Science.gov

Sample records for station heat exhanger

  1. Multispecies Biofilm Development on Space Station Heat Exhanger Core Material

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; Roth, S. R.; Vega, L. M.; Pickering, K. D.; Alvarez, Pedro J. J.; Roman, M. C.

    2007-01-01

    Investigations of microbial contamination of the cooling system aboard the International Space Station (ISS) suggested that there may be a relationship between heat exchanger (HX) materials and the degree of microbial colonization and biofilm formation. Experiments were undertaken to test the hypothesis that biofilm formation is influenced by the type and previous exposure of HX surfaces. Acidovorax delafieldii, Comamonas acidovorans, Hydrogenophaga pseudoflava, Pseudomonas stutzeri, Sphingomonas paucimobilis, and Stenotrophomonas maltophilia, originally isolated from ISS cooling system fluid, were cultured on R2A agar and suspended separately in fresh filter-sterilized ISS cooling fluid, pH 8.3. Initial numbers in each suspension ranged from 10(exp 6)-10(exp 7) CFU/ml, and a mixture contained greater than 10(exp 7) CFU/ml. Coupons of ISS HX material, previously used on orbit (HXOO) or unused (HXUU), polycarbonate (PC) and 316L polished stainless steel (SS) were autoclaved, covered with multispecies suspension in sterile tubes and incubated in the dark at ambient (22-25 C). Original HX material contained greater than 90% Ni, 4.5% Si, and 3.2% B, with a borate buffer. For approximately 10 weeks, samples of fluid were plated on R2A agar, and surface colonization assessed by SYBR green or BacLight staining and microscopy. Suspension counts for the PC and SC samples remained steady at around 10(exp 7) CFU/ml. HXUU counts declined about 1 log in 21 d then remained steady, and HXOO counts declined 2 logs in 28 d, fluctuated and stabilized about 10(exp 3) CFU/ml from 47-54 d. Predominantly yellow S. paucimobilis predominated on plates from HXOO samples up to 26 d, then white or translucent colonies of other species appeared. All colony types were seen on plates from other samples throughout the trial. Epifluorescence microscopy indicated microbial growth on all surfaces by 21 d, followed by variable colonization. After 54 d, all but the HXOO samples had well

  2. 1. EXTERIOR OF CENTRAL HEATING STATION, BUILDING 102, LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OF CENTRAL HEATING STATION, BUILDING 102, LOOKING NORTH. - Mill Valley Air Force Station, Central Heating Station, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  3. 3. INTERIOR VIEW OF CENTRAL HEATING STATION, BUILDING 102, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW OF CENTRAL HEATING STATION, BUILDING 102, SHOWING FURNACES, LOOKING SOUTH. - Mill Valley Air Force Station, Central Heating Station, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  4. Vibration test plan for a space station heat pipe subassembly

    SciTech Connect

    Parekh, M.B.

    1987-09-29

    This test plan describes the Sundstrand portion of task two of Los Alamos National Laboratory (LANL) contract 9-x6H-8102L-1. Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a potassium liquid metal heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. The test objective is to expose the heat pipe subassembly to the random vibration environment which simulates the space shuttle launch condition. The results of the test will then be used to modify as required future designs of the heat pipe.

  5. Investigation of cooling properties of the gaseous medium of a space station

    NASA Technical Reports Server (NTRS)

    Baranski, S.; Blosznyski, R.; Hermaszewski, M.; Kubiczkowa, J.; Piorko, A.; Saganiak, R.; Sarol, Z.; Skibniewski, F.; Stendera, J.; Walichnowski, W.

    1982-01-01

    An investigation of cooling properties of the gaseous medium was performed in the biosatellite Kosmos-936 as well as in the orbital complexes Soyuz-28/Salyut-6 and Soyuz-30/Salyut-6 with the aid of an especially constructed electric dynamic catathermometer. In this instrument current was measured which was necessary to keep a steady settled temperature of the sensing device. The investigation was performed because of the disturbed heat exhange of the human body caused by lack of natural convection in weightlessness. The instrument also enabled objective estimation of the temperature of the cosmonaut's ody in six optionally selected regions. The results obtained by means of the catathermometer will also enable defining the appropriate hygienic conditions of the gaseous medium of space stations.

  6. Microgravity heat pump for space station thermal management.

    PubMed

    Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L

    2003-01-01

    A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift. PMID:14632004

  7. Potential availability of diesel waste heat at Echo Deep Space Station (DSS 12)

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.

    1982-01-01

    Energy consumption at the Goldstone Echo Deep Space Station (DSS 12) is predicted and quantified for a future station configuration which will involve implementation of proposed energy conservation modifications. Cogeneration by the utilization of diesel waste-heat to satisfy site heating and cooling requirements of the station is discussed. Scenarios involving expanded use of on-site diesel generators are presented.

  8. Freshwater exhange in the Sunda Strait estimated by Aquarius

    NASA Astrophysics Data System (ADS)

    Potemra, J. T.; Hacker, P. W.; Maximenko, N. A.; Melnichenko, O.

    2012-12-01

    The Pacific and Indian Oceans are connected at a low latitude via the Indonesian Throughflow (ITF). Through direct observations it is now understood that approximately 10 to 15 Sv of water are transported from the Pacific to the Indian Ocean. The implications of this transport, including impacts to water mass formation, heat and freshwater budgets and potential feedbacks to the atmosphere are still under investigation. One of the complexities in this region is the large number of smaller straits and passages between islands that may or may not play an important role in ITF processes. Many of these straits are more narrow than the typical resolution of ocean circulation models, and therefore are not properly simulated. For mass transport this is likely not an issue, since recent observations suggest that most of the mass transport flows via the Makassar Strait and then exits to the Indian Ocean via the Lombok, Ombai and Timor passages. This study, however, focuses on the fresh water transport between the Indonesian Seas and the Indian Ocean in particular via the Sunda Strait. There are very few direct observations of the upper ocean stratification in this region. Conversely, the recent launch of the Aquarius mission provides a unique opportunity to study the transport of fresh water, as indicated by sea surface salinity variability, between the Java Sea and the eastern Indian Ocean. Numerical model results, Argo measurements and Aquarius-derived sea surface salinity are used to examine the annual variability of fresh water exchange via the Sunda Strait. Model mass transport is typically low, averaging less than 1 Sv, but fresh water transport could have important implications for stratification along the Sumatra/Java southern coast and thus impact coastal wave propagation. The satellite derived sea surface salinity will be used to show the importance of seasonal variations in this region.

  9. Heat pump evaluation for Space Station ATCS evolution

    NASA Technical Reports Server (NTRS)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  10. Control system for, and a method of, heating an operator station of a work machine

    DOEpatents

    Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad

    2005-04-05

    There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.

  11. Transient response of a high-capacity heat pipe for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Ambrose, J. H.; Holmes, H. R.

    1991-01-01

    High-capacity heat pipe radiator panels have been proposed as the primary means of heat rejection for Space Station Freedom. In this system, the heat pipe would interface with the thermal bus condensers. Changes in system heat load can produce large temperature and heat load variations in individual heat pipes. Heat pipes could be required to start from an initially cold state, with heat loads temporarily exceeding their low-temperature transport capacity. The present research was motivated by the need for accurate prediction of such transient operating conditions. In this work, the cold startup of a 6.7-meter long high-capacity heat pipe is investigated experimentally and analytically. A transient thermohydraulic model of the heat pipe was developed which allows simulation of partially-primed operation. The results of cold startup tests using both constant temperature and constant heat flux evaporator boundary conditions are shown to be in good agreement with predicted transient response.

  12. Design and Testing of a 2K Superfluid Helium Heat Station

    SciTech Connect

    William Hicks; Edward Daly; Joseph Preble; Mark Wiseman; Claus Rode

    2005-08-29

    Three transitional cryomodules (SL21, FEL03, Renascence) have been constructed as part of an energy upgrade effort at Thomas Jefferson National Accelerator Facility (JLab). Each transitional cryomodule contains eight superconducting radio-frequency (SRF) cavities. Within the vacuum vessel, waveguides transmit up to 13 kW of RF power to the superconducting niobium cavities. The waveguides also provide the thermal transition between the room temperature ceramic RF window and the niobium fundamental power coupler (FPC), a 300K temperature gradient across {approx}20cm. The thermal performance of the waveguides is determined in part by the placement of heat stations and bellows. The original 13 kW waveguide design incorporated a single 60 K heat station and two bellows resulting in a total heat load (static + dynamic) to the FPC of {approx}3W per waveguide. To minimize this heat load and stabilize the FPC temperatures, a 2K superfluid helium heat station design was incorporated into the second transitional cryomodule, FEL03, installed in the JLab Free Electron Laser (FEL). The designed heat station is capable of removing up to 1.12W, with a bath temperature of 2.05K, while remaining sub-lambda. This paper describes the design, analysis and testing of the heat station.

  13. Flow and heat distribution analysis of different transformer sub-stations

    NASA Astrophysics Data System (ADS)

    Hasini, H.; Shuaib, N. H.; Yogendran, S. B.; Toh, K. B.

    2013-12-01

    This paper describes CFD investigation on the flow and heat transfer in transformers at different sub-station buildings. The analysis aimed to determine the cooling capability of the existing transformer building employing natural ventilation system to dissipate heat sufficiently when new dry-type transformer operating under full load condition is used. The transformer and building models were developed based on the actual transformer configuration in operation at three different locations in Malaysia. The calculation was carried out on three different types of sub-stations namely stand-alone, attach-to-building and underground. The effect of natural ventilation speed and building volume on the transformer surfaces temperature are also investigated. It was predicted that the existing sub-station configuration is able to dissipate heat produced from the dry type transformer by using its natural ventilation system regardless of the sub-station types. However, the smallest building case shows relatively high surrounding temperature.

  14. Applications of tridimensional heat calibration to a thermographic NDE station

    NASA Astrophysics Data System (ADS)

    Maldague, X.; Fortin, L.; Picard, J.

    1991-03-01

    IR thermography constitutes an especially useful tool for the extraction of 3D information, since it can in a single test setup both identify the overall relief of an object and quantify potential subsurface defects. Heat transfer modeling can take advantage of this 3D calibration of the thermal stimulation apparatus; the associated temperature rise becomes a known measurement for all surface mesh nodes and time-intervals. This path would greatly enhance the validity of heat transfer modeling.

  15. Conjugate heat transfer analysis of 300-mm bake station

    NASA Astrophysics Data System (ADS)

    Ramanan, Natarajan; Liang, Frank F.; Sims, James B.

    1999-06-01

    An exhaustive heat-transfer analysis of 200-mm and 300-mm bake equipment has been conducted to infer the temperature uniformity on the wafer from the time it is set on the plate until the end of the bake process. The objective of the analysis was to gain insight into the heat transport to the wafer and improve the thermal uniformity of the wafer. During the soft, hard and post-exposure bake processes, the temperatures to which the wafer is heated can range from 50 degrees to 250 degrees C. The influence of the variables that contribute to the temperature nonuniformity, namely the height of the proximity pins, wafer warp and bow, heater thickness, insulation of the bake plate, and lid material, have been analyzed. The analysis has been carried out using computational fluid dynamics packages, FLUENT/UNS and FIDAP. The accuracy of the numerical simulations has been verified through analytical solution is presented which provides a closed-form expression for the temperature of the wafer in terms of Biot number, a dimensionless parameter. The temperature rise of the wafer based on this simple expression compares very favorably with the detailed axisymmetric numerical solution that was carried out using variable material properties and the complex boundary conditions for the geometry of a 200-mm bake plate. The radial temperature variation on the wafer after 100 seconds on the bake plate also matches very well with the measurements. Based on the success of the modeling results with the 200-mm bake plates, a 300-mm bake plate analysis was conducted to determine if the temperature uniformity would be within specifications. The analysis revealed some key factors that caused temperature nonuniformity and the design was then altered to improve the temperature uniformity. Subsequent measurements confirmed the improvement of the temperature uniformity.

  16. Rewetting of Monogroove Heat Pipe in Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Chan, S. H.; Shen, Ting Rong; Blake, John

    1996-01-01

    Experimental investigation of the rewetting characteristics of a uniformly heated grooved surface was performed, the results of which are presented in this work. It was found that, for a rewetting fluid of 2-propanol, the rewetting temperature was approx. 93-96 C for the upward-facing case and about 2 C lower for the downwardfacing case. When the initial plate temperature was higher than the rewetting temperature, the rewetting speed decreased with the initial plate temperature. The rewetting speed is also faster in the upward-facing case than in the downward-facing case for the same initial plate temperatures, which indicates a gravitational effect on rewetting. This trend is found to be consistent with the previously investigated end heating condition. The rewetting distance that is predicted by the conduction controlled model is found to be in fair agreement with the experimental data. Also, an apparatus that enables experiments to be performed in a reduced gravitational environment has been built and experiments are currently being performed. The design of this apparatus is presented along with preliminary data.

  17. Heat flux variations over sea ice observed at the coastal area of the Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Park, Sang-Jong; Choi, Tae-Jin; Kim, Seong-Joong

    2013-08-01

    This study presents variations of sensible heat flux and latent heat flux over sea ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from July to September was selected as a sea ice period based on daily record of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. For the sea ice period, mean sensible heat flux is about -11 Wm-2, latent heat flux is about +2 W m-2, net radiation is -12 W m-2, and residual energy is -3 W m-2 with clear diurnal variations. Estimated mean values of surface exchange coefficients for momentum, heat and moisture are 5.15 × 10-3, 1.19 × 10-3, and 1.87 × 10-3, respectively. The observed exchange coefficients of heat shows clear diurnal variations while those of momentum and moisture do not show diurnal variation. The parameterized exchange coefficients of heat and moisture produces heat fluxes which compare well with the observed diurnal variations of heat fluxes.

  18. Modular, thermal bus-to-radiator integral heat exchanger design for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Ewert, Michael

    1990-01-01

    The baseline concept is introduced for the 'integral heat exchanger' (IHX) which is the interface of the two-phase thermal bus with the heat-rejecting radiator panels. A direct bus-to-radiator heat-pipe integral connection replaces the present interface hardware to reduce the weight and complexity of the heat-exchange mechanism. The IHX is presented in detail and compared to the baseline system assuming certain values for heat rejection, mass per unit width, condenser capacity, contact conductance, and assembly mass. The spreadsheet comparison can be used to examine a variety of parameters such as radiator length and configuration. The IHX is shown to permit the reduction of panel size and system mass in response to better conductance and packaging efficiency. The IHX is found to be a suitable heat-rejection system for the Space Station Freedom because it uses present technology and eliminates the interface mechanisms.

  19. Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida

    NASA Astrophysics Data System (ADS)

    1981-05-01

    This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.

  20. Advanced interface heat exchangers for the Space Station main thermal bus

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.

    1990-01-01

    Future evolution and growth of the Space Station will place increasing demands on the thermal management system by the addition of new payloads and from increased activity in the habitat modules. To meet this need, Creare is developing advanced evaporators, condensors, and single-phase heat exchangers for operation in microgravity. The objective is to achieve a several-fold increase in the heat flux capability of these components, while operating at the same temperature difference as specified for the present interface heat exchangers. Two prototype interface heat exchangers are presently being developed: one to interface the main thermal bus to a payload two-phase ammonia bus, and the other, to interface with the crew module single-phase water loop. The results achieved to date in the development of these heat exchangers are reviewed.

  1. Heat rate improvement at Sunflower Electric`s Holcomb Station - a programmatic approach

    SciTech Connect

    Linville, C.; Nelson, K.E.; DesJardins, R.R.

    1996-05-01

    This paper describes the heat rate improvement program implemented at Sunflower Electric Power Corporations Holcomb Generating Station located in Holcomb, Kansas. The Holcomb Station is a large coal-fired generating plant that supplies electricity to Southwestern. Kansas and surrounding states. In 1993, Sunflower Electric (SEPC) established a continuing heat rate improvement program at the Holcomb Station which consisted of a periodic performance test program in combination with continuous on-line monitoring. This paper provides an overview of the test program and initial results and describes a unique approach to monitoring boiler feed pump performance especially suitable for on-line monitoring. implementation of a 15-user LAN-based on-line performance monitoring system is also described. In addition to technical issues, the paper addresses some of the {open_quotes}human factors{close_quotes} encountered while promoting acceptance and use of the on-line monitoring system by all levels of plant personnel. The importance of proper program planning and long term management support is stressed.

  2. Exploring Mbar shock conditions and isochorically heated aluminum at the MEC end station of the LCLS

    SciTech Connect

    Fletcher, L. B.; Lee, H. J.; SLAC, aff; Barbrel, B.; Gauthier, M.; Galtier, E.; Nagler, B.; Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Falcone, R. W.; Heimann, P.; Zastrau, U.; Hastings, J. B.; Glenzer, S. H.

    2015-02-05

    Recent experiments performed at the Matter in Extreme Conditions end station (MEC) of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using Velocity Interferometer System for Any Reflector (VISAR) have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  3. Space Station heat pipe advanced radiator element (SHARE) flight test results and analysis

    NASA Technical Reports Server (NTRS)

    Kosson, Robert; Brown, Richard; Ungar, Eugene

    1990-01-01

    The SHARE experiment, which consisted of a single 51 ft long by 1 ft wide prototypical Space Station heat pipe radiator panel, was flown aboard STS-29 in March 1989. Several problems were uncovered during the flight which limited performance. Extensive post-flight analysis has revealed that the manifold connecting the evaporator and condenser sections did not prime properly in 0-g, and that a mismatch in hydraulic diameters between the evaporator and condenser caused large bubbles to be present in the liquid channel at startup. These bubbles subsequently became trapped at the evaporator entrance, halting liquid flow and causing premature dryout of the evaporator wall grooves. The experiment did demonstrate heat pipe transport capability of up to 1572 W with near isothermality in both the evaporator and condenser for short periods of time.

  4. Heat flux variations over sea-ice observed at the coastal area of the Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Park, S.; Choi, T.; Kim, S.

    2012-12-01

    This study presents variations of sensible heat flux and latent heat flux over sea-ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from June to November was divided into three parts: "Freezing", "Frozen", and "Melting" periods based on daily monitoring of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. The division of periods enabled us to look into the heat flux variations depending on the sea-ice conditions. Over freezing sea surface during the freezing period of late June, daily mean sensible heat flux was -11.9 Wm-2 and daily mean latent heat flux was +16.3 Wm-2. Over the frozen sea-ice, daily mean sensible heat flux was -10.4 Wm-2 while daily mean latent heat flux was +2.4 Wm-2. During the melting period of mid-October to early November, magnitudes of sensible heat flux increased to -14.2 Wm-2 and latent heat flux also increased to +13.5 Wm-2. In short, latent heat flux was usually upward over sea-ice most of the time while sensible heat flux was downward from atmosphere to sea-ice. Magnitudes of the fluxes were small but increased when freezing or melting of sea-ice was occurring. Especially, latent heat flux increased five to six times compared to that of "frozen" period implying that early melting of sea-ice may cause five to six times larger supply of moisture to the atmosphere.

  5. Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida. Final report, June 1980-April 1981

    SciTech Connect

    Not Available

    1981-05-01

    This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, FL, carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.

  6. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Failures and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within in the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings and potential remediation techniques will also be discussed.

  7. Thermal conditions on the International Space Station: Heat flux and temperature investigation of main radiators for the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Gao, Jianmin; Wu, Shaohua; Qin, Yukun

    2016-09-01

    The investigation on heat flux can clarify the thermal condition and explain temperature behavior on the main radiators of the Alpha Magnetic Spectrometer (AMS). In this paper, a detailed investigation of heat flux on the AMS main radiators is proposed. The heat transfer process of the AMS main radiators is theoretically analyzed. An updated thermal model of the AMS on the International Space Station (ISS) is developed to calculate the external heat flux density on the AMS main radiators. We conclude the ISS components and operations affect on the solar flux density of the AMS main radiators by reflecting or shading solar illumination. According to the energy conservation on the AMS main radiators, the temperature variation mainly depends on the solar flux change. The investigations are conducive to reference for the long-duration thermal control of the AMS, and knowledge for the thermal conditions on the ISS.

  8. Study of plate-fin heat exchanger and cold plate for the active thermal control system of Space Station

    NASA Technical Reports Server (NTRS)

    Chyu, MING-C.

    1992-01-01

    Plate-fin heat exchangers will be employed in the Active Thermal Control System of Space Station Freedom. During ground testing of prototypic heat exchangers, certain anomalous behaviors have been observed. Diagnosis has been conducted to determine the cause of the observed behaviors, including a scrutiny of temperature, pressure, and flow rate test data, and verification calculations based on such data and more data collected during the ambient and thermal/vacuum tests participated by the author. The test data of a plate-fin cold plate have been also analyzed. Recommendation was made with regard to further tests providing more useful information of the cold plate performance.

  9. High-heat-load synchrotron tests of room-temperature, silicon crystal monochromators at the CHESS F-2 wiggler station

    SciTech Connect

    Lee, W.K.; Fernandez, P.B.; Graber, T.; Assoufid, L.

    1995-09-08

    This note summarizes the results of the single crystal monochromator high-heat-load tests performed at the CHESS F-2 wiggler station. The results from two different cooling geometries are presented: (1) the ``pin-post`` crystal and (2) the ``criss-cross`` crystal. The data presented were taken in August 1993 (water-cooled pin-post) and in April 1995 (water- and gallium-cooled pin-post crystal and gallium-cooled criss-cross crystal). The motivation for trying these cooling (or heat exchanger) geometries is to improve the heat transfer efficiency over that of the conventional slotted crystals. Calculations suggest that the pin-post or the microchannel design can significantly improve the thermal performance of the crystal. The pin-post crystal used here was fabricated by Rocketdyne Albuquerque Operations. From the performance of the conventional slotted crystals, it was thought that increased turbulence in the flow pattern may also enhance the heat transfer. The criss-cross crystal was a simple attempt to achieve the increased flow turbulence. The criss-cross crystal was partly fabricated in-house (cutting, etching and polishing) and bonded by RAO. Finally, a performance comparison among all the different room temperature silicon monochromators that have been tested by the APS is presented. The data includes measurements with the slotted crystal and the core-drilled crystals. Altogether, the data presented here were taken at the CHESS F-2 wiggler station between 1991 and 1995.

  10. Modelling the performance of the tapered artery heat pipe design for use in the radiator of the solar dynamic power system of the NASA Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Austin Lewis

    1988-01-01

    The paper presents a computer program developed to model the steady-state performance of the tapered artery heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station. The program solves six governing equations to ascertain which one is limiting the maximum heat transfer rate of the heat pipe. The present model appeared to be slightly better than the LTV model in matching the 1-g data for the standard 15-ft test heat pipe.

  11. Heat Production During Countermeasure Exercises Planned for the International Space Station

    NASA Technical Reports Server (NTRS)

    Rapley, Michael G.; Lee, Stuart M. C.; Guilliams, Mark E.; Greenisen, Michael C.; Schneider, Suzanne M.

    2004-01-01

    This investigation's purpose was to determine the amount of heat produced when performing aerobic and resistance exercises planned as part of the exercise countermeasures prescription for the ISS. These data will be used to determine thermal control requirements of the Node 1 and other modules where exercise hardware might reside. To determine heat production during resistive exercise, 6 subjects using the iRED performed 5 resistance exercises which form the core exercises of the current ISS resistive exercise countermeasures. Each exerciser performed a warm-up set at 50% effort, then 3 sets of increasing resistance. We measured oxygen consumption and work during each exercise. Heat loss was calculated as the difference between the gross energy expenditure (minus resting metabolism) and the work performed. To determine heat production during aerobic exercise, 14 subjects performed an interval, cycle exercise protocol and 7 subjects performed a continuous, treadmill protocol. Each 30-min. exercise is similar to exercises planned for ISS. Oxygen consumption monitored continuously during the exercises was used to calculate the gross energy expenditure. For cycle exercise, work performed was calculated based on the ergometer's resistance setting and pedaling frequency. For treadmill, total work was estimated by assuming 25% work efficiency and subtracting the calculated heat production and resting metabolic rate from the gross energy expenditure. This heat production needs to be considered when determining the location of exercise hardware on ISS and designing environmental control systems. These values reflect only the human subject s produced heat; heat produced by the exercise hardware also will contribute to the heat load.

  12. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  13. Core structure heat-up and material relocation in a BWR short-term station blackout accident

    SciTech Connect

    Schmidt, R.C.; Dosanjh, S.S.

    1990-01-01

    This paper presents an analytical and numerical analysis which evaluates the core-structure heat-up and subsequent relocation of molten core materials during a NWR short-term station blackout accident with ADS. A simplified one-dimensional approach coupled with bounding arguments is first presented to establish an estimate of the temperature differences within a BWR assembly at the point when structural material first begins to melt. This analysis leads to the conclusions that the control blade will be the first structure to melt and that at this point in time, overall temperature differences across the canister-blade region will not be more than 200 K. Next, a three-dimensional heat-transfer model of the canister-blade region within the core is presented that uses a diffusion approximation for the radiation heat transfer. This is compared to the one-dimensional analysis to establish its compatibility. Finally, the extension of the three-dimensional model to include melt relocation using a porous media type approximation is described. The results of this analysis suggest that under these conditions significant amounts of material will relocate to the core plate region and refreeze, potentially forming a significant blockage. The results also indicate that a large amount of lateral spreading of the melted blade and canister material into the fuel rod regions will occur during the melt progression process. 22 refs., 18 figs., 1 tab.

  14. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  15. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  16. Structural assessment of a space station solar dynamic heat receiver thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Kerslake, T. W.; Tong, M. T.

    1988-01-01

    The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically determined temperature was compared with that based on the experimentally measured temperature data.

  17. Structural assessment of a Space Station solar dynamic heat receiver thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Tong, M. T.; Kerslake, T. W.; Thompson, R. L.

    1988-01-01

    This paper assesses the structural performance of a Space Station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start-up operating conditions. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite-element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes-188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically-determined temperature was compared with that based on the experimentally-measured temperature data.

  18. Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part I: Modelling and Optimisation Framework

    NASA Astrophysics Data System (ADS)

    Chaczykowski, Maciej

    2016-06-01

    Basic organic Rankine cycle (ORC), and two variants of regenerative ORC have been considered for the recovery of exhaust heat from natural gas compressor station. The modelling framework for ORC systems has been presented and the optimisation of the systems was carried out with turbine power output as the variable to be maximized. The determination of ORC system design parameters was accomplished by means of the genetic algorithm. The study was aimed at estimating the thermodynamic potential of different ORC configurations with several working fluids employed. The first part of this paper describes the ORC equipment models which are employed to build a NLP formulation to tackle design problems representative for waste energy recovery on gas turbines driving natural gas pipeline compressors.

  19. Implications of Climate Change on the Heat Budget of Lentic Systems Used for Power Station Cooling: Case Study Clinton Lake, Illinois.

    PubMed

    Quijano, Juan C; Jackson, P Ryan; Santacruz, Santiago; Morales, Viviana M; García, Marcelo H

    2016-01-01

    We use a numerical model to analyze the impact of climate change-in particular higher air temperatures-on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.

  20. Implications of climate change on the heat budget of lentic systems used for power station cooling: Case study Clinton Lake, Illinois

    USGS Publications Warehouse

    Quijano, Juan C; Jackson, P. Ryan; Santacruz, Santiago; Morales, Viviana M; Garcia, Marcelo H.

    2016-01-01

    We use a numerical model to analyze the impact of climate change--in particular higher air temperatures--on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.

  1. Implications of Climate Change on the Heat Budget of Lentic Systems Used for Power Station Cooling: Case Study Clinton Lake, Illinois.

    PubMed

    Quijano, Juan C; Jackson, P Ryan; Santacruz, Santiago; Morales, Viviana M; García, Marcelo H

    2016-01-01

    We use a numerical model to analyze the impact of climate change-in particular higher air temperatures-on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling. PMID:26556581

  2. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be

  3. Development and investigations of compact heat-transfer equipment for a nuclear power station equipped with a high-temperature gas-cooled reactor

    NASA Astrophysics Data System (ADS)

    Golovko, V. F.; Dmitrieva, I. V.; Kodochigov, N. G.; Bykh, O. A.

    2013-07-01

    The project of a nuclear power station the reactor coolant system of which includes a high-temperature gas-cooled reactor combined with a gas-turbine energy conversion unit supposes the use of high-efficient gas-cycle-based heat-transfer equipment. An analysis aimed at selecting the optimal heat-transfer surfaces is presented together with the results from their calculated and experimental investigation. The design features of recuperators arranged integrally with end and intermediate coolers and placed in a vertical sealed high-pressure vessel of limited sizes are considered.

  4. Characterization of PAHs within PM 10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning Province, China

    NASA Astrophysics Data System (ADS)

    Kong, Shaofei; Shi, Jianwu; Lu, Bing; Qiu, Weiguang; Zhang, Baosheng; Peng, Yue; Zhang, Bowen; Bai, Zhipeng

    2011-07-01

    Polycyclic aromatic hydrocarbons within PM 10 fraction of ashes from two coke production plants, one iron smelt plant, one heating station and one power plant were analyzed with GC-MS technique in 2009. The sum of 17 selected PAHs varied from 290.20 to 7055.72 μg/g and the amounts of carcinogenic PAHs were between 140.33 and 3345.46 μg/g. The most toxic ash was from the coke production plants and then from the iron smelt plant, coal-fired power plant and heating station according to BaP-based toxic equivalent factor (BaPeq) and BaP-based equivalent carcinogenic power (BaPE). PAHs profile of the iron smelt ash was significantly different from others with coefficient of divergence value higher than 0.40. Indicatory PAHs for coke production plants, heating station and coal-fired power plant were mainly 3-ring species such as Acy, Fl and Ace. While for iron smelt plant, they were Chr and BbF. Diagnostic ratios including Ant/(Ant + Phe), Flu/(Flu + Pyr), BaA/Chr, BbF/BkF, Ind/BghiP, IND/(IND + BghiP), BaP/BghiP, BaP/COR, Pyr/BaP, BaA/(BaA + Chr), BaA/BaP and BaP/(BaP + Chr) were calculated which were mostly different from other stacks for the iron smelt plant.

  5. A test program for predicting and monitoring the emergency diesel generator heat exchangers at Limerick Generating Station and Peach Bottom Atomic Power Station

    SciTech Connect

    Elder, J.J.; Fusegni, L.J.; McFarland, W.J.; Andreone, C.F.

    1995-12-31

    The USNRC issued Generic Letter 89-13, ``Service Water Problems Affecting Safety-Related Equipment`` to all nuclear power plant licensees which requires the implementation of a program to ensure that nuclear safety-related heat exchangers are capable of performing their intended functions. The heat exchangers on the standby emergency diesel generator (EDG) skids are covered by this requirement. PECo and SWEC have developed a program of testing and analysis to monitor the level of fouling in the EDG`s at the Limerick and Peach Bottom nuclear power plants in response to the Generic Letter. The development of an EDG heat exchanger test program is significantly more complex than for most other heat exchangers. This is because the process fluid flows are controlled by self-modulating thermostatic valves to maintain proper process temperature setpoints. As a result, under some test conditions the process flows may be reduced to as little as 20% of their design values. Flow changes of this magnitude significantly affect the performance of the coolers and obscure observation of the effects of fouling if not properly addressed. This paper describes the methods developed by PECo and SWEC to address this problem.

  6. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China.

    PubMed

    Shi, Jianwu; Deng, Hao; Bai, Zhipeng; Kong, Shaofei; Wang, Xiuyan; Hao, Jiming; Han, Xinyu; Ning, Ping

    2015-05-15

    107 kinds of C₂-C₁₂ volatile organic compound (VOC) mass concentrations and profiles for four types of coal-fired stationary sources in Liaoning Province were studied by a dilution sampling system and GC-MS analysis method, which are of significant importance with regard to VOC emissions in northeast of China. The results showed that there were some differences among these VOC source profiles. The total mass concentrations of analyzed 107 VOC species varied from 10,917 to 19,652 μg m(-3). Halogenated hydrocarbons exhibited higher mass percentages for the VOC source profiles of iron smelt (48.8%) and coke production plant (37.7%). Aromatic hydrocarbons were the most abundant in heating station plant (69.1%). Ketones, alcohols and acetates held 45.0% of total VOCs in thermal power plant. For non-methane hydrocarbons (NMHCs), which are demanded for photochemical assessment in the USA, toluene and n-hexane were the most abundant species in the iron smelt, coke production and thermal power plant, with the mass percentages of 64.8%, 52.7% and 38.6%, respectively. Trimethylbenzene, n-propylbenzene and o,m-ethyltoluene approximately accounted for 70.0% in heating station plant. NMHCs emitted from coke production, iron smelt, heating station and power plant listed above presented different chemical reactivities. The average OH loss rate of NMHCs from heating station, was 4 to 5.6 times higher than that of NMHCs from iron smelt, coke production and power plant, which implies that VOCs emitted from heating station in northeast of China should be controlled firstly to avoid photochemical ozone pollution and protect human health. There are significant variations in the ratios of benzene/toluene and m, p-xylene/ethylbenzene of these coal-fired source profiles. The representativeness of the coal-fired sources studied and the VOC samples collected should be more closely examined. The accuracy of VOC source profiles related to coal-fired processes is highly dependent on

  7. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China.

    PubMed

    Shi, Jianwu; Deng, Hao; Bai, Zhipeng; Kong, Shaofei; Wang, Xiuyan; Hao, Jiming; Han, Xinyu; Ning, Ping

    2015-05-15

    107 kinds of C₂-C₁₂ volatile organic compound (VOC) mass concentrations and profiles for four types of coal-fired stationary sources in Liaoning Province were studied by a dilution sampling system and GC-MS analysis method, which are of significant importance with regard to VOC emissions in northeast of China. The results showed that there were some differences among these VOC source profiles. The total mass concentrations of analyzed 107 VOC species varied from 10,917 to 19,652 μg m(-3). Halogenated hydrocarbons exhibited higher mass percentages for the VOC source profiles of iron smelt (48.8%) and coke production plant (37.7%). Aromatic hydrocarbons were the most abundant in heating station plant (69.1%). Ketones, alcohols and acetates held 45.0% of total VOCs in thermal power plant. For non-methane hydrocarbons (NMHCs), which are demanded for photochemical assessment in the USA, toluene and n-hexane were the most abundant species in the iron smelt, coke production and thermal power plant, with the mass percentages of 64.8%, 52.7% and 38.6%, respectively. Trimethylbenzene, n-propylbenzene and o,m-ethyltoluene approximately accounted for 70.0% in heating station plant. NMHCs emitted from coke production, iron smelt, heating station and power plant listed above presented different chemical reactivities. The average OH loss rate of NMHCs from heating station, was 4 to 5.6 times higher than that of NMHCs from iron smelt, coke production and power plant, which implies that VOCs emitted from heating station in northeast of China should be controlled firstly to avoid photochemical ozone pollution and protect human health. There are significant variations in the ratios of benzene/toluene and m, p-xylene/ethylbenzene of these coal-fired source profiles. The representativeness of the coal-fired sources studied and the VOC samples collected should be more closely examined. The accuracy of VOC source profiles related to coal-fired processes is highly dependent on

  8. Modelling the performance of the monogroove with screen heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Austin Lewis

    1987-01-01

    A computer code to model the steady-state performance of a monogroove heat pipe for the NASA Space Station is presented, including the effects on heat pipe performance of a screen in the evaporator section which deals with transient surges in the heat input. Errors in a previous code have been corrected, and the new code adds additional loss terms in order to model several different working fluids. Good agreement with existing performance curves is obtained. From a preliminary evaluation of several of the radiator design parameters it is found that an optimum fin width could be achieved but that structural considerations limit the thickness of the fin to a value above optimum.

  9. STS-131: Discovery Does Backflip at Station

    NASA Video Gallery

    Commander Alan Poindexter performs a Rendezvous Pitch Maneuver as Discovery approaches the International Space Station for docking, allowing the station crew to photograph the orbiter's heat shield...

  10. The state of permafrost surrounding "Gabriel de Castilla" Spanish Antarctic Station (Deception Island, Antarctica): Studying the possible degradation due to the infrastructures heating effect.

    NASA Astrophysics Data System (ADS)

    Recio, Cayetana; Ángel de Pablo, MIguel; Ramos, MIguel; Molina, Antonio

    2015-04-01

    Permafrost degradation is one of the effects of the global warming. Many studies reveal the increase of active layer and reduction on permafrost table thickness, also in Antarctica. However, these trends on permafrost can be accelerated by the human activities, as the heating produced by the Antarctic stations infrastructures when they are not properly isolated from the ground. In Deception island, South Shetland Archipelago, we started 3 years ago a monitoring program at the 26 years old "Gabriel de Castilla" Spanish Antarctic Station (SAS), It is focused on charactering the state of permafrost, since in the coastal scarps at tens of meters from the station an increase on erosion had been detected. Although the main cause of the erosion of this coastal volcanoclastic materials is the 2 meters thick icefield which forms during the winter in the inner sea of this volcanic island, we want to detect any possible contribution to the coastal erosion caused by the permafrost degradation related to the SAS presence. We present our preliminary analysis based on three years of continuous ground temperature data, monitored at a shallow borehole (70 cm deep) in the SAS edge, together with the active layer thickness measured around the station and their vicinities in two thawing seasons. We complete this study with the analysis of the continuous temperature data taken inside the SAS and the air and ground temperatures below the station, acquired during the last Antarctic Campaign (December 2014-February 2015). These preliminary results are fundamental 1) to discard any contribution from the SAS presence, and to help to improve its thermal isolation, 2) to help improve our knowledge about the thermal state of permafrost in the area, and 3) to help to understand the causes of the coastal erosion in the volcanic Deception Island.

  11. Comparison of Analytical and Numerical Performance Predictions for a Regenerative Heat Exchanger in the International Space Station Node 3 Internal Active Thermal Control System

    NASA Technical Reports Server (NTRS)

    Wise, Stephen A.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the system dynamics was created using Excel. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.

  12. Comparison of Analytical and Numerical Performance Predictions for an International Space Station Node 3 Internal Active Thermal Control System Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Wise, Stephen A.; Holt, James M.

    2002-01-01

    The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the systems dynamics was created using an Excel Spreadsheet. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.

  13. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source

    DOE PAGES

    Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; Fletcher, L. B.; Lee, H. J.; Galtier, E.; Nagler, B.; Gauthier, M.; et al

    2014-08-11

    Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatterx-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. Furthermore, the combination of experiments fully demonstratesmore » the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.« less

  14. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (invited).

    PubMed

    Fletcher, L B; Lee, H J; Barbrel, B; Gauthier, M; Galtier, E; Nagler, B; Döppner, T; LePape, S; Ma, T; Pak, A; Turnbull, D; White, T; Gregori, G; Wei, M; Falcone, R W; Heimann, P; Zastrau, U; Hastings, J B; Glenzer, S H

    2014-11-01

    Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  15. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source

    SciTech Connect

    Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; Fletcher, L. B.; Lee, H. J.; Galtier, E.; Nagler, B.; Gauthier, M.; Heimann, P.; Hastings, J. B.; Zastrau, U.; Glenzer, S. H.; White, T.; Gregori, G.; Wei, M.; Barbrel, B.; Falcone, R. W.

    2014-08-11

    Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatterx-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. Furthermore, the combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  16. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (invited)

    SciTech Connect

    Fletcher, L. B.; Lee, H. J.; Gauthier, M.; Galtier, E.; Nagler, B.; Heimann, P.; Hastings, J. B.; Glenzer, S. H.; Barbrel, B.; Falcone, R. W.; Döppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Zastrau, U.

    2014-11-15

    Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  17. Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part II: Plant Simulation and Optimisation Study

    NASA Astrophysics Data System (ADS)

    Chaczykowski, Maciej

    2016-06-01

    After having described the models for the organic Rankine cycle (ORC) equipment in the first part of this paper, this second part provides an example that demonstrates the performance of different ORC systems in the energy recovery application in a gas compressor station. The application shows certain specific characteristics, i.e. relatively large scale of the system, high exhaust gas temperature, low ambient temperature operation, and incorporation of an air-cooled condenser, as an effect of the localization in a compressor station plant. Screening of 17 organic fluids, mostly alkanes, was carried out and resulted in a selection of best performing fluids for each cycle configuration, among which benzene, acetone and heptane showed highest energy recovery potential in supercritical cycles, while benzene, toluene and cyclohexane in subcritical cycles. Calculation results indicate that a maximum of 10.4 MW of shaft power can be obtained from the exhaust gases of a 25 MW compressor driver by the use of benzene as a working fluid in the supercritical cycle with heat recuperation. In relation to the particular transmission system analysed in the study, it appears that the regenerative subcritical cycle with toluene as a working fluid presents the best thermodynamic characteristics, however, require some attention insofar as operational conditions are concerned.

  18. Solar energy power station

    SciTech Connect

    Assaf, G.; Bronicki, L.Y.

    1983-03-22

    A solar power station has a heat source in the form of the heat storage layer of a solar pond, a heat sink in the form of the wind-mixed layer of the pond covering the halocline interposed between the heat storage layer and the wind-mixed layer, and a power plant associated therewith. The power plant includes a boiler responsive to water from the heat storage layer for vaporizing a working fluid, a prime mover for producing work by extracting heat from vaporized working fluid, and a condenser cooled by water from a cooling pond connected to the solar pond such that only water in the wind-mixed layer is exchanged with the cooling pond. The wind-mixed layer serves to dissipate heat from the condenser and the volume of water in the cooling pond increase the heat absorption capacity of the heat sink.

  19. Cleanup Verification Package for the 100-K-55:1 and 100-K-56:1 Pipelines and the 116-KW-4 and 116-KE-5 Heat Recovery Stations

    SciTech Connect

    J. M. Capron

    2005-09-28

    This cleanup verification package documents completion of remedial action for the 100-K-55:1 and 100-K-56:1 reactor cooling effluent underground pipelines and for the 116-KW-4 and 116-KE-5 heat recovery stations. The 100-K-55 and 100-K-56 sites consisted of those process effluent pipelines that serviced the 105-KW and 105-KE Reactors.

  20. Assessment of the Microbial Control Measures for the Temperature and Humidity Control Subsystem Condensing Heat Exchanger of the International Space Station

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Steele, John W.; Marsh, Robert W.; Callahan, David M.; VonJouanne, Roger G.

    1999-01-01

    In August 1997 NASA/ Marshall Space Flight Center (MSFC) began a test with the objective of monitoring the growth of microorganisms on material simulating the surface of the International Space Station (ISS) Temperature and Humidity Control (THC) Condensing Heat Exchanger (CHX). The test addressed the concerns of potential uncontrolled microbial growth on the surface of the THC CHX subsystem. For this study, humidity condensate from a closed manned environment was used as a direct challenge to the surfaces of six cascades in a test set-up. The condensate was collected using a Shuttle-type CHX within the MSFC End-Use Equipment Testing Facility. Panels in four of the six cascades tested were coated with the ISS CHX silver impregnated hydrophilic coating. The remainder two cascade panels were coated with the hydrophilic coating without the antimicrobial component, silver. Results of the fourteen-month study are discussed in this paper. The effects on the microbial population when drying vs. not-drying the simulated THC CHX surface are also discussed.

  1. Assessment of Microbiologically Influenced Corrosion Potential in the International Space Station Internal Active Thermal Control System Heat Exchanger Materials: A 6-Momths Study

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Macuch, Patrick; McKrell, Thomas; VanDerSchijff, Ockert J.; Mitchell, Ralph

    2005-01-01

    The fluid in the Internal Active Thermal Control System (IATCS) of the International Space Station (ISS) is water based. The fluid in the ISS Laboratory Module and Node 1 initially contained a mix of water, phosphate (corrosion control), borate (pH buffer), and silver sulfate (Ag2SO4) (microbial control) at a pH of 9.5+/-0.5. Over time, the chemistry of the fluid changed. Fluid changes included a pH drop from 9.5 to 8.3 due to diffusion of carbon dioxide (CO2) through Teflon(reistered Trademark) (DuPont) hoses, increases in dissolved nickel (Ni) levels, deposition of silver (Ag) to metal surfaces, and precipitation of the phosphate (PO4) as nickel phosphate (NiPO4). The drop in pH and unavailability of a antimicrobial has provided an environment conducive to microbial growth. Microbial levels in the fluid have increased from >10 colony-forming units (CFUs)/100 ml to 10(exp 6) CFUs/100 ml. The heat exchangers in the IATCS loops are considered the weakest point in the loop because of the material thickness (=7 mil). It is made of a Ni-based braze filler/CRES 347. Results of a preliminary test performed at Hamilton Sundstrand indicated the possibility of pitting on this material at locations where Ag deposits were found. Later, tests have confirmed that chemical corrosion of the materials is a concern for this system. Accumulation of micro-organisms on surfaces (biofilm) can also result in material degradation and can amplify the damage caused by the chemical corrosion, known as microbiologically influenced corrosion (MIC). This paper will discuss the results of a 6-mo test performed to characterize and quantify the damage from microbial accumulation on the surface of the ISS/ATCS heat exchanger materials. The test was designed to quantify the damage to the materials under worst-case conditions with and without micro-organisms present at pH 8.3 and 9.5.

  2. Development of technical solutions for optimizing the hydraulic and thermal process circuits of the P-90 heat-recovery boiler used as part of the PGU-450T combined-cycle plant at the severozapadnaya cogeneration station

    NASA Astrophysics Data System (ADS)

    Belyakov, I. I.; Breus, V. I.; Barannikov, A. B.

    2012-03-01

    Results from work on analyzing the performance of the P-90 heat-recovery boilers used as part of the PGU-450T-based Unit 1 at the Severozapadnaya cogeneration station and on revealing factors causing damage to the bends of evaporating tubes are presented. Technical solutions using which a V-94.2 gas turbine can be replaced by a GTE-160 gas turbine are considered.

  3. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  4. Observation Station

    ERIC Educational Resources Information Center

    Rutherford, Heather

    2011-01-01

    This article describes how a teacher integrates science observations into the writing center. At the observation station, students explore new items with a science theme and use their notes and questions for class writings every day. Students are exposed to a variety of different topics and motivated to write in different styles all while…

  5. Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report

    SciTech Connect

    1997-07-01

    Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

  6. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  7. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  8. Corrosion of a stainless steel waste heat recuperator

    SciTech Connect

    Federer, J.I.; Tennery, V.J.

    1980-06-01

    Waste heat recuperation has significant potential for saving energy in fossil-fuel-fired industrial furnaces. Preheating the air used to burn the fuel can significantly reduce fuel consumption. The US Department of Energy is contracting several high-temperature waste heat recuperation demonstrations with the objective of using successful efforts to stimulate the industrial utilization of these devices. One of the recuperator demonstration contracts has as an objective the successful operation of a concentric-shell radiation recuperator of a new design on aluminum-scrap-remelting furnaces. The design employs type 309 stainless steel reradiant inserts within the type 309 stainless steel inner shell to increase heat radiation to the recuperator partition, thereby increasing the heat exhanger's effectiveness. The first demonstration recuperator in this program was installed on a furnace fired with No. 2 oil and melting about 60 Mg (66 tons) of aluminum per 24-h day. The unit operated for about 30 d and provided air to the burner at 540/sup 0/C. during this period, a burner control misoperation provided very fuel-rich gases to the base of the recuperator. This fuel combined with safety dilution air at the recuperator base and burned within the recuperator. Also, during this period, air flow loss was detected at the burner. An inspection revealed that this was caused by failure of the partition wall separating the primary and secondary sides of the recuperator. Extensive corrosion of the partition wall and reradiant inserts was also observed. The recuperator was removed from the furnace for an analysis of the failure.

  9. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  10. Performance test plan for a space station toluene heater tube

    SciTech Connect

    Parekh, M.B.

    1987-10-01

    Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a toluene heater tube integral to a heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. This heat pipe is a subassembly of the heat receiver. The heat receiver, the heat absorption component of the ORC solar dynamic power system, consists of forty liquid metal heat pipes located circumferentially around the heat receiver`s outside diameter. Each heat pipe contains a toluene heater, two thermal energy storage (TES) canisters and potassium. The function of the heater tube is to heat the supercritical toluene to the required turbine inlet temperature. During the orbit of the space station, the heat receiver and thereby the heat pipe and heater tube will be subjected to variable heat input. The design of the heater must be such that it can accommodate the thermal and hydraulic variations that will be imposed upon it.

  11. Space Station trash removal system

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1993-01-01

    A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.

  12. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  13. Space Station Spartan study

    NASA Technical Reports Server (NTRS)

    Lane, J. H.; Schulman, J. R.; Neupert, W. M.

    1985-01-01

    The required extension, enhancement, and upgrading of the present Spartan concept are described to conduct operations from the space station using the station's unique facilities and operational features. The space station Spartan (3S), the free flyer will be deployed from and returned to the space station and will conduct scientific missions of much longer duration than possible with the current Spartan. The potential benefits of a space station Spartan are enumerated. The objectives of the study are: (1) to develop a credible concept for a space station Spartan; and (2) to determine the associated requirements and interfaces with the space station to help ensure that the 3S can be properly accommodated.

  14. 47 CFR 73.877 - Station logs for LPFM stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station logs for LPFM stations. 73.877 Section... BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.877 Station logs for LPFM stations. The licensee of each LPFM station must maintain a station log. Each log entry must include the time and date...

  15. Space station power system

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Baraona, C. R.

    1984-01-01

    It is pointed out that space station planning at NASA began when NASA was created in 1958. However, the initiation of the program for a lunar landing delayed the implementation of plans for a space station. The utility of a space station was finally demonstrated with Skylab, which was launched in 1972. In May 1982, the Space Station Task Force was established to provide focus and direction for space station planning activities. The present paper provides a description of the planning activities, giving particular attention to the power system. The initial space station will be required to supply 75 kW of continuous electrical power, 60 kW for the customer and 15 kW for space station needs. Possible alternative energy sources for the space station include solar planar or concentrator arrays of either silicon or gallium arsenide.

  16. Station Tour: Russian Segment

    NASA Video Gallery

    Expedition 33 Commander Suni Williams concludes her tour of the International Space Station with a visit to the Russian segment, which includes Zarya, the first segment of the station launched in 1...

  17. Space Station Live: Station Communications Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

  18. Space Station attached payloads

    NASA Technical Reports Server (NTRS)

    Clark, Lenwood G.

    1990-01-01

    The Space Station Freedom is being designed and developed with user requirements being used to shape the configuration. Plans include accommodation provisions for a wide variety of attached payloads including the Earth sciences research activities which are the focus of this conference. The station program is even beginning some preliminary payload manifesting which involves planning for accommodation of payload during the station's assembly flights. Potential payload organizations should be aware of the station's plans for payload accommodations so as to guide their own payload activities for future space station use.

  19. Advantage of incorporating geothermal energy into power-station cycles

    NASA Astrophysics Data System (ADS)

    White, A. A. L.

    1980-06-01

    The generation of electricity from low-temperature geothermal sources has been hampered by the low conversion efficiencies of Rankine cycle operating below 150 C. It is shown how the electrical output derived from a geothermal borehole may be substantially improved on that expected from these cycles by incorporating the geothermal heat into a conventional steam-cycle power station to provide feedwater heating. This technique can yield thermal conversion efficiencies of 11% which, for a well-head temperature of 100 C, is 50% greater than the output expected from a Rankine cycle. Coupled with the smaller capital costs involved, feedwater heating is thus a more attractive technique of converting heat into electricity. Although power stations above suitable geothermal resources would ideally have the geothermal heat incorporated from the design stage, experiments at Marchwood Power Station have shown that small existing sets can be modified to accept geothermal feedwater heating.

  20. Space Station Freedom Utilization Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

  1. Space station, 1959 to . .

    NASA Astrophysics Data System (ADS)

    Butler, G. V.

    1981-04-01

    Early space station designs are considered, taking into account Herman Oberth's first space station, the London Daily Mail Study, the first major space station design developed during the moon mission, and the Manned Orbiting Laboratory Program of DOD. Attention is given to Skylab, new space station studies, the Shuttle and Spacelab, communication satellites, solar power satellites, a 30 meter diameter radiometer for geological measurements and agricultural assessments, the mining of the moons, and questions of international cooperation. It is thought to be very probable that there will be very large space stations at some time in the future. However, for the more immediate future a step-by-step development that will start with Spacelab stations of 3-4 men is envisaged.

  2. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  3. Space Station operations

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1985-01-01

    An evaluation of the success of the Space Station will be based on the service provided to the customers by the Station crew, the productivity of the crew, and the costs of operation. Attention is given to details regarding Space Station operations, a summary of operational philosophies and requirements, logistics and resupply operations, prelaunch processing and launch operations, on-orbit operations, aspects of maintainability and maintenance, habitability, and questions of medical care. A logistics module concept is considered along with a logistics module processing timeline, a habitability module concept, and a Space Station rescue mission.

  4. Station Crew Celebrates Christmas

    NASA Video Gallery

    Aboard the orbiting International Space Station, Expedition 34 Commander Kevin Ford, Russian Flight Engineers Oleg Novitskiy, Evgeny Tarelkin and Roman Romanenko, NASA Flight Engineer Tom Marshburn...

  5. Central Station DHC Phase 1 feasibility

    SciTech Connect

    Henderson, H.L.

    1992-03-01

    This project assisted a private real estate developer in technically assessing the feasibility of integrating a central DHC system into a proposed 72 acre area mixed-use Planned Development (Central Station) just south of the Chicago Central Business District (Loop). The technical assessment concluded that a district heating and cooling system for Central Station will be feasible, provided that a major anchor load can be connected to the system. The system conceived for the site employs a modular approach that adjusts production capacity to actual load growth. The design concept includes gas-fired boilers for heating, gas turbine driven chillers for base loading, electric motor driven chillers for peaking, steam turbines for peak power and back pressure operation, and chilled water storage. Energy will be supplied to the users in the form of steam or low temperature hot water for heating, and low temperature chilled water for cooling.

  6. Space station dynamics

    NASA Technical Reports Server (NTRS)

    Berka, Reg

    1990-01-01

    Structural dynamic characteristics and responses of the Space Station due to the natural and induced environment are discussed. Problems that are peculiar to the Space Station are also discussed. These factors lead to an overall acceleration environment that users may expect. This acceleration environment can be considered as a loading, as well as a disturbance environment.

  7. "Inventive" Learning Stations

    ERIC Educational Resources Information Center

    Jarrett, Olga

    2010-01-01

    Learning stations can be used for myriad purposes--to teach concepts, integrate subject matter, build interest, and allow for inquiry--the possibilities are limited only by the imagination of the teacher and the supplies available. In this article, the author shares suggestions and a checklist for setting up successful learning stations. In…

  8. Space station executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An executive summary of the modular space station study is presented. The subjects discussed are: (1) design characteristics, (2) experiment program, (3) operations, (4) program description, and (5) research implications. The modular space station is considered a candidate payload for the low cost shuttle transportation system.

  9. Science on Space Station

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1987-01-01

    Plans for space science activities on the International Space Station are reviewed from a NASA perspective. The present Station reference configuration is based on a dual-keel core unit (one habitation module and three laboratory modules supplied by NASA, ESA, and Japan) and provides for five attached systems (with up to four payloads each to be exposed to space) and several free-flying platforms (both polar orbiters and coorbiters). Particular attention is given to the space science aspects of the primary Station objectives defined by NASA (servicing and repair, platforms, pressurized modules, and attached payloads). Also discussed are the work of the Task Force on Scientific Uses of Space Station, the need for operational flexibility, the value of a continuous manned presence for experimental science, and the skills needed from the Station crew.

  10. 4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ON RIGHT. NOTE TUNNEL IN BACKGROUND. - Baltimore & Ohio Railroad, Harpers Ferry Station, Potomac Street, Harpers Ferry, Jefferson County, WV

  11. High Volume and High Jinks over Control of Rice's Radio Station.

    ERIC Educational Resources Information Center

    Monaghan, Peter

    2001-01-01

    Describes how at Rice University's radio station, students talk about artistic vision while administrators talk about responsibility. Discusses the heated events following Rice's demand that a university-paid general manager be placed at the station, raising the issue of whether the station is a university asset or something held in trust for…

  12. Ranger Station Solar-Energy System Receives Economic Evaluation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Economic performance of Glendo Reservoir Ranger Station solar-energy system in Wyoming and extrapolated performance in four other locations around the U.S. is reviewed in report. System is a passive drain-down system using water as heat-transfer medium for space and hot-water heating.

  13. Space Station Induced Monitoring

    NASA Technical Reports Server (NTRS)

    Spann, James F. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.

  14. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  15. Space station operations management

    NASA Technical Reports Server (NTRS)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  16. The space station

    NASA Technical Reports Server (NTRS)

    Munoz, Abraham

    1988-01-01

    Conceived since the beginning of time, living in space is no longer a dream but rather a very near reality. The concept of a Space Station is not a new one, but a redefined one. Many investigations on the kinds of experiments and work assignments the Space Station will need to accommodate have been completed, but NASA specialists are constantly talking with potential users of the Station to learn more about the work they, the users, want to do in space. Present configurations are examined along with possible new ones.

  17. Space Station Food System

    NASA Technical Reports Server (NTRS)

    Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.

    1986-01-01

    A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.

  18. The Space Station Chronicles

    NASA Video Gallery

    As early as the nineteenth century, writers and artists and scientists around the world began to publish their visions of a crewed outpost in space. Learn about the history of space stations, from ...

  19. Space Station Software Issues

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor); Beskenis, S. (Editor)

    1985-01-01

    Issues in the development of software for the Space Station are discussed. Software acquisition and management, software development environment, standards, information system support for software developers, and a future software advisory board are addressed.

  20. Space Station Live! Tour

    NASA Video Gallery

    NASA is using the Internet and smartphones to provide the public with a new inside look at what happens aboard the International Space Station and in the Mission Control Center. NASA Public Affairs...

  1. Enabler operator station

    NASA Technical Reports Server (NTRS)

    Bailey, Andrea; Kietzman, John; King, Shirlyn; Stover, Rae; Wegner, Torsten

    1992-01-01

    The objective of this project was to design an onboard operator station for the conceptual Lunar Work Vehicle (LWV). The LWV would be used in the colonization of a lunar outpost. The details that follow, however, are for an Earth-bound model. The operator station is designed to be dimensionally correct for an astronaut wearing the current space shuttle EVA suit (which include life support). The proposed operator station will support and restrain an astronaut as well as to provide protection from the hazards of vehicle rollover. The threat of suit puncture is eliminated by rounding all corners and edges. A step-plate, located at the front of the vehicle, provides excellent ease of entry and exit. The operator station weight requirements are met by making efficient use of rigid members, semi-rigid members, and woven fabrics.

  2. Station Commander Praises AMS

    NASA Video Gallery

    When asked what's the most important International Space Station experiment, Commander Chris Hadfield names the Alpha Magnetic Spectrometer-2, a state-of-the-art particle physics detector that coul...

  3. Space Station Software Recommendations

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor)

    1985-01-01

    Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.

  4. Space station data flow

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

  5. Station Assembly Animation

    NASA Video Gallery

    This animation depicts the assembly of the International Space Station since Nov. 20, 1998, with the delivery of the Zarya module, through May 16, 2011, with the delivery of the EXPRESS Logistics C...

  6. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Display model of space station concept--Manned Orbiting Research Laboratory in Saturn S-IVB Orbit configuration. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995).

  7. Overview of space station

    NASA Technical Reports Server (NTRS)

    Priest, Claude C.

    1990-01-01

    An overview of the Space Station program for workshop participants is given. Covered here are overall program guidelines, international involvement, the present baseline configuration, and development plans for the coming year.

  8. Destination Station Atlanta

    NASA Video Gallery

    Destination Station was recently in Atlanta from April 15 through April 21. During the week, NASA visited schools, hospitals, museums, and the city’s well known Atlanta Science Tavern Meet Up gro...

  9. Space Station galley design

    NASA Technical Reports Server (NTRS)

    Trabanino, Rudy; Murphy, George L.; Yakut, M. M.

    1986-01-01

    An Advanced Food Hardware System galley for the initial operating capability (IOC) Space Station is discussed. Space Station will employ food hardware items that have never been flown in space, such as a dishwasher, microwave oven, blender/mixer, bulk food and beverage dispensers, automated food inventory management, a trash compactor, and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades, design, development, and testing associated with each are summarized.

  10. Space station proposed

    NASA Astrophysics Data System (ADS)

    In his State of the Union address on January 25, President Ronald Reagan announced that he was directing the National Aeronautics and Space Administration (NASA) to “develop a permanently manned space station, and to do it within a decade.”Included in the NASA budget proposal sent to Congress the following week was $150 million for the station. This is the first request of many; expected costs will total roughly $8 billion by the early 1990's.

  11. Space station task force perspective

    NASA Technical Reports Server (NTRS)

    Hicks, C.

    1984-01-01

    Space station planning quidelines; architecture; functions; preliminary mission data base; scope for international and commercial participation; schedules; servicing capability; technology development; and space station program interfaces are discussed.

  12. The Princess Elisabeth Station

    NASA Technical Reports Server (NTRS)

    Berte, Johan

    2012-01-01

    Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.

  13. Space station mobile transporter

    NASA Technical Reports Server (NTRS)

    Renshall, James; Marks, Geoff W.; Young, Grant L.

    1988-01-01

    The first quarter of the next century will see an operational space station that will provide a permanently manned base for satellite servicing, multiple strategic scientific and commercial payload deployment, and Orbital Maneuvering Vehicle/Orbital Transfer Vehicle (OMV/OTV) retrieval replenishment and deployment. The space station, as conceived, is constructed in orbit and will be maintained in orbit. The construction, servicing, maintenance and deployment tasks, when coupled with the size of the station, dictate that some form of transportation and manipulation device be conceived. The Transporter described will work in conjunction with the Orbiter and an Assembly Work Platform (AWP) to construct the Work Station. The Transporter will also work in conjunction with the Mobile Remote Servicer to service and install payloads, retrieve, service and deploy satellites, and service and maintain the station itself. The Transporter involved in station construction when mounted on the AWP and later supporting a maintenance or inspection task with the Mobile Remote Servicer and the Flight Telerobotic Servicer is shown.

  14. Thermodynamic power stations at low temperatures

    NASA Astrophysics Data System (ADS)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  15. Reduction of noxious substance emissions at the pulverized fuel combustion in the combustor of the BKZ-160 boiler of the Almaty heat electropower station using the "Overfire Air" technology

    NASA Astrophysics Data System (ADS)

    Askarova, A. S.; Messerle, V. E.; Ustimenko, A. B.; Bolegenova, S. A.; Bolegenova, S. A.; Maximov, V. Yu.; Yergalieva, A. B.

    2016-01-01

    The computational experiments using the "Overfire Air" (OFA) technology at the coal dust torch combustion in the combustor of the BKZ-160 boiler of the heat power plant No. 2 in Almaty have been conducted. The results show a possibility of reaching a reduction of the emission of noxious nitrogen oxides NO x and minimizing the energy losses. The results of numerical experiments on the influence of the additional air supply on the main characteristics of heat and mass transfer are presented. A comparison with the base regime of the solid fuel combustion when there is no supply of the additional air (OFA = 0 %) has been made.

  16. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  17. Shoring pumping station excavation

    SciTech Connect

    Glover, J.B.; Reardon, D.J. )

    1991-11-01

    The city of San Mateo, Calif., operates three 12- to 50-year old wastewater pumping stations on a 24-m (80-ft) wide lot located in a residential area near San Francisco Bay. Because the aging stations have difficulty pumping peak 2.19-m{sup 3}/s (50-mgd) wet-weather flows and have structural and maintenance problems, a new 2.62-m{sup 3}/s (60-mgd) station was proposed - the Dale Avenue Pumping Station - to replace the existing ones. To prevent potential damage to adjacent homes, the new station was originally conceived as a circular caisson type; however, a geotechnical investigation recommended against this type of structure because the stiff soils could make sinking the structure difficult. This prompted an investigation of possible shoring methods for the proposed structure. Several shoring systems were investigated, including steel sheeting, soldier beams and lagging, tieback systems, open excavation, and others; however, each had disadvantages that prevented its use. Because these conventional techniques were unacceptable, attention was turned to using deep soil mixing (DSM) to create a diaphragm wall around the area to be excavated before constructing the pumping station. Although this method has been used extensively in Japan since 1983, the Dale Avenue Pumping Station would be the technology's first US application. The technology's anticipated advantages were its impermeability, its fast and efficient installation that did not require tiebacks under existing homes, its adaptability to subsurface conditions ranging from soft ground to stiff clay to gravels, and its lack of pile-driving requirements that would cause high vibration levels during installation.

  18. Compression station upgrades include advanced noise reduction

    SciTech Connect

    Dunning, V.R.; Sherikar, S.

    1998-10-01

    Since its inception in the mid-`80s, AlintaGas` Dampier to Bunbury natural gas pipeline has been constantly undergoing a series of upgrades to boost capacity and meet other needs. Extending northward about 850 miles from near Perth to the northwest shelf, the 26-inch line was originally served by five compressor stations. In the 1989-91 period, three new compressor stations were added to increase capacity and a ninth station was added in 1997. Instead of using noise-path-treatment mufflers to reduce existing noise, it was decided to use noise-source-treatment technology to prevent noise creation in the first place. In the field, operation of these new noise-source treatment attenuators has been very quiet. If there was any thought earlier of guaranteed noise-level verification, it is not considered a priority now. It`s also anticipated that as AlintaGas proceeds with its pipeline and compressor station upgrade program, similar noise-source treatment equipment will be employed and retrofitted into older stations where the need to reduce noise and potential radiant-heat exposure is indicated.

  19. UMTS Network Stations

    NASA Astrophysics Data System (ADS)

    Hernandez, C.

    2010-09-01

    The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed

  20. The Space Station

    NASA Astrophysics Data System (ADS)

    Sharples, R.; Hieatt, J.

    1984-11-01

    The configuration of the Space Station under design studies by NASA is limited only by the capabilities of the Shuttle and the purposes to which it is applied. Once the standard interlocks, launch vibration modes, and pallet designs are fixed, all other assembly of modular components, testing, and trim will be performed in space. The Station will serve for long-term experiments, as a base for planetary missions asembly, launch, and retrieval, and for loading and launching multiple satellites on an orbital transfer vehicle. Materials processing research will be carried out in the Station, as will various scientific and commercial remote sensing activities. The first operational version (1990) will require four Shuttle launches to reach an assembled mass of 70,000 kg drawing 30 kWe from solar panels and housing a crew of five. By the year 2000 the station will support 10-12 crew members in five habitat modules, will be 31 m long, will have cost $18-20 billion, and will be returning $2 billion per year. The station will be periodically reboosted to higher orbits that decay suficiently for orbiter rendezvous for supplies and assignments.

  1. Space power demonstration stations

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1976-01-01

    NASA major planning decisions from 1955 to date are summarized and new concepts connected with the advent of the Space Transportation Systems (STS) are set forth. The future Shuttle utilizations are considered, from 'manned booster' function for space transportation to such operations as deployment of modules and stations and assembly of large structures in space. The permanent occupancy of space will be a major goal of the space systems development in the 1980's with the following main phases: (1) achievement of easy access to earth orbit by means of the Shuttle and Spacelab; (2) achievement of permanent occupancy (Space Stations); (3) self-sufficiency of man in space. New techniques of space operation will become possible, using much larger, complicated satellites and simplified ground stations. Orbital assembly of large stations, using a permanent base in orbit, will enable practical utilization of space systems for everyday needs. Particular attention is given to the space solar power concept, involving the location in space of large satellite systems. Results of the studies on Manned Orbital Systems Concept (MOSC) and some future possibilities of Space Stations are analyzed.

  2. ILRS Station Reporting

    NASA Technical Reports Server (NTRS)

    Noll, Carey E.; Pearlman, Michael Reisman; Torrence, Mark H.

    2013-01-01

    Network stations provided system configuration documentation upon joining the ILRS. This information, found in the various site and system log files available on the ILRS website, is essential to the ILRS analysis centers, combination centers, and general user community. Therefore, it is imperative that the station personnel inform the ILRS community in a timely fashion when changes to the system occur. This poster provides some information about the various documentation that must be maintained. The ILRS network consists of over fifty global sites actively ranging to over sixty satellites as well as five lunar reflectors. Information about these stations are available on the ILRS website (http://ilrs.gsfc.nasa.gov/network/stations/index.html). The ILRS Analysis Centers must have current information about the stations and their system configuration in order to use their data in generation of derived products. However, not all information available on the ILRS website is as up-to-date as necessary for correct analysis of their data.

  3. Space station communications

    NASA Astrophysics Data System (ADS)

    Cuccia, C. L.

    1983-10-01

    A concise history of the various types of communications that have been used in low-earth-orbit vehicles and form the basis of the various types of communications and communication requirements that can be realized in space-station developments over the next decade is presented. The Space Shuttle can be assumed to be a prototype space station in the tradition of Apollo and Spacelab. Shuttle operations require earth-to-ground support communications, EVA communications, internal communications, and communications to and from other spacecraft (TDRS) and free-flying vehicles for experiments (SPAS-01). These basic communication requirements will expand to the point where the man-computer alliance in the space station will transform the station into a space communications and computer center capable of providing data processing and storage in association with ground-based distributed processing along the growing terrestrial ISDN global digital highway. The space station will also provide unique means to obtain data and information from one part of the earth or space and transport them to another point on earth.

  4. Liquid measurement station design

    SciTech Connect

    Duplantis, S.

    1995-12-01

    A liquid measurement station is a designed and engineered package of valves, pipe, instrumentation, flow meters and wiring, configured to produce accurate measurement data in the delivery of a product in a process unit or in a custody transfer between a buyer and seller. A liquid measurement station could be as simple as a manually operated single meter run or as complex as a multi-meter run tanker loading facility with a multi-tasking control/computer system. Liquid measurement stations are found in all areas of the hydrocarbon industry from the oil well to the refinery. Typical areas where, measurement stations are implemented are pump stations feeding pipelines, pipeline distribution terminals, loading terminals for storage facilities and loading terminals for tanker transports. The importance of good measurement system design is quite obvious since the measurement of the product is normally major factor in the proper operation and control of a process or is needed for the accurate accounting and selling of a product. In both cases, the accuracy of the measurement will directly affect the income and revenues of a company.

  5. Telerobot for space station

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1987-01-01

    The Flight Telerobotic Servicer (FTS), a multiple arm dexterous manipulation system, will aid in the assembly, maintenance, and servicing of the space station. Fundamental ideas and basic conceptual designs for a shuttle-based telerobot system have been produced. Recent space station studies provide additional concepts that should aid in the accomplishment of mission requirements. Currently, the FTS is in contractual source selection for a Phase B preliminary design. At the same time, design requirements are being developed through a series of robotic assessment tasks being performed at NASA and commercial installations. A number of the requirements for remote operation on the space station, necessary to supplement extravehicular activity (EVA), will be met by the FTS. Finally, technology developed for telerobotics will advance the state of the art of remote operating systems, enhance operator productivity, and prove instrumental in the evolution of an adaptive, intelligent autonomous robot.

  6. Heating with waste heat

    SciTech Connect

    Beabout, R.W.

    1986-09-02

    Most of the power consumed in the gaseous diffusion process is converted into heat of compression, which is removed from the process gas and rejected into the atmosphere by recirculating cooling water over cooling towers. The water being handled through the X-333 and X-330 Process Buildings can be heated to 140 to 150/sup 0/F for heating use. The Gas Centrifuge Enrichment Plant is provided with a recirculating heating water (RHW) system which uses X-330 water and wasted heat. The RHW flow is diagrammed. (DLC)

  7. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  8. Space station structures development

    NASA Technical Reports Server (NTRS)

    Teller, V. B.

    1986-01-01

    A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.

  9. Space Station Habitability Research

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  10. Space Station habitability research

    NASA Technical Reports Server (NTRS)

    Clearwater, Y. A.

    1986-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Cente is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  11. Cofiring at the Seward Generating Station -- A long term demonstration

    SciTech Connect

    Battista, J.; Tillman, D.; Hughes, E.

    1999-07-01

    GPU Genco, supported by the Electric Power Research Institute and the US Department of Energy, Energy Efficiency and Renewable Energy Office and the Federal Energy Technology Center, is demonstrating cofiring of wood waste with coal using separate injection of prepared wood waste at its Seward Generating Station. The program is based upon 3 previous tests: a program of parametric testing at Shawville Generating Station and two parametric test programs at Seward Generating Station. Foster Wheeler Development Corporation is the primary contractor for the demonstration. The physical plant installed at Seward Generating Station includes a pole barn, a trommel screen, a fuel storage silo, and a pneumatic transport system. Testing of cofiring has been at the 5 to 10% heat input level. This paper summarizes the progression of cofiring testing at GPU Genco, details the facility design and equipment installed at the Seward Generation Station.

  12. Dragon Departs the Station

    NASA Video Gallery

    The Expedition 31 crew used the Canadarm2 robotic arm to demate the SpaceX Dragon cargo vehicle from the Earth-facing port of the station’s Harmony node at 4:07 a.m. EDT on Thursday. It was relea...

  13. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  14. Space Station Final Configuration

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An artist's conception of what the final configuration of the International Space Station (ISS) will look like when it is fully built and deployed. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  15. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  16. Power Station Design

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Kuljian Corporation provides design engineering and construction management services for power generating plants in more than 20 countries. They used WASP (Calculating Water and Steam Properties), a COSMIC program to optimize power station design. This enabled the company to substantially reduce lead time and software cost in a recent design project.

  17. Space Station Energy Sizing

    NASA Technical Reports Server (NTRS)

    Rice, R. R.

    1983-01-01

    A general schematic for a space station power system is described. The major items of interest in the power system are the solar array, transfer devices, energy storage, and conversion equipment. Each item will have losses associated with it and must be utilized in any sizing study, and can be used as a checklist for itemizing the various system components.

  18. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  19. Galileo Station Keeping Strategy

    NASA Technical Reports Server (NTRS)

    Perez-Cambriles, Antonio; Bejar-Romero, Juan Antonio; Aguilar-Taboada, Daniel; Perez-Lopez, Fernando; Navarro, Daniel

    2007-01-01

    This paper presents analyses done for the design and implementation of the Maneuver Planning software of the Galileo Flight Dynamics Facility. The station keeping requirements of the constellation have been analyzed in order to identify the key parameters to be taken into account in the design and implementation of the software.

  20. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Mock-up of Manned Space Laboratory. 'Two Langley engineers test an experimental air lock between an arriving spacecraft and a space station portal in January 1964.' : Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 299.

  1. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1964-01-01

    'William N. Gardner, head of the MORL Studies Office, explains the interior design of the space station at the 1964 NASA inspection.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 300.

  2. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1964-01-01

    'A Langley engineer takes a walk-in simulated zero gravity around a mock-up of a full-scale, 24-foot-diameter space station.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 282.

  3. Space Station structures

    NASA Astrophysics Data System (ADS)

    Schneider, W.

    1985-04-01

    A brief overview of some structural results that came from space station skunk works is presented. Detailed drawings of the pressurized modules, and primary truss structures such as deployable single fold beams, erectable beams and deployable double folds are given. Typical truss attachment devices and deployable backup procedures are also given.

  4. Space Station structures

    NASA Technical Reports Server (NTRS)

    Schneider, W.

    1985-01-01

    A brief overview of some structural results that came from space station skunk works is presented. Detailed drawings of the pressurized modules, and primary truss structures such as deployable single fold beams, erectable beams and deployable double folds are given. Typical truss attachment devices and deployable backup procedures are also given.

  5. The Home Weather Station.

    ERIC Educational Resources Information Center

    Steinke, Steven D.

    1991-01-01

    Described is how an amateur weather observer measures and records temperature and precipitation at a well-equipped, backyard weather station. Directions for building an instrument shelter and a description of the instruments needed for measuring temperature and precipitation are included. (KR)

  6. Physics of heat pipe rewetting

    NASA Technical Reports Server (NTRS)

    Chan, S. H.

    1994-01-01

    This is the final report which summarizes the research accomplishments under the project entitled 'Physics of Heat Pipe Rewetting' under NASA Grant No. NAG 9-525, Basic, during the period of April 1, 1991 to January 31, 1994. The objective of the research project was to investigate both analytically and experimentally the rewetting characteristics of the heated, grooved plate. The grooved plate is to simulate the inner surface of the vapor channel in monogroove heat pipes for space station design. In such designs, the inner surface of the vapor channel is threaded with monogrooves. When the heat pipe is thermally overloaded, dryout of the monogroove surface occurs. Such a dryout surface should be promptly rewetted to prevent the failure of the heat pipe operation in the thermal radiator of the space station.

  7. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  8. Levels at gaging stations

    USGS Publications Warehouse

    Kenney, Terry A.

    2010-01-01

    Operational procedures at U.S. Geological Survey gaging stations include periodic leveling checks to ensure that gages are accurately set to the established gage datum. Differential leveling techniques are used to determine elevations for reference marks, reference points, all gages, and the water surface. The techniques presented in this manual provide guidance on instruments and methods that ensure gaging-station levels are run to both a high precision and accuracy. Levels are run at gaging stations whenever differences in gage readings are unresolved, stations may have been damaged, or according to a pre-determined frequency. Engineer's levels, both optical levels and electronic digital levels, are commonly used for gaging-station levels. Collimation tests should be run at least once a week for any week that levels are run, and the absolute value of the collimation error cannot exceed 0.003 foot/100 feet (ft). An acceptable set of gaging-station levels consists of a minimum of two foresights, each from a different instrument height, taken on at least two independent reference marks, all reference points, all gages, and the water surface. The initial instrument height is determined from another independent reference mark, known as the origin, or base reference mark. The absolute value of the closure error of a leveling circuit must be less than or equal to ft, where n is the total number of instrument setups, and may not exceed |0.015| ft regardless of the number of instrument setups. Closure error for a leveling circuit is distributed by instrument setup and adjusted elevations are determined. Side shots in a level circuit are assessed by examining the differences between the adjusted first and second elevations for each objective point in the circuit. The absolute value of these differences must be less than or equal to 0.005 ft. Final elevations for objective points are determined by averaging the valid adjusted first and second elevations. If final elevations

  9. Broadcasting Stations of the World; Part IV. Television Stations.

    ERIC Educational Resources Information Center

    Foreign Broadcast Information Service, Washington, DC.

    This fourth part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations, with the exception of those in the United States which broadcast on domestic channels, covers television stations. Two sections are provided: one indexed alphabetically by country and city, and the other indexed by…

  10. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  11. A lunar space station

    NASA Technical Reports Server (NTRS)

    Trinh, LU; Merrow, Mark; Coons, Russ; Iezzi, Gabrielle; Palarz, Howard M.; Nguyen, Marc H.; Spitzer, Mike; Cubbage, Sam

    1989-01-01

    A concept for a space station to be placed in low lunar orbit in support of the eventual establishment of a permanent moon base is proposed. This space station would have several functions: (1) a complete support facility for the maintenance of the permanent moon base and its population; (2) an orbital docking area to facilitate the ferrying of materials and personnel to and from Earth; (3) a zero gravity factory using lunar raw materials to grow superior GaAs crystals for use in semiconductors and mass produce inexpensive fiber glass; and (4) a space garden for the benefit of the air food cycles. The mission scenario, design requirements, and technology needs and developments are included as part of the proposal.

  12. Space Station Technology, 1983

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor); Mays, C. R. (Editor)

    1984-01-01

    This publication is a compilation of the panel summaries presented in the following areas: systems/operations technology; crew and life support; EVA; crew and life support: ECLSS; attitude, control, and stabilization; human capabilities; auxillary propulsion; fluid management; communications; structures and mechanisms; data management; power; and thermal control. The objective of the workshop was to aid the Space Station Technology Steering Committee in defining and implementing a technology development program to support the establishment of a permanent human presence in space. This compilation will provide the participants and their organizations with the information presented at this workshop in a referenceable format. This information will establish a stepping stone for users of space station technology to develop new technology and plan future tasks.

  13. Battery charging stations

    SciTech Connect

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  14. Space station propulsion

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Morren, W. Earl; Sovey, James S.; Tacina, Robert R.

    1987-01-01

    Two propulsion systems have been selected for the space station: gaseous H/O rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These two thruster systems integrate very well with the fluid systems on the space station, utilizing waste fluids as their source of propellant. The H/O rocket will be fueled by electrolyzed water and the resistojets will use waste gases collected from the environmental control system and the various laboratories. The results are presented of experimental efforts with H/O and resistojet thrusters to determine their performance and life capability, as well as results of studies to determine the availability of water and waste gases.

  15. Station Crew Opens Dragon's Hatch

    NASA Video Gallery

    The hatch between the newly arrived SpaceX Dragon spacecraft and the Harmony module of the International Space Station was opened by NASA Astronaut Don Pettit at 5:53 am EDT as the station flew 253...

  16. Station Tour: Cupola and Leonardo

    NASA Video Gallery

    Expedition 33 Commander Suni Williams continues the tour of the International Space Station with a look at the station's observation deck, the cupola, as well as the Advanced Resistive Exercise Dev...

  17. Space Station - early

    NASA Technical Reports Server (NTRS)

    2002-01-01

    'North American selected this space station design in 1962 for final systems analysis. Incorporating all the advantages of a wheel configuration, it had rigid cylindrical modules arranged in a hexagonal shape with three rigid telescoping spokes. This configuration eliminated the need for exposed flexible fabric.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 284.

  18. Space station commonality analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.

  19. Space station ventilation study

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Allen, G. E.

    1972-01-01

    A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

  20. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  1. Space Station fluid management logistics

    NASA Technical Reports Server (NTRS)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  2. Milliken Station demonstration project FGD retrofit update

    SciTech Connect

    Jackson, C.E.; Elia, G.G.

    1994-12-31

    The Milliken Clean Coal Demonstration Project is one of the nine Clean Coal Projects that were selected for funding in Round 4 of the US DOE`s Clean Coal Demonstration Program. The Project will provide full-scale demonstration of a combination of innovative emission-reducing technologies and plant upgrades for the control of sulfur dioxide and nitrogen oxides emissions from a coal-fired steam generator without a significant loss of station efficiency. The overall Project goals are: 98% SO{sub 2} removal efficiency using limestone while burning high sulfur coal; up to 70% NO{sub x} reduction using the NOXOUT selective non-catalytic reduction (SNCR) technology in conjunction with combustion modifications; minimization of solid wastes by producing marketable by-products including commercial grade gypsum, calcium chloride and fly ash; zero wastewater discharge; and maintaining station efficiency by using a high efficiency heat pipe air heater system and a low power consuming scrubber system.

  3. Space Station Freedom operations planning

    NASA Technical Reports Server (NTRS)

    Smith, Kevin J.

    1988-01-01

    This paper addresses the development of new planning methodologies which will evolve to serve the Space Station Freedom program; these planning processes will focus on the complex task of effectively managing the resources provided by the Space Station Freedom and will be made available to the diverse international community of space station users in support of their ongoing investigative activities.

  4. Space Station commercial user development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The commercial utilization of the space station is investigated. The interest of nonaerospace firms in the use of the space station is determined. The user requirements are compared to the space station's capabilities and a feasibility analysis of a commercial firm acting as an intermediary between NASA and the private sector to reduce costs is presented.

  5. Build Your Own Space Station

    NASA Technical Reports Server (NTRS)

    Bolinger, Allison

    2016-01-01

    This presentation will be used to educate elementary students on the purposes and components of the International Space Station and then allow them to build their own space stations with household objects and then present details on their space stations to the rest of the group.

  6. Microbiology of aquatic environments: Characterizations of the microbiotas of municipal water supplies, the International Space Station Internal Active Thermal Control System's heat transport fluid, and US Space Shuttle drinking water

    NASA Astrophysics Data System (ADS)

    Bernardini, James Nicholas, III

    An understanding of the microbiota within life support systems is essential for the prolonged presence of humans in space. This is because microbes may cause disease or induce biofouling and/or corrosion within spacecraft water systems. It is imperative that we develop effective high-throughput technologies for characterizing microbial populations that can eventually be used in the space environment. This dissertation describes testing and development of such methodologies, targeting both bacteria and viruses in water, and examines the bacterial and viral diversity within two spacecraft life support systems. The bacterial community of the International Space Station Internal Active Thermal Control System (IATCS) was examined using conventional culture-based and advanced molecular techniques including adenosine triphosphate (ATP) and Limulus Amebocyte Lysate (LAL) assays, direct microscopic examination, and analyses of 16S rRNA gene libraries from the community metagenome. The cultivable heterotrophs of the IATCS fluids ranged from below detection limit to 1.1x10 5/100 ml, and viable cells, measured by ATP, ranged from 1.4x10 3/100 ml to 7.7x105/100 ml. DNA extraction, cloning, sequencing, and bioinformatic analysis of the clones from 16S RNA gene libraries showed members of the firmicutes, alpha, beta, and gamma-proteobacteria to be present in the fluids. This persistent microbial bioburden and the presence of probable metal reducers, biofilm formers, and opportunistic pathogens illustrate the need for better characterization of bacterial communities present within spacecraft fluids. A new methodology was developed for detection of viruses in water using microarrays. Samples were concentrated by lyophilization, resuspended and filtered (0.22microm). Viral nucleic acids were then extracted, amplified, fluorescently labeled and hybridized onto a custom microarray with probes for ˜1000 known viruses. Numerous virus signatures were observed. Human Adenovirus C and

  7. Accumulation and subsequent utilization of waste heat

    NASA Astrophysics Data System (ADS)

    Koloničný, Jan; Richter, Aleš; Pavloková, Petra

    2016-06-01

    This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.

  8. Space Station transition through Spacelab

    NASA Technical Reports Server (NTRS)

    Craft, Harry G., Jr.; Wicks, Thomas G.

    1990-01-01

    It is appropriate that NASA's Office of Space Science and Application's science management structures and processes that have proven successful on Spacelab be applied and extrapolated to Space Station utilization, wherever practical. Spacelab has many similarities and complementary aspects to Space Station Freedom. An understanding of the similarities and differences between Spacelab and Space Station is necessary in order to understand how to transition from Spacelab to Space Station. These relationships are discussed herein as well as issues which must be dealt with and approaches for transition and evolution from Spacelab to Space Station.

  9. Space station: Cost and benefits

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.

  10. Submerged AUV Charging Station

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas

    2014-01-01

    Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder

  11. Designing Space Station

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An overview of preparations for the construction of Space Station Freedom (SSF) is presented. The video includes footage of astronauts testing materials for erectable structures in space both in the Shuttle bay while in orbit and in a neutral buoyancy tank at McDonald Douglas' Underwater Test Facility. Also shown are footage of robot systems that will assist the astronauts in building SSF, a computer simulation of an Orbiting Maneuvering Vehicle, solar dynamic mirrors that will power SSF, and mockups of the living quarters of the SSF.

  12. International Space Station

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer; Gordon, Randy

    2010-01-01

    This slide presentation reviews the research on the International Space Station (ISS), including the sponsorship of payloads by country and within NASA. Included is a description of the space available for research, the Laboratory "Rack" facilities, the external research facilities and those available from the Japanese Experiment Module (i.e., Kibo), and highlights the investigations that JAXA has maintained. There is also a review of the launch vehicles and spacecraft that are available for payload transportation to the ISS, including cargo capabilities of the spacecraft.

  13. Heat accumulator

    SciTech Connect

    Bracht, A.

    1981-09-29

    A heat accumulator comprises a thermally-insulated reservoir full of paraffin wax mixture or other flowable or meltable heat storage mass, heat-exchangers immersed in the mass, a heat-trap connected to one of the heat-exchangers, and a heat user connected to the other heat-exchanger. Pumps circulate fluids through the heat-trap and the heat-using means and the respective heat-exchangers, and a stirrer agitates and circulates the mass, and the pumps and the stirrer and electric motors driving these devices are all immersed in the mass.

  14. 47 CFR 73.1201 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... letters and station location. DTV stations, or DAB Stations, choosing to include the station's channel... in DAB hybrid mode or extended hybrid mode shall identify its digital signal, including any...

  15. 47 CFR 73.1201 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... letters and station location. DTV stations, or DAB Stations, choosing to include the station's channel... in DAB hybrid mode or extended hybrid mode shall identify its digital signal, including any...

  16. 47 CFR 73.1201 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... letters and station location. DTV stations, or DAB Stations, choosing to include the station's channel... in DAB hybrid mode or extended hybrid mode shall identify its digital signal, including any...

  17. 47 CFR 73.1201 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... letters and station location. DTV stations, or DAB Stations, choosing to include the station's channel... in DAB hybrid mode or extended hybrid mode shall identify its digital signal, including any...

  18. 47 CFR 73.1201 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... letters and station location. DTV stations, or DAB Stations, choosing to include the station's channel... in DAB hybrid mode or extended hybrid mode shall identify its digital signal, including any...

  19. Draper Station Analysis Tool

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Jang, Jiann-Woei; McCants, Edward; Omohundro, Zachary; Ring, Tom; Templeton, Jeremy; Zoss, Jeremy; Wallace, Jonathan; Ziegler, Philip

    2011-01-01

    Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems.

  20. The Capabilities of Space Stations

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

  1. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2015-01-01

    The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

  2. Updated population metadata for United States historical climatology network stations

    USGS Publications Warehouse

    Owen, T.W.; Gallo, K.P.

    2000-01-01

    The United States Historical Climatology Network (HCN) serial temperature dataset is comprised of 1221 high-quality, long-term climate observing stations. The HCN dataset is available in several versions, one of which includes population-based temperature modifications to adjust urban temperatures for the "heat-island" effect. Unfortunately, the decennial population metadata file is not complete as missing values are present for 17.6% of the 12 210 population values associated with the 1221 individual stations during the 1900-90 interval. Retrospective grid-based populations. Within a fixed distance of an HCN station, were estimated through the use of a gridded population density dataset and historically available U.S. Census county data. The grid-based populations for the HCN stations provide values derived from a consistent methodology compared to the current HCN populations that can vary as definitions of the area associated with a city change over time. The use of grid-based populations may minimally be appropriate to augment populations for HCN climate stations that lack any population data, and are recommended when consistent and complete population data are required. The recommended urban temperature adjustments based on the HCN and grid-based methods of estimating station population can be significantly different for individual stations within the HCN dataset.

  3. 47 CFR 97.119 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICE Station Operation Standards § 97.119 Station identification. (a) Each amateur station, except a space station or telecommand station, must transmit its assigned call sign on its transmitting channel... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station identification. 97.119 Section...

  4. 47 CFR 97.119 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICE Station Operation Standards § 97.119 Station identification. (a) Each amateur station, except a space station or telecommand station, must transmit its assigned call sign on its transmitting channel... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 97.119 Section...

  5. 47 CFR 97.119 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICE Station Operation Standards § 97.119 Station identification. (a) Each amateur station, except a space station or telecommand station, must transmit its assigned call sign on its transmitting channel... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 97.119 Section...

  6. 47 CFR 97.119 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICE Station Operation Standards § 97.119 Station identification. (a) Each amateur station, except a space station or telecommand station, must transmit its assigned call sign on its transmitting channel... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station identification. 97.119 Section...

  7. Heat Without Heat

    NASA Astrophysics Data System (ADS)

    Lubkin, Elihu

    1997-04-01

    Logic of the Second Law of Thermodynamics demands acquisition of naked entropy. Accordingly, the leanest liaison between systems is not a diathermic membrane, it is a purely informational tickler, leaking no appreciable energy. The subsystem here is a thermodynamic universe, which gets `heated' entropically, yet without gaining calories. Quantum Mechanics graciously supports that(Lubkin, E. and Lubkin, T., International Journal of Theoretical Physics,32), 933-943 (1993) (at a cost of about 1 bit) through entanglement---across this least permeable of membranes---with what is beyond that universe. Heat without heat(Also v. forthcoming Proceedings of the 4th Drexel University Conference of September 1994) is the aspirin for Boltzmann's headache, conserving entropy in mechanical isolation, even while increasing entropy in thermodynamic isolation.

  8. International Space Station (ISS) S1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shown here is the International Space Station (ISS) S1 Truss in preparation for installation in the payload bay of the Space Shuttle Atlantis at NASA's Kennedy Space Center )KSC)in Florida. The truss launched October 7, 2002 on the STS-112 mission and will be attached during three spacewalks. Constructed primarily of aluminum, it measures 45 feet long, 15 feet wide, 10 feet tall, and weighs over 27,000 pounds. It is one of nine similar truss segments that, combined, will serve as the Station's main backbone, measuring 356 feet from end to end upon completion. Manufactured by the Boeing Company in Huntington Beach, California, the truss was flown to the Marshall Space Flight Center, in Huntsville, Alabama where brackets, cable trays, fluid tubing, and other secondary components and outfitting items were added. In Huntsville, it was screened for manufacturing flaws, including pressure and leak checking tubing, and electrical checks for cabling, before being shipped to KSC for final hardware installation and testing. The Space Station's labs, living modules, solar arrays, heat radiators, and other main components will be attached to the truss.

  9. Exobiology experiments for space station

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.; Griffiths, L. D.

    1985-01-01

    The benefits the Space Station could provide to the study of the origin, evolution, and distribution of life throughout the universe are described. Space Station experiments relevant to the cosmic evolution of biogenic elements and compounds, prebiotic chemical evolution, early evolution of life, and the evolution of advanced life forms are examined. The application of astronomical and astrometric observations to be obtained from the Space Station to the origin of life research is discussed.

  10. Attached algae of the Lake Erie shoreline near Nanticoke Generating Station

    SciTech Connect

    Kirby, M.K.; Dunford, W.E.

    1981-11-01

    The distribution, species composition, and standing crop of attached algae were surveyed in the splash zone along the shore of Lake Erie from 1971 to 1978 to determine the impact of construction and operation of the Nanticoke Generating Station, a coal-fired power plant. Station operation has had no apparent influence on the spatial distribution of attached algae in the lake stations. However, the discharge of heated condenser cooling water has resulted in an accelerated growth of attached algae in the immediate vicinity of the station early in the growing season, but the effect was not sustained after May. The species composition at sites near the generating station differed from control areas. Three years after the initial operation of the plant the generating station had a lower percent abundance of Cladophora and a higher percent abundance of weakly attached algal species such as Zygnema; this is perhaps attributable to the sheltered conditions in the discharge area of the generating station.

  11. Attached algae of the Lake Erie shoreline near Nanticoke generating station

    SciTech Connect

    Kirby, M.K.; Dunford, W.E.

    1981-01-01

    The distribution, species composition and standing crop of attached algae were surveyed in the splash zone along the shore of Lake Erie from 1971 to 1978 to determine the impact of construction and operation of the Nanticoke Generating Station, a coal-fired power plant. Station operation has had no apparent influence on the spatial distribution of attached algae in the lake stations. However, the discharge of heated condenser cooling water has resulted in an accelerated growth of attached algae in the immediate vicinity of the station early in the growing season, but the effect was not sustained after May. The species composition at sites near the generating station differed from control areas. Three years after the initial operation of the plant the generating station had a lower percent abundance of Cladophora and a higher percent abundance of weakly attached algal species such as Zygnema; this is perhaps attributable to the sheltered conditions in the discharge area of the generating station.

  12. Space station furnace facility

    NASA Astrophysics Data System (ADS)

    Cobb, Sharon D.; Lehoczky, Sandor L.

    1996-07-01

    The Space Shuttle Furnace Facility (SSFF) is the modular, multi-user scientific instrumentation for conducting materials research in the reduced gravity environment of the International Space Station. The facility is divided into the Core System and two Instrument Racks. The core system provides the common electrical and mechanical support equipment required to operate experiment modules (EMs). The EMs are investigator unique furnaces or apparatus designed to accomplish specific science investigations. Investigations are peer selected every two years from proposals submitted in response to National Aeronautics and Space Administration Research Announcements. The SSFF Core systems are designed to accommodate an envelope of eight types of experiment modules. The first two modules to be developed for the first instrument rack include a high temperature gradient furnace with quench, and a low temperature gradient furnace. A new EM is planned to be developed every two years.

  13. Local control stations

    SciTech Connect

    Brown, W.S.; Higgins, J.C.; Wachtel, J.A.

    1993-05-01

    This paper describes research concerning the effects of human engineering design at local control stations (i.e., operator interfaces located outside the control room) on human performance and plant safety. The research considered both multifunction panels (e.g. remote shutdown panels) as well as single-function interfaces (e.g., valves, breakers, gauges, etc.). Changes in performance shaping factors associated with variations in human engineering at LCSs were estimated based on expert opinion. By means of a scaling procedure, these estimates were used to modify the human error probabilities in a PRA model, which was then employed to generate estimates of plant risk and scoping-level value/impact ratios for various human engineering upgrades. Recent documentation of human engineering deficiencies at single-function LCSs was also reviewed, and an assessment of the current status of LCSs with respect to human engineering was conducted.

  14. Green inspection station

    NASA Astrophysics Data System (ADS)

    Sung, Chen-Ko; Jacubasch, Andreas

    2010-11-01

    As an effect of globalization, product parts are manufactured more and more in different places. Due to the manufacturing processes, (sub-) products are being transported back and forth and rearranged until they can finally reach the consumer. Not only the environment is increasingly burdened, but also the natural resources are wasted increasingly thoughtless. One reason is certainly because for decades the industry has had only an inflexible concept for the inspection of (sub-) products, which cannot be easily adapted to changes in product layout, for example one robot with one sensor or one rigid structure with a fixed number of sensors for one specific inspection task. This rigid approach is unsuitable for the inspection of variant products. For these reasons, a new concept for 2D and 3D metric and logical quality monitoring with a more accurate, flexible, economical and efficient inspection station has been developed and tested in IOSB.

  15. Integrated microfluidic probe station

    NASA Astrophysics Data System (ADS)

    Perrault, C. M.; Qasaimeh, M. A.; Brastaviceanu, T.; Anderson, K.; Kabakibo, Y.; Juncker, D.

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution—thus hydrodynamically confining the microjet—and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

  16. Space Station: The next iteration

    NASA Astrophysics Data System (ADS)

    Foley, Theresa M.

    1995-01-01

    NASA's international space station is nearing the completion stage of its troublesome 10-year design phase. With a revised design and new management team, NASA is tasked to deliver the station on time at a budget acceptable to both Congress and the White House. For the next three years, NASA is using tried-and-tested Russian hardware as the technical centerpiece of the station. The new station configuration consists of eight pressurized modules in which the crew can live and work; a long metal truss to connect the pieces; a robot arm for exterior jobs; a solar power system; and propelling the facility in space.

  17. Space Station Engineering Design Issues

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Boehm, Barry W.; Debra, Daniel B.; Green, C. Cordell; Henry, Richard C.; Maycock, Paul D.; Mcelroy, John H.; Pierce, Chester M.; Stafford, Thomas P.; Young, Laurence R.

    1989-01-01

    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design.

  18. Students Learn About Station Robotics

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, Robotics Systems Flight Controller Jason Dyer participates in a Digital Learning Network (DLN) event with students at East Stroudsber...

  19. International Space Station Research Racks

    NASA Video Gallery

    The International Space Station has a variety of multidisciplinary laboratory facilities and equipment available for scientists to use. This video highlights the capabilities of select facilities. ...

  20. Radiator selection for Space Station Solar Dynamic Power Systems

    NASA Astrophysics Data System (ADS)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  1. Agricultural Experiment Stations and Branch Stations in the United States

    ERIC Educational Resources Information Center

    Pearson, Calvin H.; Atucha, Amaya

    2015-01-01

    In 1887, Congress passed the Hatch Act, which formally established and provided a funding mechanism for agricultural experiment stations in each state and territory in the United States. The main purpose of agricultural experiment stations is to conduct agricultural research to meet the needs of the citizens of the United States. The objective of…

  2. Milliwatt radioisotope power supply for the PASCAL Mars surface stations

    NASA Astrophysics Data System (ADS)

    Allen, Daniel T.; Murbach, Marcus S.

    2001-02-01

    A milliwatt power supply is being developed based on the 1 watt Light-Weight Radioisotope Heater Unit (RHU), which has already been used to provide heating alone on numerous spacecraft. In the past year the power supply has been integrated into the design of the proposed PASCAL Mars Network Mission, which is intended to place 24 surface climate monitoring stations on Mars. The PASCAL Mars mission calls for the individual surface stations to be transported together in one spacecraft on a trajectory direct from launch to orbit around Mars. From orbit around Mars each surface station will be deployed on a SCRAMP (slotted compression ramp) probe and, after aerodynamic and parachute deceleration, land at a preselected location on the planet. During descent sounding data and still images will be accumulated, and, once on the surface, the station will take measurements of pressure, temperature and overhead atmospheric optical depth for a period of 10 Mars years (18.8 Earth years). Power for periodic data acquisition and transmission to orbital then to Earth relay will come from a bank of ultracapacitors which will be continuously recharged by the radioisotope power supply. This electronic system has been designed and a breadboard built. In the ultimate design the electronics will be arrayed on the exterior surface of the radioisotope power supply in order to take advantage of the reject heat. This assembly in turn is packaged within the SCRAMP, and that assembly comprises the surface station. An electrically heated but otherwise prototypical power supply was operated in combination with the surface station breadboard system, which included the ultracapacitors. Other issues addressed in this work have been the capability of the generator to withstand the mechanical shock of the landing on Mars and the effectiveness of the generator's multi-foil vacuum thermal insulation. .

  3. The space station power system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The requirements for electrical power by the proposed Space Station Freedom are discussed. The options currently under consideration are examined. The three power options are photovoltaic, solar dynamic, and a hybrid system. Advantages and disadvantages of each system are tabulated. Drawings and artist concepts of the Space Station configuration are provided.

  4. Reusing Railroad Stations. A Report.

    ERIC Educational Resources Information Center

    Educational Facilities Labs., Inc., New York, NY.

    Railroad stations are a unique American resource that should continue to serve public and private interests even though their original purpose may have passed. Large stations should be considered as prominent civic structures whose redevelopment could offer significant opportunities to influence the future character, economy, and operation of…

  5. Space Station Quarterly, May 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This quarterly report discusses the First International Microgravity Laboratory, the building of space station truss structures at the Johnson Space Center, the building of the living and laboratory modules at the Marshall Space Flight Center, and the Lewis Research Center's work on power for the space station. The video includes a segment on the Japanese Experiment Module.

  6. Space Station medical sciences concepts

    NASA Technical Reports Server (NTRS)

    Mason, J. A. (Editor); Johnson, P. C., Jr. (Editor)

    1984-01-01

    Current life sciences concepts relating to Space Station are presented including the following: research, extravehicular activity, biobehavioral considerations, medical care, maintenance of dental health, maintaining health through physical conditioning and countermeasures, protection from radiation, atmospheric contamination control, atmospheric composition, noise pollution, food supply and service, clothing and furnishings, and educational program possibilities. Information on the current status of Soviet Space Stations is contained.

  7. Sighting the International Space Station

    ERIC Educational Resources Information Center

    Teets, Donald

    2008-01-01

    This article shows how to use six parameters describing the International Space Station's orbit to predict when and in what part of the sky observers can look for the station as it passes over their location. The method requires only a good background in trigonometry and some familiarity with elementary vector and matrix operations. An included…

  8. Computer-Assisted Laboratory Stations.

    ERIC Educational Resources Information Center

    Snyder, William J., Hanyak, Michael E.

    1985-01-01

    Describes the advantages and features of computer-assisted laboratory stations for use in a chemical engineering program. Also describes a typical experiment at such a station: determining the response times of a solid state humidity sensor at various humidity conditions and developing an empirical model for the sensor. (JN)

  9. International Space Station Power Systems

    NASA Technical Reports Server (NTRS)

    Propp, Timothy William

    2001-01-01

    This viewgraph presentation gives a general overview of the International Space Station Power Systems. The topics include: 1) The Basics of Power; 2) Space Power Systems Design Constraints; 3) Solar Photovoltaic Power Systems; 4) Energy Storage for Space Power Systems; 5) Challenges of Operating Power Systems in Earth Orbit; 6) and International Space Station Electrical Power System.

  10. Solar dynamic power for space station freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on Earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  11. Solar dynamic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  12. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    SciTech Connect

    TIAX, LLC

    2005-05-04

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational

  13. Current NASA space station planning

    NASA Technical Reports Server (NTRS)

    Culbertson, P. E.

    1982-01-01

    Design considerations, trials, and actions both taken and necessary in the future which lead to the establishment of a space station by NASA are reviewed. Human performance on board Skylab demonstrated the feasibility and benefits of continuous operation of a space station. The manned orbital systems concept (MOSC) program, keeping in close contact with potential users, resulted in station requirements which included support for 720 day missions, up to four specialists per payload, 8-10 kW power, a 230 x 200 n mi altitude orbit, orbit change capability of 28.5 deg, all attitude orientation, and stability to within 1,100,000 g. Although the concept will not be funded, it provides a guide for incremental growth of a manned station from previously unmanned science platforms. Initiation of hardware development is projected for 1984-85. The agencies, both domestic and international, and missions for which the station will be built, are discussed.

  14. Telescoping Space-Station Modules

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1986-01-01

    New telescoping-space-station design involves module within a module. After being carried to orbit within payload bay of Space Shuttle orbiter, outer module telescopically deployed to achieve nearly twice as much usable space-station volume per Space Shuttle launch. Closed-loop or "race-track" space-station configurations possible with this concept and provide additional benefits. One benefit involves making one of modules double-walled haven safe from debris, radiation, and like. Module accessible from either end, and readily available to all positions in space station. Concept also provides flexibility in methods in which Space Shuttle orbiter docked or berthed with space station and decrease chances of damage.

  15. Canada's role on space station.

    PubMed

    Doetsch, Karl

    2005-01-01

    The paper addresses the evolution of the Canadian Space Station Program between 1981 and 2003. Discussions with potential international partners, aimed at jointly developing the current International Space Station program, were initiated by NASA in 1982. Canada chose, through the further development of the technologies of Canadarm on the space shuttle, to provide and operate an advanced and comprehensive external robotics system for space station, and to use the space station for scientific and commercial purposes. The program was to become a corner-stone of the new Canadian Space Agency. The development phase of the Canadian Space Station Program has been completed and two of the three major elements are currently operational in space.

  16. Space Station lubrication considerations

    NASA Technical Reports Server (NTRS)

    Leger, Lubert J.; Dufrane, Keith

    1987-01-01

    Future activities in space will require the use of large structures and high power availability in order to fully exploit opportunities in Earth and stellar observations, space manufacturing and the development of optimum space transportation vehicles. Although these large systems will have increased capabilities, the associated development costs will be high, and will dictate long life with minimum maintenance. The Space Station provides a concrete example of such a system; it is approximately one hundred meters in major dimensions and has a life requirement of thirty years. Numerous mechanical components will be associated with these systems, a portion of which will be exposed to the space environment. If the long life and low maintenance goals are to be satisfied, lubricants and lubrication concepts will have to be carefully selected. Current lubrication practices are reviewed with the intent of determining acceptability for the long life requirements. The effects of exposure of lubricants and lubricant binders to the space environment are generally discussed. Potential interaction of MoS2 with atomic oxygen, a component of the low Earth orbit environment, appears to be significant.

  17. Space Station crew workload - Station operations and customer accommodations

    NASA Technical Reports Server (NTRS)

    Shinkle, G. L.

    1985-01-01

    The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.

  18. 47 CFR 73.210 - Station classes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station classes. 73.210 Section 73.210... Broadcast Stations § 73.210 Station classes. (a) The rules applicable to a particular station, including... depend upon the zone in which the station's transmitter is located, or proposed to be located. The...

  19. 47 CFR 97.109 - Station control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station control. 97.109 Section 97.109... SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at least one control point. (b) When a station is being locally controlled, the control operator must be at...

  20. 47 CFR 97.109 - Station control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station control. 97.109 Section 97.109... SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at least one control point. (b) When a station is being locally controlled, the control operator must be at...

  1. 47 CFR 97.109 - Station control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station control. 97.109 Section 97.109... SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at least one control point. (b) When a station is being locally controlled, the control operator must be at...

  2. 46 CFR 108.633 - Fire stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire stations. 108.633 Section 108.633 Shipping COAST... Equipment Markings and Instructions § 108.633 Fire stations. Each fire station must be identified by marking: “FIRE STATION NO. __;” next to the station in letters and numbers at least 5 centimeters (2 inches) high....

  3. 46 CFR 108.633 - Fire stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire stations. 108.633 Section 108.633 Shipping COAST... Equipment Markings and Instructions § 108.633 Fire stations. Each fire station must be identified by marking: “FIRE STATION NO. __;” next to the station in letters and numbers at least 5 centimeters (2 inches) high....

  4. 46 CFR 108.633 - Fire stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire stations. 108.633 Section 108.633 Shipping COAST... Equipment Markings and Instructions § 108.633 Fire stations. Each fire station must be identified by marking: “FIRE STATION NO. __;” next to the station in letters and numbers at least 5 centimeters (2 inches) high....

  5. 46 CFR 108.633 - Fire stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire stations. 108.633 Section 108.633 Shipping COAST... Equipment Markings and Instructions § 108.633 Fire stations. Each fire station must be identified by marking: “FIRE STATION NO. __;” next to the station in letters and numbers at least 5 centimeters (2 inches) high....

  6. 46 CFR 108.633 - Fire stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire stations. 108.633 Section 108.633 Shipping COAST... Equipment Markings and Instructions § 108.633 Fire stations. Each fire station must be identified by marking: “FIRE STATION NO. __;” next to the station in letters and numbers at least 5 centimeters (2 inches) high....

  7. 47 CFR 97.109 - Station control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station control. 97.109 Section 97.109... SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at least one control point. (b) When a station is being locally controlled, the control operator must be at...

  8. 47 CFR 97.207 - Space station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Space station. 97.207 Section 97.207... SERVICE Special Operations § 97.207 Space station. (a) Any amateur station may be a space station. A holder of any class operator license may be the control operator of a space station, subject to...

  9. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  10. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  11. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  12. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  13. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  14. 47 CFR 97.207 - Space station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Space station. 97.207 Section 97.207... SERVICE Special Operations § 97.207 Space station. (a) Any amateur station may be a space station. A holder of any class operator license may be the control operator of a space station, subject to...

  15. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  16. Solar dynamic space power system heat rejection

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Gustafson, E.; Mclallin, K. L.

    1986-01-01

    A radiator system concept is described that meets the heat rejection requirements of the NASA Space Station solar dynamic power modules. The heat pipe radiator is a high-reliability, high-performance approach that is capable of erection in space and is maintainable on orbit. Results are present of trade studies that compare the radiator system area and weight estimates for candidate advanced high performance heat pipes. The results indicate the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight-reduction potential over the range of temperatures to be encountered in the solar dynamic heat rejection systems.

  17. Micro Weather Station

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.

    1999-01-01

    Improved in situ meteorological measurements in the troposphere and stratosphere are needed for studies of weather and climate, both as a primary data source and as validation for remote sensing instruments. Following the initial development and successful flight validation of the surface acoustic wave (SAW) hygrometer, the micro weather station program was directed toward the development of an integrated instrument, capable of accurate, in situ profiling of the troposphere, and small enough to fly on a radiosonde balloon for direct comparison with standard radiosondes. On April 23, 1998, working with Frank Schmidlin and Bob Olson of Wallops Island Flight Facility, we flew our instrument in a dual payload experiment, for validation and direct comparison with a Vaisala radiosonde. During that flight, the SAW dewpoint hygrometer measured frostpoint down to -76T at 44,000 feet. Using a laptop computer in radio contact with the balloon, we monitored data in real time, issued the cutdown command, and recovered the payload less than an hour after landing in White Sands Missile Range, 50 miles from the launch site in Hatch, New Mexico. Future flights will extend the intercomparison, and attempt to obtain in situ meteorological profiles from the surface through the tropopause. The SAW hygrometer was successfully deployed on the NASA DC8 as part of NASA's Third Convection and Moisture Experiment (CAMEX-3) during August and September, 1998. This field campaign was devoted to the study of hurricane tracking and intensification using NASA-funded aircraft. In situ humidity data from the SAW hygrometer are currently being analyzed and compared with data from other instruments on the DC8 and ER2 aircraft. Additional information is contained in the original.

  18. Space station propulsion analysis study

    NASA Technical Reports Server (NTRS)

    Donovan, R. M.; Sovey, J. S.; Hannum, N. B.

    1984-01-01

    This paper summarizes the impacts on the weight, volume and power usage of a manned space station and its 90-day resupply for three integrated, auxiliary propulsion subsystems. The study was performed in coordination with activities of the Space Staton Concept Development Group (CDG). The study focused on three space station propulsion high-low thrust options that make use of fluids that will be available on the manned space station. Specific uses of carbon dioxide, water and cryogen boiloff were considered. For each of the options the increase in station hardware mass and volume to accommodate the dual thrust option is offset by the resupply savings, relative to the reference hydrazine system, after one to several resupplies. Over the life of the station the savings in cost of logistics could be substantial. The three options are examples of alternative technology paths that, because of the opportunity they provide for integration with the environmental control life support system (ECLSS) and OTV propellant storage systems, may reduce the scarring which is required on the early station to meet the increasing propulsion requirements of the growth station.

  19. Space station propulsion requirements study

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  20. March 20, 2012 Space Station Briefing: Station Configuration (Narrated)

    NASA Video Gallery

    This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the configuration of the space station durin...

  1. March 20, 2012 Space Station Briefing: Station Configuration

    NASA Video Gallery

    This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the configuration of the space station durin...

  2. Space Station Human Factors Research Review. Volume 3: Space Station Habitability and Function: Architectural Research

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Eichold, Alice (Editor); Heers, Susan (Editor)

    1987-01-01

    Articles are presented on a space station architectural elements model study, space station group activities habitability module study, full-scale architectural simulation techniques for space stations, and social factors in space station interiors.

  3. Infrasound from lightning: characteristics and impact on an infrasound station

    NASA Astrophysics Data System (ADS)

    Farges, Thomas; Blanc, Elisabeth

    2010-05-01

    More than two third of the infrasound stations of the International Monitoring System (IMS) of the CTBTO are now certified and measure routinely signals due particularly to natural activity (swell, volcano, severe weather including lightning, …). It is well established that more than 2,000 thunderstorms are continuously active all around the world and that about 45 lightning flashes are produced per second over the globe. During the Eurosprite 2005 campaign, we took the opportunity to measure, in France during summer, infrasound from lightning and from sprites (which are transient luminous events occurring over thunderstorm). We examine the possibility to measure infrasound from lightning when thunderstorms are close or far from the infrasound station. Main results concern detection range of infrasound from lightning, amplitude vs. distance law, and characteristics of frequency spectrum. We show clearly that infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. In good noise conditions, infrasound from lightning can be detected when thunderstorms are located more than 200 km from the station. No signal is recorded from lightning flashes occurring between 75 and 200 km away from the station, defining then a silence zone. When the thunderstorm is close to the station, the infrasound signal could reach several Pascal. The signal is then on average 30 dB over the noise level at 1 Hz. Infrasound propagate upward where the highest frequencies are dissipated and can produce a significant heating of the upper mesosphere. Some of these results have been confirmed by case studies with data from the IMS Ivory Coast station. The coverage of the IMS stations is very good to study the thunderstorm activity and its disparity which is a good proxy of the global warming. Progress in data processing for infrasound data in the last ten years and the appearance of global lightning detection network as the World Wide Lightning

  4. Infrasound from lightning: characteristics and impact on an infrasound station

    NASA Astrophysics Data System (ADS)

    Farges, T.; Blanc, E.

    2009-12-01

    More than two third of the infrasound stations of the International Monitoring System (IMS) of the CTBTO are now certified and measure routinely signals due particularly to natural activity (swell, volcano, severe weather including lightning, …). It is well established that more than 2,000 thunderstorms are continuously active all around the world and that about 45 lightning flashes are produced per second over the globe. During the Eurosprite 2005 campaign, we took the opportunity to measure, in France during summer, infrasound from lightning and from sprites (which are transient luminous events occurring over thunderstorm). We examine the possibility to measure infrasound from lightning when thunderstorms are close or far from the infrasound station. Main results concern detection range of infrasound from lightning, amplitude vs. distance law, and characteristics of frequency spectrum. We show clearly that infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. In good noise conditions, infrasound from lightning can be detected when thunderstorms are located more than 200 km from the station. No signal is recorded from lightning flashes occurring between 75 and 200 km away from the station, defining then a silence zone. When the thunderstorm is close to the station, the infrasound signal could reach several Pascal. The signal is then on average 30 dB over the noise level at 1 Hz. Infrasound propagate upward where the highest frequencies are dissipated and can produce a significant heating of the upper mesosphere. Some of these results have been confirmed by case studies with data from the IMS Ivory Coast station. The coverage of the IMS stations is very good to study the thunderstorm activity and its disparity which is a good proxy of the global warming. Progress in data processing for infrasound data in the last ten years and the appearance of global lightning detection network as the World Wide Lightning

  5. Surface Meteorological Station - ANL 10m, (1) Sonics, (1) EBBR, Physics site-3 - Raw Data

    DOE Data Explorer

    Muradyan, Paytsar

    2016-10-25

    Sonic anemometers from Physics Site-3 and Site-9 provide wind components and virtual temperature. The energy balance Bowen ratio (EBBR) station at Physics site-3 provides measurements of the surface fluxes of latent and sensible heat, net radiation, and surface soil heat flux.

  6. Surface Meteorological Station - ANL 10m, (1) Sonic, Physics site-9 - Raw Data

    DOE Data Explorer

    Muradyan, Paytsar

    2016-10-25

    Sonic anemometers from Physics Site-3 and Site-9 provide wind components and virtual temperature. The energy balance Bowen ratio (EBBR) station at Physics site-3 provides measurements of the surface fluxes of latent and sensible heat, net radiation, and surface soil heat flux.

  7. Space station neutral external environment

    NASA Technical Reports Server (NTRS)

    Ehlers, H.; Leger, L.

    1988-01-01

    Molecular contamination levels arising from the external induced neutral environment of the Space Station (Phase 1 configuration) were calculated using the MOLFLUX model. Predicted molecular column densities and deposition rates generally meet the Space Station contamination requirements. In the doubtful cases of deposition due to materials outgassing, proper material selection, generally excluding organic products exposed to the external environment, must be considered to meet contamination requirements. It is important that the Space Station configuration, once defined, is not significantly modified to avoid introducing new unacceptable contamination sources.

  8. Amplitude-dependent station magnitude

    NASA Astrophysics Data System (ADS)

    Radzyner, Yael; Ben Horin, Yochai; Steinberg, David M.

    2016-04-01

    Magnitude, a concept first presented by Gutenberg and Richter, adjusts measurements of ground motion for epicentral distance and source depth. Following this principle, the IDC defines the j'th station body wave magnitude for event i as mb(stai,j) = log 10(Aj,i/Tj,i) + V C(Δj,i,hi) , where VC is the Veith-Clawson (VC) correction to compensate for the epicentral distance of the station and the depth of the source. The network magnitude is calculated as the average of station magnitudes. The IDC magnitude estimation is used for event characterization and discrimination and it should be as accurate as possible. Ideally, the network magnitude should be close in value to the station magnitudes. In reality, it is observed that the residuals range between -1 and 1 mu or ±25% of a given mb(neti) value. We show that the residual, mb(neti) -mb(staj,i), depends linearly on log 10(Aj,i/Tj,i), and we correct for this dependence using the following procedure: Calculate a "jackknifed" network magnitude, mbj,n(neti), i.e. an average over all participating stations except station n. Using all measurements at station n, calculate the parameters an, bn of the linear fit of the residual mbj,n(neti) - mb(stan,i to log 10(An,i/Tn,i). For each event i at station n calculate the new station magnitude mbnew(stan,i) = (an + 1)log(An,i/Tn,i) + V C(Δn,i,hi) + bn Calculate the new network magnitude: mbnew(neti) = 1N- ∑ n=1nmbnew(stan,i) The procedure was used on more than two million station-event pairs. Correcting for the station-specific dependence on log amplitude reduces the residuals by roughly a third. We have calculated the spread of the distributions, and compared the original values and those for the corrected magnitudes. The spread is the ratio between the variance of the network magnitudes, and the variance of the residual. Calculations show an increase in the ratio of the variance, meaning that the correction process presented in this document did not lead to loss of variance

  9. Space Station logistics system evolution

    NASA Technical Reports Server (NTRS)

    Tucker, Michael W.

    1990-01-01

    This task investigates logistics requirements and logistics system concepts for the evolutionary Space Station. Requirements for the basic station, crew, user equipment, and free-flying platforms, as requirements for manned exploration initiative elements and crews while at the Space Station. Data is provided which assesses the ability of the Space Freedom logistics carriers to accommodate the logistics loads per year. Also, advanced carrier concepts are defined and assessed against the logistics requirements. The implications on Earth-to-orbit vehicles of accommodating the logistics requirements, using various types of carriers, are assessed on a year by year basis.

  10. Space Station Freedom user's guide

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This guide is intended to inform prospective users of the accommodations and resources provided by the Space Station Freedom program. Using this information, they can determine if Space Station Freedom is an appropriate laboratory or facility for their research objectives. The steps that users must follow to fly a payload on Freedom are described. This guide covers the accommodations and resources available on the Space Station during the Man-Tended Capability (MTC) period, scheduled to begin the end of 1996, and a Permanently Manned Capability (PMC) beginning in late 1999.

  11. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  12. Space Station Freedom food management

    NASA Technical Reports Server (NTRS)

    Whitehurst, Troy N., Jr.; Bourland, Charles T.

    1992-01-01

    This paper summarizes the specification requirements for the Space Station Food System, and describes the system that is being designed and developed to meet those requirements. Space Station Freedom will provide a mix of frozen, refrigerated, rehydratable, and shelf stable foods. The crew will pre-select preferred foods from an approved list, to the extent that proper nutrition balance is maintained. A galley with freezers, refrigerators, trash compactor, and combination microwave and convection ovens will improve crew efficiency and productivity during the long Space Station Freedom (SSF) missions.

  13. 47 CFR 22.313 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Systems in the Rural Radiotelephone Service; (5) (6) Stations operating pursuant to paging geographic area... digital transmission to ascertain the call sign. Station identification comprises transmission of the call..., a call sign assigned to another station within the same system....

  14. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  15. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect authorized TV broadcast stations, applications for minor changes in authorized TV broadcast stations filed...

  16. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect authorized TV broadcast stations, applications for minor changes in authorized TV broadcast stations filed...

  17. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect authorized TV broadcast stations, applications for minor changes in authorized TV broadcast stations filed...

  18. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect authorized TV broadcast stations, applications for minor changes in authorized TV broadcast stations filed...

  19. 47 CFR 80.107 - Service of private coast stations and marine-utility stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Service of private coast stations and marine... Operating Procedures-Land Stations § 80.107 Service of private coast stations and marine-utility stations. A private coast station or a marine-utility station is authorized to transmit messages necessary for...

  20. 47 CFR 80.107 - Service of private coast stations and marine-utility stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-utility stations. 80.107 Section 80.107 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Operating Procedures-Land Stations § 80.107 Service of private coast stations and marine-utility stations. A private coast station or a marine-utility station is authorized to transmit messages necessary for...

  1. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  2. Station Tour: Harmony, Tranquility, Unity

    NASA Video Gallery

    Expedition 33 Commander Suni Williams starts off her tour of the International Space Station with a look at its nodes -- Harmony, Tranquility and Unity -- which include the crew's sleeping quarters...

  3. Korea Geodetic VLBI Station, Sejong

    NASA Technical Reports Server (NTRS)

    Donghyun, Baek; Sangoh, Yi; Hongjong, Oh; Sangchul, Han

    2013-01-01

    The Sejong VLBI station officially joined the IVS as a new Network Station in 2012. This report summarizes the activities of the Sejong station during 2012. The following are the activities at the station: 1) VLBI test observations were carried out with the Tsukuba 34-m antenna of the GSI in Japan. As a result, the Sejong antenna needs to improve its efficiency, which is currently in progress, 2) A survey to connect the VLBI reference point to GNSS and ground marks was conducted, and 3) To see the indirect effects of RFI (Radio Frequency Interference) at this place, we checked the omni-direction (AZ 0? to 360?, EL fixed at 7?) for RFI influence.

  4. Station Change of Command Ceremony

    NASA Video Gallery

    The reins of the International Space Station were passed from Expedition 29 Commander Mike Fossum of NASA to his NASA colleague, newly arrived Expedition 30 Commander Dan Burbank in a ceremony on t...

  5. Space Station Live: Microbiome Experiment

    NASA Video Gallery

    NASA Public Affairs Officer Lori Meggs talks with Microbiome experiment Investigator Mark Ott to learn more about this research taking place aboard the International Space Station. The Microbiome e...

  6. Station Commander Sends Holiday Greetings

    NASA Video Gallery

    Aboard the International Space Station, Expedition 30 Commander Dan Burbank of NASA sends season's greetings to the world and shares his thoughts about being in orbit aboard the space-based laborat...

  7. Students Speak With Station Capcom

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, ISS capcom Hal Getzelman participates in a Digital Learning Network (DLN) event with students at Colvin Run Elementary School in Vien...

  8. WVU Hydrogen Fuel Dispensing Station

    SciTech Connect

    Davis, William

    2015-09-01

    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. This necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.

  9. New Crewmates Welcomed Aboard Station

    NASA Video Gallery

    Flight Engineers Kevin Ford, Oleg Novitskiy and Evgeny Tarelkin join their Expedition 33 crewmates after the hatches between the International Space Station and the Soyuz TMA-06M spacecraft opened ...

  10. Space Station robotics planning tools

    NASA Technical Reports Server (NTRS)

    Testa, Bridget Mintz

    1992-01-01

    The concepts are described for the set of advanced Space Station Freedom (SSF) robotics planning tools for use in the Space Station Control Center (SSCC). It is also shown how planning for SSF robotics operations is an international process, and baseline concepts are indicated for that process. Current SRMS methods provide the backdrop for this SSF theater of multiple robots, long operating time-space, advanced tools, and international cooperation.

  11. ANSS Backbone Station Quality Assessment

    NASA Astrophysics Data System (ADS)

    Leeds, A.; McNamara, D.; Benz, H.; Gee, L.

    2006-12-01

    In this study we assess the ambient noise levels of the broadband seismic stations within the United States Geological Survey's (USGS) Advanced National Seismic System (ANSS) backbone network. The backbone consists of stations operated by the USGS as well as several regional network stations operated by universities. We also assess the improved detection capability of the network due to the installation of 13 additional backbone stations and the upgrade of 26 existing stations funded by the Earthscope initiative. This assessment makes use of probability density functions (PDF) of power spectral densities (PSD) (after McNamara and Buland, 2004) computed by a continuous noise monitoring system developed by the USGS- ANSS and the Incorporated Research Institutions in Seismology (IRIS) Data Management Center (DMC). We compute the median and mode of the PDF distribution and rank the stations relative to the Peterson Low noise model (LNM) (Peterson, 1993) for 11 different period bands. The power of the method lies in the fact that there is no need to screen the data for system transients, earthquakes or general data artifacts since they map into a background probability level. Previous studies have shown that most regional stations, instrumented with short period or extended short period instruments, have a higher noise level in all period bands while stations in the US network have lower noise levels at short periods (0.0625-8.0 seconds), high frequencies (8.0- 0.125Hz). The overall network is evaluated with respect to accomplishing the design goals set for the USArray/ANSS backbone project which were intended to increase broadband performance for the national monitoring network.

  12. Internationalization of the Space Station

    NASA Technical Reports Server (NTRS)

    Lottmann, R. V.

    1985-01-01

    Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.

  13. Tsukuba 32-m VLBI Station

    NASA Technical Reports Server (NTRS)

    Kawabata, Ryoji; Kurihara, Shinobu; Fukuzaki, Yoshihiro; Kuroda, Jiro; Tanabe, Tadashi; Mukai, Yasuko; Nishikawa, Takashi

    2013-01-01

    The Tsukuba 32-m VLBI station is operated by the Geospatial Information Authority of Japan. This report summarizes activities of the Tsukuba 32-m VLBI station in 2012. More than 200 sessions were observed with the Tsukuba 32-m and other GSI antennas in accordance with the IVS Master Schedule of 2012. We have started installing the observing facilities that will be fully compliant with VLBI2010 for the first time in Japan.

  14. Space Station reference configuration description

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The data generated by the Space Station Program Skunk Works over a period of 4 months which supports the definition of a Space Station reference configuration is documented. The data were generated to meet these objectives: (1) provide a focal point for the definition and assessment of program requirements; (2) establish a basis for estimating program cost; and (3) define a reference configuration in sufficient detail to allow its inclusion in the definition phase Request for Proposal (RFP).

  15. Space station solar concentrator materials research

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1988-01-01

    The Space Station will represent the first time that a solar dynamic power system will be used to generate electrical power in space. In a system such as this, sunlight is collected and focused by a solar concentrator onto the receiver of a heat engine which converts the energy into electricity. The concentrator must be capable of collecting and focusing as much of the incident sunlight as possible, and it must also withstand the atomic oxygen bombardment which occurs in low Earth orbit (LEO). This has led to the development of a system of thin film coatings applied to the concentrator facet surface in a chamber designed especially for this purpose. The system of thin film coatings employed gives both the necessary degree of reflectance and the required protection from the LEO atomic oxygen environment.

  16. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2013-10-01 2013-10-01 false Automatically controlled digital station....

  17. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2014-10-01 2014-10-01 false Automatically controlled digital station....

  18. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2011-10-01 2011-10-01 false Automatically controlled digital station....

  19. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2012-10-01 2012-10-01 false Automatically controlled digital station....

  20. TOR station for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Y.; Arshinova, V. G.; Belan, Boris D.; Davydov, Denis K.; Kovalevskii, Valentin K.; Plotnikov, Aleksandr P.; Pokrovskii, Evgenii V.; Rasskazchikova, T. M.; Simonenkov, D. V.; Sklyadneva, Tatyana K.; Tolmachev, Gennadii N.

    1997-05-01

    In December 1992 a station for atmospheric observations has been put into operation at the Institute of Atmospheric Optics within the frameworks of the program of ecological monitoring of Siberia. The station provides for acquiring data on gas and aerosol composition of the atmosphere, on meteorological quantities, and the background of gamma radiation. The station operates day and night and the whole year round. All the measurement procedures are fully automated. Readouts from the measuring devices are performed very hour 10 minutes averaged. In addition, synoptic information is also received at the station. Periodically gas chromatographic analysis is being done to determine concentrations of hydrocarbons from the methane row. Occasionally, chemical composition of suspended matter is determined relative to 39 ingredients. The station is located to the north-east of Tomsk, Akademgorodok. Therefore sometimes it measures air mass coming from Tomsk down town area and sometimes the air mass from rural areas. As a result information obtained at this station should be typical for recreation zones around Tomsk.

  1. Space station functional relationships analysis

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied, Barbra R.

    1988-01-01

    A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

  2. Hey] What's Space Station Freedom?

    NASA Astrophysics Data System (ADS)

    Vonehrenfried, Dutch

    This video, 'Hey] What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

  3. Heat Illness

    MedlinePlus

    ... breathing and a fast, weak pulse Heat cramps - muscle pains or spasms that happen during heavy exercise Heat rash - skin irritation from excessive sweating Centers for Disease Control and Prevention

  4. Heat Stress

    MedlinePlus

    ... Stress Learn some tips to protect workers including: acclimatization, rest breaks, and fluid recommendations. NIOSH Workplace Solution: ... Blog: Adjusting to Work in the Heat: Why Acclimatization Matters The natural adaptation to the heat takes ...

  5. Waste Heat to Power Market Assessment

    SciTech Connect

    Elson, Amelia; Tidball, Rick; Hampson, Anne

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  6. Fire-station solar-energy system--Kansas City, Missouri

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Screen-walled, flat-plate air collectors are part of award-winning architectural design; concrete-box storage subsystem, domestic hot-water preheat tank, blowers, pumps, heat exchangers, ducting, controls, and plumbing complete solar system. Design provides half of space heating and 75 percent of heat for domestic hot-water for fire station. Report includes historical narrative of project along with detailed drawings, charts, and product literature.

  7. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  8. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  9. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  10. Space Station Freedom as an engineering experiment station: An overview

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  11. Introduction to Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Kohrs, Richard

    NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station

  12. Introduction to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard

    1992-01-01

    NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station

  13. The ACTS NASA Ground Station/Master Control Station

    NASA Technical Reports Server (NTRS)

    Meadows, David N.

    1992-01-01

    Two of the major components of the ACTS Ground Segment are the NASA Ground Station (NGS) and the Master Control Station (MCS), colocated at the NASA Lewis Research Center. Essentially, the NGS provides the communications links by which the MCS performs its various network control and monitoring functions. The NGS also provides telecommunications links capable of transmission/reception of up to approximately 70 Mbit/s of digital telephonic traffic. Operating as a system, the entire complex of equipment is referred to as the NGS/MCS. This paper provides an 'as-built' description of the NGS/MCS as a system.

  14. Connecting Aerosol Size Distributions at Three Arctic Stations

    NASA Astrophysics Data System (ADS)

    Freud, E.; Krejci, R.; Tunved, P.; Barrie, L. A.

    2015-12-01

    Aerosols play an important role in Earth's energy balance mainly through interactions with solar radiation and cloud processes. There is a distinct annual cycle of arctic aerosols, with greatest mass concentrations in the spring and lowest in summer due to effective wet removal processes - allowing for new particles formation events to take place. Little is known about the spatial extent of these events as no previous studies have directly compared and linked aerosol measurements from different arctic stations during the same times. Although the arctic stations are hardly affected by local pollution, it is normally assumed that their aerosol measurements are indicative of a rather large area. It is, however, not clear if that assumption holds all the time, and how large may that area be. In this study, three different datasets of aerosol size distributions from Mt. Zeppelin in Svalbard, Station Nord in northern Greenland and Alert in the Canadian arctic, are analyzed for the measurement period of 2012-2013. All stations are 500 to 1000 km from each other, and the travel time from one station to the other is typically between 2 to 5 days. The meteorological parameters along the calculated trajectories are analyzed in order to estimate their role in the modification of the aerosol size distribution while the air is traveling from one field station to another. In addition, the exposure of the sampled air to open waters vs. frozen sea is assessed, due to the different fluxes of heat, moisture, gases and particles, that are expected to affect the aerosol size distribution. The results show that the general characteristics of the aerosol size distributions and their annual variation are not very different in all three stations, with Alert and Station Nord being more similar. This is more pronounced when looking into the cases for which the trajectory calculations indicated that the air traveled from one of the latter stations to the other. The probable causes for the

  15. 47 CFR 73.1820 - Station log.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station log. 73.1820 Section 73.1820... Rules Applicable to All Broadcast Stations § 73.1820 Station log. (a) Entries must be made in the station log either manually by a person designated by the licensee who is in actual charge of...

  16. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.783 Station identification. (a) Each low power TV and TV translator station not..., whose signal is being rebroadcast, to identify the translator station by transmitting an easily...

  17. 47 CFR 95.1005 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1005 Station identification. An LPRS station is not required to transmit a station identification announcement. ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.1005 Section...

  18. 46 CFR 122.514 - Station bill.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Station bill. 122.514 Section 122.514 Shipping COAST... Emergencies § 122.514 Station bill. (a) A station bill must be posted by the master on a vessel of more than... regards to the content of a station bill, the duties of the crew, emergency signals, an emergency...

  19. 46 CFR 185.514 - Station bill.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Station bill. 185.514 Section 185.514 Shipping COAST...) OPERATIONS Preparations for Emergencies § 185.514 Station bill. (a) A station bill must be posted by the... requiring more than four crew members at any one time, including the master. (b) The station bill...

  20. 46 CFR 185.514 - Station bill.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Station bill. 185.514 Section 185.514 Shipping COAST...) OPERATIONS Preparations for Emergencies § 185.514 Station bill. (a) A station bill must be posted by the... requiring more than four crew members at any one time, including the master. (b) The station bill...

  1. 46 CFR 131.350 - Station bill.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Station bill. 131.350 Section 131.350 Shipping COAST... Emergencies § 131.350 Station bill. (a) The master of each vessel shall post a station bill if the vessel's Certificate of Inspection requires more than four crew members, including the master. (b) The station...

  2. 46 CFR 131.350 - Station bill.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Station bill. 131.350 Section 131.350 Shipping COAST... Emergencies § 131.350 Station bill. (a) The master of each vessel shall post a station bill if the vessel's Certificate of Inspection requires more than four crew members, including the master. (b) The station...

  3. 46 CFR 131.350 - Station bill.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Station bill. 131.350 Section 131.350 Shipping COAST... Emergencies § 131.350 Station bill. (a) The master of each vessel shall post a station bill if the vessel's Certificate of Inspection requires more than four crew members, including the master. (b) The station...

  4. 46 CFR 122.514 - Station bill.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Station bill. 122.514 Section 122.514 Shipping COAST... Emergencies § 122.514 Station bill. (a) A station bill must be posted by the master on a vessel of more than... regards to the content of a station bill, the duties of the crew, emergency signals, an emergency...

  5. 46 CFR 122.514 - Station bill.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Station bill. 122.514 Section 122.514 Shipping COAST... Emergencies § 122.514 Station bill. (a) A station bill must be posted by the master on a vessel of more than... regards to the content of a station bill, the duties of the crew, emergency signals, an emergency...

  6. 46 CFR 131.350 - Station bill.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Station bill. 131.350 Section 131.350 Shipping COAST... Emergencies § 131.350 Station bill. (a) The master of each vessel shall post a station bill if the vessel's Certificate of Inspection requires more than four crew members, including the master. (b) The station...

  7. 46 CFR 122.514 - Station bill.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Station bill. 122.514 Section 122.514 Shipping COAST... Emergencies § 122.514 Station bill. (a) A station bill must be posted by the master on a vessel of more than... regards to the content of a station bill, the duties of the crew, emergency signals, an emergency...

  8. 47 CFR 90.249 - Control stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Control stations. 90.249 Section 90.249... MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.249 Control stations. Control... following: (a) Frequencies for control stations. (1) Control stations may be authorized to operate...

  9. 47 CFR 90.249 - Control stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Control stations. 90.249 Section 90.249... MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.249 Control stations. Control... following: (a) Frequencies for control stations. (1) Control stations may be authorized to operate...

  10. 47 CFR 90.249 - Control stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Control stations. 90.249 Section 90.249... MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.249 Control stations. Control... following: (a) Frequencies for control stations. (1) Control stations may be authorized to operate...

  11. 47 CFR 90.249 - Control stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Control stations. 90.249 Section 90.249... MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.249 Control stations. Control... following: (a) Frequencies for control stations. (1) Control stations may be authorized to operate...

  12. 46 CFR 28.395 - Embarkation stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... least one designated survival craft embarkation station and any additional embarkation stations necessary so that an embarkation station is readily accessible from each accommodation space and work space. Each embarkation station must be arranged to allow the safe boarding of survival craft....

  13. 46 CFR 28.395 - Embarkation stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... least one designated survival craft embarkation station and any additional embarkation stations necessary so that an embarkation station is readily accessible from each accommodation space and work space. Each embarkation station must be arranged to allow the safe boarding of survival craft....

  14. 46 CFR 28.395 - Embarkation stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... least one designated survival craft embarkation station and any additional embarkation stations necessary so that an embarkation station is readily accessible from each accommodation space and work space. Each embarkation station must be arranged to allow the safe boarding of survival craft....

  15. 46 CFR 28.395 - Embarkation stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... least one designated survival craft embarkation station and any additional embarkation stations necessary so that an embarkation station is readily accessible from each accommodation space and work space. Each embarkation station must be arranged to allow the safe boarding of survival craft....

  16. 46 CFR 28.395 - Embarkation stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... least one designated survival craft embarkation station and any additional embarkation stations necessary so that an embarkation station is readily accessible from each accommodation space and work space. Each embarkation station must be arranged to allow the safe boarding of survival craft....

  17. 47 CFR 97.109 - Station control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station control. 97.109 Section 97.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at...

  18. VIEW OF THE HEATING ELEMENTS AND VACUUM GAUGE OF A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE HEATING ELEMENTS AND VACUUM GAUGE OF A PUMP-DOWN STATION IN BUILDING 991. THE PUMP-DOWN STATION REMOVED OUT-GASES FROM INSIDE THE TRIGGERS. (9/26/61) - Rocky Flats Plant, Final Assembly & Shipping, Eastern portion of plant site, south of Spruce Avenue, east of Tenth Street & north of Central Avenue, Golden, Jefferson County, CO

  19. Strategies to Mitigate Ammonia Release on the International Space Station

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel V.; Prokhorov, Kimberlee S.; Sweterlitsch, Jeffrey J.

    2007-01-01

    International Space Station (ISS) is crucial to its continuous operation. Off-nominal situations can arise from virtually any aspect of ISS operations. One situation of particular concern is the inadvertent release of a chemical into the ISS atmosphere. In sufficient quantities, a chemical release can render the ISS uninhabitable regardless of the chemical s toxicity as a result of its effect on the hardware used to maintain the environment. This is certainly true with system chemicals which are integral components to the function and purpose of the system. Safeguards, such as design for minimum risk, multiple containment, hazard assessments, rigorous safety reviews, and others, are in place to minimize the probability of a chemical release to the ISS environment thereby allowing the benefits of system chemicals to outweigh the risks associated with them. The thermal control system is an example of such a system. Heat generated within the ISS is transferred from the internal thermal control system (ITCS) to the external thermal control system (ETCS) via two, single-barrier interface heat exchangers (IFHX). The ITCS and ETCS are closed-loop systems which utilize water and anhydrous ammonia, respectively, as heat-transfer fluids. There is approximately 1200 lbs. (208 gallons) of anhydrous ammonia in the ETCS circulating through the two heat exchangers, transferring heat from the ITCS water lines. At the amounts present in the ETCS, anhydrous ammonia is one system chemical that can easily overwhelm the station atmosphere scrubbing capabilities and render the ISS uninhabitable in the event of a catastrophic rupture. Although safeguards have certainly minimized the risk of an ammonia release into the Station atmosphere, credible release scenarios and controls to manage these scenarios are examined.

  20. Micro Weather Stations for Mars

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; VanZandt, Thomas R.; Hoenk, Michael E.; Tillman, James E.

    1995-01-01

    A global network of weather stations will be needed to characterize the near-surface environment on Mars. Here, we review the scientific and measurement objectives of this network. We also show how these objectives can be met within the cost-constrained Mars Surveyor Program by augmenting the Mars Pathfinder-derived landers with large numbers of very small (less than 5 liter), low-mass (less than 5 kg), low-power, low-cost Mini-meteorological stations. Each station would include instruments for measuring atmospheric. pressures, temperatures, wind velocities, humidity, and airborne dust abundance. They would also include a data handling, telemetry, power, atmospheric entry, and deployment systems in a rugged package capable of direct entry and a high-impact landing. In this paper, we describe these systems and summarize the data-taking strategies and data volumes needed to achieve the surface meteorology objectives for Mars.

  1. Space Station personal hygiene study

    NASA Technical Reports Server (NTRS)

    Prejean, Stephen E.; Booher, Cletis R.

    1986-01-01

    A personal hygiene system is currently under development for Space Station application that will provide capabilities equivalent to those found on earth. This paper addresses the study approach for specifying both primary and contingency personal hygiene systems and provisions for specified growth. Topics covered are system definition and subsystem descriptions. Subsystem interfaces are explored to determine which concurrent NASA study efforts must be monitored during future design phases to stay up-to-date on critical Space Station parameters. A design concept for a three (3) compartment personal hygiene facility is included as a baseline for planned test and verification activities.

  2. Space Station ECLSS Integration Analysis

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) contract with NASA MSFC covered the time frame from 9 May 1985 to 31 Dec. 1992. The contract roughly covered the period of Space Station Freedom (SSF) development from early Phase B through Phase C/D Critical Design Review (CDR). During this time, McDonnell Douglas Aerospace-Huntsville (formerly McDonnell Douglas Space Systems Company) performed an analytical support role to MSFC for the development of analytical math models and engineering trade studies related to the design of the ECLSS for the SSF.

  3. OSSA Space Station waste inventory

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Johnson, Catherine C.; Bosley, John J.; Curran, George L.; Mains, Richard

    1987-01-01

    NASA's Office of Space Science and Applications has compiled an inventory of the types and quantities of the wastes that will be generated by the Space Station's initial operational phase in 35 possible mission scenarios. The objective of this study was the definition of waste management requirements for both the Space Station and the Space Shuttles servicing it. All missions, when combined, will produce about 5350 kg of gaseous, liquid and solid wastes every 90 days. A characterization has been made of the wastes in terms of toxicity, corrosiveness, and biological activity.

  4. Space station propulsion system technology

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Meng, Phillip R.; Schneider, Steven J.; Sovey, James S.; Tacina, Robert R.

    1987-01-01

    Two propulsion systems have been selected for the space station: O/H rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These thruster systems integrate very well with the fluid systems on the station. Both thrusters will utilize waste fluids as their source of propellant. The O/H rocket will be fueled by electrolyzed water and the resistojets will use stored waste gases from the environmental control system and the various laboratories. This paper presents the results of experimental efforts with O/H and resistojet thrusters to determine their performance and life capability.

  5. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a...

  6. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a...

  7. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a...

  8. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a...

  9. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital Class A TV station protection of TV...) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6016 Digital Class A TV station protection of TV broadcast stations. Digital Class A TV stations must...

  10. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital Class A TV station protection of DTV... RADIO SERVICES RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6018 Digital Class A TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service...

  11. An evaluation of oxygen-hydrogen propulsion systems for the Space Station

    NASA Technical Reports Server (NTRS)

    Klemetson, R. W.; Garrison, P. W.; Hannum, N. P.

    1985-01-01

    Conceptual designs for O2/H2 chemical and resistojet propulsion systems for the space station was developed and evaluated. The evolution of propulsion requirements was considered as the space station configuration and its utilization as a space transportation node change over the first decade of operation. The characteristics of candidate O2/H2 auxiliary propulsion systems are determined, and opportunities for integration with the OTV tank farm and the space station life support, power and thermal control subsystems are investigated. OTV tank farm boiloff can provide a major portion of the growth station impulse requirements and CO2 from the life support system can be a significant propellant resource, provided it is not denied by closure of that subsystem. Waste heat from the thermal control system is sufficient for many propellant conditioning requirements. It is concluded that the optimum level of subsystem integration must be based on higher level space station studies.

  12. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A.R.; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2000-01-01

    An autonomous, low-power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. This compact, portable lidar will operate continuously in a temperature controlled enclosure, charge its own batteries through a combination of a small rugged wind generator and solar panels, and transmit its data from remote locations to ground stations via satellite. A network of these instruments will be established by co-locating them at remote Automatic Weather Station (AWS) sites in Antarctica under the auspices of the National Science Foundation (NSF). The NSF Office of Polar Programs provides support to place the weather stations in remote areas of Antarctica in support of meteorological research and operations. The AWS meteorological data will directly benefit the analysis of the lidar data while a network of ground based atmospheric lidar will provide knowledge regarding the temporal evolution and spatial extent of Type la polar stratospheric clouds (PSC). These clouds play a crucial role in the annual austral springtime destruction of stratospheric ozone over Antarctica, i.e. the ozone hole. In addition, the lidar will monitor and record the general atmospheric conditions (transmission and backscatter) of the overlying atmosphere which will benefit the Geoscience Laser Altimeter System (GLAS). Prototype lidar instruments have been deployed to the Amundsen-Scott South Pole Station (1995-96, 2000) and to an Automated Geophysical Observatory site (AGO 1) in January 1999. We report on data acquired with these instruments, instrument performance, and anticipated performance of the AWS Lidar.

  13. NOAA PMEL Station Chemistry Data

    DOE Data Explorer

    Quinn, Patricia

    2008-04-04

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  14. Mobile Alternative Fueling Station Locator

    SciTech Connect

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  15. Computer networking at SLR stations

    NASA Technical Reports Server (NTRS)

    Novotny, Antonin

    1993-01-01

    There are several existing communication methods to deliver data from the satellite laser ranging (SLR) station to the SLR data center and back: telephonmodem, telex, and computer networks. The SLR scientific community has been exploiting mainly INTERNET, BITNET/EARN, and SPAN. The total of 56 countries are connected to INTERNET and the number of nodes is exponentially growing. The computer networks mentioned above and others are connected through E-mail protocol. The scientific progress of SLR requires the increase of communication speed and the amount of the transmitted data. The TOPEX/POSEIDON test campaign required to deliver Quick Look data (1.7 kB/pass) from a SLR site to SLR data center within 8 hours and full rate data (up to 500 kB/pass) within 24 hours. We developed networking for the remote SLR station in Helwan, Egypt. The reliable scheme for data delivery consists of: compression of MERIT2 format (up to 89 percent), encoding to ASCII Me (files); and e-mail sending from SLR station--e-mail receiving, decoding, and decompression at the center. We do propose to use the ZIP method for compression/decompression and the UUCODE method for ASCII encoding/decoding. This method will be useful for stations connected via telephonemodems or commercial networks. The electronics delivery could solve the problem of the too late receiving of the FR data by SLR data center.

  16. Italy's Intelligent Educational Training Station

    ERIC Educational Resources Information Center

    Ponti, Giorgio

    2005-01-01

    The Intelligent Educational Training Station has been developed in Italy to meet emerging school building needs. The project, for schools from the primary to upper secondary level, proposes flexible architecture for an "intelligent school" network, and was developed by CISEM, the Centre for Educational Innovation and Experimentation of Milan.

  17. Automating Space Station operations planning

    NASA Technical Reports Server (NTRS)

    Ziemer, Kathleen A.

    1989-01-01

    The development and implementation of the operations planning processes for the Space Station are discussed. A three level planning process, consisting of strategic, tactical, and execution level planning, is being developed. The integration of the planning procedures into a tactical planning system is examined and the planning phases are illustrated.

  18. Space Station reference configuration update

    NASA Technical Reports Server (NTRS)

    Bonner, Tom F., Jr.

    1985-01-01

    The reference configuration of the NASA Space Station as of November 1985 is presented in a series of diagrams, drawings, graphs, and tables. The configurations for components to be contributed by ESA, Canada, and Japan are included. Brief captions are provided, along with answers to questions raised at the conference.

  19. Space Station Freedom media handbook

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Work underway at NASA to design and develop Space Station Freedom is described in this handbook. The roles, responsibilities, and tasks at NASA are discussed in order to provide information for the media. Ground facilities are described with a look towards future possibilities and requirements. Historical perspectives, international cooperation, and the responsibilities of specific NASA centers are also examined.

  20. Space Station Planetology Experiments (SSPEX)

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Williams, R. J. (Editor)

    1986-01-01

    A meeting of 50 planetary scientists considered the uses of the Space Station to support experiments in their various disciplines. Abstracts (28) present concepts for impact and aeolian processes, particle formation and interaction, and other planetary science experiments. Summaries of the rationale, hardware concepts, accomodations, and recommendations are included.

  1. Space station propulsion test bed

    NASA Technical Reports Server (NTRS)

    Briley, G. L.; Evans, S. A.

    1989-01-01

    A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.

  2. Barrow Meteoroloigcal Station (BMET) Handbook

    SciTech Connect

    Ritsche, MT

    2004-11-01

    The Barrow meteorology station (BMET) uses mainly conventional in situ sensors mounted at four different heights on a 40 m tower to obtain profiles of wind speed, wind direction, air temperature, and humidity. It also obtains barometric pressure, visibility, and precipitation data.

  3. Computer networking at SLR stations

    NASA Astrophysics Data System (ADS)

    Novotny, Antonin

    1993-06-01

    There are several existing communication methods to deliver data from the satellite laser ranging (SLR) station to the SLR data center and back: telephonmodem, telex, and computer networks. The SLR scientific community has been exploiting mainly INTERNET, BITNET/EARN, and SPAN. The total of 56 countries are connected to INTERNET and the number of nodes is exponentially growing. The computer networks mentioned above and others are connected through E-mail protocol. The scientific progress of SLR requires the increase of communication speed and the amount of the transmitted data. The TOPEX/POSEIDON test campaign required to deliver Quick Look data (1.7 kB/pass) from a SLR site to SLR data center within 8 hours and full rate data (up to 500 kB/pass) within 24 hours. We developed networking for the remote SLR station in Helwan, Egypt. The reliable scheme for data delivery consists of: compression of MERIT2 format (up to 89 percent), encoding to ASCII Me (files); and e-mail sending from SLR station--e-mail receiving, decoding, and decompression at the center. We do propose to use the ZIP method for compression/decompression and the UUCODE method for ASCII encoding/decoding. This method will be useful for stations connected via telephonemodems or commercial networks. The electronics delivery could solve the problem of the too late receiving of the FR data by SLR data center.

  4. Space station molecular sieve development

    NASA Technical Reports Server (NTRS)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  5. The Medicina Station Status Report

    NASA Technical Reports Server (NTRS)

    Orfei, Alessandro; Orlati, Andrea; Maccaferri, Giuseppe

    2013-01-01

    General information about the Medicina Radio Astronomy Station, the 32-m antenna status, and the staff in charge of the VLBI observations is provided. In 2012, the data from geodetic VLBI observations were acquired using the Mark 5A recording system with good results. Updates of the hardware were performed and are briefly described.

  6. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  7. Heat Problems.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Heat problems and heat cramps related to jogging can be caused by fluid imbalances, medications, dietary insufficiency, vomiting or diarrhea, among other factors. If the condition keeps reoccurring, the advice of a physician should be sought. Some preventive measures that can be taken include: (1) running during the cooler hours of the day; (2)…

  8. Work/control stations in Space Station weightlessness

    NASA Technical Reports Server (NTRS)

    Willits, Charles

    1990-01-01

    An ergonomic integration of controls, displays, and associated interfaces with an operator, whose body geometry and dynamics may be altered by the state of weightlessness, is noted to rank in importance with the optimal positioning of controls relative to the layout and architecture of 'body-ported' work/control stations applicable to the NASA Space Station Freedom. A long-term solution to this complex design problem is envisioned to encompass the following features: multiple imaging, virtual optics, screen displays controlled by a keyboard ergonomically designed for weightlessness, cursor control, a CCTV camera, and a hand-controller featuring 'no-grip' vernier/tactile positioning. This controller frees all fingers for multiple-switch actuations, while retaining index/register determination with the hand controller. A single architectural point attachment/restraint may be used which requires no residual muscle tension in either brief or prolonged operation.

  9. Heat collector

    DOEpatents

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  10. Heat collector

    DOEpatents

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  11. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  12. Manned space stations - A perspective

    NASA Astrophysics Data System (ADS)

    Disher, J. H.

    1981-09-01

    The findings from the Skylab missions are discussed as they relate to the operations planning of future space stations such as Spacelab and the proposed Space Operations Center. Following a brief description of the Skylab spacecraft, the significance of the mission as a demonstration of the possibility of effecting emergency repairs in space is pointed out. Specific recommendations made by Skylab personnel concerning capabilities for future in-flight maintenance are presented relating to the areas of spacecraft design criteria, tool selection and spares carried. Attention is then given to relevant physiological findings, and to habitability considerations in the areas of sleep arrangements, hygiene, waste management, clothing, and food. The issue of contamination control is examined in detail as a potential major system to be integrated into future design criteria. The importance of the Skylab results to the designers of future space stations is emphasized.

  13. The International Space Station Habitat

    NASA Astrophysics Data System (ADS)

    Watson, Patricia Mendoza; Engle, Mike

    2003-01-01

    The International Space Station (ISS) is an engineering project unlike any other. The vehicle is inhabited and operational as it is constructed. The habitability resources available to the crew are the sleep quarters, the galley, the waste and hygiene compartment, and exercise equipment. These items are mainly in the Russian Service Module and their placement is awkward for the crew to use and work around. ISS assembly will continue with the truss build and the addition of the International Partner Laboratories. Prior to the addition of the International Partner Laboratories. Node 2 will be added. The Node 2 module will provide additional stowage volume and room for more crew sleep quarters. The purpose of the ISS is to perform research and a major area of emphasis is on the effects of long duration space flight on humans, as result of this research the habitability requirements for the International Space Station crews will be determined.

  14. Space station protective coating development

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Hill, S. G.

    1989-01-01

    A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.

  15. 47 CFR 22.313 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Systems in the Rural Radiotelephone Service; (5) (6) Stations operating pursuant to paging geographic area... digitally, provided that the licensee provides the Commission with information sufficient to decode the..., a call sign assigned to another station within the same system....

  16. 47 CFR 22.313 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Systems in the Rural Radiotelephone Service; (5) (6) Stations operating pursuant to paging geographic area... digitally, provided that the licensee provides the Commission with information sufficient to decode the..., a call sign assigned to another station within the same system....

  17. 47 CFR 22.313 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Systems in the Rural Radiotelephone Service; (5) (6) Stations operating pursuant to paging geographic area... digitally, provided that the licensee provides the Commission with information sufficient to decode the..., a call sign assigned to another station within the same system....

  18. 47 CFR 22.313 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Systems in the Rural Radiotelephone Service; (5) (6) Stations operating pursuant to paging geographic area... digitally, provided that the licensee provides the Commission with information sufficient to decode the..., a call sign assigned to another station within the same system....

  19. Earth Views From the International Space Station

    NASA Video Gallery

    In celebration of Earth Day, NASA presents images of Earth captured by cameras aboard the International Space Station. Traveling at an approximate speed of 17,500 miles per hour, the space station ...

  20. 75 FR 22674 - Moynihan Station Development Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Quality NEPA implementing regulations, 40 CFR parts 1500-1508, and the FRA NEPA procedures, 64 FR 28545... transportation facility, to be called the Daniel Patrick Moynihan Station (Moynihan Station). Moynihan...

  1. Space station operations task force summary report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A companion to the Space Stations Operation Task Force Panels' Reports, this document summarizes all space station program goals, operations, and the characteristics of the expected user community. Strategies for operation and recommendations for implementation are included.

  2. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or...

  3. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or...

  4. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or...

  5. International space station wire program

    NASA Technical Reports Server (NTRS)

    May, Todd

    1995-01-01

    Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.

  6. Stage measurement at gaging stations

    USGS Publications Warehouse

    Sauer, Vernon B.; Turnipseed, D. Phil

    2010-01-01

    Stream and reservoir stage are critical parameters in the computation of stream discharge and reservoir volume, respectively. In addition, a record of stream stage is useful in the design of structures that may be affected by stream elevation, as well as for the planning for various uses of flood plains. This report describes equipment and methodology for the observation, sensing, and recording of stage in streams and reservoirs. Although the U.S. Geological Survey (USGS) still uses the traditional, basic stilling-well float system as a predominant gaging station, modern electronic stage sensors and water-level recorders are now commonly used. Bubble gages coupled with nonsubmersible pressure transducers eliminate the need for stilling wells. Submersible pressure transducers have become common in use for the measurement of stage in both rivers and lakes. Furthermore, noncontact methods, such as radar, acoustic, and laser methods of sensing water levels, are being developed and tested, and in the case of radar, are commonly used for the measurement of stage. This report describes commonly used gaging-station structures, as well as the design and operation of gaging stations. Almost all of the equipment and instruments described in this report will meet the accuracy standard set by the USGS Office of Surface Water (OSW) for the measurement of stage for most applications, which is ?0.01 foot (ft) or 0.2 percent of the effective stage. Several telemetry systems are used to transmit stage data from the gaging station to the office, although satellite telemetry has become the standard. These telemetry systems provide near real-time stage data, as well as other information that alerts the hydrographer to extreme or abnormal events, and instrument malfunctions.

  7. Fortaleza Station Report for 2012

    NASA Technical Reports Server (NTRS)

    Kaufmann, Pierre; Pereira de Lucena, A. Macilio; Sombra da Silva, Adeildo

    2013-01-01

    This is a brief report about the activities carried out at the Fortaleza geodetic VLBI station (ROEN: R´adio Observat´orio Espacial do Nordeste), located in Eus´ebio, CE, Brazil, during the period from January until December 2012. The observing activities were resumed in May after the major maintenance that comprised the azimuth bearing replacement. The total observational experiments consisted of 103 VLBI sessions and continuous GPS monitoring recordings.

  8. Technology assessment of space stations

    NASA Technical Reports Server (NTRS)

    Coates, V. T.

    1971-01-01

    The social impacts, both beneficial and detrimental, which can be expected from a system of space stations operating over relatively long periods of time in Earth orbit, are examined. The survey is an exercise in technology assessment. It is futuristic in nature. It anticipates technological applications which are still in the planning stage, and many of the conclusions are highly speculative and for this reason controversial.

  9. Crew quarters for Space Station

    NASA Technical Reports Server (NTRS)

    Mount, F. E.

    1989-01-01

    The only long-term U.S. manned space mission completed has been Skylab, which has similarities as well as differences to the proposed Space Station. With the exception of Skylab missions, there has been a dearth of experience on which to base the design of the individual Space Station Freedom crew quarters. Shuttle missions commonly do not have sleep compartments, only 'sleeping arrangements'. There are provisions made for each crewmember to have a sleep restraint and a sleep liner, which are attached to a bulkhead or a locker. When the Shuttle flights began to have more than one working shift, crew quarters became necessary due to noise and other disturbances caused by crew task-related activities. Shuttle missions that have planned work shifts have incorporated sleep compartments. To assist in gaining more information and insight for the design of the crew quarters for the Space Station Freedom, a survey was given to current crewmembers with flight experience. The results from this survey were compiled and integrated with information from the literature covering space experience, privacy, and human-factors issues.

  10. Optimization of station battery replacement

    NASA Astrophysics Data System (ADS)

    Jancauskas, J. R.; Shook, D. A.

    1994-08-01

    During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability to quickly analyze proposed modifications and respond to internal and external audits.

  11. Space Station atmospheric monitoring systems

    NASA Technical Reports Server (NTRS)

    Buoni, C.; Coutant, R.; Barnes, R.; Slivon, L.

    1988-01-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

  12. Space Station atmospheric monitoring systems.

    PubMed

    Buoni, C; Coutant, R; Barnes, R; Slivon, L

    1988-05-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

  13. Microbiology on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L. (Editor); Mcginnis, Michael R. (Editor); Mishra, S. K. (Editor); Wogan, Christine F. (Editor)

    1991-01-01

    This panel discussion convened in Houston, Texas, at the Lunar and Planetary Institute, on November 6 to 8, 1989, to review NASA's plans for microbiology on Space Station Freedom. A panel of distinguished scientists reviewed, validated, and recommended revisions to NASA's proposed acceptability standards for air, water, and internal surfaces on board Freedom. Also reviewed were the proposed microbiology capabilities and monitoring plan, disinfection procedures, waste management, and clinical issues. In the opinion of this advisory panel, ensuring the health of the Freedom's crews requires a strong goal-oriented research effort to determine the potential effects of microorganisms on the crewmembers and on the physical environment of the station. Because there are very few data addressing the fundamental question of how microgravity influences microbial function, the panel recommended establishing a ground-based microbial model of Freedom, with subsequent evaluation using in-flight shuttle data. Sampling techniques and standards will be affected by both technological advances in microgravity-compatible instrumentation, and by changes in the microbial population over the life of the station.

  14. NGPL Louisiana station nears completion

    SciTech Connect

    Not Available

    1990-10-22

    Construction on a 3,600-hp compressor station on the Louisiana line of Natural Gas Pipeline Co. of America near Henry, La., was scheduled for completion later this month. The Louisiana line extends some 205 miles along the Gulf Coast between New Caney, Tex., and the Henry hub area. The new compressor station will be located about 44 miles west of the Henry hub. Work began on the $5.1 million expansion project in Cameron Parish, La., in May following Federal Energy Regulatory Commission (FERC) certification. By mid-September, the compressor building, service building, and meter house has been erected, final compressor inspections were under way, and gas piping tie-ins had been completed, according to NGPL. Powered by three 1,200-hp Solar Saturn gas-fired centrifugal engines, the station is designed to increase the capacity of the Louisiana line east of the Stingray pipeline system by up to 220 MMcfd. Current capacity for east bound flows is approximately 900 MMcfd.

  15. Space Station atmospheric monitoring systems.

    PubMed

    Buoni, C; Coutant, R; Barnes, R; Slivon, L

    1988-05-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs. PMID:11542838

  16. Space station atmospheric monitoring systems

    NASA Astrophysics Data System (ADS)

    Buoni, C.; Coutant, R.; Barnes, R.; Slivon, L.

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

  17. Preliminary design of the Space Station internal thermal control system

    NASA Technical Reports Server (NTRS)

    Herrin, Mark T.; Patterson, David W.; Turner, Larry D.

    1987-01-01

    The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.

  18. Heat intolerance

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003094.htm Heat intolerance To use the sharing features on this ... must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map FAQs Contact Us Get ...

  19. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  20. 47 CFR 80.409 - Station logs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station logs. 80.409 Section 80.409... MARITIME SERVICES Station Documents § 80.409 Station logs. (a) General requirements. Logs must be established and properly maintained as follows: (1) The log must be kept in an orderly manner. The log may...

  1. 47 CFR 87.109 - Station logs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station logs. 87.109 Section 87.109... Operating Requirements and Procedures Operating Procedures § 87.109 Station logs. (a) A station at a fixed location in the international aeronautical mobile service must maintain a log in accordance with Annex...

  2. A Select Survey of Campus Radio Stations.

    ERIC Educational Resources Information Center

    Drake, H.

    To ascertain the continued need for a campus radio station at 10 watts and to justify a subsequent increase in power, the student radio station at Auburn University (Alabama) conducted surveys of college radio stations, emphasizing facilities in the southeast United States. Some of the findings of the surveys indicated that in the southeast and…

  3. 30 CFR 57.12085 - Transformer stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transformer stations. 57.12085 Section 57.12085 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.12085 Transformer stations. Transformer stations shall be enclosed to prevent...

  4. 33 CFR 146.130 - Station bill.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Station bill. 146.130 Section 146... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.130 Station bill. (a) The person in charge of each manned platform shall be responsible for and have prepared a station bill (muster list)....

  5. 33 CFR 146.130 - Station bill.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Station bill. 146.130 Section 146... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.130 Station bill. (a) The person in charge of each manned platform shall be responsible for and have prepared a station bill (muster list)....

  6. 33 CFR 146.130 - Station bill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Station bill. 146.130 Section 146... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.130 Station bill. (a) The person in charge of each manned platform shall be responsible for and have prepared a station bill (muster list)....

  7. 33 CFR 146.130 - Station bill.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Station bill. 146.130 Section 146... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.130 Station bill. (a) The person in charge of each manned platform shall be responsible for and have prepared a station bill (muster list)....

  8. 33 CFR 146.130 - Station bill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Station bill. 146.130 Section 146... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.130 Station bill. (a) The person in charge of each manned platform shall be responsible for and have prepared a station bill (muster list)....

  9. 47 CFR 25.206 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Station identification. 25.206 Section 25.206 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.206 Station identification. The requirement to transmit station identification...

  10. Space station internal environmental and safety concerns

    NASA Technical Reports Server (NTRS)

    Cole, Matthew B.

    1987-01-01

    Space station environmental and safety concerns, especially those involving fires, are discussed. Several types of space station modules and the particular hazards associated with each are briefly surveyed. A brief history of fire detection and suppression aboard spacecraft is given. Microgravity fire behavior, spacecraft fire detector systems, space station fire suppression equipment and procedures, and fire safety in hyperbaric chambers are discussed.

  11. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to...

  12. 47 CFR 101.201 - Station inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station inspection. 101.201 Section 101.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.201 Station inspection. The licensee of each station authorized...

  13. 47 CFR 101.201 - Station inspection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station inspection. 101.201 Section 101.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.201 Station inspection. The licensee of each station authorized...

  14. 47 CFR 101.201 - Station inspection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station inspection. 101.201 Section 101.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.201 Station inspection. The licensee of each station authorized...

  15. 47 CFR 101.201 - Station inspection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station inspection. 101.201 Section 101.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.201 Station inspection. The licensee of each station authorized...

  16. 47 CFR 101.213 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are...

  17. 47 CFR 101.213 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are...

  18. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to...

  19. 47 CFR 101.213 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are...

  20. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to...

  1. 47 CFR 101.213 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are...

  2. 47 CFR 101.213 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are...

  3. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to...

  4. 47 CFR 101.201 - Station inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station inspection. 101.201 Section 101.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.201 Station inspection. The licensee of each station authorized...

  5. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to...

  6. 47 CFR 32.2311 - Station apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Station apparatus. 32.2311 Section 32.2311... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2311 Station apparatus. (a) This account shall include the original cost of station apparatus, including...

  7. 47 CFR 32.2311 - Station apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Station apparatus. 32.2311 Section 32.2311... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2311 Station apparatus. (a) This account shall include the original cost of station apparatus, including...

  8. 47 CFR 97.203 - Beacon station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Beacon station. 97.203 Section 97.203... SERVICE Special Operations § 97.203 Beacon station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a beacon. A holder of...

  9. 47 CFR 97.203 - Beacon station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Beacon station. 97.203 Section 97.203... SERVICE Special Operations § 97.203 Beacon station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a beacon. A holder of...

  10. 47 CFR 97.203 - Beacon station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Beacon station. 97.203 Section 97.203... SERVICE Special Operations § 97.203 Beacon station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a beacon. A holder of...

  11. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... will follow the pattern used in the broadcast service, i.e., stations west of the Mississippi River...; stations west of the Mississippi River will be assigned an initial letter K and stations east of the Mississippi River will be assigned an initial letter W. The four-letter call sign will be followed by...

  12. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... will follow the pattern used in the broadcast service, i.e., stations west of the Mississippi River...; stations west of the Mississippi River will be assigned an initial letter K and stations east of the Mississippi River will be assigned an initial letter W. The four-letter call sign will be followed by...

  13. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... will follow the pattern used in the broadcast service, i.e., stations west of the Mississippi River...; stations west of the Mississippi River will be assigned an initial letter K and stations east of the Mississippi River will be assigned an initial letter W. The four-letter call sign will be followed by...

  14. 47 CFR 1.911 - Station files.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Station files. 1.911 Section 1.911... Applications and Proceedings Application Requirements and Procedures § 1.911 Station files. Applications... maintained by the Commission in ULS. These files constitute the official records for these stations...

  15. 47 CFR 1.1704 - Station files.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Station files. 1.1704 Section 1.1704... System (COALS) § 1.1704 Station files. Applications, notifications, correspondence, electronic filings.... These files constitute the official records for these stations and supersede any other records,...

  16. 46 CFR 169.813 - Station bills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Station bills. 169.813 Section 169.813 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations § 169.813 Station bills. (a) A station bill (muster list) shall be prepared and signed by the master...

  17. 46 CFR 169.813 - Station bills.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Station bills. 169.813 Section 169.813 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations § 169.813 Station bills. (a) A station bill (muster list) shall be prepared and signed by the master...

  18. 47 CFR 97.201 - Auxiliary station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.201 Auxiliary station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be an auxiliary station. A...

  19. 47 CFR 97.201 - Auxiliary station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.201 Auxiliary station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be an auxiliary station. A...

  20. 47 CFR 97.201 - Auxiliary station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.201 Auxiliary station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be an auxiliary station. A...

  1. 47 CFR 97.201 - Auxiliary station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Special Operations § 97.201 Auxiliary station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be an auxiliary station. A...

  2. 47 CFR 74.1283 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Station identification. 74.1283 Section 74.1283 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations...

  3. Standardized Curriculum for Service Station Retailing.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for service station retailing was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all service station retailing programs in the state. The guide contains objectives for service station retailing I and II courses.…

  4. 46 CFR 132.130 - Fire stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a single length of hose. (b) Each part of the main machinery space, including the shaft alley if it.... Each stream must come from a single length of hose, from a separate fire station. (c) Each fire station... so that no hose leads upward from it. (f) Each fire station must be equipped with a spanner...

  5. Heating stove

    SciTech Connect

    Johnson, V.

    1982-03-23

    This stove invention relates to wood and coal burning stoves employed for heating. More effective draft control and heat transfer is achieved by a stove employing straight and serpentine flues, a control rod to coordinate movement of a baffle and damper for defining passageways to the flues, and a channel for apportioning air above and below the fuel and into first and second combustion chambers.

  6. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  7. HEAT2

    SciTech Connect

    Charman, C. )

    1993-08-01

    HEAT2 is a finite element program for the transient and steady-state, thermal analysis of two-dimensional solids. Calculates detailed temperature distributions in MHTGR prismatic fuel elements side reflector and core support blocks. Non-linear effects of time and temperature dependent boundary conditions, and heat source generation and material properties are included with user supplied subroutines NPBC, QAREA, SOURCE, and MPROP.

  8. Solar dynamic heat receiver technology

    NASA Technical Reports Server (NTRS)

    Sedgwick, Leigh M.

    1991-01-01

    A full-size, solar dynamic heat receiver was designed to meet the requirements specified for electrical power modules on the U.S. Space Station, Freedom. The heat receiver supplies thermal energy to power a heat engine in a closed Brayton cycle using a mixture of helium-xenon gas as the working fluid. The electrical power output of the engine, 25 kW, requires a 100 kW thermal input throughout a 90 minute orbit, including when the spacecraft is eclipsed for up to 36 minutes from the sun. The heat receiver employs an integral thermal energy storage system utilizing the latent heat available through the phase change of a high-temperature salt mixture. A near eutectic mixture of lithium fluoride and calcium difluoride is used as the phase change material. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification. Fabrication of the receiver is complete and it was delivered to NASA for verification testing in a simulated low-Earth-orbit environment. This document reviews the receiver design and describes its fabrication history. The major elements required to operate the receiver during testing are also described.

  9. Center and south platforms. Looking east from Pratt Street Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Center and south platforms. Looking east from Pratt Street Station toward Bridge Street Station. - Frankford Elevated, Pratt Street Station, 5200-5201 Frankford Avenue, Philadelphia, Philadelphia County, PA

  10. South and center platforms. Looking west from Bridge Street Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South and center platforms. Looking west from Bridge Street Station toward Pratt Street Station. - Frankford Elevated, Pratt Street Station, 5200-5201 Frankford Avenue, Philadelphia, Philadelphia County, PA

  11. Thulium heat sources for space power application

    SciTech Connect

    Alderman, C.J. )

    1993-01-15

    Reliable electrical power supplies for use in transportation and remote systems will be an important part of space exploration activities on planet surfaces. A potential power source is available through the use of thulium, a rare earth metal. Heat sources can be produced by neutron activation of naturally occurring thulium (Tm-169) targets in the base station nuclear power reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications systems located at remote sites. Combined with a dynamic Sterling or Brayton cycle conversion system, the heat source can power a lightweight electrical source for rovers or other surface transportation systems.

  12. 47 CFR 90.476 - Interconnection of fixed stations and certain mobile stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnection of fixed stations and certain... Systems § 90.476 Interconnection of fixed stations and certain mobile stations. (a) Fixed stations and...)(11), 90.35(c)(42), and 90.267 are not subject to the interconnection provisions of §§ 90.477 and...

  13. Severe Accident Test Station Activity Report

    SciTech Connect

    Pint, Bruce A.; Terrani, Kurt A.

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  14. Transit station energy impacts. Research report (Interim)

    SciTech Connect

    Coleman, P.; Euritt, M.; Walton, C.M.

    1992-12-01

    Transit trips-when compared with automobile travel-not only relieve congestion, but also offer considerable energy savings per person. Transit trips also affect land use and development patterns that surround a transit station. In the report, a methodology will be developed to estimate the energy savings associated with land use changes in the station areas. Since changes in land use and development in a station area are partially dependent on the type of service offered (rail versus bus rapid, for example), a classification system will be developed for different types of transit stations, a system based on the land use and development changes that occur within the station's zone of influence.

  15. Space station group activities habitability module study

    NASA Technical Reports Server (NTRS)

    Nixon, David

    1986-01-01

    This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.

  16. A customer-friendly Space Station

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1984-01-01

    This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.

  17. Microfabricated fuel heating value monitoring device

    DOEpatents

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  18. A Plasma Rocket Demonstration on the International Space Station

    NASA Astrophysics Data System (ADS)

    Petro, A.

    2002-01-01

    delivery requirements and thereby increase available payload capacity and at the same time improve the conditions for scientific research. and the space environment. This is a beneficial effect that prevents a charge buildup on the station. The station already operates two dedicated non-propulsive plasma contactor devices for this purpose. A VASIMR rocket would function as an additional plasma contactor. would be delivered to orbit in the Space Shuttle payload bay. It would be mounted on a standard payload attachment structure. After removal from the payload bay by the shuttle robotic arm, it would be handed to the space station robotic arm which would place it at an external payload attach site on the station truss. A mating device for power and data connections exists at the payload site. The experiment would receive one to three kilowatts of power from the station. About 600 watts would be used for cryogenic cooling and control devices. Additional power would be stored in a set of batteries. The VASIMR experiment would be operated for short periods when the batteries can provide power to the amplifiers that feed radio-frequency power to the thruster assembly. The thruster assembly is composed of an inner tube in which the neutral propellant is injected and ionized and a larger tube, which supports the radio frequency antennas, which ionize the gas and heat the plasma. Electromagnet coils that provide the magnetic field to constrain the flow of the plasma and form the magnetic exit nozzle surround these tubes. to this supply are planned for the experiment. The experiment will carry two dedicated propellant tanks which each have the capacity to store all the propellant needed for an experimental program lasting several months. With two propellant tanks, the opportunity exists to perform experiments with more than one type of propellant. Hydrogen is the primary choice for propellant but deuterium and helium are also of interest and might also be included. All the

  19. Speculations on future opportunities to evolve Brayton powerplants aboard the space station

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1987-01-01

    The Space Station provides a unique, low-risk environment in which to evolve new capabilities. In this way, the Space Station will grow in capacity, in its range of capabilities, and its economy of operation as a laboratory and as a center for space operations. Although both Rankine and Brayton cycles, two concepts for solar dynamic power generation, now compete to power the station, this paper confines its attention to the Brayton cycle using a mixture of He and Xe as its working fluid. Such a Brayton powerplant to supply the station's increasing demands for both electric power and heat has the potential to gradually evolve higher and higher performance by exploiting already-evolved materials (ASTAR-811C and molten-Li heat storage), its peak cycle temperature rising ultimately to 1500 K. Adapting the station to exploit long tethers (200 to 300 km long) could yield increases in payloads to LEO, to GEO, and to distant destinations in the solar system. Such tethering of the Space Station would not only require additional power for electric propulsion but also would so increase nuclear safety that nuclear powerplants might provide this power. From an 8000-kWt SP-100 reactor, thermoelectric power generation could produce 300 kWe, or adapted solar-Brayton cycle, 2400 to 2800 kWe.

  20. Astrophysical payload accommodation on the space station

    NASA Technical Reports Server (NTRS)

    Woods, B. P.

    1985-01-01

    Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.

  1. Pointing requirements for space station science

    NASA Technical Reports Server (NTRS)

    Paddack, S. J.

    1983-01-01

    It appears that man's next evolutionary step in spaceflight will involve his permanent presence in space with a station in earth orbit. For the purpose of discussing pointing requirements for science and applications studies, a space station with certain characteristics is considered, taking into account a low earth orbit station. It is assumed that the space station will be a system with a permanently manned core facility for conducting science, applications, and technical activities in space. Certain problems can best be solved by utilizing platforms or associated free flying spacecraft which would be part of the space station system, but not part of the space station core. Four classes of pointing requirements are defined, including those which can be satisfied by directly using the space station core, two classes which can be satisfied by gimbal systems, and finally a class which can be satisfied by making use of associated free flying spacecraft or platforms.

  2. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  3. Timber Mountain Precipitation Monitoring Station

    SciTech Connect

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in

  4. Pacific area data collection stations

    NASA Technical Reports Server (NTRS)

    Rector, R. C.

    1983-01-01

    The installation of environmental data collection systems at several remotely located sites in islands in the Pacific Ocean is summarized. The effort was designed to enhance the ability to collect hydrological information. The data collection station consists of a data acquisition system for handling data, a transmitter for uplinking information to the GOES-W geostationary satellite, and a variety of environmental sensors for data accumulation. Each system was assembled, tested, and deployed on designated islands. The concept of using microprocessors for handling data at remote sites and relaying it via a satellite link is a cost effective approach. Such systems require high reliability and proven performance in the field.

  5. Space station electrical power system

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Cochran, Thomas H.

    1987-01-01

    The purpose of this paper is to describe the design of the Space Station Electrical Power System. This includes the Photovoltaic and Solar Dynamic Power Modules as well as the Power Management and Distribution System (PMAD). In addition, two programmatic options for developing the Electrical Power System will be presented. One approach is defined as the Enhanced Configuration and represents the results of the Phase B studies conducted by the NASA Lewis Research Center over the last two years. Another option, the Phased Program, represents a more measured approach to reaching about the same capability as the Enhanced Configuration.

  6. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees for access to the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  7. International Space Station - Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown opened for installation of burn specimens. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  8. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  9. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  10. MRDIS Standalone Central Alarm Station

    SciTech Connect

    2012-09-12

    The MRDIS Standalone Central Alarm Station(MRDIS-CAS} is a software system for receiving, storing, and reviewing radiation data collected by the Mobile Radiation Detection and Identification System (MRDIS}, a mobile radiation scanning system developed for use in foreign ports for the DOE Megaports Initiative. It is designed to run on one of the on board computers in the MRDIS cab. It will collect, store, and display data from the MRDIS without the need for wireless communications or centralized server technology. It is intended to be a lightweight replacement for a distributed Megaports communication system in ports where the necessary communications infrastructure does not exist for a full Megaports communications system.

  11. Levels at streamflow gaging stations

    USGS Publications Warehouse

    Kennedy, E.J.

    1990-01-01

    This manual establishes the surveying procedures for (1) setting gages at a streamflow gaging station to datum and (2) checking the gages periodically for errors caused by vertical movement of the structures that support them. Surveying terms and concepts are explained, and procedures for testing, adjusting, and operating the instruments are described in detail. Notekeeping, adjusting level circuits, checking gages, summarizing results, locating the nearest National Geodetic Vertical Datum of 1929 bench mark, and relating the gage datum to the national datum are also described.

  12. Neutron proton crystallography station (PCS)

    SciTech Connect

    Fisher, Zoe; Kovalevsky, Andrey; Johnson, Hannah; Mustyakimov, Marat

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  13. Browns Ferry waste heat greenhouse environmental control system design

    SciTech Connect

    Olszewski, M.; Stovall, T.K.; Hicks, N.G.; Pile, R.S.; Burns, E.R.; Waddell, E.L. Jr.

    1980-03-01

    Oak Ridge National Laboratory, Tennessee Valley Authority and the Environmental Research Laboratory at the University of Arizona cooperated on the design of an experimental greenhouse located at TVA's Browns Ferry Nuclear Generating Station. Two greenhouse zones are heated by waste heat from the plant's condenser effluent. For comparison, a third greenhouse zone is heated conventionally (fossil-fueled burners) as a control. Design specifics for each of the three zones and a qualitative operating evaluation are presented.

  14. A fuel cell energy storage system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  15. HEAT GENERATION

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1963-12-01

    Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

  16. Heat exchanger

    SciTech Connect

    Drury, C.R.

    1988-02-02

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections.

  17. The analysis of thermal network of district heating system from investor point of view

    NASA Astrophysics Data System (ADS)

    Takács, Ján; Rácz, Lukáš

    2016-06-01

    The hydraulics of a thermal network of a district heating system is a very important issue, to which not enough attention is often paid. In this paper the authors want to point out some of the important aspects of the design and operation of thermal networks in district heating systems. The design boundary conditions of a heat distribution network and the requirements on active pressure - circulation pump - influencing the operation costs of the centralized district heating system as a whole, are analyzed in detail. The heat generators and the heat exchange stations are designed according to the design heat loads after thermal insulation, and modern boiler units are installed in the heating plant.

  18. Space Station Biological Research Project.

    PubMed

    Johnson, C C; Wade, C E; Givens, J J

    1997-06-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  19. Interferometer for Space Station Windows

    NASA Technical Reports Server (NTRS)

    Hall, Gregory

    2003-01-01

    Inspection of space station windows for micrometeorite damage would be a difficult task insitu using current inspection techniques. Commercially available optical profilometers and inspection systems are relatively large, about the size of a desktop computer tower, and require a stable platform to inspect the test object. Also, many devices currently available are designed for a laboratory or controlled environments requiring external computer control. This paper presents an approach using a highly developed optical interferometer to inspect the windows from inside the space station itself using a self- contained hand held device. The interferometer would be capable as a minimum of detecting damage as small as one ten thousands of an inch in diameter and depth while interrogating a relatively large area. The current developmental state of this device is still in the proof of concept stage. The background section of this paper will discuss the current state of the art of profilometers as well as the desired configuration of the self-contained, hand held device. Then, a discussion of the developments and findings that will allow the configuration change with suggested approaches appearing in the proof of concept section.

  20. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wade, C. E.; Givens, J. J.

    1997-01-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  1. International Space Station technology demonstrations

    NASA Astrophysics Data System (ADS)

    Holt, Alan C.

    1998-01-01

    The International Space Station (ISS) has the capability to test and demonstrate, and otherwise assist in the development and validation, of a wide range of advanced technologies. Technology tests and demonstrations for advanced communication systems, closed-loop environmental control systems, advanced power storage and generation systems, advanced electric and electromagnetic propulsion systems, and others are being assessed for inclusion in an ISS Pre-Planned Program Improvement (P3I), Technology/Improvement Roadmap. The P3I roadmap is an integrated set of technology and improvement requirements for: (1) ISS subsystem upgrades and improvements (addressing maintenance, logistics, sustainability, and enhancement functions), (2) payload hardware technology infusion, (3) ISS/Exploration technology development and tests (dual use/benefits), and (4) Engineering Research and Technology payloads. As examples of the International Space Station's technology testbed capabilities, implementation approaches for three types of propulsion technology demonstrations and research are described: (1) electric and electromagnetic propulsion technologies and systems (NASA Lewis Research Center), (2) technologies and sub-systems for a variable specific impulse (Isp), magnetoplasma rocket (VASIMR), (Advanced Propulsion Lab, Sonny Carter Training Facility, Houston, Tx), and (3) candidates for innovative, deep space propulsion technology research and demonstrations (projections based on NASA Advanced Space Transportation Program, Propulsion Research and other R.&D activities.).

  2. Test stations: a modular approach

    NASA Astrophysics Data System (ADS)

    Capone, Benjamin R.; Remillard, Paul; Everett, Jonathan E.

    1996-06-01

    Recent requests for test stations to characterize and evaluate thermal and visible imaging systems have shown remarkable similarities. They contain the usual request for target patterns for the measurement of MRTD, NETD, SiTF for the infrared thermal imager and similar patterns for measuring CTF and SNR for the visible imager. The combined systems almost invariably include some type of laser designator/rangefinder in the total package requiring the need for LOS registration among the various individual units. Similarities also exist in that the requests are for large collimator apertures and focal lengths for projecting the desired signals into the unit under test apertures. Diversified Optical Products, Inc. has developed and is continually improving test station hardware and software to provide modularity in design and versatility in operation while satisfying individual test requirements and maintaining low cost. A high emissivity, DSP controlled, high slew rate, low cost, blackbody source with excellent uniformity and stability has been produced to function as the driver for thermal image target projectors. Several types of sources for producing energy in the visible portion of the spectrum have been evaluated. Software for selection of targets, sources, focus and auto- collimation has been developed and tested.

  3. Space Station Facility government estimating

    NASA Technical Reports Server (NTRS)

    Brown, Joseph A.

    1993-01-01

    This new, unique Cost Engineering Report introduces the 800-page, C-100 government estimate for the Space Station Processing Facility (SSPF) and Volume IV Aerospace Construction Price Book. At the January 23, 1991, bid opening for the SSPF, the government cost estimate was right on target. Metric, Inc., Prime Contractor, low bid was 1.2 percent below the government estimate. This project contains many different and complex systems. Volume IV is a summary of the cost associated with construction, activation and Ground Support Equipment (GSE) design, estimating, fabrication, installation, testing, termination, and verification of this project. Included are 13 reasons the government estimate was so accurate; abstract of bids, for 8 bidders and government estimate with additive alternates, special labor and materials, budget comparison and system summaries; and comments on the energy credit from local electrical utility. This report adds another project to our continuing study of 'How Does the Low Bidder Get Low and Make Money?' which was started in 1967, and first published in the 1973 AACE Transaction with 18 ways the low bidders get low. The accuracy of this estimate proves the benefits of our Kennedy Space Center (KSC) teamwork efforts and KSC Cost Engineer Tools which are contributing toward our goals of the Space Station.

  4. Space station operating system study

    NASA Technical Reports Server (NTRS)

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  5. Technologies for space station autonomy

    NASA Technical Reports Server (NTRS)

    Staehle, R. L.

    1984-01-01

    This report presents an informal survey of experts in the field of spacecraft automation, with recommendations for which technologies should be given the greatest development attention for implementation on the initial 1990's NASA Space Station. The recommendations implemented an autonomy philosophy that was developed by the Concept Development Group's Autonomy Working Group during 1983. They were based on assessments of the technologies' likely maturity by 1987, and of their impact on recurring costs, non-recurring costs, and productivity. The three technology areas recommended for programmatic emphasis were: (1) artificial intelligence expert (knowledge based) systems and processors; (2) fault tolerant computing; and (3) high order (procedure oriented) computer languages. This report also describes other elements required for Station autonomy, including technologies for later implementation, system evolvability, and management attitudes and goals. The cost impact of various technologies is treated qualitatively, and some cases in which both the recurring and nonrecurring costs might be reduced while the crew productivity is increased, are also considered. Strong programmatic emphasis on life cycle cost and productivity is recommended.

  6. Infrared heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...

  7. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  8. 47 CFR 80.105 - General obligations of coast stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false General obligations of coast stations. 80.105... Stations § 80.105 General obligations of coast stations. Each coast station or marine-utility station must...) public coast stations may provide fixed or hybrid services on a co-primary basis with mobile operations....

  9. 47 CFR 80.105 - General obligations of coast stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false General obligations of coast stations. 80.105... Stations § 80.105 General obligations of coast stations. Each coast station or marine-utility station must...) public coast stations may provide fixed or hybrid services on a co-primary basis with mobile operations....

  10. 47 CFR 80.105 - General obligations of coast stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false General obligations of coast stations. 80.105... Stations § 80.105 General obligations of coast stations. Each coast station or marine-utility station must...) public coast stations may provide fixed or hybrid services on a co-primary basis with mobile operations....

  11. 47 CFR 80.105 - General obligations of coast stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false General obligations of coast stations. 80.105... Stations § 80.105 General obligations of coast stations. Each coast station or marine-utility station must...) public coast stations may provide fixed or hybrid services on a co-primary basis with mobile operations....

  12. 47 CFR 80.105 - General obligations of coast stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false General obligations of coast stations. 80.105... Stations § 80.105 General obligations of coast stations. Each coast station or marine-utility station must...) public coast stations may provide fixed or hybrid services on a co-primary basis with mobile operations....

  13. The International Space Station Photographed During STS-112 Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S1 (S-One), the Starboard Side Thermal Radiator Truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  14. The International Space Station Photographed During the STS-112 Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The newly added S1 truss is visible in the center frame. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S-1 (S-One), the Starboard Side Thermal Radiator Truss,and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  15. Design of a resistojet for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Garza, Jose; Reisman, Jill; Tapia, Jose; Wright, Anthony

    1993-01-01

    In the mid 1990's, NASA will begin assembly of Space Station Freedom, a permanent outpost in a low-earth orbit. For the station to remain in that orbit, an altitude control system must be developed to resist the effects of atmospheric drag. One system being considered by NASA is called a resistojet, and it uses highly pressurized waste gases heated by electrical resistance to provide thrust on the order of 1 Newton. An additional function of the resistojet is to vent waste gases used by the station and its inhabitants. This report focuses on resolving the issues of system performance, flow and heater control, and materials selection and designing test procedures to resolve, by experimentation, any remaining issues. The conceptual model of the resistojet consists of a shell wrapped by a resistive coil with gases flowing internally through the tube with additional components such as regulators, transducers, and thermocouples. For system performance, the major parameters were calculated from the desired thrust range, the pressure within the resistojet and the cold flow mode of operation; waste gases were analyzed at 100 percent capacity and between 58.95 kPa and 552 kPa. The design team found that any ventilation under all conditions would produce thrust, and therefore, it was decided to limit the design of the ventilation function. The design team proceeded with a simplified model to determine the nozzle throat diameter and chamber diameter.

  16. International Space Station: Expedition 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage of the International Space Station (ISS) presents an inside look at the groundwork and assembly of the ISS. Footage includes both animation and live shots of a Space Shuttle liftoff. Phil West, Engineer; Dr. Catherine Clark, Chief Scientist ISS; and Joe Edwards, Astronaut, narrate the video. The first topic of discussion is People and Communications. Good communication is a key component in our ISS endeavor. Dr. Catherine Clark uses two soup cans attached by a string to demonstrate communication. Bill Nye the Science Guy talks briefly about science aboard the ISS. Charlie Spencer, Manager of Space Station Simulators, talks about communication aboard the ISS. The second topic of discussion is Engineering. Bonnie Dunbar, Astronaut at Johnson Space Flight Center, gives a tour of the Japanese Experiment Module (JEM). She takes us inside Node 2 and the U.S. Lab Destiny. She also shows where protein crystal growth experiments are performed. Audio terminal units are used for communication in the JEM. A demonstration of solar arrays and how they are tested is shown. Alan Bell, Project Manager MRMDF (Mobile Remote Manipulator Development Facility), describes the robot arm that is used on the ISS and how it maneuvers the Space Station. The third topic of discussion is Science and Technology. Dr. Catherine Clark, using a balloon attached to a weight, drops the apparatus to the ground to demonstrate Microgravity. The bursting of the balloon is observed. Sherri Dunnette, Imaging Technologist, describes the various cameras that are used in space. The types of still cameras used are: 1) 35 mm, 2) medium format cameras, 3) large format cameras, 4) video cameras, and 5) the DV camera. Kumar Krishen, Chief Technologist ISS, explains inframetrics, infrared vision cameras and how they perform. The Short Arm Centrifuge is shown by Dr. Millard Reske, Senior Life Scientist, to subject astronauts to forces greater than 1-g. Reske is interested in the physiological effects of

  17. STRUVE arc and EUPOS® stations

    NASA Astrophysics Data System (ADS)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana

    2013-04-01

    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  18. Maintenance evaluation for space station liquid systems

    NASA Technical Reports Server (NTRS)

    Flugel, Charles

    1987-01-01

    Many of the thermal and environmental control life support subsystems as well as other subsystems of the space station utilize various liquids and contain components which are either expendables or are life-limited in some way. Since the space station has a 20-year minimum orbital lifetime requirement, there will also be random failures occurring within the various liquid-containing subsystems. These factors as well as the planned space station build-up sequence require that maintenance concepts be developed prior to the design phase. This applies to the equipment which needs maintenance as well as the equipment which may be required at a maintenance work station within the space station. This paper presents several maintenance concepts for liquid-containing items and a flight experiment program which would allow for evaluation and improvement of these concepts so they can be incorporated in the space station designs at the outset of its design phase.

  19. Earth stations for fixed and mobile services

    NASA Astrophysics Data System (ADS)

    Charyk, J. V.; Metzger, S.

    1984-07-01

    Communication service provided with the aid of commercial satellites began 18 years ago with the launch of Early Bird (Inselsat I). The present investigation is concerned with the evolution of the earth stations used in the Intelsat system, taking into account the technical, political, and operational factors which have influenced the design of the stations. The success of the Intelsat system led to the use of communication satellites for domestic, maritime, and direct broadcast use. More than 2000 commercial ships communicate via satellite, and by the end of the 1980s, there should be missions of home receivers for direct broadcast satellite television reception. Fixed international service stations are discussed, taking into account overall considerations, antennas, high power amplifiers, low noise amplifiers, multiplex systems, and small earth stations. Attention is also given to fixed domestic service stations, direct broadcast stations, and maritime service.

  20. Raising the AIQ of the Space Station

    NASA Technical Reports Server (NTRS)

    Lum, Henry; Heer, Ewald

    1987-01-01

    Expert systems and robotics technologies are to be significantly advanced during the Space Station program. Artificial intelligence systems (AI) on the Station will include 'scars', which will permit upgrading the AI capabilities as the Station evolves to autonomy. NASA-Ames is managing the development of the AI systems through a series of demonstrations, the first, controlling a single subsystem, to be performed in 1988. The capabilities being integrated into the first demonstration are described; however, machine learning and goal-driven natural language understanding will not reach a prototype stage until the mid-1990s. Steps which will be taken to endow the computer systems with the ability to move from heuristic reasoning to factual knowledge, i.e., learning from experience, are explored. It is noted that the development of Space Station expert systems depends on the development of experts in Station operations, which will not happen until the Station has been used extensively by crew members.

  1. 47 CFR 80.1119 - Receipt and acknowledgement of distress alerts by coast stations and coast earth stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by coast stations and coast earth stations. 80.1119 Section 80.1119 Telecommunication FEDERAL... § 80.1119 Receipt and acknowledgement of distress alerts by coast stations and coast earth stations. (a... for coast stations.) (b) Coast earth stations in receipt of distress alerts must ensure that they...

  2. 47 CFR 80.1119 - Receipt and acknowledgement of distress alerts by coast stations and coast earth stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by coast stations and coast earth stations. 80.1119 Section 80.1119 Telecommunication FEDERAL... § 80.1119 Receipt and acknowledgement of distress alerts by coast stations and coast earth stations. (a... for coast stations.) (b) Coast earth stations in receipt of distress alerts must ensure that they...

  3. 47 CFR 80.1119 - Receipt and acknowledgement of distress alerts by coast stations and coast earth stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... by coast stations and coast earth stations. 80.1119 Section 80.1119 Telecommunication FEDERAL... § 80.1119 Receipt and acknowledgement of distress alerts by coast stations and coast earth stations. (a... for coast stations.) (b) Coast earth stations in receipt of distress alerts must ensure that they...

  4. 47 CFR 80.1119 - Receipt and acknowledgement of distress alerts by coast stations and coast earth stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by coast stations and coast earth stations. 80.1119 Section 80.1119 Telecommunication FEDERAL... § 80.1119 Receipt and acknowledgement of distress alerts by coast stations and coast earth stations. (a... for coast stations.) (b) Coast earth stations in receipt of distress alerts must ensure that they...

  5. 47 CFR 80.1119 - Receipt and acknowledgement of distress alerts by coast stations and coast earth stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... by coast stations and coast earth stations. 80.1119 Section 80.1119 Telecommunication FEDERAL... § 80.1119 Receipt and acknowledgement of distress alerts by coast stations and coast earth stations. (a... for coast stations.) (b) Coast earth stations in receipt of distress alerts must ensure that they...

  6. Space Station truss structures and construction considerations

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Croomes, S. D.; Schneider, W.; Bush, H. G.; Nagy, K.; Pelischek, T.; Lake, M. S.; Wesselski, C.

    1985-01-01

    Although a specific configuration has not been selected for the Space Station, a gravity gradient stabilized station as a basis upon which to compare various structural and construction concepts is considered. The Space Station primary truss support structure is described in detail. Three approaches (see sketch A) which are believed to be representative of the major techniques for constructing large structures in space are also described in detail so that salient differences can be highlighted.

  7. Status of space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.; Sheibley, Dean W.

    1987-01-01

    The major requirements and guidelines that affect the manned space station configuration and the power systems are explained. The evolution of the space station power system from the NASA program development feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. The recently completed phase B tradeoff study selections of photovoltaic system technologies are described. The present solar dynamic and power management and distribution systems are also summarized for completeness.

  8. Space Station Freedom Utilization Conference: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.

  9. Space Station end effector strategy study

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Jensen, Robert L.; Willshire, Kelli F.; Satterthwaite, Robert E.

    1987-01-01

    The results of a study are presented for terminology definition, identification of functional requirements, technolgy assessment, and proposed end effector development strategies for the Space Station Program. The study is composed of a survey of available or under-developed end effector technology, identification of requirements from baselined Space Station documents, a comparative assessment of the match between technology and requirements, and recommended strategies for end effector development for the Space Station Program.

  10. Space Station Freedom Utilization Conference. Executive summary

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Freedom Utilization Conference was held on 3-6 Aug. 1992 in Huntsville, Alabama. The purpose of the conference was to bring together prospective space station researchers and the people in NASA and industry with whom they would be working to exchange information and discuss plans and opportunities for space station research. Topics covered include: research capabilities; research plans and opportunities; life sciences research; technology research; and microgravity research and biotechnology.

  11. Space Station thermal storage/refrigeration system research and development

    NASA Astrophysics Data System (ADS)

    Dean, W. G.; Karu, Z. S.

    1993-02-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  12. Space Station thermal storage/refrigeration system research and development

    NASA Technical Reports Server (NTRS)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  13. Station Program Note Pull Automation

    NASA Technical Reports Server (NTRS)

    Delgado, Ivan

    2016-01-01

    Upon commencement of my internship, I was in charge of maintaining the CoFR (Certificate of Flight Readiness) Tool. The tool acquires data from existing Excel workbooks on NASA's and Boeing's databases to create a new spreadsheet listing out all the potential safety concerns for upcoming flights and software transitions. Since the application was written in Visual Basic, I had to learn a new programming language and prepare to handle any malfunctions within the program. Shortly afterwards, I was given the assignment to automate the Station Program Note (SPN) Pull process. I developed an application, in Python, that generated a GUI (Graphical User Interface) that will be used by the International Space Station Safety & Mission Assurance team here at Johnson Space Center. The application will allow its users to download online files with the click of a button, import SPN's based on three different pulls, instantly manipulate and filter spreadsheets, and compare the three sources to determine which active SPN's (Station Program Notes) must be reviewed for any upcoming flights, missions, and/or software transitions. Initially, to perform the NASA SPN pull (one of three), I had created the program to allow the user to login to a secure webpage that stores data, input specific parameters, and retrieve the desired SPN's based on their inputs. However, to avoid any conflicts with sustainment, I altered it so that the user may login and download the NASA file independently. After the user has downloaded the file with the click of a button, I defined the program to check for any outdated or pre-existing files, for successful downloads, to acquire the spreadsheet, convert it from a text file to a comma separated file and finally into an Excel spreadsheet to be filtered and later scrutinized for specific SPN numbers. Once this file has been automatically manipulated to provide only the SPN numbers that are desired, they are stored in a global variable, shown on the GUI, and

  14. Preparing EMU for Space Station.

    PubMed

    Wilde, R C

    1995-07-01

    In today's fiscally constrained environment, it can be expected that systems designed for one space program will increasingly be used to support other programs. The example of the U.S. extravehicular mobility unit (EMU), designed for use with the Space Shuttle, and now part of the baseline for the International Space Station (ISS) program, illustrates the adaption process. Certifying the Shuttle's EMU for use aboard ISS requires addressing three fundamental issues: Identifying new ISS requirements to be imposed on the EMU. Extending Shuttle's EMU on-orbit service interval to meet ISS's longer missions. Certifying Shuttle's EMU to meet new environments unique to ISS. Upon completion of the certification process, Shuttle's EMU will meet all requirements for supporting both the Shuttle and ISS program. This paper discusses the processes for addressing these issues and progress to date in achieving resolution.

  15. The International Space Station Habitat

    NASA Technical Reports Server (NTRS)

    Watson, Patricia Mendoza; Engle, Mike

    2003-01-01

    The International Space Station (ISS) is an engineering project unlike any other. The vehicle is inhabited and operational as construction goes on. The habitability resources available to the crew are the crew sleep quarters, the galley, the waste and hygiene compartment, and exercise equipment. These items are mainly in the Russian Service Module and their placement is awkward for the crew to deal with ISS assembly will continue with the truss build and the addition of International Partner Laboratories. Also, Node 2 and 3 will be added. The Node 2 module will provide additional stowage volume and room for more crew sleep quarters. The Node 3 module will provide additional Environmental Control and Life Support Capability. The purpose of the ISS is to perform research and a major area of emphasis is the effects of long duration space flight on humans, a result of this research they will determine what are the habitability requirements for long duration space flight.

  16. Space Station Freedom operations planning

    NASA Technical Reports Server (NTRS)

    Accola, Anne L.; Keith, Bryant

    1989-01-01

    The Space Station Freedom program is developing an operations planning structure which assigns responsibility for planning activities to three tiers of management. The strategic level develops the policy, goals and requirements for the program over a five-year horizon. Planning at the tactical level emphasizes program integration and planning for a two-year horizon. The tactical planning process, architecture, and products have been documented and discussed with the international partners. Tactical planning includes the assignment of user and system hardware as well as significant operational events to a time increment (the period of time from the arrival of one Shuttle to the manned base to the arrival of the next). Execution-level planning emphasizes implementation, and each organization produces detailed plans, by increment, that are specific to its function.

  17. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.; Hargens, Alan R.; Wade, Charles E.

    1995-01-01

    NASA Ames Research Center is responsible for the development of the Space Station Biological Research Project (SSBRP) which will support non-human life sciences research on the International Space Station Alpha (ISSA). The SSBRP is designed to support both basic research to understand the effect of altered gravity fields on biological systems and applied research to investigate the effects of space flight on biological systems. The SSBRP will provide the necessary habitats to support avian and reptile eggs, cells and tissues, plants and rodents. In addition a habitat to support aquatic specimens will be provided by our international partners. Habitats will be mounted in ISSA compatible racks at u-g and will also be mounted on a 2.5 m diameter centrifuge except for the egg incubator which has an internal centrifuge. The 2.5 m centrifuge will provide artificial gravity levels over the range of 0.01 G to 2 G. The current schedule is to launch the first rack in 1999, the Life Sciences glovebox and a second rack early in 2001, a 4 habitat 2.5 in centrifuge later the same year in its own module, and to upgrade the centrifuge to 8 habitats in 2004. The rodent habitats will be derived from the Advanced Animal Habitat currently under development for the Shuttle program and will be capable of housing either rats or mice individually or in groups (6 rats/group and at least 12 mice/group). The egg incubator will be an upgraded Avian Development Facility also developed for the Shuttle program through a Small Business and Innovative Research grant. The Space Tissue Loss cell culture apparatus, developed by Walter Reed Army Institute of Research, is being considered for the cell and tissue culture habitat. The Life Sciences Glovebox is crucial to all life sciences experiments for specimen manipulation and performance of science procedures. It will provide two levels of containment between the work volume and the crew through the use of seals and negative pressure. The glovebox

  18. MRDIS Standalone Central Alarm Station

    2012-09-12

    The MRDIS Standalone Central Alarm Station(MRDIS-CAS} is a software system for receiving, storing, and reviewing radiation data collected by the Mobile Radiation Detection and Identification System (MRDIS}, a mobile radiation scanning system developed for use in foreign ports for the DOE Megaports Initiative. It is designed to run on one of the on board computers in the MRDIS cab. It will collect, store, and display data from the MRDIS without the need for wireless communicationsmore » or centralized server technology. It is intended to be a lightweight replacement for a distributed Megaports communication system in ports where the necessary communications infrastructure does not exist for a full Megaports communications system.« less

  19. Bioisolation on the Space Station

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.; Arno, Roger D.; Kishiyama, Jenny S.; Johnson, Catherine C.

    1988-01-01

    Animal research on the Space Station presents the need for bioisolation, which is here defined as instrumental and operational provisions, which will prevent the exchange of particles greater than 0.3-micron size and microorganisms between crew and animals. Current design principles for the Biological Research Project thus call for: (1) use of specific pathogen-free animals; (2) keeping animals at all times in enclosed habitats, provided with microbial filters and a waste collection system; (3) placing habitats in a holding rack, centrifuge, and workbench, all equipped with particulate and odor filters, (4) washing dirty cage units in an equipment cleaner, with treatment and recycling of the water; (5) designing components and facilities so as to ensure maximal accessibility for cleaning; and (6) defining suitable operational procedures. Limited ground tests of prototype components indicate that proper bioisolation can thus be achieved.

  20. Preparing EMU for Space Station.

    PubMed

    Wilde, R C

    1995-07-01

    In today's fiscally constrained environment, it can be expected that systems designed for one space program will increasingly be used to support other programs. The example of the U.S. extravehicular mobility unit (EMU), designed for use with the Space Shuttle, and now part of the baseline for the International Space Station (ISS) program, illustrates the adaption process. Certifying the Shuttle's EMU for use aboard ISS requires addressing three fundamental issues: Identifying new ISS requirements to be imposed on the EMU. Extending Shuttle's EMU on-orbit service interval to meet ISS's longer missions. Certifying Shuttle's EMU to meet new environments unique to ISS. Upon completion of the certification process, Shuttle's EMU will meet all requirements for supporting both the Shuttle and ISS program. This paper discusses the processes for addressing these issues and progress to date in achieving resolution. PMID:11541316