and solving the regression equations. Output provided by the Web application for ungaged sites includes a map of the drainage-basin boundary determined for the site, the measured basin characteristics, the estimated streamflow statistics, and 90-percent prediction intervals for the estimates. An equation is provided for combining regression and correlation estimates to obtain improved estimates of the streamflow statistics for low-flow partial-record stations. An equation is also provided for combining regression and drainage-area ratio estimates to obtain improved e

  16. EXPRESS Rack: The Extension of International Space Station Resources for Multi-Discipline Subrack Payloads

    NASA Technical Reports Server (NTRS)

    Sledd, Annette; Danford, Mike; Key, Brian

    2002-01-01

    The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System was developed to provide Space Station accommodations for subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify data interfaces at the development site, Functional Checkout Units to allow payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes, and facilitate simpler ISS payload development. Whereas most ISS Payload facilities are designed to accommodate one specific type of science, the EXPRESS Rack is designed to accommodate multi-discipline research within the same rack allowing for the independent operation of each subrack payload. On-orbit operations began with the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support long-running payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Sustaining Engineering and Logistics and Maintenance functions are in place to maintain operations and to provide software upgrades.

  17. The California Alliance for Sustainability: A Collaborative Pilot Project to Build Regional Advocacy and Leadership for Sustainability Education

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Smith, G.; Cordero, E. C.; Santone, S.

    2012-12-01

    For Education for Sustainability (Efs) to have the presence in the K-12 curriculum that it arguably should, considerable obstacles must be overcome. Barriers include the role of high-stakes testing in marginalizing science and social studies and the lack of environmental and sustainability content in teacher education programs. The California Alliance for Sustainability (CASE), a collaborative 18-month project funded by the Clarence E. Heller Charitable Foundation, unites San José State University (SJSU) and Creative Change Educational Solutions (CCES) (http://www.creativechange.net/) to investigate and address potential barriers to Efs in San Francisco Bay area schools and regional teacher education programs and to document best practices for integrating sustainability into teachers' existing standards-based teaching. The overarching goal of the CASE project is to create a regional infrastructure of K-12 teachers and pre-service teacher educators who use EfS as a context for educational innovation and transformation, thus supplying a focused first step for investigating how Efs can be more broadly implemented in California's classrooms. This presentation will showcase the efforts of a pilot group of classroom teachers and teacher educators to bring EfS to their teaching. In summer 2012, the CASE Project provided 16 in-service teachers and 5 pre-service teacher education faculty from SJSU and California State University East Bay with a three-day professional development workshop. Practicing teachers and teacher educators experienced joint instruction in the content and pedagogy of sustainability though investigation of topics (e.g., Sustainable Communities, Ecological Footprint Analysis, Climate Change, Resource Use, Food Systems and Life Cycle Analysis) that offer broad connections to California standards in science and other disciplines. Sustainability concepts were also discussed as an engaging context for addressing the emerging Common Core and Next Generation Science Standards. Participants then split into breakout groups to work on sustainability-themed instructional unit/college course makeovers that are aligned to California standards and their course learning objectives. Academic year follow-up support includes two Saturday workshops and webinars that will provide additional instruction in sustainability concepts and a forum for sharing successes and challenges experienced during classroom implementation of plans developed during the summer. In this session, we will share teacher-created K-12 lesson plans and descriptions of pre-service course revisions in the context of teacher-identified challenges to EfS integration in order to elucidate common barriers and highlight opportunities for curricular change.

  18. The Space Station as a Construction Base for Large Space Structures

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1985-01-01

    The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.

  19. Collision warning and avoidance considerations for the Space Shuttle and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Collins, Michael F.; Kramer, Paul C.; Arndt, G. Dickey; Suddath, Jerry H.

    1990-01-01

    The increasing hazard of manmade debris in low earth orbit (LEO) has focused attention on the requirement for collision detection, warning and avoidance systems to be developed in order to protect manned (and unmanned) spacecraft. With the number of debris objects expected to be increasing with time, the impact hazard will also be increasing. The safety of the Space Shuttle and the Space Station Freedom from destructive or catastrophic collision resulting from the hypervelocity impact of a LEO object is of increasing concern to NASA. A number of approaches to this problem are in effect or under development. The collision avoidance procedures now in effect for the Shuttle are described, and detection and avoidance procedures presently being developed at the Johnson Space Center for the Space Station Freedom are discussed.

  20. Design description report for a photovoltaic power system for a remote satellite earth terminal

    NASA Technical Reports Server (NTRS)

    Marshall, N. A.; Naff, G. J.

    1987-01-01

    A photovoltaic (PV) power system has been installed as an adjunct to an agricultural school at Wawatobi on the large northern island of the Republic of Indonesia. Its purpose is to provide power for a satellite earth station and a classroom. The renewable energy developed supports the video and audio teleconferencing systems as well as the facility at large. The ground station may later be used to provide telephone service. The installation was made in support of the Agency for International Development's Rural Satellite Program, whose purpose is to demonstrate the use of satellite communications for rural development assistance applications. The objective of this particular PV power system is to demonstrate the suitability of a hybrid PV engine-generator configuration for remote satellite earth stations.

  1. Food systems for space travel.

    PubMed

    Bourland, C T

    1999-01-01

    Space food systems have evolved from tubes and cubes to Earth-like food being planned for the International Space Station. The weight, volume, and oxygen-enriched atmosphere constraints of earlier spacecraft severely limited the type of food that could be used. Food systems improved as spacecraft conditions became more habitable. Space food systems have traditionally been based upon the water supply. This presentation summarizes the food development activities from Mercury through Shuttle, Shuttle/Mir, and plans for the International Space Station. Food development lessons learned from the long-duration missions with astronauts on the Mir station are also discussed. Nutritional requirements for long-duration missions in microgravity and problems associated with meeting these requirements for Mir will be elucidated. The psychological importance of food and the implications for food development activities are summarized.

  2. Exobiology research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Stratton, D. M.; Scattergood, T. W.

    1995-01-01

    The Gas-Grain Simulation Facility (GGSF) is a multidisciplinary experiment laboratory being developed by NASA at Ames Research Center for delivery to Space Station Freedom in 1998. This facility will employ the low-gravity environment of the Space Station to enable aerosol experiments of much longer duration than is possible in any ground-based laboratory. Studies of fractal aggregates that are impossible to sustain on Earth will also be enabled. Three research areas within exobiology that will benefit from the GGSF are described here. An analysis of the needs of this research and of other suggested experiments has produced a list of science requirements which the facility design must accommodate. A GGSF design concept developed in the first stage of flight hardware development to meet these requirements is also described.

  3. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  4. Orbital Spacecraft Consumables Resupply System (OSCRS): Monopropellant application to space station and OMV automatic refueling impacts of an ELV launch, volume 4

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The use of orbital spacecraft consumables resupply system (OSCRS) at the Space Station is investigated, its use with the orbital maneuvering vehicle, and launch of the OSCRS on an expendable launch vehicles. A system requirements evaluation was performed initially to identify any unique requirements that would impact the design of OSCRS when used at the Space Station. Space Station documents were reviewed to establish requirements and to identify interfaces between the OSCRS, Shuttle, and Space Station, especially the Servicing Facility. The interfaces between OSCRS and the Shuttle consists of an avionics interface for command and control and a structural interface for launch support and for grappling with the Shuttle Remote Manipulator System. For use of the OSCRS at the Space Station, three configurations were evaluated using the results of the interface definition to increase the efficiency of OSCRS and to decrease the launch weight by Station-basing specific OSCRS subsystems. A modular OSCRS was developed in which the major subsystems were Station-based where possible. The configuration of an OSCRS was defined for transport of water to the Space Station.

  5. Generalized sediment budgets of the Lower Missouri River, 1968–2014

    USGS Publications Warehouse

    Heimann, David C.

    2016-09-13

    Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and determine a suspended-sediment budget for selected annual, monthly, and daily time increments. The temporal changes in the cumulative annual budget residuals were poorly correlated with the comparatively steady 1968–2011 annual stage trends at the Missouri River at Nebraska City, Nebr., station. An accurate total sediment budget is developed by having concurrent data available for all primary suspended and bedload components for a reach of interest throughout a period. Such a complete budget, with concurrent record for suspended-sediment load and bedload components, is unavailable for any reach and period in the Lower Missouri River. The primary data gaps are in bedload data, and also in suspended-sediment gains and losses including ungaged tributary inputs and sediment storage. Bedload data gaps in the Missouri River Basin are much more prevalent than suspended-sediment data gaps, and the first step in the development of reach bedload budgets is the establishment of a standardized bedload monitoring program at main-stem stations.The temporal changes in flow-adjusted suspended-sediment concentrations analyzed at main-stem Missouri River stations indicated an overall downward change in concentrations between 1968 and 2014. Temporary declines in flow-adjusted suspended-sediment concentrations during and following large floods were evident but generally returned to near pre-flood values within about 6 months.Data uncertainties associated with the development of a sediment budget include uncertainties associated with the collection of suspended-sediment and bedload data and the computation of suspended-sediment loads. These uncertainties vary depending on the frequency of data collection, the variability of conditions being represented by the discrete samples, and the statistical approach to suspended-sediment load computations. The coefficients of variation of suspended-sediment loads of Missouri River tributary stations for 1968–2014 were greater, 75.0 percent, than the main-stem stations, 47.1 percent. The lower coefficient of variation at main-stem stations compared to tributaries, primarily is the result of the lower variability in streamflow and sediment discharge identified at main-stem stations. To obtain similar accuracy between suspended-sediment loads at main-stem and tributary stations, a longer period of record is required of the tributary stations. During 1968–2014, however, the Missouri River main-stem station record was much more complete (87 percent) than the tributary station record (28 percent).

  6. Space station operations task force. Panel 4 report: Management integration

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Management Integration Panel of the Space Station Operations Task Force was chartered to provide a structure and ground rules for integrating the efforts of the other three panels and to address a number of cross cutting issues that affect all areas of space station operations. Issues addressed include operations concept implementation, alternatives development and integration process, strategic policy issues and options, and program management emphasis areas.

  7. USSR Report Earth Sciences.

    DTIC Science & Technology

    1987-05-22

    Autonomous Digital Recording Tiltmeter Station (V. M. Ivshin, V. S. Kuznetsov, et al.; VULKANOLOGIYA I SEYSMOLOGIYA, No 6, Nov-Dec 86) 83 Influence of...2 Western. 6508/12955 CS0: 1865/303 UDC 550.34.038.8:528.087.4 AUTONOMOUS DIGITAL RECORDING TILTMETER STATION Moscow VULKANOLOGIYA I...point in the Kamchatka region, an autonomous tiltmeter station has been developed on the basis of the TM-1V tiltmeter . Measured data are registered

  8. Design knowledge capture for the space station

    NASA Technical Reports Server (NTRS)

    Crouse, K. R.; Wechsler, D. B.

    1987-01-01

    The benefits of design knowledge availability are identifiable and pervasive. The implementation of design knowledge capture and storage using current technology increases the probability for success, while providing for a degree of access compatibility with future applications. The space station design definition should be expanded to include design knowledge. Design knowledge should be captured. A critical timing relationship exists between the space station development program, and the implementation of this project.

  9. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  10. 77 FR 2128 - Southwest Pennsylvania Railroad Company-Acquisition Exemption-Laurel Hill Development Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... Valuation Station 4+06.3 in Greene Junction and Rail Valuation Station 1148+43.8 in Smithfield, as shown generally on Valuation Maps V.69.1/S-43a, V.69.11/1 to 6, and V.82.1/1 to 6, in Fayette County, Pa.; (b) 3.28 miles of rail line extending between Rail Valuation Station 1+30 in Broadford and Rail Valuation...

  11. Space Station galley design

    NASA Technical Reports Server (NTRS)

    Trabanino, Rudy; Murphy, George L.; Yakut, M. M.

    1986-01-01

    An Advanced Food Hardware System galley for the initial operating capability (IOC) Space Station is discussed. Space Station will employ food hardware items that have never been flown in space, such as a dishwasher, microwave oven, blender/mixer, bulk food and beverage dispensers, automated food inventory management, a trash compactor, and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades, design, development, and testing associated with each are summarized.

  12. Rural Radio in Bolivia: A Case Study.

    ERIC Educational Resources Information Center

    Gwyn, Robert J.

    1983-01-01

    Examines the programing and audiences of two small rural commercial radio stations in the Jordan and Punata provinces. Shows how these stations have interacted with the local culture and how they offer significant potential for development. (PD)

  13. Space station needs, attributes and architectural options: Midterm main briefing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Space station missions, their requirements, and architectural solutions are presented. Analyses of the following five mission categories are summarized: (1) science/applications, (2) commercial, (3) national security, (4) operational support, and (5) technology development.

  14. Modelling of the Installed Capacity of Landfill Power Stations

    NASA Astrophysics Data System (ADS)

    Blumberga, D.; Kuplais, Ģ.; Veidenbergs, I.; Dāce, E.; Gušča, J.

    2009-01-01

    More and more landfills are being developed, in which biogas is produced and accumulated, which can be used for electricity production. Currently, due to technological reasons, electricity generation from biogas has a very low level of efficiency. In order to develop this type of energy production, it is important to find answers to various engineering, economic and ecological issues. The paper outlines the results obtained by creating a model for the calculations of electricity production in landfill power stations and by testing it in the municipal solid waste landfill "Daibe". The algorithm of the mathematical model for the operation of a biogas power station consists of four main modules: • initial data module, • engineering calculation module, • tariff calculation module, and • climate calculation module. As a result, the optimum capacity of the power station in the landfill "Daibe" is determined, as well as the analysis of the landfill's economic data and cost-effectiveness is conducted.

  15. Development of an Environmental Monitoring Package for the International Space Station

    NASA Technical Reports Server (NTRS)

    Carruth, Ralph M., Jr.; Clifton, Kenneth S.; Vanhooser, Michael T.

    1999-01-01

    The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments and provide data and power from ISS. From the beginning of the space station program it has been recognized that external experiments will require knowledge of the external environment because it can affect the science being performed and may impact lifetime and operations of the experiments. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP) was started. This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.

  16. Space Station

    NASA Image and Video Library

    1986-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts a configuration with enhanced capabilities. It builds on the horizontal boom and module pattern of the revised baseline. This configuration would feature dual keels, two vertical spines 105-meters long joined by upper and lower booms. The structure carrying the modules would become a transverse boom of a basically rectangular structure. The two new booms, 45-meters in length, would provide extensive accommodations for attached payloads, and would offer a wide field of view. Power would be increased significantly, with the addition if a 50-kW solar dynamic power system.

  17. SDTM - SYSTEM DESIGN TRADEOFF MODEL FOR SPACE STATION FREEDOM RELEASE 1.1

    NASA Technical Reports Server (NTRS)

    Chamberlin, R. G.

    1994-01-01

    Although extensive knowledge of space station design exists, the information is widely dispersed. The Space Station Freedom Program (SSFP) needs policies and procedures that ensure the use of consistent design objectives throughout its organizational hierarchy. The System Design Tradeoff Model (SDTM) produces information that can be used for this purpose. SDTM is a mathematical model of a set of possible designs for Space Station Freedom. Using the SDTM program, one can find the particular design which provides specified amounts of resources to Freedom's users at the lowest total (or life cycle) cost. One can also compare alternative design concepts by changing the set of possible designs, while holding the specified user services constant, and then comparing costs. Finally, both costs and user services can be varied simultaneously when comparing different designs. SDTM selects its solution from a set of feasible designs. Feasibility constraints include safety considerations, minimum levels of resources required for station users, budget allocation requirements, time limitations, and Congressional mandates. The total, or life cycle, cost includes all of the U.S. costs of the station: design and development, purchase of hardware and software, assembly, and operations throughout its lifetime. The SDTM development team has identified, for a variety of possible space station designs, the subsystems that produce the resources to be modeled. The team has also developed formulas for the cross consumption of resources by other resources, as functions of the amounts of resources produced. SDTM can find the values of station resources, so that subsystem designers can choose new design concepts that further reduce the station's life cycle cost. The fundamental input to SDTM is a set of formulas that describe the subsystems which make up a reference design. Most of the formulas identify how the resources required by each subsystem depend upon the size of the subsystem. Some of the formulas describe how the subsystem costs depend on size. The formulas can be complicated and nonlinear (if nonlinearity is needed to describe how designs change with size). SDTM's outputs are amounts of resources, life-cycle costs, and marginal costs. SDTM will run on IBM PC/XTs, ATs, and 100% compatibles with 640K of RAM and at least 3Mb of fixed-disk storage. A printer which can print in 132-column mode is also required, and a mathematics co-processor chip is highly recommended. This code is written in Turbo C 2.0. However, since the developers used a modified version of the proprietary Vitamin C source code library, the complete source code is not available. The executable is provided, along with all non-proprietary source code. This program was developed in 1989.

  18. The return of "Gasoline station-park" status into green-open space in DKI Jakarta Province

    NASA Astrophysics Data System (ADS)

    Kautsar, L. H. R.; Waryono, T.; Sobirin

    2017-07-01

    The development of gasoline stations in 1970 increased drastically due to the Government support through DKT Jaya Official Note (DKT Jakarta), resulting in a great number of the parks (green open space or RTH - Ruang Terbuka Hijau) converted into a gasoline station. Currently, to meet the RTH target (13.94 % RTH based RTRW [(Rencana Tata Ruang Wilayah) DKT Jakarta 2010], the policy was changed by Decree No.728 year 2009 and Governor Tnstruction No.75 year 2009. Land function of 27 gasoline stations unit must be returned. This study is to determine the appropriateness of gasoline Station-Park conversion into RTH based site and situation approach. The scope of this study was limited only to gasoline stations not converted into RTH. The methodology was the combination of AHP (Analytical Hierarchy Process) and ranking method. Site variables were meant for prone to flooding, the width of land for gasoline station, land status. Situation variables were meant for other public space, availability of other gasoline stations, gasoline stations service, road segments, and the proportions of built space. Analysis study used quantitative descriptive analysis. The results were three of the five gasoline stations were congruence to be converted into a green open space (RTH).

  19. Lunar Station: The Next Logical Step in Space Development

    NASA Technical Reports Server (NTRS)

    Pittman, Robert Bruce; Harper, Lynn; Newfield, Mark; Rasky, Daniel J.

    2014-01-01

    The International Space Station (ISS) is the product of the efforts of sixteen nations over the course of several decades. It is now complete, operational, and has been continuously occupied since November of 20001. Since then the ISS has been carrying out a wide variety of research and technology development experiments, and starting to produce some pleasantly startling results. The ISS has a mass of 420 metric tons, supports a crew of six with a yearly resupply requirement of around 30 metric tons, within a pressurized volume of 916 cubic meters, and a habitable volume of 388 cubic meters. Its solar arrays produce up to 84 kilowatts of power. In the course of developing the ISS, many lessons were learned and much valuable expertise was gained. Where do we go from here? The ISS offers an existence proof of the feasibility of sustained human occupation and operations in space over decades. It also demonstrates the ability of many countries to work collaboratively on a very complex and expensive project in space over an extended period of time to achieve a common goal. By harvesting best practices and lessons learned, the ISS can also serve as a useful model for exploring architectures for beyond low-­- earth-­-orbit (LEO) space development. This paper will explore the concept and feasibility for a Lunar Station. The Station concept can be implemented by either putting the equivalent capability of the ISS down on the surface of the Moon, or by developing the required capabilities through a combination of delivered materials and equipment and in situ resource utilization (ISRU). Scenarios that leverage existing technologies and capabilities as well as capabilities that are under development and are expected to be available within the next 3-­5 years, will be examined. This paper will explore how best practices and expertise gained from developing and operating the ISS and other relevant programs can be applied to effectively developing Lunar Station.

  20. Amateur Radio on the International Space Station - the First Operational Payload on the ISS

    NASA Astrophysics Data System (ADS)

    Bauer, F. H.; McFadin, L.; Steiner, M.; Conley, C. L.

    2002-01-01

    As astronauts and cosmonauts have adapted to life on the International Space Station (ISS), they have found Amateur Radio and its connection to life on Earth to be a constant companion and a substantial psychological boost. Since its first use in November 2000, the first five expedition crews have utilized the amateur radio station in the FGB to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early in the development of ISS, an international organization called ARISS (Amateur Radio on the International Space Station) was formed to coordinate the construction and operation of amateur radio (ham radio) equipment on ISS. ARISS represents a melding of the volunteer teams that have pioneered the development and use of amateur radio equipment on human spaceflight vehicles. The Shuttle/Space Amateur Radio Experiment (SAREX) team enabled Owen Garriott to become the first astronaut ham to use amateur radio from space in 1983. Since then, amateur radio teams in the U.S. (SAREX), Germany, (SAFEX), and Russia (Mirex) have led the development and operation of amateur radio equipment on board NASA's Space Shuttle, Russia's Mir space station, and the International Space Station. The primary goals of the ARISS program are fourfold: 1) educational outreach through crew contacts with schools, 2) random contacts with the Amateur Radio public, 3) scheduled contacts with the astronauts' friends and families and 4) ISS-based communications experimentation. To date, over 65 schools have been selected from around the world for scheduled contacts with the orbiting ISS crew. Ten or more students at each school ask the astronauts questions, and the nature of these contacts embodies the primary goal of the ARISS program, -- to excite student's interest in science, technology and amateur radio. The ARISS team has developed various hardware elements for the ISS amateur radio station. These hardware elements have flown to ISS on three Shuttle flights and one Progress flight. The initial educational outreach system supports voice and packet (computer-to-computer radio link) capabilities. In addition, two Extra Vehicular Activities (EVAs) have been completed to install two antenna systems. These antenna systems were designed to be shared between the amateur radio equipment and a Russian EVA television system. These new antenna systems will ultimately enable a key facet of the amateur radio station to move into the Service Module living quarters, providing a more comfortable station set up for the ISS crew. In the future, ARISS hopes to fly a Slow Scan Television system on board the ISS as well as developing new systems for external mounting on the ISS. This paper will discuss the development, qualification, installation and operation of the ARISS amateur radio system. It will also discuss some of the challenges that the ARISS- international team of volunteers overcame to bring its first phase of equipment on ISS to fruition.

  1. Measurements and modelling of base station power consumption under real traffic loads.

    PubMed

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  2. A Data Management System for International Space Station Simulation Tools

    NASA Technical Reports Server (NTRS)

    Betts, Bradley J.; DelMundo, Rommel; Elcott, Sharif; McIntosh, Dawn; Niehaus, Brian; Papasin, Richard; Mah, Robert W.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Groups associated with the design, operational, and training aspects of the International Space Station make extensive use of modeling and simulation tools. Users of these tools often need to access and manipulate large quantities of data associated with the station, ranging from design documents to wiring diagrams. Retrieving and manipulating this data directly within the simulation and modeling environment can provide substantial benefit to users. An approach for providing these kinds of data management services, including a database schema and class structure, is presented. Implementation details are also provided as a data management system is integrated into the Intelligent Virtual Station, a modeling and simulation tool developed by the NASA Ames Smart Systems Research Laboratory. One use of the Intelligent Virtual Station is generating station-related training procedures in a virtual environment, The data management component allows users to quickly and easily retrieve information related to objects on the station, enhancing their ability to generate accurate procedures. Users can associate new information with objects and have that information stored in a database.

  3. Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads †

    PubMed Central

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient. PMID:22666026

  4. Reevaluation of air surveillance station siting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, K.; Jannik, T.

    2016-07-06

    DOE Technical Standard HDBK-1216-2015 (DOE 2015) recommends evaluating air-monitoring station placement using the analytical method developed by Waite. The technique utilizes wind rose and population distribution data in order to determine a weighting factor for each directional sector surrounding a nuclear facility. Based on the available resources (number of stations) and a scaling factor, this weighting factor is used to determine the number of stations recommended to be placed in each sector considered. An assessment utilizing this method was performed in 2003 to evaluate the effectiveness of the existing SRS air-monitoring program. The resulting recommended distribution of air-monitoring stations wasmore » then compared to that of the existing site perimeter surveillance program. The assessment demonstrated that the distribution of air-monitoring stations at the time generally agreed with the results obtained using the Waite method; however, at the time new stations were established in Barnwell and in Williston in order to meet requirements of DOE guidance document EH-0173T.« less

  5. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1992-01-01

    Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  6. Interdependence of science requirements and safety limitations on the space station

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G.

    1990-01-01

    One of the benefits of experimentation on the Space Station is the ability to carry out the experiment, to immediately analyze the results, to calculate improved experimental parameters, and to quickly repeat the experiment. In this improved mode of operation there are new safety considerations that must be addressed in the design stages of both the station and the experiments. Some of the chemical and procedural requirements are shared, and some of the earth-bound storage, dispensing, and disposal techniques that may assist in the development of analogous procedures for the Space Station are discussed.

  7. Low-flow characteristics of Indiana streams

    USGS Publications Warehouse

    Stewart, J.A.

    1983-01-01

    Knowledge of low-flow data for Indiana streams is essential to the planners and developers of water resources for municipal, industrial, and recreational uses in the State. Low-flow data for 219 continuous-record gaging stations through the 1978 water year and for some stations since then are presented in tables and curves. Flow-duration and low-flow-frequency data were estimated or determined for continuous-record stations having more than 10 years of record. In addition, low-flow-frequency data were estimated for 248 partial-record stations. Methods for estimating these data are included in the report. (USGS)

  8. Space station needs, attributes, and architectural options: Space station program cost analysis

    NASA Technical Reports Server (NTRS)

    Cowls, R. S.; Goodwin, A. J.

    1983-01-01

    This report documents the principal cost results (Task 3) derived from the Space Station Needs, Attributes, and Architectural Options study conducted for NASA by the McDonnell Douglas Astronautics Company. The determined costs were those of Architectural Options (Task 2) defined to satisfy Mission Requirements (Task 1) developed within the study. A major feature of this part of the study was the consideration of realistic NASA budget constraints on the recommended architecture. Thus, the space station funding requirements were adjusted by altering schedules until they were consistent with current NASA budget trends.

  9. Vapor Compression Distillation Flight Experiment

    NASA Technical Reports Server (NTRS)

    Hutchens, Cindy F.

    2002-01-01

    One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.

  10. Measurement instruments for automatically monitoring the water chemistry of reactor coolant at nuclear power stations equipped with VVER reactors. Selection of measurement instruments and experience gained from their operation at Russian and foreign NPSs

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. A.

    2007-12-01

    An analytical review is given of Russian and foreign measurement instruments employed in a system for automatically monitoring the water chemistry of the reactor coolant circuit and used in the development of projects of nuclear power stations equipped with VVER-1000 reactors and the nuclear station project AES 2006. The results of experience gained from the use of such measurement instruments at nuclear power stations operating in Russia and abroad are presented.

  11. Beyond the Baseline 1991: Proceedings of the Space Station Evolution Symposium. Volume 2: Space Station Freedom, part 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Individual presentations delivered at the Space Station Evolution Symposium in League City, Texas, on August 6, 7, and 8, 1991 are given in viewgraph form. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom Program reported on the results of their work to date. Special attention is given to highlighting changes made during restructuring; a description of the growth paths through the follow-on and evolution stages; identification of the minimum impact provisions to allow flexibility in the baseline; and identification of enhancing and enabling technologies.

  12. The determination of the most applicable PWV model for Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ilke; Gurbuz, Gokhan; Mekik, Cetin

    2016-07-01

    Water vapor is a key component for modelling atmosphere and climate studies. Moreover, long-term water vapor changes can be an independent source for detecting climate changes. Since Global Navigation Satellite Systems (GNSS) use microwaves passing through the atmosphere, atmospheric effects are modeled with high accuracy. Tropospheric effects on GNSS signals are estimated with total zenith delay parameter (ZTD) which is the sum of hydrostatic (ZHD) and wet zenith delay (ZWD). The first component can be obtained from meteorological observations with high accuracy; the second component, however, can be computed by subtracting ZHD from ZTD (ZWD=ZTD-ZHD). Afterwards, the weighted mean temperature (Tm) or the conversion factor (Q) is used for the conversion between the precipitable water vapor (PWV) and ZWD. The parameters Tm and Q are derived from the analysis of radiosonde stations' profile observations. Numerous Q and Tm models have been developed for each radiosonde station, radiosonde station group, countries and global fields such as Bevis Tm model and Emardson and Derks' Q models. So, PWV models (Tm and Q models) applied for Turkey have been developed using a year of radiosonde data (2011) from 8 radiosonde stations. In this study the models developed are tested by comparing PWVGNSS computed applying Tm and Q models to the ZTD estimates derived by Bernese and GAMIT/GLOBK software at GNSS stations established at Istanbul and Ankara with those from the collocated radiosonde stations (PWVRS) from October 2013 to December 2014 with the data obtained from a project (no 112Y350) supported by the Scientific and Technological Research Council of Turkey (TUBITAK). The comparison results show that PWVGNSS and PWVRS are in high correlation (86 % for Ankara and 90% for Istanbul). Thus, the most applicable model for Turkey and the accuracy of GNSS meteorology are investigated. In addition, Tm model was applied to the ZTD estimates of 20 TUSAGA-Active (CORS-TR) stations in the 38.0°-42.0° northern latitudes and 28.0°-34.0° eastern longitudes of Turkey and PWV were computed. ZTD estimates of these stations were computed using Bernese GNSS Software v5.0 during the period from June 2013 to June 2014. Preceding the PWV estimation, meteorological parameters for these stations (temperature, pressure and humidity) are derived by applying spherical harmonics modelling and interpolation to the above-mentioned meteorological parameters measured by meteorological stations surrounding TUSAGA-Active stations. Results of spherical harmonics modelling and interpolation yield the precision of ±1.74 K in temperature, ±0.95 hPa in pressure and ±14.88 % in humidity. Also, the PWV of TUSAGA-Active stations selected were estimated.

  13. Micro-CT at the imaging beamline P05 at PETRA III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilde, Fabian, E-mail: fabian.wilde@hzg.de; Ogurreck, Malte; Greving, Imke

    2016-07-27

    The Imaging Beamline (IBL) P05 is operated by the Helmholtz-Zentrum Geesthacht and located at the DESY storage ring PETRA III. IBL is dedicated to X-ray full field imaging and consists of two experimental end stations. A micro tomography end station equipped for spatial resolutions down to 1 µm and a nano tomography end station for spatial resolutions down to 100 nm. The micro tomography end station is in user operation since 2013 and offers imaging with absorption contrast, phase enhanced absorption contrast and phase contrast methods. We report here on the current status and developments of the micro tomography endmore » station including technical descriptions and show examples of research performed at P05.« less

  14. Energy-Saving Optimization of Water Supply Pumping Station Life Cycle Based on BIM Technology

    NASA Astrophysics Data System (ADS)

    Qun, Miao; Wang, Jiayuan; Liu, Chao

    2017-12-01

    In the urban water supply system, pump station is the main unit of energy consumption. In the background of pushing forward the informatization in China, using BIM technology in design, construction and operations of water supply pumping station, can break through the limitations of the traditional model and effectively achieve the goal of energy conservation and emissions reduction. This work researches the way to solve energy-saving optimization problems in the process of whole life cycle of water supply pumping station based on BIM technology, and put forward the feasible strategies of BIM application in order to realize the healthy and sustainable development goals by establishing the BIM model of water supply pumping station of Qingdao Guzhenkou water supply project.

  15. Space station automation: the role of robotics and artificial intelligence (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Park, W. T.; Firschein, O.

    1985-12-01

    Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.

  16. Space station thermal control surfaces. Volume 1: Interim report

    NASA Technical Reports Server (NTRS)

    Maag, C. R.; Millard, J. M.

    1978-01-01

    The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.

  17. Implementation of weather stations at Ghanaian high schools

    NASA Astrophysics Data System (ADS)

    Pieron, M.

    2012-04-01

    The Trans-African Hydro-Meteorological Observatory (www.tahmo.org) is an initiative that aims to develop a dense weather observation network in Sub-Sahara Africa. The ambition is to have 20.000 low-cost innovative weather stations in place in 2015. An increased amount of weather data is locally required to provide stakeholders that are dependent on the weather, such as farmers and fishermen, with accurate forecasts. As a first proof of concept, showing that sensors can be built at costs lower than commercially available, a disdrometer was developed. In parallel with the design of the measurement instruments, a high school curriculum is developed that covers environmental sciences. In order to find out which requirements the TAHMO weather station and accompanying educational materials should meet for optimal use at Junior High Schools research was done at Ghanaian schools. Useful insights regarding the future African context of the weather station and requirements for an implementation strategy were obtained during workshops with teachers and students, visits to WMO observatories and case studies regarding use of educational materials. The poster presents the conclusions of this research, which is part of the bigger TAHMO framework.

  18. Regression equations for estimating flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year recurrence intervals in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2004-01-01

    Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.

  19. The Princess Elisabeth Station

    NASA Technical Reports Server (NTRS)

    Berte, Johan

    2012-01-01

    Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.

  20. An overview of the program to place advanced automation and robotics on the Space Station

    NASA Technical Reports Server (NTRS)

    Heydorn, Richard P.

    1987-01-01

    The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.

  1. A general-purpose development environment for intelligent computer-aided training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.

    1990-01-01

    Space station training will be a major task, requiring the creation of large numbers of simulation-based training systems for crew, flight controllers, and ground-based support personnel. Given the long duration of space station missions and the large number of activities supported by the space station, the extension of space shuttle training methods to space station training may prove to be impractical. The application of artificial intelligence technology to simulation training can provide the ability to deliver individualized training to large numbers of personnel in a distributed workstation environment. The principal objective of this project is the creation of a software development environment which can be used to build intelligent training systems for procedural tasks associated with the operation of the space station. Current NASA Johnson Space Center projects and joint projects with other NASA operational centers will result in specific training systems for existing space shuttle crew, ground support personnel, and flight controller tasks. Concurrently with the creation of these systems, a general-purpose development environment for intelligent computer-aided training systems will be built. Such an environment would permit the rapid production, delivery, and evolution of training systems for space station crew, flight controllers, and other support personnel. The widespread use of such systems will serve to preserve task and training expertise, support the training of many personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences. As a result, significant reductions in training costs can be realized while safety and the probability of mission success can be enhanced.

  2. A stochastic flow-capturing model to optimize the location of fast-charging stations with uncertain electric vehicle flows

    DOE PAGES

    Wu, Fei; Sioshansi, Ramteen

    2017-05-04

    Here, we develop a model to optimize the location of public fast charging stations for electric vehicles (EVs). A difficulty in planning the placement of charging stations is uncertainty in where EV charging demands appear. For this reason, we use a stochastic flow-capturing location model (SFCLM). A sample-average approximation method and an averaged two-replication procedure are used to solve the problem and estimate the solution quality. We demonstrate the use of the SFCLM using a Central-Ohio based case study. We find that most of the stations built are concentrated around the urban core of the region. As the number ofmore » stations built increases, some appear on the outskirts of the region to provide an extended charging network. We find that the sets of optimal charging station locations as a function of the number of stations built are approximately nested. We demonstrate the benefits of the charging-station network in terms of how many EVs are able to complete their daily trips by charging midday—six public charging stations allow at least 60% of EVs that would otherwise not be able to complete their daily tours without the stations to do so. We finally compare the SFCLM to a deterministic model, in which EV flows are set equal to their expected values. We show that if a limited number of charging stations are to be built, the SFCLM outperforms the deterministic model. As the number of stations to be built increases, the SFCLM and deterministic model select very similar station locations.« less

  3. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2015-01-01

    The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

  4. Kennedy Space Center Launch and Landing Support

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer

    2010-01-01

    The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.

  5. Development and applications of nondestructive evaluation at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.

    1990-01-01

    A brief description of facility design and equipment, facility usage, and typical investigations are presented for the following: Surface Inspection Facility; Advanced Computer Tomography Inspection Station (ACTIS); NDE Data Evaluation Facility; Thermographic Test Development Facility; Radiographic Test Facility; Realtime Radiographic Test Facility; Eddy Current Research Facility; Acoustic Emission Monitoring System; Advanced Ultrasonic Test Station (AUTS); Ultrasonic Test Facility; and Computer Controlled Scanning (CONSCAN) System.

  6. Lab-on-a-Chip Application Development-Portable Test System (LOCAD) Phase 2

    NASA Image and Video Library

    2009-03-21

    ISS018-E-041370 (21 March 2009) --- Astronaut Sandra Magnus, STS-119 mission specialist, prepares to work with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory while Space Shuttle Discovery remains docked with the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  7. Network operating system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Long-term and short-term objectives for the development of a network operating system for the Space Station are stated. The short-term objective is to develop a prototype network operating system for a 100 megabit/second fiber optic data bus. The long-term objective is to establish guidelines for writing a detailed specification for a Space Station network operating system. Major milestones are noted. Information is given in outline form.

  8. Overview of Space Station attached payloads in the areas of solar physics, solar terrestrial physics, and plasma processes

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.; Kropp, J.; Taylor, W. W. L.

    1986-01-01

    This paper outlines the currently planned utilization of the Space Station to perform investigations in solar physics, solar terrestrial physics, and plasma physics. The investigations and instrumentation planned for the Solar Terrestrial Observatory (STO) and its associated Space Station accommodation requirements are discussed as well as the planned placement of the STO instruments and typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the Space Station are outlined. These preliminary experiment concepts use the space environment around the Space Station as an unconfined plasma laboratory. In solar physics, the initial instrument complement and associated accommodation requirements of the Advanced Solar Observatory are described. The planned evolutionary development of this observatory is outlined, making use of the Space Station capabilities for servicing and instrument reconfiguration.

  9. An evaluation of oxygen-hydrogen propulsion systems for the Space Station

    NASA Technical Reports Server (NTRS)

    Klemetson, R. W.; Garrison, P. W.; Hannum, N. P.

    1985-01-01

    Conceptual designs for O2/H2 chemical and resistojet propulsion systems for the space station was developed and evaluated. The evolution of propulsion requirements was considered as the space station configuration and its utilization as a space transportation node change over the first decade of operation. The characteristics of candidate O2/H2 auxiliary propulsion systems are determined, and opportunities for integration with the OTV tank farm and the space station life support, power and thermal control subsystems are investigated. OTV tank farm boiloff can provide a major portion of the growth station impulse requirements and CO2 from the life support system can be a significant propellant resource, provided it is not denied by closure of that subsystem. Waste heat from the thermal control system is sufficient for many propellant conditioning requirements. It is concluded that the optimum level of subsystem integration must be based on higher level space station studies.

  10. Water resources data for Oregon, water year 2004

    USGS Publications Warehouse

    Herrett, Thomas A.; Hess, Glenn W.; House, Jon G.; Ruppert, Gregory P.; Courts, Mary-Lorraine

    2005-01-01

    The annual Oregon water data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, Tribal, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. This report contains water year 2004 data for both surface and ground water, including discharge records for 209 streamflow-gaging stations, 42 partial-record or miscellaneous streamflow stations, and 9 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 15 lakes and reservoirs; water-level records from 12 long-term observation wells; and water-quality records collected at 133 streamflow-gaging stations and 1 atmospheric deposition station.

  11. Water Resources Data for Oregon, Water Year 2002

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2003-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in the State and contains discharge records for 181 stream-gaging stations, 47 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records for 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  12. Water Resources Data for Oregon, Water Year 2003

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2004-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in Oregon and contains discharge records for 199 stream-gaging stations, 25 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records collected at 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  13. A hitchhiker's guide to an ISS experiment in under 9 months.

    PubMed

    Nadir, Andrei James; Sato, Kevin

    2017-01-01

    The International Space Station National Laboratory gives students a platform to conduct space-flight science experiments. To successfully take advantage of this opportunity, students and their mentors must have an understanding of how to develop and then conduct a science project on international space station within a school year. Many factors influence the speed in which a project progresses. The first step is to develop a science plan, including defining a hypothesis, developing science objectives, and defining a concept of operation for conducting the flight experiment. The next step is to translate the plan into well-defined requirements for payload development. The last step is a rapid development process. Included in this step is identifying problems early and negotiating appropriate trade-offs between science and implementation complexity. Organizing the team and keeping players motivated is an equally important task, as is employing the right mentors. The project team must understand the flight experiment infrastructure, which includes the international space station environment, payload resource requirements and available components, fail-safe operations, system logs, and payload data. Without this understanding, project development can be impacted, resulting in schedule delays, added costs, undiagnosed problems, and data misinterpretation. The information and processes for conducting low-cost, rapidly developed student-based international space station experiments are presented, including insight into the system operations, the development environment, effective team organization, and data analysis. The details are based on the Valley Christian Schools (VCS, San Jose, CA) fluidic density experiment and penicillin experiment, which were developed by 13- and 14-year-old students and flown on ISS.

  14. Oak Ridge Spallation Neutron Source (ORSNS) target station design integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamy, T.; Booth, R.; Cleaves, J.

    1996-06-01

    The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improvedmore » as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.« less

  15. An overview of European space transportation systems

    NASA Technical Reports Server (NTRS)

    Lo, R. E.

    1985-01-01

    With the completion of the launch rocket series Ariane 1 to 4, Europe will have reached the same capacity to transport commercial payloads as the USA has with the Space Shuttle and the kick stages which are presently operative. The near term development of these capacities would require Europe to develop a larger launch rocket, Araine 5. Further motivations for this rocket are access to manned spaceflight, the development of an European space station, and the demand for shuttle technology. Shuttle technology is the subject of research being done in France on the winged re-entry vehicle Hermes. Operation of the European space station Columbus will require development of an interorbital transport system to facilitate traffic between the various segments of the space station. All European space transportation systems will have to match their quality to that of the other countries involve in space flight. All areas of development are marked not only by possible cooperation but also by increased competition because of increasing commercialization of space flight.

  16. Development and Certification of Station Development Test Objective (SDTO) Experiment # 15012-U, "Near RealTime Water Quality Monitoring Demonstration for ISS Biocides Using Colorimetric Solid Phase Extraction (CSPE)"

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin

    2009-01-01

    Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.

  17. Development, Demonstration, and Control of a Testbed for Multiterminal HVDC System

    DOE PAGES

    Li, Yalong; Shi, Xiaojie M.; Liu, Bo; ...

    2016-10-21

    This paper presents the development of a scaled four-terminal high-voltage direct current (HVDC) testbed, including hardware structure, communication architecture, and different control schemes. The developed testbed is capable of emulating typical operation scenarios including system start-up, power variation, line contingency, and converter station failure. Some unique scenarios are also developed and demonstrated, such as online control mode transition and station re-commission. In particular, a dc line current control is proposed, through the regulation of a converter station at one terminal. By controlling a dc line current to zero, the transmission line can be opened by using relatively low-cost HVDC disconnectsmore » with low current interrupting capability, instead of the more expensive dc circuit breaker. Utilizing the dc line current control, an automatic line current limiting scheme is developed. As a result, when a dc line is overloaded, the line current control will be automatically activated to regulate current within the allowable maximum value.« less

  18. The Sustainable Development Assessment of Reservoir Resettlement Based on a BP Neural Network.

    PubMed

    Huang, Li; Huang, Jian; Wang, Wei

    2018-01-18

    Resettlement affects not only the resettlers' production activities and life but also, directly or indirectly, the normal operation of power stations, the sustainable development of the resettlers, and regional social stability. Therefore, a scientific evaluation index system for the sustainable development of reservoir resettlement must be established that fits Chinese national conditions and not only promotes reservoir resettlement research but also improves resettlement practice. This essay builds an evaluation index system for resettlers' sustainable development based on a back-propagation (BP) neural network, which can be adopted in China, taking the resettlement necessitated by step hydropower stations along the Wujiang River cascade as an example. The assessment results show that the resettlement caused by step power stations along the Wujiang River is sustainable, and this evaluation supports the conclusion that national policies and regulations, which are undergoing constant improvement, and resettlement has increasingly improved. The results provide a reference for hydropower reservoir resettlement in developing countries.

  19. The Sustainable Development Assessment of Reservoir Resettlement Based on a BP Neural Network

    PubMed Central

    Huang, Li; Huang, Jian

    2018-01-01

    Resettlement affects not only the resettlers’ production activities and life but also, directly or indirectly, the normal operation of power stations, the sustainable development of the resettlers, and regional social stability. Therefore, a scientific evaluation index system for the sustainable development of reservoir resettlement must be established that fits Chinese national conditions and not only promotes reservoir resettlement research but also improves resettlement practice. This essay builds an evaluation index system for resettlers’ sustainable development based on a back-propagation (BP) neural network, which can be adopted in China, taking the resettlement necessitated by step hydropower stations along the Wujiang River cascade as an example. The assessment results show that the resettlement caused by step power stations along the Wujiang River is sustainable, and this evaluation supports the conclusion that national policies and regulations, which are undergoing constant improvement, and resettlement has increasingly improved. The results provide a reference for hydropower reservoir resettlement in developing countries. PMID:29346305

  20. Vibration isolation technology - An executive summary of systems development and demonstration. [for proposed microgravity experiments aboard STS and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

Top