Sample records for station flight launch

  1. Assessment of mixed fleet potential for space station launch and assembly

    NASA Technical Reports Server (NTRS)

    Deryder, L. J. (Editor)

    1987-01-01

    Reductions in expected STS flight rates of the Space Shuttle since the 51-L accident raise concerns about the ability of available launch capacity to meet both payload-to-orbit and crew rotation requirements for the Space Station. In addition, it is believed that some phases of Station build-up could be expedited using unmanned launch systems with significantly greater lift capacity than the STS. Examined is the potential use of expendable launch vehicles (ELVs), yet-to-be-developed unmanned shuttle-derived vehicles (SDVs), and international launch vehicles for meeting overall launch requirements to meet Space Station program objectives as defined by the 1986 Critical Evaluation Task Force (CETF). The study concludes that use of non-STS transportation can help meet several important program objectives as well as reduce the total number of STS flights. It also finds, however, that reduction of Space Station-dedicated STS flights below 8 per year forces a reduction in Station crew size assuming the CETF 90 day crew stay time baseline and seriously impairs scientific utilization of the Station.

  2. ULA's Atlas V for Boeing's Orbital Flight Test

    NASA Image and Video Library

    2017-10-24

    The Atlas V rocket that will launch Boeing’s CST-100 Starliner spacecraft on the company’s uncrewed Orbital Flight Test for NASA’s Commercial Crew Program is coming together inside a United Launch Alliance facility in Decatur, Alabama. The flight test is intended to prove the design of the integrated space system prior to the Crew Flight Test. These events are part of NASA’s required certification process as the company works to regularly fly astronauts to and from the International Space Station. Boeing's Starliner will launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

  3. NASA/Boeing Orbital Test Flight Simulation

    NASA Image and Video Library

    2018-03-07

    NASA, Boeing and United Launch Alliance (ULA) conduct a simulation of launch procedures for Boeing’s Orbital Test Flight, the first uncrewed test of the company’s CST-100 Starliner and a ULA Atlas V rocket. Launch teams participated in the simulation across the country, including inside the Launch Vehicle Data Center at Hangar AE at Cape Canaveral Air Force Station in Florida. The Starliner will launch on an Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.

  4. Kennedy Space Center Launch and Landing Support

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer

    2010-01-01

    The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.

  5. KSC-06pd1327

    NASA Image and Video Library

    2006-07-01

    KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Lisa Nowak shows she is happy and excited to be preparing for launch with the fitting of her launch and entry suit. Nowak is making her first space flight. The launch is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett

  6. KSC-06pd2078

    NASA Image and Video Library

    2006-09-08

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Pilot Christopher Ferguson dons his launch and re-entry suit before heading to the launch pad. Ferguson is making his first shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  7. KSC-06pd2079

    NASA Image and Video Library

    2006-09-08

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Commander Brent Jett dons his launch and re-entry suit before heading to the launch pad. Jett is making his fourth shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  8. KSC-06pd2076

    NASA Image and Video Library

    2006-09-08

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Joseph Tanner dons his launch and re-entry suit before heading to the launch pad. Tanner is making his fourth shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  9. jsc2012e099557

    NASA Image and Video Library

    2012-07-04

    Outside their Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 32 prime crew member Flight Engineer Sunita Williams of NASA (left) and backup Flight Engineer Tom Marshburn of NASA (right) raise the Stars and Stripes on the 4th of July, 2012 in a traditional flag-raising ceremony that was part of the pre-launch activities leading up to the launch of the next crew to the International Space Station. Williams, Soyuz Commander Yuri Malenchenko and Flight Engineer Aki Hoshide of the Japan Aerospace Exploration Agency will launch to the station July 15 from the Baikonur Cosmodrome in their Soyuz TMA-05M spacecraft. NASA/Victor Zelentsov

  10. The STS-98 crew gathers for snack before launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-98 crew gathers around a table for a snack before getting ready for launch on Space Shuttle Atlantis. Seated left to right are Mission Specialist Thomas Jones, Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialists Marsha Ivins and Robert Curbeam. STS-98 is the seventh construction flight to the International Space Station. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks, by Curbeam and Jones, are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.

  11. KSC-07pd1420

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist John "Danny" Olivas signals go for launch as he completes suitup by donning his helmet. The launch of Space Shuttle Atlantis is scheduled for 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett

  12. University Research-1 Payload for SpaceX Launch

    NASA Image and Video Library

    2014-03-12

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the University Research-1 payload developed by Texas Southern University in Houston is being prepared for loading aboard the SpaceX Dragon spacecraft for launch to the International Space Station. The experiment involves an investigation of countermeasures involving research into the efficacy of benzofuran-2-carboxylic acid derivatives as pharmacological countermeasures in mitigating the adverse effects of space flight and the International Space Station radiation environment on the immune system. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  13. Space Station Crew Marks the 10th Anniversary of the Launching of the European Columbus Module

    NASA Image and Video Library

    2018-02-07

    Aboard the International Space Station, Expedition 54 Flight Engineers Joe Acaba and Mark Vande Hei of NASA took time to commemorate the 10th anniversary of the launching of the European Columbus module during an in-flight event Feb. 7 with European Space Agency officials gathered in Noordwijk, Netherlands. The Columbus science laboratory was launched on Feb. 7, 2008 aboard the space shuttle Atlantis on the STS-122 mission commanded by former NASA astronaut Stephen Frick.

  14. STS-92 Mission Specialist Chiao has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-92 Mission Specialist Leroy Chiao has his launch and entry suit adjusted during fit check. Chiao and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be Chiao's third Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  15. GSFC_20171112_M12778_Antares

    NASA Image and Video Library

    2017-11-12

    The International Space Station received about 7,400 pounds of cargo, including new science and technology investigations, following the successful launch of Orbital ATK's Cygnus spacecraft from NASA's Wallops Flight Facility in Virginia on Sunday, Nov. 12, 2017. Orbital ATK's eighth contracted cargo delivery flight to the station launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at Wallops, and arrived at the International Space Station Tuesday, Nov. 14, 2017. For more footage in higher resolution go to: https://svs.gsfc.nasa.gov/12778

  16. A perfect launch viewed across Banana Creek

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Billows of smoke and steam surround Space Shuttle Discovery as it lifts off from Launch Pad 39A on mission STS-92 to the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  17. KSC-06pd2077

    NASA Image and Video Library

    2006-09-08

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Steven MacLean dons his launch and re-entry suit before heading to the launch pad. MacLean is with the Canadian Space Agency. MacLean is making his second shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  18. KSC-06pd2082

    NASA Image and Video Library

    2006-09-08

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper is helped with her launch and re-entry suit before heading to the launch pad. Stefanyshyn-Piper is making her first shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  19. STS-111 crew breakfast before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-111 crew gather for the traditional pre-launch meal before the second launch attempt aboard Space Shuttle Endeavour. Seated left to right are Mission Specialists Franklin Chang-Diaz and Philippe Perrin (CNES); the Expedition 5 crew cosmonauts Sergei Treschev (RSA) and Valeri Korzun (RSA) and astronaut Peggy Whitson; Pilot Paul Lockhart and Commander Kenneth Cockrell. In front of them is the traditional cake. This mission marks the 14th Shuttle flight to the International Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  20. Post-Launch Status of Orbital ATK’s Mission to the International Space Station

    NASA Image and Video Library

    2017-11-12

    On Nov. 12, Orbital ATK launched its Cygnus cargo spacecraft atop an Antares rocket to the International Space Station, from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia. Following the launch mission managers provided a status update on the mission.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  2. STS-92 M.S. Michael Lopez-Alegria suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Michael E. Lopez-Alegria smiles and clasps his hands in anticipation of a second launch attempt. He and the rest of the crew will be heading out to the Astrovan for the ride to Launch Pad 39A. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  3. STS-92 M.S. Bill McArthur suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist William S. McArthur Jr. is fully suited up before the second launch attempt. He and the rest of the crew will be leaving soon for the ride to Launch Pad 39A on the Astrovan. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  4. KSC-06pd1398

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Lisa Nowak is happy to be making a third launch attempt on the mission. She is suiting up before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett

  5. KSC-06pd1394

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - Mission Specialist Thomas Reiter, happy to be making a third launch attempt on mission STS-121, is suited up before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett

  6. STS-92 Mission Specialist Wakata has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-92 Mission Specialist Koichi Wakata of Japan gets an adjustment on his launch and entry suit. This mission is Wakata's second Shuttle flight. He and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. STS- 92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  7. KSC-00pp1340

    NASA Image and Video Library

    2000-09-13

    During pre-pack and fit check on his launch and entry suit, STS-92 Commander Brian Duffy adjusts his helmet. Duffy and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be Duffy’s fourth Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program

  8. KSC-08pd1539

    NASA Image and Video Library

    2008-05-31

    CAPE CANAVERAL, Fla. -- At the Banana River viewing site, guests applaud the picture-perfect launch of space shuttle Discovery as it leaps from the clouds of smoke below on its STS-124 mission to the International Space Station. Launch was on time at 5:02 p.m. EDT. Discovery is making its 35th flight. The STS-124 mission is the 26th in the assembly of the space station. It is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. The 14-day flight includes three spacewalks. Photo credit: NASA/Sam Fat

  9. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    European Space Agency astronaut Roberto Vittori, of Italy, left, Expedition 11 Commander Sergei Krikalev and Flight Engineer and NASA Science Officer John Phillips, right, pose for a photo with officials at the launch pad prior to launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Friday, April 15, 2005 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the Station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  10. STS-92 M.S. Koichi Wakata suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Koichi Wakata of Japan signals thumbs up for a second launch attempt. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  11. STS-92 M.S. Jeff Wisoff suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff signals thumbs up for a second launch attempt. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  12. STS-112 M.S. Sellers suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During suitup for launch, STS-112 Mission Specialist Piers Sellers smiles in anticipation of his first Shuttle flight. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  13. STS-113 Space Shuttle Endeavour launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Water near Launch Pad 39A provides a mirror image of Space Shuttle Endeavour blazing a path into the night sky after launch on mission STS-113. Liftoff occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey.

  14. Soyuz TMA-08M/34S Launch seen from ISS

    NASA Image and Video Library

    2013-03-28

    ISS035-E-010340 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.

  15. Soyuz TMA-08M/34S Launch seen from ISS

    NASA Image and Video Library

    2013-03-28

    ISS035-E-010263 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.

  16. Soyuz TMA-08M/34S Launch seen from ISS

    NASA Image and Video Library

    2013-03-28

    ISS035-E-010207 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.

  17. Soyuz TMA-08M/34S Launch seen from ISS

    NASA Image and Video Library

    2013-03-28

    ISS035-E-010313 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.

  18. Soyuz TMA-08M/34S Launch seen from ISS

    NASA Image and Video Library

    2013-03-28

    ISS035-E-010333 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.

  19. Soyuz TMA-08M/34S Launch seen from ISS

    NASA Image and Video Library

    2013-03-28

    ISS035-E-010317 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.

  20. Soyuz TMA-08M/34S Launch seen from ISS

    NASA Image and Video Library

    2013-03-28

    ISS035-E-010345 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.

  1. STS-92 MS Wakata gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Koichi Wakata of Japan gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wakata and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  2. STS-92 Pilot Melroy gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Pilot Pamela Ann Melroy has a final check on her launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Melroy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  3. STS-92 MS Lopez-Alegria gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Michael E. Lopez-Alegria gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Lopez-Alegria and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  4. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov donned his launch and entry suit and climbed aboard the Soyuz TMA-5 spacecraft Friday, October 5, 2004 at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  5. STS-101 crew returns from Launch Pad 39A after launch was scrubbed

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown at left is Commander James D. Halsell Jr. At right is astronaut James Wetherbee, deputy director of the Johnson Space Center. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days.

  6. Cosmonaut Dezhurov Talks With Flight Controllers

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  7. Document handover of ISS Flight Control room to new Flight Control Room in old MCC

    NASA Image and Video Library

    2006-10-06

    JSC2006-E-43860 (6 Oct. 2006)--- International Space Station flight controllers have this area as their new home with increased technical capabilities, more workspace and a long, distinguished history. The newly updated facility is just down the hall from its predecessor at NASA's Johnson Space Center, Houston. Known as Flight Control Room 1, it was first used to control a space flight 38 years ago, the mission of Apollo 7 launched Oct. 11, 1968. It was one of two control rooms for NASA's manned missions. The room it replaces in its new ISS role, designated the Blue Flight Control Room, had been in operation since the first station component was launched in 1998.

  8. KENNEDY SPACE CENTER, FLA. - A KSC employee wipes down some of the hoses of the ground support equipment in the Orbiter Processing Facility (OPF) where Space Shuttle Atlantis is being processed for flight. Preparations are under way for the next launch of Atlantis on mission STS-114, a utilization and logistics flight to the International Space Station.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - A KSC employee wipes down some of the hoses of the ground support equipment in the Orbiter Processing Facility (OPF) where Space Shuttle Atlantis is being processed for flight. Preparations are under way for the next launch of Atlantis on mission STS-114, a utilization and logistics flight to the International Space Station.

  9. KSC-07pd1423

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist Patrick Forrester completes his suitup for launch of Space Shuttle Atlantis at 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett

  10. STS-111 crew exits the O&C Building before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-111 and Expedition 5 crews eagerly exit from the Operations and Checkout Building for launch aboard Space Shuttle Endeavour. It is the second launch attempt in six days. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  11. STS-113 crew breakfast before second launch attempt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - On the second launch attempt, the STS-113 crew enjoys a snack before suiting up for launch. The launch was scrubbed on Nov. 22 because of poor weather in the Transoceanic Abort Landing sites. Seated left to right are Mission Specialists Michael Lopez-Alegria and John Herrington, Pilot Paul Lockhart and Commander James Wetherbee; Expedition 6 flight engineer Nikolai Budarin, Commander Ken Bowersox and flight engineer Donald Pettit. STS-113 is the 16th American assembly flight to the International Space Station. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is now scheduled for Nov. 23 at 7:50 p.m. EST.

  12. STS-92 Mission Specialist McArthur has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-92 Mission Specialist William S. McArthur Jr. has the gloves on his launch and entry suit adjusted during fit check. McArthur and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be McArthur's third Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  13. STS-92 Mission Specialist McArthur has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-92 Mission Specialist William S. McArthur Jr. uses a laptop computer while garbed in his full launch and entry suit. McArthur and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be McArthur's third Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  14. STS-92 Mission Specialist Lopez-Alegria has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-92 Mission Specialist Michael E. Lopez-Alegria tries on the helmet for his launch and entry suit. Lopez-Alegria and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be Lopez-Alegria's second Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  15. KSC-06pd1393

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - Mission Specialist Piers Sellers is happy to be making a third launch attempt on mission STS-121. Here, he fixes one of his gloves during suitup before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett

  16. STS-106 Mission Specialist Morukov suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-106 Mission Specialist Boris V. Morukov gives a thumbs up for launch during suitup in the Operations and Checkout Building before launch. This is Morukov'''s first space flight. Space Shuttle Atlantis is set to lift off 8:45 a.m. EDT on the fourth flight to the International Space Station. During the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  17. A perfect launch viewed across Banana Creek

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Space Shuttle Discovery seems to burst forth from a pillow of smoke as it lifts off from Launch Pad 39A on mission STS-92 to the International Space Station. The brilliant light from the solid rocket booster flames is reflected in nearby water. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  18. STS-92 M.S. Leroy Chiao suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Leroy Chiao gives thumbs up for launch. With him (left) is VITT Mission Lead Roland Nedelkovich, from Houston. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  19. STS-92 Pilot Pam Melroy suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-92 Pilot Pamela Ann Melroy smiles during suit check before heading out to the Astrovan for the ride to Launch Pad 39A. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  20. STS-92 Commander Brian Duffy suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-92 Commander Brian Duffy solemnly undergoes suit check before heading out to the Astrovan for the ride to Launch Pad 39A. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2002-11-23

    The Space Shuttle Endeavour is pictured on a lighted launch pad at Kennedy Space Center's (KSC) Launch Complex 39 with a gibbous moon shining brightly in the night sky. Liftoff from KSC occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station (ISS), carrying another structure for the Station, the P1 integrated truss. STS-113 crew members onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crew members: Astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin, who went on to replace Expedition 5 aboard the Station.

  2. KSC-00pp1342

    NASA Image and Video Library

    2000-09-13

    During pre-pack and fit check, STS-92 Commander Brian Duffy tests his launch and entry suit for comfort and ease while sitting. This mission will be Duffy’s fourth Shuttle flight. He and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program

  3. KSC00pp1342

    NASA Image and Video Library

    2000-09-13

    During pre-pack and fit check, STS-92 Commander Brian Duffy tests his launch and entry suit for comfort and ease while sitting. This mission will be Duffy’s fourth Shuttle flight. He and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program

  4. Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to

    NASA Image and Video Library

    2017-07-26

    The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket, packed inside a canister, exits the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station for its move to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  5. Interim Cryogenic Propulsion Stage (ICPS) Prep for Transport fro

    NASA Image and Video Library

    2017-07-25

    The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket is packed inside a canister and ready to be moved from the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  6. Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to

    NASA Image and Video Library

    2017-07-26

    The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket, packed inside a canister, is transported from the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station along the route to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  7. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-11

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen on launch Pad-0A, Friday, July 11, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  8. Orb3 Antares Raising

    NASA Image and Video Library

    2014-10-25

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is raised at launch Pad-0A, Saturday, Oct. 25, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Joel Kowsky)

  9. Orb3 Antares Rollout

    NASA Image and Video Library

    2014-10-24

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, arrives at launch Pad-0A, Friday, Oct. 24, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Joel Kowsky)

  10. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-12

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen, Saturday, July 12, 2014, at launch Pad-0A of NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  11. Expedition 33 Crew Waves Farewell

    NASA Image and Video Library

    2012-10-23

    Expedition 33/34 crew members, Soyuz Commander Oleg Novitskiy, bottom, Flight Engineer Kevin Ford of NASA, and Flight Engineer Evgeny Tarelkin of ROSCOSMOS, top, wave farewell before boarding their Soyuz rocket just a few hours before their launch to the International Space Station on Tuesday, October 23, 2012, in Baikonur, Kazakhstan. Launch of a Soyuz rocket later in the afternoon will send Ford, Novitskiy and Tarelkin on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  12. KSC-07pp1467

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- With solid rocket boosters firing, Space Shuttle Atlantis leaps toward the heavens in a near-perfect launch on mission STS-117 to the International Space Station. The clouds of smoke and steam roll across Launch Pad 39A and surround the rotating service structure at left. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Jerry Cannon & Mike Kerley

  13. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Commander and NASA Science Officer Leroy Chiao, right, Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  14. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Russian Space Forces cosmonaut Yuri Shargin, center, and Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard the Soyuz TMA-5 spacecraft Friday, October 5, 2004 at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  15. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke waves farewell from the crew bus as he and Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott depart the Cosmonaut Hotel to building 254 were they will don their flight suits prior to their launch, Sunday, Oct. 12, 2008, from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  16. Expedition 18 State Commission

    NASA Image and Video Library

    2008-10-10

    A Russian flight surgeon, right, along with the quarantined prime and backup crews listen to the State Commission give the final approval for the launch of the Soyuz TMA-13 spacecraft, Saturday, Oct. 11, 2008 in Baikonur, Kazakhstan. Expedition 18 Commander Michael Fincke, Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott are scheduled to launch Oct. 12 and dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  17. Document handover of ISS Flight Control room to new Flight Control Room in old MCC

    NASA Image and Video Library

    2006-10-06

    JSC2006-E-43863 (6 Oct. 2006)--- International Space Station flight controllers have this area as their new home with increased technical capabilities, more workspace and a long, distinguished history. The newly updated facility is just down the hall from its predecessor at NASA's Johnson Space Center, Houston. This view is toward the rear of the "new" room. Known as Flight Control Room 1, it was first used to control a space flight 38 years ago, the mission of Apollo 7 launched Oct. 11, 1968. It was one of two control rooms for NASA's manned missions. The room it replaces in its new ISS role, designated the Blue Flight Control Room, had been in operation since the first station component was launched in 1998.

  18. KSC-2013-1669

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  19. KSC-2013-1665

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  20. KSC-2013-1663

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  1. KSC-2013-1661

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  2. KSC-2013-1662

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  3. KSC-2013-1667

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  4. KSC-2013-1668

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  5. KSC-2013-1666

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  6. KSC-2013-1664

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  7. KSC-2013-1660

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  8. KSC-07pd1422

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist James Reilly is helped with his helmet as he completes suitup for launch of Space Shuttle Atlantis at 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett

  9. KSC-2011-5105

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, shows off its Launch Control Center during a media tour at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  10. KSC-2011-5103

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, opens its doors for a media tour of its Launch Control Center at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-12-12

    Astronauts Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and Daniel W. Bursch, Expedition Four flight engineer, work in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000 pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-30

    Astronaut James S. Voss, Expedition Two flight engineer, performs an electronics task in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian-built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity, the first U.S.-built component to the ISS. Zvezda (Russian word for star), the third component of the ISS and the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  13. STS-92 MS Wisoff gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  14. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Tracy Caldwell Dyson, front left, Expedition 23 Soyuz Commander Alexander Skvortsov, front center, and Expedition 23 Flight Engineer Mikhail Kornienko pose with backup crewmembers NASA Flight Engineer Scott Kelly of the U.S., back left, Flight Engineer Alexander Samokutyayev of Russia, back center, and Flight Engineer Andrei Borisenko of Russia, prior to the crews’ launch onboard a Soyuz rocket to the International Space Station on Friday, April 2, 2010, in Baikonur, Kazakhstan. Photo Credit: (NASA/Carla Cioffi)

  15. Vapor Compression Distillation Flight Experiment

    NASA Technical Reports Server (NTRS)

    Hutchens, Cindy F.

    2002-01-01

    One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.

  16. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-12

    The full Moon sets in the fog behind the Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, Saturday, July 12, 2014, launch Pad-0A, NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  17. Orb3 Antares Raising

    NASA Image and Video Library

    2014-10-24

    Workers are seen as they prepare the Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, to be raised at launch Pad-0A, Friday, Oct. 24, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Joel Kowsky)

  18. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-12

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen during sunrise, Saturday, July 12, 2014, at launch Pad-0A of NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  19. jsc2011e215337

    NASA Image and Video Library

    2011-12-08

    The three crewmembers who will round out the Expedition 30 crew on the International Space Station are greeted by Nikolai Zelinchikov of Soyuz spacecraft manufacturer RSC-Energia upon their arrival in Baikonur, Kazakhstan Dec. 8, 2011 for final pre-launch preparations. From left to right are NASA Flight Engineer Don Pettit, Soyuz Commander Oleg Kononenko, Flight Engineer Andre Kuipers of the European Space Agency and Zelinchikov. Pettit, Kononenko and Kuipers will launch to the station on Dec. 21 from the Baikonur Cosmodrome on the Soyuz TMA-03M spacecraft. Courtesy: NASA

  20. Expedition 31 Preflight

    NASA Image and Video Library

    2012-04-23

    Expedition 31 NASA Flight Engineer Joe Acaba, far left, Expedition 31 Soyuz Commander Gennady Padalka and Flight Engineer Sergei Revin, third from left, select International Space Station Russian segment event simulation test cards for their final qualification test in preparation for launch, Monday, April 23, 2012 at the Gagarin Cosmonaut Training Center in Star City, Russia. Padalka, Acaba and Revin are set to launch May 15 from the Baikonur Cosmodrome in their Soyuz TMA-04M spacecraft to the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  1. STS-101 crew returns from Launch Pad 39A after launch was scrubbed

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yuri Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days.

  2. STS-92 crew heads for Astrovan for trip to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Three happy astronauts make their way to the waiting Astrovan that will take the STS-92 crew to Launch Pad 39A for liftoff of Space Shuttle Discovery. From left, they are Mission Specialists Michael Lopez-Alegria and Koichi Wakata, and Commander Brian Duffy. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT.

  3. STS-92 Mission Specialist Wisoff has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-92 Mission Specialist Peter J.K. 'Jeff' Wisoff tries on his boots. Wisoff and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be Wisoff's fourth Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  4. Expedition 23 Soyuz Launch

    NASA Image and Video Library

    2010-04-01

    The Soyuz TMA-18 rocket launches from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010 carrying Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia and NASA Flight Engineer Tracy Caldwell Dyson of the U.S. to the International Space Station. (Photo Credit: NASA/Bill Ingalls)

  5. Expedition 23 Soyuz Launch

    NASA Image and Video Library

    2010-04-01

    The Soyuz TMA-18 rocket launches from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010 carrying Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia and NASA Flight Engineer Tracy Caldwell Dyson of the U.S. to the International Space Station. (Photo Credit: NASA/Carla Cioffi)

  6. Expedition 23 Soyuz Launch

    NASA Image and Video Library

    2010-04-01

    The Soyuz TMA-18 rocket launches from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010 carrying Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia and NASA Flight Engineer Tracy Caldwell Dyson of the U.S. to the International Space Station. (Photo Credit: NASA/Bill Ingalls/Carla Cioffi)

  7. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Tracy Caldwell Dyson talks with family and colleagues from behind glass prior to her launch onboard a Soyuz rocket with Soyuz Commander Alexander Skvortsov and Flight Engineer Mikhail Kornienko of Russia to the International Space Station (ISS), Friday April 2, 2010 in Baikonur, Kazakhstan. Photo Credit: (NASA/Carla Cioffi)

  8. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 crew members NASA Flight Engineer Tracy Caldwell Dyson, left, Soyuz Commander Alexander Skvortsov and Flight Engineer Mikhail Kornienko, right, leave the Cosmonaut Hotel on the morning of their launch on a Soyuz rocket to the International Space Station, Friday, April 2, 2010, in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  9. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

  10. KSC-02pp1818

    NASA Image and Video Library

    2002-11-23

    KENNEDY SPACE CENTER, FLA. - Blue mach diamonds appear behind the main engine nozzles on Space Shuttle Endeavour as it roars off the launch pad on mission STS-113. Liftoff from Launch Pad 39A occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey.

  11. Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to

    NASA Image and Video Library

    2017-07-26

    The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket is packed inside a canister and ready to exit the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station for its move to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  12. STS-108 Endeavour Launch from Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1788 KENNEDY SPACE CENTER, Fla. -- A pool of water near Launch Pad 39B turns crimson from the reflection of flames at the launch of Space Shuttle Endeavour on mission STS-109. The second attempt in two days, liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.

  13. KSC-00pp0656

    NASA Image and Video Library

    2000-05-19

    KENNEDY SPACE CENTER, Fla. -- The brilliant exhaust from the solid rocket boosters (left) and blue mach diamonds from the main engine nozzles (right) mark the perfect launch of Space Shuttle Atlantis on mission STS-101. Liftoff occurred on time at 6:11:10 a.m. EDT. The mission is taking the crew of seven to the International Space Station to deliver logistics and supplies as well as to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk and will reboost the space station from 230 statute miles to 250 statute miles. This will be the third assembly flight to the Space Station. After a 10-day mission, landing is targeted for May 29 at 2:19 a.m. EDT. This is the 98th Shuttle flight and the 21st flight for Shuttle Atlantis

  14. KSC00pp0656

    NASA Image and Video Library

    2000-05-19

    KENNEDY SPACE CENTER, Fla. -- The brilliant exhaust from the solid rocket boosters (left) and blue mach diamonds from the main engine nozzles (right) mark the perfect launch of Space Shuttle Atlantis on mission STS-101. Liftoff occurred on time at 6:11:10 a.m. EDT. The mission is taking the crew of seven to the International Space Station to deliver logistics and supplies as well as to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk and will reboost the space station from 230 statute miles to 250 statute miles. This will be the third assembly flight to the Space Station. After a 10-day mission, landing is targeted for May 29 at 2:19 a.m. EDT. This is the 98th Shuttle flight and the 21st flight for Shuttle Atlantis

  15. Space Shuttle Atlantis lights up the dark at liftoff

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A gap in shrubs across the water from Launch Pad 39A provide the perfect frame for the brilliantly lighted liftoff of Space Shuttle Atlantis on mission STS-101. Liftoff occurred on time at 6:11:10 a.m. EDT. The mission is taking the crew of seven to the International Space Station to deliver logistics and supplies as well as to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk and will reboost the space station from 230 statute miles to 250 statute miles. This will be the third assembly flight to the Space Station. After a 10-day mission, landing is targeted for May 29 at 2:19 a.m. EDT. This is the 98th Shuttle flight and the 21st flight for Shuttle Atlantis.

  16. International Space Station (ISS)

    NASA Image and Video Library

    1997-06-01

    This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  17. KSC-00pp1567

    NASA Image and Video Library

    2000-10-11

    STS-92 Pilot Pamela Ann Melroy has a final check on her launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Melroy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  18. Expedition_55_Education_In-flight_South_River_High_School_2018_109_1435__642713_642795

    NASA Image and Video Library

    2018-04-18

    SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH MARYLAND STUDENTS-----Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Ricky Arnold of NASA fielded questions from students at the South River High School in Edgewater, Maryland during an in-flight educational event April 19. Feustel and Arnold, who is a former educator, launched to the station in late March for their mission on the orbital complex.

  19. KSC-2014-4175

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – Launch pad lights give off a golden glow at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, as the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2014-4172

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – Launch pad lights give off a golden glow at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, as the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  1. Expedition 39 Launch

    NASA Image and Video Library

    2014-03-26

    This long expsoure photograph shows the flight path of the Soyuz TMA-12M rocket as it launches from the Baikonur Cosmodrome in Kazakhstan on Wednesday, March 26, 2014. The rocket is carrying Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steven Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  2. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Commander and NASA Science Officer Leroy Chiao, right, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces cosmonaut Yuri Shargin, left, donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  3. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Commander and NASA Science Officer Leroy Chiao, left, and Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  4. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  5. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov, Expedition 10 Commander and NASA Science Officer Leroy Chiao, Russian Space Forces cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  6. STS-108 Pilot Kelly suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Pilot Kelly suits up for launch KSC-01PD-1776 KENNEDY SPACE CENTER, Fla. -- STs-108 Pilot Mark E. Kelly is helped with his launch and entry suit in preparation for the second launch attempt of Space Shuttle Endeavour. The first attempt Dec. 4 was scrubbed due to poor weather conditions at KSC. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST Dec. 5, 2001, from Launch Pad 39B.

  7. Next Space Station Crew Prepares for Mission

    NASA Image and Video Library

    2017-12-01

    B-roll footage includes various pre-launch training activities of Expedition 54-55, featuring Soyuz Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), as they prepare for their mission to the International Space Station. The trio will launch to the station aboard a Soyuz spacecraft on Dec. 17 from the Baikonur Cosmodrome in Kazakhstan.

  8. KSC-07pd1426

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Photographers crowd around the countdown clock and flag post near the NASA News Center to capture the successful on-time launch of Space Shuttle Atlantis from Launch Pad 39A at 7:38:04 p.m. EDT on mission STS-117. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Jim Grossmann

  9. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  10. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  11. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Commander James D. Halsell Jr. waves as he stands with his wife Kathy during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  12. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Mary Ellen Weber and her husband Jerome Elkind during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  13. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Yuri Vladimirovich Usachev, a Russian cosmonaut, and his wife Vera Sergeevna Usacheva during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  14. STS-101 Mission Specialist Williams arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Jeffrey N. Williams stands ready to begin preparations for the launch on May 18 after arriving at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  15. STS-101 Commander Halsell arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Commander James D. Halsell Jr. arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to prepare for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  16. STS-101 M.S. Usachev arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Yuri Usachev waves on his arrival KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to prepare for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  17. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Tracy Caldwell Dyson, left, Expedition 23 Soyuz Commander Alexander Skvortsov and Expedition 23 Flight Engineer Mikhail Kornienko, right, talk with family and colleagues from behind glass prior to their launch onboard a Soyuz rocket to the International Space Station (ISS), Friday, April 2, 2010 in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  18. Expedition 23 Soyuz Launch

    NASA Image and Video Library

    2010-04-01

    Photographers capture the Soyuz TMA-18 rocket as it launches from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010 carrying Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia and NASA Flight Engineer Tracy Caldwell Dyson of the U.S. to the International Space Station. (Photo Credit: NASA/Bill Ingalls)

  19. KSC-2012-2908

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Elon Musk, chief executive officer and chief designer for SpaceX, participates in a post-launch news conference being held in the Press Site auditorium at NASA’s Kennedy Space Center in Florida by video teleconference. The SpaceX Falcon 9 rocket launched into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Kim Shiflett

  20. STS-92 crew poses for group photo before launch preparations

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 crew begin their journey to Launch Pad 39A with a snack. Seated at the table (left to right) are Mission Specialists William S. McArthur Jr., Leroy Chiao and Koichi Wakata of Japan; Commander Brian Duffy; Pilot Pamela Ann Melroy; and Mission Specialists Peter J.K. '''Jeff''' Wisoff and Michael E. Lopez-Alegria. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  1. Space Shuttle Familiarization

    NASA Technical Reports Server (NTRS)

    Mellett, Kevin

    2006-01-01

    This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.

  2. KSC-2012-2511

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  3. KSC-2012-2513

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  4. KSC-2012-2512

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  5. KSC-2012-2510

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, preparations are under way to load cargo into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  6. KSC-2012-2514

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians stow cargo in the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  7. KSC-2012-2516

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a cargo bag slides through the docking ring into the Space Exploration Technologies Dragon capsule for stowage for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  8. ISS Node-1 and PMA-1 rotated in KSC's SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The International Space Station's Node 1 and Pressurized Mating Adapter-1 (PMA-1) are rotated by workers in KSC's Space Station Processing Facility. The node is rotated to provide access to different areas of the flight element for processing. Here, the node is rotated to provide access for the installation of heat pipe radiators and a flight computer. The node is scheduled to launch into space on STS-88, slated for a July 9 liftoff at 1:11 p.m. from KSC's Launch Pad 39B.

  9. KSC-2010-5800

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft race toward orbit after launching from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. The Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Kevin O'Connell

  10. KSC-2010-5801

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft race toward orbit after launching from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. The Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Tony Gray

  11. COTS-1

    NASA Image and Video Library

    2010-12-08

    The Dragon capsule that launched from Launch Complex-40 at Cape Canaveral Air Force Station aboard a SpaceX Falcon 9 rocket is recovered in the Pacific Ocean about 500 miles west of the coast of Mexico. The rocket lifted off at 10:43 a.m. EST. The spacecraft went through several maneuvers before it re-entered the atmosphere and splashed down at about 2 p.m. EST. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: Courtesy SpaceX

  12. KSC-08pd3698

    NASA Image and Video Library

    2008-11-14

    CAPE CANAVERAL, Fla. – Center Director Bob Cabana (center) shares a happy moment in the Firing Room of the Launch Control Center at NASA's Kennedy Space Center in Florida after the successful launch of space shuttle Endeavour on the STS-126 mission. Liftoff was on time at 7:55 p.m. EST. STS-126 is the 124th space shuttle flight and the 27th flight to the International Space Station. The mission will feature four spacewalks and work that will prepare the space station to house six crew members for long-duration missions. Photo credit: NASA/Kim Shiflett

  13. NASA Crew Launch Vehicle Flight Test Options

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg

    2006-01-01

    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.

  14. Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; McClendon, Randy (Technical Monitor)

    2002-01-01

    The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post-landing operations. These unique requirements combined with a success-oriented schedule of four flights within a ten-month period have provided numerous opportunities for understanding and improving operations processes. Furthermore, it has increased the knowledge base of future Payload Carrier and Launch Vehicle hardware and requirement developments. Discussion of the process flows and target areas for process improvement are provided in the subject paper. Special emphasis is also placed on supplying guidelines for hardware development. The combination of process knowledge and hardware development knowledge will provide a comprehensive overview for future vehicle developments as related to integration and transportation of payloads.

  15. KSC-2012-1567

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. – The Space Exploration Technologies Corp. SpaceX Falcon 9 rocket with Dragon capsule attached on top sits fully fueled on Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida during a launch dress rehearsal for the company’s next demonstration test flight for NASA’s Commercial Orbital Transportation Services-2 COTS-2) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Gianni Woods

  16. KSC-2012-1569

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. – The Space Exploration Technologies Corp. SpaceX Falcon 9 rocket with Dragon capsule attached on top sits fully fueled on Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida during a launch dress rehearsal for the company’s next demonstration test flight for NASA’s Commercial Orbital Transportation Services-2 COTS-2) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Gianni Woods

  17. KSC-2012-1565

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. – The Space Exploration Technologies Corp. SpaceX Falcon 9 rocket with Dragon capsule attached on top sits fully fueled on Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida during a launch dress rehearsal for the company’s next demonstration test flight for NASA’s Commercial Orbital Transportation Services-2 COTS-2) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Gianni Woods

  18. KSC-2012-1568

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. – The Space Exploration Technologies Corp. SpaceX Falcon 9 rocket with Dragon capsule attached on top sits fully fueled on Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida during a launch dress rehearsal for the company’s next demonstration test flight for NASA’s Commercial Orbital Transportation Services-2 COTS-2) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Gianni Woods

  19. Launch mission summary and sequence of events Telesat-F(anik-D1)/Delta-164

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The launch vehicle, spacecraft, and mission are summarized. Launch window information, vehicle telemetry coverage, real time data flow, telemetry coverage by station, selected trajectory information, and a brief sequence of flight events are included.

  20. jsc2013e018010

    NASA Image and Video Library

    2013-03-21

    At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 35-36 Flight Engineer Chris Cassidy of NASA (left) displays a flight data file book titled “Fast Rendezvous” March 21 as he, Soyuz Commander Pavel Vinogradov (center) and Flight Engineer Alexander Misurkin (right) train for launch to the International Space Station March 29, Kazakh time, in their Soyuz TMA-08M spacecraft from the Baikonur Cosmodrome for a 5 ½ month mission. The “fast rendezvous” refers to the expedited four-orbit, six-hour trip from the launch pad to reach the International Space Station March 29 through an accelerated rendezvous burn plan, the first time this approach will be used for crews flying to the international complex. NASA/Victor Zelentsov

  1. KSC-2014-4177

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  2. EFT-1 Delta IV Heavy lift to vertical

    NASA Image and Video Library

    2014-10-01

    This close-up view shows the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 being raised into the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.

  3. EFT-1 Delta IV Heavy lift to vertical

    NASA Image and Video Library

    2014-10-01

    The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.

  4. KSC-2014-4176

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  5. EFT-1 Delta IV Heavy lift to vertical

    NASA Image and Video Library

    2014-10-01

    The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.

  6. KSC-2014-4170

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2014-4174

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 has arrived at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2014-4171

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 arrives at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  9. The Air Force in Space, Fiscal Year 1962

    DTIC Science & Technology

    1966-06-01

    station was, of course, not unique to the Air Force, it being first introduced into scientific litera- ture by the German theorist, Hermann Oberth . In his...pioneering work on space flight published in 1923, Oberth suggested launching nobserving stations,’ into orbit from which man would be able nto see...serving as refuel- ing stations for extraterrestrial flight. In case of war, Oberth said, the stations would have nstrategie value.„ 37 (U) °berth’s ideas

  10. STS-47 Pilot Brown on OV-105's flight deck ten minutes after SSME cutoff

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Pilot Curtis L. Brown, Jr, is photographed at Endeavour's, Orbiter Vehicle (OV) 105's, pilot station about ten minutes after space shuttle main engine (SSME) cutoff on launch day. Brown smiles from inside the launch and entry suit (LES) and launch and entry helmet (LEH). In the background are the flight mirror assembly silhouetted against forward window W5, control panels, and a checklist.

  11. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov, foreground, Expedition 10 Commander, Russian Space Forces cosmonaut Yuri Shargin and NASA Science Officer Leroy Chiao, background, donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  12. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Security controls access to the Soyuz capsule and test stand area, Friday, Oct. 5, 2004, at the Baikonur Cosmodrome. Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  13. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Commander and NASA Science Officer Leroy Chiao, giving thumbs up, Russian Space Forces cosmonaut Yuri Shargin and Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  14. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov, right, Expedition 10 Commander and NASA Science Officer Leroy Chiao, Russian Space Forces cosmonaut Yuri Shargin, left, donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  15. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Tracy Caldwell Dyson performs the traditional door signing Friday, April 2, 2010 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Caldwell Dyson was launched onboard the Soyuz rocket later that day with Expedition 23 Soyuz Commander Alexander Skvortsov and Flight Engineer Mikhail Kornienko on a mission to the International Space Station (ISS). Photo Credit: (NASA/Carla Cioffi)

  16. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    The Soyuz TMA-18 spacecraft is seen at sunrise prior to its launch at 10:04am, Friday, April 2, 2010 in Baikonur, Kazakhstan. The Soyuz spacecraft will carry Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia, and NASA Flight Engineer Tracy Caldwell Dyson to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  17. KSC-07pd1439

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Viewed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis is a small tip on the trailing column of fire and smoke after launching on mission STS-117. Liftoff from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews

  18. STS-101 Commander Halsell and crew after arriving for TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yuri Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  19. KSC00pp0448

    NASA Image and Video Library

    2000-04-05

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yury Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  20. KSC-00pp0448

    NASA Image and Video Library

    2000-04-05

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yury Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  1. KSC-2012-2862

    NASA Image and Video Library

    2012-05-18

    CAPE CANAVERAL, Fla. – A photographer sets up his remote camera at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. In the background, final preparations are under way to launch the SpaceX Falcon 9 rocket. Liftoff with the Dragon capsule on top is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Ken Thornsley

  2. KSC-2012-2861

    NASA Image and Video Library

    2012-05-18

    CAPE CANAVERAL, Fla. – A strongback provides connections to the SpaceX Falcon 9 rocket as final preparations for launch are completed at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the Dragon capsule on top is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Ken Thornsley

  3. Expedition 51-52 Launches to the International Space Station

    NASA Image and Video Library

    2017-04-20

    Expedition 51-52 Soyuz Commander Fyodor Yurchikhin of Roscosmos and Flight Engineer Jack Fischer of NASA launched on the Russian Soyuz MS-04 spacecraft April 20 from the Baikonur Cosmodrome in Kazakhstan to begin a six-hour journey to the International Space Station and the start of a four and a half month mission on the outpost.

  4. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A light-hearted moment during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. From left, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber and Pilot Scott J. Horowitz. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  5. STS-101 M.S. Helms arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Susan Helms arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The last to arrive, she and the rest of the crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  6. STS-101 M.S. Weber arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Mary Ellen Weber waves before climbing out of a T-38 jet aircraft at KSC's Shuttle Landing Facility. She and the rest of the crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  7. STS-101 Pilot Horowitz arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Pilot Scott J. Horowitz climbs out of a T-38 jet aircraft after arriving at KSC's Shuttle Landing Facility. He and the rest of the crew will begin preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  8. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Allison Caron, a QinetiQ mechanical engineer, checks out part of the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  9. Space Station Crew Member Discusses Life in Space with Japanese Students

    NASA Image and Video Library

    2018-01-08

    Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight educational event Jan. 8 with students gathered at the Hamagin Space Technology Museum in Japan. Kanai launched to the station last month and is in the midst of a six-month mission on the orbital laboratory.

  10. STS-92 Mission Specialist Chiao looks over equipment during pre- pack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-92 Mission Specialist Koichi Wakata of Japan looks over the equipment he will be wearing during launch and entry, such as the helmet and gloves on the table. Wakata and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be Wakata's second Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  11. M.S. Wakata and the STS-92 crew return to O&C after launch scrub

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Koichi Wakata of Japan exits the Astrovan on its return to the Operations and Checkout Building. Behind him is Mission Specialist Leroy Chiao. The scheduled launch to the International Space Station (ISS) was scrubbed about 90 minutes before liftoff. The mission will be the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. The launch has been rescheduled for liftoff Oct. 11 at 7:17 p.m.

  12. Pilot Melory and the STS-92 crew return to O&C after launch scrub

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Pilot Pamela Ann Melroy exits the Astrovan on its return to the Operations and Checkout Building. Behind her is Mission Specialist Koichi Wakata of Japan. The scheduled launch to the International Space Station (ISS) was scrubbed about 90 minutes before liftoff. The mission will be the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. The launch has been rescheduled for liftoff Oct. 11 at 7:17 p.m.

  13. Commander Duffy and the STS-92 crew return to O&C after launch scrub

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Commander Brian Duffy pauses in the door of the Astrovan before exiting at the Operations and Checkout Building. The vehicle is returning the crew after the scheduled launch to the International Space Station (ISS) was scrubbed about 90 minutes before liftoff. The mission will be the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. The launch has been rescheduled for liftoff Oct. 11 at 7:17 p.m.

  14. STS-113 crew breakfast before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-113 crew enjoys a snack before suiting up for launch. Seated left to right are Mission Specialists John Herrington and Michael Lopez-Alegria, Pilot Paul Lockhart and Commander James Wetherbee; Expedition 6 flight engineer Donald Pettit, Commander Ken Bowersox and flight engineer Nikolai Budarin. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  15. KSC-2014-2032

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – At the News Center at NASA's Kennedy Space Center in Florida, Trent Smith of the agency's International Space Station Research and Utilization Office, discusses the Vegetable Production System "VEGGIE" experiment being launched to the ISS. This investigation will focus on the growth and development of "Outredgeous" Lettuce seedlings in the microgravity environment of space and its effects on composition of microbial flora in the Veggie facility. Plans call for lettuce plants to be harvested in-orbit, frozen and returned to the ground for post-flight evaluation. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  16. KSC-2014-2033

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – At the News Center at NASA's Kennedy Space Center in Florida, Trent Smith of the agency's International Space Station Research and Utilization Office, discusses the Vegetable Production System "VEGGIE" experiment being launched to the ISS. This investigation will focus on the growth and development of "Outredgeous" Lettuce seedlings in the microgravity environment of space and its effects on composition of microbial flora in the Veggie facility. Plans call for lettuce plants to be harvested in-orbit, frozen and returned to the ground for post-flight evaluation. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  17. KSC-2014-2031

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – At the News Center at NASA's Kennedy Space Center in Florida, Trent Smith of the agency's International Space Station Research and Utilization Office, discusses the Vegetable Production System "VEGGIE" experiment being launched to the ISS. This investigation will focus on the growth and development of "Outredgeous" Lettuce seedlings in the microgravity environment of space and its effects on composition of microbial flora in the Veggie facility. Plans call for lettuce plants to be harvested in-orbit, frozen and returned to the ground for post-flight evaluation. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  18. KSC-2014-2034

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – At the News Center at NASA's Kennedy Space Center in Florida, Trent Smith of the agency's International Space Station Research and Utilization Office, discusses the Vegetable Production System "VEGGIE" experiment being launched to the ISS. This investigation will focus on the growth and development of "Outredgeous" Lettuce seedlings in the microgravity environment of space and its effects on composition of microbial flora in the Veggie facility. Plans call for lettuce plants to be harvested in-orbit, frozen and returned to the ground for post-flight evaluation. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  19. KSC-2011-5104

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, displays a mock-up of its Dragon capsule during a media tour at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  20. KSC-2011-5107

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, displays a mock-up of its Dragon capsule during a media tour at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  1. KSC-2011-5106

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, displays a mock-up of its Dragon capsule during a media tour at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  2. KSC-2011-5108

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, displays a mock-up of its Dragon capsule during a media tour at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  3. KSC-2012-2520

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians close the hatch of the Dragon capsule. The hatch was open for cargo to be stowed in the capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  4. KSC-2012-2521

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, the hatch of the Space Exploration Technologies Dragon capsule has been closed following stowage of cargo in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  5. KSC-2012-2519

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians prepare to close the hatch of the Dragon capsule. The hatch was open for cargo to be stowed in the capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  6. KSC00pp0565

    NASA Image and Video Library

    2000-04-24

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yury Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days

  7. KSC-00pp0565

    NASA Image and Video Library

    2000-04-24

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yury Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days

  8. KSC-00pp0566

    NASA Image and Video Library

    2000-04-24

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown at left is Commander James D. Halsell Jr. At right is astronaut James Wetherbee, deputy director of the Johnson Space Center. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days

  9. KSC00pp0566

    NASA Image and Video Library

    2000-04-24

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown at left is Commander James D. Halsell Jr. At right is astronaut James Wetherbee, deputy director of the Johnson Space Center. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days

  10. KSC-2012-2517

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a Space Exploration Technologies technician attaches a cargo bag to the crane that will lift it toward the Dragon capsule where it will be stowed in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-2515

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a cargo bag is lowered into the hands of a Space Exploration Technologies technician who will load it into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  12. sts113-s-012

    NASA Image and Video Library

    2002-11-23

    STS113-S-012 (23 November 2002) --- The Space Shuttle Endeavour is pictured on a lighted launch pad at Kennedy Space Center’s (KSC) Launch Complex 39 with a gibbous moon shining brightly in the night sky. Liftoff from KSC occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Crewmembers onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crewmembers--astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin--who went on to replace Expedition 5 aboard the Station.

  13. KSC-06pp2148

    NASA Image and Video Library

    2006-09-09

    KENNEDY SPACE CENTER, FLA. - Trailing fire and a plume of smoke, Space Shuttle Atlantis leaves a dance of lights on nearby water as it hurtles toward space for a rendezvous with the International Space Station on mission STS-115. Liftoff was on-time at 11:14:55 a.m. EDT. After several launch attempts were scrubbed due to weather and technical concerns, this launch was executed perfectly. Mission STS-115 is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. During the mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. STS-115 is scheduled to last 11 days with a planned landing at KSC

  14. KSC-00pp1564

    NASA Image and Video Library

    2000-10-11

    STS-92 Mission Specialist Koichi Wakata of Japan gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wakata and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  15. STS-92 MS McArthur gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist William S. McArthur Jr. undergoes final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. McArthur and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  16. STS-92 MS Chiao gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Leroy Chiao waves while waiting for suit check in the White Room. Behind him is Commander Brian Duffy. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Chiao, Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  17. STS-92 Commander Duffy gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Commander Brian Duffy is helped with final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  18. KSC-00pp1565

    NASA Image and Video Library

    2000-10-11

    STS-92 Mission Specialist Michael E. Lopez-Alegria gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Lopez-Alegria and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  19. 47 CFR 87.303 - Frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... telecommand operations for flight testing of aircraft and missiles, or their major components. The bands 2310... expendable and re-usable launch vehicles, whether or not such operations involve flight testing: 2364.5, 2370... Flight Test Stations § 87.303 Frequencies. (a) These frequencies are available for assignment to flight...

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-04-28

    A Canadian "handshake" in space occurred on April 28, 2001, as the Canadian-built space station robotic arm (Canadarm2) transferred its launch cradle over to Endeavour's robotic arm. Pictured is astronaut James S. Voss, Expedition Two flight engineer, working the controls of the new robotic arm. Marning the controls from the shuttle's aft flight deck, Canadian Mission Specialist Chris A. Hadfield of the Canadian Space Agency (CSA) was instrumental in the activity. The Space lab pallet that carried the Canadarm2 robotic arm to the station was developed at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  1. Evolving the NASA Near Earth Network for the Next Generation of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Carter, David L.; Hudiburg, John J.; Tye, Robert N.; Celeste, Peter B.

    2014-01-01

    The purpose of this paper is to present the planned development and evolution of the NASA Near Earth Network (NEN) launch communications services in support of the next generation of human space flight programs. Following the final space shuttle mission in 2011, the two NEN launch communications stations were decommissioned. Today, NASA is developing the next generation of human space flight systems focused on exploration missions beyond low-earth orbit, and supporting the emerging market for commercial crew and cargo human space flight services. The NEN is leading a major initiative to develop a modern high data rate launch communications ground architecture with support from the Kennedy Space Center Ground Systems Development and Operations Program and in partnership with the U.S. Air Force (USAF) Eastern Range. This initiative, the NEN Launch Communications Stations (LCS) development project, successfully completed its System Requirements Review in November 2013. This paper provides an overview of the LCS project and a summary of its progress. The LCS ground architecture, concept of operations, and driving requirements to support the new heavy-lift Space Launch System and Orion Multi-Purpose Crew Vehicle for Exploration Mission-1 are presented. Finally, potential future extensions to the ground architecture beyond EM-1 are discussed.

  2. Space Station Crew Discusses Their Mission with Michigan Students

    NASA Image and Video Library

    2017-10-06

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineer Joe Acaba of NASA discussed life and research on the orbital outpost during an in-flight educational event Oct. 6 with students at the Gaylord St. Mary Cathedral School in Gaylord, Michigan. Bresnik launched to the station in July and is scheduled to be on station through mid-December, while Acaba is in the first month of a planned five-and-a-half month mission on the laboratory.

  3. KSC-06pd2047

    NASA Image and Video Library

    2006-09-06

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis is bathed in light on Launch Pad 39B. Atlantis was originally scheduled to launch at 12:29 p.m. EDT on this date, but a 24-hour scrub was called by mission managers due to a concern with Fuel Cell 1. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Jim Grossmann

  4. KSC-06pd2066

    NASA Image and Video Library

    2006-09-07

    KENNEDY SPACE CENTER, FLA. - Storm clouds roll across Launch Pad 39B where Space Shuttle Atlantis still sits on the pad. Atlantis was originally scheduled to launch Aug. 27, but a scrub was called by mission managers due to a concern with fuel cell 1. Towering above the shuttle is the 80-foot lightning mast. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Ken Thornsley

  5. KSC-06pd2064

    NASA Image and Video Library

    2006-09-07

    KENNEDY SPACE CENTER, FLA. - Storm clouds gather behind Space Shuttle Atlantis on Launch Pad 39B. Atlantis was originally scheduled to launch on Aug. 27, but a scrub was called by mission managers due to a concern with fuel cell 1. Towering above the shuttle is the 80-foot lightning mast. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Ken Thornsley

  6. KSC-06pd2065

    NASA Image and Video Library

    2006-09-07

    KENNEDY SPACE CENTER, FLA. - A heavy bank of storm clouds gather behind Space Shuttle Atlantis on Launch Pad 39B. Atlantis was originally scheduled to launch Aug. 27, but a scrub was called by mission managers due to a concern with fuel cell 1. Towering above the shuttle is the 80-foot lightning mast. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Ken Thornsley

  7. KSC-00pp1337

    NASA Image and Video Library

    2000-09-13

    The “rookie” on the STS-92 mission, Pilot Pamela Ann Melroy has her new launch and entry suit adjusted during pre-pack and fit check in the Operations and Checkout Building. Melroy and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program

  8. KSC-01pp1813

    NASA Image and Video Library

    2001-12-05

    KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Daniel M. Tani waits in the White Room for final preparations of his launch and entry suit before entering Endeavour. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST (22:19 GMT) Dec. 5, 2001, from Launch Pad 39B

  9. The U.S. Laboratory module arrives at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's 'Super Guppy' aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre- launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS- 98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000.

  10. KSC-98pc1694

    NASA Image and Video Library

    1998-11-13

    KENNEDY SPACE CENTER, FLA. -- NASA's "Super Guppy" aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre-launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS-98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000

  11. KSC-2013-3565

    NASA Image and Video Library

    2013-06-24

    CAPE CANAVERAL, Fla. –Outredgeous red romaine lettuce plants grow inside the bellows of a prototype VEGGIE flight pillow. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Gioia Massa

  12. KSC-2013-3563

    NASA Image and Video Library

    2012-09-25

    CAPE CANAVERAL, Fla. – A 28-day-old Outredgeous red romaine lettuce plant grows in a prototype VEGGIE flight pillow. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Gioia Massa

  13. KSC-2013-3567

    NASA Image and Video Library

    2013-06-06

    CAPE CANAVERAL, Fla. – Outredgeous red romaine lettuce plants grow inside the bellows of a prototype VEGGIE flight pillow. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Bryan Onate

  14. STS-106 Mission Specialist Burbank suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During suitup in the Operations and Checkout Building, STS-106 Mission Specialist Daniel C. Burbank smiles in anticipation of launch. This is Burbank'''s first space flight. Space Shuttle Atlantis is set to lift off 8:45 a.m. EDT on the fourth flight to the International Space Station. During the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  15. Expedition 38 Prelaunch

    NASA Image and Video Library

    2013-11-07

    General Director of the Russian Federal Space Agency, Roscosmos, Oleg Ostapenko, left, and, President of RSC Energia, Designer General V.A.Lapota, right, assist Expedition 38 Soyuz Commander Mikhail Tyurin of Roscosmos, as he and fellow crew members, Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, behind Tyurin, and, Flight Engineer Rick Mastracchio of NASA, far back, walk to the soyuz rocket for their launch to the International Space Station, Thursday, Nov. 7, 2013, in Baikonur, Kazakhstan. Tyurin, Wakata, and, Mastracchio will launch in their Soyuz TMA-11M spacecraft to the International Space Station to begin a six-month mission. Photo Credit: (NASA/Bill Ingalls)

  16. STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC

    NASA Image and Video Library

    1991-04-22

    S91-35303 (22 April 1991) --- Astronauts Frederick D. Gregory (left) and Terrence T. Henricks (right), STS-44 commander and pilot, respectively, are joined near their launch and entry stations by F. Story Musgrave, mission specialist. The three pause while rehearsing some of the activities that will be performed during the scheduled ten-day November flight. Musgrave will be in a rear cabin station during launch and entry phases of the flight deck of the fixed-base Shuttle Mission Simulator (SMS) in the Johnson Space Center's mission simulation and training facility.

  17. Expedition 11 Preflight

    NASA Image and Video Library

    2005-04-13

    The Soyuz TMA-6 sits on the pad ready for launch, Thursday, April 14, 2005, at the Baikonur Cosmodrome in Kazakhstan. Expedition 11 crew Commander Sergei Krikalev along with Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori, of Italy, will launch April 15, 2005. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  18. KSC-2013-1119

    NASA Image and Video Library

    2013-01-14

    CAPE CANAVERAL, Fla. – Workers guide a solar array fairing into place inside the processing hangar used by Space Exploration Technologies, or SpaceX, at Cape Canaveral Air Force Station, Fla. The fairing will be installed on the Dragon spacecraft undergoing launch preparations inside the hangar. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. The flight will be the second commercial resupply mission to the International Space Station by SpaceX. NASA has contracted for a total of 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. Photo credit: NASA/Kim Shiflett

  19. KSC-2013-1099

    NASA Image and Video Library

    2013-01-12

    CAPE CANAVERAL, Fla. – A truck arrives at the processing hangar used by Space Exploration Technologies, or SpaceX, at Cape Canaveral Air Force Station, Fla. The truck is carrying solar array fairings to be installed on the Dragon spacecraft undergoing launch preparations inside the hangar. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. The flight will be the second commercial resupply mission to the International Space Station by Space Exploration Technologies, or SpaceX. NASA has contracted for a total of 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. Photo credit: NASA/Kim Shiflett

  20. KSC-2013-1115

    NASA Image and Video Library

    2013-01-14

    CAPE CANAVERAL, Fla. – Workers guide a solar array fairing into place inside the processing hangar used by Space Exploration Technologies, or SpaceX, at Cape Canaveral Air Force Station, Fla. The fairing will be installed on the Dragon spacecraft undergoing launch preparations inside the hangar. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. The flight will be the second commercial resupply mission to the International Space Station by SpaceX. NASA has contracted for a total of 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. Photo credit: NASA/Kim Shiflett

  1. KSC-2013-1116

    NASA Image and Video Library

    2013-01-14

    CAPE CANAVERAL, Fla. – Workers guide a solar array fairing into place inside the processing hangar used by Space Exploration Technologies, or SpaceX, at Cape Canaveral Air Force Station, Fla. The fairing will be installed on the Dragon spacecraft undergoing launch preparations inside the hangar. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. The flight will be the second commercial resupply mission to the International Space Station by SpaceX. NASA has contracted for a total of 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. Photo credit: NASA/Kim Shiflett

  2. KSC-2013-1109

    NASA Image and Video Library

    2013-01-12

    CAPE CANAVERAL, Fla. – Workers guide a solar array fairing into place inside the processing hangar used by Space Exploration Technologies, or SpaceX, at Cape Canaveral Air Force Station, Fla. The fairing will be installed on the Dragon spacecraft undergoing launch preparations inside the hangar. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. The flight will be the second commercial resupply mission to the International Space Station by SpaceX. NASA has contracted for a total of 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. Photo credit: NASA/Kim Shiflett

  3. KSC-2013-1118

    NASA Image and Video Library

    2013-01-14

    CAPE CANAVERAL, Fla. – Workers guide a solar array fairing into place inside the processing hangar used by Space Exploration Technologies, or SpaceX, at Cape Canaveral Air Force Station, Fla. The fairing will be installed on the Dragon spacecraft undergoing launch preparations inside the hangar. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. The flight will be the second commercial resupply mission to the International Space Station by SpaceX. NASA has contracted for a total of 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. Photo credit: NASA/Kim Shiflett

  4. KSC-2013-1100

    NASA Image and Video Library

    2013-01-12

    CAPE CANAVERAL, Fla. – Workers lift containers from a truck at the processing hangar used by Space Exploration Technologies, or SpaceX, at Cape Canaveral Air Force Station, Fla. The truck is carrying solar array fairings to be installed on the Dragon spacecraft undergoing launch preparations inside the hangar. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. The flight will be the second commercial resupply mission to the International Space Station by SpaceX. NASA has contracted for a total of 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. Photo credit: NASA/Kim Shiflett

  5. KSC-2013-1110

    NASA Image and Video Library

    2013-01-12

    CAPE CANAVERAL, Fla. – Workers guide a solar array fairing into place inside the processing hangar used by Space Exploration Technologies, or SpaceX, at Cape Canaveral Air Force Station, Fla. The fairing will be installed on the Dragon spacecraft undergoing launch preparations inside the hangar. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. The flight will be the second commercial resupply mission to the International Space Station by SpaceX. NASA has contracted for a total of 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. Photo credit: NASA/Kim Shiflett

  6. KSC-2010-5802

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- The Dragon capsule that launched from Launch Complex-40 at Cape Canaveral Air Force Station aboard a SpaceX Falcon 9 rocket is recovered in the Pacific Ocean about 500 miles west of the coast of Mexico. The rocket lifted off at 10:43 a.m. EST. The spacecraft went through several maneuvers before it re-entered the atmosphere and splashed down at about 2 p.m. EST. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: Courtesy SpaceX

  7. STS-106 Mission Specialist Lu suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-106 Mission Specialist Edward T. Lu smiles as he gets suited up in the Operations and Checkout Building before launch. This is Lu'''s second space flight. Space Shuttle Atlantis is set to lift off 8:45 a.m. EDT on the fourth flight to the International Space Station. During the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  8. KSC-05PD-0364

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  9. KSC-05PD-0366

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  10. KSC-05PD-0363

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  11. KSC-2014-4167

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – A United Launch Alliance technicians drives the transporter that carries the Delta IV Heavy rocket to the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2014-4168

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – A United Launch Alliance technicians drives the transporter that carries the Delta IV Heavy rocket to the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-2014-4169

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – A United Launch Alliance technicians drives the transporter that carries the Delta IV Heavy rocket to the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2014-4163

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket exits the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  15. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  16. OPALS Final Testing

    NASA Image and Video Library

    2014-07-24

    Optical PAyload for Lasercomm Science OPALS flight terminal undergoes final testing at NASA Jet Propulsion Laboratory. OPALS was launched to the International Space Station from Cape Canaveral Air Force Station in Florida on April 18, 2014.

  17. STS-101 Space Shuttle Atlantis after RSS rollback at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Rotating Service Structure (left) begins rolling back from Space Shuttle Atlantis on Launch Pad 39A. Atlantis is targeted for liftoff at 4:15 p.m. EDT April 24 on mission STS-101. The mission will take the crew of seven to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.

  18. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov, bottom, Expedition 18 Commander Michael Fincke and American spaceflight participant Richard Garriott, top, wave farewell from the steps of the Soyuz launch pad prior to their launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  19. EFT-1 Delta IV Heavy lift to vertical

    NASA Image and Video Library

    2014-10-01

    The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position in the mobile service tower on the pad at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.

  20. KSC-2014-4178

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – This close-up view shows the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 being raised into the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  1. KSC-2014-4179

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – This close-up view shows the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 being raised into the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  2. KSC-2014-4184

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  3. KSC-2014-4181

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position in the mobile service tower on the pad at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  4. KSC-2014-4180

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  5. EFT-1 Delta IV Heavy lift to vertical

    NASA Image and Video Library

    2014-10-01

    United Launch Alliance, or ULA, workers monitor the progress as the ULA Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.

  6. KSC-07pd1445

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis is poised for flight at liftoff from Launch Pad 39A on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews

  7. Space Station Crew Discusses Life in Space with Ohio Students

    NASA Image and Video Library

    2017-11-01

    Aboard the International Space Station, Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research on the outpost during an in-flight educational event Nov. 1 with students at the Shaker Heights School in Cleveland, Ohio. Vande Hei and Acaba, who launched to the station together in September, are in the midst of a five-and-a-half-month mission on the orbital laboratory.

  8. STS-92 crew heads for Astrovan for trip to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Eager to get to the launch pad and liftoff of Space Shuttle Discovery on mission STS-92, the crew hurries to the waiting Astrovan for the trip. From left are Mission Specialists Michael E. Lopez-Alegria, Koichi Wakata of Japan, William S. McArthur Jr., Leroy Chiao and Peter J.K. '''Jeff''' Wisoff; Pilot Pamela Ann Melroy; and Commander Brian Duffy. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  9. STS-92 crew heads for Astrovan for trip to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Smiling and waving at photographers and onlookers, the STS-92 crew hurries to the waiting Astrovan for the trip to Launch Pad 39A and liftoff of Space Shuttle Discovery. Clockwise from right, leading the way are Commander Brian Duffy and Pilot Pamela Ann Melroy; then Mission Specialists Leroy Chiao, Koichi Wakata of Japan, Michael Lopez-Alegria, William S. McArthur Jr. and Peter J.K. '''Jeff''' Wisoff. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 7:17 p.m. EDT. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  10. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    European Space Agency astronaut Roberto Vittori, right, is outfitted in his Russian Sokol suit, Friday, April 15, 2005, in Baikonur, Kazakhstan. Vittori, along with Expedition 11 Commander Sergei Krikalev and Flight Engineer and NASA Science Officer John Phillips were preparing for launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan at daybreak on April 15 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  11. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    Expedition 11 Commander Sergei Krikalev, seated, is outfitted in his Russian Sokol suit, Friday, April 15, 2005, in Baikonur, Kazakhstan. Krikalev, along with Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori, of Italy, were preparing for launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan at daybreak on April 15 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  12. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    Expedition 11 Commander Sergei Krikalev, left, is outfitted in his Russian Sokol suit, Friday, April 15, 2005, in Baikonur, Kazakhstan. Krikalev, along with Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori, of Italy, were preparing for launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan at daybreak on April 15 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  13. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    Expedition 11 Commander Sergei Krikalev, right, is outfitted in his Russian Sokol suit, Friday, April 15, 2005, in Baikonur, Kazakhstan. Krikalev, along with Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori of Italy were preparing for launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan at daybreak on April 15 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  14. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    European Space Agency astronaut Roberto Vittori, of Italy, is outfitted in his Russian Sokol suit, Friday, April 15, 2005, in Baikonur, Kazakhstan. Vittori, along with Expedition 11 Commander Sergei Krikalev and Flight Engineer and NASA Science Officer John Phillips were preparing for launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan at daybreak on April 15 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  15. KSC-07pd1449

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Columns of fire flow from the solid rocket boosters launching Space Shuttle Atlantis on mission STS-117 while masses of smoke and steam billow across Launch Pad 39A. Atlantis passes the fixed service structure at left, topped by the 80-foot-tall lightning mast. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews

  16. Launch mission summary and terminal countdown, Delta 153 Satellite Business Systems satellite (SBS-A)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief summary of the launch vehicle, spacecraft, and mission is contained. Information relative to launch windows, vehicle telemetry coverage, realtime data flow, telemetry coverage by station, selected trajectory information, and a brief sequence of flight events is also included.

  17. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, John Carver, a project manager with Jacobs Technology checks the Advanced Plant Experiment, or APEX, experiment as it is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  18. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Terry Tullis, a QinetiQ North America mechanical engineer, places the Biological Research In Canisters, or BRIC, 18-1 and 18-2 experiments with others to be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  19. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, QinetiQ North America Project Manager Carole Miller, left, works with Allison Caron, a QinetiQ mechanical engineer in preparing the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  20. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Terry Tullis, a QinetiQ North America mechanical engineer, prepares the Biological Research In Canisters, or BRIC, 18-1 and 18-2 experiments which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  1. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Donald Houzer, a QinetiQ North America mechanical technician checks out the Advanced Plant Experiment, or APEX, experiment as it is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  2. Cygnus Arrives Safely to ISS on This Week @NASA – October 28, 2016

    NASA Image and Video Library

    2016-10-28

    On Oct. 23, Orbital ATK’s Cygnus cargo spacecraft safely arrived at the International Space Station – six days after being launched on an Antares rocket from NASA’s Wallops Flight Facility, in Virginia. The successful trip to orbit is the return of rocket launches to the space station from Virginia, following the loss of an Antares and a Cygnus spacecraft during a launch mishap in October 2014. The Cygnus delivered more than 5,100 pounds of science investigations, food and supplies to the crew onboard the station. Also, Next Space Station Crew Trains in Russia, Solar Hazards in Exploration, Preparing for Orion Water Recovery Test and more!

  3. jsc2012e242600

    NASA Image and Video Library

    2012-12-14

    At the Korolev Museum at the Baikonur Cosmodrome in Kazakhstan, Expedition 34/35 Flight Engineer Chris Hadfield of the Canadian Space Agency signs a mural of a Soyuz spacecraft launch Dec. 14, 2012, part of a tradition for all space travelers launching from the Central Asian spaceport. Hadfield, Soyuz Commander Roman Romanenko and Flight Engineer Tom Marshburn of NASA will launch Dec. 19 in the Soyuz TMA-07M spacecraft from Baikonur for a five-month mission on the International Space Station. NASA/Victor Zelentsov

  4. jsc2012e242599

    NASA Image and Video Library

    2012-12-14

    At the Korolev Museum at the Baikonur Cosmodrome in Kazakhstan, Expedition 34/35 Flight Engineer Tom Marshburn of NASA signs a mural of a Soyuz spacecraft launch Dec. 14, 2012, part of a tradition for all space travelers launching from the Central Asian spaceport. Marshburn, Soyuz Commander Roman Romanenko and Flight Engineer Chris Hadfield of the Canadian Space Agency will launch Dec. 19 in the Soyuz TMA-07M spacecraft from Baikonur for a five-month mission on the International Space Station. NASA/Victor Zelentsov

  5. Soyuz TMA-06M/32S launch

    NASA Image and Video Library

    2012-10-23

    ISS033-E-015399 (23 Oct. 2012) --- This view of Earth’s horizon, shows smoke trails from the launch of the Soyuz TMA-06M spacecraft, was photographed by an Expedition 33 crew member on the International Space Station. The Soyuz, with Expedition 33 crew members Soyuz Commander Oleg Novitskiy, Flight Engineer Kevin Ford of NASA, and Flight Engineer Evgeny Tarelkin of Roscosmos onboard, launched at 4:51 p.m. Kazakhstan time (5:51 a.m. CDT) on Oct. 23, 2012, from Baikonur, Kazakhstan.

  6. Soyuz TMA-06M/32S launch

    NASA Image and Video Library

    2012-10-23

    ISS033-E-015386 (23 Oct. 2012) --- This view of Earth’s horizon, shows smoke trails from the launch of the Soyuz TMA-06M spacecraft, was photographed by an Expedition 33 crew member on the International Space Station. The Soyuz, with Expedition 33 crew members Soyuz Commander Oleg Novitskiy, Flight Engineer Kevin Ford of NASA, and Flight Engineer Evgeny Tarelkin of Roscosmos onboard, launched at 4:51 p.m. Kazakhstan time (5:51 a.m. CDT) on Oct. 23, 2012, from Baikonur, Kazakhstan.

  7. Soyuz TMA-06M/32S launch

    NASA Image and Video Library

    2012-10-23

    ISS033-E-015394 (23 Oct. 2012) --- This view of Earth’s horizon, shows smoke trails from the launch of the Soyuz TMA-06M spacecraft, was photographed by an Expedition 33 crew member on the International Space Station. The Soyuz, with Expedition 33 crew members Soyuz Commander Oleg Novitskiy, Flight Engineer Kevin Ford of NASA, and Flight Engineer Evgeny Tarelkin of Roscosmos onboard, launched at 4:51 p.m. Kazakhstan time (5:51 a.m. CDT) on Oct. 23, 2012, from Baikonur, Kazakhstan.

  8. Expedition 6 flight engineer Donald Pettit suits up for second launch attempt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 flight engineer Donald Pettit is eager for launch as he suits up for a second launch attempt on mission STS-113. The launch on Nov. 22 was scrubbed due to poor weather conditions at the Transoceanic Abort Landing sites. Pettit will be making his first Shuttle flight. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is now scheduled for Nov. 23 at 7:50 p.m. EST.

  9. KSC-98pc641

    NASA Image and Video Library

    1998-05-26

    Technicians supervise the closure of Discovery's payload bay doors from the Payload Changout Room at Launch Pad 39A as preparations for the STS-91 launch continue. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  10. KSC-98pc640

    NASA Image and Video Library

    1998-05-26

    Technicians supervise the closure of Discovery's payload bay doors from the Payload Changout Room at Launch Pad 39A as preparations for the STS-91 launch continue. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  11. KSC-06pd1387

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - Trying a third time for launch, and still smiling, the STS-121 crew gathers again for the traditional breakfast before suiting up. Seated left to right are Mission Specialists Piers Sellers and Michael Fossum, Pilot Mark Kelly, Commander Steven Lindsey, and Mission Specialists Lisa Nowak, Stephanie Wilson and Thomas Reiter, who represents the European Space Agency. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett

  12. ISS Expedition 48-49 prime crewmembers Kate Rubins of NASA (left), Anatoly Ivanishin of Roscosmos (center) and Takuya Onishi of the Japan Aerospace Exploration Agency (right) pose for pictures with schoolchildren after arriving in Baikonur, Kazakhstan June 24 for final pre-launch training following a flight from Star City, Russia. The trio will launch July 7 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station...NASA/Alexander Vysotsky.

    NASA Image and Video Library

    2016-06-24

    ISS Expedition 48-49 prime crewmembers Kate Rubins of NASA (left), Anatoly Ivanishin of Roscosmos (center) and Takuya Onishi of the Japan Aerospace Exploration Agency (right) pose for pictures with schoolchildren after arriving in Baikonur, Kazakhstan June 24 for final pre-launch training following a flight from Star City, Russia. The trio will launch July 7 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station. NASA/Alexander Vysotsky

  13. ISS Expedition 48-49 prime crewmembers Kate Rubins of NASA (left), Takuya Onishi of the Japan Aerospace Exploration Agency (center) and Anatoly Ivanishin of Roscosmos (right) wave to schoolchildren after arriving in Baikonur, Kazakhstan June 24 for final pre-launch training following a flight from Star City, Russia. The trio will launch July 7 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station...NASA/Alexander Vysotsky.

    NASA Image and Video Library

    2016-06-24

    ISS Expedition 48-49 prime crewmembers Kate Rubins of NASA (left), Takuya Onishi of the Japan Aerospace Exploration Agency (center) and Anatoly Ivanishin of Roscosmos (right) wave to schoolchildren after arriving in Baikonur, Kazakhstan June 24 for final pre-launch training following a flight from Star City, Russia. The trio will launch July 7 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station. NASA/Alexander Vysotsky

  14. KSC-2011-5309

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  15. KSC-06pd2137

    NASA Image and Video Library

    2006-09-09

    KENNEDY SPACE CENTER, FLA. - Inside the Launch Control Center, Robbie Ashley, STS-115 payload manager, and Pat Lesley, with United Space Alliance, receive a special award from (at left) Shuttle Launch Director Mike Leinbach and (at right) NASA Flow Director Angie Brewer. Mission STS-115 is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  16. KSC-06pd2134

    NASA Image and Video Library

    2006-09-09

    KENNEDY SPACE CENTER, FLA. - Inside the Launch Control Center, KSC officials turn from their computers to watch through the broad windows the launch of Space Shuttle Atlantis on mission STS-115. Second from left is NASA Test Director Pete Nickolenko. Mission STS-115 is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. sts-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  17. jsc2012e238680

    NASA Image and Video Library

    2012-11-28

    The next trio of residents that will launch to the International Space Station clasp hands for reporters and photojournalists at the Gagarin Cosmonaut Training Center in Star City, Russia Nov. 28, 2012 during the second of two days of flight qualification exams. Expedition 34/35 Flight Engineer Chris Hadfield of the Canadian Space Agency (left), Soyuz Commander Roman Romanenko (center) and NASA Flight Engineer Tom Marshburn (right) are scheduled to launch Dec. 19 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz TMA-07M spacecraft. NASA/Stephanie Stoll

  18. jsc2012e238679

    NASA Image and Video Library

    2012-11-28

    The next trio of residents that will launch to the International Space Station fielded questions from reporters at the Gagarin Cosmonaut Training Center in Star City, Russia Nov. 28, 2012 during the second of two days of flight qualification exams. Expedition 34/35 Flight Engineer Chris Hadfield of the Canadian Space Agency (left), Soyuz Commander Roman Romanenko (center) and NASA Flight Engineer Tom Marshburn (right) are scheduled to launch Dec. 19 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz TMA-07M spacecraft. NASA/Stephanie Stoll

  19. jsc2012e238677

    NASA Image and Video Library

    2012-11-28

    The next trio of residents that will launch to the International Space Station fielded questions from reporters at the Gagarin Cosmonaut Training Center in Star City, Russia Nov. 28, 2012 during the second of two days of flight qualification exams. Expedition 34/35 Flight Engineer Chris Hadfield of the Canadian Space Agency (left), Soyuz Commander Roman Romanenko (center) and NASA Flight Engineer Tom Marshburn (right) are scheduled to launch Dec. 19 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz TMA-07M spacecraft. NASA/Stephanie Stoll

  20. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 NASA Flight Engineer Tracy Caldwell Dyson, left, Expedition 23 Soyuz Commander Alexander Skvortsov and Expedition 23 Flight Engineer Mikhail Kornienko, third from left, walk out to salute Head of the Russian Federal Space Agency Anatoly Perminov, third from right, prior to their launch onboard the Soyuz TMA-18 to the International Space Station (ISS), Friday, April 2, 2010 in Baikonur, Kazakhstan. Photo Credit: (NASA/Victor Zelentsov)

  1. Lunar Orbiter II - Photographic Mission Summary

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Lunar Orbiter II photography of landing sites, and spacecraft systems performance. The second of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 23:21 GMT on November 6, 1966. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena spacecraft combination was maneuvered into a 100-nautical-mile-altitude Earth orbit by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver 1 and engine-bum period required to inject the spacecraft on the cislunar trajectory 20 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the entire boost trajectory.

  2. MPLM Leonardo is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- After being moved from its workstand in the Space Station Processing Facility, the Multi-Purpose Logistics Module Leonardo is suspended above the open doors of the payload canister below. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.

  3. MPLM Leonardo is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, an overhead crane lifts the Multi-Purpose Logistics Module Leonardo from a workstand to move it to the payload canister. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.

  4. MPLM Leonardo is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, a worker at the bottom of the payload canister checks the descent of the Multi-Purpose Logistics Module Leonardo. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.

  5. MPLM Leonardo is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the Space Station Processing Facility follow along as the Multi-Purpose Logistics Module Leonardo is moved along the ceiling toward the payload canister. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.

  6. Expedition 18 Soyuz TMA-13 Launch

    NASA Image and Video Library

    2008-10-11

    The Soyuz TMA-13 spacecraft launches carrying Expedition 18 Commander Michael Fincke, Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott, Sunday, Oct. 12, 2008, from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  7. Expedition 18 Soyuz TMA-13 Launch

    NASA Image and Video Library

    2008-10-12

    The Soyuz TMA-13 spacecraft, carrying Expedition 18 Commander Michael Fincke, Flight Engineer Yury V. Lonchakov and American Spaceflight Participant Richard Garriott, launches, Sunday, Oct. 12, 2008, from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24, 2008 with two of the Expedition 17 crewmembers currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  8. Orion Launch Abort System Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  9. Expedition_55_Education_In-Flight_Oakland_CC_Lake_Orion_HS_2018_107_1025_641759

    NASA Image and Video Library

    2018-04-18

    SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH MICHIGAN STUDENTS----- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Ricky Arnold of NASA discussed life and research on the orbital outpost during an in-flight educational event April 17 with students from the Lake Orion (pron: OH-ree-on) High School and the Oakland Community College in Lake Orion, Michigan. Feustel, who is a native of Lake Orion, and Arnold, who is a former educator, launched to the station in late March for their mission on the orbital outpost.

  10. Space Station flight telerobotic servicer functional requirements development

    NASA Technical Reports Server (NTRS)

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  11. KSC01PD1781

    NASA Image and Video Library

    2001-12-05

    KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Daniel M. Tani is happy to be suiting up for the second launch attempt of Space Shuttle Endeavour. The first attempt Dec. 4 was scrubbed due to poor weather conditions at KSC. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST (22:19 GMT) Dec. 5, 2001, from Launch Pad 39B

  12. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-25

    Cosmonaut Yury I. Onufrienko, Expedition Four mission commander, uses a communication system in the Russian Zvezda Service Module on the International Space Station (ISS). The Zvezda is linked to the Russian-built Functional Cargo Block (FGB) or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  13. SpaceX CRS-11 Post-Launch News Conference

    NASA Image and Video Library

    2017-06-03

    NASA Television held a post launch news conference from Kennedy Space Center’s Press Site recapping the successful launch of SpaceX CRS-11 atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. SpaceX’s Dragon spacecraft carried almost 6,000 pounds of cargo to the orbiting laboratory as SpaceX’s eleventh commercial resupply services mission to the International Space Station. The Falcon 9 rocket returned successfully to the pad about eight minutes after launching. Participants included: -Mike Curie, NASA Communications -Kirk Shireman, Manager, International Space Station Program -Hans Koenigsmann, Vice President of Flight Reliability, SpaceX

  14. KSC-2014-4182

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, workers monitor the progress as the ULA Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  15. KSC-2014-4183

    NASA Image and Video Library

    2014-10-01

    CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, workers monitor the progress as the ULA Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper

  16. KSC-2014-4173

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance, or ULA, Delta IV Heavy rocket for Exploration Flight Test-1 continues its trek to the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. ULA technicians help guide the transporter to the pad. The rocket is secured on the Elevated Platform Transporter. The Delta IV Heavy will launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  17. SLI Artist's Concept-Vehicle Enroute to Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and Defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle enroute to the International Space Station. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second-generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  18. KSC-2014-4166

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance, or ULA, Delta IV Heavy rocket has exited the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. ULA technicians help guide the rocket, secured on the Elevated Platform Transporter, for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-2014-4159

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, United Launch Alliance technicians prepare the Delta IV Heavy rocket for rollout to the pad. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2014-4157

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, United Launch Alliance technicians prepare the Delta IV Heavy rocket for rollout to the pad. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  1. KSC-2014-4165

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance, or ULA, Delta IV Heavy rocket has exited the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. ULA technicians help guide the rocket, secured on the Elevated Platform Transporter, for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  2. KSC-2014-4162

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket begins to rollout from the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-2014-4158

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, United Launch Alliance technicians prepare the Delta IV Heavy rocket for rollout to the pad. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  4. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Administrator Charles Bolden, right, participates in the post launch traditional beans and cornbread at the NASA Kennedy Space Center, Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  5. KSC-05PD-0365

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for and picking up Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  6. Expedition 6 flight engineer Donald Pettit suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 flight engineer Donald Pettit relaxes during suitup for launch. Pettit will be making his first Shuttle flight. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for 8:15 p.m. EST.

  7. Expedition 6 flight engineer Donald Pettit suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition 6 flight engineer Donald Pettit suits up before launch. This will be his first Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  8. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    In the Space Station Processing Facility (SSPF), Charles J. Precourt, deputy manager of NASA's International Space Station Program, is interviewed by a reporter from a local television station. Representatives from the media were invited to commemorate the fifth anniversary of the launch of the first element of the Station with a tour of the facility and had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. NASA and Boeing mission managers were on hand to talk about the various hardware elements currently being processed for flight.

  9. Design and implementation of the flight dynamics system for COMS satellite mission operations

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Sun; Hwang, Yoola; Kim, Hae-Yeon; Kim, Jaehoon

    2011-04-01

    The first Korean multi-mission geostationary Earth orbit satellite, Communications, Ocean, and Meteorological Satellite (COMS) was launched by an Ariane 5 launch vehicle in June 26, 2010. The COMS satellite has three payloads including Ka-band communications, Geostationary Ocean Color Imager, and Meteorological Imager. Although the COMS spacecraft bus is based on the Astrium Eurostar 3000 series, it has only one solar array to the south panel because all of the imaging sensors are located on the north panel. In order to maintain the spacecraft attitude with 5 wheels and 7 thrusters, COMS should perform twice a day wheel off-loading thruster firing operations, which affect on the satellite orbit. COMS flight dynamics system provides the general on-station functions such as orbit determination, orbit prediction, event prediction, station-keeping maneuver planning, station-relocation maneuver planning, and fuel accounting. All orbit related functions in flight dynamics system consider the orbital perturbations due to wheel off-loading operations. There are some specific flight dynamics functions to operate the spacecraft bus such as wheel off-loading management, oscillator updating management, and on-station attitude reacquisition management. In this paper, the design and implementation of the COMS flight dynamics system is presented. An object oriented analysis and design methodology is applied to the flight dynamics system design. Programming language C# within Microsoft .NET framework is used for the implementation of COMS flight dynamics system on Windows based personal computer.

  10. STS-112 Pilot Melroy suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Pilot Pamela Melroy finishes suiting up for launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B. .

  11. STS-112 M.S. Magnus suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist Sandra Magnus finishes suiting up before launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  12. STS-79 Commander Readdy, Pilot Wilcutt and MS Jay Apt at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Commander William F. Readdy (left), Pilot Terrence W. Wilcutt and Mission Specialist Jay Apt chat after the six-member flight crew arrived at KSC's Shuttle Landing Facility. The astronauts' return to KSC coincides with the beginning of a three-day launch countdown that will culminate in the Sept. 16 liftoff of the Space Shuttle Atlantis on Mission STS-79. The 79th Shuttle flight will be highlighted by the fourth docking between the U.S. Shuttle and Russian Space Station Mir and the first U.S. crew exchange on the station. Launch from Pad 39A is set for about 4:54 a.m. EDT.

  13. STS-108 Endeavour Launch from Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1785 KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour soars into a twilight sky on mission STS-108, the second attempt over two days. Liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.

  14. Science and Supplies Launched to Space Station on This Week @NASA – November 17, 2017

    NASA Image and Video Library

    2017-11-17

    An Orbital ATK Cygnus cargo spacecraft arrived at the International Space Station on Nov. 14, carrying about 7,400 pounds of supplies, and science and research materials. The Cygnus – named after late NASA astronaut Eugene Cernan – was launched two days earlier from our Wallops Flight Facility in Virginia. Cygnus also carried several small satellites designed to conduct technology demonstrations of laser communication, research on the effects of microgravity on bacterial antibiotic resistance, and a variety of other studies. Also, Dream Chaser Free Flight Test, Mars 2020 Supersonic Parachute Test, and New “Gravity Assist” Podcast Debuts!

  15. New crew launches to ISS on This Week @NASA - November 28, 2014

    NASA Image and Video Library

    2014-11-28

    NASA’s Terry Virts and Expedition 42/43 crewmates, Anton Shkaplerov of the Russian Federal Space Agency and the European Space Agency’s Samantha Cristoforetti, launched Nov. 23 at 4:01 p.m. Eastern Standard Time, from Baikonur, Kazakhstan. Almost six hours later, their Soyuz spacecraft docked to the International Space Station – where they joined Expedition 42 Commander Barry Wilmore of NASA, and Flight Engineers Alexander Samokutyaev and Elena Serova of Roscosmos – returning the station crew to its full complement of six people. Also, First 3-D printed object in space, Orion flight test update, New airborne Earth Science missions and Happy Thanksgiving from space!

  16. STS-108 Endeavour Launch from Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1786 KENNEDY SPACE CENTER, Fla. -- Like a lighted taper, Space Shuttle Endeavour shines atop its twisted contrail as it soars into space on mission STS-108. Liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.

  17. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Tracy Caldwell Dyson waves farewell to well wishers as she departs the Cosmonaut Hotel on the morning of the Soyuz launch to the International Space Station on Friday, April 2, 2010 in Baikonur, Kazakhstan. Photo Credit: (NASA/Carla Cioffi)

  18. KSC-2010-4397

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, shipping containers packed with tools and flight support equipment for orbital replacement units are ready for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  19. KSC-07pd1440

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis is barely visible above the column of fire and smoke as it soars into the sky after launching on mission STS-117. Liftoff from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. At right is the viewing area on top of the buildings used by the Florida Today newspaper at the NASA News Center. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews

  20. Workers begin removing PDU from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    United Space Alliance technicians at Launch Pad 39A look at the site of the power drive unit (PDU) for the rudder/speed brake on Shuttle Atlantis. From left are Mark Noel, Tod Biddle and Bob Wright. Shuttle managers decided to replace the faulty PDU, about the size of an office copy machine, at the launch pad. If successful, launch preparations will continue as planned, with liftoff targeted for April 24 at 4:15 p.m. on mission STS-101. The mission is the third assembly flight for the International Space Station, carrying logistics and supplies to the Space Station, plus the crew will be preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station.

  1. KSC-2012-2938

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  2. KSC-2012-2919

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – An exhaust cloud begins to form around the SpaceX Falcon 9 rocket as it lifts off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  3. KSC-2012-2928

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  4. KSC-2012-3710

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. - The SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  5. KSC-2012-2914

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket roars into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  6. KSC-2012-2924

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rusty Backer

  7. KSC-2012-2923

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The nine Merlin engines beneath the SpaceX Falcon 9 rocket roar to life at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rusty Backer

  8. KSC-2012-3713

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The 227-foot-tall 69.2 meter) SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  9. KSC-2012-2904

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket lifts off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  10. ksc-2012-2897

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket soars into space from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Alan Ault

  11. KSC-2012-2927

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  12. KSC-2012-3715

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  13. KSC-2012-2930

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station in Florida, Space Launch Complex-40 is ablaze as the SpaceX Falcon 9 rocket begins its ascent after liftoff at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  14. KSC-2012-3720

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  15. ksc-2012-2914

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket roars into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  16. KSC-2012-2942

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  17. KSC-2012-2905

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket soars off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, delivering the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  18. KSC-2012-2913

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station in Florida, Space Launch Complex-40 is ablaze as the SpaceX Falcon 9 rocket lifts off at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  19. KSC-2012-2920

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket begins to lift off from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  20. KSC-2012-2897

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket soars into space from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Alan Ault

  1. KSC-2012-2850

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket makes its way to the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  2. KSC-2012-2911

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  3. KSC-2012-2943

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  4. KSC-2012-3714

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – Under the watchful eye of technicians, the SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  5. ksc-2012-2896

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket lifts off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Alan Ault

  6. KSC-2012-3722

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  7. KSC-2012-3721

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The 227-foot-tall 69.2 meter) SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  8. KSC-2012-3711

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – In this nose-on view, the SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  9. sts113-s-037

    NASA Image and Video Library

    2002-11-23

    STS113-S-037 (23 November 2002) --- Against a black night sky, the Space Shuttle Endeavour heads toward Earth orbit and a scheduled link-up with the International Space Station (ISS). Liftoff from the Kennedy Space Center's Launch Complex 39 occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Crewmembers onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crewmembers--astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin--who went on to replace Expedition 5 aboard the Station.

  10. sts113-s-011

    NASA Image and Video Library

    2002-11-23

    STS113-S-011 (23 November 2002) --- Against a black night sky, the Space Shuttle Endeavour heads toward Earth orbit and a scheduled link-up with the International Space Station (ISS). Liftoff from the Kennedy Space Center's Launch Complex 39 occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Crewmembers onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crewmembers--astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin--who went on to replace Expedition 5 aboard the Station.

  11. sts113-s-009

    NASA Image and Video Library

    2002-11-23

    STS113-S-009 (23 November 2002) --- Against a black night sky, the Space Shuttle Endeavour heads toward Earth orbit and a scheduled link-up with the International Space Station (ISS). Liftoff from the Kennedy Space Center's Launch Complex 39 occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Crewmembers onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crewmembers--astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin--who went on to replace Expedition 5 aboard the Station.

  12. STS113-S-007

    NASA Image and Video Library

    2002-11-23

    STS113-S-007 (23 November 2002) --- Against a black night sky, the Space Shuttle Endeavour heads toward Earth orbit and a scheduled link-up with the International Space Station (ISS). Liftoff from the Kennedy Space Center's Launch Complex 39 occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Crewmembers onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crewmembers--astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin--who went on to replace Expedition 5 aboard the Station.

  13. STS113-S-005

    NASA Image and Video Library

    2002-11-23

    STS113-S-005 (23 November 2002) --- Against a black night sky, the Space Shuttle Endeavour heads toward Earth orbit and a scheduled link-up with the International Space Station (ISS). Liftoff from the Kennedy Space Center's Launch Complex 39 occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Crewmembers onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crewmembers--astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin--who went on to replace Expedition 5 aboard the Station.

  14. KSC-00pp1566

    NASA Image and Video Library

    2000-10-11

    STS-92 Mission Specialist Peter J.K. “Jeff” Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  15. KSC00pp1566

    NASA Image and Video Library

    2000-10-11

    STS-92 Mission Specialist Peter J.K. “Jeff” Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  16. KSC-07pd1437

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Billows of smoke surround the mobile launcher platform on Launch Pad 39A as Space Shuttle Atlantis lifts off on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Reuters.

  17. KSC-2014-3675

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – Preparations are underway to begin mating the United Launch Alliance Delta IV port booster to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  18. KSC-2014-3676

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – In this close-up photograph, the United Launch Alliance Delta IV port booster is being mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  19. KSC-2014-3682

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV port booster is being mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  20. NASA's Brad Neal, X-43A Monitor Station Operator aboard NASA's B-52B mothership, performing pre-flight checks on November 16, 2004

    NASA Image and Video Library

    2004-11-16

    NASA X-43A Monitor Station Operator Brad Neal performs final checks and pre-flight preparations aboard the B-52 for the third X-43A research vehicle Mach 10 flight on November 16, 2004. Takeoff of the B-52B mothership carrying the X-43A took place at 1 p.m., PST, with launch of the booster rocket/X-43A approximately an hour later.

  1. jsc2012e239099

    NASA Image and Video Library

    2012-11-29

    At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 34/35 Flight Engineer Chris Hadfield of the Canadian Space Agency displays a personal logo of his upcoming flight to the International Space Station in the form of a guitar pick as he fielded questions from reporters at a news conference Nov. 29, 2012. Hadfield, NASA Flight Engineer Tom Marshburn (left) and Soyuz Commander Roman Romanenko (center) will launch to the station Dec. 19 from the Baikonur Cosmodrome in Kazakhstan in their Soyuz TMA-07M spacecraft. NASA/Stephanie Stoll

  2. STS-102 MS Voss, Helms and Usachev suited up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - STS-102 Mission Specialists James Voss, Susan Helms and Yury Usachev hold up a sign after donning their launch and entry suits. In Cyrillic and English, the sign recognizes International Women'''s Day, March 8. Voss and Helms are making their fifth Shuttle flights and Usachev is making his second. All three are the Expedition Two crew who are replacing Expedition One on the International Space Station. STS-102 is the eighth construction flight to the Station, carrying the Multi-Purpose Logistics Module Leonardo. . The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. Discovery is set to launch March 8 at 6:42 a.m. EST. The 12-day mission is expected to end with a landing at KSC on March 20.

  3. KSC-00pp1779

    NASA Image and Video Library

    2000-11-30

    STS-97 Mission Specialist Joseph Tanner signals thumbs up for launch as he dons his launch and entry suit. this is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  4. KSC-00pp1782

    NASA Image and Video Library

    2000-11-30

    STS-97 Pilot Michael Bloomfield signals thumbs up for launch after donning his launch and entry suit. This is his second Shuttle flight. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  5. KSC-2014-4045

    NASA Image and Video Library

    2014-09-21

    CAPE CANAVERAL, Fla. – Michael Curie, NASA Public Affairs, moderates a post-launch media briefing following the successful launch of NASA's SpaceX CRS-4 mission to the International Space Station. Liftoff was at 1:52 a.m. EDT. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann

  6. Lunar Orbiter 3 - Photographic Mission Summary

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Systems performance, lunar photography, and launch operations of Lunar Orbiter 3 photographic mission. The third of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 01:17 GMT on February 5,1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final 1 maneuvering and acceleration to the velocity required to maintain the 100-nautical-milealtitude Earth orbit was controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-burn period required to inject the spacecraft on the cislunar trajectory 20 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the entire boost trajectory.

  7. KSC-2012-2907

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Participating in a post-launch news conference in the Press Site auditorium at NASA’s Kennedy Space Center in Florida are, from left, George H. Diller, NASA Public Affairs, William Gerstenmaier, associate administrator of NASA’s Human Exploration and Operations Directorate, Alan Lindenmoyer, manager of NASA’s Commercial Crew and Cargo Program, and Gwynne Shotwell, president of SpaceX. Also participating by video teleconference, on the screen at right, is Elon Musk, chief executive officer and chief designer for SpaceX. The SpaceX Falcon 9 rocket launched into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Kim Shiflett

  8. STS-92 crew exits O&C on way to Launch Pad 39A for the second time

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 crew greets cheering onlookers as they exit the Operations and Checkout Building for the trip to Launch Pad 39A and liftoff of Space Shuttle Discovery. In rows of two, starting at front, are Pilot Pamela Ann Melroy and Commander Brian Duffy; Mission Specialists Leroy Chiao, Peter J.K. '''Jeff''' Wisoff; Koichi Wakata, William S. McArthur Jr.; and Michael E. Lopez-Alegria taking up the rear. . This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  9. Expedition 18 Soyuz TMA-13 Rollout

    NASA Image and Video Library

    2008-10-10

    The Soyuz TMA-13 spacecraft is transported by railcar to its launch pad at the Baikonur Cosmodrome in Kazakhstan, Friday, Oct. 10, 2008 for launch Oct. 12 to carry Expedition 18 Commander Michael Fincke, Flight Engineer Yury V. Lonchakov and American Spaceflight Participant Richard Garriott to the International Space Station. The three crew members will dock their Soyuz to the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24, 2008 with two of the Expedition 17 crewmembers currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  10. Expedition 18 State Commission

    NASA Image and Video Library

    2008-10-10

    The State Commission gives the approval for launch of the Soyuz TMA-13 spacecraft carrying Expedition 18 Commander Michael Fincke, Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott to the International Space Station, Saturday, Oct. 11, 2008, in Baikonur, Kazakhstan. The three crew members are scheduled to launch Oct. 12 for a docking with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  11. Expedition 18 Soyuz TMA-13 Rollout

    NASA Image and Video Library

    2008-10-10

    The Soyuz TMA-13 spacecraft arrives at the launch pad at the Baikonur Cosmodrome in Kazakhstan, Friday, Oct. 10, 2008 for launch Oct. 12 to carry Expedition 18 Commander Michael Fincke, Flight Engineer Yury V. Lonchakov and American Spaceflight Participant Richard Garriott to the International Space Station. The three crew members will dock their Soyuz to the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24, 2008 with two of the Expedition 17 crewmembers currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  12. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Photographer Kim Shiflett, left, and Videographer Glenn Benson capture a group photo of the launch team in Firing Room Four of the NASA Kennedy Space Center Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  13. Butch Wilmore tour of ULA facility and viewing of ICPS

    NASA Image and Video Library

    2017-03-16

    Inside the United Launch Alliance Horizontal Integration Facility at Cape Canaveral Air Force Station in Florida, NASA astronaut Barry "Butch" Wilmore views the first integrated piece of flight hardware for NASA's Space Launch System (SLS) rocket, the Interim Cryogenic Propulsion Stage (ICPS). The ICPS is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission 1.

  14. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-43

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, James Bradley

    1991-01-01

    A debris/ice Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Station Mission STS-43. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank (ET) were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and to evaluate potential vehicle damage and/or in-flight anomalies.

  15. Payload Bay Canister being transported to Pad 39A for a fit chec

    NASA Image and Video Library

    2007-01-22

    This payload canister is being transported to Launch Pad 39A for a "fit check." At a later date, the canister will be used to transport to the pad the S3/S4 solar arrays that are the payload for mission STS-117. The mission will launch on Space Shuttle Atlantis for the 21st flight to the International Space Station, and the crew of six will continue the construction of station with the installation of the arrays. The launch of Atlantis is targeted for March 16.

  16. SpaceX CRS-13 Post Launch News Conference

    NASA Image and Video Library

    2017-12-15

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, from left, Stephanie Martin of NASA Communications, speaks to media at a post-launch news conference following the liftoff of SpaceX CRS-13. The flight is a commercial resupply services mission to the International Space Station. SpaceX CRS-13 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station at 10:36 a.m. EST with supplies and equipment and new science experiments for technology research.

  17. CRS-12 Post-Launch News Conference

    NASA Image and Video Library

    2017-08-14

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the liftoff of SpaceX CRS-12, a commercial resupply services mission to the International Space Station. Stephanie Martin of NASA Communications, Dan Hartman, NASA deputy manager of the International Space Station Program, and Hans Koenigsmann, SpaceX vice president of Flight and Build Reliability. SpaceX CRS-12 lifted off atop a Falcon 9 rocket from Kennedy's Launch Complex 39A at 12:31 p.m. EDT.

  18. Small Satellites to Hitchhike on SLS Rocket’s First Flight on This Week @NASA – February 5, 2016

    NASA Image and Video Library

    2016-02-05

    During a Feb. 2 event at NASA’s Marshall Space Flight Center, officials announced the selection of 13 low-cost small satellites to launch as secondary payloads on Exploration Mission-1 (EM-1) -- the first flight of the agency’s Space Launch System (SLS) rocket, targeted for 2018. SLS’ first flight is designed to launch an un-crewed Orion spacecraft to a stable orbit beyond the moon to demonstrate and test systems for both the spacecraft and rocket before the first crewed flight of Orion. The announced CubeSat secondary payloads will carry science and technology investigations to help pave the way for future human exploration in deep space, including the Journey to Mars. Also, New Marshall Space Flight Center Director, Webb Telescope’s final mirror installed, Juno adjusts course to Jupiter, Russian spacewalk on space station and Hangar One’s Super Bowl Redwood!

  19. KSC-2014-3685

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – All three of the United Launch Alliance, or ULA, Delta IV boosters for Exploration Flight Test-1 are in view inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The port booster is being mated to the core booster. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  20. KSC-2014-3686

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – All three of the United Launch Alliance, or ULA, Delta IV boosters for Exploration Flight Test-1 are in view inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The port booster is being mated to the core booster. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  1. KSC-2014-4161

    NASA Image and Video Library

    2014-09-30

    CAPE CANAVERAL, Fla. – Inside the Horizontal Integration Facility at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, United Launch Alliance technicians and engineers prepare the Delta IV Heavy rocket for rollout to the pad. The rocket is secured on the Elevated Platform Transporter for the trip to the pad. The Delta IV Heavy will launch Orion on Exploration Flight Test-1. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Dimitri Gerondidakis

  2. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  5. STS-92 group photo on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39A, the STS-92 crew poses for a group photo. In the background is Space Shuttle Discovery. Standing, left to right, on the crawlerway ramp are Mission Specialists Koichi Wakata of Japan, Michael Lopez-Alegria, Jeff Wisoff, Bill McArthur and Leroy Chiao; Pilot Pam Melroy; and Commander Brian Duffy. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  6. STS-92 group photo on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39A, the STS-92 crew poses for a group photo. Standing, left to right, on the crawlerway ramp are Mission Specialists Koichi Wakata of Japan, Michael Lopez-Alegria, Jeff Wisoff, Bill McArthur and Leroy Chiao; Pilot Pam Melroy; and Commander Brian Duffy. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. In the background is Space Shuttle Discovery. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  7. KSC-2009-4839

    NASA Image and Video Library

    2009-08-24

    CAPE CANAVERAL, Fla. – Xenon lights over Launch Pad 39A at NASA's Kennedy Space Center in Florida compete with the lightning strike seen to the left. Space shuttle Discovery is on the pad waiting for a scheduled liftoff on the STS-128 mission. Launch was scrubbed due to the weather conditions that violated the limitations for liftoff. Another launch attempt was scheduled for 1:10 a.m. Aug. 26. Discovery's 13-day mission will deliver more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. The equipment includes a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. The mission is the 128th in the Space Shuttle Program, the 37th flight of Discovery and the 30th station assembly flight. Photo credit: NASA/Ben Cooper

  8. jsc2011e027535

    NASA Image and Video Library

    2011-03-21

    At the Baikonur Cosmodrome in Kazakhstan, Expedition 27 Flight Engineer Ron Garan of NASA (left), Soyuz Commander Alexander Samokutyaev (center) and Flight Engineer Andrey Borisenko (right) are greeted upon their arrival March 21, 2011 by RSC-Energia Vice-President Nikolai Zelenchikov after their flight to the launch site from Star City, Russia. The trio, and their backups, Anatoly Ivanishin, Anton Shkaplerov and Dan Burbank are in the final weeks of training for their launch April 5 (April 4, U.S. time) on the Soyuz TMA-21 spacecraft to the International Space Station. Credit: NASA/Victor Zelentsov

  9. KSC All Hands

    NASA Image and Video Library

    2018-01-11

    Mic Woltman, chief of the Fleet Systems Integration Branch of NASA's Launch Services Program, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.

  10. Expedition 11 Preflight

    NASA Image and Video Library

    2005-04-10

    Expedition 11 Flight Engineer John Phillips takes part in a tilt table test, Monday, April 11, 2005, in Baikonur, Kazakhstan as technicians collect pre-launch data on the state of his equilibrium prior to the April 15 launch to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  11. KSC-01pp1481

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. - Expedition Three crew member Vladimir Dezhurov (left) is ready for his first space flight, under the guidance of STS-105 Commander Scott Horowitz (center). Helping with flight equipment before launch is (right) USA Mechanical Technician Al Schmidt. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the International Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station

  12. KSC-2014-2206

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - A blinding flash of light under the Falcon 9 rocket signals engine ignition and liftoff of the SpaceX-3 mission from Space Launch Complex 40 on Cape Canaveral Air Force Station, sending the Dragon resupply spacecraft on its way to the International Space Station. Launch was during an instantaneous window at 3:25 p.m. EDT. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Tony Gray

  13. STS-101 Mission Specialists Helms, Usachev and Voss practice emergency exit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As part of Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew practices emergency egress from the orbiter at the 195-foot level of the Fixed Service Structure. Shown heading down the easily identified exit path, known as the 'yellow brick road,' are Mission Specialists Susan J. Helms (leading), Yuri Usachev of Russia and James Voss. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS- 101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight to the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  14. KSC-2014-2184

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - An image of SpaceX CEO and chief designer Elon Musk is displayed in the NASA Press Site news auditorium at Kennedy Space Center in Florida during a SpaceX-3 post-launch news conference. Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett

  15. KSC00pp0478

    NASA Image and Video Library

    2000-04-07

    KENNEDY SPACE CENTER, FLA. -- As part of Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew practices emergency egress from the orbiter at the 195-foot level of the Fixed Service Structure. Shown heading down the easily identified exit path, known as the "yellow brick road," are Mission Specialists Susan J. Helms (leading), Yury Usachev of Russia and James Voss. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight to the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  16. KSC-00pp0478

    NASA Image and Video Library

    2000-04-07

    KENNEDY SPACE CENTER, FLA. -- As part of Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew practices emergency egress from the orbiter at the 195-foot level of the Fixed Service Structure. Shown heading down the easily identified exit path, known as the "yellow brick road," are Mission Specialists Susan J. Helms (leading), Yury Usachev of Russia and James Voss. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight to the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  17. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew gather during a meeting with family and friends at Launch Pad 39A. From left, Mission Specialist Susan J. Helms, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber, Pilot Scott J. Horowitz and Mission Specialists Yuri Vladimirovich Usachev, Jeffery N. Williams and James S. Voss. In the background is the Space Shuttle Atlantis on the pad. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  18. STS-101 crew waves to media after arriving at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew wave at media and photographers at KSC's Shuttle Landing Facility after their landing the night of May 14. Standing left to right are Mission Specialists Yuri Usachev, James Voss, Mary Ellen Weber and Jeff Williams; Commander James Halsell; and Pilot Scott Horowitz. Not present is Mission Specialist Susan Helms, who arrived later. The crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  19. Expedition 32 Docking with ISS

    NASA Image and Video Library

    2012-07-17

    Dina Pandya, Expedition 32 Flight Engineer Sunita Williams’ sister, says hello after her arrival to the International Space Station on Tuesday, July 17, 2012 at the Russian Mission Control Center in Korolev, Russia. The Soyuz docked to the International Space Station with Williams and fellow crew members Soyuz Commander Yuri Malenchenko and JAXA Flight Engineer Akihiko Hoshide two days after they launched from the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Carla Cioffi)

  20. DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  1. KSC-00pp0562

    NASA Image and Video Library

    2000-04-24

    While suiting up in the Operations and Checkout Building, STS-101 Mission Specialists (standing) Susan J. Helms, James S. Voss and (sitting) Yuri Usachev of Russia reveal their happiness to be just hours away from launch of Space Shuttle Atlantis. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station

  2. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Commander and NASA Science Officer Leroy Chiao donned his launch and entry suit and climbed aboard the Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  3. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Russian Space Forces cosmonaut Yuri Shargin donned his launch and entry suit and climbed aboard the Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  4. KSC01padig202

    NASA Image and Video Library

    2001-04-19

    KENNEDY SPACE CENTER, FLA. -- Spring leaves frame the launch of Space Shuttle Endeavour on mission STS-100, the ninth flight to the International Space Station. Liftoff occurred at 2:40:42 p.m. EDT. The 11-day mission will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator System and the UHF Antenna. The mission includes two planned spacewalks for installation of the SSRMS on the Station. Also onboard is the Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platform

  5. KSC01PP0831

    NASA Image and Video Library

    2001-04-19

    KENNEDY SPACE CENTER, FLA. -- Spring leaves frame Space Shuttle Endeavour as the water captures the launch of mission STS-100. Liftoff of Endeavour on the ninth flight to the International Space Station occurred at 2:40:42 p.m. EDT. The 11-day mission will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator System and the UHF Antenna. The mission includes two planned spacewalks for installation of the SSRMS on the Station. Also onboard is the Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platforms

  6. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov, bottom, Expedition 18 Commander Michael Fincke and American spaceflight participant Richard Garriott, top, board the Soyuz rocket prior to their launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  7. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, Expedition 18 Flight Engineer Yuri V. Lonchakov and Expedition 18 Commander Michael Fincke, right, depart building 254 where the crew donned their spacesuits prior to launch in the Soyuz TMA-13 spacecraft, Sunday Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The crew is scheduled to dock to the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crewmembers currently on the International Space Station. Photo Credit: (NASA/Victor Zelentsov)

  8. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, Expedition 18 Flight Engineer Yuri V. Lonchakov and Expedition 18 Commander Michael Fincke, right, prepare to salute officials prior to launch in the Soyuz TMA-13 spacecraft, Sunday Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The crew is scheduled to dock to the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crewmembers currently on the International Space Station. Photo Credit: (NASA/Victor Zelentsov)

  9. Perfect launch for Space Shuttle Discovery on mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Smoke billows out from Launch Pad 39A as Space Shuttle Discovery soars into the blue sky on mission STS-105 to the International Space Station. Liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

  10. Expedition 6 flight engineer Nikolai Budarin suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition 6 flight engineer Nikolai Budarin relaxes during suitup for launch. Budarin, who is with the Russian Space Agency, will be making his second Shuttle flight. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for 8:15 p.m. EST.

  11. Interim Cryogenic Propulsion Stage (ICPS) for EM-1 Transport fro

    NASA Image and Video Library

    2017-04-11

    The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System rocket arrives at the Delta Operations Center at Cape Canaveral Air Force Station in Florida. The ICPS was moved from the United Launch Alliance (ULA) Horizontal Integration Facility near Space Launch Complex 37 at the Cape. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.

  12. Launch and Landing of Russian Soyuz - Medical Support for US and Partner Astronauts

    NASA Technical Reports Server (NTRS)

    Menon, Anil

    2017-01-01

    Launching, landing, flight route, expeditions, Soyuz, near Kazakhstan USOS Crew Surgeon -Quarantine and direct care to crew before launch, then present in close proximity to launch for abort. IP Crew Surgeon -same Deputy Crew Surgeon -Back up for crew surgeon, care for immediate family, stationed at airport for helicopter abort response Russian based US doctor -Coordinate with SOS staff USOS Crew Surgeon -Nominal helicopter response and initial medical care and support during return on gulfstreamIPcenter dotP Crew Surgeon -same Deputy Crew Surgeon -Ballistic helicopter support Russian based US doctor -Coordinate with SOS staff Direct return doctor -Direct medical care on return flight

  13. Expedition 33 Soyuz Rollout

    NASA Image and Video Library

    2012-10-21

    Pad workers install a safety railing at the launch pad shortly after the Soyuz rocket is erected into position, on Sunday, October 21, 2012, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for October 23 and will send Expedition 33/34 Flight Engineer Kevin Ford of NASA, Soyuz Commander Oleg Novitskiy and Flight Engineer Evgeny Tarelkin of ROSCOSMOS on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  14. jsc2013e013835

    NASA Image and Video Library

    2013-03-07

    At the Gagarin Museum at the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 35-36 Flight Engineer Chris Cassidy of NASA (right) signs a ceremonial book March 7 during traditional pre-launch activities as his crewmate, Soyuz Commander Pavel Vinogradov (left) looks on. Cassidy, Vinogradov and Flight Engineer Alexander Misurkin will launch to the International Space Station March 29, Kazakh time, in their Soyuz TMA-08M spacecraft from the Baikonur Cosomodrome in Kazakhstan. NASA / Stephanie Stoll

  15. STS-101 crew have a snack before getting ready for launch again

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch for the second time. The previous day's launch attempt was scrubbed due to high cross winds at the Shuttle Landing Facility. From left are Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia; Pilot Scott J. Horowitz; Commander James D. Halsell Jr.; and Mission Specialists Jeffrey N. Williams, Susan J. Helms and James S. Voss. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.

  16. AJ26 engine test

    NASA Image and Video Library

    2011-12-15

    Stennis Space Center test-fired Aerojet AJ26 flight engine No. 8 on Dec. 15, continuing a commercial partnership with Orbital Services Corporation. Orbital has partnered with NASA to provide commercial cargo flights to the International Space Station. The AJ26 engines tested at Stennis will power the company's Taurus II space launch vehicle on the flights.

  17. STS-112 M.S. Wolf suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist David Wolf suits up for launch, just hours away. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B. .

  18. KSC All Hands

    NASA Image and Video Library

    2018-01-11

    Russ DeLoach, director of Safety and Mission Assurance, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.

  19. KSC All Hands

    NASA Image and Video Library

    2018-01-11

    Kennedy Space Center Director Bob Cabana speaks to employees at the Florida spaceport about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.

  20. KSC All Hands

    NASA Image and Video Library

    2018-01-11

    Josie Burnett, director or Exploration Research and Technology Programs, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.

  1. ISS Expedition 55-56 Crew Launches to the International Space Station

    NASA Image and Video Library

    2018-03-21

    Expedition 55-56 Soyuz Commander Oleg Artemyev of Roscosmos and Flight Engineers Drew Feustel and Ricky Arnold of NASA launched on the Russian Soyuz MS-08 spacecraft on Mar. 21 from the Baikonur Cosmodrome in Kazakhstan to begin a two-day journey to the International Space Station and the start of a five month mission on the outpost. The footage also contains the crew's pre-launch activities that included their departure from their Cosmonaut Hotel crew quarters, their suit-up in the Cosmodrome's Integration Facility, walk out to their crew bus and arrival at the launch pad to board their spacecraft.

  2. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist John Herrington (left) and cosmonaut Nikolai Budarin (center) listen to instructions from a trainer on the emergency egress system on Launch Pad 39A. They are other crew members are taking part in Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  3. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee talks about the mission during a media event at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  4. KSC-2010-4399

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  5. KSC-2010-4398

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, shipping containers packed with tools and flight support equipment for orbital replacement units are loaded into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  6. KSC-2010-4400

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  7. KSC-2010-4401

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  8. KSC-2010-4402

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  9. STS-101 crew members enjoy a snack before getting ready for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch. From left are Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia; Pilot Scott J. Horowitz; Commander James D. Halsell Jr.; and Mission Specialists Jeffrey N. Williams, Susan J. Helms and James S. Voss. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.

  10. Orion EM-1 Crew Module Move from Clean Room to Work Station

    NASA Image and Video Library

    2017-05-11

    The Orion crew module for NASA’s Exploration Mission 1 (EM-1) is secured in a work station in the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion will undergo additional processing to prepare it for launch in 2019. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1.

  11. Orion EM-1 Crew Module Move from Clean Room to Work Station

    NASA Image and Video Library

    2017-05-11

    The Orion crew module for NASA’s Exploration Mission 1 (EM-1) is being secured in a work station in the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion will undergo additional processing to prepare it for launch in 2019. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1.

  12. KSC-2014-3688

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – A United Launch Alliance, or ULA, technician monitors the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  13. KSC-2014-3680

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  14. KSC-2014-3683

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  15. KSC-2014-3678

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  16. KSC-2014-3681

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  17. KSC-2014-3677

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  18. KSC-2014-3679

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  19. KSC-2014-3684

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  20. KSC-2014-3687

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – United Launch Alliance, or ULA, technicians monitor the progress as the Delta IV port booster is mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The ULA Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  1. The X-38 Vehicle 131R drops away from its launch pylon on the wing of NASA's NB-52B mothership as it begins its eighth free flight on Thursday, December 13, 2001

    NASA Image and Video Library

    2001-12-13

    The X-38 prototype of the Crew Return Vehicle for the International Space Station drops away from its launch pylon on the wing of NASA's NB-52B mothership as it begins its eighth free flight on Thursday, Dec. 13, 2001. The 13-minute test flight of X-38 vehicle 131R was the longest and fastest and was launched from the highest altitude to date in the X-38's atmospheric flight test program. A portion of the descent was flown under remote control by a NASA astronaut from a ground vehicle configured like the CRV's interior before the X-38 made an autonomous landing on Rogers Dry Lake.

  2. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Sowards, Stephanie; Honeycutt, Timothy

    2008-01-01

    This paper discusses the benefits of conducting multi-system integration testing of space flight elements in lieu of merely shipping and shooting to the launch site and launching. "Ship and shoot" is a philosophy that proposes to transport flight elements directly from the factory to the launch site and begin the mission without further testing. Integration testing, relevant to validation testing in this context, is a risk mitigation effort that builds upon the individual element and system levels of qualification and acceptance tests, greatly improving the confidence of operations in space. The International Space Station Program (ISSP) experience is the focus of most discussions from a historical perspective, while proposed integration testing of the Constellation Program is also discussed. The latter will include Multi-Element Integration Testing (MElT) and Flight Element Integration Testing (FElT).

  3. sts113-s-035

    NASA Image and Video Library

    2002-11-23

    STS113-S-035 (23 November 2002) --- The Space Shuttle Endeavour arcs into the still-black sky over the Atlantic Ocean, casting a fiery glow on its way. Liftoff from the Kennedy Space Center's Launch Complex 39 occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Crewmembers onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crewmembers--astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin--who went on to replace Expedition 5 aboard the Station.

  4. STS-108 Endeavour Launch from Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1787 KENNEDY SPACE CENTER, Fla. -- Spewing flames and smoke, Space Shuttle Endeavour hurtles into the twilight sky on mission STS-108. The second attempt in two days, liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.

  5. KSC-2011-7523

    NASA Image and Video Library

    2011-10-23

    A truck carries the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  6. KSC-2011-7526

    NASA Image and Video Library

    2011-10-23

    Workers lift the transportation canister from the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  7. KSC-2011-7527

    NASA Image and Video Library

    2011-10-23

    Workers lower the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule at Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  8. KSC-2011-7521

    NASA Image and Video Library

    2011-10-23

    A truck brings the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  9. KSC-2011-7529

    NASA Image and Video Library

    2011-10-23

    Workers unwrap the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule inside a building at Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  10. KSC-2011-7524

    NASA Image and Video Library

    2011-10-23

    A truck carries the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  11. KSC-2011-7522

    NASA Image and Video Library

    2011-10-23

    A truck carries the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  12. KSC-2011-7528

    NASA Image and Video Library

    2011-10-23

    Workers unwrap the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule inside a building at Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  13. KSC-2011-7525

    NASA Image and Video Library

    2011-10-23

    Workers lift the transportation canister away from the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  14. KSC-2009-2012

    NASA Image and Video Library

    2009-03-10

    CAPE CANAVERAL, Fla. – In the Operations and Checkout Building at NASA's Kennedy Space Center in Florida, STS-119 Mission Specialist Richard Arnold signals he is ready for launch during the final fitting of his launch and entry suit. Arnold is making his first shuttle flight. The 14-day mission is the 28th to the International Space Station and the 125th space shuttle flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Liftoff of Discovery is scheduled for 9:20 p.m. EDT on March 11. Photo credit: NASA/Kim Shiflett

  15. KSC-07pd1454

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Twin columns of fire rocket the Space Shuttle Atlantis into the sky above Kennedy Space Center. Liftoff of Atlantis on mission STS-117 to the International Space Station from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Chris Lynch

  16. KSC-07pd1443

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Branches and leaves frame Space Shuttle Atlantis as it lifts off Launch Pad 39A on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Sandra Joseph, Robert Murray and Tom Farrar

  17. KSC-07pd1429

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Trailing fire and smoke, Space Shuttle Atlantis races into the sky toward a rendezvous with the International Space Station on mission STS-117. Liftoff from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Ken Thornsley

  18. KSC-2011-5310

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. In the foreground, from left, are NASA Test Directors Charlie Blackwell-Thompson, Jeremy Graeber, and Jeff Spaulding; Orbiter Test Conductor Roberta Wyrick; and Assistant Orbiter Test Conductor Laurie Sally. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  19. Launch of Space Shuttle Endeavour as it leaps free of Launch Pad

    NASA Image and Video Library

    2007-08-08

    Space Shuttle Endeavour paints the still-blue evening sky as it leaves Earth behind on its journey into space on mission STS-118. Liftoff from Launch Pad 39A was on time at 6:36 p.m. EDT. The mission is the 22nd shuttle flight to the International Space Station. It will continue space station construction by delivering a third starboard truss segment, S5, and other payloads such as the SPACEHAB module and the external stowage platform 3. The 11-day mission may be extended to as many as 14 depending on the test of the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab.

  20. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, equipment supporting the Advanced Plant Experiment, or APEX, experiment is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. The APEX investigation examines white spruce, picea glauca, to understand the influence of gravity on plant physiology, growth, and on the genetics of wood formation. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  1. SpaceX CRS-11 Prelaunch News Conference

    NASA Image and Video Library

    2017-05-31

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-11 commercial resupply services mission to the International Space Station. From left are: Mike Curie of NASA Communications, Kirk Shireman, NASA's International Space Station Program manager, Hans Koenigsmann, vice president of Flight Reliability for SpaceX, Camille Alleyne, associate program scientist for the International Space Station at NASA’s Johnson Space Center, and Mike McAleenan, launch weather officer for the U.S. Air Force 45th Weather Squadron. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.

  2. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Tracy Caldwell Dyson, left, and Soyuz Commander Alexander Skvortsov wave farewell to well wishers as they depart the Cosmonaut Hotel on the morning of their Soyuz launch to the International Space Station on Friday, April 2, 2010 in Baikonur, Kazakhstan. Photo Credit: (NASA/Carla Cioffi)

  3. The Expedition 46-47 crewmembers arrive in Baikonur, Kazakhstan Nov. 30 for final pre-launch training following a flight from their training base at the Gagarin Cosmonaut Training Center in Star City, Russia and are greeted by school children. Tim Peake of the European Space Agency (left), Yuri Malenchenko of the Russian Federal Space Agency (Roscosmos, center) and Tim Kopra of NASA (right), will launch Dec. 15 on the Soyuz TMA-19M spacecraft for a six-month mission on the International Space Station...NASA / Victor Zelentsov .

    NASA Image and Video Library

    2015-11-30

    The Expedition 46-47 crewmembers arrive in Baikonur, Kazakhstan Nov. 30 for final pre-launch training following a flight from their training base at the Gagarin Cosmonaut Training Center in Star City, Russia and are greeted by school children. Tim Peake of the European Space Agency (left), Yuri Malenchenko of the Russian Federal Space Agency (Roscosmos, center) and Tim Kopra of NASA (right), will launch Dec. 15 on the Soyuz TMA-19M spacecraft for a six-month mission on the International Space Station. NASA / Victor Zelentsov

  4. KSC-2012-2506

    NASA Image and Video Library

    2012-04-19

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, refrigerated NanoRacks-CubeLabs Module-9 experiments are being prepared for transport to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bags will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  5. KSC-2009-2049

    NASA Image and Video Library

    2009-03-15

    CAPE CANAVERAL, Fla. – The STS-119 crew members pause for photos before boarding the Astrovan to take them to Launch Pad 39A at NASA's Kennedy Space Center in Florida for launch of space shuttle Discovery to the International Space Station. From left are Mission Specialists Koichi Wakata, John Phillips, Richard Arnold, Steve Swanson and Joseph Acaba, Pilot Tony Antonelli and Commander Lee Archambault. Wakata represents the Japan Aerospace Exploration Agency and will remain on the International Space Station, replacing Expedition 18 Flight Engineer Sandra Magnus, who returns to Earth with the STS-119 crew. Liftoff of Discovery is scheduled for 7:43 p.m. EDT on March 15. An earlier launch attempt March 11 was scrubbed at 2:36 p.m. due to a gaseous hydrogen leak from the external tank at the Ground Umbilical Carrier Plate during tanking. A seven-inch quick disconnect and two seals were replaced. The STS-119 mission is the 28th to the space station and the 125th space shuttle flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett

  6. Lunar Orbiter 4 - Photographic Mission Summary. Volume 1

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Photographic summary report of Lunar Orbiter 4 mission. The fourth of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 22:25 GMT on May 4, 1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final maneuvering and acceleration to the velocity required to maintain the 100-nauticalmile- altitude Earth orbit was controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-burn period required to inject the spacecraft on the cislunar trajectory 20 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the boost trajectory.

  7. Lunar Orbiter 5. Photographic Mission Summary. Volume 1

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Selected photographs and mission summary of Lunar Orbiter 5. The last of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 22:33 GMT on August 1, 1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final maneuvering and acceleration to the velocity required to maintain the 100-nautical-mile-altitude Earth orbit were controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-bum period required to inject the spacecraft on the cislunar trajectory about 33 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the boost trajectory.

  8. STS-29 Discovery, OV-103, crew on flight deck prepares for reentry

    NASA Image and Video Library

    1989-03-18

    STS029-24-004 (18 March 1989) --- STS-29 crewmembers, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), review checklists on Discovery, Orbiter Vehicle (OV) 103, flight deck. Commander Michael L. Coats is seated at the forward flight deck commanders station with Mission Specialist (MS) James F. Buchli on aft flight deck strapped in mission specialist seat. OV-103 makes its return after five days in space. Note color in forward windows W1, W2, W3 caused by friction of entry through the Earth's atmosphere. Personal Egress Air Pack (PEAP) is visible on pilots seat back.

  9. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    A Russian Sokol suit technician prepares to help American spaceflight participant Richard Garriott don his flight suit prior to the Soyuz TMA-13 launch with Expedition 18 Commander Michael Fincke and Flight Engineer Yuri V. Lonchakov, Sunday, Oct. 12, 2008 in Baikonur, Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  10. KSC01padig214

    NASA Image and Video Library

    2001-04-19

    KENNEDY SPACE STATION, FLA. -- Space Shuttle Endeavour hurtles into a clear blue sky from Launch Pad 39A on mission STS-100. On the horizon is the Atlantic Ocean. Liftoff of the ninth flight to the International Space Station occurred at 2:40:42 p.m. EDT. The 11-day mission will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator System and the UHF Antenna. The mission includes two planned spacewalks for installation of the SSRMS on the Station. Also onboard is the Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platforms. (Photo by Red Huber, Orlando Sentinel)

  11. Expedition 18 Soyuz TMA-13 Rollout

    NASA Image and Video Library

    2008-10-09

    The Soyuz launch pad is seen prior to the rollout of the Soyuz TMA-13 spacecraft at the Baikonur Cosmodrome in Kazakhstan, Friday, Oct. 10, 2008. The Soyuz is scheduled to launch to the International Space Station Oct. 12 with Expedition 18 Commander Michael Fincke, Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott. The three crew members will dock their Soyuz to the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  12. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Askins, Bruce R.; Bland, Jeffrey; Davis, Stephan; Holladay, Jon B.; Taylor, James L.; Taylor, Terry L.; Robinson, Kimberly F.; Roberts, Ryan E.; Tuma, Margaret

    2007-01-01

    The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  13. STS-111 crew exits O&C building on way to LC-39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-111 and Expedition 5 crews hurry from the Operations and Checkout Building for a second launch attempt aboard Space Shuttle Endeavour. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  14. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  15. STS-91 Mission Specialist Kavandi visits Pad 39A before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Specialist Janet Kavandi, Ph.D., visits Launch Pad 39A from which she is scheduled to be launched aboard Space Shuttle Discovery on June 2 around 6:10 p.m. EDT. In her pocket are flowers intended as gifts for her two children whom she will be seeing shortly. STS-91 will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Franklin Chang-Diaz, Ph.D.; Wendy B. Lawrence; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.

  16. KSC-2009-2097

    NASA Image and Video Library

    2009-03-15

    CAPE CANAVERAL, Fla. – In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA management waits for the launch of space shuttle Discovery on the STS-119 mission. From left are (standing) Director of NASA's Marshall Space Flight Center Dave King, Center Director Bob Cabana, Director of NASA's Johnson Space Center Michael Coats, (seated) Space Shuttle Program Manager John Shannon, NASA Associate Administrator for Space Operations William Gerstenmaier and NASA Acting Administrator Chris Scolese. Launch was on time at 7:43 p.m. EDT. The STS-119 mission is the 28th to the space station and Discovery's 36th flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett

  17. STS-92 crew leave the O&C for Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 crew exits the Operations and Checkout Building on their way to the Astrovan and Launch Pad 39A for a simulated countdown. Walking left to right are (foreground) Mission Specialists Koichi Wakata of Japan, Peter J.K. 'Jeff' Wisoff and Leroy Chiao; and Pilot Pamela Ann Melroy. Behind them are Mission Specialists Michael E. Lopez-Alegria and William S. McArthur Jr.; and Commander Brian Duffy. The crew is taking part in Terminal Countdown Demonstration Test activities that provide emergency egress training, opportunities to inspect the mission payload, and the simulated countdown. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  18. Expedition 54-55 Crew Launches to the Space Station

    NASA Image and Video Library

    2017-12-17

    Expedition 54-55 Soyuz Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) launched to space on the Russian Soyuz MS-07 spacecraft on Dec. 17 from the Baikonur Cosmodrome in Kazakhstan.

  19. KSC-2014-2196

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - Muddy water standing on the pad surface contributes to the formation of a dark exhaust cloud around the Falcon 9 rocket at Space Launch Complex 40 on Cape Canaveral Air Force Station as the SpaceX-3 mission lifts off, sendng the Dragon resupply spacecraft on its way to the International Space Station. Launch was during an instantaneous window at 3:25 p.m. EDT. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Tony Gray and Tim Terry

  20. KSC-2014-4048

    NASA Image and Video Library

    2014-09-21

    CAPE CANAVERAL, Fla. – NASA holds a post-launch media briefing following the successful launch of NASA's SpaceX CRS-4 mission to the International Space Station. From left are Michael Curie, moderator, NASA Public Affairs, Sam Scimemi, International Space Station Division director, NASA Human Exploration and Operation Mission Directorate, and Hans Koenigsmann, vice president of Mission Assurance, SpaceX. Liftoff was at 1:52 a.m. EDT. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann

Top