Experiment module concepts study. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1970-01-01
The minimum number of standardized (common) module concepts that will satisfy the experiment program for manned space stations at least cost is investigated. The module interfaces with other elements such as the space shuttle, ground stations, and the experiments themselves are defined. The total experiment module program resource and test requirements are also considered. The minimum number of common module concepts that will satisfy the program at least cost is found to be three, plus a propulsion slice and certain experiment-peculiar integration hardware. The experiment modules rely on the space station for operational, maintenance, and logistic support. They are compatible with both expendable and shuttle launch vehicles, and with servicing by shuttle, tug, or directly from the space station. A total experiment module program cost of approximately $2319M under the study assumptions is indicated. This total is made up of $838M for experiment module development and production, $806M for experiment equipment, and $675M for interface hardware, experiment integration, launch and flight operations, and program management and support.
A home away from home. [life support system design for Space Station
NASA Technical Reports Server (NTRS)
Powell, L. E.; Hager, R. W.; Mccown, J. W.
1985-01-01
The role of the NASA-Marshall center in the development of the Space Station is discussed. The tasks of the center include the development of the life-support system; the design of the common module, which will form the basis for all pressurized Space Station modules; the design and outfit of a common module for the Material and Technology Laboratory (MTL) and logistics use; accommodations for operations of the Orbit Maneuvering Vehicle (OMV) and the Orbit Transfer Vehicle (OTV); and the Space Station propulsion system. A description of functions and design is given for each system, with particular emphasis on the goals of safety, efficiency, automation, and cost effectiveness.
Experiment module concepts study. Volume 3: Module and subsystem design
NASA Technical Reports Server (NTRS)
Hunter, J. R.; Chiarappa, D. J.
1970-01-01
The final common module set exhibiting wide commonality is described. The set consists of three types of modules: one free flying module and two modules that operate attached to the space station. The common module designs provide for the experiment program as defined. The feasibility, economy, and practicality of these modules hinges on factors that do not affect the approach or results of the commonality process, but are important to the validity of the common module concepts. Implementation of the total experiment program requires thirteen common modules: five CM-1, five CM-3, and three CM-4 modules.
Status of the Space Station environmental control and life support system design concept
NASA Technical Reports Server (NTRS)
Ray, C. D.; Humphries, W. R.
1986-01-01
The current status of the Space Station (SS) environmental control and life support system (ECLSS) design is outlined. The concept has been defined at the subsystem level. Data supporting these definitions are provided which identify general configuratioons for all modules. Requirements, guidelines and assumptions used in generating these configurations are detailed. The basic 2 US module 'core' Space Station is addressed along with system synergism issues and early man-tended and future growth considerations. Along with these basic studies, also addressed here are options related to variation in the 'core' module makeup and more austere Station concepts such as commonality, automation and design to cost.
Space Station Freedom - Status of the U.S. segment
NASA Technical Reports Server (NTRS)
Bartoe, John David F.
1990-01-01
An overview of the Space Station Freedom program is given. The results of a technical audit of the U.S. program, and the reorganization taking place at NASA HQ are discussed. Some areas resolved in the past year such as the type of power to be delivered to each pressurized module and the definition of common payload interfaces within all modules are reviewed. The utility of the Space Station Freedom is emphasized.
Unity connecting module placed in new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
The Unity connecting module, part of the International Space Station, is placed in a work station in the Space Station Processing Facility (SSPF). As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
33-Foot-Diameter Space Station Leading to Space Base
NASA Technical Reports Server (NTRS)
1969-01-01
This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
1969-01-01
This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
Modular space station phase B extension integrated ground operations
NASA Technical Reports Server (NTRS)
Selegue, D. F.
1971-01-01
Requirements for development test, manufacturing, facilities, GSE, training, logistics support, and launch operations are described. The prime integrating requirement is the early establishment of a common data base and its use throughout the design, development, and operational life of the station. The common data base is defined, and the concept of its use is presented. Development requirements for the station modules and subsystems are outlined along with a master development phasing chart.
NASA Astrophysics Data System (ADS)
Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.
2006-05-01
Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.
1970-01-01
This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
Space station common module power system network topology and hardware development
NASA Technical Reports Server (NTRS)
Landis, D. M.
1985-01-01
Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.
Space station structures development
NASA Technical Reports Server (NTRS)
Teller, V. B.
1986-01-01
A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.
NASA Technical Reports Server (NTRS)
1970-01-01
This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
Unity connecting module before being moved to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, sits on a workstand before its move to a new location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, the Unity connecting module, part of the International Space Station, is shown with Pressurized Mating Adapters 1 (left) and 2 (right) attached. Unity is scheduled to undergo testing of the common berthing mechanism to which other space station elements will dock. Unity is the primary payload on mission STS-88, targeted to launch Dec. 3, 1998. Other testing includes the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity connecting module moving to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF), workers guide the suspended Unity connecting module, part of the International Space Station, as they move it to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module lifted from workstand before move to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility (SSPF) oversee the lifting of the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module moving to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF) the Unity connecting module, part of the International Space Station, hangs suspended during its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module prepared for move to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility (SSPF) attach a frame to lift the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
1970-01-01
As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed the use of a Nuclear Shuttle in conjunction with a space station module, illustrated in this 1970 artist's concept, as the basis for a Mars excursion module.
Operability of Space Station Freedom's meteoroid/debris protection system
NASA Technical Reports Server (NTRS)
Kahl, Maggie S.; Stokes, Jack W.
1992-01-01
The design of Space Station Freedom's external structure must not only protect the spacecraft from the hazardous environment, but also must be compatible with the extra vehicular activity system for assembly and maintenance. The external procedures for module support are utility connections, external orbital replaceable unit changeout, and maintenance of the meteoroid/debris shields and multilayer insulation. All of these interfaces require proper man-machine engineering to be compatible with the extra vehicular activity and manipulator systems. This paper discusses design solutions, including those provided for human interface, to the Space Station Freedom meteoroid/debris protection system. The system advantages and current access capabilities are illustrated through analysis of its configuration over the Space Station Freedom resource nodes and common modules, with emphasis on the cylindrical sections and endcones.
Unity connecting module lowered to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, is lowered to its new location in the SSPF. In the background, visitors watch through a viewing window, part of the visitors tour at the Center. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Modular space station phase B extension preliminary system design. Volume 7: Ancillary studies
NASA Technical Reports Server (NTRS)
Jones, A. L.
1972-01-01
Sortie mission analysis and reduced payloads size impact studies are presented. In the sortie mission analysis, a modular space station oriented experiment program to be flown by the space shuttle during the period prior to space station IOC is discussed. Experiments are grouped into experiment packages. Mission payloads are derived by grouping experiment packages and by adding support subsystems and structure. The operational and subsystems analyses of these payloads are described. Requirements, concepts, and shuttle interfaces are integrated. The sortie module/station module commonality and a sortie laboratory concept are described. In the payloads size analysis, the effect on the modular space station concept of reduced diameter and reduced length of the shuttle cargo bay is discussed. Design concepts are presented for reduced sizes of 12 by 60 ft, 14 by 40 ft, and 12 by 40 ft. Comparisons of these concepts with the modular station (14 by 60 ft) are made to show the impact of payload size changes.
Experiment module concepts study. Volume 5 book 1, appendix A: Shuttle only task
NASA Technical Reports Server (NTRS)
1970-01-01
Results of a preliminary investigation of the effect on the candidate experiment program implementation of experiment module operations in the absence of an orbiting space station and with the availability of the space shuttle orbiter vehicle only are presented. The fundamental hardware elements for shuttle-only operation of the program are: (1) integrated common experiment modules CM-1, CM-3, and CM-4, together with the propulsion slice; (2) support modules capable of supplying on-orbit crew life support, power, data management, and other services normally provided by a space station; (3) dormancy kits to enable normally attached modules to remain in orbit while shuttle returns to earth; and (4) shuttle orbiter. Preliminary cost estimates for 30 day on-orbit and 5 day on-orbit capabilities for a four year implementation period are $4.2 billion and $2.1 billion, respectively.
Conceptual design of the Space Station combustion module
NASA Technical Reports Server (NTRS)
Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.
1994-01-01
The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.
Conceptual Design of the Space Station Fluids Module
NASA Technical Reports Server (NTRS)
Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.
1994-01-01
The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.
1988-01-01
Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.
1998-11-06
Workers in the Space Station Processing Facility watch as cables and a crane lift the Passive Common Berthing Mechanism (PCBM) before mating it to the Z1 integrated truss structure, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
1998-11-06
Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
1998-11-06
Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility hold part of the equipment to close the hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility close the access hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility make final preparations for closing the access hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Space station automation of common module power management and distribution
NASA Technical Reports Server (NTRS)
Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.
1989-01-01
The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.
1998-11-06
Workers in the Space Station Processing Facility watch the Passive Common Berthing Mechanism (PCBM) lifted high to move it over to the Z1 integrated truss structure at right. It will be mated to the Z1 truss, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
NASA Technical Reports Server (NTRS)
Kephart, Nancy
1992-01-01
The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidifcation conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment, and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace.
Space station automation of common module power management and distribution, volume 2
NASA Technical Reports Server (NTRS)
Ashworth, B.; Riedesel, J.; Myers, C.; Jakstas, L.; Smith, D.
1990-01-01
The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD.
Resiman during Expedition 16/STS-123 EVA 1
2008-03-14
ISS016-E-032705 (13/14 March 2008) --- Astronaut Garrett Reisman, Expedition 16 flight engineer, uses a digital camera to expose a photo of his helmet visor during the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. Also visible in the reflections in the visor are various components of the station, the docked Space Shuttle Endeavour and a blue and white portion of Earth. During the seven-hour and one-minute spacewalk, Reisman and astronaut Rick Linnehan (out of frame), STS-123 mission specialist, prepared the Japanese logistics module-pressurized section (JLP) for removal from Space Shuttle Endeavour's payload bay; opened the Centerline Berthing Camera System on top of the Harmony module; removed the Passive Common Berthing Mechanism and installed both the Orbital Replacement Unit (ORU) tool change out mechanisms on the Canadian-built Dextre robotic system, the final element of the station's Mobile Servicing System.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility prepare the Unity connecting module for closure before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility prepare the hatch of the Unity connecting module for closure before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
High-frequency ac power distribution in Space Station
NASA Technical Reports Server (NTRS)
Tsai, Fu-Sheng; Lee, Fred C. Y.
1990-01-01
A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.
Unity connecting module moving to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF) Unity is suspended in air as it is moved to a now location in the SSPF. At right, visitors watch through a viewing window, part of the visitors tour at the Center. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Modular space station mass properties
NASA Technical Reports Server (NTRS)
1972-01-01
An update of the space station mass properties is presented. Included are the final status update of the Initial Space Station (ISS) modules and logistic module plus incorporation of the Growth Space Station (GSS) module additions.
Energy monitoring and managing for electromobility purposes
NASA Astrophysics Data System (ADS)
Slanina, Zdenek; Docekal, Tomas
2016-09-01
This paper describes smart energy meter design and implementation focused on using in charging stations (stands) for electric vehicle (follows as EV) charging support and possible embedding into current smart building technology. In this article there are included results of research of commercial devices available in Czech republic for energy measuring for buildings as well as analysis of energy meter for given purposes. For example in described module there was required measurement of voltage, electric current and frequency of power network. Finally there was designed a communication module with common interface to energy meter for standard communication support between charging station and electric car. After integration into smart buildings (home automation, parking houses) there are pros and cons of such solution mentioned1,2.
NASA Technical Reports Server (NTRS)
Gill, E. N.
1986-01-01
The requirements are identified for a very high order natural language to be used by crew members on board the Space Station. The hardware facilities, databases, realtime processes, and software support are discussed. The operations and capabilities that will be required in both normal (routine) and abnormal (nonroutine) situations are evaluated. A structure and syntax for an interface (front-end) language to satisfy the above requirements are recommended.
Automated power distribution system hardware. [for space station power supplies
NASA Technical Reports Server (NTRS)
Anderson, Paul M.; Martin, James A.; Thomason, Cindy
1989-01-01
An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
1998-11-06
Still suspended by a crane and cables in the Space Station Processing Facility, yet hidden by the top of the Z1 integrated truss structure, the Passive Common Berthing Mechanism (PCBM) is lowered onto the truss for attachment. Workers at the top of a workstand guide it into place. A component of the International Space Station (ISS), the Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
1995-11-01
This fish-eye view of the Russian Mir Space Station was photographed by a crewmember of the STS-74 mission after the separation. The image shows the installed Docking Module at bottom. The Docking Module was delivered and installed, making it possible for the Space Shuttle to dock easily with Mir. The Orbiter Atlantis delivered water, supplies, and equipment, including two new solar arrays to upgrade the Mir; and returned to Earth with experiment samples, equipment for repair and analysis, and products manufactured on the Station. Mir was constructed in orbit by cornecting different modules, each launched separately from 1986 to 1996, providing a large and livable scientific laboratory in space. The 100-ton Mir was as big as six school buses and commonly housed three crewmembers. Mir was continuously occupied, except for two short periods, and hosted international scientists and American astronauts until August 1999. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as Mir re-entered the Earth's atmosphere and fell into the south Pacific ocean. STS-74 was the second Space Shuttle/Mir docking mission launched on November 12, 1995, and landed at the Kennedy Space Center on November 20, 1995.
NASA Astrophysics Data System (ADS)
1992-05-01
The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).
NASA Technical Reports Server (NTRS)
1992-01-01
The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).
Doppler compensation by shifting transmitted object frequency within limits
NASA Technical Reports Server (NTRS)
Laughlin, C. R., Jr.; Hollenbaugh, R. C.; Allen, W. K. (Inventor)
1973-01-01
A system and method are disclosed for position locating, deriving centralized air traffic control data, and communicating via voice and digital signals between a multiplicity of remote aircraft, including supersonic transports, and a central station. Such communication takes place through a synchronous satellite relay station. Side tone ranging patterns, as well as the digital and voice signals, are modulated on a carrier transmitted from the central station and received on all of the supersonic transports. Each aircraft communicates with the ground stations via a different frequency multiplexed spectrum. Supersonic transport position is derived from a computer at the central station and supplied to a local air traffic controller. Position is determined in response to variable phase information imposed on the side tones at the aircrafts. Common to all of the side tone techniques is Doppler compensation for the supersonic transport velocity.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility work in the doorway of the Unity connecting module preparing it for closure before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity connecting module moving to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF), Unity (top) is suspended in air as it is moved to a new location (bottom left)in the SSPF. To its left is Leonardo, the Italian-built Multi- Purpose Logistics Module to be launched on STS-100. Above Leonardo, visitors watch through a viewing window, part of the visitors tour at the Center. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
NASA Technical Reports Server (NTRS)
Lu, George C.
2003-01-01
The purpose of the EXPRESS (Expedite the PRocessing of Experiments to Space Station) rack project is to provide a set of predefined interfaces for scientific payloads which allow rapid integration into a payload rack on International Space Station (ISS). VxWorks' was selected as the operating system for the rack and payload resource controller, primarily based on the proliferation of VME (Versa Module Eurocard) products. These products provide needed flexibility for future hardware upgrades to meet everchanging science research rack configuration requirements. On the International Space Station, there are multiple science research rack configurations, including: 1) Human Research Facility (HRF); 2) EXPRESS ARIS (Active Rack Isolation System); 3) WORF (Window Observational Research Facility); and 4) HHR (Habitat Holding Rack). The RIC (Rack Interface Controller) connects payloads to the ISS bus architecture for data transfer between the payload and ground control. The RIC is a general purpose embedded computer which supports multiple communication protocols, including fiber optic communication buses, Ethernet buses, EIA-422, Mil-Std-1553 buses, SMPTE (Society Motion Picture Television Engineers)-170M video, and audio interfaces to payloads and the ISS. As a cost saving and software reliability strategy, the Boeing Payload Software Organization developed reusable common software where appropriate. These reusable modules included a set of low-level driver software interfaces to 1553B. RS232, RS422, Ethernet buses, HRDL (High Rate Data Link), video switch functionality, telemetry processing, and executive software hosted on the FUC computer. These drivers formed the basis for software development of the HRF, EXPRESS, EXPRESS ARIS, WORF, and HHR RIC executable modules. The reusable RIC common software has provided extensive benefits, including: 1) Significant reduction in development flow time; 2) Minimal rework and maintenance; 3) Improved reliability; and 4) Overall reduction in software life cycle cost. Due to the limited number of crew hours available on ISS for science research, operational efficiency is a critical customer concern. The current method of upgrading RIC software is a time consuming process; thus, an improved methodology for uploading RIC software is currently under evaluation.
Space Station Module Power Management and Distribution System (SSM/PMAD)
NASA Technical Reports Server (NTRS)
Miller, William (Compiler); Britt, Daniel (Compiler); Elges, Michael (Compiler); Myers, Chris (Compiler)
1994-01-01
This report provides an overview of the Space Station Module Power Management and Distribution (SSM/PMAD) testbed system and describes recent enhancements to that system. Four tasks made up the original contract: (1) common module power management and distribution system automation plan definition; (2) definition of hardware and software elements of automation; (3) design, implementation and delivery of the hardware and software making up the SSM/PMAD system; and (4) definition and development of the host breadboard computer environment. Additions and/or enhancements to the SSM/PMAD test bed that have occurred since July 1990 are reported. These include: (1) rehosting the MAESTRO scheduler; (2) reorganization of the automation software internals; (3) a more robust communications package; (4) the activity editor to the MAESTRO scheduler; (5) rehosting the LPLMS to execute under KNOMAD; implementation of intermediate levels of autonomy; (6) completion of the KNOMAD knowledge management facility; (7) significant improvement of the user interface; (8) soft and incipient fault handling design; (9) intermediate levels of autonomy, and (10) switch maintenance.
Space station group activities habitability module study
NASA Technical Reports Server (NTRS)
Nixon, David
1986-01-01
This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.
2003-07-18
KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
1995-11-01
This image of the Russian Mir Space Station was photographed by a crewmember of the STS-74 mission when the Orbiter Atlantis was approaching the Mir Space Station. STS-74 was the second Space Shuttle/Mir docking mission. The Docking Module was delivered and installed, making it possible for the Space Shuttle to dock easily with Mir. The Orbiter Atlantis delivered water, supplies, and equipment, including two new solar arrays to upgrade the Mir, and returned to Earth with experiment samples, equipment for repair and analysis, and products manufactured on the Station. Mir was constructed in orbit by cornecting different modules, seperately launched from 1986 to 1996, providing a large and livable scientific laboratory in space. The 100-ton Mir was as big as six school buses and commonly housed three crewmembers. Mir was continuously occupied, except for two short periods, and hosted international scientists and American astronauts until August 1999. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as Mir re-entered the Earth's atmosphere and fell into the south Pacific ocean . STS-74 was launched on November 12, 1995, and landed at the Kennedy Space Center on November 20, 1995.
NASA Astrophysics Data System (ADS)
Dricker, I. G.; Friberg, P.; Hellman, S.
2001-12-01
Under the contract with the CTBTO, Instrumental Software Technologies Inc., (ISTI) has designed and developed a Standard Station Interface (SSI) - a set of executable programs and application programming interface libraries for acquisition, authentication, archiving and telemetry of seismic and infrasound data for stations of the CTBTO nuclear monitoring network. SSI (written in C) is fully supported under both the Solaris and Linux operating systems and will be shipped with fully documented source code. SSI consists of several interconnected modules. The Digitizer Interface Module maintains a near-real-time data flow between multiple digitizers and the SSI. The Disk Buffer Module is responsible for local data archival. The Station Key Management Module is a low-level tool for data authentication and verification of incoming signatures. The Data Transmission Module supports packetized near-real-time data transmission from the primary CTBTO stations to the designated Data Center. The AutoDRM module allows transport of seismic and infrasound signed data via electronic mail (auxiliary station mode). The Command Interface Module is used to pass the remote commands to the digitizers and other modules of SSI. A station operator has access to the state-of-health information and waveforms via an the Operator Interface Module. Modular design of SSI will allow painless extension of the software system within and outside the boundaries of CTBTO station requirements. Currently an alpha version of SSI undergoes extensive tests in the lab and onsite.
Unity connecting module in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1998-01-01
Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.
Space station common module network topology and hardware development
NASA Technical Reports Server (NTRS)
Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.
1990-01-01
Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.
Automatic Classification of Station Quality by Image Based Pattern Recognition of Ppsd Plots
NASA Astrophysics Data System (ADS)
Weber, B.; Herrnkind, S.
2017-12-01
The number of seismic stations is growing and it became common practice to share station waveform data in real-time with the main data centers as IRIS, GEOFON, ORFEUS and RESIF. This made analyzing station performance of increasing importance for automatic real-time processing and station selection. The value of a station depends on different factors as quality and quantity of the data, location of the site and general station density in the surrounding area and finally the type of application it can be used for. The approach described by McNamara and Boaz (2006) became standard in the last decade. It incorporates a probability density function (PDF) to display the distribution of seismic power spectral density (PSD). The low noise model (LNM) and high noise model (HNM) introduced by Peterson (1993) are also displayed in the PPSD plots introduced by McNamara and Boaz allowing an estimation of the station quality. Here we describe how we established an automatic station quality classification module using image based pattern recognition on PPSD plots. The plots were split into 4 bands: short-period characteristics (0.1-0.8 s), body wave characteristics (0.8-5 s), microseismic characteristics (5-12 s) and long-period characteristics (12-100 s). The module sqeval connects to a SeedLink server, checks available stations, requests PPSD plots through the Mustang service from IRIS or PQLX/SQLX or from GIS (gempa Image Server), a module to generate different kind of images as trace plots, map plots, helicorder plots or PPSD plots. It compares the image based quality patterns for the different period bands with the retrieved PPSD plot. The quality of a station is divided into 5 classes for each of the 4 bands. Classes A, B, C, D define regular quality between LNM and HNM while the fifth class represents out of order stations with gain problems, missing data etc. Over all period bands about 100 different patterns are required to classify most of the stations available on the IRIS server. The results are written to a file and stations can be filtered by quality. AAAA represents the best quality in all 4 bands. Also a differentiation between instrument types as broad band and short period stations is possible. A regular check using the IRIS SeedLink and Mustang service allow users to be informed about new stations with a specific quality.
Space Station Freedom power supply commonality via modular design
NASA Technical Reports Server (NTRS)
Krauthamer, S.; Gangal, M. D.; Das, R.
1990-01-01
At mature operations, Space Station Freedom will need more than 2000 power supplies to feed housekeeping and user loads. Advanced technology power supplies from 20 to 250 W have been hybridized for terrestrial, aerospace, and industry applications in compact, efficient, reliable, lightweight packages compatible with electromagnetic interference requirements. The use of these hybridized packages as modules, either singly or in parallel, to satisfy the wide range of user power supply needs for all elements of the station is proposed. Proposed characteristics for the power supplies include common mechanical packaging, digital control, self-protection, high efficiency at full and partial loads, synchronization capability to reduce electromagnetic interference, redundancy, and soft-start capability. The inherent reliability is improved compared with conventional discrete component power supplies because the hybrid circuits use high-reliability components such as ceramic capacitors. Reliability is further improved over conventional supplies because the hybrid packages, which may be treated as a single part, reduce the parts count in the power supply.
Weiner, Debra K; Morone, Natalia E; Spallek, Heiko; Karp, Jordan F; Schneider, Michael; Washburn, Carol; Dziabiak, Michael P; Hennon, John G; Elnicki, D Michael
2014-06-01
The Institute of Medicine has highlighted the urgent need to close undergraduate and graduate educational gaps in treating pain. Chronic low back pain (CLBP) is one of the most common pain conditions, and older adults are particularly vulnerable to potential morbidities associated with misinformed treatment. An e-learning case-based interactive module was developed at the University of Pittsburgh Center of Excellence in Pain Education, one of 12 National Institutes of Health-designated centers, to teach students important principles for evaluating and managing CLBP in older adults. A team of six experts in education, information technology, pain management, and geriatrics developed the module. Teaching focused on common errors, interactivity, and expert modeling and feedback. The module mimicked a patient encounter using a standardized patient (the older adult with CLBP) and a pain expert (the patient provider). Twenty-eight medical students were not exposed to the module (Group 1) and 27 were exposed (Group 2). Their clinical skills in evaluating CLBP were assessed using an objective structured clinical examination (OSCE). Mean scores were 62.0 ± 8.6 for Group 1 and 79.5 ± 10.4 for Group 2 (P < .001). Using an OSCE pass-fail cutoff score of 60%, 17 of 28 Group 1 students (60.7%) and 26 of 27 Group 2 students (96.3%) passed. The CLBP OSCE was one of 10 OSCE stations in which students were tested at the end of a Combined Ambulatory Medicine and Pediatrics Clerkship. There were no between-group differences in performance on eight of the other nine OSCE stations. This module significantly improved medical student clinical skills in evaluating CLBP. Additional research is needed to ascertain the effect of e-learning modules on more-advanced learners and on improving the care of older adults with CLBP. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
Weiner, Debra K.; Morone, Natalia E.; Spallek, Heiko; Karp, Jordan F.; Schneider, Michael; Washburn, Carol; Dziabiak, Michael P.; Hennon, John G.; Elnicki, D. Michael
2015-01-01
The Institute of Medicine has highlighted the urgent need to close undergraduate and graduate educational gaps in treating pain. Chronic low back pain (CLBP) is one of the most common pain conditions, and older adults are particularly vulnerable to potential morbidities associated with misinformed treatment. An e-learning case-based interactive module was developed at the University of Pittsburgh Center of Excellence in Pain Education, one of 12 National Institutes of Health–designated centers, to teach students important principles for evaluating and managing CLBP in older adults. A team of six experts in education, information technology, pain management, and geriatrics developed the module. Teaching focused on common errors, interactivity, and expert modeling and feedback. The module mimicked a patient encounter using a standardized patient (the older adult with CLBP) and a pain expert (the patient provider). Twenty-eight medical students were not exposed to the module (Group 1) and 27 were exposed (Group 2). Their clinical skills in evaluating CLBP were assessed using an objective structured clinical examination (OSCE). Mean scores were 62.0 ± 8.6 for Group 1 and 79.5 ± 10.4 for Group 2 (P < .001). Using an OSCE pass–fail cutoff score of 60%, 17 of 28 Group 1 students (60.7%) and 26 of 27 Group 2 students (96.3%) passed. The CLBP OSCE was one of 10 OSCE stations in which students were tested at the end of a Combined Ambulatory Medicine and Pediatrics Clerkship. There were no between-group differences in performance on eight of the other nine OSCE stations. This module significantly improved medical student clinical skills in evaluating CLBP. Additional research is needed to ascertain the effect of e-learning modules on more-advanced learners and on improving the care of older adults with CLBP. PMID:24833496
NASA Technical Reports Server (NTRS)
1983-01-01
The overall configuration and modules of the initial and evolved space station are described as well as tended industrial and polar platforms. The mass properties that are the basis for costing are summarized. User friendly attributes (interfaces, resources, and facilities) are identified for commercial; science and applications; industrial park; international participation; national security; and the external tank option. Configuration alternates studied to determine a baseline are examined. Commonality for clustered 3-man and 9-man stations are considered as well as the use of tethered platforms. Requirements are indicated for electrical, communication and tracking; data management Subsystem requirements for electrical, data management, communication and tracking, environment control/life support system; and guidance navigation and control subsystems are identified.
NASA Astrophysics Data System (ADS)
1983-04-01
The overall configuration and modules of the initial and evolved space station are described as well as tended industrial and polar platforms. The mass properties that are the basis for costing are summarized. User friendly attributes (interfaces, resources, and facilities) are identified for commercial; science and applications; industrial park; international participation; national security; and the external tank option. Configuration alternates studied to determine a baseline are examined. Commonality for clustered 3-man and 9-man stations are considered as well as the use of tethered platforms. Requirements are indicated for electrical, communication and tracking; data management Subsystem requirements for electrical, data management, communication and tracking, environment control/life support system; and guidance navigation and control subsystems are identified.
Broadcasting Stations of the World; Part III. Frequency Modulation Broadcasting Stations.
ERIC Educational Resources Information Center
Foreign Broadcast Information Service, Washington, DC.
This third part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations, with the exception of those in the United States which broadcast on domestic channels, covers frequency modulation broadcasting stations. It contains two sections: one indexed alphabetically by country and city, and the…
Ishioka, Noriaki; Suzuki, Hiromi; Asashima, Makoto; Kamisaka, Seiichiro; Mogami, Yoshihiro; Ochiai, Toshimasa; Aizawa-Yano, Sachiko; Higashibata, Akira; Ando, Noboru; Nagase, Mutsumu; Ogawa, Shigeyuki; Shimazu, Toru; Fukui, Keiji; Fujimoto, Nobuyoshi
2004-03-01
Japan Aerospace Exploration Agency (JAXA) has developed a cell biology experiment facility (CBEF) and a clean bench (CB) as a common hardware in which life science experiments in the Japanese Experiment Module (JEM known as "Kibo") of the International Space Station (ISS) can be performed. The CBEF, a CO2 incubator with a turntable that provides variable gravity levels, is the basic hardware required to carry out the biological experiments using microorganisms, cells, tissues, small animals, plants, etc. The CB provides a closed aseptic operation area for life science and biotechnology experiments in Kibo. A phase contrast and fluorescence microscope is installed inside CB. The biological experiment units (BEU) are designed to run individual experiments using the CBEF and the CB. A plant experiment unit (PEU) and two cell experiment units (CEU type1 and type2) for the BEU have been developed.
Dynamic loading and stress life analysis of permanent space station modules
NASA Astrophysics Data System (ADS)
Anisimov, A. V.; Krokhin, I. A.; Likhoded, A. I.; Malinin, A. A.; Panichkin, N. G.; Sidorov, V. V.; Titov, V. A.
2016-11-01
Some methodological approaches to solving several key problems of dynamic loading and structural strength analysis of Permanent Space Station (PSS)modules developed on the basis of the working experience of Soviet and Russian PSS and the International Space station (ISS) are presented. The solutions of the direct and semi-inverse problems of PSS structure dynamics are mathematically stated. Special attention is paid to the use of the results of ground structural strength tests of space station modules and the data on the actual flight actions on the station and its dynamic responses in the orbital operation regime. The procedure of determining the dynamics and operation life parameters of elements of the PSS modules is described.
International Space Station (ISS)
2001-03-10
This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.
International Space Station (ISS)
2001-03-13
Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility
NASA Technical Reports Server (NTRS)
2003-01-01
Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.
2003-06-18
KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, stands in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The module will be delivered to the space station on mission STS-123. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
International Space Station (ISS)
2001-03-11
STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Need, utilization, and configuration of a large, multi-G centrifuge on the Space Station
NASA Technical Reports Server (NTRS)
Bonting, Sjoerd L.
1987-01-01
A large, multi-g centrifuge is required on the Space Station (1) to provide valid 1-g controls for the study of zero-g effects on animals and plants and to study readaptation to 1 g; (2) to store animals at 1 g prior to short-term zero-g experimentation; (3) to permit g-level threshold studies of gravity effects. These requirements can be met by a 13-ft-diam., center-mounted centrifuge, on which up to 48 modular habitats with animals (squirrel monkey, rat, mouse) and plants are attached. The advantages of locating this centrifuge with the vivarium, a common environmental control and life support system, a general-purpose work station and storage of food, water, and supplies in an attached short module, are elaborated. Servicing and operation of the centrifuge, as well as minimizing its impact on other Space Station functions are also considered.
Identification coding schemes for modulated reflectance systems
Coates, Don M [Santa Fe, NM; Briles, Scott D [Los Alamos, NM; Neagley, Daniel L [Albuquerque, NM; Platts, David [Santa Fe, NM; Clark, David D [Santa Fe, NM
2006-08-22
An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.
Long-range, full-duplex, modulated-reflector cell phone for voice/data transmission
Neagley, Daniel L.; Briles, Scott D.; Coates, Don M.; Freund, Samuel M.
2002-01-01
A long-range communications apparatus utilizing modulated-reflector technology is described. The apparatus includes an energy-transmitting base station and remote units that do not emit radiation in order to communicate with the base station since modulated-reflector technology is used whereby information is attached to an RF carrier wave originating from the base station which is reflected by the remote unit back to the base station. Since the remote unit does not emit radiation, only a low-power power source is required for its operation. Information from the base station is transmitted to the remote unit using a transmitter and receiver, respectively. The range of such a communications system is determined by the properties of a modulated-reflector half-duplex link.
Multipurpose Logistics Module, Leonardo, Rests in Discovery's Payload Bay
NASA Technical Reports Server (NTRS)
2001-01-01
This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.
International Space Station (ISS)
1997-07-20
Photograph shows the International Space Station Laboratory Module under fabrication at Marshall Space Flight Center (MSFC), Building 4708 West High Bay. Although management of the U.S. elements for the Station were consolidated in 1994, module and node development continued at MSFC by Boeing Company, the prime contractor for the Space Station.
International Space Station (ISS)
2001-03-01
Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
2001-03-08
STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Life support system definition for a low cost shuttle launched space station.
NASA Technical Reports Server (NTRS)
Nelson, W. G.; Cody, J.
1972-01-01
Discussion of the tradeoffs and EC/LS definition for a low cost shuttle launched space station to be launched in the late 1970s for use as a long-term manned scientific laboratory. The space station consists of 14-ft-diam modules, clustered together to support a six-man crew at the initial space station (ISS) level and a 12-man crew at the growth space station (GSS) level. Key design guidelines specify low initial cost and low total program cost and require two separate pressurized habitable compartments with independent lift support capability. The methodology used to select the EC/LS design consisted of systematically reducing quantitative parameters to a common denominator of cost. This approach eliminates many of the inconsistencies that can occur in such decision making. The EC/LS system selected is a partially closed system which recovers urine, condensate, and wash water and concentrates crew expired CO2 for use in a low thrust resistojet propulsion system.
Catastrophic Failure Modes Assessment of the International Space Station Alpha
NASA Technical Reports Server (NTRS)
Lutz, B. E. P.; Goodwin, C. J.
1996-01-01
This report summarizes a series of analyses to quantify the hazardous effects of meteoroid/debris penetration of Space Station Alpha manned module protective structures. These analyses concentrate on determining (a) the critical crack length associated with six manned module pressure wall designs that, if exceeded, would lead to unstopped crack propagation and rupture of manned modules, and (b) the likelihood of crew or station loss following penetration of unsymmetrical di-methyl hydrazine tanks aboard the proposed Russian FGB ('Tug') propulsion module and critical elements aboard the control moment gyro module (SPP-1). Results from these quantified safety analyses are useful in improving specific design areas, thereby reducing the overall likelihood of crew or station loss following orbital debris penetration.
STS-102 Onboard Photograph Inside Multipurpose Logistics Module, Leonardo
NASA Technical Reports Server (NTRS)
2001-01-01
Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
NASA Technical Reports Server (NTRS)
1972-01-01
The modular space station comprising small, shuttle-launched modules, and characterized by low initial cost and incremental manning, is described. The initial space station is designed to be delivered into orbit by three space shuttles and assembled in space. The three sections are the power/subsystems module, the crew/operations module, and the general purpose laboratory module. It provides for a crew of six. Subsequently duplicate/crew/operations and power/subsystems modules will be mated to the original modules, and provide for an additional six crewmen. A total of 17 research and applications modules is planned, three of which will be free-flying modules. Details are given on the program plan, modular characteristics, logistics, experiment support capability and requirements, operations analysis, design support analyses, and shuttle interfaces.
International Space Station (ISS)
2001-03-01
A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut Paul Richards Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
2003-07-18
KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
2003-07-18
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
2003-07-18
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
STS-102 Onboard Photograph-Multi-Purpose Logistics Module, Leonardo
NASA Technical Reports Server (NTRS)
2001-01-01
A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2004-02-03
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
Concepts for the evolution of the Space Station Program
NASA Technical Reports Server (NTRS)
Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.
1986-01-01
An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.
STS-102 Astronaut Susan Helms Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Russ Romanella, director of International Space Station and Spacecraft Processing. Seated at right are Bill Parsons, director of Kennedy Space Center; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Bill Parsons, director of Kennedy Space Center. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
47 CFR 90.242 - Travelers' information stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the modulation limiter and the modulated stage. At audio frequencies between 3 kHz and 20 kHz this...' information stations. (a) The frequencies 530 through 1700 kHz in 10 kHz increments may be assigned to the... consideration of possible cross-modulation and inter-modulation interference effects which may result from the...
International Space Station (ISS)
2003-03-08
The Space Shuttle Discovery, STS-102 mission, clears launch pad 39B at the Kennedy Space Center as the sun peers over the Atlantic Ocean on March 8, 2001. STS-102's primary cargo was the Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall flight and the eighth assembly flight, STS-102 was also the first flight involved with Expedition Crew rotation. The Expedition Two crew was delivered to the station while Expedition One was returned home to Earth.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.
2003-06-18
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
OA-7 Cargo Module Hatch Closure and Rotate to Vertical at SSPF
2017-02-12
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the hatch is closed on the Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. The module is then rotated to vertical for mating to the service module. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
SPACEHAB module is placed in payload canister in SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility check the progress of the SPACEHAB module as it is lowered toward the payload canister below. The module, part of the payload on mission STS-106, will be placed in the payload canister for transport to the launch pad. STS-106 is scheduled to launch Sept. 8 at 8:31 a.m. EDT. During the mission to the International Space Station, the crew will complete service module support tasks on orbit, transfer supplies and outfit the Space Station for the first long-duration crew.
OA-7 Mate Service Module to Cargo Module
2017-02-14
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers mate a Cygnus spacecraft's pressurized cargo module to its service module. Cygnus is being prepared to deliver thousands of pounds of supplies, equipment and scientific research materials on the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
Modular space station Phase B extension preliminary performance specification. Volume 2: Project
NASA Technical Reports Server (NTRS)
1971-01-01
The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
Free-free and fixed base modal survey tests of the Space Station Common Module Prototype
NASA Technical Reports Server (NTRS)
Driskill, T. C.; Anderson, J. B.; Coleman, A. D.
1992-01-01
This paper describes the testing aspects and the problems encountered during the free-free and fixed base modal surveys completed on the original Space Station Common Module Prototype (CMP). The CMP is a 40-ft long by 14.5-ft diameter 'waffle-grid' cylinder built by the Boeing Company and housed at the Marshall Space Flight Center (MSFC) near Huntsville, AL. The CMP modal survey tests were conducted at MSFC by the Dynamics Test Branch. The free-free modal survey tests (June '90 to Sept. '90) included interface verification tests (IFVT), often referred to as impedance measurements, mass-additive testing and linearity studies. The fixed base modal survey tests (Feb. '91 to April '91), including linearity studies, were conducted in a fixture designed to constrain the CMP in 7 total degrees-of-freedom at five trunnion interfaces (two primary, two secondary, and the keel). The fixture also incorporated an airbag off-load system designed to alleviate the non-linear effects of friction in the primary and secondary trunnion interfaces. Numerous test configurations were performed with the objective of providing a modal data base for evaluating the various testing methodologies to verify dynamic finite element models used for input to coupled load analysis.
International Space Station (ISS)
2001-03-10
STS-102 mission astronauts James S. Voss and James D. Weatherbee share a congratulatory handshake as the Space Shuttle Orbiter Discovery successfully docks with the International Space Station (ISS). Photographed from left to right are: Astronauts Susan J. Helms, mission specialist; James S. Voss, Expedition 2 crew member; James D. Weatherbee, mission commander; Andrew S.W. Thomas, mission specialist; and nearly out of frame is James M. Kelley, Pilot. Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Unity connecting module viewed from above in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1998-01-01
The Unity connecting module is viewed from above while it awaits processing in the Space Station Processing Facility (SSPF). On the side can be seen the connecting hatch. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.
ERIC Educational Resources Information Center
Schmalle, Bonnie
This self-instructional module, one of 16 on techniques for coordinating work experience programs, provides preservice and inservice educational materials for teacher-coordinators supervising on the job training. The three goals stated for this module are (1) to know the types of information needed to obtain an appropriate training station, (2) to…
2006-06-02
KENNEDY SPACE CENTER, FLA. - The European Space Agency's Columbus module rests on a work stand in view of media representatives and invited guests following a ceremony to welcome the module into the Space Station Processing Facility (SSPF). Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared in the SSPF for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the life, physical and materials sciences. Photo credit: NASA/Amanda Diller
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, the Columbus module waits to be lifted out of its transportation canister. An overhead crane is being lowered toward the module, which is the European Space Agency's research laboratory for the International Space Station. The module will be moved to a work stand and prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
Propagation Characteristics of International Space Station Wireless Local Area Network
NASA Technical Reports Server (NTRS)
Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung
2005-01-01
This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Bill Parsons, director of Kennedy Space Center; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
Modelling of the Installed Capacity of Landfill Power Stations
NASA Astrophysics Data System (ADS)
Blumberga, D.; Kuplais, Ģ.; Veidenbergs, I.; Dāce, E.; Gušča, J.
2009-01-01
More and more landfills are being developed, in which biogas is produced and accumulated, which can be used for electricity production. Currently, due to technological reasons, electricity generation from biogas has a very low level of efficiency. In order to develop this type of energy production, it is important to find answers to various engineering, economic and ecological issues. The paper outlines the results obtained by creating a model for the calculations of electricity production in landfill power stations and by testing it in the municipal solid waste landfill "Daibe". The algorithm of the mathematical model for the operation of a biogas power station consists of four main modules: • initial data module, • engineering calculation module, • tariff calculation module, and • climate calculation module. As a result, the optimum capacity of the power station in the landfill "Daibe" is determined, as well as the analysis of the landfill's economic data and cost-effectiveness is conducted.
International Space Station (ISS)
1997-06-01
This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
2005-08-05
S114-E-7139 (5 August 2005) --- Astronaut Eileen M. Collins, STS-114 commander, floats in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery was docked to the Station. Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, is visible at bottom right.
47 CFR 101.809 - Bandwidth and emission limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... limitations. (a) Stations in this service operating on frequencies in the 27.23-27.28 MHz band will be authorized to employ only amplitude modulated or frequency modulated emission for radiotelephony. The... maintenance of the station. (b) Stations in the service operating on frequencies above 940 MHz may be...
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Logistics resupply and emergency crew return system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Ahne, D.; Caldwell, D.; Davis, K.; Delmedico, S.; Heinen, E.; Ismail, S.; Sumner, C.; Bock, J.; Buente, B.; Gliane, R.
1989-01-01
Sometime in the late 1990's, if all goes according to plan, Space Station Freedom will allow the United States and its cooperating partners to maintain a permanent presence in space. Acting as a scientific base of operations, it will also serve as a way station for future explorations of the Moon and perhaps even Mars. Systems onboard the station will have longer lifetimes, higher reliability, and lower maintenance requirements than seen on any previous space flight vehicle. Accordingly, the station will have to be resupplied with consumables (air, water, food, etc.) and other equipment changeouts (experiments, etc.) on a periodic basis. Waste materials and other products will also be removed from the station for return to Earth. The availability of a Logistics Resupply Module (LRM), akin to the Soviet's Progress vehicle, would help to accomplish these tasks. Riding into orbit on an expendable launch vehicle, the LRM would be configured to rendezvous autonomously and dock with the space station. After the module is emptied of its cargo, waste material from the space station would be loaded back into it. The module would then begin its descent to a recovery point on Earth. Logistics Resupply Modules could be configured in a variety of forms depending on the type of cargo being transferred. If the LRM's were cycled to the space station in such a way that at least one vehicle remained parked at the station at all times, the modules could serve double duty as crew emergency return capsules. A pressurized LRM could then bring two or more crew-persons requiring immediate return (because of health problems, system failure, or unavoidable catastrophes) back to Earth. Large cost savings would be accrued by combining the crew return function with a logistics resupply system.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
Satellite antenna management system and method
NASA Technical Reports Server (NTRS)
Leath, Timothy T (Inventor); Azzolini, John D (Inventor)
1999-01-01
The antenna management system and method allow a satellite to communicate with a ground station either directly or by an intermediary of a second satellite, thus permitting communication even when the satellite is not within range of the ground station. The system and method employ five major software components, which are the control and initialization module, the command and telemetry handler module, the contact schedule processor module, the contact state machining module, and the telemetry state machine module. The control and initialization module initializes the system and operates the main control cycle, in which the other modules are called. The command and telemetry handler module handles communication to and from the ground station. The contact scheduler processor module handles the contact entry schedules to allow scheduling of contacts with the second satellite. The contact and telemetry state machine modules handle the various states of the satellite in beginning, maintaining and ending contact with the second satellite and in beginning, maintaining and ending communication with the satellite.
A modular Space Station/Base electrical power system - Requirements and design study.
NASA Technical Reports Server (NTRS)
Eliason, J. T.; Adkisson, W. B.
1972-01-01
The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.
Space Station life sciences guidelines for nonhuman experiment accommodation
NASA Technical Reports Server (NTRS)
Arno, R.; Hilchey, J.
1985-01-01
Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.
NASA Technical Reports Server (NTRS)
Sours, Thomas J.
1989-01-01
A concept is described for the assembly of the outboard PV modules for Space Station Freedom. Analysis of the on-orbit assembly operations was performed using CADAM design graphics software. A scenario for assembly using the various assembly equipment, as currently defined, is described in words, tables and illustrations. This work is part of ongoing studies in the area of space station assembly. The outboard PV module and the assembly equipment programs are all in definition and preliminary design phases. An input is provided to the design process of assembly equipment programs. It is established that the outboard PV module assembly operations can be performed using the assembly equipment currently planned in the Space Station Freedom Program.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
2004-02-03
KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
Orbital ATK Cygnus Cargo Module Ready for Delivery to International Space Station
2017-04-13
The Orbital ATK Cygnus pressurized cargo module is packed with science experiments, supplies and hardware for delivery to the International Space Station on CRS-7. Orbital ATK's seventh commercial resupply services mission will launch atop a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.
NASA Astrophysics Data System (ADS)
Kovit, B.
The development and establishment of a manned space station represents the next major U.S. space program after the Space Shuttle. If all goes according to plan, the space station could be in orbit around the earth by 1992. A 'power tower' station configuration has been selected as a 'reference' design. This configuration involves a central truss structure to which various elements are attached. An eight-foot-square truss forms the backbone of a structure about 400 feet long. At its lower end, nearest the earth, are attached pressurized manned modules. These modules include two laboratory modules and two so-called 'habitat/command' modules, which provide living and working space for the projected crew of six persons. Later, the station's pressurized space would be expanded to accommodate up to 18 persons. By comparison, the Soviets will provide habitable space for 12 aboard a 300-ton station which they are expected to place in orbit. According to current plans the six U.S. astronauts will work in two teams of three persons each. A ninety-day tour of duty is considered.
Exercise of the SSM/PMAD Breadboard. [Space Station Module/Power Management And Distribution
NASA Technical Reports Server (NTRS)
Walls, Bryan
1989-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard is a test facility designed for advanced development of space power automation. Originally designed for 20-kHz power, the system is being converted to work with direct current (dc). Power levels are on a par with those expected for a Space Station module. Some of the strengths and weaknesses of the SSM/PMAD system in design and function are examined, and the future directions foreseen for the system are outlined.
1998-08-27
KENNEDY SPACE CENTER, FLA. -- Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station
2004-02-03
KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed.
Automation of the space station core module power management and distribution system
NASA Technical Reports Server (NTRS)
Weeks, David J.
1988-01-01
Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.
Space station propulsion test bed
NASA Technical Reports Server (NTRS)
Briley, G. L.; Evans, S. A.
1989-01-01
A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Pilot George Zamka (left) and Commander Pam Melroy begin to unveil the Node 2 module's new name, Harmony, as Russ Romanella, director of International Space Station and Spacecraft Processing presides over the ceremony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
Evolutionary growth for Space Station Freedom electrical power system
NASA Technical Reports Server (NTRS)
Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike
1989-01-01
Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.
2005-08-05
S114-E-7138 (5 August 2005) --- Astronaut Eileen M. Collins, STS-114 commander, waves while floating in the Zvezda Service Module of the international space station while Space Shuttle Discovery was docked to the station.
A panoramic view of the Space Station Processing Facility with Unity connecting module
NASA Technical Reports Server (NTRS)
1998-01-01
In this panoramic view of the Space Station Processing Facility (SSPF) can be seen (left to right) Unity connecting module, the Rack Insertion Device and the first Multi-Purpose Launch Module, the Leonardo. Windows at the right above Leonardo allow visitors on tour to watch the activities in the SSPF. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station. The Italian-built MPLM, scheduled to be launched on STS-100 on Dec. 2, 1999, will be carried in the payload bay of the Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the International Space Station.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- NASA Node 2 module sits inside the Space Station Processing Facility highbay with its new name, Harmony, revealed. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
Solar dynamic power systems for space station
NASA Technical Reports Server (NTRS)
Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.
1986-01-01
The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.
International Space Station (ISS)
1998-11-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-01-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-11-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-11-26
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-10-01
The Zvezda Service Module, the first Russian contribution and third element to the International Space Station (ISS), is shown under construction in the Krunichev State Research and Production Facility (KhSC) in Moscow. Russian technicians work on the module shortly after it completed a pressurization test. In the foreground is the forward portion of the module, including the spherical transfer compartment and its three docking ports. The forward port docked with the cornected Functional Cargo Block, followed by Node 1. Launched via a three-stage Proton rocket on July 12, 2000, the Zvezda Service Module serves as the cornerstone for early human habitation of the Station, providing living quarters, life support system, electrical power distribution, data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
International Space Station (ISS)
2001-02-10
Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.
International Space Station (ISS)
2000-12-01
This image of the International Space Station in orbit was taken from the Space Shuttle Endeavour prior to docking. Most of the Station's components are clearly visible in this photograph. They are the Node 1 or Unity Module docked with the Functional Cargo Block or Zarya (top) that is linked to the Zvezda Service Module. The Soyuz spacecraft is at the bottom.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) accompanies Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
2003-06-09
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
International Space Station (ISS)
2001-02-16
The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-16
With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Work continues on Leonardo, the Multi-Purpose Logistics Module, in the Space Station Processing Faci
NASA Technical Reports Server (NTRS)
1999-01-01
Workers in the Space Station Processing Facility work on Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-102, targeted for June 2000. Leonardo shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM), targeted for launch in September 1999, and Destiny, the U.S. Lab module, targeted for mission STS-98 in late April 2000.
2010-05-18
ISS023-E-047527 (18 May 2010) --- In the grasp of the station?s robotic Canadarm2, the Russian-built Mini-Research Module 1 (MRM-1) is attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB) of the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia. Rassvet will be used for cargo storage and will provide an additional docking port to the station.
2004-02-03
KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (facing camera) aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
2004-02-03
KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra talks to a technician (off-camera) during Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
Space station: Cost and benefits
NASA Technical Reports Server (NTRS)
1983-01-01
Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.
Apollo experience report: Crew station integration. Volume 1: Crew station design and development
NASA Technical Reports Server (NTRS)
Allen, L. D.; Nussman, D. A.
1976-01-01
An overview of the evolution of the design and development of the Apollo command module and lunar module crew stations is given, with emphasis placed on the period from 1964 to 1969. The organizational planning, engineering techniques, and documentation involved are described, and a detailed chronology of the meetings, reviews, and exercises is presented. Crew station anomalies for the Apollo 7 to 11 missions are discussed, and recommendations for the solution of recurring problems of crew station acoustics, instrument glass failure, and caution and warning system performance are presented. Photographs of the various crew station configurations are also provided.
International Space Station (ISS)
2001-03-11
STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
2001-03-11
STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
2003-08-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
Software For Clear-Air Doppler-Radar Display
NASA Technical Reports Server (NTRS)
Johnston, Bruce W.
1990-01-01
System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
Retired Astronaut John Blaha at opening of new International Space Station Center at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
Retired Astronaut John Blaha celebrates the official opening of the new International Space Station (ISS) Center at Kennedy Space Center as he steps out of a full-scale mockup of one of the station modules. Modules through which visitors can walk that are included in the new tour attraction are the Habitation Unit, where station crew members will live, sleep, and work; a Laboratory Module; and the Pressurized Logistics Module, where racks and supplies will be transported back and forth from KSC to space. Guests also can take an elevated walkway to a gallery overlooking the work area where actual ISS hardware is prepared for flight into space. This new tour site, in addition to a new Launch Complex 39 Observation Gantry, are part of a comprehensive effort by NASA and Delaware North to expand and improve the KSC public tour and visitor facilities.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata looks over the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Pilot George Zamka (left) and Commander Pam Melroy stand in front of the Node 2 module with it's new name, Harmony, unveiled. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
2007-03-15
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility, William Gerstenmaier, NASA's associate administrator for Space Operations, talks to members of the media during a ceremony to unveil the Node 2 module's new name, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Commander Pam Melroy speaks to members of the press and guests during a ceremony to unveil the new name of NASA's Node 2 module, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
Designing berthing mechanisms for international compatibility
NASA Technical Reports Server (NTRS)
Winch, John; Gonzalez-Vallejo, Juan J.
1991-01-01
The paper examines the technological issues regarding common berthing interfaces for the Space Station Freedom and pressurized modules from U.S., European, and Japanese space programs. The development of the common berthing mechanism (CBM) is based on common requirements concerning specifications, launch environments, and the unique requirements of ESA's Man-Tended Free Flyer. The berthing mechanism is composed of an active and a passive half, a remote manipulator system, 4 capture-latch assemblies, 16 structural bolts, and a pressure gage to verify equalization. Extensive graphic and verbal descriptions of each element are presented emphasizing the capture-latch motion and powered-bolt operation. The support systems to complete the interface are listed, and the manufacturing requirements for consistent fabrication are discussed to ensure effective international development.
NASA Technical Reports Server (NTRS)
Cohen, Marc M. (Editor); Eichold, Alice (Editor); Heers, Susan (Editor)
1987-01-01
Articles are presented on a space station architectural elements model study, space station group activities habitability module study, full-scale architectural simulation techniques for space stations, and social factors in space station interiors.
2010-05-18
ISS023-E-047488 (18 May 2010) --- In the grasp of the station?s robotic Canadarm2, the Russian-built Mini-Research Module 1 (MRM-1) is moved to be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB) of the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia. Rassvet will be used for cargo storage and will provide an additional docking port to the station.
2010-05-18
ISS023-E-047462 (18 May 2010) --- In the grasp of the station?s robotic Canadarm2, the Russian-built Mini-Research Module 1 (MRM-1) is moved to be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB) of the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia. Rassvet will be used for cargo storage and will provide an additional docking port to the station.
2001-01-01
JSC2001-E-26680 --- One of a series of three photos of the next station module that will launch--the Russian Docking Compartment, named Pirs, the Russian word for pier. The module is planned for launch from Baikonur Sept. 14, and to dock with the station on Sept. 16. It will serve as a Russian airlock for the station and also will provide a docking port for Soyuz or Progress craft arriving at the station. This image shows the Pirs under construction at Energia in Moscow.
2001-01-01
JSC2001-E-26679 --- One of a series of three photos of the next station module that will launch--the Russian Docking Compartment, named Pirs, the Russian word for pier. The module is planned for launch from Baikonur Sept. 14, and to dock with the station on Sept. 16. It will serve as a Russian airlock for the station and also will provide a docking port for Soyuz or Progress craft arriving at the station. This image shows the Pirs under construction at Energia in Moscow.
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane settles the Columbus module onto a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Columbus module toward a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) accompanies Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
Space station full-scale docking/berthing mechanisms development
NASA Technical Reports Server (NTRS)
Burns, Gene C.; Price, Harold A.; Buchanan, David B.
1988-01-01
One of the most critical operational functions for the space station is the orbital docking between the station and the STS orbiter. The program to design, fabricate, and test docking/berthing mechanisms for the space station is described. The design reflects space station overall requirements and consists of two mating docking mechanism halves. One half is designed for use on the shuttle orbiter and incorporates capture and energy attenuation systems using computer controlled electromechanical actuators and/or attenuators. The mating half incorporates a flexible feature to allow two degrees of freedom at the module-to-module interface of the space station pressurized habitat volumes. The design concepts developed for the prototype units may be used for the first space station flight hardware.
2003-08-27
KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-08-27
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
Space Station-Baseline Configuration
NASA Technical Reports Server (NTRS)
1989-01-01
In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.
Space Station-Baseline Configuration With Callouts
NASA Technical Reports Server (NTRS)
1989-01-01
In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.
1989-08-01
In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.
STS-101: Crew Activity Report / Flight Day 5
NASA Technical Reports Server (NTRS)
2000-01-01
The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Haslsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the activities of the fifth day of the mission. The day's activities started with the opening of the hatch to the space station. Helms and Usachev then opened the hatch to the station's Unity Connecting Module. The crew also placed ducting throughout the Zarya Control Module to improve air circulation and prevent problems with stale air. Helms and Usachev are shown replacing two of six batteries to be replaced in this mission in the Zarya module. The crew began moving supplies into the space station. There are several shots of the interior of the space station.
Optimization of the Pressurized Logistics Module - A Space Station Freedom analytical study
NASA Technical Reports Server (NTRS)
Scallan, J. M.
1991-01-01
The analysis for determining the optimum cylindrical length of the Space Station Freedom (SSF) Pressurized Logistics Module, whose task is to transport the SSF pressurized cargo via the NSTS Shuttle Orbiter, is described. The major factors considered include the NSTS net launch lift capability, the pressurized cargo requirements, and the mass properties of the module structures, mechanisms, and subsystems.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.
Evolving technologies for Space Station Freedom computer-based workstations
NASA Technical Reports Server (NTRS)
Jensen, Dean G.; Rudisill, Marianne
1990-01-01
Viewgraphs on evolving technologies for Space Station Freedom computer-based workstations are presented. The human-computer computer software environment modules are described. The following topics are addressed: command and control workstation concept; cupola workstation concept; Japanese experiment module RMS workstation concept; remote devices controlled from workstations; orbital maneuvering vehicle free flyer; remote manipulator system; Japanese experiment module exposed facility; Japanese experiment module small fine arm; flight telerobotic servicer; human-computer interaction; and workstation/robotics related activities.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The Experiment Logistics Module Pressurized Section of the Japanese Experiment Module sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Space Agency (JAXA) officials welcomed the arrival of the logistics module, which will be delivered to the space station on mission STS-123. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham and Chuong Nguyen, payload manager and deputy payload manager respectively for the International Space Station, stand in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
A technological review on electric vehicle DC charging stations using photovoltaic sources
NASA Astrophysics Data System (ADS)
Youssef, Cheddadi; Fatima, Errahimi; najia, Es-sbai; Chakib, Alaoui
2018-05-01
Within the next few years, Electrified vehicles are destined to become the essential component of the transport field. Consequently, the charging infrastructure should be developed in the same time. Among this substructure, Charging stations photovoltaic-assisted are attracting a substantial interest due to increased environmental awareness, cost reduction and rise in efficiency of the PV modules. The intention of this paper is to review the technological status of Photovoltaic–Electric vehicle (PV-EV) charging stations during the last decade. The PV-EV charging station is divided into two categories, which are PV-grid and PV-standalone charging systems. From a practical point view, the distinction between the two architectures is the bidirectional inverter, which is added to link the station to the smart grid. The technological infrastructure includes the common hardware components of every station, namely: PV array, dc-dc converter provided with MPPT control, energy storage unit, bidirectional dc charger and inverter. We investigate, compare and evaluate many valuable researches that contain the design and control of PV-EV charging system. Additionally, this concise overview reports the studies that include charging standards, the power converters topologies that focus on the adoption of Vehicle-to grid technology and the control for both PV–grid and PV standalone DC charging systems.
NASA Technical Reports Server (NTRS)
1971-01-01
The requirements for the activities involved, and the procedures used by the crew in the operations of the modular space station are presented. All crew-related characteristics of the station and its operations are indicated. The interior configuration and arrangement of each of the space station modules, the facilities and equipment in the module and their operation are described as related to crew habitability. The crew activities and procedures involved in the operation of the station in the accomplishment of its primary mission are defined. The operations involved in initial station buildup, and the on-orbit operation and maintenance of the station and its subsystems to support the experimental program are included. A general description of experiment operations is also given.
Kononenko uses laptop computer in the SM Transfer Compartment
2012-03-21
ISS030-E-161167 (21 March 2012) --- Russian cosmonaut Oleg Kononenko, Expedition 30 flight engineer, uses a computer in the transfer compartment of the International Space Station?s Zvezda Service Module. Russia's Zarya module is visible in the background.
Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility watch as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
1999-12-02
KENNEDY SPACE CENTER, FLA. -- STS-102 crew member Susan J. Helms looks over a Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility. The PMA-3 is a component of the International Space Station (ISS). Helms is one of three who will be staying on the ISS as the Expedition II crew. The others are Yuriy Vladimirovich Usachev and James S. Voss. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center
1999-12-02
KENNEDY SPACE CENTER, FLA. -- Looking over a Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility are Arne Aamodt, with Johnson Space Center, Yuriy Vladimirovich Usachev and Susan J. Helms. Usachev and Helms are two members of the STS-102 crew, who will be staying on the International Space Station (ISS). The third crew member is James S. Voss. They have been designated the Expedition II crew. Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center
1999-12-02
KENNEDY SPACE CENTER, FLA. -- From a work stand in the Space Station Processing Facility, STS-102 crew members James S. Voss (left) and Yuriy Vladimirovich Usachev (right), of Russia, look over the Pressurized Mating Adapter (PMA-3). The PMA-3 is a component of the International Space Station (ISS). Voss and Usachev are two crew members who will be staying on the ISS as the Expedition II crew. The third is Susan J. Helms. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center
1999-12-02
KENNEDY SPACE CENTER, FLA. -- Members of the STS-102 crew, known as the Expedition II crew, and workers from Johnson Space Center get a close look at the Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility. The PMA-3 is a component of the International Space Station (ISS). Making up the Expedition II crew are James S. Voss, Susan J. Helms and Yuriy Vladimirovich Usachev, of Russia. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center
Shielding requirements for the Space Station habitability modules
NASA Technical Reports Server (NTRS)
Avans, Sherman L.; Horn, Jennifer R.; Williamsen, Joel E.
1990-01-01
The design, analysis, development, and tests of the total meteoroid/debris protection system for the Space Station Freedom habitability modules, such as the habitation module, the laboratory module, and the node structures, are described. Design requirements are discussed along with development efforts, including a combination of hypervelocity testing and analyses. Computer hydrocode analysis of hypervelocity impact phenomena associated with Space Station habitability structures is covered and the use of optimization techniques, engineering models, and parametric analyses is assessed. Explosive rail gun development efforts and protective capability and damage tolerance of multilayer insulation due to meteoroid/debris impact are considered. It is concluded that anticipated changes in the debris environment definition and requirements will require rescoping the tests and analysis required to develop a protection system.
2003-06-06
KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.
2003-06-06
KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.
Gas and water recycling system for IOC vivarium experiments
NASA Technical Reports Server (NTRS)
Nitta, K.; Otsubo, K.
1986-01-01
Water and gas recycling units designed as one of the common experiment support system for the life science experiment facilities used in the Japanese Experiment Module are discussed. These units will save transportation and operation costs for the life science experiments in the space station. These units are also designed to have interfaces so simple that the connection to another life science experiment facilities such as the Research Animal Holding Facility developed by the Rockheed Missiles and Space Company can be easily done with small modification.
Design of an MSAT-X mobile transceiver and related base and gateway stations
NASA Technical Reports Server (NTRS)
Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit
1987-01-01
This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.
Design of an MSAT-X mobile transceiver and related base and gateway stations
NASA Astrophysics Data System (ADS)
Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit
This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.
Hoshide in sleeping bag in JEM module
2008-06-09
S124-E-007983 (9 June 2008) --- Japan Aerospace Exploration Agency astronaut Akihiko Hoshide, STS-124 mission specialist, is pictured in his sleeping bag in Kibo Japanese Pressurized Module of the International Space Station while Space Shuttle Discovery is docked with the station.
Usachev in sleep station in Service Module
2001-04-22
ISS002-E-5360 (22 April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two mission commander, writes down some notes in his sleeping compartment in the Zvezda / Service Module of the International Space Station (ISS). This image was recorded with a digital still camera.
Usachev at sleep station in Service Module
2001-04-28
ISS002-E-6337 (28 April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two mission commander, writes down some notes in his sleeping compartment in the Zvezda / Service Module of the International Space Station (ISS). The image was taken with a digital still camera.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.
The payload canister leaves the O&C with the Joint Airlock Module inside
NASA Technical Reports Server (NTRS)
2000-01-01
The payload canister, with the Joint Airlock Module inside, backs out of the Operations and Checkout Building for a short trip to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane carries the Columbus module away from its transportation canister. Columbus is the European Space Agency's research laboratory for the International Space Station. The module is being moved to a work stand to prepare it for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
1991-01-01
This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth, illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station featured a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.
1991-01-01
This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth; illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station features a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (center, foreground) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Executive Director of NASDA Koji Yamamoto (left) is welcomed to KSC by Center Director Roy Bridges Jr. (right). Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.
Russian RSC Energia employees inspect DM in SSPF
NASA Technical Reports Server (NTRS)
1995-01-01
Employees of the Russian aerospace company RSC Energia prepare to conduct final inspections of the Russian-built Docking Module in the Space Station Processing Facility at KSC. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles.
Russian RSC Energia employees attach trunnions to DM
NASA Technical Reports Server (NTRS)
1995-01-01
Employees of the Russian aerospace company RSC Energia attach trunnions to the Russian-built docking module in the Space Station Processing Facility at KSC so that it can be mounted in the payload bay of the Space Shuttle orbiter Atlantis. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles.
ISS Expedition 18 Multi Purpose Logistics Module (MPLM) Interior
2008-11-19
ISS018-E-009225 (18 Nov. 2008) --- Astronaut Shane Kimbrough, STS-126 mission specialist, floats in the Leonardo Multi-Purpose Logistics Module attached to the Earth-facing port of the International Space Station's Harmony node while Space Shuttle Endeavour is docked with the station.
ISS Expedition 18 Multi Purpose Logistics Module (MPLM) Interior
2008-11-19
ISS018-E-009227 (18 Nov. 2008) --- Astronaut Donald Pettit, STS-126 mission specialist, floats in the Leonardo Multi-Purpose Logistics Module attached to the Earth-facing port of the International Space Station's Harmony node while Space Shuttle Endeavour is docked with the station.
Usachev typing while in sleep station in the Service Module
2001-03-23
ISS002-E-5730 (23 March 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander, works at a laptop computer in his crew compartment in the Zvezda Service Module aboard the International Space Station (ISS). The image was recorded with a digital still camera.
Space Station evolution study oxygen loop closure
NASA Technical Reports Server (NTRS)
Wood, M. G.; Delong, D.
1993-01-01
In the current Space Station Freedom (SSF) Permanently Manned Configuration (PMC), physical scars for closing the oxygen loop by the addition of oxygen generation and carbon dioxide reduction hardware are not included. During station restructuring, the capability for oxygen loop closure was deferred to the B-modules. As such, the ability to close the oxygen loop in the U.S. Laboratory module (LAB A) and the Habitation A module (HAB A) is contingent on the presence of the B modules. To base oxygen loop closure of SSF on the funding of the B-modules may not be desirable. Therefore, this study was requested to evaluate the necessary hooks and scars in the A-modules to facilitate closure of the oxygen loop at or subsequent to PMC. The study defines the scars for oxygen loop closure with impacts to cost, weight and volume and assesses the effects of byproduct venting. In addition, the recommended scenarios for closure with regard to topology and packaging are presented.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
Space construction base support requirements for environmental control and life support systems
NASA Technical Reports Server (NTRS)
Thiele, R. J.; Secord, T. C.; Murphy, G. L.
1977-01-01
A Space Station analysis study is being performed for NASA which identifies cost-effective Space Station options that can provide a space facility capable of performing space construction, space manufacturing, cosmological research, earth services, and other functions. A space construction base concept for the construction of large structures, such as those needed to implement satellite solar power for earth usage, will be used as a basis for discussing requirements that impact the design selection, level of integration, and operation of environmental control and life support systems (ECLSS). The space construction base configuration also provides a basic Space Station facility that can accommodate biological manufacturing modules, ultrapure glasses manufacturing modules, and modules for other services in a building-block fashion. Examples of special problems that could dictate hardware required to augment the basic ECLSS for autonomous modules will be highlighted. Additionally, overall intravehicular (IVA) and extravehicular (EVA) activities and requirements that could impact the basic station ECLSS degree of closure are discussed.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) releases a tray extended from inside the Pressurized Module, or PM, that he was working with. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions. The JEM/PM is in the Space Station Processing Facility.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Pilot George Zamka (left, partially hidden) and Commander Pam Melroy (second from right in group), talk with members of the media and guests after a ceremony to unveil NASA's Node 2 module's new name, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, journalists and photographers ask Japanese astronaut Takao Doi about the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that he will accompany on mission STS-123 to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
Introduction to Space Station Freedom
NASA Technical Reports Server (NTRS)
Kohrs, Richard
1992-01-01
NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station Freedom in FY 92 was appropriated. For FY 93, NASA is seeking $2.25 billion for the program; the planned budget for FY 94 is $2.5 billion. Further alterations to the hardware configuration for Freedom would be a serious setback; NASA intends 'to stick with the current baseline' and continue planning for utilization.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
2003-06-06
KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2003-06-04
KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2003-06-03
KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility lifts the U.S. Node 2 out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.
Internationalization of the Space Station
NASA Technical Reports Server (NTRS)
Lottmann, R. V.
1985-01-01
Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.
NASA Technical Reports Server (NTRS)
Butler, J. H.
1971-01-01
A preliminary analysis of the relative motion of a free flying experiment module in the vicinity of a space station under the perturbative effects of drag and earth oblateness was made. A listing of a computer program developed for determining the relative motion of a module utilizing the Cowell procedure is presented, as well as instructions for its use.
Crew/cargo and logistics module definition
NASA Technical Reports Server (NTRS)
1971-01-01
The logistics requirements for the space station cargo, the initial buildup, and the 90 day resupply are presented, along with the conceptual selection for the orbiter crew accommodations and the GSS logistics system. Various module configurations are outlined; structural/mechanical, environmental, temperature, voice communication, and data bus subsystems are also reviewed. Ground operations and module prelaunch and launch operations are discussed, as well as logistics system interfaces for space shuttles and stations.
2017-02-01
The Orbital ATK OA-7 Cygnus spacecraft's service module arrives inside the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The service module is sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
The purpose of this requirements document is to develop the foundation for concept development for the Life Sciences Research Facility (LSRF) on the Space Station. These requirements are developed from the perspective of a Space Station laboratory module outfitter. Science and mission requirements including those related to specimens are set forth. System requirements, including those for support, are detailed. Functional and design requirements are covered in the areas of structures, mechanisms, electrical power, thermal systems, data management system, life support, and habitability. Finally, interface requirements for the Command Module and Logistics Module are described.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
A worker in the Space Station Processing Facility watches as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company, shows Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS), with its hatch door installed. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
Astrophysical payload accommodation on the space station
NASA Technical Reports Server (NTRS)
Woods, B. P.
1985-01-01
Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, at left, head of International Space Station, Program Department, European Space Agency, congratulates Michael Suffredini, program manager, International Space Station, NASA, upon transfer of the ownership of node 3 for the International Space Station from the European Space Agency, or ESA, to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, at left, head of International Space Station, Program Department, European Space Agency, and Michael Suffredini, program manager, International Space Station, NASA, sign documents transferring the ownership of node 3 for the International Space Station from the European Space Agency, or ESA, to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
STS-102 Astronaut James Voss Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut Susan Helms Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
47 CFR 73.14 - AM broadcast definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., from which an AM station may broadcast for short periods without prior Commission authorization or... envelope without modulation. Plate modulation. The modulation produced by introduction of the modulating...
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
1971-01-01
This is an artist's concept of the Research and Applications Modules (RAM). Evolutionary growth was an important consideration in space station plarning, and another project was undertaken in 1971 to facilitate such growth. The RAM study, conducted through a Marshall Space Flight Center contract with General Dynamics Convair Aerospace, resulted in the conceptualization of a series of RAM payload carrier-sortie laboratories, pallets, free-flyers, and payload and support modules. The study considered two basic manned systems. The first would use RAM hardware for sortie mission, where laboratories were carried into space and remained attached to the Shuttle for operational periods up to 7 days. The second envisioned a modular space station capability that could be evolved by mating RAM modules to the space station core configuration. The RAM hardware was to be built by Europeans, thus fostering international participation in the space program.
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane is lowered onto the Columbus module to lift it out of its transportation canister. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be moved to a work stand and prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
View of the Skylab space station cluster photographed against black sky
1973-07-28
SL3-114-1682 (28 July 1973) --- A close-up view of the Skylab Space Station photographed against an Earth background from the Skylab 3 Command and Service Modules (CSM) during station-keeping maneuvers prior to docking. Aboard the Command Module (CM) were astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma, who remained with the Skylab Space Station in Earth orbit for 59 days. This picture was taken with a hand-held 70mm Hasselblad camera using a 100mm lens and SO-368 medium speed Ektachrome film. Photo credit: NASA
EOS production on the Space Station. [Electrophoresis Operations/Space
NASA Technical Reports Server (NTRS)
Runge, F. C.; Gleason, M.
1986-01-01
The paper discusses a conceptual integration of the equipment for EOS (Electrophoresis Operations/Space) on the Space Station in the early 1990s. Electrophoresis is a fluid-constituent separation technique which uses forces created by an electrical field. Aspects covered include EOS equipment and operations, and Space Station installations involving a pressurized module, a resupply module, utility provisions and umbilicals and crew involvement. Accommodation feasibility is generally established, and interfaces are defined. Space Station production of EOS-derived pharmaceuticals will constitute a significant increase in capability compared to precursor flights on the Shuttle in the 1980s.
The Joint Airlock Module is moved to a payload canister in the O&C
NASA Technical Reports Server (NTRS)
2000-01-01
The Joint Airlock Module is suspended by an overhead crane in the Operations and Checkout Building before being moved and placed into the payload canister for transfer to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.
Wide-angle view of Station 4 during Apollo 17 second EVA
1972-12-12
AS17-137-20992 (12 Dec. 1972) --- A view looking into Shorty Crater, taken at Station 4, showing the orange soil. Astronaut Harrison H. Schmitt found the orange soil on the moon during the second Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. While astronauts Eugene A. Cernan, commander, and Schmitt, lunar module pilot, descended in the Lunar Module (LM) "Challenger" to explore the Taurus-Littrow region of the moon, astronaut Ronald E. Evans, command module pilot, remained with the Command and Service Modules (CSM) "America" in lunar orbit.
Japanese experiment module (JEM)
NASA Technical Reports Server (NTRS)
Kato, T.
1986-01-01
Japanese hardware elements studied during the definition phase of phase B are described. The hardware is called JEM (Japanese Experiment Module) and will be attached to the Space Station core. JEM consists of a pressurized module, an exposed facility, a scientific/equipment airlock, a local remote manipulator, and experimental logistic module. With all those hardware elements JEM will accommodate general scientific and technology development research (some of the elements are to utilize the advantage of the microgravity environment), and also accommodate control panels for the Space Station Mobile Remote Manipulator System and attached payloads.
Solaris: Orbital station: Automatic laboratory for outer space rendezvous and operations
NASA Technical Reports Server (NTRS)
Runavot, J. J.
1981-01-01
The preliminary design for a modular orbital space station (unmanned) is outlined. The three main components are a support module, an experiment module, and an orbital transport vehicle. The major types of missions (assembly, materials processing, and Earth observation) that could be performed are discussed.
47 CFR 80.213 - Modulation requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... transmission period. (g) Radar stations operating in the bands above 2.4 GHz may use any type of modulation consistent with the bandwidth requirements in § 80.209(b). (h) Radar transponder coast stations using the... designed to reduce interference caused by triggering from radar antenna sidelobes. (i) Variable frequency...
Japanese Experiment Module (JEM)
NASA Technical Reports Server (NTRS)
2003-01-01
The Japanese Experiment Module (JEM) pressure module is removed from its shipping crate and moved across the floor of the Space Station Processing Facility at Kennedy Space Center (KSC) to a work stand. A research laboratory, the pressurized module is the first element of the JEM, named 'Kibo' (Hope) to arrive at KSC. Japan's primary contribution to the International Space Station, the module will enhance unique research capabilities of the orbiting complex by providing an additional environment in which astronauts will conduct experiments. The JEM also includes an exposed facility or platform for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and documentation; refinement of the selected conceptual design through additional trades and analyses; design, fabrication, and test of the Development Model; and design, fabrication, and test of the Interrack Demonstration Unit; and support of the requirements definition review (RDR). The purpose of part 2 was to prove concept feasibility.
2017-02-07
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, thousands of pounds of supplies, equipment and scientific research materials are prepared for loading aboard a Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Michael Suffredini, program manager, International Space Station, NASA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Michael Suffredini, program manager, International Space Station, NASA; William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; and Bernardo Patti, head of International Space Station, Program Department, ESA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
Japanese Experiment Module arrival
2007-03-29
Several components for delivery to the International Space Station sit in test stands inside the Space Station Processing Facility highbay. To the right, from back to front, are the Japanese Experiment Module, the Raffaello multi-purpose logistics module, and the European Space Agency's Columbus scientific research module. To the left in front is the starboard truss segment S5. Behind it is the test stand that will hold the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
2009-12-17
CAPE CANAVERAL, Fla. - A Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft, delivers the Russian-built Mini Research Module1, or MRM1, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
A rack is installed in MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers (right, left and center) in the Space Station Processing Facility wait to install a laboratory rack in the Multi-Purpose Logistics Module Leonardo (background). Leonardo is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
A rack is installed in MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the Multi-Purpose Logistics Module Leonardo (right) is ready for installation of a laboratory rack (left center). Leonardo is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the Rack Insertion Unit lifts another laboratory rack to the Multi-Purpose Logistics Module Leonardo, in the background. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the International Space Station aboard the Space Shuttle. Leonardo will be launched for the first time March 1, 2001, on Shuttle mission STS-102. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-06-03
KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility is attached to the U.S. Node 2 to lift it out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.
1998-08-14
Technicians carefully lower an Integrated Equipment Assembly (IEA) onto a work stand in the Space Station Processing Facility at KSC . The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999
Space Station Cosmonauts Walk in Space to Upgrade Communications Hardware
2018-02-02
Aboard the International Space Station, Expedition 54 Flight Engineers Alexander Misurkin and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) conducted a spacewalk outside the Pirs docking compartment Feb. 2 to install a new high-gain communications antenna on the aft end of the Zvezda Service Module and retrieve science experiment packages from the hull of the module. It was the 208th spacewalk in support of space station assembly and maintenance, the fourth in Misurkin’s career and the second for Shkaplerov.
1998-08-14
Technicians in the Space Station Processing Facility at KSC prepare to lower an Integrated Equipment Assembly (IEA) onto a work stand. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999
Lopez-Alegria exercises in the Zvezda Service module
2006-11-05
ISS014-E-07115 (2 Nov. 2006) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station. In this close-up view, the TVIS is out of frame.
Helms with laptop in Destiny laboratory module
2001-03-30
ISS002-E-5478 (30 March 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, works at a laptop computer in the U.S. Laboratory / Destiny module of the International Space Station (ISS). The Space Station Remote Manipulator System (SSRMS) control panel is visible to Helms' right. This image was recorded with a digital still camera.
International Space Station (ISS)
2001-02-11
This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Participation of Bell Telephone Laboratories in Project Echo and Experimental Results
NASA Technical Reports Server (NTRS)
Jakes, William C., Jr.
1961-01-01
On August 12, 1960, Echo I, a 100-foot-diameter spherical balloon, was placed in orbit around the earth by the National Aeronautics and Space Administration. The objective was to demonstrate the feasibility of long-distance communication by microwave reflection from a satellite. A two-way coast-to-coast voice circuit was to be established between the Jet Propulsion Laboratory (JPL) facility in California and a station provided by Bell Telephone Laboratories (STL) in New Jersey. Similar tests were also planned with the Naval Research Laboratory and other stations. This paper describes the general organization and operation of the Holmdel, New Jersey, station, and discusses the results of the experiments performed between the balloon launching and March 1, 1961. Successful voice communication was achieved through a variety of modulation methods including frequency modulation with feedback, amplitude modulation, single-sideband modulation, and narrow-band phase modulation. Careful measurements were also made of the loss in the transmission path.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, head of International Space Station, Program Department, European Space Agency, or ESA, is photographed with invited guests of ESA in front of node 3 for the International Space Station following a ceremony transferring the ownership of the node from ESA to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, center, head of International Space Station, Program Department, European Space Agency, or ESA, admires the node 3 for the International Space Station, which his agency provided, following a ceremony transferring the ownership of the node from ESA to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
Hey! What's Space Station Freedom?
NASA Technical Reports Server (NTRS)
Vonehrenfried, Dutch
1992-01-01
This video, 'Hey! What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.
Hey] What's Space Station Freedom?
NASA Astrophysics Data System (ADS)
Vonehrenfried, Dutch
This video, 'Hey] What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, from left, Michael Suffredini, program manager, International Space Station, NASA; Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy; and Bernardo Patti, head of International Space Station, Program Department, ESA, are photographed in front of node 3 for the International Space Station following a ceremony transferring the ownership of the node from the European Space Agency, or ESA, to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
Cosmonaut Gidzenko Near Hatch Between Unity and Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.
International Space Station (ISS)
1999-01-01
The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.
International Space Station Assembly
NASA Technical Reports Server (NTRS)
1999-01-01
The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.
Action Cam Footage from U.S. Spacewalk 41
2017-05-09
This footage was taken by NASA astronaut Peggy Whitson during a spacewalk on the International Space Station on Thursday, March 30. She was joined on the spacewalk by NASA astronaut Shane Kimbrough. The two spacewalkers reconnected cables and electrical connections on PMA-3 at its new home on top of the Harmony module. They also installed the second of the two upgraded computer relay boxes on the station’s truss and installed shields and covers on PMA-3 and the now-vacant common berthing mechanism port on Tranquility.
OA-7 Preparations and move from SSPF to PHSF
2017-02-21
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Orbital ATK CYGNUS pressurized cargo module is bagged with a protective coverage and lifted up by crane for transfer to the KAMAG transporter. The module is secured on the transporter and moved to the Payload Hazardous Servicing Facility. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.
2008-11-26
S126-E-11974 (26 Nov. 2008) --- Backdropped against white clouds, the aft section of Endeavour's cargo bay, now holding the multipurpose logistics module Leonardo, is featured in this digital still photo, framed through a window on the International Space Station. Endeavour and the orbital outpost have been docked for almost two weeks while their crews have joined efforts in home improvement on the station and other work. Astronauts Donald Pettit and Shane Kimbrough, operating the space station's robot arm from inside the Destiny laboratory module, detached the Leonardo cargo canister from its temporary parking place on the station a few hours earlier and re-berthed it in the cargo bay.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The Japanese Experiment Module (JEM) sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the Experiment Logistics Module Pressurized Section of the JEM, which will be delivered to the space station on mission STS-123. The JEM will fly on mission STS-124. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) gets information about the facility while on a tour of KSC. Behind the group is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.
1999-12-02
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-102's Expedition II discuss the Pressurized Mating Adapter (PMA-3) (top of photo) with workers from Johnson Space Center. From left are Yuriy Vladimirovich Usachev, Dave Moore (JSC), Susan J. Helms, James S. Voss, Arne Aamodt and Matt Myers (both of JSC). The PMA-3 is a component of the International Space Station (ISS). Voss, Helms and Usachev will be staying on the ISS, replacing the Expedition I crew, Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center
1999-12-02
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, members of the STS-102 crew pose with workers from Johnson Space Center in front of the Pressurized Mating Adapter (PMA-3), a component of the International Space Station (ISS). From left are Dave Moore (JSC), Susan J. Helms, Arne Aamodt (JSC), Yuriy Vladimirovich Usachev, Matt Myers (JSC) and James S. Voss. Voss, Helms and Usachev, known as the Expedition II crew, will be staying on the ISS, replacing the Expedition I crew, Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center
2009-12-17
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers prepare to roll the transportation case protecting the Russian-built Mini Research Module1, or MRM1, from the cargo bay of a Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-17
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to offload the Russian-built Mini Research Module1, or MRM1, from a Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-17
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers roll the transportation case protecting the Russian-built Mini Research Module1, or MRM1, from the cargo bay of a Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-17
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a transportation case protecting the Russian-built Mini Research Module1, or MRM1, awaits offloading from a Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-17
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers prepare to offload the Russian-built Mini Research Module1, or MRM1, from a Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-17
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, the Russian-built Mini Research Module1, or MRM1, begins its trip from the Shuttle Landing Facility to the Astrotech Space Operations facility in Titusville, Fla., where it will undergo final processing for flight. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-17
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers prepare a crane to assist with the offloading of the Russian-built Mini Research Module1, or MRM1, from a Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-17
CAPE CANAVERAL, Fla. - A Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft, lands at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida with the Russian-built Mini Research Module1, or MRM1, aboard. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Italian-built module, U.S. Node 2, for the International Space Station is offloaded from a Beluga at the Shuttle Landing Facility. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.
Expedition 30 crewmembers in the SM
2012-03-24
ISS030-E-173969 (24 March 2012) --- Expedition 30 crew members are pictured in the Zvezda Service Module of the International Space Station as they prepare to move to the appropriate Soyuz vehicles, due to the possibility that space debris could pass close to the station. Burbank, Shkaplerov and Ivanishin sheltered in the Soyuz TMA-22 spacecraft attached to the Poisk Mini-Research Module 2 (MRM2) while Kononenko, Kuipers and Pettit took to the Soyuz TMA-03M docked to the Rassvet Mini-Research Module 1 (MRM-1).
Grumman evaluates Space Station thermal control and power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandebo, S.W.
1985-09-01
Attention is given to the definition of requirements for the NASA Space Station's electrical power and thermal control systems, which must be highly dependable to minimize the need for external support and will embody a highly flexible modular design concept. Module maintenance will be performed by in-orbit replacement of failed modules, and energy storage system growth will be accomplished by the incorporation of additional modules. Both photovoltaic and solar heat-driven electrical generator concepts are under consideration as the basis of the power system.
Crew considerations in the design for Space Station Freedom modules on-orbit maintenance
NASA Technical Reports Server (NTRS)
Stokes, Jack W.; Williams, Katherine A.
1992-01-01
The paper presents an approach to the maintenance process currently planned for the Space Station Freedom modules. In particular, it describes the planned crew interfaces with maintenance items, and the anticipated implications for the crew in performing the interior and exterior maintenance of modules developed by U.S., ESA, and NASDA. Special consideration is given to the maintenance requirements, allocations, and approach; the maintenance design; the Maintenance Workstation; the robotic mechanisms; and the developemnt of maintenance techniques.
Orion EM-1 Crew Module Move from Clean Room to Work Station
2017-05-11
Workers have moved the Orion crew module pressure vessel for NASA’s Exploration Mission 1 (EM-1) out of a clean room inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. The crew module will be moved to a work station where it will undergo additional processing to prepare it for launch in 2019. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1.
1995-11-01
This is a view of the Russian Mir Space Station photographed by a crewmember of the second Shuttle/Mir docking mission, STS-74. The image shows: top - Progress supply vehicle, Kvant-1 module, and the Core module; middle left - Spektr module; middle center - Kristall module and Docking module; middle right - Kvant-2 module; and bottom - Soyuz. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.
Automation of Space Station module power management and distribution system
NASA Technical Reports Server (NTRS)
Bechtel, Robert; Weeks, Dave; Walls, Bryan
1990-01-01
Viewgraphs on automation of space station module (SSM) power management and distribution (PMAD) system are presented. Topics covered include: reasons for power system automation; SSM/PMAD approach to automation; SSM/PMAD test bed; SSM/PMAD topology; functional partitioning; SSM/PMAD control; rack level autonomy; FRAMES AI system; and future technology needs for power system automation.
Artist's concept of Skylab space station cluster in Earth's orbit
1971-10-01
S71-52192 (1971) --- An artist's concept of the Skylab space station cluster in Earth's orbit. The cutaway view shows astronaut activity in the Orbital Workshop (OWS). The Skylab cluster is composed of the OWS, Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), and the Command and Service Module (CSM). Photo credit: NASA
International Space Station (ISS)
2000-09-01
This image of the International Space Station (ISS) was taken during the STS-106 mission. The ISS component nearest the camera is the U.S. built Node 1 or Unity module, which cornected with the Russian built Functional Cargo Block (FGB) or Zarya. The FGB was linked with the Service Module or Zvezda. On the far end is the Russian Progress supply ship.
The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter
NASA Technical Reports Server (NTRS)
1999-01-01
An Airbus Industrie A300-600ST 'Beluga' Super Transporter touches down at the Shuttle Landing Facility to deliver its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.
2010-05-18
ISS023-E-047431 (18 May 2010) --- Intersecting the thin line of Earth's atmosphere, the docked space shuttle Atlantis is featured in this image photographed by an Expedition 23 crew member on the International Space Station. The Russian-built Mini-Research Module 1 (MRM-1) is visible in the payload bay as the shuttle robotic arm prepares to unberth the module from Atlantis and position it for handoff to the station robotic arm. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station.
The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter
NASA Technical Reports Server (NTRS)
1999-01-01
An Airbus Industrie A300-600ST 'Beluga' Super Transporter lands in the rain at the Shuttle Landing Facility to deliver its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
Space station communications and tracking equipment management/control system
NASA Technical Reports Server (NTRS)
Kapell, M. H.; Seyl, J. W.
1982-01-01
Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.
47 CFR 78.109 - Major and minor modifications to stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... modulation; (4) Any change in the location of a station transmitter, other than a CARS pickup station... operation of a CARS pickup station; (5) Any change in frequency assignment, including polarization; (6) Any... addition or change in frequency, excluding removing a frequency; (9) Any modification or amendment...
Updates on HRF Payloads Operations in Columbus ATCS
NASA Technical Reports Server (NTRS)
DePalo, Savino; Wright, Bruce D.; La,e Robert E.; Challis, Simon; Davenport, Robert; Pietrafesa, Donata
2011-01-01
The NASA developed Human Research Facility 1 (HRF1) and Human Research Facility (HRF2) experiment racks have been operating in the European Space Agency (ESA) Columbus module of the International Space Station (ISS) since Summer 2008. The two racks are of the same design. Since the start of operations, unexpected pressure spikes were observed in the Columbus module's thermal-hydraulic system during the racks activation sequence. The root cause of these spikes was identified in the activation command sequence in the Rack Interface Controller (RIC), which controls the flow of thermal-hydraulic system fluid through the rack. A new Common RIC Software (CRS) release fixed the bug and was uploaded on both racks in late 2009. This paper gives a short introduction to the topic, describes the Columbus module countermeasures to mitigate the spikes, describes the ground validation test of the new software, and describes the flight checks performed before and after the final upload. Finally, the new on-orbit test designed to further simplify the racks hydraulic management is presented.
The NASA data systems standardization program - Radio frequency and modulation
NASA Technical Reports Server (NTRS)
Martin, W. L.
1983-01-01
The modifications being considered by the NASA-ESA Working Group (NEWG) for space-data-systems standardization to maximize the commonality of the NASA and ESA RF and modulation systems linking spaceborne scientific experiments with ground stations are summarized. The first phase of the NEWG project shows that the NASA MK-IVA Deep Space Network and Shuttle Interrogator (SI) systems in place or planned for 1985 are generally compatible with the ESA Network, but that communications involving the Tracking and Data Relay Satellite (TDRS) are incompatible due to its use of spread-spectrum modulation, pseudonoise ranging, multiple-access channels, and Mbit/s data rates. Topics under study for the post-1985 period include low-bit-rate capability for the ESA Network, an optional 8-kHz command subcarrier for the SI, fixing the spacecraft-transponder frequency-multiplication ratios for possible X-band uplinks or X-band nondeep-space downlinks, review of incompatible TDRS features, and development of the 32-GHz band.
2003-06-12
KENNEDY SPACE CENTER, FLA. - On a KSC visit, Executive Director of NASDA Koji Yamamoto (kneeling, left) reaches out to a piece of Columbia debris in the Columbia Debris Hangar. At right is Shuttle Launch Director Mike Leinbach, who is explaining recovery and reconstruction efforts. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
STS-98 and Expedition One crew with rack in U.S. Laboratory / Destiny module
2001-02-11
STS98-E-5159 (11 February 2001) --- Astronaut Mark L. Polansky, STS-98 pilot, works inside the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both the shuttle and station crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.
2009-07-16
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians keep watch as the control moment gyroscope is lifted past the Node 3 Tranquility module to an EXPRESS Logistics Carrier. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12 . Photo credit: NASA/Jack Pfaller
Wireless Headset Communication System
NASA Technical Reports Server (NTRS)
Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.
1995-01-01
System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.
1998-08-13
An Integrated Equipment Assembly (IEA) is moved into the center of the Space Station Processing Facility clean room at KSC for transition to the high bay. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999
1998-08-14
An Integrated Equipment Assembly (IEA) is lifted from a rotation stand in the Space Station Processing Facility at KSC to be placed on a work stand. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999
Space station architectural elements model study. Space station human factors research review
NASA Technical Reports Server (NTRS)
Taylor, Thomas C.; Khan, Eyoub; Spencer, John; Rocha, Carlos; Cliffton, Ethan Wilson
1987-01-01
Presentation visuals and an extended abstract represent a study to explore and analyze the interaction of major utilities distribution, generic workstation, and spatial composition of the SPACEHAB space station module. Issues addressed include packing densities vs. circulation, efficiency of packing vs. standardization, flexibility vs. diversity, and composition of interior volume as space for living vs. residual negative volume. The result of the study is expected to be a series of observations and preliminary evaluation criteria which focus on the productive living environment for a module in orbit.
Process development for automated solar cell and module production. Task 4: Automated array assembly
NASA Technical Reports Server (NTRS)
Hagerty, J. J.
1981-01-01
The Unimate robot was programmed for the final 35 cell pattern to be used in the fabrication of the deliverable modules. Mechanical construction of the Automated Lamination Station and Final Assembly Station were completed on schedule. All final wiring and interconnect cables were also completed and the first operational testing began. The final controlling program was written. A local fabricator was contracted to produce the glass reinforced concrete panels to be used for testing and deliverables. A video tape showing all three stations in operation was produced.
IVTS-CEV (Interactive Video Tape System-Combat Engineer Vehicle) Gunnery Trainer.
1981-07-01
video game technology developed for and marketed in consumer video games. The IVTS/CEV is a conceptual/breadboard-level classroom interactive training system designed to train Combat Engineer Vehicle (CEV) gunners in target acquisition and engagement with the main gun. The concept demonstration consists of two units: a gunner station and a display module. The gunner station has optics and gun controls replicating those of the CEV gunner station. The display module contains a standard large-screen color video monitor and a video tape player. The gunner’s sight
OA-7 Cargo Module Installation onto KAMAG
2017-03-15
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians use a crane to lift the Orbital ATK Cygnus pressurized cargo module, enclosed in its payload fairing, for transfer to a KAMAG transporter. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
1997-01-01
This is a view of the Russian Mir Space Station photographed by a crewmember of the fifth Shuttle/Mir docking mission, STS-81. The image shows: upper center - Progress supply vehicle, Kvant-1 module, and Core module; center left - Priroda module; center right - Spektr module; bottom left - Kvant-2 module; bottom center - Soyuz; and bottom right - Kristall module and Docking module. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars, by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. Priroda's main purpose was Earth remote sensing. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.
2017-12-05
The mission of the Bigelow Expandable Activity Module (BEAM) on the International Space Station has been, well, expanded. After more than a year and a half on orbit providing performance data on expandable habitat technologies, NASA and Bigelow Aerospace have reached agreement to extend the life of the privately-owned module. For a minimum of three more years, BEAM will be a more operational element of the station used in crew activities and on board storage, allowing time to gather more data on the technology’s structural integrity, thermal stability, and resistance to space debris, radiation and microbial growth. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
NASA Technical Reports Server (NTRS)
1972-01-01
Detailed and supporting analyses are presented of the hazardous payloads, docking, and on-board survivability aspects connected with earth orbital operations of the space shuttle program. The hazards resulting from delivery, deployment, and retrieval of hazardous payloads, and from handling and transport of cargo between orbiter, sortie modules, and space station are identified and analyzed. The safety aspects of shuttle orbiter to modular space station docking includes docking for assembly of space station, normal resupply docking, and emergency docking. Personnel traffic patterns, escape routes, and on-board survivability are analyzed for orbiter with crew and passenger, sortie modules, and modular space station, under normal, emergency, and EVA and IVA operations.
2008-11-19
CAPE CANAVERAL, Fla. – Workers in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida oversee placement of the Cupola module onto a workstand. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston
2008-11-19
CAPE CANAVERAL, Fla. – Suspended by a crane in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Cupola module is being moved to a workstand. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston
2008-11-19
CAPE CANAVERAL, Fla. – Suspended by a crane in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Cupola module is lowered toward the workstand. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston
2008-11-19
CAPE CANAVERAL, Fla. – Suspended by a crane in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Cupola module moves closer to the workstand at right. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Michael Suffredini, program manager, International Space Station, NASA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director; Bernardo Patti, head of International Space Station, Program Department, ESA; and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Kennedy Director Bob Cabana addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; Bernardo Patti, head of International Space Station, Program Department, ESA; and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, right, head of International Space Station, Program Department, European Space Agency, or ESA, has a lot to smile about as he is photographed in front of the node 3 for the International Space Station following a ceremony transferring the ownership of the node from ESA to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director; Michael Suffredini, program manager, International Space Station, NASA; William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; and Bernardo Patti, head of International Space Station, Program Department, ESA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
A rack is installed in MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers inside the Multi-Purpose Logistics Module Leonardo check installation of a laboratory rack inside the Multi-Purpose Logistics Module Leonardo. The pressurized module is the first of three that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Viktorov, A N; Novikova, N D; Deshevaia, E A; Bragina, M P; Shnyreva, A V; Sizova, T P; D'iakov, Iu T
1998-01-01
Results of many years of the survey of highly specific evolution of quantitative and species composition of microflora of the MIR environment are reviewed. Analysis of the data enabled listing of microorganisms-declinous fungi with the ability of residential colonization of structural materials of the interior and equipment of habitable modules of the space station. Results of the studies of variability and level of similarity/affinity on the basis of DNA, polymorphism of strains isolated in space flight, convincingly confirmed this characteristic in the Penicillium chrysogenum cultures. In view of the common origin determined from the signs of genetic alliance, the P. chrysogenum strains isolated on MIR in 1995 can be considered descendants of the cultures found at the beginning of the MIR operation. This ecological expansion of P. chrysogenum in the space station environment gains in prominence due to the fact that representative of this particular species known for its active biodestructive nature were, as a rule, detected in the areas where structural materials of the SALYUT and MIR space stations incurred biological degradation.
Usachev in Service Module with Russian food cans
2001-07-16
STS104-E-5126 (16 July 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander, appears surrounded by food in the Zvezda service module aboard the International Space Station (ISS). Representing Rosaviakosmos, Usachev, commander, along with two astronauts, are hosting the STS-104 crew of astronauts on the International Space Station (ISS). The image was recorded with a digital still camera.
Kelly at SSRMS controls in Destiny laboratory module
2005-08-05
S114-E-7484 (5 August 2005) --- Astronaut James M. Kelly, STS-114 pilot, works in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station. Astronauts Kelly and Wendy B. Lawrence (out of frame), mission specialist, joined forces to re-stow the Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) in the cargo bay.
Apollo experience report: Crew station integration. Volume 2: Crew station displays and controls
NASA Technical Reports Server (NTRS)
Langdoc, W. A.; Nassman, D. A.
1975-01-01
The functional requirements for the Apollo displays and controls system are presented. The configuration of the displays, controls, and panels for both the command module and the lunar module are described, and the design development and operational experience of the displays and controls system are discussed. Pertinent recommendations for future displays and controls system design efforts are made.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
Posing on the platform next to the SPACEHAB Logistics Double Module in the SPACEHAB Facility are the STS-96 crew (from left) Mission Specialists Dan Barry, Tamara Jernigan, Valery Tokarev of Russia, and Julie Payette; Pilot Rick Husband; Mission Specialist Ellen Ochoa; and Commander Kent Rominger. The crew is at KSC for a payload Interface Verification Test for their upcoming mission to the International Space Station. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
During a payload Interface Verification Test (IVT) for the upcoming mission to the International Space Station , Chris Jaskolka of Boeing points out a piece of equipment in the SPACEHAB module to STS-96 Commander Kent Rominger, Mission Specialist Ellen Ochoa and Pilot Rick Husband. Other crew members visiting KSC for the IVT are Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.
Automation in the Space Station module power management and distribution Breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Lollar, Louis F.
1990-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-120 Mission Specialists Michael Foreman (third from right) and STS-115 Mission Specialists Joseph Tanner (second from right) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. STS-115 will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. STS-120 will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
47 CFR 74.463 - Modulation requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., modulation shall not exceed 100 percent on negative peaks. (c) If frequency modulation is employed, emission... 47 Telecommunication 4 2010-10-01 2010-10-01 false Modulation requirements. 74.463 Section 74.463....463 Modulation requirements. (a) Each new remote pickup broadcast station authorized to operate with a...
Structural cost optimization of photovoltaic central power station modules and support structure
NASA Technical Reports Server (NTRS)
Sutton, P. D.; Stolte, W. J.; Marsh, R. O.
1979-01-01
The results of a comprehensive study of photovoltaic module structural support concepts for photovoltaic central power stations and their associated costs are presented. The objective of the study has been the identification of structural cost drivers. Parametric structural design and cost analyses of complete array systems consisting of modules, primary support structures, and foundations were performed. Area related module cost was found to be constant with design, size, and loading. A curved glass module concept was evaluated and found to have the potential to significantly reduce panel structural costs. Conclusions of the study are: array costs do not vary greatly among the designs evaluated; panel and array costs are strongly dependent on design loading; and the best support configuration is load dependent
Space Station Freedom pressurized element interior design process
NASA Technical Reports Server (NTRS)
Hopson, George D.; Aaron, John; Grant, Richard L.
1990-01-01
The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.
Data transmission system with distributed microprocessors
Nambu, Shigeo
1985-01-01
A data transmission system having a common request line and a special request line in addition to a transmission line. The special request line has priority over the common request line. A plurality of node stations are multi-drop connected to the transmission line. Among the node stations, a supervising station is connected to the special request line and takes precedence over other slave stations to become a master station. The master station collects data from the slave stations. The station connected to the common request line can assign a master control function to any station requesting to be assigned the master control function within a short period of time. Each station has an auto response control circuit. The master station automatically collects data by the auto response controlling circuit independently of the microprocessors of the slave stations.
Enterprise: an International Commercial Space Station Option
NASA Astrophysics Data System (ADS)
Lounge, John M.
2002-01-01
In December 1999, the U.S. aerospace company SPACEHAB, Inc., (SPACEHAB) and the Russian aerospace company Rocket and Space Corporation Energia (RSC-Energia), initiated a joint project to establish a commercial venture on the International Space Station (ISS). The approach of this venture is to use private capital to build and attach a commercial habitable module (the "Enterprise Module") to the Russian Segment of the ISS. The module will become an element of the Russian Segment; in return, exclusive rights to use this module for commercial business will be granted to its developers. The Enterprise Module has been designed as a multipurpose module that can provide research accommodation, stowage and crew support services. Recent NASA budget decisions have resulted in the cancellation of NASA's ISS habitation module, a significant delay in its new ISS crew return vehicle, and a mandate to stabilize the ISS program. These constraints limit the ISS crew size to three people and result in very little time available for ISS research support. Since research activity is the primary reason this Space Station is being built, the ISS program must find a way to support a robust international research program as soon as possible. The time is right for a commercial initiative incorporating the Enterprise Module, outfitted with life support systems, and commercially procured Soyuz vehicles to provide the capability to increase ISS crew size to six by the end of 2005.
2010-05-18
ISS023-E-046806 (18 May 2010) --- Backdropped by Earth?s horizon and the blackness of space, the docked space shuttle Atlantis is featured in this image photographed by an Expedition 23 crew member on the International Space Station. The Russian-built Mini-Research Module 1 (MRM-1) is visible in the payload bay as the shuttle robotic arm prepares to unberth the module from Atlantis and position it for handoff to the station robotic arm (visible at right). Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station.
MPLM Donatello is offloaded at the SLF
NASA Technical Reports Server (NTRS)
2001-01-01
At the Shuttle Landing Facility, cranes help offload the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane. The third of three for the International Space Station, the module will be moved on a transporter to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter
NASA Technical Reports Server (NTRS)
1999-01-01
An Airbus Industrie A300-600ST 'Beluga' Super Transporter is reflected in the rain puddles as it comes to a stop at the Shuttle Landing Facility. The Beluga is carrying the Raffaello, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.
The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter
NASA Technical Reports Server (NTRS)
1999-01-01
An Airbus Industrie A300-600ST 'Beluga' Super Transporter is reflected in the rain puddles as it taxis toward the mate/demate tower at the Shuttle Landing Facility. The Beluga is carrying the Raffaello, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.
2008-05-28
CAPE CANAVERAL, Fla. -- Replacement parts for the Zvezda service module toilet on the International Space Station are inspected following their arrival at Kennedy Space Center. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to space shuttle Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Kim Shiflett
2008-05-28
CAPE CANAVERAL, Fla. -- Replacement parts for the Zvezda service module toilet on the International Space Station are inspected following their arrival at Kennedy Space Center. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to space shuttle Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Kim Shiflett
International Space Station (ISS)
1997-01-01
This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-01-01
This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
NASA Technical Reports Server (NTRS)
Springer, Darlene
1989-01-01
Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.
Virtual-reality-Based 3D navigation training for emergency egress from spacecraft.
Aoki, Hirofumi; Oman, Charles M; Natapoff, Alan
2007-08-01
Astronauts have reported spatial disorientation and navigation problems inside spacecraft whose interior visual vertical direction varies from module to module. If they had relevant preflight practice they might orient better. This experiment examined the influence of relative body orientation and individual spatial skills during VR training on a simulated emergency egress task. During training, 36 subjects were each led on 12 tours through a space station by a virtual tour guide. Subjects wore a head-mounted display and controlled their motion with a game-pad. Each tour traversed multiple modules and involved up to three changes in visual vertical direction. Each subject was assigned to one of three groups that maintained different postures: visually upright relative to the "local" module; constant orientation relative to the "station" irrespective of local visual vertical; and "mixed" (local, followed by station orientation). Groups were balanced on the basis of mental rotation and perspective-taking test scores. Subjects then performed 24 emergency egress testing trials without the tour guide. Smoke reduced visibility during the last 12 trials. Egress time, sense of direction (by pointing to origin and destination) and configuration knowledge were measured. Both individual 3D spatial abilities and orientation during training influence emergency egress performance, pointing, and configuration knowledge. Local training facilitates landmark and route learning, but station training enhances sense of direction relative to station, and, therefore, performance in low visibility. We recommend a sequence of local, followed by station, and then randomized orientation training, preferably customized to a trainee's 3D spatial ability.
Advanced technologies for encryption of satellite links
NASA Astrophysics Data System (ADS)
McMahan, Sherry S.
The use of encryption on satellite links is discussed. Advanced technology exists to provide transmission security for large earth station with data rates up to 50 megabits per second. One of the major concerns in the use of encryption equipment with very small aperture terminals (VSAT) is the key management issue and the related operational costs. The low cost requirement and the lack of physical protection of remote VSATs place severe constraints on the design of encryption equipment. Encryption may be accomplished by embedding a tamper proof encryption module into the baseband unit of each VSAT. VSAT networks are usually star networks where there is a single large earth station that serves as a hub and all satellite communications takes place between each VSAT and the hub earth station. The hub earth station has the secret master key of each VSAT. These master keys are used to downline load encrypted session keys to each VSAT. A more secure alternative is to use public key techniques where each embedded VSAT encryption module internally generates its own secret and public numbers. The secret number never leaves the module while the public number is sent to the hub at the time of initialization of the encryption module into the VSAT. Physical access control to encryption modules of VSAT systems can be implemented using passwords, smart cards or biometrics.
Kononenko reviews crew procedures
2012-03-24
ISS030-E-171108 (24 March 2012) --- Russian cosmonaut Oleg Kononenko, Expedition 30 flight engineer, wearing a communication headset, is pictured in the Zvezda Service Module of the International Space Station as crew members prepare for their move to the appropriate Soyuz vehicles, due to the possibility that space debris could pass close to the station. Burbank, Shkaplerov and Ivanishin sheltered in the Soyuz TMA-22 spacecraft attached to the Poisk Mini-Research Module 2 (MRM2) while Kononenko, Kuipers and Pettit took to the Soyuz TMA-03M docked to the Rassvet Mini-Research Module 1 (MRM-1).
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
1998-10-22
In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
...-diameter lateral pipeline to connect the Douglas Meter Station to EPNG's existing Line No. 2164; Replacement of compressor modules and station yard piping at the existing Willcox Compressor Station; [[Page 26540
2009-12-08
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility Bay 3 at NASA's Kennedy Space Center in Florida, United Space Alliance workers visually check the alignment of a space shuttle main engine approaching shuttle Discovery for the shuttle's STS-131 mission to the International Space Station. The seven-member STS-131 crew will deliver a Multi-Purpose Logistics Module filled with resupply stowage platforms and racks to be transferred to locations around the station. Three spacewalks will include work to attach a spare ammonia tank assembly to the station's exterior and return a European experiment from outside the station's Columbus module. Discovery's launch, targeted for March 18, 2010, will initiate the 33rd shuttle mission to the station. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Jack Pfaller
Conceptual design and integration of a space station resistojet propulsion assembly
NASA Technical Reports Server (NTRS)
Tacina, Robert R.
1987-01-01
The resistojet propulsion module is designed as a simple, long life, low risk system offering operational flexibility to the space station program. It can dispose of a wide variety of typical space station waste fluids by using them as propellants for orbital maintenance. A high temperature mode offers relatively high specific impulse with long life while a low temperature mode can propulsively dispose of mixtures that contain oxygen or hydrocarbons without reducing thruster life or generating particulates in the plume. A low duty cycle and a plume that is confined to a small aft region minimizes the impacts on the users. Simple interfaces with other space station systems facilitate integration. It is concluded that there are no major obstacles and many advantages to developing, installing, and operating a resistojet propulsion module aboard the Initial Operational Capability (IOC) space station.
International Space Station (ISS)
2000-09-01
This image of the International Space Station (ISS) was taken when Space Shuttle Atlantis (STS-106 mission) approached the ISS for docking. At the top is the Russian Progress supply ship that is linked with the Russian built Service Module or Zvezda. The Zvezda is cornected with the Russian built Functional Cargo Block (FGB) or Zarya. The U.S. built Node 1 or Unity module is seen at the bottom.
2009-12-17
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a crane deposits the transportation case protecting the Russian-built Mini Research Module1, or MRM1, onto a transporter. The MRM was delivered to Kennedy aboard the Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft, in the background. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-17
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the transportation case protecting the Russian-built Mini Research Module1, or MRM1, is lifted onto a transporter. The MRM was delivered to Kennedy aboard the Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft, in the background. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
1998-05-22
KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan
1998-05-22
KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan
ITER Central Solenoid Module Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, John
The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort betweenmore » the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first ITER module is in progress. The seven modules will be individually shipped to Cadarache, France upon their completion. This paper describes the processes and status of the fabrication of the CS Modules for ITER.« less
A Precision, Low-Cost GPS-Based Transmitter Synchronization Scheme for Improved AM Reception
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen Fulton; Moore, Anthony
2009-01-01
This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to {approx}1 part in 10{sup 9} or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station's carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station's audio at the receiver and concurrent distortion of the audio modulation from the distant station(s) andmore » often cause listeners to ldquotune outrdquo due to the low reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; hybrid digital (HD) signals will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1000-$2000), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long- term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific carrier frequency desired. The stability of the disciplining source, typically {approx}1 part in 10{sup 9} to 10{sup 11}, is thus transferred to the final AM transmitter carrier output frequency.« less
JPRS report: Science and technology. Central Eurasia: Space
NASA Astrophysics Data System (ADS)
1994-12-01
Translated articles cover the following topics: plasma instabilities and space vehicles, need discussed for protection against space catastrophes, Russians offer new energy concept for space stations, Russian space projects: Martian research, multi-impulse rendezvous trajectory for two spacecraft in circular orbit, placement of spacecraft into orbit around Mars with aerobraking, model of the shielding for the inhabited compartments of the base module of the Mir station, and measurement of the background electrostatic and variable electric fields on the outer surface of the Kvant module of the Mir orbital station. There are 25 translated articles in this 28 December 1994 edition.
2008-10-15
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers prepare to close the hatch on the Multi-Purpose Logistics Module Leonardo. The module is the payload for space shuttle Endeavour's STS-126 mission to the International Space Station. The 15-day mission will deliver equipment and supplies to the space station in preparation for expansion from a three- to six-person resident crew aboard the complex. Leonardo holds supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch Nov. 14. Photo credit: NASA/Jim Grossmann
2008-10-15
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers prepare to close the hatch on the Multi-Purpose Logistics Module Leonardo. The module is the payload for space shuttle Endeavour's STS-126 mission to the International Space Station. The 15-day mission will deliver equipment and supplies to the space station in preparation for expansion from a three- to six-person resident crew aboard the complex. Leonardo holds supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch Nov. 14. Photo credit: NASA/Jim Grossmann
1998-08-14
An Integrated Equipment Assembly (IEA) is suspended in air after being lifted from a rotation stand in the Space Station Processing Facility at KSC in order to be moved to a work stand. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999
Kavandi at controls of Canadarm2 in Destiny module
2001-07-16
S104-E-5114 (16 July 2001) --- Janet L. Kavandi, STS-104 mission specialist, looks over the Canadarm2, Space Station Remote Manipulator System (SSRMS), control station in the Destiny laboratory during STS-104's visit to the International Space Station (ISS).
NASA Technical Reports Server (NTRS)
Knox, J.
1986-01-01
A higher plant growth system for Controlled Ecological Life Support System (CELSS) applications is described. The system permits independent movement of individual plants during growth. Enclosed within variable geometry growth chambers, the system allocates only the volume required by the growing plants. This variable spacing system maintains isolation between root and shoot environments, providing individual control for optimal growth. The advantages of the system for hydroponic and aeroponic growth chambers are discussed. Two applications are presented: (1) the growth of soybeans in a space station common module, and (2) in a terrestrial city greenhouse.
Design Features and Capabilities of the First Materials Science Research Rack
NASA Technical Reports Server (NTRS)
Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.
2003-01-01
The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.
International Space Station Powered Bolt Nut Anomaly and Failure Analysis Summary
NASA Technical Reports Server (NTRS)
Sievers, Daniel E.; Warden, Harry K.
2010-01-01
A key mechanism used in the on-orbit assembly of the International Space Station (ISS) pressurized elements is the Common Berthing Mechanism. The mechanism that effects the structural connection of the Common Berthing Mechanism halves is the Powered Bolt Assembly. There are sixteen Powered Bolt Assemblies per Common Berthing Mechanism. The Common Berthing Mechanism has a bolt which engages a self aligning Powered Bolt Nut (PBN) on the mating interface (Figure 1). The Powered Bolt Assemblies are preloaded to approximately 84.5 kN (19000 lb) prior to pressurization of the CBM. The PBNs mentioned below, manufactured in 2009, will be used on ISS future missions. An on orbit functional failure of this hardware would be unacceptable and in some instances catastrophic due to the failure of modules to mate and seal the atmosphere, risking loss of crew and ISS functions. The manufacturing processes that create the PBNs need to be strictly controlled. Functional (torque vs. tension) acceptance test failures will be the result of processes not being strictly followed. Without the proper knowledge of thread tolerances, fabrication techniques, and dry film lubricant application processes, PBNs will be, and have been manufactured improperly. The knowledge gained from acceptance test failures and the resolution of those failures, thread fabrication techniques and thread dry film lubrication processes can be applied to many aerospace mechanisms to enhance their performance. Test data and manufactured PBN thread geometry will be discussed for both failed and successfully accepted PBNs.
Astronaut Charles Duke photographed collecting lunar samples at Station 1
1972-04-21
AS16-114-18423 (21 April 1972) --- Astronaut Charles M. Duke Jr., lunar module pilot, is photographed collecting lunar samples at Station No. 1, during the first Apollo 16 extravehicular activity (EVA), at the Descartes landing site. This picture, looking eastward, was taken by astronaut John W. Young, commander. Duke is standing at the rim of Plum Crater. The parked Lunar Roving Vehicle (LRV) can be seen in the left background. While astronauts Young and Duke descended in the Lunar Module (LM) "Orion" to explore the Descartes highlands region of the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.
Apollo 14 Mission image - View of the ALSEP Station
1971-02-05
AS14-67-9361 (5 Feb. 1971) --- A close-up view of two components of the Apollo lunar surface experiments package (ALSEP) which the Apollo 14 astronauts deployed on the moon during their first extravehicular activity (EVA). In the center background is the ALSEP's central station (CS); and in the foreground is the mortar package assembly of the ALSEP's active seismic experiment (ASE). The modularized equipment transporter (MET) can be seen in the right background. While astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, descended in the Lunar Module (LM) to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
... long, 16-inch diameter lateral pipeline to connect the Douglas Meter Station to EPNG's existing Line No. 2164; The replacement of compressor modules and station yard piping at the existing Willcox Compressor Station; Expansion of the existing Douglas Meter Station by installing updated flow control and pressure...
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility sit Raffaello (left) and Leonardo (right), two Multi-Purpose Logistics Modules (MPLMs) built by Italy for the International Space Station. Leonardo is scheduled on mission STS-102, the 8th flight to the Space Station early in 2001. Raffaello is scheduled on mission STS-100, the 9th flight to the Space Station in 2001.
Japanese Experiment Module arrival
2007-03-29
The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Japanese Experiment Module arrival
2007-03-29
The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, head of International Space Station, Program Department, ESA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director, and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
An Airbus arrives at KSC with third MPLM
NASA Technical Reports Server (NTRS)
2001-01-01
An Airbus '''Beluga''' air cargo plane, The Super Transporter, lands at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
An Airbus arrives at KSC with third MPLM
NASA Technical Reports Server (NTRS)
2001-01-01
An Airbus '''Beluga''' air cargo plane, The Super Transporter, arrives at KSC's Shuttle Landing Facility from the factory of Alenia Aerospazio in Turin, Italy. Its cargo is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
Experiment module concepts study. Volume 2: Experiments and mission operations
NASA Technical Reports Server (NTRS)
Macdonald, J. M.
1970-01-01
The baseline experiment program is concerned with future space experiments and cover the scientific disciplines of astronomy, space physics, space biology, biomedicine and biotechnology, earth applications, materials science, and advanced technology. The experiments within each discipline are grouped into functional program elements according to experiments that support a particular area of research or investigation and experiments that impose similar or related demand on space station support systems. The experiment requirements on module subsystems, experiment operating modes and time profiles, and the role of the astronaut are discussed. Launch and rendezvous with the space station, disposal, and on-orbit operations are delineated. The operational interfaces between module and other system elements are presented and include space station and logistic system interfaces. Preliminary launch and on-orbit environmental criteria and requirements are discussed, and experiment equipment weights by functional program elements are tabulated.
2008-05-29
CAPE CANAVERAL, Fla. -- At Launch Pad 39A at Kennedy Space Center, replacement parts for the Zvezda service module toilet on the International Space Station are loaded aboard space shuttle Discovery. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Dimitri Gerondidakis
2008-05-28
CAPE CANAVERAL, Fla. -- A replacement part for the Zvezda service module toilet on the International Space Station is inspected following its arrival at Kennedy Space Center. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to space shuttle Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Kim Shiflett
2008-05-29
CAPE CANAVERAL, Fla. -- At Launch Pad 39A at Kennedy Space Center, technicians load replacement parts for the Zvezda service module toilet on the International Space Station aboard space shuttle Discovery. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Dimitri Gerondidakis
2008-05-28
CAPE CANAVERAL, Fla. -- A technician inspects a replacement part for the Zvezda service module toilet on the International Space Station following its arrival at Kennedy Space Center. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to space shuttle Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Kim Shiflett
2008-05-29
CAPE CANAVERAL, Fla. -- At Launch Pad 39A at Kennedy Space Center, technicians load replacement parts for the Zvezda service module toilet on the International Space Station aboard space shuttle Discovery. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Dimitri Gerondidakis
2008-05-29
CAPE CANAVERAL, Fla. -- At Launch Pad 39A at Kennedy Space Center, a technician loads replacement parts for the Zvezda service module toilet on the International Space Station aboard space shuttle Discovery. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Dimitri Gerondidakis
2008-05-28
CAPE CANAVERAL, Fla. -- A technician inspects a replacement part for the Zvezda service module toilet on the International Space Station following its arrival at Kennedy Space Center. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to space shuttle Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.
1984-01-01
Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.
OA-7 Service Module Arrival, Uncrating, Move from Airlock to Highbay inside SSPF
2017-02-01
The Orbital ATK OA-7 Cygnus spacecraft's service module arrives inside the Space Station Processing Facility of NASA's Kennedy Space Center in Florida, sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. The service module is uncrate from the shipping container, lifted and positioned on a work stand, and moved from the airlock to the highbay for processing. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
Consideration of adding a commercial module to the International Space Station
NASA Astrophysics Data System (ADS)
Friefeld, J.; Fugleberg, D.; Patel, J.; Subbaraman, G.
1999-01-01
The National Aeronautics and Space Administration (NASA) is currently assembling the International Space Station in Low Earth Orbit. One of NASA's program objectives is to encourage space commercialization. Through NASA's Engineering Research and Technology Development program, Boeing is conducting a study to ascertain the feasibility of adding a commercial module to the International Space Station. This module (facility) that can be added, following on-orbit assembly is described. The facility would have the capability to test large, engineering scale payloads in a space environment. It would also have the capability to provide services to co-orbiting space vehicles as well as gathering data for commercial terrestrial applications. The types of industries to be serviced are described as are some of the technical and business considerations that need to be addressed in order to achieve commercial viability.
47 CFR 74.1250 - Transmitters and associated equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1250 Transmitters and associated equipment. (a) FM translator and booster transmitting apparatus, and exciters employed to provide a locally generated and modulated input signal to translator and booster equipment, used by stations authorized under the provisions...
47 CFR 74.1250 - Transmitters and associated equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1250 Transmitters and associated equipment. (a) FM translator and booster transmitting apparatus, and exciters employed to provide a locally generated and modulated input signal to translator and booster equipment, used by stations authorized under the provisions...
47 CFR 74.1250 - Transmitters and associated equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1250 Transmitters and associated equipment. (a) FM translator and booster transmitting apparatus, and exciters employed to provide a locally generated and modulated input signal to translator and booster equipment, used by stations authorized under the provisions...
47 CFR 74.1250 - Transmitters and associated equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1250 Transmitters and associated equipment. (a) FM translator and booster transmitting apparatus, and exciters employed to provide a locally generated and modulated input signal to translator and booster equipment, used by stations authorized under the provisions...
1998-04-06
KENNEDY SPACE CENTER, FLA. -- The Long Spacer, a component of the International Space Station, arrives and is moved to its test stand in the northeast corner of the high bay in KSC's Space Station Processing Facility. The Long Spacer provides structural support for the outboard Photovoltaic Modules that supply power to the station. Now just a structure, the Long Spacer will have attached to it as part of processing a heat dissipation radiator and two Pump and Flow Control subassemblies that circulate ammonia to cool the solar array electronics. Also to be mounted are ammonia fluid lines as part of the cooling system and the cabling necessary for power and control of the station. The Long Spacer becomes an integral part of a station truss segment when it is mated with the Integrated Equipment Assembly, which stores the electrical power generated by the solar arrays for use by the station modules. The Long Spacer is being processed in preparation for STS-97, currently planned for launch aboard Discovery in April 1999
1998-04-06
KENNEDY SPACE CENTER, FLA. -- The Long Spacer, a component of the International Space Station, arrives and is moved to its test stand in the northeast corner of the high bay in KSC's Space Station Processing Facility. The Long Spacer provides structural support for the outboard Photovoltaic Modules that supply power to the station. Now just a structure, the Long Spacer will have attached to it as part of processing a heat dissipation radiator and two Pump and Flow Control subassemblies that circulate ammonia to cool the solar array electronics. Also to be mounted are ammonia fluid lines as part of the cooling system and the cabling necessary for power and control of the station. The Long Spacer becomes an integral part of a station truss segment when it is mated with the Integrated Equipment Assembly, which stores the electrical power generated by the solar arrays for use by the station modules. The Long Spacer is being processed in preparation for STS-97, currently planned for launch aboard Discovery in April 1999
1998-04-06
KENNEDY SPACE CENTER, FLA. -- The Long Spacer, a component of the International Space Station, arrives and is moved to its test stand in the northeast corner of the high bay in KSC's Space Station Processing Facility. The Long Spacer provides structural support for the outboard Photovoltaic Modules that supply power to the station. Now just a structure, the Long Spacer will have attached to it as part of processing a heat dissipation radiator and two Pump and Flow Control subassemblies that circulate ammonia to cool the solar array electronics. Also to be mounted are ammonia fluid lines as part of the cooling system and the cabling necessary for power and control of the station. The Long Spacer becomes an integral part of a station truss segment when it is mated with the Integrated Equipment Assembly, which stores the electrical power generated by the solar arrays for use by the station modules. The Long Spacer is being processed in preparation for STS-97, currently planned for launch aboard Discovery in April 1999
1998-04-06
KENNEDY SPACE CENTER, FLA. -- The Long Spacer, a component of the International Space Station, arrives and is moved to its test stand in the northeast corner of the high bay in KSC's Space Station Processing Facility. The Long Spacer provides structural support for the outboard Photovoltaic Modules that supply power to the station. Now just a structure, the Long Spacer will have attached to it as part of processing a heat dissipation radiator and two Pump and Flow Control subassemblies that circulate ammonia to cool the solar array electronics. Also to be mounted are ammonia fluid lines as part of the cooling system and the cabling necessary for power and control of the station. The Long Spacer becomes an integral part of a station truss segment when it is mated with the Integrated Equipment Assembly, which stores the electrical power generated by the solar arrays for use by the station modules. The Long Spacer is being processed in preparation for STS-97, currently planned for launch aboard Discovery in April 1999
Impact of lunar and planetary missions on the space station: Preliminary STS logistics report
NASA Technical Reports Server (NTRS)
1984-01-01
Space station requirements for lunar and planetary missions are discussed. Specific reference is made to projected Ceres and Kopff missions; Titan probes; Saturn and Mercury orbiters; and a Mars sample return mission. Such requirements as base design; station function; program definition; mission scenarios; uncertainties impact; launch manifest and mission schedule; and shuttle loads are considered. It is concluded that: (1) the impact of the planetary missions on the space station is not large when compared to the lunar base; (2) a quarantine module may be desirable for sample returns; (3) the Ceres and Kopff missions require the ability to stack and checkout two-stage OTVs; and (4) two to seven manweeks of on-orbit work are required of the station crew to launch a mission and, with the exception of the quarantine module, dedicated crew will not be required.
One Year Old and Growing: A Status Report on the International Space Station and Its Partners
NASA Technical Reports Server (NTRS)
Bartoe, John-David F.; Hall, Elizabeth
1999-01-01
The first elements of the International Space Station have been launched and docked together, and are performing well on-orbit. The Station is currently being operated jointly by NASA and Russian space organizations. In May 1999, the Space Shuttle was the first vehicle to dock to the International, Space Station. A crew of seven U.S. and Russian astronauts delivered 4000 pounds of supplies, made repairs to communications and battery systems, and installed external hardware during an EVA. The next module, the Russian Service Module, is due to join the orbital complex this year. This will initiate a period of rapid growth, with new modules and equipment continually added for the next five to six years, through assembly complete. The first crew is scheduled to begin permanent occupation of the International Space Station early next year. Hardware is being developed by Space Station partners and participants around the world and is largely on schedule for launch. Mission control centers are fully functioning in Houston and Moscow, with operations centers in St. Hubert, Darmstadt, Tsukuba, Turino, and Huntsville going on line as they are required. International crews are selected and in training. Coordination efforts continue with each of the five partners and two participants, involving 16 nations. All of them continue to face their own challenges and have achieved their own successes. This paper will discuss the status of the ISS partners and participants, their contributions and accomplished milestones, and upcoming events. It will also give a status report on the developments of the remainder of the ISS modules and components by each partner and participant. The ISS, the largest and most complicated peacetime project in history, is flying, and, with the help of all the ISS members, will continue to grow.
2009-05-05
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians place equipment in the Resupply Stowage Platform, or RSP, to be installed in the multi-purpose logistics module Leonardo. The module is part of the payload for space shuttle Discovery's STS-128 mission. Discovery will carry science and storage racks to the International Space Station . Launch of Discovery is targeted for Aug. 6. Photo credit: NASA/Kim Shiflett
Viewport concept for space station modules
NASA Technical Reports Server (NTRS)
Douglas, F., III
1986-01-01
The generic design of a 20-in. diameter viewport for the space station modules is discussed. It should possess the capabilities of meteoroid/debris protection (with no metallic cover), redundancies in its meteoroid/debris protection, and pressure sealing systems. In addition, it should provide ease of change out for maintenance or repair. The design does not take into account the bumper-shield effect of the outermost panes in the meteoroid/debris analysis.
NASA Technical Reports Server (NTRS)
Obrien, David L.
1994-01-01
This paper presents the design and developmental testing associated with the bearing, motor, and roll ring module (BMRRM) used for the beta rotation axis on International Space Station Alpha (ISSA). The BMRRM with its controllers located in the electronic control unit (ECU), provides for the solar array pointing and tracking functions as well as power and signal transfer across a rotating interface.
MATRYOSHKA-R (RBO-3-2) Radiation Suite in the Service Module (SM)
2009-03-14
ISS018-E-040944 (18 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, works with the European Matroshka-R Phantom experiment in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies.
MATRYOSHKA-R (RBO-3-2) radiation suite in service module (SM)
2009-03-18
ISS018-E-040992 (18 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, works with the European Matroshka-R Phantom experiment in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies.
Lawrence and Kelly at SSRMS controls in Destiny laboratory module
2005-08-05
S114-E-7490 (5 August 2005) --- Astronauts Wendy B. Lawrence (foreground), STS-114 mission specialist, and James M. Kelly, pilot, work with the Mobile Service System (MSS) and Canadarm2 controls in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station. The two were re-stowing the Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) in the cargo bay.
Space station functional relationships analysis
NASA Technical Reports Server (NTRS)
Tullis, Thomas S.; Bied, Barbra R.
1988-01-01
A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev (in foreground) of the Russian Space Agency closes a container, part of the equipment that will be in the SPACEHAB module on mission STS-96. Behind Tokarev are Pilot Rick Husband (left) and Mission Specialist Dan Barry (right). Other crew members at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station are Commander Kent Rominger and Mission Specialists Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.
2003-06-04
KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
Burbank and Kuipers review crew procedures
2012-03-24
ISS030-E-171113 (24 March 2012) --- NASA astronaut Dan Burbank (wearing a communication headset), Expedition 30 commander; and European Space Agency astronaut Andre Kuipers, flight engineer, review crew procedures in the Zvezda Service Module of the International Space Station in preparation of moving to the appropriate Soyuz vehicles, due to the possibility that space debris could pass close to the station. Burbank, Shkaplerov and Ivanishin sheltered in the Soyuz TMA-22 spacecraft attached to the Poisk Mini-Research Module 2 (MRM2) while Kononenko, Kuipers and Pettit took to the Soyuz TMA-03M docked to the Rassvet Mini-Research Module 1 (MRM-1).
Burbank and Shkaplerov review crew procedures
2012-03-24
ISS030-E-171107 (24 March 2012) --- NASA astronaut Dan Burbank (left), Expedition 30 commander; and Russian cosmonaut Anton Shkaplerov, flight engineer, wearing communication headsets, review crew procedures in the Zvezda Service Module of the International Space Station in preparation of moving to the appropriate Soyuz vehicles, due to the possibility that space debris could pass close to the station. Burbank, Shkaplerov and Ivanishin sheltered in the Soyuz TMA-22 spacecraft attached to the Poisk Mini-Research Module 2 (MRM2) while Kononenko, Kuipers and Pettit took to the Soyuz TMA-03M docked to the Rassvet Mini-Research Module 1 (MRM-1).
Process development for automated solar cell and module production. Task 4: Automated array assembly
NASA Technical Reports Server (NTRS)
Hagerty, J. J.
1981-01-01
Progress in the development of automated solar cell and module production is reported. The unimate robot is programmed for the final 35 cell pattern to be used in the fabrication of the deliverable modules. The mechanical construction of the automated lamination station and final assembly station phases are completed and the first operational testing is underway. The final controlling program is written and optimized. The glass reinforced concrete (GRC) panels to be used for testing and deliverables are in production. Test routines are grouped together and defined to produce the final control program.
Unity nameplate is attached to module for ISS and Mission STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
- In the Space Station Processing Facility, a worker checks placement of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
Unity nameplate added to module for ISS and Mission STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, workers look over the Unity connecting module, part of the International Space Station, after attaching the nameplate. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
Unity nameplate examined after being attached to module for ISS and Mission STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, a worker checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
Unity nameplate is attached to module for ISS and Mission STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
- In the Space Station Processing Facility, a worker places the nameplate on the side of the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
Electrochemical Energy Storage for an Orbiting Space Station
NASA Technical Reports Server (NTRS)
Martin, R. E.
1981-01-01
The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers inside the Multi-Purpose Logistics Module Leonardo complete installation of a laboratory rack. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers inside the Multi-Purpose Logistics Module Leonardo oversee installation of a laboratory rack. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the Multi-Purpose Logistics Module Leonardo, a worker looks at the placement of a laboratory rack. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
NASA Technical Reports Server (NTRS)
Liddle, Donn
2017-01-01
When photogrammetrists read an article entitled "Photogrammetry in Space" they immediately think of terrestrial mapping using satellite imagery. However in the last 19 years the roll of close range photogrammetry in support of the manned space flight program has grown exponentially. Management and engineers have repeatedly entrusted the safety of the vehicles and their crews to the results of photogrammetric analysis. In February 2010, the Node 3 module was attached to the port side Common Berthing Mechanism (CBM) of the International Space Station (ISS). Since this was not the location at which the module was originally designed to be located on the ISS, coolant lines containing liquid ammonia, were installed externally from the US Lab to Node 3 during a spacewalk. During mission preparation I had developed a plan and a set of procedures to have the astronauts acquire stereo imagery of these coolant lines at the conclusion of the spacewalk to enable us to map their as-installed location relative to the rest of the space station. Unfortunately, the actual installation of the coolant lines took longer than expected and in an effort to wrap up the spacewalk on time, the mission director made a real-time call to drop the photography. My efforts to reschedule the photography on a later spacewalk never materialized, so rather than having an as-installed model for the location of coolant lines, the master ISS CAD database continued to display an as-designed model of the coolant lines. Fast forward to the summer of 2015, the ISS program planned to berth a Japanese cargo module to the nadir Common Berthing Mechanism (CBM), immediately adjacent to the Node 3 module. A CAD based clearance analysis revealed a negative four inch clearance between the ammonia lines and a thruster nozzle on the port side of the cargo vehicle. Recognizing that the model of the ammonia line used in the clearance analysis was "as-designed" rather than "as-installed", I was asked to determine the real clearance between the ammonia lines and expected position of the thruster bell using existing on-orbit imagery. Imagery of the area of interest, taken several years earlier from the Space Shuttle during a fly-around of the ISS, was found and used to set a stereo pair. Space Vision System Targets and Handrail bolts measured in the ISS analytical coordinate system (ISSACS) prior to launch, were used to obtain an absolute orientation so all photogrammetric measurement's would be in the ISSACS coordinate system. Coordinates for the design location of the edges of the thruster bell, when the cargo vehicle was fully berthed to the ISS, were displayed in 3-D relative to the as-installed ammonia lines. This immediately revealed a positive clearance, which was later quantified to be a minimum of 10" +/0.5". The analysis was completed over a single weekend by a single analyst. Using updated imagery, acquired from the station's robotic arm, a complete as-installed model of the coolant lines was generated from stereo photography and replaced the design model in the master ISS CAD database.
International Space Station (ISS)
2001-02-01
In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-01
In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Medical operations and life sciences activities on space station
NASA Technical Reports Server (NTRS)
Johnson, P. C. (Editor); Mason, J. A. (Editor)
1982-01-01
Space station health maintenance facilities, habitability, personnel, and research in the medical sciences and in biology are discussed. It is assumed that the space station structure will consist of several modules, each being consistent with Orbiter payload bay limits in size, weight, and center of gravity.
Space station internal environmental and safety concerns
NASA Technical Reports Server (NTRS)
Cole, Matthew B.
1987-01-01
Space station environmental and safety concerns, especially those involving fires, are discussed. Several types of space station modules and the particular hazards associated with each are briefly surveyed. A brief history of fire detection and suppression aboard spacecraft is given. Microgravity fire behavior, spacecraft fire detector systems, space station fire suppression equipment and procedures, and fire safety in hyperbaric chambers are discussed.
NASA Technical Reports Server (NTRS)
Haines, R. F.
1975-01-01
The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.
Radiation measurements on the Mir Orbital Station.
Badhwar, G D; Atwell, W; Reitz, G; Beaujean, R; Heinrich, W
2002-10-01
Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250 x 10(4) Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 microGy day-1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0 +/- 0.5 degrees W, and 1.6 +/- 0.5 degrees N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources. c2002 Elsevier Science Ltd. All rights reserved.
International Space Station (ISS)
2001-09-16
Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
International Space Station (ISS)
2001-12-12
Astronauts Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and Daniel W. Bursch, Expedition Four flight engineer, work in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000 pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
International Space Station (ISS)
2001-03-30
Astronaut James S. Voss, Expedition Two flight engineer, performs an electronics task in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian-built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity, the first U.S.-built component to the ISS. Zvezda (Russian word for star), the third component of the ISS and the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
International Space Station (ISS)
2002-03-25
Cosmonaut Yury I. Onufrienko, Expedition Four mission commander, uses a communication system in the Russian Zvezda Service Module on the International Space Station (ISS). The Zvezda is linked to the Russian-built Functional Cargo Block (FGB) or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
Space station thermal control surfaces. Volume 1: Interim report
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.
1978-01-01
The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.
Ribbon-cutting ceremony occurs at grand opening of new International Space Station Center at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
Celebrating the official opening of the new International Space Station (ISS) Center at Kennedy Space Center are, left to right, James Ball, chief, NASA Public Services, KSC; KSC Director Roy D. Bridges Jr.; Hugh Harris, director, NASA Public Affairs, KSC; and Rick Abramson, president and chief operating officer, Delaware North Parks Services of Spaceport Inc. Center Director Bridges cuts the ribbon to the new tour attraction where full-scale mockups of station modules, through which visitors can walk, are on display. These include the Habitation Unit, where station crew members will live, sleep, and work; a Laboratory Module; and the Pressurized Logistics Module, where racks and supplies will be transported back and forth from KSC to space. Guests also can take an elevated walkway to a gallery overlooking the work are where actual ISS hardware is prepared for flight into space. This new tour site, in addition to a new Launch Complex 39 Observation Gantry, are part of a comprehensive effort by NASA and Delaware North to expand and improve the KSC public tour and visitor facilities.
Adaption of space station technology for lunar operations
NASA Technical Reports Server (NTRS)
Garvey, J. M.
1992-01-01
Space Station Freedom technology will have the potential for numerous applications in an early lunar base program. The benefits of utilizing station technology in such a fashion include reduced development and facility costs for lunar base systems, shorter schedules, and verification of such technology through space station experience. This paper presents an assessment of opportunities for using station technology in a lunar base program, particularly in the lander/ascent vehicles and surface modules.
Russian Docking Module is lowered
NASA Technical Reports Server (NTRS)
1995-01-01
The Russian-built Docking Module (DM) is lowered for installation into the payload bay of the Space Shuttle Orbiter Atlantis while the spaceplane is in Orbiter Processing Facility bay 2. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles. The white structures attached to the module's sides are solar panels that will be attached to the Mir after the conclusion of the STS-74 mission.
Cost-effective bidirectional digitized radio-over-fiber systems employing sigma delta modulation
NASA Astrophysics Data System (ADS)
Lee, Kyung Woon; Jung, HyunDo; Park, Jung Ho
2016-11-01
We propose a cost effective digitized radio-over-fiber (D-RoF) system employing a sigma delta modulation (SDM) and a bidirectional transmission technique using phase modulated downlink and intensity modulated uplink. SDM is transparent to different radio access technologies and modulation formats, and more suitable for a downlink of wireless system because a digital to analog converter (DAC) can be avoided at the base station (BS). Also, Central station and BS share the same light source by using a phase modulation for the downlink and an intensity modulation for the uplink transmission. Avoiding DACs and light sources have advantages in terms of cost reduction, power consumption, and compatibility with conventional wireless network structure. We have designed a cost effective bidirectional D-RoF system using a low pass SDM and measured the downlink and uplink transmission performance in terms of error vector magnitude, signal spectra, and constellations, which are based on the 10MHz LTE 64-QAM standard.
2000-07-12
A Russian 3-stage Proton rocket blasts into the sky at 12:56 a.m. EDT with the Russian-built Zvezda module in a successful launch from Baikonur Cosmodrome, Kazakhstan. Zvezda is the primary Russian contribution to the International Space Station, serving as the early Station living quarters. It will also provide early propulsive attitude control and reboost capabilities and be the main docking port for Russian Progress cargo resupply vehicles. The third Station component, Zvezda will dock by remote control with the already orbiting Zarya and Unity modules at an altitude of about 245 by 230 statute miles. (Image taken with Nikon D1 digital camera.)
Orbital ATK CRS-7 "What's on Board" Science Briefing
2017-04-17
NASA Social participants attend a "What's on Board" science briefing at the agency's Kennedy Space Center in Florida. Joe Fust, mission integrator for United Launch Alliance, gives an overview of the Atlas V rocket that will launch the Orbital ATK Cygnus pressurized cargo module to the International Space Station. The briefing is for Orbital ATK's seventh commercial resupply services mission, CRS-7, to the space station. Orbital ATK's Cygnus module is set to launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18. Liftoff is scheduled for 11:11 a.m. EDT.
2017-01-09
The Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) arrives at the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The PCM is sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. Scheduled to launch in March 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
2008-10-15
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers prepare equipment to be used closing the hatch on the Multi-Purpose Logistics Module Leonardo. The module is the payload for space shuttle Endeavour's STS-126 mission to the International Space Station. The 15-day mission will deliver equipment and supplies to the space station in preparation for expansion from a three- to six-person resident crew aboard the complex. Leonardo holds supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch Nov. 14. Photo credit: NASA/Jim Grossmann
OA-7 Cargo Module Move from Airlock to Highbay
2017-01-10
Inside an environmentally controlled shipping container the Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) moves from an airlock to the high bay of the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
OA-7 Cargo Module Move from Airlock to Highbay
2017-01-10
The Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) arrives at the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The PCM is sealed in an environmentally controlled shipping container. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
The Use of Human Modeling of EVA Tasks as a Systems Engineering Tool
NASA Technical Reports Server (NTRS)
Dischinger, H. Charles, Jr.; Schmidt, Henry J.; Kross, Dennis A. (Technical Monitor)
2001-01-01
Computer-generated human models have been used in aerospace design for a decade. They have come to be highly reliable for worksite analysis of certain types of EVA tasks. In many design environments, this analysis comes after the structural design is largely complete. However, the use of these models as a development tool is gaining acceptance within organizations that practice good systems engineering processes. The design of the United States Propulsion Module for the International Space Station provides an example of this application. The Propulsion Module will provide augmentation to the propulsion capability supplied by the Russian Service Module Zvezda. It is a late addition to the set of modules provided by the United States to the ISS Program, and as a result, faces design challenges that result from the level of immaturity of its integration into the Station. Among these are heat dissipation and physical envelopes. Since the rest of the Station was designed to maximize the use of the cooling system, little margin is available for the addition of another module. The Propulsion Module will attach at the forward end of the Station, and will be between the Orbiter and the rest of ISS. Since cargo must be removed from the Payload Bay and transferred to Station by the Canadarm, there is a potential for protrusions from the module, such as thruster booms, to interfere with robotic operations. These and similar engineering issues must be addressed as part of the development. In the implementation of good system design, all design solutions should be analyzed for compatibility with all affected subsystems. Human modeling has been used in this project to provide rapid input to system trades of design concepts. For example, the placement of radiators and avionics components for optimization of heat dissipation had to be examined for feasibility of EVA translation paths and worksite development. Likewise, the location of and mechanism for the retraction of thruster booms was partly driven by available Orbiter, robotic arm, and other module envelopes; worksite analysis was required for early assessment of task success. Since these trade studies included the EVA analysis as part of the decision criteria, the design had a high degree of assurance of EVA supportability from the outset. This approach contributes greatly to mission success.
2014-08-12
ISS040-E-092581 (12 Aug. 2014) --- A portion of the International Space Station?s Zvezda Service Module with the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) is featured in this image photographed by an Expedition 40 crew member onboard the station. A waning full moon is visible in the background.