Science.gov

Sample records for station iss leak

  1. Implementation of Leak Test Methods for the International Space Station (ISS) Elements, Systems and Components

    NASA Technical Reports Server (NTRS)

    Underwood, Steve; Lvovsky, Oleg

    2007-01-01

    The International Space Station (ISS has Qualification and Acceptance Environmental Test Requirements document, SSP 41172 that includes many environmental tests such as Thermal vacuum & Cycling, Depress/Repress, Sinusoidal, Random, and Acoustic Vibration, Pyro Shock, Acceleration, Humidity, Pressure, Electromatic Interference (EMI)/Electromagnetic Compatibility (EMCO), etc. This document also includes (13) leak test methods for Pressure Integrity Verification of the ISS Elements, Systems, and Components. These leak test methods are well known, however, the test procedure for specific leak test method shall be written and implemented paying attention to the important procedural steps/details that, if omitted or deviated, could impact the quality of the final product and affect the crew safety. Such procedural steps/details for different methods include, but not limited to: - Sequence of testing, f or example, pressurization and submersion steps for Method I (Immersion); - Stabilization of the mass spectrometer leak detector outputs fo r Method II (vacuum Chamber or Bell jar); - Proper data processing an d taking a conservative approach while making predictions for on-orbit leakage rate for Method III(Pressure Change); - Proper Calibration o f the mass spectrometer leak detector for all the tracer gas (mostly Helium) Methods such as Method V (Detector Probe), Method VI (Hood), Method VII (Tracer Probe), Method VIII(Accumulation); - Usage of visibl ility aides for Method I (Immersion), Method IV (Chemical Indicator), Method XII (Foam/Liquid Application), and Method XIII (Hydrostatic/Visual Inspection); While some methods could be used for the total leaka ge (either internal-to-external or external-to-internal) rate requirement verification (Vacuum Chamber, Pressure Decay, Hood, Accumulation), other methods shall be used only as a pass/fail test for individual joints (e.g., welds, fittings, and plugs) or for troubleshooting purposes (Chemical Indicator, Detector Probe

  2. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  3. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  4. The ISS 2B PVTCS Ammonia Leak: An Operational History

    NASA Technical Reports Server (NTRS)

    Vareha, Anthony

    2014-01-01

    In 2006, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B power channel began leaking ammonia at a rate of approximately 1.5lbm/year (out of a starting approximately 53lbm system ammonia mass). Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity during the STS-134 mission. During this mission the system was topped off with ammonia piped over from a separate thermal control system. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. Without these periodic EVAs to refill the 2B coolant system, the channel would eventually leak enough fluid as to risk pump cavitation and system failure, resulting in the loss of the 2B power channel - the most critical of the Space Station's 8 power channels. In mid-2012, the leak rate increased to approximately 5lbm/year. Once discovered, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to a dormant thermal control system not intended to be utilized as anything other than spare components. The purpose of this rerouting of the TCS was to increase system volume and to isolate the photovoltaic radiator, thought to be the likely leak source. This EVA was successfully executed on November 1st, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a totally different radiator than what the system was designed to utilize. Unfortunately, data monitoring over the next several months showed that the isolated radiator was not leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the

  5. ISS Update: ISS Flight Director Royce Renfrew Talks Station "Stuff"

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Space Station Flight Director Royce Renfrew, who talks about ISS crew activities, Robonaut, ATV-3 cargo and other "stuff." Questions? Ask us on...

  6. Modeling International Space Station (ISS) Floating Potentials

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Gardner, Barbara

    2002-01-01

    The floating potential of the International Space Station (ISS) as a function of the electron current collection of its high voltage solar array panels is derived analytically. Based on Floating Potential Probe (FPP) measurements of the ISS potential and ambient plasma characteristics, it is shown that the ISS floating potential is a strong function of the electron temperature of the surrounding plasma. While the ISS floating potential has so far not attained the pre-flight predicted highly negative values, it is shown that for future mission builds, ISS must continue to provide two-fault tolerant arc-hazard protection for astronauts on EVA.

  7. Modeling International Space Station (ISS) Floating Potentials

    NASA Astrophysics Data System (ADS)

    Ferguson, Dale C.; Gardner, Barbara

    2002-05-01

    The floating potential of the International Space Station (ISS) as a function of the electron current collection of its high voltage solar array panels is derived analytically. Based on Floating Potential Probe (FPP) measurements of the ISS potential and ambient plasma characteristics, it is shown that the ISS floating potential is a strong function of the electron temperature of the surrounding plasma. While the ISS floating potential has so far not attained the pre-flight predicted highly negative values, it is shown that for future mission builds, ISS must continue to provide two-fault tolerant arc-hazard protection for astronauts on EVA.

  8. International Space Station (ISS) Emergency Mask (EM) Development

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Hahn, Jeffrey; Fowler, Michael; Young, Kevin

    2011-01-01

    The Emergency Mask (EM) is considered a secondary response emergency Personal Protective Equipment (PPE) designed to provide respiratory protection to the International Space Station (ISS) crewmembers in response to a post-fire event or ammonia leak. The EM is planned to be delivered to ISS in 2012 to replace the current air purifying respirator (APR) onboard ISS called the Ammonia Respirator (AR). The EM is a one ]size ]fits ]all model designed to fit any size crewmember, unlike the APR on ISS, and uses either two Fire Cartridges (FCs) or two Commercial Off-the-Shelf (COTS) 3M(Trademark). Ammonia Cartridges (ACs) to provide the crew with a minimum of 8 hours of respiratory protection with appropriate cartridge swap ]out. The EM is designed for a single exposure event, for either post ]fire or ammonia, and is a passive device that cannot help crewmembers who cannot breathe on their own. The EM fs primary and only seal is around the wearer fs neck to prevent a crewmember from inhaling contaminants. During the development of the ISS Emergency Mask, several design challenges were faced that focused around manufacturing a leak free mask. The description of those challenges are broadly discussed but focuses on one key design challenge area: bonding EPDM gasket material to Gore(Registered Trademark) fabric hood.

  9. International Space Station (ISS) Anomalies Trending Study

    NASA Technical Reports Server (NTRS)

    Beil, Robert J.; Brady, Timothy K.; Foster, Delmar C.; Graber, Robert R.; Malin, Jane T.; Thornesbery, Carroll G.; Throop, David R.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) set out to utilize data mining and trending techniques to review the anomaly history of the International Space Station (ISS) and provide tools for discipline experts not involved with the ISS Program to search anomaly data to aid in identification of areas that may warrant further investigation. Additionally, the assessment team aimed to develop an approach and skillset for integrating data sets, with the intent of providing an enriched data set for discipline experts to investigate that is easier to navigate, particularly in light of ISS aging and the plan to extend its life into the late 2020s. This report contains the outcome of the NESC Assessment.

  10. Analytical and experimental studies of leak location and environment characterization for the international space station

    NASA Astrophysics Data System (ADS)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; de Garcia, Kristina Montt; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-12-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbm//yr. to about 1 lbm/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  11. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb-mass/yr. to about 1 lb-mass/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  12. Analytical and experimental studies of leak location and environment characterization for the international space station

    SciTech Connect

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin; Abel, Joshua; Hawk, Doug; Autrey, David; Glenn, Jodie; Bond, Tim; Buffington, Jesse; Cheng, Edward; Ma, Jonathan; Rossetti, Dino; DeLatte, Danielle; Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Tull, Kimathi; Warren, Eric

    2014-12-09

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  13. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.; Abel, Joshua C.; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; de Garcia, Kristina Montt; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system.An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (directionality).The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbmyr. to about 1 lbmday. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ramwake flows and structural shadowing within low Earth orbit.

  14. Filter Efficiency and Leak Testing of Returned ISS Bacterial Filter Elements After 2.5 Years of Continuous Operation

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    The atmosphere revitalization equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provides the vital functions of maintaining a habitable environment for the crew as well as protecting the hardware from fouling by suspended particulate matter. Providing these functions are challenging in pressurized spacecraft cabins because no outside air ventilation is possible and a larger particulate load is imposed on the filtration system due to lack of sedimentation in reduced gravity conditions. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) filters deployed at multiple locations in each module. These filters are referred to as Bacteria Filter Elements (BFEs). As more experience has been gained with ISS operations, the BFE service life, which was initially one year, has been extended to two to five years, dependent on the location in the U.S. Segment. In previous work we developed a test facility and test protocol for leak testing the ISS BFEs. For this work, we present results of leak testing a sample set of returned BFEs with a service life of 2.5 years, along with particulate removal efficiency and pressure drop measurements. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS to 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  15. Impacts of an Ammonia Leak on the Cabin Atmosphere of the International Space Station

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie M.; Sweterlitsch, Jeffrey J.; Son, Chang H.; Perry Jay L.

    2012-01-01

    Toxic chemical release into the cabin atmosphere is one of the three major emergency scenarios identified on the International Space Station (ISS). The release of anhydrous ammonia, the coolant used in the U.S. On-orbit Segment (USOS) External Active Thermal Control Subsystem (EATCS), into the ISS cabin atmosphere is one of the most serious toxic chemical release cases identified on board ISS. The USOS Thermal Control System (TCS) includes an Internal Thermal Control Subsystem (ITCS) water loop and an EATCS ammonia loop that transfer heat at the interface heat exchanger (IFHX). Failure modes exist that could cause a breach within the IFHX. This breach would result in high pressure ammonia from the EATCS flowing into the lower pressure ITCS water loop. As the pressure builds in the ITCS loop, it is likely that the gas trap, which has the lowest maximum design pressure within the ITCS, would burst and cause ammonia to enter the ISS atmosphere. It is crucial to first characterize the release of ammonia into the ISS atmosphere in order to develop methods to properly mitigate the environmental risk. This paper will document the methods used to characterize an ammonia leak into the ISS cabin atmosphere. A mathematical model of the leak was first developed in order to define the flow of ammonia into the ISS cabin atmosphere based on a series of IFHX rupture cases. Computational Fluid Dynamics (CFD) methods were then used to model the dispersion of the ammonia throughout the ISS cabin and determine localized effects and ventilation effects on the dispersion of ammonia. Lastly, the capabilities of the current on-orbit systems to remove ammonia were reviewed and scrubbing rates of the ISS systems were defined based on the ammonia release models. With this full characterization of the release of ammonia from the USOS TCS, an appropriate mitigation strategy that includes crew and system emergency response procedures, personal protection equipment use, and atmosphere monitoring

  16. Impacts of an Ammonia Leak on the Cabin Atmosphere of the International Space Station

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie M.; Sweterlitsch, Jeff J.; Son, Chang H.; Perry, Jay L.

    2011-01-01

    Toxic chemical release into the cabin atmosphere is one of the three major emergency scenarios identified on the International Space Station (ISS). The release of anhydrous ammonia, the coolant used in the U.S. On-orbit Segment (USOS) External Active Thermal Control Subsystem (EATCS), into the ISS cabin atmosphere is one of the most serious toxic chemical release cases identified on board ISS. The USOS Thermal Control System (TCS) includes an Internal Thermal Control Subsystem (ITCS) water loop and an EATCS ammonia loop that transfer heat at the interface heat exchanger (IFHX). Failure modes exist that could cause a breach within the IFHX. This breach would result in high pressure ammonia from the EATCS flowing into the lower pressure ITCS water loop. As the pressure builds in the ITCS loop, it is likely that the gas trap, which has the lowest maximum design pressure within the ITCS, would burst and cause ammonia to enter the ISS atmosphere. It is crucial to first characterize the release of ammonia into the ISS atmosphere in order to develop methods to properly mitigate the environmental risk. This paper will document the methods used to characterize an ammonia leak into the ISS cabin atmosphere. A mathematical model of the leak was first developed in order to define the flow of ammonia into the ISS cabin atmosphere based on a series of IFHX rupture cases. Computational Fluid Dynamics (CFD) methods were then used to model the dispersion of the ammonia throughout the ISS cabin and determine localized effects and ventilation effects on the dispersion of ammonia. Lastly, the capabilities of the current on-orbit systems to remove ammonia were reviewed and scrubbing rates of the ISS systems were defined based on the ammonia release models. With this full characterization of the release of ammonia from the USOS TCS, an appropriate mitigation strategy that includes crew and system emergency response procedures, personal protection equipment use, and atmosphere monitoring

  17. International Space Station (ISS) Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Fodroci, Michael

    2011-01-01

    As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the ISS requirements and initial design were intended to provide the best practicable levels of safety, it is always possible to reduce risk -- given the determination and commitment to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS. While decades of work went into developing the ISS requirements, there are many things in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: (1) Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) (2) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity Level 4 materials, emergency hardware and procedures) (3) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards) Due to the hard work and cooperation of many parties working together across the span of nearly a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery.

  18. Development and Certification of Ultrasonic Background Noise Test (UBNT) System for use on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Madaras, Eric I.

    2011-01-01

    As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment

  19. Payload Operations Center (POC) for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  20. Payload Operations Center (POC) for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating in the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  1. International Space Station (ISS) Configuration Post STS-120 Mission

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Back dropped by the blackness of space and Earth's horizon is the International Space Station (ISS) as seen from Space Shuttle Discovery as the two spacecraft begin their relative separation. The latest configuration of the ISS includes the Italian-built U.S. Node 2, named Harmony, and the P6 truss segment installed over 11 days of cooperative work onboard the shuttle and station by the STS-120 and Expedition 16 crews. Undocking of the two spacecraft occurred at 4:32 a.m. (CST) on Nov. 5, 2007.

  2. International Space Station (ISS) Configuration Post STS-120 Mission

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Back dropped by the blackness of space is the International Space Station (ISS) as seen from Space Shuttle Discovery as the two spacecraft begin their relative separation. The latest configuration of the ISS includes the Italian-built U.S. Node 2, named Harmony, and the P6 truss segment installed over 11 days of cooperative work onboard the shuttle and station by the STS-120 and Expedition 16 crews. Undocking of the two spacecraft occurred at 4:32 a.m. (CST) on Nov. 5, 2007.

  3. International Space Station (ISS) Configuration Post STS-120 Mission

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Back dropped by the blueness of Earth is the International Space Station (ISS) as seen from Space Shuttle Discovery as the two spacecraft begin their relative separation. The latest configuration of the ISS includes the Italian-built U.S. Node 2, named Harmony, and the P6 truss segment installed over 11 days of cooperative work onboard the shuttle and station by the STS-120 and Expedition 16 crews. Undocking of the two spacecraft occurred at 4:32 a.m. (CST) on Nov. 5, 2007.

  4. ISS Update: Preparing to Leave the Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews NASA astronaut Mike Fossum about his time as commander of the International Space Station's Expedition 29 crew, including his preparations for ...

  5. Space Station Live: ISS Communications Unit Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters interviews International Space Station Flight Director Mike Lammers about the recent Ku communications unit upgrade work taking place aboard th...

  6. ISS Update: Earth Observations From Space Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Cynthia Evans, Space Station Associate Program Scientist for Earth Observations, as NASA prepares to celebrate Earth Day. Evans discusses the t...

  7. The International Space Station 2B Photovoltaic Thermal Control System (PVTCS) Leak: An Operational History

    NASA Technical Reports Server (NTRS)

    Vareha, Anthony N.

    2014-01-01

    As early as 2004, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B electrical power channel began slowly leaking ammonia overboard. Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity (EVA) during the STS-134 Space Shuttle mission. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. In mid-2012, the leak rate increased from 1.5lbm/year to approximately 5lbm/year. As a result, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to an adjacent dormant thermal control system. This EVA, US EVA 20, was successfully executed on November 1, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a different radiator than what the system was designed to utilize. Data monitoring over the next several months showed that the isolated radiator had not been leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the crew noticing the leak, US EVA 21 was in progress to replace the coolant pump - the only remaining replaceable leak source. This was successful, and telemetry monitoring has shown that indeed the coolant pump was the leak source and was thus isolated from the running 2B PVTCS. This paper will explore the management of the 2B PVTCS leak from the operations perspective.

  8. Measurements of Neutron Radiation on the International Space Station: ISS-34 to ISS-40

    NASA Astrophysics Data System (ADS)

    Smith, Martin

    Radiation protection associated with human spaceflight is an important issue that becomes more vital as both the length of the mission and the distance from Earth increase. Radiation in deep space is a mixed field due to galactic cosmic rays (GCRs) and solar particle events (SPEs). In low-Earth orbit (LEO), protons and electrons trapped in the Van Allen radiation belts also make a major contribution to the radiation field. Neutrons encountered in LEO, for example on the International Space Station (ISS), are produced by nuclear interactions of GCRs and trapped protons with various elements in the walls and interior components of the spacecraft, and by neutron albedo after GCRs are incident on the Earth’s atmosphere. Previous investigations using bubble detectors (on Russian satellites, the Mir space station, the space shuttle, and the ISS) have shown that neutrons contribute significantly to the total biologically-equivalent radiation dose received by astronauts. As part of the ongoing Matroshka-R experiment, bubble detectors have been used to characterize neutron radiation on the ISS, starting with the ISS-13 mission in 2006. Two types of bubble detectors have been used for these experiments, namely space personal neutron dosimeters (SPNDs) and the space bubble-detector spectrometer (SBDS). The SBDS is a set of six detectors with different energy thresholds, which is used to determine the neutron energy spectrum. During the ISS-34 to ISS-40 expeditions (2012 - 2014) bubble detectors were used in both the US Orbital Segment (USOS) and the Russian segment of the ISS. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, started during ISS-34 and included repeated measurements in four USOS modules: Columbus, the Japanese Experiment Module, the US Laboratory, and Node 2. Parallel experiments using a second set of detectors in the Russian segment included the first characterization of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom

  9. The International Space Station (ISS) Education Accomplishments and Opportunities

    NASA Technical Reports Server (NTRS)

    Alleyne, Camille W.; Blue, Regina; Mayo, Susan

    2012-01-01

    The International Space Station (ISS) has the unique ability to capture the imaginations of both students and teachers worldwide and thus stands as an invaluable learning platform for the advancement of proficiency in research and development and education. The presence of humans on board ISS for the past ten years has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM) disciplines which will lead to an increase in quality of teachers, advancements in research and development, an increase in the global reputation for intellectual achievement, and an expanded ability to pursue unchartered avenues towards a brighter future. Over 41 million students around the world have participated in ISS-related activities since the year 2000. Projects such as the Amateur Radio on International Space Station (ARISS) and Earth Knowledge Acquired by Middle School Students (EarthKAM), among others, have allowed for global student, teacher, and public access to space through radio contacts with crewmembers and student image acquisition respectively. . With planned ISS operations at least until 2020, projects like the aforementioned and their accompanying educational materials will be available to enable increased STEM literacy around the world. Since the launch of the first ISS element, a wide range of student experiments and educational activities have been performed by each of the international partner agencies: National Aeronautics and Space Administration (NASA), Canadian Space Agency (CSA), European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA) and Russian Federal Space Agency (Roscosmos). Additionally, a number of non-participating countries, some under commercial agreements, have also participated in Station-related activities. Many of these programs still continue while others are being developed and added to the station crewmembers tasks

  10. Radiation dosimetry onboard the International Space Station ISS.

    PubMed

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  11. Calibration of International Space Station (ISS) Node 1 Vibro-Acoustic Model

    NASA Technical Reports Server (NTRS)

    Zhang, Weiguo; Raveendra, Ravi

    2014-01-01

    Reported here is the ability of utilizing the Energy Finite Element Method (E-FEM) to predict the vibro-acoustic sound fields within the International Space Station (ISS) Node 1 and to compare the results with actual measurements of leak sounds made by a one atmosphere to vacuum leak through a small hole in the pressure wall of the Node 1 STA module during its period of storage at Stennis Space Center (SSC). While the E-FEM method represents a reverberant sound field calculation, of importance to this application is the requirement to also handle the direct field effect of the sound generation. It was also important to be able to compute the sound fields in the ultrasonic frequency range. This report demonstrates the capability of this technology as applied to this type of application.

  12. International Space Station (ISS) Anomalies Trending Study. Volume II; Appendices

    NASA Technical Reports Server (NTRS)

    Beil, Robert J.; Brady, Timothy K.; Foster, Delmar C.; Graber, Robert R.; Malin, Jane T.; Thornesbery, Carroll G.; Throop, David R.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) set out to utilize data mining and trending techniques to review the anomaly history of the International Space Station (ISS) and provide tools for discipline experts not involved with the ISS Program to search anomaly data to aid in identification of areas that may warrant further investigation. Additionally, the assessment team aimed to develop an approach and skillset for integrating data sets, with the intent of providing an enriched data set for discipline experts to investigate that is easier to navigate, particularly in light of ISS aging and the plan to extend its life into the late 2020s. This document contains the Appendices to the Volume I report.

  13. International Space Station (ISS) Airlock Crewlock Depressurization Methods

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Leonard, Daniel J.; Booth, Valori J.; Russell, Matt

    2004-01-01

    The International Space Station (ISS) Airlock Crewlock can be depressurized via various methods. The ISS Airlock is divided into two major sections, the Equipment Lock and Crewlock. The Equipment Lock, as the name indicates, contains the equipment to support EVA activities including Extravehicular Maneuvering/Mobility Unit (EMU) maintenance and refurbishment. The Equipment Lock also contains basic life support equipment in order to support denitrogenzation protocols while the Airlock is isolated from the rest of the ISS. The Crewlock is the section of the Airlock that is depressurized to allow for Extravehicular Activity (EVA) crewmembers to exit the ISS for performance of EVAs. As opposed to the Equipment Lock, the Crewlock is quite simple and basically just contains lights and an assembly to provide services, oxygen, coolant, etc, to the EMUs. For operational flexibility, various methods were derived for Crewlock depressurization. Herein these various different methods of ISS Airlock Crewlock depressurization will be described including their performance, impacts, and risks associated with each method. Each of the different methods will be discussed with flight data, if it exists. Models will be applied to flight cases and to other methods that have not been used on-orbit at this time.

  14. Recently Deployed Solar Arrays on International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This video still depicts the recently deployed starboard and port solar arrays towering over the International Space Station (ISS). The video was recorded on STS-97's 65th orbit. Delivery, assembly, and activation of the solar arrays was the main mission objective of STS-97. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics, and will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  15. International Space Station (ISS) Water Transfer Hardware Logistics

    NASA Technical Reports Server (NTRS)

    Shkedi, Brienne D.

    2006-01-01

    Water transferred from the Space Shuttle to the International Space Station (ISS) is generated as a by-product from the Shuttle fuel cells, and is generally preferred over the Progress which has to launch water from the ground. However, launch mass and volume are still required for the transfer and storage hardware. Some of these up-mass requirements have been reduced since ISS assembly began due to changes in the storage hardware (CWC). This paper analyzes the launch mass and volume required to transfer water from the Shuttle and analyzes the up-mass savings due to modifications in the CWC. Suggestions for improving the launch mass and volume are also provided.

  16. Red Aurora as Seen From the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Auroras are caused when high-energy electrons pour down from the Earth's magnetosphere and collide with atoms. Red aurora, as captured here by a still digital camera aboard the International Space Station (ISS), occurs from 200 km to as high as 500 km altitude and is caused by the emission of 6300 Angstrom wavelength light from oxygen atoms. The light is emitted when the atoms return to their original unexcited state. The white spot in the image is from a light on inside of the ISS that is reflected off the inside of the window. The pale blue arch on the left side of the frame is sunlight reflecting off the atmospheric limb of the Earth. At times of peaks in solar activity, there are more geomagnetic storms and this increases the auroral activity viewed on Earth and by astronauts from orbit.

  17. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  18. Rendezvous missions: From ISS to lunar space station

    NASA Astrophysics Data System (ADS)

    Murtazin, Rafail

    2014-08-01

    There was a lot of experience gained in the rendezvous of different vehicles in the LEO during the years of human space exploration. In the framework of the Apollo program when the astronauts landed on the surface of the Moon, the docking of the Lunar Module launched from the Moon's surface to the Apollo Command Module was successfully implemented in the near-Moon orbit. Presently many space agencies are considering a return to the Moon. It is necessary to solve the new task of docking the vehicle launched from the Earth to the long-term near-Moon orbital station taking into account specific constraints. Based on the ISS experience the author proposes a number of ballistic rendezvous strategies that provide for docking to the near-Moon orbital station with minimum propellant consumption. The trade-off analysis of the given rendezvous strategies is presented.

  19. Measurements of the neutron dose and energy spectrum on the International Space Station during expeditions ISS-16 to ISS-21.

    PubMed

    Smith, M B; Akatov, Yu; Andrews, H R; Arkhangelsky, V; Chernykh, I V; Ing, H; Khoshooniy, N; Lewis, B J; Machrafi, R; Nikolaev, I; Romanenko, R Y; Shurshakov, V; Thirsk, R B; Tomi, L

    2013-01-01

    As part of the international Matroshka-R and Radi-N experiments, bubble detectors have been used on board the ISS in order to characterise the neutron dose and the energy spectrum of neutrons. Experiments using bubble dosemeters inside a tissue-equivalent phantom were performed during the ISS-16, ISS-18 and ISS-19 expeditions. During the ISS-20 and ISS-21 missions, the bubble dosemeters were supplemented by a bubble-detector spectrometer, a set of six detectors that was used to determine the neutron energy spectrum at various locations inside the ISS. The temperature-compensated spectrometer set used is the first to be developed specifically for space applications and its development is described in this paper. Results of the dose measurements indicate that the dose received at two different depths inside the phantom is not significantly different, suggesting that bubble detectors worn by a person provide an accurate reading of the dose received inside the body. The energy spectra measured using the spectrometer are in good agreement with previous measurements and do not show a strong dependence on the precise location inside the station. To aid the understanding of the bubble-detector response to charged particles in the space environment, calculations have been performed using a Monte-Carlo code, together with data collected on the ISS. These calculations indicate that charged particles contribute <2% to the bubble count on the ISS, and can therefore be considered as negligible for bubble-detector measurements in space.

  20. Video- Water Droplet Demonstration on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Dr. Pettit demonstrates a spilling phenomenon with films of water. After drawing a 100-200 micron thick film of pure water, which is impossible to do on Earth, Dr. Pettit oscillates the film back and forth like a drum head, forcing the water droplets to spill off. He observes that although the phenomenon looks much like drops of water that are ejected from the surface of a pool when a rock is dropped in, the underlying physics are very different.

  1. Calibration of International Space Station (ISS) Node 1 Vibro-Acoustic Model-Report 2

    NASA Technical Reports Server (NTRS)

    Zhang, Weiguo; Raveendra, Ravi

    2014-01-01

    Reported here is the capability of the Energy Finite Element Method (E-FEM) to predict the vibro-acoustic sound fields within the International Space Station (ISS) Node 1 and to compare the results with simulated leak sounds. A series of electronically generated structural ultrasonic noise sources were created in the pressure wall to emulate leak signals at different locations of the Node 1 STA module during its period of storage at Stennis Space Center (SSC). The exact sound source profiles created within the pressure wall at the source were unknown, but were estimated from the closest sensor measurement. The E-FEM method represents a reverberant sound field calculation, and of importance to this application is the requirement to correctly handle the direct field effect of the sound generation. It was also important to be able to compute the sound energy fields in the ultrasonic frequency range. This report demonstrates the capability of this technology as applied to this type of application.

  2. Bubble-detector measurements of neutron radiation in the international space station: ISS-34 to ISS-37.

    PubMed

    Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Koslowksy, M R; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V

    2016-02-01

    Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70% of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data.

  3. Bubble-detector measurements of neutron radiation in the international space station: ISS-34 to ISS-37

    PubMed Central

    Smith, M. B.; Khulapko, S.; Andrews, H. R.; Arkhangelsky, V.; Ing, H.; Koslowksy, M. R.; Lewis, B. J.; Machrafi, R.; Nikolaev, I.; Shurshakov, V.

    2016-01-01

    Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70 % of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. PMID:25899609

  4. International Space Station (ISS) Orbital Replaceable Unit (ORU) Wet Storage Risk Assessment

    NASA Technical Reports Server (NTRS)

    Squire, Michael D.; Rotter, Henry A.; Lee, Jason; Packham, Nigel; Brady, Timothy K.; Kelly, Robert; Ott, C. Mark

    2014-01-01

    The International Space Station (ISS) Program requested the NASA Engineering and Safety Center (NESC) to evaluate the risks posed by the practice of long-term wet storage of ISS Environmental Control and Life Support (ECLS) regeneration system orbital replacement units (ORUs). The ISS ECLS regeneration system removes water from urine and humidity condensate and converts it into potable water and oxygen. A total of 29 ORUs are in the ECLS system, each designed to be replaced by the ISS crew when necessary. The NESC assembled a team to review the ISS ECLS regeneration system and evaluate the potential for biofouling and corrosion. This document contains the outcome of the evaluation.

  5. Using the International Space Station (ISS) Oxygen Generation Assembly (OGA) Is Not Feasible for Mars Transit

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2016-01-01

    A review of two papers on improving the International Space Station (ISS) Oxygen Generation Assembly (OGA) shows that it would not save substantial mass on a Mars transit. The ISS OGA requires redesign for satisfactory operation, even for the ISS. The planned improvements of the OGA for ISS would not be sufficient to make it suitable for Mars, because Mars transit life support has significantly different requirements than ISS. The OGA for Mars should have lower mass, better reliability and maintainability, greater safety, radiation hardening, and capability for quiescent operation. NASA's methodical, disciplined systems engineering process should be used to develop the appropriate system.

  6. Expedition 6 Crew Interviews: Don Pettit, Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 member Don Pettit (Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)) is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. Pettit, who had been training as a backup crewmember, discusses the importance of training backups for ISS missions. He gives details on the goals and significance of the ISS, regarding experiments in various scientific disciplines such as the life sciences and physical sciences. Pettit also comments on the value of conducting experiments under microgravity. He also gives an overview of the ISS program to date, including the ongoing construction, international aspects, and the routines of ISS crewmembers who inhabit the station for four months at a time. He gives a cursory description of crew transfer procedures that will take place when STS-113 docks with ISS to drop off Pettit and the rest of Expedition 6, and retrieve the Expedition 5 crew.

  7. International Space Station (ISS) Advanced Recycle Filter Tank Assembly (ARFTA)

    NASA Technical Reports Server (NTRS)

    Nasrullah, Mohammed K.

    2013-01-01

    The International Space Station (ISS) Recycle Filter Tank Assembly (RFTA) provides the following three primary functions for the Urine Processor Assembly (UPA): volume for concentrating/filtering pretreated urine, filtration of product distillate, and filtration of the Pressure Control and Pump Assembly (PCPA) effluent. The RFTAs, under nominal operations, are to be replaced every 30 days. This poses a significant logistical resupply problem, as well as cost in upmass and new tanks purchase. In addition, it requires significant amount of crew time. To address and resolve these challenges, NASA required Boeing to develop a design which eliminated the logistics and upmass issues and minimize recurring costs. Boeing developed the Advanced Recycle Filter Tank Assembly (ARFTA) that allowed the tanks to be emptied on-orbit into disposable tanks that eliminated the need for bringing the fully loaded tanks to earth for refurbishment and relaunch, thereby eliminating several hundred pounds of upmass and its associated costs. The ARFTA will replace the RFTA by providing the same functionality, but with reduced resupply requirements

  8. Validation of Ionospheric Measurements from the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Minow, Joseph; Wright, Kenneth

    2009-01-01

    The International Space Station orbit provides an ideal platform for in-situ studies of space weather effects on the mid and low-latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) operating on the ISS since Aug 2006, is a suite of plasma instruments: a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-Sweep Langmuir Probe. This instrument package provides a new opportunity for collaborative multi-instrument studies of the F-region ionosphere during both quiet and disturbed periods. This presentation first describes the operational parameters for each of the FPMU probes and shows examples of an intra-instrument validation. We then show comparisons with the plasma density and temperature measurements derived from the TIMED GUVI ultraviolet imager, the Millstone Hill ground based incoherent scatter radar, and DIAS digisondes, Finally we show one of several observations of night-time equatorial density holes demonstrating the capabilities of the probes for monitoring mid and low latitude plasma processes.

  9. Matroshka DOSTEL measurements onboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Labrenz, Johannes; Burmeister, Soenke; Berger, Thomas; Heber, Bernd; Reitz, Guenther

    2015-12-01

    This paper presents the absorbed dose and dose equivalent rate measurements achieved with the DOSimetry TElescope (DOSTEL) during the two Matroshka (MTR) experiment campaigns in 2004/2005 (MTR-1) and 2007/2008 (MTR-2B). The comparison between the inside (MTR-2B) and outside (MTR-1) mission has shown that the shielding thickness provided by the International Space Station (ISS) spacecraft hull has a minor effect on the radiation exposure caused by Galactic Cosmic Rays (GCR). The exposure varies with the solar modulation of the GCR, too. Particles from Earth's radiation belts are effectively shielded by the spacecraft hull, and thus the contribution to the radiation exposure is lower for the inside measurement during MTR-2B. While the MTR-DOSTEL absorbed dose rate shows a good agreement with passive detectors of the MTR experiment for the MTR-2B mission phase, the MTR-1 absorbed dose rates from MTR-DOSTEL measurements are much lower than those obtained by a nearby passive detector. Observed discrepancies between the MTR-DOSTEL measurements and the passive detectors located nearby could be explained by the additional exposure to an enhanced flux of electrons trapped between L-parameter 2.5 and 3.5 caused by solar storms in July 2004.

  10. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... SPACE ADMINISTRATION International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and... Relations, (202) 358-0550, National Aeronautics and Space Administration, Washington, DC 20546-0001....

  11. Analysis and Design of Crew Sleep Station for ISS

    NASA Technical Reports Server (NTRS)

    Keener, John F.; Paul, Thomas; Eckhardt, Bradley; Smith, Fredrick

    2002-01-01

    This paper details the analysis and design of the Temporary Sleep Station (TeSS) environmental control system for International Space Station (ISS). The TeSS will provide crewmembers with a private and personal space, to accommodate sleeping, donning and doffing of clothing, personal communication and performance of recreational activities. The need for privacy to accommodate these activities requires adequate ventilation inside the TeSS. This study considers whether temperature, carbon dioxide, and humidity within the TeSS remain within crew comfort and safety levels for various expected operating scenarios. Evaluation of these scenarios required the use and integration of various simulation codes. An approach was adapted for this study, whereby results from a particular code were integrated with other codes when necessary. Computational Fluid Dynamics (CFD) methods were used to evaluate the flow field inside the TeSS, from which local gradients for temperature, velocity, and species concentration such as CO (sub 2) could be determined. A model of the TeSS, containing a human, as well as equipment such as a laptop computer, was developed in FLUENT, a finite-volume code. Other factors, such as detailed analysis of the heat transfer through the structure, radiation, and air circulation from the TeSS to the US Laboratory Aisle, where the TeSS is housed, were considered in the model. A complementary model was developed in G189A, a code which has been used by NASA/JSC for environmental control systems analyses since the Apollo program. Boundary conditions were exchanged between the FLUENT and G189A TeSS models. G189A provides human respiration rates to the FLUENT model, while the FLUENT model provides local convective heat transfer coefficients to G189A model. An additional benefit from using an approach with both a systems simulation and CFD model, is the capability to verify the results of each model by comparison to the results of the other model. The G189A and

  12. International Space Station (ISS) Low Pressure Intramodule Quick Disconnect Failures

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Harris, Danny; Link, Dwight; Morrison, Russel

    2004-01-01

    A failure of an ISS intermodule Quick Disconnect (QD) during protoflight vibration testing of ISS regenerative Environmental Control and Life Support (ECLS) hardware led to the discovery of QD design, manufacturing, and test flaws which can yield the male QD susceptible to failure of the secondary housing seal and inadequate housing assembly locking mechanisms. Discovery of this failure had large implications when considering that currently there are 399 similar units on orbit and approximately 1100 units on the ground integrated into flight hardware. Discovery of the nature of the failure required testing and analysis and implementation of a recovery plan requiring part screening and review of element level and project hazard analysis to determine if secondary seals are required. Implementation also involves coordination with the Nodes and MPLM project offices, Regenerative ECLS Project, ISS Payloads, JAXA, ESA, and ISS Logistics and Maintenance.

  13. Long-Term International Space Station (ISS) Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Forroci, Michael P.; Gafka, George K.; Lutomski, Michael G.; Maher, Jacilyn S.

    2011-01-01

    As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the initial ISS requirements and design were intended to provide the best practicable levels of safety, it is always possible to further reduce risk given the determination, commitment, and resources to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS, and to reduce risk to all crewmembers. While years of work went into the development of ISS requirements, there are many things associated with risk reduction in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity hazard level-4 materials, emergency procedures, emergency equipment, control of drag-throughs) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards). Due to the hard work and cooperation of many parties working together across the span of more than a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery for years to come.

  14. Reuse International Space Station (ISS) Modules as Lunar Habitat

    NASA Technical Reports Server (NTRS)

    Miernik, Janie; Owens, James E.; Floyd, Brian A.; Strong, Janet; Sanford, Joseph

    2005-01-01

    NASA currently projects ending the ISS mission in approximately 2016, due primarily to the expense of re-boost and re-supply. Lunar outposts are expected to be in place in the same timeframe. In support of these mission goals, a scheme to reuse ISS modules on the moon has been identified. These modules could function as pressurized volumes for human habitation in a lunar vacuum as they have done in low-earth orbit. The ISS hull is structurally capable of withstanding a lunar landing because there is no atmospheric turbulence or friction. A compelling reason to send ISS modules to the moon is their large mass; a large portion of the ISS would survive re-entry if allowed to de-orbit to Earth. ISS debris could pose a serious risk to people or structures on Earth unless a controlled re-entry is performed. If a propulsive unit is devised to be attached to the ISS and control re-entry, a propulsion system could be used to propel the modules to the moon and land them there. ISS modules on the lunar surface would not require re-boost. Radiation protection can be attained by burying the module in lunar regolith. Power and a heat removal system would be required for the lunar modules which would need little support structure other than the lunar surface. With planetary mass surrounding the module, heat flux may be controlled by conductance. The remaining requirement is the re-supply of life-support expendables. There are raw materials on the moon to supplement these vital resources. The lunar maria is known to contain approximately 40% oxygen by mass in inorganic mineral compounds. Chemical conversion of moon rocks to release gaseous oxygen is known science. Recycling and cleaning of air and water are currently planned to be accomplished with ISS Environmental Control & Life Support Systems (ECLSS). By developing a Propulsion and Landing Module (PLM) to dock to the Common Berthing Mechanism (CBM), several identical PLMs could be produced to rescue and transfer the ISS

  15. Space Environment Data Acquisition with KIBO Exposed Facility on the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Obara, Takahiro

    Space Environment Data Acquisition equipment with attached payload (SEDA-AP) which was mounted on the Exposed Facility (EF) of the Japanese Experiment Module (JEM, also known as “Kibo”) on the International Space Station (ISS) started to measure the space environment along the orbit of ISS from Sept. 2009. This paper reports the mission objectives, instrumentation, and current status of SEDA-AP.

  16. International Space Station (ISS) Environmental Control and Life Support System Status: 2003-2004

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Gentry, Gregory

    2004-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2003 and March 2004. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  17. Evaluating the Medical Kit System for the International Space Station(ISS) - A Paradigm Revisited

    NASA Technical Reports Server (NTRS)

    Hailey, Melinda J.; Urbina, Michelle C.; Hughlett, Jessica L.; Gilmore, Stevan; Locke, James; Reyna, Baraquiel; Smith, Gwyn E.

    2010-01-01

    Medical capabilities aboard the International Space Station (ISS) have been packaged to help astronaut crew medical officers (CMO) mitigate both urgent and non-urgent medical issues during their 6-month expeditions. Two ISS crewmembers are designated as CMOs for each 3-crewmember mission and are typically not physicians. In addition, the ISS may have communication gaps of up to 45 minutes during each orbit, necessitating medical equipment that can be reliably operated autonomously during flight. The retirement of the space shuttle combined with ten years of manned ISS expeditions led the Space Medicine Division at the NASA Johnson Space Center to reassess the current ISS Medical Kit System. This reassessment led to the system being streamlined to meet future logistical considerations with current Russian space vehicles and future NASA/commercial space vehicle systems. Methods The JSC Space Medicine Division coordinated the development of requirements, fabrication of prototypes, and conducted usability testing for the new ISS Medical Kit System in concert with implementing updated versions of the ISS Medical Check List and associated in-flight software applications. The teams constructed a medical kit system with the flexibility for use on the ISS, and resupply on the Russian Progress space vehicle and future NASA/commercial space vehicles. Results Prototype systems were developed, reviewed, and tested for implementation. Completion of Preliminary and Critical Design Reviews resulted in a streamlined ISS Medical Kit System that is being used for training by ISS crews starting with Expedition 27 (June 2011). Conclusions The team will present the process for designing, developing, , implementing, and training with this new ISS Medical Kit System.

  18. PLC Software Program for Leak Detector Station A1 SALW-LD-ST-A1

    SciTech Connect

    KOCH, M.R.

    2001-01-25

    This document describes the software program for the programmable logic controller for the leak detector station ''SALW-LD-ST-A1''. The appendices contains a copy of the printout of the software program.

  19. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2005 - 2006

    NASA Technical Reports Server (NTRS)

    Gentry, Gregory J.; Reysa, RIchard P.; Williams, David E.

    2006-01-01

    The International Space Station (ISS) continues to mature and operate its life support equipment. Major events occurring between February 2005 and February 2006 are discussed in this paper, as are updates from previously ongoing hardware anomalies. This paper addresses the major ISS operation events over the last year. Impact to overall ISS operations is also discussed.

  20. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2006 - 2007

    NASA Technical Reports Server (NTRS)

    Gentry, Gregory J.; Reysa, Richard P.; Williams, David E.

    2007-01-01

    The International Space Station (ISS) continues to mature and operate its life support equipment. Major events occurring between February 2006 and February 2007 are discussed in this paper, as are updates from previously ongoing hardware anomalies. This paper addresses the major ISS operation events over the last year. Impact to overall ISS operations is also discussed.

  1. International Space Station (ISS) Accommodation of a Single US Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Garn, Michelle A.; Troutman, Patrick A.; Wang, Yuan; Kumar, Renjith; Heck, Michael L.

    1997-01-01

    The following report was generated to give the International Space Station (ISS) Program some additional insight into the operations and issues associated with accommodating a single U.S. developed Assured Crew Return Vehicle (ACRV). During the generation of this report, changes in both the ISS and ACRV programs were factored into the analysis with the realization that most of the work performed will eventually need to be repeated once the two programs become more integrated. No significant issues associated with the ISS accommodating the ACRV were uncovered. Kinematic analysis of ACRV installation showed that there are viable methods of using Shuttle and Station robotic manipulators. Separation analysis demonstrated that the ACRV departure path clears the Station structure for all likely contingency scenarios. The payload bay packaging analysis identified trades that can be made between payload bay location, Shuttle Remote Manipulator System (SRMS) reach and eventual designs of de-orbit stages and docking adapters.

  2. International Space Station (ISS) Metal Oxide (MetOx) Odor Anomaly

    NASA Technical Reports Server (NTRS)

    Prokhorov, Kimberlee; Lewis, John; Graf, John; Perry, Jay

    2004-01-01

    On occasion, seemingly normal operations can have significant effects upon the closed environment of the International Space Station (ISS). An example of such a case occurred on February 20, 2002 when a nominal Metal Oxide (MetOx) canister regeneration operation onboard the ISS resulted in an unexpected, foul odor that affected the crew and station operations. A case study summarizing the root cause for the event and steps taken to ensure that future MetOx regeneration operations proceed safely is presented. Included in the summary are engineering analyses and environmental monitoring results supporting the root cause assessment as well as testing conducted and flight operations changes implemented to ensure safe operations.

  3. ISS Update: Becoming an International Space Station Program Scientist

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot interviews Tara Ruttley, Associate International Space Station Program Scientist, about her educational path and her career activities at NASA. She also discuss...

  4. ISS Update: Station Command and Data Handling System

    NASA Video Gallery

    NASA Public Affairs Officer Kylie Clem interviews ODIN flight controller Amy Brezinski, who monitors and commands the Command and Data Handling System for the International Space Station. Brezinski...

  5. ISS Update: ISTAR -- International Space Station Testbed for Analog Research

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Sandra Fletcher, EVA Systems Flight Controller. They discuss the International Space Station Testbed for Analog Research (ISTAR) activity that...

  6. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  7. Development of the Second Generation International Space Station (ISS) Total Organic Carbon Analyzer (TOCA)

    NASA Technical Reports Server (NTRS)

    Clements, Anna L.; Stinson, Richard G.; VanWie, Michael; Warren, Eric

    2009-01-01

    The second generation International Space Station (ISS) Total Organic Carbon Analyzer s (TOCA) function is to monitor concentrations of Total Organic Carbon (TOC) in ISS water samples. TOC is one measurement that provides a general indication of overall water quality by indicating the potential presence of hazardous chemicals. The data generated from the TOCA is used as a hazard control to assess the quality of the reclaimed and stored water supplies on-orbit and their suitability for crew consumption. This paper details the unique ISS Program requirements, the design of the ISS TOCA, and a brief description of the on-orbit concept-of-operations. The TOCA schematic will be discussed in detail along with specific information regarding key components. The ISS TOCA was designed as a non-toxic TOC analyzer that could be deployed in a flight ready package. This basic concept was developed through laboratory component level testing, two moderate fidelity integrated system breadboard prototypes, a flight-like full scale prototype, as well as lessons learned from the inadequacies of the first unit. The result: a new TOCA unit that is robust in design and includes special considerations to microgravity and the on-orbit ISS environment. TOCA meets the accuracy needs of the ISS Program with a 1,000 to 25,000 g/L range, accurate to within +/-25%.

  8. Thermal Analysis for Orbiter and ISS Plume Impingement on International Space Station

    NASA Technical Reports Server (NTRS)

    Rochelle, William C.; Reid, Ethan A.; Carl, Terry L.; Smith, Ries N.; Lumpkin, Forrest E.

    2001-01-01

    The NASA Reaction Control System (RCS) Plume Model (RPM) is an exhaust plume flow field and impingement heating code that has been updated and applied to components of the International Space Station (ISS). The objective of this study was to use this code to determine if plume environments from either Orbiter PRCS jets or ISS reboost and Attitude Control System (ACS) jets cause thermal issues on ISS component surfaces. This impingement analysis becomes increasingly important as the ISS is being assembled with its first permanent crew scheduled to arrive by the end of fall 2000. By early summer 2001 , the ISS will have a number of major components installed such as the Unity (Node 1), Destiny (Lab Module), Zarya (Functional Cargo Block), and Zvezda (Service Module) along with the P6 solar arrays and radiators and the Z-1 truss. Plume heating to these components has been analyzed with the RPM code as well as additional components for missions beyond Flight 6A such as the Propulsion Module (PM), Mobile Servicing System, Space Station Remote Manipulator System, Node 2, and the Cupola. For the past several years NASA/JSC has been developing the methodology to predict plume heating on ISS components. The RPM code is a modified source flow code with capabilities for scarfed nozzles and intersecting plumes that was developed for the 44 Orbiter RCS jets. This code has been validated by comparison with Shuttle Plume Impingement Flight Experiment (SPIFEX) heat flux and pressure data and with CFD and Method of Characteristics solutions. Previous analyses of plume heating predictions to the ISS using RPM have been reported, but did not consider thermal analysis for the components nor jet-firing histories as the Orbiter approaches the ISS docking ports. The RPM code has since been modified to analyze surface temperatures with a lumped mass approach and also uses jet-firing histories to produce pulsed heating rates. In addition, RPM was modified to include plume heating from ISS

  9. Organization, Management and Function of International Space Station (ISS) Multilateral Medical Operations

    NASA Technical Reports Server (NTRS)

    Duncan, James M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.

    2007-01-01

    Long duration crews have inhabited the ISS since November of 2000. The favorable medical outcomes of its missions can be largely attributed to sustained collective efforts of all ISS Partners medical organizations. In-flight medical monitoring and support, although crucial, is just a component of the ISS system of Joint Medical Operations. The goal of this work is to review the principles, design, and function of the multilateral medical support of the ISS Program. The governing documents, which describe the relationships among all ISS partner medical organizations, were evaluated, followed by analysis of the roles, responsibilities, and decision-making processes of the ISS medical boards, panels, and working groups. The degree of integration of the medical support system was evaluated by reviewing the multiple levels of the status reviews and mission assurance activities carried out throughout the last six years. The Integrated Medical Group, consisting of physicians and other essential personnel in the mission control centers represents the front-line medical support of the ISS. Data from their day-to-day activities are presented weekly at the Space Medicine Operations Team (SMOT), where known or potential concerns are addressed by an international group of physicians. A broader status review is conducted monthly to project the state of crew health and medical support for the following month, and to determine measures to return to nominal state. Finally, a comprehensive readiness review is conducted during preparations for each ISS mission. The Multilateral Medical Policy Board (MMPB) issues medical policy decisions and oversees all health and medical matters. The Multilateral Space Medicine Board (MSMB) certifies crewmembers and visitors for training and space flight to the Station, and physicians to practice space medicine for the ISS. The Multilateral Medical Operations Panel (MMOP) develops medical requirements, defines and supervises implementation of

  10. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Wollack, Edward J.; Wright, Kenneth H.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Albert C.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) received a request to support the Assessment of the International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Update. The NESC conducted an earlier assessment of the use of the PCU in 2009. This document contains the outcome of the assessment update.

  11. Amateur Radio on the International Space Station - the First Operational Payload on the ISS

    NASA Astrophysics Data System (ADS)

    Bauer, F. H.; McFadin, L.; Steiner, M.; Conley, C. L.

    2002-01-01

    As astronauts and cosmonauts have adapted to life on the International Space Station (ISS), they have found Amateur Radio and its connection to life on Earth to be a constant companion and a substantial psychological boost. Since its first use in November 2000, the first five expedition crews have utilized the amateur radio station in the FGB to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early in the development of ISS, an international organization called ARISS (Amateur Radio on the International Space Station) was formed to coordinate the construction and operation of amateur radio (ham radio) equipment on ISS. ARISS represents a melding of the volunteer teams that have pioneered the development and use of amateur radio equipment on human spaceflight vehicles. The Shuttle/Space Amateur Radio Experiment (SAREX) team enabled Owen Garriott to become the first astronaut ham to use amateur radio from space in 1983. Since then, amateur radio teams in the U.S. (SAREX), Germany, (SAFEX), and Russia (Mirex) have led the development and operation of amateur radio equipment on board NASA's Space Shuttle, Russia's Mir space station, and the International Space Station. The primary goals of the ARISS program are fourfold: 1) educational outreach through crew contacts with schools, 2) random contacts with the Amateur Radio public, 3) scheduled contacts with the astronauts' friends and families and 4) ISS-based communications experimentation. To date, over 65 schools have been selected from around the world for scheduled contacts with the orbiting ISS crew. Ten or more students at each school ask the astronauts questions, and the nature of these contacts embodies the primary goal of the ARISS program, -- to excite student's interest in science, technology and amateur radio. The ARISS team has developed various hardware elements for the ISS amateur radio station. These hardware elements have flown to ISS

  12. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS).

    PubMed

    Coil, David A; Neches, Russell Y; Lang, Jenna M; Brown, Wendy E; Severance, Mark; Cavalier, Darlene; Eisen, Jonathan A

    2016-01-01

    Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  13. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS)

    PubMed Central

    Neches, Russell Y.; Lang, Jenna M.; Brown, Wendy E.; Severance, Mark; Cavalier, Darlene

    2016-01-01

    Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space. PMID:27019789

  14. Configuration of International Space Station (ISS) Post STS-115

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This view of the International Space Station, back dropped against the blackness of space, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT during the STS-115 mission. The unlinking completed after six days, two hours and two minutes of joint operations of the installation of the P3/P4 truss. The new 17 ton truss included batteries, electronics, a giant rotating joint, and sported a second pair of 240-foot solar wings. The new solar arrays will eventually double the onboard power of the Station when their electrical systems are brought online during the next shuttle flight, STS-116.

  15. De-Orbiting the International Space Station ISS: Safety Considerations and Preliminary Analysis

    NASA Astrophysics Data System (ADS)

    Cremaschi, F.; Huertas, I.; Ortega, G.; Sgobba, T.; Laurel, C.

    2012-01-01

    NASA has proposed to its partners the de-orbiting of the International Space Station (ISS) around the year 2020. Technical plans on how to do it have been presented as long as the year 1999. The current situation of ISS claims for a possible extension of the date of 2020 but to all International Partners is clear that the de-orbiting operations need to be performed with safety as the main and central paradigm. The proposed paper evaluates several scenarios and options for the de- orbiting of ISS. The paper proposes trajectory design considerations, de- orbit strategies and the calculation of casualties and fatalities for some of those. The paper proposes as well some fragment disposal regions using the classic approach of disposing ISS on ground and compares it with the feasibility and cost with the approach of end of life vehicle recycling culture of the European Union. The paper computes and calculates the reliability of all options and establishes a trade-off between all of them. The paper provides a detailed mathematical model that is able to calculate casualty and fatality rates. The mathematical model has been programmed in the ASTOS software tool and the corresponding casualty and fatality curves have been computed for some considered options. The following options are studied, discussed, and traded- off: simple one-go complete disposal of ISS with controlled de-orbiting using a service module, complex partial disposal of ISS elements with controlled de-orbiting using a modified version of service module, same variation using a set of auxiliary vehicles, design of a new vehicle to dispose the ISS and finally the uncontrolled re-entry of the entire ISS. Further, the paper proposes some de-orbiting requirements, and mission design considerations for a successful end-of-mission closure.

  16. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; Wollack, Edward J.; Wright, Kenneth H.

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  17. Solidifying Small Satellite Access to Orbit via the International Space Station (ISS): Cyclops' Deployment of the Lonestar SmallSat from the ISS

    NASA Technical Reports Server (NTRS)

    Hershey, Matthew P.; Newswander, Daniel R.; Evernden, Brent A.

    2016-01-01

    On January 29, 2016, the Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, deployed Lonestar from the ISS. The deployment of Lonestar, a collaboration between Texas A&M University and the University of Texas at Austin, continued to showcase the simplicity and reliability of the Cyclops deployment system. Cyclops, a NASA-developed, dedicated 10-100 kg class ISS SmallSat deployment system, utilizes the Japanese airlock and robotic systems to seamlessly insert SmallSats into orbit. This paper will illustrate Cyclops' successful deployment of Lonestar from the ISS as well as outline its concept of operations, interfaces, requirements, and processes.

  18. Microgravity Science Glovebox (MSG) Space Sciences's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jordan, Lee P.

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.

  19. Configuration of International Space Station (ISS) Post STS-115

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This view of the International Space Station, back dropped against the blackness of space and Earth, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT during the STS-115 mission. The unlinking completed after six days, two hours and two minutes of joint operations of the installation of the P3/P4 truss. The new 17 ton truss included batteries, electronics, a giant rotating joint, and sported a second pair of 240-foot solar wings. The new solar arrays will eventually double the onboard power of the Station when their electrical systems are brought online during the next shuttle flight, STS-116.

  20. Saltwell Leak Detector Station Programmable Logic Controller (PLC) Software Configuration Management Plan (SCMP)

    SciTech Connect

    WHITE, K.A.

    2000-11-28

    This document provides the procedures and guidelines necessary for computer software configuration management activities during the operation and maintenance phases of the Saltwell Leak Detector Stations as required by HNF-PRO-309, Rev. 1, Computer Software Quality Assurance, Section 2.4, Software Configuration Management. The software configuration management plan (SCMP) integrates technical and administrative controls to establish and maintain technical consistency among requirements, physical configuration, and documentation for the Saltwell Leak Detector Station Programmable Logic Controller (PLC) software during the Hanford application, operations and maintenance. This SCMP establishes the Saltwell Leak Detector Station PLC Software Baseline, status changes to that baseline, and ensures that software meets design and operational requirements and is tested in accordance with their design basis.

  1. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  2. Determination of On-Orbit Cabin Air Loss from the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Leonard, Daniel J.; Smith, Patrick J.

    2004-01-01

    The International Space Station (ISS) loses cabin atmosphere mass at some rate. Due to oxygen partial pressures fluctuations from metabolic usage, the total pressure is not a good data source for tracking total pressure loss. Using the nitrogen partial pressure is a good data source to determine the total on-orbit cabin atmosphere loss from the ISS, due to no nitrogen addition or losses. There are several important reasons to know the daily average cabin air loss of the ISS including logistics planning for nitrogen and oxygen. The total average daily cabin atmosphere loss was estimated from January 14 to April 9 of 2003. The total average daily cabin atmosphere loss includes structural leakages, Vozdukh losses, Carbon Dioxide Removal Assembly (CDRA) losses, and other component losses. The total average daily cabin atmosphere loss does not include mass lost during Extra-Vehicular Activities (EVAs), Progress dockings, Space Shuttle dockings, calibrations, or other specific one-time events.

  3. Establishing a Distance Learning Plan for International Space Station (ISS) Interactive Video Education Events (IVEE)

    NASA Technical Reports Server (NTRS)

    Wallington, Clint

    1999-01-01

    Educational outreach is an integral part of the International Space Station (ISS) mandate. In a few scant years, the International Space Station has already established a tradition of successful, general outreach activities. However, as the number of outreach events increased and began to reach school classrooms, those events came under greater scrutiny by the education community. Some of the ISS electronic field trips, while informative and helpful, did not meet the generally accepted criteria for education events, especially within the context of the classroom. To make classroom outreach events more acceptable to educators, the ISS outreach program must differentiate between communication events (meant to disseminate information to the general public) and education events (designed to facilitate student learning). In contrast to communication events, education events: are directed toward a relatively homogeneous audience who are gathered together for the purpose of learning, have specific performance objectives which the students are expected to master, include a method of assessing student performance, and include a series of structured activities that will help the students to master the desired skill(s). The core of the ISS education events is an interactive videoconference between students and ISS representatives. This interactive videoconference is to be preceded by and followed by classroom activities which help the students aftain the specified learning objectives. Using the interactive videoconference as the centerpiece of the education event lends a special excitement and allows students to ask questions about what they are learning and about the International Space Station and NASA. Whenever possible, the ISS outreach education events should be congruent with national guidelines for student achievement. ISS outreach staff should recognize that there are a number of different groups that will review the events, and that each group has different criteria

  4. Report by the International Space Station (ISS) Management and Cost Evaluation (IMCE) Task Force

    NASA Technical Reports Server (NTRS)

    Young, A. Thomas; Kellogg, Yvonne (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) Management and Cost Evaluation Task Force (IMCE) was chartered to conduct an independent external review and assessment of the ISS cost, budget, and management. In addition, the Task Force was asked to provide recommendations that could provide maximum benefit to the U.S. taxpayers and the International Partners within the President's budget request. The Task Force has made the following principal findings: (1) The ISS Program's technical achievements to date, as represented by on-orbit capability, are extraordinary; (2) The Existing ISS Program Plan for executing the FY 02-06 budget is not credible; (3) The existing deficiencies in management structure, institutional culture, cost estimating, and program control must be acknowledged and corrected for the Program to move forward in a credible fashion; (4) Additional budget flexibility, from within the Office of Space Flight (OSF) must be provided for a credible core complete program; (5) The research support program is proceeding assuming the budget that was in place before the FY02 budget runout reduction of $1B; (6) There are opportunities to maximize research on the core station program with modest cost impact; (7) The U.S. Core Complete configuration (three person crew) as an end-state will not achieve the unique research potential of the ISS; (8) The cost estimates for the U.S.-funded enhancement options (e.g., permanent seven person crew) are not sufficiently developed to assess credibility. After these findings, the Task Force has formulated several primary recommendations which are published here and include: (1) Major changes must be made in how the ISS program is managed; (2) Additional cost reductions are required within the baseline program; (3) Additional funds must be identified and applied from the Human Space Flight budget; (4) A clearly defined program with a credible end-state, agreed to by all stakeholders, must be developed and implemented.

  5. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    NASA Technical Reports Server (NTRS)

    Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso

    2005-01-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  6. International Space Station (ISS) Gas Logistics Planning in the Post Shuttle Era

    NASA Technical Reports Server (NTRS)

    Leonard, Daniel J.; Cook, Anthony J.; Lehman, Daniel A.

    2011-01-01

    Over its life the International Space Station (ISS) has received gas (nitrogen, oxygen, and air) from various sources. Nitrogen and oxygen are used in the cabin to maintain total pressure and oxygen partial pressures within the cabin. Plumbed nitrogen is also required to support on-board experiments and medical equipment. Additionally, plumbed oxygen is required to support medical equipment as well as emergency masks and most importantly EVA support. Gas are supplied to ISS with various methods and vehicles. Vehicles like the Progress and ATV deliver nitrogen (both as a pure gas and as air) and oxygen via direct releases into the cabin. An additional source of nitrogen and oxygen is via tanks on the ISS Airlock. The Airlock nitrogen and oxygen tanks can deliver to various users via pressurized systems that run throughout the ISS except for the Russian segment. Metabolic oxygen is mainly supplied via cabin release from the Elektron and Oxygen Generator Assembly (OGA), which are water electrolyzers. As a backup system, oxygen candles (Solid Fuel Oxygen Generators-SFOGs) supply oxygen to the cabin as well. In the past, a major source of nitrogen and oxygen has come from the Shuttle via both direct delivery to the cabin as well as to recharge the ISS Airlock tanks. To replace the Shuttle capability to recharge the ISS Airlock tanks, a new system was developed called Nitrogen/Oxygen Recharge System (NORS). NIORS consists of high pressure (7000 psi) tanks which recharge the ISS Airlock tanks via a blowdown fill for both nitrogen and oxygen. NORS tanks can be brought up on most logistics vehicles such as the HTV, COTS, and ATV. A proper balance must be maintained to insure sufficient gas resources are available on-orbit so that all users have the required gases via the proper delivery method (cabin and/or plumbed).

  7. STS-110 Crew Photographs Soyuz and Atlantis Docked to International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Docked to the International Space Station (ISS), a Soyuz vehicle (foreground) and the Space Shuttle Atlantis were photographed by a crew member in the Pirs docking compartment on the orbital outpost. Atlantis launched on April 8, 2002, carrying the the STS-110 mission which prepared the ISS for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's scapulas were based out of the Station's Quest Airlock.

  8. Amateur Radio On The International Space Station (ARISS) - The First Educational Outreach Program On ISS

    NASA Technical Reports Server (NTRS)

    Conley, Carolynn Lee; Bauer, Frank H.; Brown, Deborah A.; White, Rosalie

    2002-01-01

    Amateur Radio on the International Space Station (ARISS) represents the first educational outreach program that is flying on the International Space Station (ISS). The astronauts and cosmonauts will work hard on the International Space Station, but they plan to take some time off for educational activities with schools. The National Aeronautics and Space Administration s (NASA s) Education Division is a major supporter and sponsor of this student outreach activity on the ISS. This meets NASA s educational mission objective: To inspire the next generation of explorers.. .as only NASA can. The amateur radio community is helping to enrich the experience of those visiting and living on the station as well as the students on Earth. Through ARISS sponsored hardware and activities, students on Earth get a first-hand feel of what it is like to live and work in space. This paper will discuss the educational outreach accomplishments of ARISS, the school contact process, the ARISS international cooperation and volunteers, and ISS Ham radio plans for the future.

  9. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  10. Amateur Radio on the International Space Station: The First Operational Payload on the ISS

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; McFadin, Lou; Steiner, Mark D.; Conley, Carolynn L.

    2002-01-01

    As astronauts and cosmonauts have adapted to life on the International Space Station (ISS), they have found amateur radio and its connection to life on Earth to be a important on-board companion and a substantial psychological boost. Since its first use in November 2000, the first five expedition crews have utilized the amateur radio station in the Functional Cargo Block (also referred to as the FGB or Zarya module) to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. This paper will discuss the development, qualification, installation and operation of the amateur radio system. It will also discuss some of the challenges that the amateur radio international team of volunteers overcame to bring its first phase of equipment on ISS to fruition.

  11. Video-A Bottle of Water And Bubbles Rotate on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Pettit performs a demonstration in which he shook up a bottle that was half full of water, half full of air, so that bubbles formed, then spun it real fast to see what would happen to the bubbles. Watch the video to see the outcome.

  12. Video- Making a Film of Water Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates how to make films of pure water. Watch the video to see how he does it, see his two-dimensional beaker, and marvel along with him at how tenacious the films are.

  13. Russian system of countermeasures on board of the International Space Station (ISS): the first results

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, Inessa B.; Grigoriev, Anatoly I.

    2004-08-01

    The system of countermeasures used by Russian cosmonauts in space flights on board of International Space Station (ISS) was based on the developed and tested in flights on board of Russian space stations. It included as primary components: physical methods aimed to maintain the distribution of fluids at levels close to those experienced on Earth; physical exercises and loading suits aimed to load the musculoskeletal and the cardiovascular systems; measures that prevent the loss of fluids, mainly, water-salt additives which aid to maintain orthostatic tolerance and endurance to gravitational overloads during the return to Earth; well-balanced diet and medications directed to correct possible negative reactions of the body to weightlessness. Fulfillment of countermeasure's protocols inflight was thoroughly controlled. Efficacy of countermeasures used were assessed both in-and postflight. The results of studies showed that degrees of alterations recorded in different physiological systems after ISS space flights in Russian cosmonauts were significantly higher than those recorded after flights on the Russian space stations. This phenomenon was caused by the failure of the ISS crews to execute fully the prescribed countermeasures' protocols which was as a rule excused by technical imperfectness of exercise facilities, treadmill TVIS particularly.

  14. Austrian radiation dose measurements onboard space station mir and the international space station iss - overview and comparison

    NASA Astrophysics Data System (ADS)

    Berger, T.; Hajek, M.; Summerer, L.; Vana, N.; Akatov, Y.; Shurshakov, V.; Arkhangelsky, V.

    The Atominstitut of the Austrian Universities has conducted various space research missions in the last 12 years in cooperation with the Institute for Biomedical Problems in Moscow. They dealt with the exact determination of the radiation hazards for cosmonauts and the development o precise measurement devices.f Special emphasis will be laid on the last experiment on space station MIR the goal of which was the determination of the depth distribution of absorbed dose and dose equivalent in a water filled phantom. The first results from dose measurements onboard the International Space Station will also be discussed.. The phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems and had 4 channels where dosemeters can be exposed in different depths. The exp osure period covered the timeframe from May 1997 to February 1999. Thermoluminescent dosemeters (TLDs) were exposed inside the phantom, either parallel or perpendicular to the hull of the spacecraft. For the evaluation of the linear energy transfer (LET), the High Temperature Ratio (HTR) - method was applied. Based on this method a mean quality factor and, subsequently, the dose equivalent is calculated according to the Q(LET ) relationship proposed in ICRP 26. An increased contribution of neutrons could be detected inside the phantom. However the total dose equivalent did not increase over the depth of the phantom. As the first Austrian measurements on the ISS dosemeter packages were exposed for 248 days, starting in February 2001 at six different locations onboard the ISS. The Austrian dosemeter sets for this first exposure on the ISS contained 5 different kinds of passive thermoluminescent dosemeters. First results showed a position dependent absorbed dose rate and LET at the ISS. Dose rates ranged from 180 to 280 μGy/d. The differences in dose measurements onboard the 2 space stations will be discussed.

  15. Progress in Spacecraft Environment Interactions: International Space Station (ISS) Development and Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Suggs, Robb; Schneider, Todd; Minow, Joe; Alred, John; Cooke, Bill; Mikatarian, Ron; Kramer, Leonard; Boeder, paul; Soares, Carlos

    2007-01-01

    The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting

  16. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience

    NASA Astrophysics Data System (ADS)

    Rembala, Richard; Ower, Cameron

    2009-10-01

    MDA has provided 25 years of real-time engineering support to Shuttle (Canadarm) and ISS (Canadarm2) robotic operations beginning with the second shuttle flight STS-2 in 1981. In this capacity, our engineering support teams have become familiar with the evolution of mission planning and flight support practices for robotic assembly and support operations at mission control. This paper presents observations on existing practices and ideas to achieve reduced operational overhead to present programs. It also identifies areas where robotic assembly and maintenance of future space stations and space-based facilities could be accomplished more effectively and efficiently. Specifically, our experience shows that past and current space Shuttle and ISS assembly and maintenance operations have used the approach of extensive preflight mission planning and training to prepare the flight crews for the entire mission. This has been driven by the overall communication latency between the earth and remote location of the space station/vehicle as well as the lack of consistent robotic and interface standards. While the early Shuttle and ISS architectures included robotics, their eventual benefits on the overall assembly and maintenance operations could have been greater through incorporating them as a major design driver from the beginning of the system design. Lessons learned from the ISS highlight the potential benefits of real-time health monitoring systems, consistent standards for robotic interfaces and procedures and automated script-driven ground control in future space station assembly and logistics architectures. In addition, advances in computer vision systems and remote operation, supervised autonomous command and control systems offer the potential to adjust the balance between assembly and maintenance tasks performed using extra vehicular activity (EVA), extra vehicular robotics (EVR) and EVR controlled from the ground, offloading the EVA astronaut and even the robotic

  17. Mitigation of Damage to the International Space Station (ISS) from Water Dumps

    NASA Technical Reports Server (NTRS)

    Schmidl, William; Visentine, James T.; Mikatarian, Ron

    2004-01-01

    The International Space Station (ISS) and Orbiter dump water overboard. This water is from the ISS condensate system, and from the Orbiter s fuel cell (supply side) and wastewater (urine and condensate) systems. Water dumped from either the ISS or Orbiter is a possible source of damage. When water is dumped into a vacuum, some of it flashes into a vapor. The expanding vapor bursts the liquid stream into vapor, and small and large liquid/ice particles. The large liquid/ice particles are approximately 2 mm in diameter and have nominal velocities of approximately 31 Wsec (U.S. Lab) and 50 Wsec (Orbiter). As these liquid/ice particles impact, they can cause mechanical damage due to erosion/pitting of sensitive surfaces, including solar array or radiator surfaces. Solar arrays are of particular concern because of the thin optical coatings on the surface of the cells. The thickness of these coatings is in the range of 1300 to 44000 angstroms. Damage to these coatings can cause degradation of the cells optical characteristics. To mitigate damage from water dumps, the characteristics of the water dumps were studied and an impact code was used to study damage to sensitive surfaces. The results were used to develop the constraints needed to mitigate damage to ISS hardware from Orbiter and U.S. Lab dumps.

  18. External Surface Changes Observed on the International Space Station (ISS) Through 2012

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2012-01-01

    As the International Space Station (ISS) surpasses 13 years of on-orbit operation, 11 of those years continuously inhabited, external surfaces of the vehicle have shown a wide variety of visible environmental effects. Throughout, the ISS program has maintained a significant effort to routinely document the vehicle external surface condition and to monitor those changes with time. The impacts of micrometeoroids and orbital debris, surface changes from molecular contamination of various sources, and the effects of ultraviolet radiation and atomic oxygen have all been noted. The tremendous size and complexity of the ISS vehicle has yielded a wide variety of observations of interest to the spacecraft materials engineer concerning long-term, low earth orbit (LEO) space environmental effects (SEE). In addition, inadvertent materials substitutions have been identified because of these environmental effects, as well as inadequate contamination control practices likely occurring during hardware manufacture and assembly. Some of the observations from our photography are purely artifacts of the unusual lighting conditions and environments that exist in space. A compilation of ISS on-orbit photography representing all of these aspects is presented, demonstrating the various SEE and their impacts as a function of time in LEO, including interpretations of those effects.

  19. Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM)

    NASA Astrophysics Data System (ADS)

    Seo, E. S.; Anderson, T.; Angelaszek, D.; Baek, S. J.; Baylon, J.; Buénerd, M.; Copley, M.; Coutu, S.; Derome, L.; Fields, B.; Gupta, M.; Han, J. H.; Howley, I. J.; Huh, H. G.; Hwang, Y. S.; Hyun, H. J.; Jeong, I. S.; Kah, D. H.; Kang, K. H.; Kim, D. Y.; Kim, H. J.; Kim, K. C.; Kim, M. H.; Kwashnak, K.; Lee, J.; Lee, M. H.; Link, J. T.; Lutz, L.; Malinin, A.; Menchaca-Rocha, A.; Mitchell, J. W.; Nutter, S.; Ofoha, O.; Park, H.; Park, I. H.; Park, J. M.; Patterson, P.; Smith, J. R.; Wu, J.; Yoon, Y. S.

    2014-05-01

    The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1-26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.

  20. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  1. Video-Conservation of Momentum Observed Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Pettit uses the free fall environment of the ISS to demonstrate the conservation of momentum. He does so by sending bolts into rotation, end over end, into a rigid table from which they bounce off. After collision, the bolts will have nearly the same momentum as they did before the collision. This means that if the bolts bounce off in such a way that their rotation speeds up, the speed from which they translate away from the table must be reduced, and vice versa. This engaging video offers an intriguing insight into physical phenomena that are difficult to observe on Earth.

  2. International Space Station (ISS) Crew Quarters On-Orbit Performance and Sustaining

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini P.; Rodriquez, Branelle R.

    2013-01-01

    The International Space Station (ISS) Crew Quarters (CQ) is a permanent personal space for crew members to sleep, perform personal recreation and communication, as well as provide on-orbit stowage of personal belongings. The CQs provide visual, light, and acoustic isolation for the crew member. Over a 2-year period, four CQs were launched to the ISS and currently reside in Node 2. Since their deployment, all CQs have been occupied and continue to be utilized. This paper will review failures that have occurred after 4 years on-orbit, and the investigations that have resulted in successful on-orbit operations. This paper documents the on-orbit performance and sustaining activities that have been performed to maintain the integrity and utilization of the CQs.

  3. Global Positioning Svstem (GPS) on International Space Station (ISS) and Crew Return Vehicle (CRV)

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.

    2002-01-01

    Both the International Space Station and Crew Return Vehicle desired to have GPS on their vehicles due to improve state determination over traditional ground tracking techniques used in the past for space vehicles. Both also opted to use GPS for attitude determination to save the expense of a star tracker. Both vehicles have stringent pointing requirements for roll, pitch, and heading, making a sun or earth sensor not a viable option since the heading is undetermined. This paper discusses the technical challenges associated with the implementation of GPS on both of these vehicles. ISS and CRY use the same GPS receiver, but have faced different challenges since the mission of each is di fferent. ISS will be discussed first, then CRY. The flight experiments flown on the Space Shuttle in support of these efforts is also discussed.

  4. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    NASA Technical Reports Server (NTRS)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  5. An EXPRESS Rack Overview and Support for Microgravity Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joseph J.; Jordan, Lee P.

    2008-01-01

    The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System has provided accommodations and facilitated operations for microgravity-based research payloads for over 6 years on the International Space Station (ISS). The EXPRESS Rack accepts Space Shuttle middeck type lockers and International Subrack Interface Standard (ISIS) drawers, providing a modular-type interface on the ISS. The EXPRESS Rack provides 28Vdc power, Ethernet and RS-422 data interfaces, thermal conditioning, vacuum exhaust, and Nitrogen supply for payload use. The EXPRESS Rack system also includes payload checkout capability with a flight rack or flight rack emulator prior to launch, providing a high degree of confidence in successful operations once an-orbit. In addition, EXPRESS trainer racks are provided to support crew training of both rack systems and subrack operations. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes for ISS payload development. The EXPRESS Rack is designed to accommodate multidiscipline research, allowing for the independent operation of each subrack payload within a single rack. On-orbit operations began for the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support high-priority payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Over 50 multi-discipline payloads have now been supported on-orbit by the EXPRESS Rack Program. Sustaining engineering, logistics, and maintenance functions are in place to maintain hardware, operations and provide software upgrades. Additional EXPRESS Racks are planned for launch prior to ISS completion in support of long-term operations and the planned transition of the U.S. Segment to a National Laboratory.

  6. Rapid culture-independent microbial analysis aboard the International Space Station (ISS).

    PubMed

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria) was distributed throughout the ISS, despite previous indications that mostbacteria on ISS surfaces were Gram-positive [corrected].Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm(2), which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm(2)). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm(2); defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm(2)) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm(2)). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm(2)) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm(2)).

  7. Rapid Culture-Independent Microbial Analysis Aboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria and fungi) was distributed throughout the ISS, despite previous indications that most bacteria on ISS surfaces were Gram-positive. Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm2, which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm2). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm2; defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm2) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm2). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm2) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm2).

  8. Video-Bubbles Inserted Into a Floating Drop of Water on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Inserting a bubble into a floating ball of water in space is difficult, as Pettit demonstrates in this video. Blowing the bubble is the easy part. Getting it to stay in the center of the ball of water is much more difficult. Watch the video to see the technique Dr. Pettit finally uses and see the resulting visual surprise offered by the ensuing optical properties.

  9. Video- Demonstration of Tea and Sugar in Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Imagine what would happen if a collection of loosely attractive particles were confined in a relatively small region in the floating environment of space. Would they self organize into a compact structure, loosely organize into a fractal, or just continue to float around in their container? In this video clip, Dr. Pettit explored the possibilities. At one point he remarks, 'These things look like pictures from the Hubble Space Telescope.' Watch the video and see what happens!

  10. Video-Growing Salt Crystals Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Growing salt crystals in a bottle of water is a favorite science activity for kids. In space, Dr. Pettit grew salt crystals in stretched films of water so that the salt water only fed the crystals around the edges rather than from all sides, as happens in a glass of water. This video of his demonstration shows that surface tension plays a surprisingly dominant role in the crystal formation and convection is more active that one might expect.

  11. International Space Station (ISS) Potable Water Dispenser (PWD) Beverage Adapter (BA) Redesign

    NASA Technical Reports Server (NTRS)

    Edgerly, Rachel; Benoit, Jace; Shindo, David

    2011-01-01

    The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on-orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials will be changed to be more corrosion resistant, and the Needle will be redesigned to preclude leakage. The redesigns have been tested and proven.

  12. International Space Station (ISS) Potable Water Dispenser (PWD) Beverage Adapter (BA) Redesign

    NASA Technical Reports Server (NTRS)

    Edgerly, Rachel; Benoit, Jace; Shindo, David

    2012-01-01

    The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on ]orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials were changed to be more corrosion resistant, and the Needle was redesigned to preclude leakage. The redesigns have been tested and proven.

  13. Numerical Study of Ammonia Leak and Dispersion in the International Space Station

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2011-01-01

    Management of off-nominal situations on-board the International Space Station (ISS) is important to its continuous operation. One situation of concern is an accidental release of a chemical into the ISS atmosphere. In particular, introduction of ammonia into the cabin atmosphere can occur via the interface heat exchangers (IFHX) between the external thermal control system containing ammonia and internal thermal control system that uses water as a coolant to remove heat from ISS subsystems. Breach of the water/ammonia barrier of the IFHX can lead to a catastrophic rupture. Once the liquid water/ammonia mixture exits the ITCS, it instantly vaporizes and mixes with the U.S. Laboratory cabin atmosphere that results in rapid contamination of the cabin. The goal of the study is to assess the amount of ammonia in the Russian Segment by the time the crew is able to isolate the U.S. Segment. A Computational Fluid Dynamics (CFD) model for an accurate prediction of airflow and ammonia transport in the frozen flow field within the assembly complete ISS cabin was developed. The localized effects of ammonia dispersion are examined and discussed.

  14. Gasoline and vapor exposures in service station and leaking underground storage tank scenarios.

    PubMed

    Guldberg, P H

    1992-01-01

    Exposure to gasoline and gasoline vapors from service station operations and leaking underground storage tanks is a major health concern. Six scenarios for human exposure were examined, based primarily on measured air and water concentrations of total hydrocarbons, benzene, xylenes, and toluene. Calculated mean and upper limit lifetime exposures provide a tool for assisting public health officials in assessing and managing gasoline-related health risks.

  15. International Space Station (ISS) Major Constituent Analyzer (MCA) On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Reysa, Richard; Granahan, John; Seiner, George; Ransom, Elizabeth; Williams, David E.

    2004-01-01

    The Major Constituent Analyzer (MCA) is an essential part of the International Space Station (ISS) environmental control and life support system. The analyzer provides continuous readout of the partial pressures of six gases, nitrogen (N2), oxygen (O2), hydrogen (H2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O) in the various ISS US. on-orbit modules. Continuous readout of the partial pressures of these gases is critical to verifying safe operation of the Atmosphere Revitalization (AR) system, Atmosphere Control System (ACS), and crew safety for Airlock Extravehicular Activities (EVAs). The MCA encountered some operational interruptions since being launched to orbit on Flight 5A in February 2001. Electronic, software, and hardware modifications and on-orbit crew maintenance of the MCA were necessary to restore its capability. This paper describes the modifications and the on-orbit maintenance performed to return the MCA to operational status, including brief explanations of the MCA failures and the associated hardware and electronic modifications. Operational procedures that were required to return the MCA to operational status, and the more recent successes of supporting both Russian and U.S. ISS EVA preparations, are also discussed

  16. Technical Aspects of Acoustical Engineering for the ISS [International Space Station

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2009-01-01

    It is important to control acoustic levels on manned space flight vehicles and habitats to protect crew-hearing, allow for voice communications, and to ensure a healthy and habitable environment in which to work and live. For the International Space Station (ISS) this is critical because of the long duration crew-stays of approximately 6-months. NASA and the JSC Acoustics Office set acoustic requirements that must be met for hardware to be certified for flight. Modules must meet the NC-50 requirement and other component hardware are given smaller allocations to meet. In order to meet these requirements many aspects of noise generation and control must be considered. This presentation has been developed to give an insight into the various technical activities performed at JSC to ensure that a suitable acoustic environment is provided for the ISS crew. Examples discussed include fan noise, acoustic flight material development, on-orbit acoustic monitoring, and a specific hardware development and acoustical design case, the ISS Crew Quarters.

  17. Development of the International Space Station (ISS) Fine Water Mist (FWM) Portable Fire Extinguisher

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle; Graf, John; Carlile, Christie; Young, GIna

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is developing a Fine Water Mist (FWM) Portable Fire Extinguisher (PFE) for use on the International Space Station (ISS). The ISS presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the United States Orbital Segments, which include Columbus and Kibo pressurized elements. Currently, there are operational concerns with the emergency breathing equipment and the carbon dioxide extinguisher. The toxicity of the carbon dioxide requires the crew members to have an oxygen supply present during a fire event, therefore inherently creating an unsafe environment. The FWM PFE extinguishes a fire without creating a hazardous breathing environment for crew members. The following paper will discuss the unique functional and performance requirements that have been levied on the FWM PFE, identify unique microgravity design considerations for liquid and gas systems, as well as discuss the NASA ISS specific fire standards that were developed to establish an acceptable portable fire extinguisher s performance.

  18. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Stewart, M. F.; Mach, D. M.; Bateman, M.; Walker, T. D.; Buechler, D.; Koshak, W. J.; OBrien, S.; Wilson, T.; Colley, E. C.; Abbott, T.; Carter, J.; Pavelitz, S.; Coker, C.

    2014-01-01

    In recent years, NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to provide global observations of total lightning after 17 years on-orbit. In April 2013, a space-qualified LIS built as the flight spare for TRMM, was selected for flight as a science mission on the International Space Station. The ISS LIS (or I-LIS as Hugh Christian prefers) will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of global lightning. More specifically, it measures lightning during both day and night, with storm scale resolution, millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that the characteristics of lightning that LIS measures can be quantitatively coupled to both thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will be exploring

  19. International Space Station environmental microbiome - microbial inventories of ISS filter debris.

    PubMed

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay

    2014-01-01

    Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.

  20. Numerical Study of Ammonia Leak and Dispersion in the International Space Station

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2012-01-01

    Release of ammonia into the International Space Station (ISS) cabin atmosphere can occur if the water/ammonia barrier breach of the active thermal control system (ATCS) interface heat exchanger (IFHX) happens. After IFHX breach liquid ammonia is introduced into the water-filled internal thermal control system (ITCS) and then to the cabin environment through a ruptured gas trap. Once the liquid water/ammonia mixture exits ITCS, it instantly vaporizes and mixes with the U.S. Laboratory cabin air that results in rapid deterioration of the cabin conditions. The goal of the study is to assess ammonia propagation in the Station after IFHX breach to plan the operation procedure. A Computational Fluid Dynamics (CFD) model for accurate prediction of airflow and ammonia transport within each of the modules in the ISS cabin was developed. CFD data on ammonia content in the cabin aisle way of the ISS and, in particular, in the Russian On- Orbit Segment during the period of 15 minutes after gas trap rupture are presented for four scenarios of rupture response. Localized effects of ammonia dispersion and risk mitigation are discussed.

  1. Main results and experience obtained on Mir space station and experiment program for Russian segment of ISS.

    PubMed

    Utkin, V F; Lukjashchenko, V I; Borisov, V V; Suvorov, V V; Tsymbalyuk, M M

    2003-07-01

    This article presents main scientific and practical results obtained in course of scientific and applied research and experiments on Mir space station. Based on Mir experience, processes of research program formation for the Russian Segment of the ISS are briefly described. The major trends of activities planned in the frames of these programs as well as preliminary results of increment research programs implementation in the ISS' first missions are also presented.

  2. Analytical Assessment of a Gross Leakage Event Within the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS)

    NASA Technical Reports Server (NTRS)

    Holt, James M.; Clanton, Stephen E.

    2001-01-01

    Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flow rates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA85/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effect resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.

  3. Analytical Assessment of a Gross Leakage Event Within the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS)

    NASA Technical Reports Server (NTRS)

    Holt, James M.; Clanton, Stephen E.

    1999-01-01

    Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flowrates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effects resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.

  4. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  5. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; Pavelitz, S.; Coker, C.

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  6. New Mission to Measure Global Lightning from the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2015-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) from November 1997 to April 2015 between 38° N/S latitudes, and its Optical Transient Detector predecessor that acquired observation from May 1995 to April 2000 over 75° N/S latitudes. In February 2016, as an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission. The LIS on ISS will continue observations of the amount, rate, and radiant energy of total lightning over the Earth. More specifically, LIS measures lightning during both day and night, with storm scale resolution (~4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines. This mission will also extend TRMM time series observations, expand the latitudinal coverage to 54° latitude, provide real-time lightning data to operational users, espically over data sparse oceanic regions, and enable cross-sensor observations and calibrations that includes the new GOES-R Geostationary Lightning Mapper (GLM) and the Meteosat

  7. Back to the future: the role of the ISS and future space stations in planetary exploration.

    NASA Astrophysics Data System (ADS)

    Muller, Christian; Moreau, Didier

    2010-05-01

    Space stations as stepping stones to planets appear already in the1954 Disney-von Braun anticipation TV show but the first study with a specific planetary scientific objective was the ANTEUS project of 1978. This station was an evolution of SPACELAB hardware and was designed to analyse Mars samples with better equipment than the laboratory of the VIKING landers. It would have played the role of the reception facility present in the current studies of Mars sample return, after analysis, the "safe" samples would have been returned to earth by the space shuttle. This study was followed by the flights of SPACELAB and MIR. Finally after 35 years of development, the International Space Station reaches its final configuration in 2010. Recent developments of the international agreement between the space agencies indicate a life extending to 2025, it is already part of the exploration programme as its crews prepare the long cruise flights and missions to the exploration targets. It is now time to envisage also the use of this stable 350 tons spacecraft for planetary and space sciences. Planetary telescopes are an obvious application; the present SOLAR payload on COLUMBUS is an opportunity to use the target pointing capabilities from the ISS. The current exposure facilities are also preparing future planetary protection procedures. Other applications have already been previously considered as experimental collision and impact studies in both space vacuum and microgravity. Future space stations at the Lagrange points could simultaneously combine unique observation platforms with an actual intermediate stepping stone to Mars.

  8. Positioning Space Solar Power (SSP) as the Next Logical Step after the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Charania, A.

    2002-01-01

    At the end of the first decade of the 21st century, the International Space Station (ISS) will stand as a testament of the engineering capabilities of the international community. The choices for the next logical step for this community remain vast and conflicting: a Mars mission, moon colonization, Space Solar Power (SSP), etc. This examination focuses on positioning SSP as one such candidate for consideration. A marketing roadmap is presented that reveals the potential benefits of SSP to both the space community and the global populace at large. Recognizing that scientific efficiency itself has no constituency large enough to persuade entities to outlay funds for such projects, a holistic approach is taken to positioning SSP. This includes the scientific, engineering, exploratory, economic, political, and development capabilities of the system. SSP can be seen as both space exploration related and a resource project for undeveloped nations. Coupling these two non-traditional areas yields a broader constituency for the project that each one alone could generate. Space exploration is many times seen as irrelevant to the condition of the populace of the planet from which the money comes for such projects. When in this new century, billions of people on the planet still have never made a phone call or even have access to clean water, the origins of this skepticism can be understandable. An area of concern is the problem of not living up to the claims of overeager program marketers. Just as the ISS may never live up to the claims of its advocates in terms of space research, any SSP program must be careful in not promising utopian global solutions to any future energy starved world. Technically, SSP is a very difficult problem, even harder than creating the ISS, yet the promise it can hold for both space exploration and Earth development can lead to a renaissance of the relevance of space to the lives of the citizens of the world.

  9. Rapid Monitoring of Bacteria and Fungi aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Gunter, D.; Flores, G.; Effinger, M.; Maule, J.; Wainwright, N.; Steele, A.; Damon, M.; Wells, M.; Williams, S.; Morris, H.; Monaco, L.

    2009-01-01

    Microorganisms within spacecraft have traditionally been monitored with culture-based techniques. These techniques involve growth of environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies or return of samples to Earth for ground-based analysis. Data obtained over the past 4 decades have enhanced our understanding of the microbial ecology within space stations. However, the approach has been limited by the following factors: i) Many microorganisms (estimated > 95%) in the environment cannot grow on conventional growth media; ii) Significant time lags (3-5 days for incubation and up to several months to return samples to ground); iii) Condensation in contact slides hinders colony counting by crew; and iv) Growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and beta-1, 3-glucan, found in the cell walls of gramnegative bacteria and fungi, respectively. The technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device, known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). LOCADPTS was launched to the ISS in December 2006, and here we present data obtained from Mach 2007 until the present day. These data include a comparative study between LOCADPTS analysis and existing culture-based methods; and an exploratory survey of surface endotoxin and beta-1, 3-glucan throughout the ISS. While a general correlation between LOCAD-PTS and traditional culture-based methods should not be expected, we will suggest new requirements for microbial monitoring based upon culture-independent parameters measured by LOCAD-PTS.

  10. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for CubeSat Deployments to Minimize Collision Risk

    NASA Technical Reports Server (NTRS)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2105, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  11. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for CubeSat Deployments to Minimize Collision Risk

    NASA Astrophysics Data System (ADS)

    Pawloski, J.; Aviles, J.; Myers, R.; Parris, J.; Corley, B.; Hehn, G.; Pascucci, J.

    2016-09-01

    The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2015, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  12. LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station

    NASA Astrophysics Data System (ADS)

    Fraser, George W.; Brunton, Adam N.; Bannister, Nigel P.; Pearson, James F.; Ward, Martin; Stevenson, Tim J.; Watson, D. J.; Warwick, Bob; Whitehead, S.; O'Brian, Paul; White, Nicholas; Jahoda, Keith; Black, Kevin; Hunter, Stanley D.; Deines-Jones, Phil; Priedhorsky, William C.; Brumby, Steven P.; Borozdin, Konstantin N.; Vestrand, T.; Fabian, A. C.; Nugent, Keith A.; Peele, Andrew G.; Irving, Thomas H.; Price, Steve; Eckersley, Steve; Renouf, Ian; Smith, Mark; Parmar, Arvind N.; McHardy, I. M.; Uttley, P.; Lawrence, A.

    2002-01-01

    We describe the design of Lobster-ISS, an X-ray imaging all-sky monitor (ASM) to be flown as an attached payload on the International Space Station. Lobster-ISS is the subject of an ESA Phase-A study which will begin in December 2001. With an instantaneous field of view 162 x 22.5 degrees, Lobster-ISS will map almost the complete sky every 90 minute ISS orbit, generating a confusion-limited catalogue of ~250,000 sources every 2 months. Lobster-ISS will use focusing microchannel plate optics and imaging gas proportional micro-well detectors; work is currently underway to improve the MCP optics and to develop proportional counter windows with enhanced transmission and negligible rates of gas leakage, thus improving instrument throughput and reducing mass. Lobster-ISS provides an order of magnitude improvement in the sensitivity of X-ray ASMs, and will, for the first time, provide continuous monitoring of the sky in the soft X-ray region (0.1-3.5 keV). Lobster-ISS provides long term monitoring of all classes of variable X-ray source, and an essential alert facility, with rapid detection of transient X-ray sources such as Gamma-Ray Burst afterglows being relayed to contemporary pointed X-ray observatories. The mission, with a nominal lifetime of 3 years, is scheduled for launch on the Shuttle c.2009.

  13. The SOS-LUX-LAC-FLUORO-Toxicity-test on the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Baumstark-Khan, C.; Horneck, G.

    In the 21 st century, an increasing number of astronauts will visit the International Space Station (ISS) for prolonged times. Therefore it is of utmost importance to provide necessary basic knowledge concerning risks to their health and their ability to work on the station and during extravehicular activities (EVA) in free space. It is the aim of one experiment of the German project TRIPLE-LUX (to be flown on the ISS) to provide an estimation of health risk resulting from exposure of the astronauts to the radiation in space inside the station as well as during extravehicular activities on one hand, and of exposure of astronauts to unavoidable or as yet unknown ISS-environmental genotoxic substances on the other. The project will (i) provide increased knowledge of the biological action of space radiation and enzymatic repair of DNA damage, (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation and (iii) examine the space craft milieu with highly specific biosensors. For these investigations, the bacterial biosensor SOS-LUX-LAC-FLUORO-Toxicity-test will be used, combining the SOS-LUX-Test invented at DLR Germany (Patent) with the commercially available LAC-FLUORO-Test. The SOS-LUX-Test comprises genetically modified bacteria transformed with the pBR322-derived plasmid pPLS-1. This plasmid carries the promoterless lux operon of Photobacterium leiognathi as a reporter element under control of the DNA-damage dependent SOS promoter of ColD as sensor element. This system reacts to radiation and other agents that induce DNA damages with a dose dependent measurable emission of bioluminescence of the transformed bacteria. The analogous LAC-FLUORO-Test has been developed for the detection of cellular responses to cytotoxins. It is based on the constitutive expression of green fluorescent protein (GFP) mediated by the bacterial protein expression vector pGFPuv (Clontech, Palo Alto, USA). In response to cytotoxic agents, this system

  14. The SOS-LUX-LAC-FLUORO-Toxicity-test on the International Space Station (ISS).

    PubMed

    Rabbow, E; Rettberg, P; Baumstark-Khan, C; Horneck, G

    2003-01-01

    In the 21st century, an increasing number of astronauts will visit the International Space Station (ISS) for prolonged times. Therefore it is of utmost importance to provide necessary basic knowledge concerning risks to their health and their ability to work on the station and during extravehicular activities (EVA) in free space. It is the aim of one experiment of the German project TRIPLE-LUX (to be flown on the ISS) to provide an estimation of health risk resulting from exposure of the astronauts to the radiation in space inside the station as well as during extravehicular activities on one hand, and of exposure of astronauts to unavoidable or as yet unknown ISS-environmental genotoxic substances on the other. The project will (i) provide increased knowledge of the biological action of space radiation and enzymatic repair of DNA damage, (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation and (iii) examine the space craft milieu with highly specific biosensors. For these investigations, the bacterial biosensor SOS-LUX-LAC-FLUORO-Toxicity-test will be used, combining the SOS-LUX-Test invented at DLR Germany (Patent) with the commercially available LAC-FLUORO-Test. The SOS-LUX-Test comprises genetically modified bacteria transformed with the pBR322-derived plasmid pPLS-1. This plasmid carries the promoterless lux operon of Photobacterium leiognathi as a reporter element under control of the DNA-damage dependent SOS promoter of ColD as sensor element. This system reacts to radiation and other agents that induce DNA damages with a dose dependent measurable emission of bioluminescence of the transformed bacteria. The analogous LAC-FLUORO-Test has been developed for the detection of cellular responses to cytotoxins. It is based on the constitutive expression of green fluorescent protein (GFP) mediated by the bacterial protein expression vector pGFPuv (Clontech, Palo Alto, USA). In response to cytotoxic agents, this system

  15. International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concepts and Advancements

    NASA Technical Reports Server (NTRS)

    ElSherif, Dina; Knox, James C.

    2005-01-01

    An important aspect of air revitalization for life support in spacecraft is the removal of carbon dioxide from cabin air. Several types of carbon dioxide removal systems are in use in spacecraft life support. These systems rely on various removal techniques that employ different architectures and media for scrubbing CO2, such as permeable membranes, liquid amine, adsorbents, and absorbents. Sorbent systems have been used since the first manned missions. The current state of key technology is the existing International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA), a system that selectively removes carbon dioxide from the cabin atmosphere. The CDRA system was launched aboard UF-2 in February 2001 and resides in the U.S. Destiny Laboratory module. During the past four years, the CDRA system has operated with varying degrees of success. There have been several approaches to troubleshooting the CDRA system aimed at developing work-around solutions that would minimize the impact on astronaut time required to implement interim solutions. The paper discusses some of the short-term fixes applied to promote hardware life and restore functionality, as well as long-term plans and solutions for improving operability and reliability. The CDRA is a critical piece of life support equipment in the air revitalization system of the ISS, and is demonstrated technology that may ultimately prove well-suited for use in lunar or Mars base, and Mars transit life support applications.

  16. Verification of International Space Station Component Leak Rates by Helium Accumulation Method

    NASA Technical Reports Server (NTRS)

    Underwood, Steve D.; Smith, Sherry L.

    2003-01-01

    Discovery of leakage on several International Space Station U.S. Laboratory Module ammonia system quick disconnects (QDs) led to the need for a process to quantify total leakage without removing the QDs from the system. An innovative solution was proposed allowing quantitative leak rate measurement at ambient external pressure without QD removal. The method utilizes a helium mass spectrometer configured in the detector probe mode to determine helium leak rates inside a containment hood installed on the test component. The method was validated through extensive developmental testing. Test results showed the method was viable, accurate and repeatable for a wide range of leak rates. The accumulation method has been accepted by NASA and is currently being used by Boeing Huntsville, Boeing Kennedy Space Center and Boeing Johnson Space Center to test welds and valves and will be used by Alenia to test the Cupola. The method has been used in place of more expensive vacuum chamber testing which requires removing the test component from the system.

  17. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: 2010-2014

    NASA Technical Reports Server (NTRS)

    Gentry, Gregory J.; Cover, John

    2015-01-01

    Nov 2, 2014 marked the completion of the 14th year of continuous human presence in space on board the International Space Station (ISS). After 42 expedition crews, over 115 assembly & utilization flights, over 180 combined Shuttle/Station, US & Russian Extravehicular Activities (EVAs), the post-Assembly-Complete ISS continues to fly and the engineering teams continue to learn from operating its systems, particularly the life support equipment. Problems with initial launch, assembly and activation of ISS elements have given way to more long term system operating trends. New issues have emerged, some with gestation periods measured in years. Major events and challenges for each U.S. Environmental Control and Life Support (ECLS) subsystem occurring during calendar years 2010 through 2014 are summarily discussed in this paper, along with look-aheads for what might be coming in the future for each U.S. ECLS subsystem.

  18. A Selected Operational History of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Patel, Vipul P.; Winton, Dale; Ibarra, Thomas H.

    2004-01-01

    The Internal Thermal Control System (ITCS) has been developed jointly by Boeing Corporation, Huntsville, Alabama and Honeywell Engines & Systems, Torrance, California to meet the internal thermal control needs for the International Space Station (ISS). The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first US Element containing the ITCS, Node 1, was launched in December 1998. Since Node 1 does not contain a pump to circulate the fluid it was not filled with ITCS fluid until after the US Laboratory Module was installed. The second US Element module, US Laboratory Module, which contains the pumps and all the major ITCS control hardware, was launched in February 2001. The third US Element containing the ITCS, the US Airlock, was launched in July 2001. The dual loop system of the ITCS is comprised of a lowtemperature loop (LTL) and a moderate-temperature loop (MTL). Each loop has a pump package assembly (PPA), a system flow control assembly (SFCA), a threeway mixing valve (TWMV), several rack flow control assemblies (RFCA), cold plates, pressure sensors, temperature sensors, pump bypass assembly (PBA) and a heat exchanger. In addition, the MTL has an additional TWMV, a payload regeneration heat exchanger (P/RHE) and a manual flow control valve (MFCV). The LTL has a service performance and checkout unit (SPCU) heat exchanger. The two loops are linked via one loop crossover assembly (LCA) providing cross loop capabilities and a single PPA, two-loop functionality. One important parameter monitored by the ground stations and on-orbit is the amount of fluid leakage from the ITCS. ISS fluid leakage is of importance since ITCS fluid is costly to re-supply, may be difficult to clean up in zero-g, and if uncontained could lead to equipment failures and potential hazards. This paper examines the nominal leakage observed over period of a year

  19. International Space Station (ISS) Internal Active Thermal Control System (IATCS) New Biocide Selection, Qualification and Implementation

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.; Cole, Harold; Rector, Tony; Steele, John; Varsik, Jerry

    2010-01-01

    The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007.

  20. International Space Station (ISS) Internal Active Thermal Control System (IATCS) New Biocide Selection, Qualification and Implementation

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.; Cole, Harold E.; Rector, Tony; Steele, John; Varsik, Jerry

    2011-01-01

    The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007.

  1. Trending of Overboard Leakage of ISS Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.; Leonard, Daniel J.; Ghariani, Ahmed

    2011-01-01

    The International Space Station (ISS) overboard leakage of cabin atmosphere is continually tracked to identify new or aggravated leaks and to provide information for planning of nitrogen supply to the ISS. The overboard leakage is difficult to trend with various atmosphere constituents being added and removed. Changes to nitrogen partial pressure is the nominal means of trending the overboard leakage. This paper summarizes the method of the overboard leakage trending and presents findings from the trending.

  2. Development of the International Space Station (ISS) Fine Water Mist (FWM) Portable Fire Extinguisher ICES Abstract

    NASA Technical Reports Server (NTRS)

    Clements, Anna L.; Carlile, Christie; Graf, John; Young, Gina

    2011-01-01

    NASA is developing a Fine Water Mist (FWM) Portable Fire Extinguisher (PFE) for use on the International Space Station. The International Space Station presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the US Segment and Columbus and Kibo pressurized elements. Changes in emergency breathing equipment make Fine Water Mist operationally preferable. Supplied oxygen breathing systems allow for safe discharge of a carbon dioxide fire extinguisher, without concerns of the crew inhaling unsafe levels of carbon dioxide. But the Portable Breathing Apparatus (PBA) offers no more than 15 minutes of capability, and continued use of hose based supplied oxygen system increases the oxygen content in a fire situation. NASA has developed a filtering respirator cartridge for use in a fire environment. It is qualified to provide up to 90 minutes of capability, and because it is a filtering respirator it does not add oxygen to the environment. The fire response respirator cartridge does not filter carbon dioxide (CO2), so a crew member discharging a CO2 fire extinguisher while wearing this filtering respirator would be at risk of inhaling unsafe levels of CO2. FWM extinguishes a fire without creating a large volume of air with reduced oxygen and elevated CO2. The following paper will discuss the unique functional and performance requirements that have been levied on the FWM PFE. In addition, the NASA ISS specific fire standards will be described which were developed to establish acceptable extinguisher performance. The paper will also discuss the flight hardware design. The fin e water mist fire extinguisher has two major elements: (1) the nozzle and crew interface, and (2) the tank. The nozzle and crew interface have been under development for several years. They have gone through several design iterations, and have been part of more than 400 fire challenge and spray characterizations. The

  3. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2015-07-07

    As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.

  4. The Microgravity Science Glovebox (MSG), a Resource for Gravity-Dependent Phenomena Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jeter, Linda B.; Vonk, Chris

    2007-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, plus or minus 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust' and Vacuum Resource 'Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to-the MSG facility to further enhance the resources provided to investigations.

  5. The Microgravity Science Glovebox (MSG), a Resource for Gravity-Dependent Phenomena Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jeter, Linda B.; Vonk, Chris

    2007-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG s unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to the MSG facility to further enhance the resources provided to investigations.

  6. LOCAD-PTS: Operation of a New System for Microbial Monitoring Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Maule, J.; Wainwright, N.; Steele, A.; Gunter, D.; Flores, G.; Effinger, M.; Danibm N,; Wells, M.; Williams, S.; Morris, H.; Monaco, L.

    2008-01-01

    Microorganisms within the space stations Salyut, Mir and the International Space Station (ISS), have traditionally been monitored with culture-based techniques. These techniques involve growing environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies; and return of samples to Earth for ground-based analysis. This approach has provided a wealth of useful data and enhanced our understanding of the microbial ecology within space stations. However, the approach is also limited by the following: i) More than 95% microorganisms in the environment cannot grow on conventional growth media; ii) Significant time lags occur between onboard sampling and colony visualization (3-5 days) and ground-based analysis (as long as several months); iii) Colonies are often difficult to visualize due to condensation within contact slide media plates; and iv) Techniques involve growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and -1, 3-glucan, found in the cell walls of gram-negative bacteria and fungi, respectively. This technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device. This handheld device and sampling system is known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). A poster will be presented that describes a comparative study between LOCAD-PTS analysis and existing culture-based methods onboard the ISS; together with an exploratory survey of surface endotoxin throughout the ISS. It is concluded that while a general correlation between LOCAD-PTS and traditional culture-based methods should not necessarily be expected, a combinatorial approach can be adopted where both sets of data are used together to generate a more complete story of

  7. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  8. Flight model performances of HISUI hyperspectral sensor onboard ISS (International Space Station)

    NASA Astrophysics Data System (ADS)

    Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira

    2016-10-01

    Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.

  9. Compatibility Testing of Polymeric Materials for the Urine Processor Assembly (UPA) of International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Charles D.

    2003-01-01

    In the International Space Station (ISS), astronauts will convert urine into potable water with the Urine Processor Assembly (UPA) by a distillation process. The urine is pre-treated, containing flush water and stabilizers. About 2.5% solids in the urine are concentrated up to 16% brine through distillation. Dynamic mechanical analysis (DMA) in the stress relaxation mode was primarily used to test 15 polymeric UPA materials for compatibility with the pre-treated and brine solutions. There were concerns that chromium trioxide (CrO3), a stabilizer not in the original pre-treat formulation for similar compatibility testing in 2000, could have an adverse effect on these polymers. DMA testing is partially complete for polymeric material samples immersed in the two solutions at room temperature for as long as 200 days. By comparing each material (conditioned and virgin), the stress relaxation modulus (E) was determined for short-term use and predicted for as long as a 10-year use in space. Such a delta E showed a decrease of as much as 79% for a Nylon material, but an increase as much as 454% for a polysulfone material, with increasing immersion time.

  10. Realtime Knowledge Management (RKM): From an International Space Station (ISS) Point of View

    NASA Technical Reports Server (NTRS)

    Robinson, Peter I.; McDermott, William; Alena, Richard L.

    2004-01-01

    We are developing automated methods to provide realtime access to spacecraft domain knowledge relevant a spacecraft's current operational state. The method is based upon analyzing state-transition signatures in the telemetry stream. A key insight is that documentation relevant to a specific failure mode or operational state is related to the structure and function of spacecraft systems. This means that diagnostic dependency and state models can provide a roadmap for effective documentation navigation and presentation. Diagnostic models consume the telemetry and derive a high-level state description of the spacecraft. Each potential spacecraft state description is matched against the predictions of models that were developed from information found in the pages and sections in the relevant International Space Station (ISS) documentation and reference materials. By annotating each model fragment with the domain knowledge sources from which it was derived we can develop a system that automatically selects those documents representing the domain knowledge encapsulated by the models that compute the current spacecraft state. In this manner, when the spacecraft state changes, the relevant documentation context and presentation will also change.

  11. International Space Station (ISS) S-Band Corona Discharge Anomaly Consultation

    NASA Technical Reports Server (NTRS)

    Kichak, Robert A.; Leidecker, Henning; Battel, Steven; Ruitberg, Arthur; Sank, Victor

    2008-01-01

    The Assembly and Contingency Radio Frequency Group (ACRFG) onboard the International Space Station (ISS) is used for command and control communications and transmits (45 dBm or 32 watts) and receives at S-band. The system is nominally pressurized with gaseous helium (He) and nitrogen (N2) at 8 pounds per square inch absolute (psia). MacDonald, Dettwiler and Associates Ltd. (MDA) was engaged to analyze the operational characteristics of this unit in an effort to determine if the anomalous behavior was a result of a corona event. Based on this analysis, MDA did not recommend continued use of this ACRFG. The NESC was requested to provide expert support in the area of high-voltage corona and multipactoring in an S-Band RF system and to assess the probability of corona occurring in the ACRFG during the planned EVA. The NESC recommended minimal continued use of S/N 002 ACRFG until a replacement unit can be installed. Following replacement, S/N 002 will be subjected to destructive failure analysis in an effort to determine the proximate and root cause(s) of the anomalous behavior.

  12. Extravehicular Mobility Unit (EMU) / International Space Station (ISS) Coolant Loop Failure and Recovery

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Cole, Harold; Cronin, Gary; Gazda, Daniel B.; Steele, John

    2006-01-01

    Following the Colombia accident, the Extravehicular Mobility Units (EMU) onboard ISS were unused for several months. Upon startup, the units experienced a failure in the coolant system. This failure resulted in the loss of Extravehicular Activity (EVA) capability from the US segment of ISS. With limited on-orbit evidence, a team of chemists, engineers, metallurgists, and microbiologists were able to identify the cause of the failure and develop recovery hardware and procedures. As a result of this work, the ISS crew regained the capability to perform EVAs from the US segment of the ISS.

  13. Microbe space exposure experiment at International Space Station (ISS) proposed in "Tanpopo" mission

    NASA Astrophysics Data System (ADS)

    Yokobori, Shin-Ichi; Yang, Yinjie; Sugino, Tomohiro; Kawaguchi, Yuko; Yoshida, Satoshi; Hashimoto, Hirofumi; Narumi, Issay; Kobayashi, Kensei; Yamagishi, Akihiko

    Microbes have been collected from high altitude using balloons, aircraft and meteorological rockets since 1936. Spore forming fungi and Bacilli, and Micrococci (probably Deinococci) have been isolated in these experiments. These spores and Deinococci are known by their extremely high resistance against UV, gamma ray, and other radiation. We have also collected microorganisms at high altitude by using an aircraft and balloons. We collected two novel species of the genus Deinococcus, one from top of troposphere (D. aerius) and the other from bottom of stratosphere (D. aetherius). These two species showed high resistance comparable with D. radiodurans R1 to the UV and radiation such as gamma ray. If microbes could be found present even at the higher altitude of low earth orbit (400km), the fact would endorse the possible interplanetary migration of terrestrial life. Indeed, to explain how organisms on the Earth were originated at the quite early stage of the history of Earth, panspermia hypothesis was proposed. Recent findings of the Martian meteorite suggested possible existence of extraterrestrial life, and interplanetary migration of life as well. We proposed the "Tanpopo" mission to examine possible interplanetary migration of microbes, and organic compounds on Japan Experimental Module (JEM) of the International Space Station (ISS). Two of six subthemes in Tanpopo are on the possible interplanetary migration of microbes — capture experiment of microbes at the ISS orbit and space exposure experiment of microbes. In this paper, we focus on the space exposure experiment of microbes. In our proposal, microbes will be exposed to the space environment with/without model-clay materials that might protect microbes from vacuum UV and cosmic rays. Spore of Bacillus sp., and vegetative cells of D. radiodurans and our novel deinococcal species isolated from high altitude are candidates for the exposure experiment. In preliminary experiments, clay-materials tend to increase

  14. Analysis of Adult Female Mouse (Mus musculus) Group Behavior on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.

    2016-01-01

    As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group

  15. Space Station Freedom seal leakage rate analysis and testing summary: Air leaks in ambient versus vacuum exit conditions

    NASA Technical Reports Server (NTRS)

    Rodriguez, P. I.; Markovitch, R.

    1992-01-01

    This report is intended to reveal the apparent relationship of air seal leakage rates between 2 atmospheres (atm) to 1 atm and 1 atm to vacuum conditions. Gas dynamics analysis is provided as well as data summarizing the MSFC test report, 'Space Station Freedom (S.S. Freedom) Seal Flaw Study With Delta Pressure Leak Rate Comparison Test Report'.

  16. International Space Station (ISS) External Thermal Control System (ETCS) Loop A Pump Module (PM) Jettison Options Assessment

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Dwyer Cianciolo, Alicia; Shidner, Jeremy D.; Powell, Richard W.

    2014-01-01

    On December 11, 2013, the International Space Station (ISS) experienced a failure of the External Thermal Control System (ETCS) Loop A Pump Module (PM). To minimize the number of extravehicular activities (EVA) required to replace the PM, jettisoning the faulty pump was evaluated. The objective of this study was to independently evaluate the jettison options considered by the ISS Trajectory Operations Officer (TOPO) and to provide recommendations for safe jettison of the ETCS Loop A PM. The simulation selected to evaluate the TOPO options was the NASA Engineering and Safety Center's (NESC) version of Program to Optimize Simulated Trajectories II (POST2) developed to support another NESC assessment. The objective of the jettison analysis was twofold: (1) to independently verify TOPO posigrade and retrograde jettison results, and (2) to determine jettison guidelines based on additional sensitivity, trade study, and Monte Carlo (MC) analysis that would prevent PM recontact. Recontact in this study designates a propagated PM trajectory that comes within 500 m of the ISS propagated trajectory. An additional simulation using Systems Tool Kit (STK) was run for independent verification of the POST2 simulation results. Ultimately, the ISS Program removed the PM jettison option from consideration. However, prior to the Program decision, the retrograde jettison option remained part of the EVA contingency plan. The jettison analysis presented showed that, in addition to separation velocity/direction and the atmosphere conditions, the key variables in determining the time to recontact the ISS is highly dependent on the ballistic number (BN) difference between the object being jettisoned and the ISS.

  17. Regenerative water supply for an interplanetary space station: The experience gained on the space stations “Salut”, “Mir”, ISS and development prospects

    NASA Astrophysics Data System (ADS)

    Bobe, Leonid; Samsonov, Nikoly; Gavrilov, Lev; Novikov, Vladimir; Tomashpolskiy, Mihail; Andreychuk, Peter; Protasov, Nikoly; Synjak, Yury; Skuratov, Vladimir

    2007-06-01

    Based on the experience in operation of Russian space stations Salut, Mir and International space station ISS the station's water balance data, parameters and characteristics of the systems for water recovery have been obtained. Using the data design analysis an integrated water supply system for an interplanetary space station has been performed. A packaged physical/chemical system for water supply is composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. The take off mass of the packaged water supply system (including expendables, redundancy hardware, equivalent mass of power consumption and of thermal control) is appropriate for Mars missions. The international space station is indispensable for verifying innovative processes and new water recovery systems intended for missions to Mars.

  18. Development of the International Space Station (ISS) Fine Water Mist (FWM) Portable Fire Extinguisher

    NASA Technical Reports Server (NTRS)

    Clements, Anna L.

    2011-01-01

    NASA is developing a Fine Water Mist Portable Fire Extinguisher for use on the International Space Station. The International Space Station presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the US Segment and Columbus and Kibo pressurized elements. Changes in emergency breathing equipment make Fine Water Mist operationally preferable. Supplied oxygen breathing systems allow for safe discharge of a carbon dioxide fire extinguisher, without concerns of the crew inhaling unsafe levels of carbon dioxide. But the Portable Breathing Apparatus (PBA) offers no more than 15 minutes of capability, and continued use of hose based supplied oxygen system increases the oxygen content in a fire situation. NASA has developed a filtering respirator cartridge for use in a fire environment. It is qualified to provide up to 90 minutes of capability, and because it is a filtering respirator it does not add oxygen to the environment. The fire response respirator cartridge does not filter carbon dioxide (CO2), so a crew member discharging a CO2 fire extinguisher while wearing this filtering respirator would be at risk of inhaling unsafe levels of CO2. Fine Water Mist extinguishes a fire without creating a large volume of air with reduced oxygen and elevated CO2. From a flight hardware design perspective, the fine water mist fire extinguisher has two major elements: (1) the nozzle and crew interface, and (2) the tank. The nozzle and crew interface has been under development for several years. It has gone through several design iterations, and has been part of more than 400 fire challenge and spray characterizations. The crew and vehicle interface aspects of the design will use the heritage of the CO2 based Portable Fire Extinguisher, to minimize the disruption to the crew and integration impacts to the ISS. The microgravity use environment of the system poses a set of unique design requirements

  19. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for Cubesat Deployments

    NASA Technical Reports Server (NTRS)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  20. Organization and Management of the International Space Station (ISS) Multilateral Medical Operations

    NASA Technical Reports Server (NTRS)

    Duncan, J. M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.

    2007-01-01

    The goal of this work is to review the principles, design, and function of the ISS multilateral medical authority and the medical support system of the ISS Program. Multilateral boards and panels provide operational framework, direct, and supervise the ISS joint medical operational activities. The Integrated Medical Group (IMG) provides front-line medical support of the crews. Results of ongoing activities are reviewed weekly by physician managers. A broader status review is conducted monthly to project the state of crew health and medical support for the following month. All boards, panels, and groups function effectively and without interruptions. Consensus prevails as the primary nature of decisions made by all ISS medical groups, including the ISS medical certification board. The sustained efforts of all partners have resulted in favorable medical outcomes of the initial fourteen long-duration expeditions. The medical support system appears to be mature and ready for further expansion of the roles of all Partners, and for the anticipated increase in the size of ISS crews.

  1. Theoretical Model of Drag Force Impact on a Model International Space Station (ISS) Satellite due to Solar Activity

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar

    The International Space Station (ISS) is the single largest and most complex scientific and engineering space structure in human history. Its orbital parameters make it extremely vulnerable to severe atmospheric drag force. Complex interactions between solar energetic particles, ultraviolet (UV) radiation with atmosphere and geomagnetic field cause heating and subsequent expansion of the upper atmosphere. This condition increases drag on low Earth orbit satellites (LEOSs) and varies with current space weather conditions. In this work, we apply the NRLMSISE-00 empirical atmospheric density model, as a function of space environmental parameters, to model drag force impact on a model LEOS during variation of solar activity. Applying the resulting drag model on a model ISS satellite we observe that depending on the severity and/or stage of solar activity or cycle, a massive artificial satellite could experience orbit decay rate of up to 2.95km/month during solar maximum and up to 1km/month during solar minimum.

  2. International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System Keep Out Zone On-Orbit Problems

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2004-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system performance can be impacted by operations on ISS. This is especially important for the Temperature and Humidity Control (THC) and for the Fire Detection and Suppression (FDS) subsystems. It is also more important for Node 1 since it has become a convenient area for many crew tasks and for stowing hardware prior to Shuttle arrival. This paper will discuss the current requirements for ECLS keep out zones in Node 1; the issues with stowage in Node 1 during Increment 7 and how they impacted the keep out zone requirements; and the solution during Increment 7 and 8 for maintaining the keep out zones in Node 1.

  3. Independent Assessment of Instrumentation for ISS On-Orbit NDE. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    2013-01-01

    International Space Station (ISS) Structural and Mechanical Systems Manager, requested that the NASA Engineering and Safety Center (NESC) provide a quantitative assessment of commercially available nondestructive evaluation (NDE) instruments for potential application to the ISS. This work supports risk mitigation as outlined in the ISS Integrated Risk Management Application (IRMA) Watch Item #4669, which addresses the requirement for structural integrity after an ISS pressure wall leak in the event of a penetration due to micrometeoroid or debris (MMOD) impact. This document contains the appendices the final report.

  4. Independent Assessment of Instrumentation for ISS On-Orbit NDE. Volume 1

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I

    2013-01-01

    International Space Station (ISS) Structural and Mechanical Systems Manager, requested that the NASA Engineering and Safety Center (NESC) provide a quantitative assessment of commercially available nondestructive evaluation (NDE) instruments for potential application to the ISS. This work supports risk mitigation as outlined in the ISS Integrated Risk Management Application (IRMA) Watch Item #4669, which addresses the requirement for structural integrity after an ISS pressure wall leak in the event of a penetration due to micrometeoroid or debris (MMOD) impact. This document contains the outcome of the NESC assessment.

  5. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-105 at the Conclusion of 7A.1

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-105 (7 A.1) flight to the ISS is reported. ISS air samples were taken in August 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Discovery using GSCs. Analytical methods have not changed from earlier reports, and surrogate standard recoveries were 64-115%. Pressure tracking indicated no leaks in the canisters.

  6. Ambient Mass Density Effects on the International Space Station (ISS) Microgravity Experiments

    NASA Astrophysics Data System (ADS)

    Smith, O. E.; Adelfang, S. I.; Smith, R. E.

    1996-12-01

    NASA has specified that the Marshall Engineering Thermosphere (MET) model is to be used in the design, development, and testing phases of the ISS. The neutral atmosphere parameter that affects the ISS the most is the mass density. Although the MET model is based on density values calculated from the orbital decay histories of satellites, the key parameter for calculating the mass density is the temperature structure above 90 kilometers altitude, particularly the exospheric temperature. The exospheric temperature is highly dependent on the 81-day average 10.7-cm solar radio noise flux, the daily value of the 10.7-cm solar flux and the 3-hourly average geomagnetic index, ap. In this study the MET model is used to compute total mass density from 250 to 450 km altitude using the available 47 years (1947-1993) daily values for the 10.7-cm solar flux and the 3-hourly (8 per day) average value of the geomagnetic index, ap. A description of the MET model and examples of the neutral atmospheric density applicable to the ISS microgravity experiment requirements are presented. One of the microgravity experiment requirements is that one micro-g cannot be exceeded at the ISS internal payload location for 6 periods of not less than 30 consecutive days per year. The atmospheric drag acceleration is only one of the factors that can contribute to the residual accelerations on the ISS. Other causes include mechanical noise, crew disturbances, and uncertainties in the Control Moment Gyros (CMG) capability to control attitude and torques. In this study, under simplifying assumptions, the critical ambient neutral density required to produce one micro-g on the ISS is estimated using an atmospheric drag acceleration equation. Examples are presented for the critical density versus altitude, and for the critical density that is exceeded at least once per month and at least once per orbit during periods of low and high solar activity

  7. Video-Puff of Air Hits Ball of Water in Space Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Dr. Pettit demonstrates the phenomenon of a puff of air hitting a ball of water that is free floating in space. Watch the video to see why Dr. Pettit remarks 'I'd hate think that our planet would go through these kinds of gyrations if it got whacked by a big asteroid'.

  8. Evaluating ACLS Algorithms for the International Space Station (ISS) - A Paradigm Revisited

    NASA Technical Reports Server (NTRS)

    Alexander, Dave; Brandt, Keith; Locke, James; Hurst, Victor, IV; Mack, Michael D.; Pettys, Marianne; Smart, Kieran

    2007-01-01

    The ISS may have communication gaps of up to 45 minutes during each orbit and therefore it is imperative to have medical protocols, including an effective ACLS algorithm, that can be reliably autonomously executed during flight. The aim of this project was to compare the effectiveness of the current ACLS algorithm with an improved algorithm having a new navigation format.

  9. Practicing for Mars: The International Space Station (ISS) as a Testbed

    NASA Technical Reports Server (NTRS)

    Korth, David H.

    2014-01-01

    Allows demonstration and development of exploration capabilities to help accomplish future missions sooner with less risk to crew and mission Characteristics of ISS as a testbed High fidelity human operations platform in LEO: Continuously operating habitat and active laboratory. High fidelity systems. Astronauts as test subjects. Highly experienced ground operations teams. Offers a controlled test environment.: Consequences to systems performance and decision making not offered in ground analogs International participation. Continuously improving system looking for new technology and ideas to improve operations. Technology Demos & Critical Systems Maturation. Human Health and Performance. Operations Simulations and Techniques. Exploration prep testing on ISS has been ongoing since 2012. Number of tests increasing with each ISS expedition. One Year Crew Expedition starting in Spring 2015. ROSCOSMOS and NASA are partnering on the Participating Crew are Mikhail Kornienko and Scott Kelly Majority of testing is an extension of current Human Biomedical Research investigations Plan for extending & expanding upon current operations techniques and tech demo studies ESA 10 Day Mission in Fall 2015 ESA astronaut focus on testing exploration technologies Many more opportunities throughout the life of ISS! 4/24/2014 david.h.korth@nasa.gov 4 Exploration testing

  10. DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Przybyla, Bartos; Matthiä, Daniel; Reitz, Günther; Burmeister, Sönke; Labrenz, Johannes; Bilski, Pawel; Horwacik, Tomasz; Twardak, Anna; Hajek, Michael; Fugger, Manfred; Hofstätter, Christina; Sihver, Lembit; Palfalvi, Jozsef K.; Szabo, Julianna; Stradi, Andrea; Ambrozova, Iva; Kubancak, Jan; Brabcova, Katerina Pachnerova; Vanhavere, Filip; Cauwels, Vanessa; Van Hoey, Olivier; Schoonjans, Werner; Parisi, Alessio; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Doull, Brandon A.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2016-11-01

    The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS), a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009-2011) and the DOSIS 3D (2012-ongoing) experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195-270 μGy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 μGy/day. The absorbed dose is modulated by (a) the variation in solar activity and (b) the changes in ISS altitude.

  11. Demonstration of rapid and sensitive module leak certification for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Dietz, R. N.; Goodrich, R. W.

    1991-01-01

    A leak detection and quantification demonstration using perflurocarbon tracer (PFT) technology was successfully performed at the NASA Marshall Space Flight Center on January 25, 1991. The real-time Dual Trap Analyzer (DTA) at one-half hour after the start of the first run gave an estimated leak rate of 0.7 mL/min. This has since been refined to be 1.15 (+ or -) 0.09 mL/min. The leak rates in the next three runs were determined to be 9.8 (+ or -) 0.7, -0.4 (+ or -) 0.3, and 76 (+ or -) 6 mL/min, respectively. The theory on leak quantification in the steady-state and time-dependent modes for a single zone test facility was developed and applied to the above determinations. The laboratory PFT analysis system gave a limit-of-detection (LOD) of 0.05 fL for ocPDCH. This is the tracer of choice and is about 100-fold better than that for the DTA. Applied to leak certification, the LOD is about 0.00002 mL/s (0.000075 L/h), a 5 order-of-magnitude improvement over the original leak certification specification. Furthermore, this limit can be attained in a measurement period of 3 to 4 hours instead of days, weeks, or months. A new Leak Certification Facility is also proposed to provide for zonal (three zones) determination of leak rates. The appropriate multizone equations, their solutions, and error analysis have already been derived. A new concept of seal-integrity certification has been demonstrated for a variety of controlled leaks in the range of module leak testing. High structural integrity leaks were shown to have a linear dependence of flow on (Delta)p. The rapid determination of leak rates at different pressures is proposed and is to be determined while subjecting the module to other external force-generating parameters such as vibration, torque, solar intensity, etc.

  12. Demonstration of rapid and sensitive module leak certification for space station freedom

    SciTech Connect

    Dietz, R.N.; Goodrich, R.W. )

    1991-03-01

    A leak detection and quantification demonstration using perflurocarbon tracer (PFT) technology was successfully performed at the NASA Marshall Space Flight Center on January 25, 1991. The real-time Dual Trap Analyzer (DTA) at one-half hour after the start of the first run gave an estimated leak rate of 0.7 mL/min. This has since been refined to be 1.15 {plus minus} 0.09 mL/min. The leak rates in the next three runs were determined to be 9.8 {plus minus} 0.7, {minus}0.4 {plus minus} 0.3, and 76 {plus minus} 6 mL/min, respectively. The theory on leak quantification in the steady-state and time-dependent modes for a single zone test facility was developed and applied to the above determinations. The laboratory PFT analysis system gave a limit-of-detection (LOD) of 0.05 fL for ocPDCH. This is the tracer of choice and is about 100-fold better than that for the DTA. Applied to leak certification, the LOD is about 0.00002 mL/s (0.000075 L/h), a 5 order-of-magnitude improvement over the original leak certification specification. Furthermore, this limit can be attained in a measurement period of 3 to 4 hours instead of days, weeks, or months. A new Leak Certification Facility is also proposed to provide for zonal (three zones) determination of leak rates. The appropriate multizone equations, their solutions, and error analysis have already been derived. A new concept of seal-integrity certification has been demonstrated for a variety of controlled leaks in the range of module leak testing. High structural integrity leaks were shown to have a linear dependence of flow on {Delta}p. The rapid determination of leak rates at different pressures is proposed and is to be determined while subjecting the module to other external force-generating parameters such as vibration, torque, solar intensity, etc. 13 refs.

  13. Demonstration of rapid and sensitive module leak certification for space station freedom. Final report

    SciTech Connect

    Dietz, R.N.; Goodrich, R.W.

    1991-03-01

    A leak detection and quantification demonstration using perflurocarbon tracer (PFT) technology was successfully performed at the NASA Marshall Space Flight Center on January 25, 1991. The real-time Dual Trap Analyzer (DTA) at one-half hour after the start of the first run gave an estimated leak rate of 0.7 mL/min. This has since been refined to be 1.15 {plus_minus} 0.09 mL/min. The leak rates in the next three runs were determined to be 9.8 {plus_minus} 0.7, {minus}0.4 {plus_minus} 0.3, and 76 {plus_minus} 6 mL/min, respectively. The theory on leak quantification in the steady-state and time-dependent modes for a single zone test facility was developed and applied to the above determinations. The laboratory PFT analysis system gave a limit-of-detection (LOD) of 0.05 fL for ocPDCH. This is the tracer of choice and is about 100-fold better than that for the DTA. Applied to leak certification, the LOD is about 0.00002 mL/s (0.000075 L/h), a 5 order-of-magnitude improvement over the original leak certification specification. Furthermore, this limit can be attained in a measurement period of 3 to 4 hours instead of days, weeks, or months. A new Leak Certification Facility is also proposed to provide for zonal (three zones) determination of leak rates. The appropriate multizone equations, their solutions, and error analysis have already been derived. A new concept of seal-integrity certification has been demonstrated for a variety of controlled leaks in the range of module leak testing. High structural integrity leaks were shown to have a linear dependence of flow on {Delta}p. The rapid determination of leak rates at different pressures is proposed and is to be determined while subjecting the module to other external force-generating parameters such as vibration, torque, solar intensity, etc. 13 refs.

  14. Lightning Observations from the International Space Station (ISS) for Science Research and Operational Applications

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; Pavelitz, S.; Coker, C.

    2015-01-01

    There exist several core science applications of LIS lightning observations, that range from weather and climate to atmospheric chemistry and lightning physics due to strong quantitative connections that can be made between lightning and other geophysical processes of interest. The space-base vantage point, such as provided by ISS LIS, still remains an ideal location to obtain total lightning observations on a global basis.

  15. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments

    NASA Technical Reports Server (NTRS)

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; Vunjak-Novakovic, Gordana; Searby, Nancy D.

    2004-01-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  16. Balanced Expertise Distribution in Remote Ultrasound Imaging Aboard The International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot; Dulchavsky, Scott; Hamilton, Douglas; Melton, Shannon; Martin, David

    2004-01-01

    Astronaut training for ISS operations usually ensures independent performance. With small crew size same crews also conduct all science work onboard. With diverse backgrounds, a good "match" between the existing and required skills can only be anecdotal. Furthermore, full proficiency in most of the complex tasks can be attained only through long training and practice, which may not be justified and may be impossible given the scarcity of training time. To enable a number of operational and science advancements, authors have developed a new approach to expertise distribution in time and among the space and ground personnel. Methods: As part of NASA Operational Ultrasound Project (1998-2003) and the NASA-solicited experiment "Advanced Diagnostic Ultrasound in Microgravity-ADUM" (P.I. -S.D., ongoing), the authors have created a "Balanced Expertise Distribution" approach to perform complex ultrasound imaging tasks on ISS for both operational and science use. The four components of expertise are a) any pre-existing pertinent expertise; b) limited preflight training c) adaptive onboard proficiency enhancement tools; d) real-time ' guidance from the ground. Throughout the pre-flight training and flight time preceding the experiments, the four components are shaped in a dynamic fashion to meet in an optimum combination during the experiment sessions. Results: Procedure validation sessions and feasibility studies have given encouraging results. While several successful real-time remote guidance sessions have been conducted on ISS, Expedition 8 is the first to use an "on-orbit proficiency enhancement" tool. Conclusions: In spite of severely limited training time, daring peer-reviewed research and operational enhancements are feasible through a balanced distribution of expertise in time, as well as among the crewmembers and ground personnel. This approach shows great promise for biomedical research, but may be applicable for other areas of micro gravity-based science

  17. ISS Update: Science Aboard the Station – 10.26.12

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer talks with Tara Ruttley, Associate Program Scientist for International Space Station, about some of the science experiments performed by the Expedition 33...

  18. Operational Methodology for the International Space Station (ISS) High Rate Communications Outage Recorder (HCOR)

    NASA Technical Reports Server (NTRS)

    Mixson, C. David

    2000-01-01

    The HCOR will be used onboard the ISS to record digital data during Ku-band Loss of Signal (LOS) periods. This recorded data will be played back to the ground during Ku-band Acquisition of Signal (AOS) periods. The Data Management (DM) Team at the Payload Operations and Integration Center is the primary operator of this complex recorder. The record and playback capabilities - along with the memory management functions - are presented in this paper. To illustrate how the DM Team plans to manage the record, playback and memory management tasks of operating the HCOR, an operational scenario for a ninety-minute orbit is presented.

  19. Development of the Materials Science Research Facility (MSRF) and Experiment Apparatus for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for phased deployment into the United States Laboratory Module beginning on the third Utilization Flight (UF-3). The facility will house the materials processing apparatus and common subsystems required for operating each device, and will use the ISS Active Rack Isolation System (ARIS). Each MSRR is an autonomous rack and will be comprised of on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multi-user generic processing apparatus. The MSRF will be the primary apparatus for satisfying near-term and long-range materials science discipline goals and objectives with each MSRR supporting a wide range of materials science themes in the NASA research program.

  20. Deployment of precise and robust sensors on board ISS-for scientific experiments and for operation of the station.

    PubMed

    Stenzel, Christian

    2016-09-01

    The International Space Station (ISS) is the largest technical vehicle ever built by mankind. It provides a living area for six astronauts and also represents a laboratory in which scientific experiments are conducted in an extraordinary environment. The deployed sensor technology contributes significantly to the operational and scientific success of the station. The sensors on board the ISS can be thereby classified into two categories which differ significantly in their key features: (1) sensors related to crew and station health, and (2) sensors to provide specific measurements in research facilities. The operation of the station requires robust, long-term stable and reliable sensors, since they assure the survival of the astronauts and the intactness of the station. Recently, a wireless sensor network for measuring environmental parameters like temperature, pressure, and humidity was established and its function could be successfully verified over several months. Such a network enhances the operational reliability and stability for monitoring these critical parameters compared to single sensors. The sensors which are implemented into the research facilities have to fulfil other objectives. The high performance of the scientific experiments that are conducted in different research facilities on-board demands the perfect embedding of the sensor in the respective instrumental setup which forms the complete measurement chain. It is shown that the performance of the single sensor alone does not determine the success of the measurement task; moreover, the synergy between different sensors and actuators as well as appropriate sample taking, followed by an appropriate sample preparation play an essential role. The application in a space environment adds additional challenges to the sensor technology, for example the necessity for miniaturisation, automation, reliability, and long-term operation. An alternative is the repetitive calibration of the sensors. This approach

  1. Compatibility Testing of Non-Metallic Materials for the Urine Processor Assembly (UPA) of International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    In the International Space Station (ISS), astronauts will convert urine into potable water with the Urine Processor Assembly (UPA). The urine is distilled, with the concentrated form containing about 15% brine solids, and the dilute form as a blend of pre-treated urine/wastewater. Eighteen candidate non-metallic materials for use with the UPA were tested in 2000 for compatibility with the concentrated and dilute urine solutions for continuous times of at least 30 days, and at conditions of 0.5 psia pressure and 100 F, to simulate the working UPA environment. A primary screening test for each material (virgin and conditioned) was dynamic mechanical analysis (DMA) in the stress relaxation mode, with the test data used to predict material performance for a 10-year use in space. Data showed that most of the candidate materials passed the compatibility testing, although a few significant changes in stress relaxation modulus were observed.

  2. Aerobic Capacity Following Long Duration International Spaces Station (ISS) Missions: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moore, Alan D.; Lee, S.M.C.; Everett, M.E.; Guined, J.R.; Knudsen, P.

    2010-01-01

    Maximum oxygen uptake (VO2max) is reduced immediately following space flights lasting <15 d, but has not been measured following long-duration missions. The purpose of this study is to measure VO2max and maximum work rate (WRmax) data from astronauts following ISS flights (91 to 188 d). Methods: Five astronauts [3 M, 2 F: 47+/-6 yr, 174+/-6 cm, 71.9+/-10.9 kg (mean +/- SD)] have participated in the study. Subjects performed upright cycle exercise tests to symptom-limited maximum. An initial test was done approx.270 d before flight to establish work rates for subsequent tests. Subsequent tests, conducted approx.45 d before flight and repeated on the first or second day (R+1/2) and at approx.10 d (R+10) following landing, consisted of 3 5 min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W(dot)/min increases. VO2, WR, and heart rate (HR) were measured using the ISS Portable Pulmonary Function System [Damec, Odense, DK]. Descriptive statistics are reported. Results: On R+1/2 mean VO2max decreased compared to preflight (Pre: 2.98+/-0.99, R+1/2: 2.63+/-0.56 L(dot)/min); 4 of 5 subjects demonstrated a loss of > 6%. WRmax also decreased on R+1/2 compared to preflight (Pre: 245+/-69, R+1/2: 210+/-45 W). On R+10, VO2max was 2.86+/-0.62 L(dot)/min, with 2 subjects still demonstrating a loss of > 6% from preflight. WRmax on R+10 was 240+/-49 W. HRmax did not change from pre to post-flight. Conclusions: These preliminary results, from the first 5 of 12 planned subjects of an ongoing ISS study, suggest that the majority of astronauts will experience a decrease in VO2max after long-duration space-flight. Interestingly, the two astronauts with the highest preflight VO2max had the greatest loss on R+1/2, and the astronaut with the lowest preflight VO2max increased by 13%. Thus, maintenance of VO2max may be more difficult in astronauts who have a high aerobic capacity, perhaps requiring more intense in-flight exercise countermeasure prescriptions.

  3. Maximizing Science Return from Future Rodent Experiments on the International Space Station (ISS): Tissue Preservation

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Lai, S.; Klotz, R.; Popova, Y.; Chakravarty, K.; Beegle, J. E.; Wigley, C. L.; Globus, R. K.

    2014-01-01

    To better understand how mammals adapt to long duration habitation in space, a system for performing rodent experiments on the ISS is under development. Rodent Research-1 is the first flight and will include validation of both on-orbit animal support and tissue preservation. To evaluate plans for on-orbit sample dissection and preservation, we simulated conditions for euthanasia, tissue dissection, and prolonged sample storage on the ISS, and we also developed methods for post-flight dissection and recovery of high quality RNA from multiple tissues following prolonged storage in situ for future science return. Livers and spleens from mice were harvested under conditions that simulated nominal, on-orbit euthanasia and dissection procedures including storage at minus 80 degrees Centigrade for 4 months. The RNA recovered was of high quality (RNA Integrity Number, RNA Integrity Number (RIN) greater than 8) and quantity, and the liver enzyme contents and activities (catalase, glutathione reductase, GAPDH) were similar to positive controls, which were collected under standard laboratory conditions. We also assessed the impact of possible delayed on-orbit dissection scenarios (off-nominal) by dissecting and preserving the spleen (RNA, later) and liver (fast-freezing) at various time points post-euthanasia (from 5 minutes up to 105 minutes). The RNA recovered was of high quality (spleen, RIN greater than 8; liver, RIN greater than 6) and liver enzyme activities were similar to positive controls at all time points, although an apparent decline in select enzyme activities was evident at 105 minutes. Additionally, various tissues were harvested from either intact or partially dissected, frozen carcasses after storage for approximately 2 months; most of the tissues (brain, heart, kidney, eye, adrenal glands and muscle) were of acceptable RNA quality for science return, whereas some tissues (small intestine, bone marrow and bones) were not. These data demonstrate: 1) The

  4. Maximizing Science Return from Future Rodent Experiments on the International Space Station (ISS): Tissue Preservation

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Lai, S.; Klotz, R.; Popova, Y.; Chakravarty, K.; Beegle, J. E.; Wigley, C. L.; Globus, R. K.

    2014-01-01

    To better understand how mammals adapt to long duration habitation in space, a system for performing rodent experiments on the ISS is under development; Rodent Research-1 is the first flight and will include validation of both on-orbit animal support and tissue preservation. To evaluate plans for on-orbit sample dissection and preservation, we simulated conditions for euthanasia, tissue dissection, and prolonged sample storage on the ISS, and we also developed methods for post-flight dissection and recovery of high quality RNA from multiple tissues following prolonged storage in situ for future science. Mouse livers and spleens were harvested under conditions that simulated nominal, on-orbit euthanasia and dissection operations including storage at -80 C for 4 months. The RNA recovered was of high quality (RNA Integrity Number, RIN(is) greater than 8) and quantity, and the liver enzyme contents and activities (catalase, glutathione reductase, GAPDH) were similar to positive controls, which were collected under standard laboratory conditions. We also assessed the impact of possible delayed on-orbit dissection scenarios (off-nominal) by dissecting and preserving the spleen (RNAlater) and liver (fast-freezing) at various time points post-euthanasia (from 5 min up to 105 min). The RNA recovered was of high quality (spleen, RIN (is) greater than 8; liver, RIN (is) greater than 6) and liver enzyme activities were similar to positive controls at all time points, although an apparent decline in select enzyme activities was evident at the latest time (105 min). Additionally, various tissues were harvested from either intact or partially dissected, frozen carcasses after storage for approximately 2 months; most of the tissues (brain, heart, kidney, eye, adrenal glands and muscle) were of acceptable RNA quality for science return, whereas some tissues (small intestine, bone marrow and bones) were not. These data demonstrate: 1) The protocols developed for future flight

  5. Rapid Biochemical Analysis on the International Space Station (ISS): Preparing for Human Exploration of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Maule, J.; Morris, Heather; Monaco, L.; Steele, A.; Wainwright, N.

    2008-01-01

    The Lab-on-a-Chip Application Development - Portable Test System, known as LOCAD-PTS, was launched to the International Space Station (ISS) aboard Space Shuttle Discovery (STS-116) on December 9th,2006. Since that time, it has remained onboard ISS and has been operated by the crew on 10 separate occasions LOCAD-PTS is a handheld device for rapid biochemical analysis; it consists of a spectrophotometer, a series of interchangeable cartridges, a pipette and several clean/sterilized swabbing kits to obtain samples from ISS surfaces. Sampling, quantitative analysis and data retrieval is performed onboard, therefore reducing the need to return samples to Earth. Less than 20 minutes are required from sampling to data, significantly faster than existing culture-based methods on ISS, which require 3-5 days. Different cartridges are available for the detection of different target molecules (simply by changing the formulation within each cartridge), thereby maximizing the benefit and applications addressed by a single instrument. Initial tests on ISS have focused on the detection of the bact.erial macromolecule endotoxin, a component of bacterial cell walls. LOCAD-PTS detects endotoxin with a cartridge that contains a formulation known as Limulus Amebocyte Lysate (LAL) assay. LAL is derived from blood of the horseshoe crab, Limulus polyphemus, and detects enodotoxin with an enzyme cascade that triggers generation Of a yellow colored dye, p-nitroanaline. The more p-nitroanaline product, the more endotoxin is in the original sample. To enable quantitative analysis, the absorbance of this color is measured by LOCAD-PTS through a 395 nm filter and compared with an internal calibration curve, to provide a reading on the LED display that ranges from 0.05 Endotoxin Units (EU)/ml to 5 EU/ml. Several surface sites were analyzed within ISS between March 2007 and February 2008, including multiple locations in the US Laboratory Destiny, Node 1 Unity, AMock, and Service Module Zvezda

  6. ISS Update: Launching Aboard the Soyuz to Live on the Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Mike Fossum, astronaut and Commander of Expedition 29, about his Soyuz launch experience and his insight into life aboard the station. Question...

  7. CHeCS (Crew Health Care Systems): International Space Station (ISS) Medical Hardware Catalog. Version 10.0

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The purpose of this catalog is to provide a detailed description of each piece of hardware in the Crew Health Care System (CHeCS), including subpacks associated with the hardware, and to briefly describe the interfaces between the hardware and the ISS. The primary user of this document is the Space Medicine/Medical Operations ISS Biomedical Flight Controllers (ISS BMEs).

  8. Cosmic Ray Energetics and Mass for the International Space Station (ISS-CREAM)

    NASA Astrophysics Data System (ADS)

    Howley, Ian

    2014-03-01

    The Cosmic Ray Energetics and Mass detector is designed to directly measure cosmic rays with energy between 1012- 1015 eV and composition from proton to iron thereby investigating cosmic ray origins, acceleration and propagation. CREAM has four subsystems. The silicon charge detector consists of four identical layers each containing 2688 1.5 x 1.6 cm2 pixels capable of measuring incident particle charge to about 0.2e. The calorimeter consists of a carbon target to induce interactions and alternating layers of tungsten plates and scintillating fibers used to measure incident particle energy, and provide triggering and particle tracking. The top and bottom counting detectors are scintillators with segmented read-out used for electron-proton separation. Finally, the boronated scintillator detector is a boron doped scintillator used to identify thermal neutrons emitted from interactions in the calorimeter, which can be used to separate electron and proton showers. Reconfiguring the payload for implementation on the ISS will provide an order of magnitude increase in exposure time and remove the atmospheric overburden as compared to previous balloon flights. In preparation for launch, the newly configured hardware must be tested, and remote monitoring and control capabilities must be established. The project overview, current status of testing, and preparations for launch in December 2014 will be presented.

  9. International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

    2013-01-01

    The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

  10. A Decision Support Framework for Feasibility Analysis of International Space Station (ISS) Research Capability Enhancing Options

    NASA Technical Reports Server (NTRS)

    Ortiz, James N.; Scott,Kelly; Smith, Harold

    2004-01-01

    The assembly and operation of the ISS has generated significant challenges that have ultimately impacted resources available to the program's primary mission: research. To address this, program personnel routinely perform trade-off studies on alternative options to enhance research. The approach, content level of analysis and resulting outputs of these studies vary due to many factors, however, complicating the Program Manager's job of selecting the best option. To address this, the program requested a framework be developed to evaluate multiple research-enhancing options in a thorough, disciplined and repeatable manner, and to identify the best option on the basis of cost, benefit and risk. The resulting framework consisted of a systematic methodology and a decision-support toolset. The framework provides quantifiable and repeatable means for ranking research-enhancing options for the complex and multiple-constraint domain of the space research laboratory. This paper describes the development, verification and validation of this framework and provides observations on its operational use.

  11. Development of Sub-optimal Airway Protocols for the International Space Station (ISS) by the Medical Operation Support Team (MOST)

    NASA Technical Reports Server (NTRS)

    Polk, James D.; Parazynski, Scott; Kelly, Scott; Hurst, Victor, IV; Doerr, Harold K.

    2007-01-01

    Airway management techniques are necessary to establish and maintain a patent airway while treating a patient undergoing respiratory distress. There are situations where such settings are suboptimal, thus causing the caregiver to adapt to these suboptimal conditions. Such occurrences are no exception aboard the International Space Station (ISS). As a result, the NASA flight surgeon (FS) and NASA astronaut cohorts must be ready to adapt their optimal airway management techniques for suboptimal situations. Based on previous work conducted by the Medical Operation Support Team (MOST) and other investigators, the MOST had members of both the FS and astronaut cohorts evaluate two oral airway insertion techniques for the Intubating Laryngeal Mask Airway (ILMA) to determine whether either technique is sufficient to perform in suboptimal conditions within a microgravity environment. Methods All experiments were conducted in a simulated microgravity environment provided by parabolic flight aboard DC-9 aircraft. Each participant acted as a caregiver and was directed to attempt both suboptimal ILMA insertion techniques following a preflight instruction session on the day of the flight and a demonstration of the technique by an anesthesiologist physician in the simulated microgravity environment aboard the aircraft. Results Fourteen participants conducted 46 trials of the suboptimal ILMA insertion techniques. Overall, 43 of 46 trials (94%) conducted were properly performed based on criteria developed by the MOST and other investigators. Discussion The study demonstrated the use of airway management techniques in suboptimal conditions relating to space flight. Use of these techniques will provide a crew with options for using the ILMA to manage airway issues aboard the ISS. Although it is understood that the optimal method for patient care during space flight is to have both patient and caregiver restrained, these techniques provide a needed backup should conditions not present

  12. Design of a 2-Hour Prebreathe Protocol for Space Walks (EVAs) from the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Gernhardt, M. L.; Conkin, J.; Foster, P. P.; Pilmanis, A. A.; Butler, B. D.; Fife, C.; Vann, R. D.; Gerth, W. A.; Loftin, K. C.; Dervay, J.; Waligora, J. M.; Powell, M. R.; Homick, Jerry L. (Technical Monitor)

    2000-01-01

    The majority of extravehicular activities (EVAs) performed from the shuttle use a 10.2 psi staged decompression. The International Space Station (ISS) will operate at 14.7 psi, requiring crews to "campout" in the airlock at 10.2 psi. The constraints associated with campout (crew isolation, oxygen usage, and waste management), provided the rationale to develop a 2-hour prebreathe protocol from 14.7 psi. Previous studies on the affect of microgravity and exercise during prebreathe suggested the feasibility of this approach. Various combinations of adynamia (nonwalking subjects), prebreathe exercise doses, and space suit donning options (10.2 vs. 14.7 psi) were analyzed against timeline and consumable constraints. Prospective decompression sickness (DCS) and venous gas emboli (VGE) accept/reject criteria were defined from statistical analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept / reject limits were adjusted for greater safety (including Grade IV VGE criteria) based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center laboratory trial, including the capability of rejecting the primary protocol and testing at least one alternate exercise dose, within the 2-hour prebreathe. The 2-hour protocol incorporates 0, breathing for 5 0 min at 14.7 psi, including 10 min dual cycle ergometry at 75%VO(2max). It requires an additional 30 minO2breathing during depress from 14.7 to 10.2 psi, followed by a 30-60 min suit donning break at 10.2 psi/26.5% O2. It concludes with a 40 min in-suit O2 prebreathe. The protocol would be accepted for operations, if the incidence of DCS was less than 15% and Grade IV VGE less than 20%, both at 95

  13. Improving the Estimates of International Space Station (ISS) Induced K-Factor Failure Rates for On-Orbit Replacement Unit (ORU) Supportability Analyses

    NASA Technical Reports Server (NTRS)

    Anderson, Leif F.; Harrington, Sean P.; Omeke, Ojei, II; Schwaab, Douglas G.

    2009-01-01

    This is a case study on revised estimates of induced failure for International Space Station (ISS) on-orbit replacement units (ORUs). We devise a heuristic to leverage operational experience data by aggregating ORU, associated function (vehicle sub -system), and vehicle effective' k-factors using actual failure experience. With this input, we determine a significant failure threshold and minimize the difference between the actual and predicted failure rates. We conclude with a discussion on both qualitative and quantitative improvements the heuristic methods and potential benefits to ISS supportability engineering analysis.

  14. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    NASA Technical Reports Server (NTRS)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  15. An Overview of the Microgravity Science Glovebox (MSG) Facility, and the Gravity-Dependent Phenomena Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Sheredy, William A.; Flores, Ginger

    2008-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation, The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120, 28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion, reaction control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG and an overview of investigations planning to operate in the MSG. In addition, this paper will address possible changes to the MSG utilization process that will be brought about by the transition to ISS as a National Laboratory.

  16. In-Flight Water Quality Monitoring on the International Space Station (ISS): Measuring Biocide Concentrations with Colorimetric Solid Phase Extraction (CSPE)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2011-01-01

    The colorimetric water quality monitoring kit (CWQMK) was delivered to the International Space Station (ISS) on STS-128/17A and was initially deployed in September 2009. The kit was flown as a station development test objective (SDTO) experiment to evaluate the acceptability of colorimetric solid phase extraction (CSPE) technology for routine water quality monitoring on the ISS. During the SDTO experiment, water samples from the U.S. water processor assembly (WPA), the U.S. potable water dispenser (PWD), and the Russian system for dispensing ground-supplied water (SVO-ZV) were collected and analyzed with the CWQMK. Samples from the U.S. segment of the ISS were analyzed for molecular iodine, which is the biocide added to water in the WPA. Samples from the SVOZV system were analyzed for ionic silver, the biocide used on the Russian segment of the ISS. In all, thirteen in-flight analysis sessions were completed as part of the SDTO experiment. This paper provides an overview of the experiment and reports the results obtained with the CWQMK. The forward plan for certifying the CWQMK as operational hardware and expanding the capabilities of the kit are also discussed.

  17. Solid state slit camera (SSC) of the MAXI mission for JEM (Japanese Experiment Module) on the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Tomida, Hiroshi; Matsuoka, Masaru; Torii, Ken'ichi; Ueno, Shiro; Sugizaki, Mutsumi; Yuan, Wei M.; Shirasaki, Yuji; Sakano, M.; Komatsu, Shigenori; Tsunemi, Hiroshi; Miyata, Emi; Kawai, Nobuyuki; Yoshida, Atsumasa; Mihara, Tatehiro; Tanaka, Isao

    2000-12-01

    Monitor of the All-sky X-ray Image (MAXI) is the first payload for the Japanese Experiment Module (JEM) on the International Space Station (ISS). It is designed for monitoring all-sky in the X-ray band. Its angular resolution and scanning period are about 1 arc-degree and 100 minutes, respectively. MAXI employs two types of X-ray camera. One is Gas Slit Camera (GSC), the detectors of which are one dimensional position sensitive proportional counters. Another is Solid-state Slit Camera (SSC). We mainly report on SSC. We employ a pair of SSCs, each of which consists of 16 CCD chips. Each CCD chips has 1024 X 1024 pixels, and the pixel size is 24 X 24 micrometer. The CCDs are to be operated at -60 degrees Celsius using Peltier coolers. Optical light is blocked by aluminum coat on the CCDs instead of fragile aluminized film. SSC achieves an energy resolution of 152 eV in FWHM at 5.9 keV. The energy range is 0.5 - 10 keV.

  18. Equilibrium Kinetics Studies and Crystallization Aboard the International Space Station (ISS) Using the Protein Crystallization Apparatus for Microgravity (PCAM)

    NASA Technical Reports Server (NTRS)

    Achari, Aniruddha; Roeber, Dana F.; Barnes, Cindy L.; Kundrot, Craig E.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Protein Crystallization Apparatus in Microgravity (PCAM) trays have been used in Shuttle missions to crystallize proteins in a microgravity environment. The crystallization experiments are 'sitting drops' similar to that in Cryschem trays, but the reservoir solution is soaked in a wick. From early 2001, crystallization experiments are conducted on the International Space Station using mission durations of months rather than two weeks on previous shuttle missions. Experiments were set up in April 2001 on Flight 6A to characterize the time crystallization experiments will take to reach equilibrium in a microgravity environment using salts, polyethylene glycols and an organic solvent as precipitants. The experiments were set up to gather data for a series of days of activation with different droplet volumes and precipitants. The experimental set up on ISS and results of this study will be presented. These results will help future users of PCAM to choose precipitants to optimize crystallization conditions for their target macromolecules for a particular mission with known mission duration. Changes in crystal morphology and size between the ground and space grown crystals of a protein and a protein -DNA complex flown on the same mission will also be presented.

  19. A Common Approach for the Certifying of International Space Station (ISS) Basic Hardware for Ground Safety

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul D.; Trinchero, Jean-Pierre

    2005-01-01

    In order to support the International Space Station, as well as any future long term human missions, vast amounts of logistical-type hardware is required to be processed through the various launch sites. This category consists of such hardware as spare parts, replacement items, and upgraded hardware. The category also includes samples for experiments and consumables. One attribute that all these items have is they are generally non-hazardous, at least to ground personnel. Even though the items are non-hazardous, launch site ground safety has a responsibility for the protection of personnel, the flight hardware, and launch site resources. In order to fulfill this responsibility, the safety organization must have knowledge of the hardware and its operations. Conversely, the hardware providers are entitled to a process that is commensurate with the hazard. Additionally, a common system should be in place that is flexible enough to account for the requirements at all launch sites, so that, the hardware provider need only complete one process for ground safety regardless of the launch site.

  20. International Space Station (ISS) 3D Printer Performance and Material Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Bean, Q. A.; Cooper, K. G.; Edmunson, J. E.; Johnston, M. M.; Werkheiser, M. J.

    2015-01-01

    In order for human exploration of the Solar System to be sustainable, manufacturing of necessary items on-demand in space or on planetary surfaces will be a requirement. As a first step towards this goal, the 3D Printing In Zero-G (3D Print) technology demonstration made the first items fabricated in space on the International Space Station. From those items, and comparable prints made on the ground, information about the microgravity effects on the printing process can be determined. Lessons learned from this technology demonstration will be applicable to other in-space manufacturing technologies, and may affect the terrestrial manufacturing industry as well. The flight samples were received at the George C. Marshall Space Flight Center on 6 April 2015. These samples will undergo a series of tests designed to not only thoroughly characterize the samples, but to identify microgravity effects manifested during printing by comparing their results to those of samples printed on the ground. Samples will be visually inspected, photographed, scanned with structured light, and analyzed with scanning electron microscopy. Selected samples will be analyzed with computed tomography; some will be assessed using ASTM standard tests. These tests will provide the information required to determine the effects of microgravity on 3D printing in microgravity.

  1. Back at the ISS

    NASA Video Gallery

    Back at the ISS is a rocking musical greeting to ESA Astronaut André Kuipers, Russian cosmonaut Oleg Kononenko and the entire crew of the International Space Station on the occasion of the docking...

  2. ISS Update: NEEMO 16

    NASA Video Gallery

    ISS Update commentator Josh Byerly interviews astronaut Stan Love about the NEEMO 16 mission from Aquarius Base. Questions? Ask us on Twitter @NASA_Johnson and include the hashtag #askStation. For ...

  3. Analyzing an Aging ISS

    NASA Technical Reports Server (NTRS)

    Scharf, R.

    2014-01-01

    The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.

  4. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS).

    PubMed

    Tavella, Sara; Ruggiu, Alessandra; Giuliani, Alessandra; Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity's negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice.

  5. Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned Aboard STS-110 (ISS-8A) in April 2002

    NASA Technical Reports Server (NTRS)

    James, John T.

    2002-01-01

    The toxicological assessment of grab sample canisters (GSCs) returned aboard STS-110 is reported. Analytical methods have not changed from earlier reports, and surrogate standard recoveries from the GSCs were 77-121%, with one exception. Pressure tracking indicated no leaks in the canisters. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. These five indices of air quality are summarized.

  6. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Flores, Ginger N.

    2009-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG has been operating on the ISS since July 2002 and is currently located in the Columbus Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a workbench type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. In fact, the MSG has been used for over 5000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technologies. MSG is an ideal platform for science investigations and research required to advance the technology readiness levels (TRLs) applicable to the Constellation Program. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of future investigations currently planned for operation in the MSG, and potential applications of MSG investigations that can provide useful data to the Constellation Program. In addition, this paper will address

  7. Performance Characterization of Loctite (Registered Trademark) 242 and 271 Liquid Locking Compounds (LLCs) as a Secondary Locking Feature for International Space Station (ISS) Fasteners

    NASA Technical Reports Server (NTRS)

    Dube, Michael J.; Gamwell, Wayne R.

    2011-01-01

    Several International Space Station (ISS) hardware components use Loctite (and other polymer based liquid locking compounds (LLCs)) as a means of meeting the secondary (redundant) locking feature requirement for fasteners. The primary locking method is the fastener preload, with the application of the Loctite compound which when cured is intended to resist preload reduction. The reliability of these compounds has been questioned due to a number of failures during ground testing. The ISS Program Manager requested the NASA Engineering and Safety Center (NESC) to characterize and quantify sensitivities of Loctite being used as a secondary locking feature. The findings and recommendations provided in this investigation apply to the anaerobic LLCs Loctite 242 and 271. No other anaerobic LLCs were evaluated for this investigation. This document contains the findings and recommendations of the NESC investigation

  8. ISS and Its Discovery Potential

    NASA Video Gallery

    Cool video highlighting Space Station Research & Technology efforts, shown at the 1st Annual International Space Station (ISS) Research and Development Conference: Results and Opportunities – The...

  9. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-100 at the Conclusion of 6A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-100 (6A) flight to the ISS is reported. ISS air samples were taken in March and April 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. An unplanned "first-entry" sample of the MPLM2 (multipurpose logistics module) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Endeavour using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contribution). Because of the Freon 218 (octafluoropropane, OFP) leak, its contribution to the NMVOC is indicated in brackets. When comparing the NMVOC values with the 25 mg/cubic m guideline, the OFP contributions should be subtracted. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample.

  10. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  11. ISS Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.

    2011-01-01

    The Microgravity performance assessment of the International Space Station (ISS) is comprised of a quasi-steady, structural dynamic and a vibro-acoustic analysis of the ISS assembly-complete vehicle configuration. The Boeing Houston (BHOU) Loads and Dynamics Team is responsible to verify compliance with the ISS System Specification (SSP 41000) and USOS Segment (SSP 41162) microgravity requirements. To verify the ISS environment, a series of accelerometers are on-board to monitor the current environment. This paper summarizes the results of the analysis that was performed for the Verification Analysis Cycle (VAC)-Assembly Complete (AC) and compares it to on-orbit acceleration values currently being reported. The analysis will include the predicted maximum and average environment on-board ISS during multiple activity scenarios

  12. KSC ISS Logistics Support

    NASA Technical Reports Server (NTRS)

    Tellado, Joseph

    2014-01-01

    The presentation contains a status of KSC ISS Logistics Operations. It basically presents current top level ISS Logistics tasks being conducted at KSC, current International Partner activities, hardware processing flow focussing on late Stow operations, list of KSC Logistics POC's, and a backup list of Logistics launch site services. This presentation is being given at the annual International Space Station (ISS) Multi-lateral Logistics Maintenance Control Panel meeting to be held in Turin, Italy during the week of May 13-16. The presentatiuon content doesn't contain any potential lessons learned.

  13. Case Study of Risk Mitigation Based on Hardware/Software Integration (HSI) Testing for the International Space Station (ISS) Node 2 Module

    NASA Technical Reports Server (NTRS)

    Holt, James Mike; Clanton, Stephen Edward

    2004-01-01

    Within the pressurized elements of the International Space Station (ISS), requirements exist to ensure a safe, habitable environment for the crew. In order to provide this environment, thermal control components work in conjunction with software controls to provide heat rejection for subsystem avionics equipment, for the environmental control system and for experiment payloads. It is essential to ISS operations, mission success and crew safety that necessary testing incorporates the extreme conditions to ensure proper performance. This paper provides a general description and methodology applied to thermal related Hardware/Software Integration (HSI) tests for the ISS Node 2 module. A detailed test plan was developed and implemented with two objectives: the first was for risk mitigation of the thermal control algorithms and software qualification, and the second was for data collection which will substantiate thermalhydraulic models of the Internal Active Thermal Control System (IATCS). Analytical models are utilized to determine on-orbit performance for conditions and scenarios where the simulation of actual on-orbit system performance is limited by test configuration constraints. Node 2 IATCS HSI activities were performed at the Alenia Spazio facility in Torino, Italy with participation from the National Aeronautics and Space Administration (NASA), Alenia Spazio, Jacobs Engineering Sverdrup (JE Sverdrup) and Boeing.

  14. DAC-3 Pointing Stability Analysis Results for SAGE 3 and Other Users of the International Space Station (ISS) Payload Attachment Sites (PAS)

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Rombado, Gabriel

    1997-01-01

    The purpose of this paper is to provide final results of a pointing stability analysis for external payload attachment sites (PAS) on the International Space Station (ISS). As a specific example, the pointing stability requirement of the SAGE III atmospheric science instrument was examined in this paper. The instrument requires 10 arcsec stability over 2 second periods. SAGE 3 will be mounted on the ISS starboard side at the lower, outboard FIAS. In this engineering analysis, an open-loop DAC-3 finite element model of ISS was used by the Microgravity Group at Johnson Space Flight Center to generate transient responses at PAS to a limited number of disturbances. The model included dynamics up to 50 Hz. Disturbance models considered included operation of the solar array rotary joints, thermal radiator rotary joints, and control moment gyros. Responses were filtered to model the anticipated vibration attenuation effects of active control systems on the solar and thermal radiator rotary joints. A pointing stability analysis was conducted by double integrating acceleration transient over a 2 second period. Results of the analysis are tabulated for ISS X, Y, and Z Axis rotations. These results indicate that the largest excursions in rotation during pointing occurred due to rapid slewing of the thermal radiator. Even without attenuation at the rotary joints, the resulting pointing error was limited to less than 1.6 arcsec. With vibration control at the joints, to a maximum 0.5 arcsec over a 2 second period. Based on this current level of model definition, it was concluded that between 0 - 50 Hz, the pointing stability requirement for SAGE 3 will not be exceeded by the disturbances evaluated in this study.

  15. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  16. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  17. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Jordan, Lee P.

    2013-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers

  18. Structural Verification of the First Orbital Wonder of the World - The Structural Testing and Analysis of the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Zipay, John J.; Bernstein, Karen S.; Bruno, Erica E.; Deloo, Phillipe; Patin, Raymond

    2012-01-01

    The International Space Station (ISS) can be considered one of the structural engineering wonders of the world. On par with the World Trade Center, the Colossus of Rhodes, the Statue of Liberty, the Great Pyramids, the Petronas towers and the Burj Khalifa skyscraper of Dubai, the ambition and scope of the ISS structural design, verification and assembly effort is a truly global success story. With its on-orbit life projected to be from its beginning in 1998 to the year 2020 (and perhaps beyond), all of those who participated in its development can consider themselves part of an historic engineering achievement representing all of humanity. The structural design and verification of the ISS could be the subject of many scholarly papers. Several papers have been written on the structural dynamic characterization of the ISS once it was assembled on-orbit [1], but the ground-based activities required to assure structural integrity and structural life of the individual elements from delivery to orbit through assembly and planned on-orbit operations have never been totally summarized. This paper is intended to give the reader an overview of some of the key decisions made during the structural verification planning for the elements of the U.S. On-Orbit Segment (USOS) as well as to summarize the many structural tests and structural analyses that were performed on its major elements. An effort is made for this paper to be summarily comprehensive, but as with all knowledge capture efforts of this kind, there are bound to be errors of omission. Should the reader discover any of these, please feel free to contact the principal author. The ISS (Figure 1) is composed of pre-integrated truss segments and pressurized elements supplied by NASA, the Russian Federal Space Agency (RSA), the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). Each of these elements was delivered to orbit by a launch vehicle and connected to one another either robotically or

  19. Space Environment Effects on Stability of Medications Flown on Space Shuttles and the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Daniels, Vernie; Du, Jianping; Crady, Camille; Satterfield, Rick; Putcha, Lakshmi

    2007-01-01

    The purpose is to assess physical and chemical degradation of select pharmaceutical formulations from the Shuttle and ISS medical kits. Eleven pharmaceuticals dispensed as different dosage forms were selected based on their physical / chemical characteristics and susceptibility to environmental factors such as, temperature, humidity and light sensitivity. When available, ground-controls of the study medications with matching brand and lot numbers were used for comparison. Samples retrieved from flight were stored along with their matching controls in a temperature and humidity controlled environmental chamber. Temperature, humidity, and radiation data from the Shuttle and ISS were retrieved from onboard HOBO U12 Temp/RH Data Loggers, and from passive dosimeters. Physical and chemical analyses of the pharmaceuticals were conducted using validated United States Pharmacopeia (USP) methods. Results indicated degradation of 6 of the 11 formulations returned from space flights. Four formulations, Amoxicillin / Clavulanate, promethazine, sulfamethoxazole / trimethoprim, and ciprofloxacin tablets depicted discoloration after flight. Chemical content analyses using High or Ultra Performance Liquid Chromatography (HPLC / UPLC) methods revealed that dosage forms of Amoxicillin / Clavulanate, promethazine, sulfamethoxazole / trimethoprim, lidocaine, ciprofloxacin and mupirocin contained less than 95% of manufacturer s labeled claim of active drug compound. Shuttle and ISS environments affect stability and shelf life of certain mediations flown on these missions. Data analysis is in progress to examine the effect of specific space flight environmental factors on pharmaceutical stability. The degradation profiles generated from ground studies in analog environments will be useful in establishing predictive shelf-life profiles for medications intended for use during long-term space exploration missions.

  20. ISS Update: 1st Annual ISS R&D Conference

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries talks by phone on Wednesday with Julie Robinson, ISS Program Scientist, about the 1st Annual International Space Station Research and Development Confere...

  1. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    NASA Technical Reports Server (NTRS)

    Diderich, Greg S.; Roy, Robert J.; Steele, John W.; Van Keuren, Steven P.; Wilson, Mark E.

    2010-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell resistance resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid cathode feed electrolyzer cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  2. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    NASA Technical Reports Server (NTRS)

    Roy, Robert J.; Wilson, Mark E.; Diderich, Greg S.; Steele, John W.

    2011-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  3. Observation Platform for Dynamic Biomedical and Biotechnology Experiments Using the International Space Station (ISS) Light Microscopy Module (LMM)

    NASA Technical Reports Server (NTRS)

    Kurk, Michael A. (Andy)

    2015-01-01

    Techshot, Inc., has developed an observation platform for the LMM on the ISS that will enable biomedical and biotechnology experiments. The LMM Dynamic Stage consists of an electronics module and the first two of a planned suite of experiment modules. Specimens and reagent solutions can be injected into a small, hollow microscope slide-the heart of the innovation-via a combination of small reservoirs, pumps, and valves. A life science experiment module allows investigators to load up to two different fluids for on-orbit, real-time image cytometry. Fluids can be changed to initiate a process, fix biological samples, or retrieve suspended cells. A colloid science experiment module conducts microparticle and nanoparticle tests for investigation of colloid self-assembly phenomena. This module includes a hollow glass slide and heating elements for the creation of a thermal gradient from one end of the slide to the other. The electronics module supports both experiment modules and contains a unique illuminator/condenser for bright and dark field and phase contrast illumination, power supplies for two piezoelectric pumps, and controller boards for pumps and valves. This observation platform safely contains internal fluids and will greatly accelerate the research and development (R&D) cycle of numerous experiments, products, and services aboard the ISS.

  4. Associate ISS Program Scientist Talks With Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, Associate ISS Program Scientist Pete Hasbrook participates in a Digital Learning Network (DLN) event with students from Clark Creek S...

  5. The Fluid-Dynamic Disturbances Induced on the ISS, Based on the First Acceleration Measurements on Board the Space Station

    NASA Astrophysics Data System (ADS)

    Monti, R.

    2002-01-01

    The predictions provided by different Design Analysis Cycles (DAC s) are now converging and give the possibility to be correlated with experimental measurements. The most important utilization of the acceleration data refer to the possibility of validating numerical simulations that relate the acceleration sources to the real effects they produce, so that the Principal Investigator (PI) would be in a position to foresee the real conditions and to properly select suitable conditions for running the specific experiments. Previous numerical studies (Monti and Savino 2001, Savino and Monti 2001) had to rely only on the DAC's predictions (see e.g. Non Isolated Rack Assessment, NIRA) that, sometime, were contradictory and strongly dependent on the assumptions about the number, location and type of the sources of acceleration (with respect to the microgravity experiment position) and on the accuracy of numerical codes (not validated by flight experimental data). The experience build up so far has identified efficient numerical tools to quickly predict the overall disturbances induced by the Microgravity Environment of the ISS on specific fluid dynamic experiments. Extensive numerical simulations proved that the experiment sensitivity to g-jitter can be evaluated by the numerical solutions of the full Navier-Stokes equations with a time-dependent acceleration (direct formulation), taking into account the different accelerations at the different frequencies of the ISS spectrum, or simply computing the time-average velocity field by solving the time-average (thermovibrational) equations. In the latter case the disturbances of the thermofluidynamic field are easily evaluated assigning as input to the numerical code an overall "equivalent" vibrational Rayleigh number (corresponding to a single frequency g-jitter equivalent to the overall g-jitter spectrum). An analysis of the Navier-Stokes equation is performed to identify the terms in the momentum and vorticity equations that

  6. Examination of Communication Delays on Team Performance: Utilizing the International Space Station (ISS) as a Test Bed for Analog Research

    NASA Technical Reports Server (NTRS)

    Keeton, K. E.; Slack, K, J.; Schmidt, L. L.; Ploutz-Snyder, R.; Baskin, P.; Leveton, L. B.

    2011-01-01

    Operational conjectures about space exploration missions of the future indicate that space crews will need to be more autonomous from mission control and operate independently. This is in part due to the expectation that communication quality between the ground and exploration crews will be more limited and delayed. Because of potential adverse effects on communication quality, both researchers and operational training and engineering experts have suggested that communication delays and the impact these delays have on the quality of communications to the crew will create performance decrements if crews are not given adequate training and tools to support more autonomous operations. This presentation will provide an overview of a research study led by the Behavioral Health and Performance Element (BHP) of the NASA Human Research Program that examines the impact of implementing a communication delay on ISS on individual and team factors and outcomes, including performance and related perceptions of autonomy. The methodological design, data collection efforts, and initial results of this study to date will be discussed . The results will focus on completed missions, DRATS and NEEMO15. Lessons learned from implementing this study within analog environments will also be discussed. One lesson learned is that the complexities of garnishing a successful data collection campaign from these high fidelity analogs requires perseverance and a strong relationship with operational experts. Results of this study will provide a preliminary understanding of the impact of communication delays on individual and team performance as well as an insight into how teams perform and interact in a space-like environment . This will help prepare for implementation of communication delay tests on the ISS, targeted for Increment 35/36.

  7. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2002 - 2004

    NASA Technical Reports Server (NTRS)

    Gentry, Gregory J.; Reysa, Richard P.; Williams, Dave E.

    2004-01-01

    The International Space Station continues to build up its life support equipment capability. Several ECLS equipment failures have occurred since Lab activation in February 2001. Major problems occurring between February 2001 and February 2002 were discussed in other works. Major problems occurring between February 2002 and February 2003 are discussed in this paper, as are updates from previously ongoing unresolved problems. This paper addresses failures, and root cause, with particular emphasis on likely micro-gravity causes. Impact to overall station operations and proposed and accomplished fixes will also be discussed.

  8. Second Generation International Space Station (ISS) Total Organic Carbon Analyzer (TOCA) Verification Testing and On-Orbit Performance Results

    NASA Technical Reports Server (NTRS)

    Bentley, Nicole L.; Thomas, Evan A.; VanWie, Michael; Morrison, Chad; Stinson, Richard G.

    2010-01-01

    The Total Organic Carbon Analyzer (TOGA) is designed to autonomously determine recovered water quality as a function of TOC. The current TOGA has been on the International Space Station since November 2008. Functional checkout and operations revealed complex operating considerations. Specifically, failure of the hydrogen catalyst resulted in the development of an innovative oxidation analysis method. This method reduces the activation time and limits the hydrogen produced during analysis, while retaining the ability to indicate TOC concentrations within 25% accuracy. Subsequent testing and comparison to archived samples returned from the Station and tested on the ground yield high confidence in this method, and in the quality of the recovered water.

  9. Long term dose monitoring onboard the European Columbus module of the International Space Station (ISS) in the frame of the DOSIS and DOSIS 3D project

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station (ISS) is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European Columbus module the experiment “Dose Distribution Inside the ISS” (DOSIS), under the project and science lead of the German Aerospace Center (DLR), was launched on July 15th 2009 with STS-127 to the ISS. The DOSIS experiment consists of a combination of “Passive Detector Packages” (PDP) distributed at eleven locations inside Columbus for the measurement of the spatial variation of the radiation field and two active Dosimetry Telescopes (DOSTELs) with a Data and Power Unit (DDPU) in a dedicated nomex pouch mounted at a fixed location beneath the European Physiology Module rack (EPM) for the measurement of the temporal variation of the radiation field parameters. The DOSIS experiment suite measured during the lowest solar minimum conditions in the space age from July 2009 to June 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the follow up DOSIS 3D experiment. The hardware for DOSIS 3D was launched with Soyuz 30S to the ISS on May 15th 2012. The PDPs are replaced with each even number Soyuz flight starting with Soyuz 30S. Data from the active detectors is transferred to ground via the EPM rack which is activated once a month for this action. The presentation will give an overview of the DOSIS and DOSIS 3D experiment and focus on the results from the passive radiation detectors from the DOSIS 3D experiment

  10. Particle Engulfment and Pushing (PEP): Past Micro-Gravity Experiments and Future Experimental Plan on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Sen, Subhayu; Stefanescu, Doru M.; Catalina, A. V.; Juretzko, F.; Dhindaw, B. K.; Curreri, P. A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The interaction of an insoluble particle with a growing solid-liquid interface (SLI) has been a subject of investigation for the four decades. For a metallurgist or a material scientist understanding the fundamental physics of such an interaction is relevant for applications that include distribution of reinforcement particles in metal matrix composites, inclusion management in castings, and distribution of Y2Ba1Cu1O5 (211) precipitates (flux pinning sites) in Y1Ba2Cu3O7 (123) superconducting crystals. The same physics is also applicable to other areas including geological applications (frost heaving in soils) and preservation of biological cells. Experimentally this interaction can be quantified in terms of a critical growth velocity, Vcr, of the SLI below which particles are pushed ahead of the advancing interface, and above which the particles are engulfed. Past experimental evidence suggests that this Vcr is an inverse function of the particle radius, R. In order to isolate the fundamental physics that governs such a relationship it is necessary to minimize natural convection at the SLI that is inherent in ground based experiments. Hence for the purpose of producing benchmark data (Vcr vs. R) PEP is a natural candidate for micro-gravity experimentation. Accordingly, experiments with pure Al containing a dispersion of ZrO2 particles and an organic analogue, succinonitrile (SCN) containing polystyrene particles have been performed on the LMS and USMP-4 mission respectively. In this paper we will summarize the experimental data that was obtained during these two micro-gravity missions and show that the results differ compared to terrestrial experiments. We will also discuss the basic elements of our analytical and numerical model and present a comparison of the predictions of these models against micro-gravity experimental data. Finally. we will discuss our future experimental plan that includes the ISS glovebox and MSRRl.

  11. SolACES - Auto-calibrating EUV/UV spectrometers for measurements onboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Brunner, Raimund; Schmidtke, Gerhard; Brunner, Raimund; Konz, Werner; Nikutowski, Bernd

    In the field of terrestrial climatology the most important goal is the quasi-continuous measurement of the solar irradiance with highest possible accuracy within the ISS (ESA) SOLAR mission. SolACES as a part of it will contribute to the solar EUV/UV irradiance aspects. These data will be provided to investigate further the impact of the solar irradiance variability on the Earth's climate changes as well as the thermospheric/ionospheric interactions that are pursued in the TIGER program, too. The four grating spectrometers of SolACES cover the wavelength range from 16 nm to 220 nm. 42 band pass filters are used to select EUV photon fluxes within wavelength subranges in order to determine their irradiances within three-signal recording ionisation chambers that are considered as primary detector standards. . Since spectrometers are not stable with respect to radiometric efficiency, re-measuring the filter transmissions and repeat the determination of the spectrometer efficiencies allow very accurate irradiance observations (2 The concept has been successfully tested with line emissions in the laboratory. Further, broadband as well as monochromatic synchrotron radiation has been used in the PTB laboratory of BESSY II electron synchrotron. There is good agreement with the BESSY II intercomparison. Still, the necessity to apply a re-calibration device showed up strongly. After the successful launch with the shuttle mission STS-122 on February 7th 2008 and the planned activation and commissioning of SolACES at the end of February 2008 we will extensively test all spectrometers and ionization chambers, i.e., we will repeatedly determine all filter transmissions and spectrometer efficiencies in the new environment and compare the results of the laboratory and BESSY II measurements. Additionally, a compare with SOVIM and SOL- SPEC of the SOLAR payload on the Columbus laboratory will help to perform measurements of high quality. First results of the EUV irradiance

  12. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    NASA Technical Reports Server (NTRS)

    Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.

    2010-01-01

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  13. Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  14. [Results of measuring neutrons doses and energy spectra inside Russian segment of the International Space Station in experiment "Matryoshka-R" using bubble detectors during the ISS-24-34 missions].

    PubMed

    Khulapko, S V; Liagushin, V I; Arkhangel'skiĭ, V V; Shurshakov, V A; Smith, M; Ing, H; Machrafi, R; Nikolaev, I V

    2014-01-01

    The paper presents the results of calculating the equivalent dose from and energy spectrum of neutrons in the right-hand crewquarters in module Zvezda of the ISS Russian segment. Dose measurements were made in the period between July, 2010 and November, 2012 (ISS Missions 24-34) by research equipment including the bubble dosimeter as part of experiment "Matryoshka-R". Neutron energy spectra in the crewquarters are in good agreement with what has been calculated for the ISS USOS and, earlier, for the MIR orbital station. The neutron dose rate has been found to amount to 196 +/- 23 microSv/d on Zvezda panel-443 (crewquarters) and 179 +/- 16 microSv/d on the "Shielding shutter" surface in the crewquarters.

  15. ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2012-01-01

    The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.

  16. Examination of Surface Residuals Obtained During Re-Lubrication of the International Space Station (ISS) Solar Alpha Rotary Joint (SARJ)

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Golden, J. L.

    2012-01-01

    The starboard SARJ mechanism on the ISS suffered a premature lubrication failure, resulting in widespread loss of the nitride case layer on its 10.3 meter circumference, 15-5PH steel race ring [1, 2]. To restore functionality, vacuum-stable grease was applied on-orbit, first to the port SARJ mechanism to save it from the damage suffered by the starboard mechanism. After 3 years of greased operation, telemetry indicated that the port mechanism required relubrication, so part of that process included sampling each of the three race ring surfaces to evaluate any wear debris recovered and the state of the originally applied grease. Extensive microscopic examination was conducted, which directed subsequent microanalysis of particulate. Since the SARJ mechanism operates in the vacuum of space, a sampling method and tool had to be developed for use by astronauts while working in the extravehicular mobility unit (EMU). The sampling tool developed was a cotton terry-cloth mitt for the EMU glove, with samples taken by swiping each of the three port SARJ race-ring surfaces. The sample mitts for each surface were folded inward after sampling to preserve sample integrity, for return and ground analysis. The sample mitt for what is termed the outer canted surface of the SARJ race-ring is shown in Figure 1. Figure 1 also demonstrates how increasing levels of magnification were used to survey the contamination removed in sampling, specifically looking for signs of wear debris or other features which could be further evaluated using Scanning Electron Microscopy (SEM) methods. The most surprising overall result at this point in the analysis was the relatively small amounts of grease recovered during sampling. It is clear that the mechanism was not operating with surplus lubricant. Obviously, evidence of molybdenum disulfide (MoS2), a major component in the grease applied, was prevalent in the analysis conducted. But a small amount of mechanism wear debris was observed. Figure 2

  17. Estimation of orbital Doppler shift change due to nutation of attitude for 2-μm coherent Doppler lidar on ISS-JEM (International Space Station-Japanese Experimental Module)

    NASA Astrophysics Data System (ADS)

    Totsuka, Makoto; Asai, Kazuhiro; Iwasaki, Toshiki; Mizutani, Kohei; Itabe, Toshikasu

    2001-02-01

    Coherent Doppler Lidar (CDL), which has a capability of 3-D wind velocity measurements, can realize a global measurement of the wind profile in the troposphere from space. ISS(International Space Station) has been constructing from last year, and JEM(Japanese Experimental Module) attached to ISS is scheduled to be provided as a laboratory in space. We have been making a feasibility study for ISS-JEM/2-micrometer CDL. We expect that the ISS might give some technical problems because of a large scale and a man attended station. On the other hand, a measurement accuracy of 1m/s is required from the atmospheric science. We have to analyze the systematic error with considering the error factors to meet this requirement. There are two factors of the wind measurement errors caused by the nutation of ISS?fs attitude. One of them is a change of receiving power, since it should change distances between CDL and a observing point. In this case, we have already shown that the wind error estimated was only ?}0.05m/s (assumed width of pitching angle ;?}3deg). The other factor is a change of orbital Doppler shift. The accuracy of 1m/s is corresopnding to 1MHz. We calculated a frequency of orbital Doppler shift in case of non conical scanning one when ISS has the nutation of attitude with ?}3deg,as a pitching angle and a rolling angle,respectively. The results obtained in this syudy are very useful to design a frequency agile CW laser as a local oscillator.In this paper, we describe more details for our analysis.

  18. The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ): Materials & Processes (M&P) Lessons Learned for a Large, Rotating Spacecraft Mechanism

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2016-01-01

    The International Space Station (ISS) utilizes two large rotating mechanisms, the solar alpha rotary joints (SARJs), as part of the solar arrays' alignment system for more efficient power generation. Each SARJ is a 10.3m circumference, nitrided 15-5PH steel race ring of triangular cross-section, with 12 sets of trundle bearing assemblies transferring load across the rolling joint. The SARJ mechanism rotates continuously and slowly - once every orbit, or every 90 minutes. In 2007, the starboard SARJ suffered a lubrication failure, resulting in severe damage (spalling) to one of the race ring surfaces. Extensive effort was conducted to prevent the port SARJ from suffering the same failure, and fortunately that effort was ultimately successful in also recovering the functionality of the starboard SARJ. The M&P engineering function was key in determining the cause of failure and the means for mechanism recovery. From a M&P lessons-learned perspective, observations are made concerning the original SARJ design parameters (boundary conditions), the perceived need for nitriding the race ring, the test conditions employed during qualification, the environmental controls used for the hardware preflight, and the lubrication robustness necessary for complex kinematic mechanisms expecting high-reliability and long-life.

  19. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    NASA Technical Reports Server (NTRS)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  20. ISS-Lobster

    NASA Astrophysics Data System (ADS)

    Camp, Jordan; Barthelmy, S. D.; Petre, R.; Gehrels, N.; Marshall, F. E.; Racusin, J. L.; Ptak, A.

    2014-01-01

    This poster presents ISS-Lobster, a wide-field X-ray transient mission proposed to be deployed on the International Space Station. Through its unique imaging X-ray optics that allow a 30 deg by 30 deg FoV, a 1 arc min position resolution and a 10^-11 erg/(sec cm2) sensitivity in 2000 sec, ISS-Lobster will observe numerous events per year of X-ray transients related to compact objects, including: tidal disruptions of stars, supernova shock breakouts, neutron star bursts and superbursts, high redshift Gamma-Ray Bursts, and perhaps most exciting, X-ray counterparts of gravitational wave detections involving both stellar mass and supermassive black holes. A 3-axis gimbal system will allow fast pointing in response to any independent, multi-wavelength indication of these events. Finally, deployment of this detector on the ISS will realize significant cost savings compared to a free-flying satellite as power, communication, and ISS transport are provided.

  1. Quantitative Risk Modeling of Fire on the International Space Station

    NASA Technical Reports Server (NTRS)

    Castillo, Theresa; Haught, Megan

    2014-01-01

    The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.

  2. Bone Turnover in Wild Type and Pleiotrophin-Transgenic Mice Housed for Three Months in the International Space Station (ISS)

    PubMed Central

    Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity’s negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice. PMID:22438896

  3. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-104 at the Conclusion of 7A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-l04 (7 A) flight to the ISS is reported. ISS air samples were taken in June and July 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Atlantis using GSCs. Solid sorbent air sampler (SSAS) samples were obtained from the ISS in April, June, and July. Analytical methods have not changed from earlier reports, and all quality control measures were met.

  4. Ammonia Leak Locator Study

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  5. MMOD Impact Damage to ISS

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric; Lear, Dana M.

    2014-01-01

    Paper will describe micrometeoroid and orbital debris (MMOD) damage that has been observed on the International Space Station (ISS). Several hundred documented MMOD damage sites on ISS have been identified through imagery from the windows of ISS modules or docked vehicles. Sites that are observable from ISS or shuttle windows exhibiting distinct features of hypervelocity impact damage are usually greater than 5mm in diameter. Many smaller features are revealed in on-orbit imagery are typically less distinct and difficult to characterize but could be MMOD damage. Additional images of on-orbit damage features have been collected by astronauts during extra vehicular activities. Ground inspection of returned ISS hardware has also contributed to the database of ISS MMOD impact damage. A handful of orbital replacement units (ORU) from the ISS active thermal control and electrical power subsystems were swapped out and returned during the Space Shuttle program. In addition, a reusable logistics module was deployed on ISS for a total 59.4 days on 11 shuttle missions between 2001 and 2011 and then brought back in the shuttle payload bay. All of this returned hardware was subjected to detailed post-flight inspections for MMOD damage, and a database with nearly 1000 impact records has been collected. A description of the largest observed damages will be provided in the paper. In addition, a discussion of significant MMOD impact sites with operational or design aspects will be presented. Some of the ISS modules/subsystems damaged by MMOD to be included in the discussion are (1) Solar Arrays, (2) US and Russian windows, (3) EVA handrails, (4) Radiators, and (5) Russian FGB module.

  6. The Deployment of a Commercial RGA to the International Space Station

    NASA Technical Reports Server (NTRS)

    Kowitt, Matt; Hawk, Doug; Rossetti, Dino; Woronowicz, Michael

    2015-01-01

    The International Space Station (ISS) uses ammonia as a medium for heat transport in its Active Thermal Control System. Over time, there have been intermittent component failures and leaks in the ammonia cooling loop. One specific challenge in dealing with an ammonia leak on the exterior of the ISS is determining the exact location from which ammonia is escaping before addressing the problem. Together, researchers and engineers from Stanford Research Systems (SRS) and NASA's Johnson Space Center and Goddard Space Flight Center have adapted a commercial off-the-shelf (COTS) residual gas analyzer (RGA) for repackaging and operation outside the ISS as a core component in the ISS Robotic External Leak Locator, a technology demonstration payload currently scheduled for launch during 2015. The packaging and adaptation of the COTS RGA to the Leak Locator will be discussed. The collaborative process of adapting a commercial instrument for spaceflight will also be reviewed, including the build-­-up of the flight units. Measurements from a full-­-scale thermal vacuum test will also be presented demonstrating the absolute and directional sensitivity of the RGA.

  7. ISS Plasma Interaction: Measurements and Modeling

    NASA Technical Reports Server (NTRS)

    Barsamian, H.; Mikatarian, R.; Alred, J.; Minow, J.; Koontz, S.

    2004-01-01

    Ionospheric plasma interaction effects on the International Space Station are discussed in the following paper. The large structure and high voltage arrays of the ISS represent a complex system interacting with LEO plasma. Discharge current measurements made by the Plasma Contactor Units and potential measurements made by the Floating Potential Probe delineate charging and magnetic induction effects on the ISS. Based on theoretical and physical understanding of the interaction phenomena, a model of ISS plasma interaction has been developed. The model includes magnetic induction effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. Based on these phenomena, the Plasma Interaction Model has been developed. Limited verification of the model has been performed by comparison of Floating Potential Probe measurement data to simulations. The ISS plasma interaction model will be further tested and verified as measurements from the Floating Potential Measurement Unit become available, and construction of the ISS continues.

  8. ISS Configuration

    NASA Video Gallery

    This fly-around video shows the International Space Station from space shuttle Endeavour after undocking May 30, 2011. STS-134 was the last flight of Endeavour which landed two days later. The seve...

  9. ISS: Columbus.

    PubMed

    Thirkettle, A; Patti, B; Mitschdoerfer, P; Kledzik, R; Gargioli, E; Brondolo, D

    2002-02-01

    In 2001, a total of 13 assembly and logistic flights to the ISS were made, using both Russian launchers and the Space Shuttle, including flights of the first European astronauts, payloads and Multi-Purpose Logistics Modules (MPLMs). Several US, Russian and Canadian elements have already been assembled in orbit and the fourth Expedition Crew is currently onboard. The cornerstone of ESA's contribution to this enormous international undertaking in space is the Columbus laboratory. On 27 September 2001, the Columbus flight unit arrived at the premises of ESA's industrial prime contractor Astrium in Bremen, Germany. Final integration of the module is now nearly complete and functional qualification and acceptance testing is about to start. This article summarises the characteristics and functional architecture of Columbus, its development, integration and test approach, as well as today's qualification status.

  10. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  11. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  12. International Space Station Overview

    NASA Technical Reports Server (NTRS)

    Bates, William V., Jr.

    1999-01-01

    The overview of the International Space Station (ISS) is comprised of the program vision and mission; Space Station uses; definition of program phases; as well as descriptions and status of several scheduled International Space Station Overview assembly flights.

  13. ISS Update: ATV-3’s Science Payload

    NASA Video Gallery

    ISS Update Commentator Pat Ryan interviews Camille Alleyne, Assistant Program Scientist for International Space Station. They discuss the science payload that was delivered to the station and crew ...

  14. Development and Certification of Station Development Test Objective (SDTO) Experiment # 15012-U, "Near RealTime Water Quality Monitoring Demonstration for ISS Biocides Using Colorimetric Solid Phase Extraction (CSPE)"

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin

    2009-01-01

    Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.

  15. ISS Live!

    NASA Technical Reports Server (NTRS)

    Price, Jennifer; Harris, Philip; Hochstetler, Bruce; Guerra, Mark; Mendez, Israel; Healy, Matthew; Khan, Ahmed

    2013-01-01

    International Space Station Live! (ISSLive!) is a Web application that uses a proprietary commercial technology called Lightstreamer to push data across the Internet using the standard http port (port 80). ISSLive! uses the push technology to display real-time telemetry and mission timeline data from the space station in any common Web browser or Internet- enabled mobile device. ISSLive! is designed to fill a unique niche in the education and outreach areas by providing access to real-time space station data without a physical presence in the mission control center. The technology conforms to Internet standards, supports the throughput needed for real-time space station data, and is flexible enough to work on a large number of Internet-enabled devices. ISSLive! consists of two custom components: (1) a series of data adapters that resides server-side in the mission control center at Johnson Space Center, and (2) a set of public html that renders the data pushed from the data adapters. A third component, the Lightstreamer server, is commercially available from a third party and acts as an intermediary between custom components (1) and (2). Lightstreamer also provides proprietary software libraries that are required to use the custom components. At the time of this reporting, this is the first usage of Web-based, push streaming technology in the aerospace industry.

  16. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-102 at the Conclusion of 5A.1

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-102 (5A.1) flight to the ISS is reported. ISS air samples were taken in late February 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges . A "first-entry" sample of the multipurpose logistics module (MPLM) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Discovery using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 contribution). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample. Formaldehyde is quantified separately.

  17. Rapid ISS Power Availability Simulator

    NASA Technical Reports Server (NTRS)

    Downing, Nicholas

    2011-01-01

    The ISS (International Space Station) Power Resource Officers (PROs) needed a tool to automate the calculation of thousands of ISS power availability simulations used to generate power constraint matrices. Each matrix contains 864 cells, and each cell represents a single power simulation that must be run. The tools available to the flight controllers were very operator intensive and not conducive to rapidly running the thousands of simulations necessary to generate the power constraint data. SOLAR is a Java-based tool that leverages commercial-off-the-shelf software (Satellite Toolkit) and an existing in-house ISS EPS model (SPEED) to rapidly perform thousands of power availability simulations. SOLAR has a very modular architecture and consists of a series of plug-ins that are loosely coupled. The modular architecture of the software allows for the easy replacement of the ISS power system model simulator, re-use of the Satellite Toolkit integration code, and separation of the user interface from the core logic. Satellite Toolkit (STK) is used to generate ISS eclipse and insulation times, solar beta angle, position of the solar arrays over time, and the amount of shadowing on the solar arrays, which is then provided to SPEED to calculate power generation forecasts. The power planning turn-around time is reduced from three months to two weeks (83-percent decrease) using SOLAR, and the amount of PRO power planning support effort is reduced by an estimated 30 percent.

  18. Analysis of ISS Plasma Interaction

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon; Alred, John; Kramer, Leonard; Mikatarian, Ron; Minow, Joe; Koontz, Steve

    2006-01-01

    To date, the International Space Station (ISS) has been one of the largest objects flown in lower earth orbit (LEO). The ISS utilizes high voltage solar arrays (160V) that are negatively grounded leading to pressurized elements that can float negatively with respect to the plasma. Because laboratory measurements indicate a dielectric breakdown potential difference of 80V, arcing could occur on the ISS structure. To overcome the possibility of arcing and clamp the potential of the structure, two Plasma Contactor Units (PCUs) were designed, built, and flown. Also a limited amount of measurements of the floating potential for the present ISS configuration were made by a Floating Potential Probe (FPP), indicating a minimum potential of 24 Volts at the measurement location. A predictive tool, the ISS Plasma Interaction Model (PIM) has been developed accounting for the solar array electron collection, solar array mast wire and effective conductive area on the structure. The model has been used for predictions of the present ISS configuration. The conductive area has been inferred based on available floating potential measurements. Analysis of FPP and PCU data indicated distribution of the conductive area along the Russian segment of the ISS structure. A significant input to PIM is the plasma environment. The International Reference Ionosphere (IRI 2001) was initially used to obtain plasma temperature and density values. However, IRI provides mean parameters, leading to difficulties in interpretation of on-orbit data, especially at eclipse exit where maximum charging can occur. This limits our predicative capability. Satellite and Incoherent Scatter Radar (ISR) data of plasma parameters have also been collected. Approximately 130,000 electron temperature (Te) and density (Ne) pairs for typical ISS eclipse exit conditions have been extracted from the reduced Langmuir probe data flown aboard the NASA DE-2 satellite. Additionally, another 18,000 Te and Ne pairs of ISR data

  19. ISS Solar Array Management

    NASA Technical Reports Server (NTRS)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  20. Long term dose monitoring onboard the European Columbus module of the international space station (ISS) in the frame of DOSIS and DOSIS 3D project - results from the active instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are

  1. Recent NASA research accomplishments aboard the ISS

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; North, Regina M.

    2004-01-01

    The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations. Published by Elsevier Ltd.

  2. Recent NASA research accomplishments aboard the ISS.

    PubMed

    Pellis, Neal R; North, Regina M

    2004-01-01

    The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations.

  3. Operational Limitations of the High Rate Frame Multiplexer (HRFM) Onboard the International Space Station(ISS)-and How These Limitations Affect Payload Developers (PDs) and International Partners (IPs)

    NASA Technical Reports Server (NTRS)

    Mixson, Charles D.; McElyea, Richard M. (Technical Monitor)

    2002-01-01

    The data system onboard the United States Operating Segment (USOS) of the ISS is currently used to capture, route, record and downlink high-rate science data from experiments inside the US Lab. Once NASDA's Japanese Experiment Module (JEM) and ESA's Attached Pressurized Module (APM) are launched - in the 2004 to 2005 timeframe - data from these facilities will also be routed to the ground using the USOS data system. A critical component of the USOS data system is the High Rate Frame Multiplexer (HRFM). The HRFM combines multiple data/video inputs and combines them into one data stream. This Ku-band data stream is then routed through the Tracking and Data Relay Satellite (TDRS) system to the ground. The Data Management Coordinator (DMC) - located at the Marshall Space Flight Center's Payload Operations Center (POC) - is responsible for commanding and controlling the HRFM. The HRFM can multiplex a maximum of eight digital data sources and four digital video sources. Thus far, this limitation has not been constraining to operations. However, once the JEM and APM are integrated, the HRFM limitations will become a major constraint to science operations onboard. The purpose of this paper is to characterize the limitations of the HRFM and to explain how these limitations can be successfully managed. With this information, Payload Developers and International Partners will be able to more effectively utilize the data systems onboard the ISS. Ultimately, more science data can be captured and downlinked to Flight Controllers and Scientists on the ground.

  4. Assessment of Ethanol Trends on the ISS

    NASA Technical Reports Server (NTRS)

    Perry, Jay; Carter, Layne; Kayatin, Matthew; Gazda, Daniel; McCoy, Torin; Limero, Thomas

    2016-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) provides a working environment for six crewmembers through atmosphere revitalization and water recovery systems. In the last year, elevated ethanol levels have presented a unique challenge for the ISS ECLSS. Ethanol is monitored on the ISS by the Air Quality Monitor (AQM). The source of this increase is currently unknown. This paper documents the credible sources for the increased ethanol concentration, the monitoring provided by the AQM, and the impact on the atmosphere revitalization and water recovery systems.

  5. Payload Operations and Telescience on ISS

    NASA Technical Reports Server (NTRS)

    Cissom, Rickey D.; Cobb, Barbara J.; Ramage, Kristi S.

    2000-01-01

    The objective of this paper is to provide future International Space Station (ISS) scientists and/or engineers with an overview of the ISS payload operations and integration process. This process begins with the payload being manifested on the ISS and continued through the integration and operations process. Emphasis is placed on the interfaces and tools that the payload will utilize when going through the process. For each of the Data Sets, the Payload Operations and Integration Center (POIC) provides a Data Set Manager to work with the PD's.

  6. International Space Station: becoming a reality.

    PubMed

    David, L

    1999-07-01

    An overview of the development of the International Space Station (ISS) is presented starting with a brief history of space station concepts from the 1960's to the decision to build the present ISS. Other topics discussed include partnerships with Japan, Canada, ESA countries, and Russia; design changes to the ISS modules, the use of the ISS for scientific purposes and the application of space research to medicine on Earth; building ISS modules on Earth, international funding for Russian components, and the political aspects of including Russia in critical building plans. Sidebar articles examine commercialization of the ISS, multinational efforts in the design and building of the ISS, emergency transport to Earth, the use of robotics in ISS assembly, application of lessons learned from the Skylab project to the ISS, initial ISS assembly in May 1999, planned ISS science facilities, and an overview of space stations in science fiction.

  7. Leak Detection and Location Technology Assessment for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Coffey, Neil C.; Madaras, Eric I.

    2008-01-01

    Micro Meteoroid and Orbital Debris (MMOD) and other impacts can cause leaks in the International Space Station and other aerospace vehicles. The early detection and location of leaks is paramount to astronaut safety. Therefore this document surveys the state of the art in leak detection and location technology for aerospace vehicles.

  8. Automated ISS Flight Utilities

    NASA Technical Reports Server (NTRS)

    Offermann, Jan Tuzlic

    2016-01-01

    During my internship at NASA Johnson Space Center, I worked in the Space Radiation Analysis Group (SRAG), where I was tasked with a number of projects focused on the automation of tasks and activities related to the operation of the International Space Station (ISS). As I worked on a number of projects, I have written short sections below to give a description for each, followed by more general remarks on the internship experience. My first project is titled "General Exposure Representation EVADOSE", also known as "GEnEVADOSE". This project involved the design and development of a C++/ ROOT framework focused on radiation exposure for extravehicular activity (EVA) planning for the ISS. The utility helps mission managers plan EVAs by displaying information on the cumulative radiation doses that crew will receive during an EVA as a function of the egress time and duration of the activity. SRAG uses a utility called EVADOSE, employing a model of the space radiation environment in low Earth orbit to predict these doses, as while outside the ISS the astronauts will have less shielding from charged particles such as electrons and protons. However, EVADOSE output is cumbersome to work with, and prior to GEnEVADOSE, querying data and producing graphs of ISS trajectories and cumulative doses versus egress time required manual work in Microsoft Excel. GEnEVADOSE automates all this work, reading in EVADOSE output file(s) along with a plaintext file input by the user providing input parameters. GEnEVADOSE will output a text file containing all the necessary dosimetry for each proposed EVA egress time, for each specified EVADOSE file. It also plots cumulative dose versus egress time and the ISS trajectory, and displays all of this information in an auto-generated presentation made in LaTeX. New features have also been added, such as best-case scenarios (egress times corresponding to the least dose), interpolated curves for trajectories, and the ability to query any time in the

  9. Measurement of muscle actions and foot reaction forces from crew members during entire working days on the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Snedeker, Jess G.; Cavanagh, Peter R.

    2000-01-01

    We present pilot work in preparation for ISS Experiment 318, which will investigate changes in lower limb daily mechanical loading and muscular activity profiles that have been implicated in bone mineral loss and muscle atrophy during spaceflight. Prototype equipment for the musculo-skeletal rack of the Human Research Facility (HRF) was used in conjunction with the Ambulatory Data Acquisition System to record and store data. Right foot ground reaction force profiles, right leg EMG activity profiles from the tibialis anterior and vastus medialis, and joint angular excursion profiles from the right knee and ankle were collected during five minutes each of forward and backward running in 1g as well as over a twelve hour period of activities during daily living. Ground reaction force profiles were analyzed to provide an estimate of 1g daily mechanical load stimulus, while EMG and joint angle profiles characterized the role of individual muscles in generating and absorbing energy. .

  10. Optimal Propellant Maneuver Flight Demonstrations on ISS

    NASA Technical Reports Server (NTRS)

    Bhatt, Sagar; Bedrossian, Nazareth; Longacre, Kenneth; Nguyen, Louis

    2013-01-01

    In this paper, first ever flight demonstrations of Optimal Propellant Maneuver (OPM), a method of propulsive rotational state transition for spacecraft controlled using thrusters, is presented for the International Space Station (ISS). On August 1, 2012, two ISS reorientations of about 180deg each were performed using OPMs. These maneuvers were in preparation for the same-day launch and rendezvous of a Progress vehicle, also a first for ISS visiting vehicles. The first maneuver used 9.7 kg of propellant, whereas the second used 10.2 kg. Identical maneuvers performed without using OPMs would have used approximately 151.1kg and 150.9kg respectively. The OPM method is to use a pre-planned attitude command trajectory to accomplish a rotational state transition. The trajectory is designed to take advantage of the complete nonlinear system dynamics. The trajectory choice directly influences the cost of the maneuver, in this case, propellant. For example, while an eigenaxis maneuver is kinematically the shortest path between two orientations, following that path requires overcoming the nonlinear system dynamics, thereby increasing the cost of the maneuver. The eigenaxis path is used for ISS maneuvers using thrusters. By considering a longer angular path, the path dependence of the system dynamics can be exploited to reduce the cost. The benefits of OPM for the ISS include not only reduced lifetime propellant use, but also reduced loads, erosion, and contamination from thrusters due to fewer firings. Another advantage of the OPM is that it does not require ISS flight software modifications since it is a set of commands tailored to the specific attitude control architecture. The OPM takes advantage of the existing ISS control system architecture for propulsive rotation called USTO control mode1. USTO was originally developed to provide ISS Orbiter stack attitude control capability for a contingency tile-repair scenario, where the Orbiter is maneuvered using its robotic

  11. STS-113/11A: Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned in December 2002 and in May 2003 aboard Soyuz 5

    NASA Technical Reports Server (NTRS)

    James, John T.

    2003-01-01

    The toxicological assessments of grab sample canisters (GSCs) returned aboard STS-l13 and Soyuz 5 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSCs were 79-120% except as noted in the table. One sample was returned with the valve opened. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) has leaked from heat-exchange units in large quantities, so its concentration is tracked separately. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. The table shows that the air quality in general was acceptable for crew respiration through the middle of December 2002. No conclusions can be made about the air quality after that date due to NASA's inability to return air samples from the ISS . Alcohols are not being controlled to the recently lowered guideline of 5 mg/m3, which was recommended to protect the water recovery systems. The airlock sample was taken during the regeneration of Met ox canisters in the adjacent Node. The trace pollutants were not increased above background; however, inspection of table 1 in the appendix shows a CO2 concentration of 17,000 mg/cu m, which is a relatively high concentration, but still below the 24-hour SMAC of23,000 mg/cu m. The control of OFP continues to be adequate at least through December 2002. Formaldehyde concentrations suggest that the high levels that were being found in the Lab atmosphere have subsided. This is probably attributable to the restoration of IMV in early February 2003 . Before the obstructing material was removed from ducts the Lab formaldehyde concentrations approached 0.06 mg/cu m, whereas

  12. Alternatives to the ISS Plasma Contacting Units

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2002-01-01

    A spacecraft in a high-density equatorial LEO plasma will float negative relative to the ambient plasma. Because of the electron collection of exposed conductors on its solar arrays, it may float negative by up to its array voltage. The floating potential depends on the relative areas of electron and ion collection of the spacecraft. Early estimates of the International Space Station (ISS) potential were about -140 V relative to the surrounding plasma, because of its 160 V solar array string voltage. Because of the possibility of arcing of ISS structures and astronaut EMUs (spacesuits) into the space plasma, Plasma Contacting Units (PCUs) were added to the ISS design, to reduce the highly negative floating potentials by emitting electrons (effectively increasing the ion collecting area). In addition to the now-operating ISS PCUs, safety rules require another independent arc-hazard control method. In this paper, I discuss alternatives to the ISS PCUs for keeping the ISS floating potential at values below the arc-thresholds of ISS and EMU surface materials. Advantages and disadvantages of all of the recline loss will be presented.

  13. The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ): Materials & Processes (M&P) Lessons Learned for a Large, Spacecraft Rotating Mechanism

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2016-01-01

    The ISS utilizes two large rotating mechanisms, the SARJ, as part of the solar arrays alignment system for more efficient power generation. The SARJ is a 10.3m circumference, nitrided 15-5PH steel race ring of triangular cross-section, with 12 sets of trundle bearing assemblies transferring load across the rolling joint. The SARJ mechanism rotates continuously and slowly - once every orbit, or every 90 minutes. In 2008, the starboard SARJ suffered a lubrication failure, resulting in severe damage (spalling) of one of the race ring surfaces. Extensive effort was conducted to prevent the port SARJ from suffering the same failure, and fortunately was ultimately successful in recovering the functionality of the starboard SARJ. The M&P function was key in determining the cause of failure and the means for mechanism recovery. From a M&P lessons-learned perspective, observations are made concerning the original SARJ design parameters (boundary conditions), the perceived need for nitriding the race ring, the test conditions employed during qualification, the environmental controls used for the hardware preflight, and the lubrication robustness necessary for complex kinematic mechanisms expecting high-reliability and long-life.

  14. Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned Aboard STS-ll1 (UF2) in June 2002

    NASA Technical Reports Server (NTRS)

    James, John T.

    2003-01-01

    The toxicological assessments of grab sample canisters (GSCs) and 2 solid sorbent air samplers (SSASs) returned aboard STS-111 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSCs were 86-106% and 62% to 136 % from the SSASs; 2 tubes with low surrogate recoveries were not reported. Pressure tracking indicated no leaks in the canisters during analysis. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), Its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. The table shows that the air quality in general was acceptable for crew respiration; however, certain values shown in bold require further explanation. The 1.05 T value on 2/28/02 was caused by an unusually high measurement ofhexamethylcyc1otrisiloxane (T value = 0.50), which is not a concern. The MPLM T value of 1.42 and the alcohol level of 7.5 mg/cu m were due to an overall polluted atmosphere, which was expected at first entry. The major T-value component was carbon monoxide at a contribution of 0.44 units. Since the crew was only exposed momentarily to the polluted atmosphere, no health effects are expected. The formaldehyde value of 0.060 mg/cu m found in the Lab sample from 3/27/02 is cause for concern because the Lab consistently shows higher concentrations of formaldehyde than the SM and occasionally the concentrations are above the acceptable guideline. Levels of OFP have remained low, suggesting

  15. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Lueders, Kathryn L. (Compiler)

    2015-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document with its sister documents, Crew Transportation Technical Management Processes (CCT-PLN-1120), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), and Crew Transportation Operations Standards (CCT-STD-1150), and International Space Station (ISS) to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase of the NASA Commercial Crew Program (CCP).

  16. Preliminary Findings from the SHERE ISS Experiment

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; McKinley, Gareth H.; Erni, Philipp; Soulages, Johannes; Magee, Kevin S.

    2009-01-01

    The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed.

  17. Space Debris in the neighborhood of the ISS

    NASA Astrophysics Data System (ADS)

    Sampaio, Jarbas; Vilhena de Moraes, Rodolpho; Celestino, Claudia C.; Fiorilo de Melo, Cristiano

    2016-07-01

    The International Space Station (ISS) is a great opportunity to use a research platform in space. An international partnership of space agencies provides the operation of the ISS since 2000. The ISS is in Low Earth Orbits, in the same region of most of the space debris orbiting the planet. In this way, several studies are important to preserve the operability of the space station and operational artificial satellites, considering the increasing number of distinct objects in the space environment offering collision risks. In this work, the orbital dynamics of space debris are studied in the neighborhood of the ISS - International Space Station. The results show that the collision risk of space debris with the ISS is high and purposes to avoid these events are necessary. Solutions for the space debris mitigation are considered.

  18. 6S Return Samples: Assessment of Air Quality in the International Space Station (ISS) Based on Solid Sorbent Air Sampler (SSAS) and Formaldehyde Monitoring Kit (FMK) Analyses

    NASA Technical Reports Server (NTRS)

    James, John T.

    2004-01-01

    The toxicological assessments of SSAS and FMK analytical results are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the SSAS tubes were 66-76% for 13C-acetone, 85-96% for fluorobenzene, and 73-89% for chlorobenzene. Post-flight flows were far below pre-flight flows and an investigation of the problem revealed that the reduced flow was caused by a leak at the interface of the pump inlet tube and the pump head. This resulted in degradation of pump efficiency. Further investigation showed that the problem occurred before the SSAS was operated on orbit and that use of the post-flight flows yielded consistent and useful results. Recoveries from formaldehyde control badges were 86 to 104%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). The T values will not be reported for these data due to the flow anomaly. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) is not efficiently trapped by the sorbents used in the SSAS. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. These five indices of air quality are summarized.

  19. Dexterous Operations on ISS and Future Applications

    NASA Technical Reports Server (NTRS)

    Keenan, P. Andrew; Read, David A.

    2011-01-01

    The Mobile Servicing System (MSS) is a complex robotics system used extensively in the assembly, inspection and maintenance of the International Space Station (ISS). Its external components are comprised of the Space Station Remote Manipulator System (SSRMS), the Mobile Base System (MBS), and the Special Purpose Dexterous Manipulator (SPDM or "Dextre"). Dexterous robotic maintenance operations on the ISS are now enabled with the launch and deployment of "Dextre" in March 2008 and the recently completed commissioning to support nominal operations. These operations include allowing for maintenance of the MSS capability to be executed uniquely via robotic means. Examples are detailed inspection and the removal and replacement of On-orbit Replaceable Units (ORUs) located outside the pressurized volume of the ISS, alleviating astronauts from performing numerous risky and time-consuming extra-vehicular activities (EVAs). In light of the proposed extension of the ISS to 2020 and beyond, "Dextre" can also be seen as a resource for the support and conduct of external ISS experiments. "Dextre" can be utilized to move experiments around ISS, as test bed for more elaborate experiments outside the original design intent, and as a unique platform for external experiments. This paper summarizes the status of "Dextre", its planned use, and future potential for dexterous operations on the ISS. Lessons learned from the planning and execution of SPDM commissioning are first introduced, and significant differences between "Dextre" and SSRMS operations are discussed. The use of ground control as the predominant method for operating "Dextre" is highlighted, along with the benefits and challenges that this poses. Finally, the latest plans for dexterous operations on ISS are summarized including visiting vehicle unloading, nominal maintenance, and operations of a more experimental flavor.

  20. Stratospheric Aerosol and Gas Experiment, SAGE III on ISS, An Earth Science Mission on the International Space Station, Schedule Risk Analysis, A Project Perspective

    NASA Technical Reports Server (NTRS)

    Bonine, Lauren

    2015-01-01

    The presentation provides insight into the schedule risk analysis process used by the Stratospheric Aerosol and Gas Experiment III on the International Space Station Project. The presentation focuses on the schedule risk analysis process highlighting the methods for identification of risk inputs, the inclusion of generic risks identified outside the traditional continuous risk management process, and the development of tailored analysis products used to improve risk informed decision making.

  1. Code of conduct for the International Space Station Crew. National Aeronautics and Space Administration (NASA). Interim final rule.

    PubMed

    2000-12-21

    NASA is issuing new regulations entitled "International Space Station Crew," to implement certain provisions of the International Space Station (ISS) Intergovernmental Agreement (IGA) regarding ISS crewmembers' observance of an ISS Code of Conduct.

  2. ISS Update: Suitport

    NASA Video Gallery

    ISS Update commentator Lynnette Madison interviews Mallory Jennings, Suitport Human Testing Lead, about making spacewalks easier and more efficient with the Suitport. Questions? Ask us on Twitter @...

  3. Providing Pressurized Gasses to the International Space Station (ISS): Developing a Composite Overwrapped Pressure Vessel (COPV) for the Safe Transport of Oxygen and Nitrogen

    NASA Technical Reports Server (NTRS)

    Kezirian, Michael; Cook, Anthony; Dick, Brandon; Phoenix, S. Leigh

    2012-01-01

    To supply oxygen and nitrogen to the International Space Station, a COPV tank is being developed to meet requirements beyond that which have been flown. In order to "Ship Full' and support compatibility with a range of launch site operations, the vessel was designed for certification to International Standards (ISO) that have a different approach than current NASA certification approaches. These requirements were in addition to existing NASA certification standards had to be met. Initial risk-reduction development tests have been successful. Qualification is in progress.

  4. ISS Medical Checklist Procedures Validation and Training

    NASA Technical Reports Server (NTRS)

    Marshburn, Tom; Goode, Julie

    1999-01-01

    The Health Maintenance System (HMS) hardware will be used to support a medical contingency for the International Space Station (ISS). During two test flights, the procedures for performing Advanced Cardiac Life Support (ACLS) were evaluated to determine the required level of detail, assess the logic of the steps and division of tasks among crew members.

  5. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Bayt, Robert L. (Compiler); Lueders, Kathryn L. (Compiler)

    2016-01-01

    The ISS Crew Transportation and Services Requirements Document (CCT-REQ-1130) contains all technical, safety, and crew health medical requirements that are mandatory for achieving a Crew Transportation System Certification that will allow for International Space Station delivery and return of NASA crew and limited cargo. Previously approved on TN23183.

  6. Photography of Coral Reefs from ISS

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.

  7. Specifying the ISS Plasma Environment

    NASA Astrophysics Data System (ADS)

    Minow, J.; Diekmann, A.; Neergaard, L.; Bui, T.; Mikatarian, R.; Barsamian, H.; Koontz, S.

    2003-12-01

    Quantifying the spacecraft charging risks and corresponding hazards for the International Space Station (ISS) requires a plasma environment specification describing the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IRI) model typically only provide estimates of long term (seasonal) mean Te and Ne values for the low Earth orbit environment. Knowledge of the Te and Ne variability as well as the likelihood of extreme deviations from the mean values are required to estimate both the magnitude and frequency of occurrence of potentially hazardous spacecraft charging environments for a given ISS construction stage and flight configuration. This paper describes a statistical analysis of historical ionospheric low Earth orbit plasma measurements used to estimate Ne, Te variability in the ISS flight environment. The statistical variability analysis of Ne and Te enables calculation of the expected frequency of occurrence of any particular values of Ne and Te, especially those that correspond to possibly hazardous spacecraft charging environments. The database used in the original analysis included measurements from the AE-C, AE-D, and DE-2 satellites and recent work on the database has added additional satellites to the database and ground based incoherent scatter radar observations as well. Deviations of the data values from the IRI estimated Ne, Te parameters for each data point provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output.

  8. Students Speak With Tara Ruttley Assoc. ISS Program Scientist

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center Tara Ruttley Associate ISS Program Scientist, participates in a Digital Learning Network (DLN) event with students at St. Vincent St...

  9. ISS Update: JAXA Aquatic Habitat Facility-- 08.15.12

    NASA Video Gallery

    ISS Update commentator Brandi Dean interviews Associate International Space Station Program Scientist Tara Ruttley about the Japan Aerospace Exploration Agency’s Aquatic Habitat facility. Ques...

  10. ISS pass over Southern California to Hudson Bay

    NASA Video Gallery

    This sequence of still frames was acquired as the International Space Station was tracking east-northeastward across the United States. The sequence begins over the Pacific Ocean as the ISS headed ...

  11. Biomedical Results of ISS Expeditions 1-12

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer; Sams, Clarence F.

    2007-01-01

    A viewgraph presentation on biomedical data from International Space Station (ISS) Expeditions 1-12 is shown. The topics include: 1) ISS Expeditions 1-12; 2) Biomedical Data; 3) Physiological Assessments; 4) Bone Mineral Density; 5) Bone Mineral Density Recovery; 6) Orthostatic Tolerance; 7) Postural Stability Set of Sensory Organ Test 6; 8) Performance Assessment; 9) Aerobic Capacity of the Astronaut Corps; 10) Pre-flight Aerobic Fitness of ISS Astronauts; 11) In-flight and Post-flight Aerobic Capacity of the Astronaut Corps; and 12) ISS Functional Fitness Expeditions 1-12.

  12. Electric discharge processes in the ISS plasma environment

    NASA Astrophysics Data System (ADS)

    Tverdokhlebova, E. M.; Korsun, A. G.; Gabdullin, F. F.; Karabadzhak, G. F.

    We consider the behaviour of the electric discharges which can be initiated between constructional elements of the International Space Station (ISS) due to the electric field of high-voltaic solar arrays (HVSA). The characteristics of the ISS plasma environment are evaluated taking into account the influence of space ionizing fluxes, the Earth's magnetic field, and the HVSA's electric field. We offer the statement of the space experiment "Plasma-ISS", the aim of which is to investigate, using optical emission characteristics, parameters of the ISS plasma environment formed at operation of both the onboard engines and other plasma sources.

  13. ISS Update: Bruce Manners, NASA COTS Project Executive for Orbital Sciences

    NASA Video Gallery

    ISS Update commentator Josh Byerly interviews Bruce Manners, NASA COTS Project Executive, about Orbital Sciences and the Cygnus rocket. Cygnus will deliver cargo to the International Space Station ...

  14. Capillary Channel Flow (CCF) EU2-02 on the International Space Station (ISS): An Experimental Investigation of Passive Bubble Separations in an Open Capillary Channel

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.; Wollman, Andrew P.; Jenson, Ryan M.; Geile, John T.; Tucker, John F.; Wiles, Brentley M.; Trattner, Andy L.; DeVoe, Claire; Sharp, Lauren M.; Canfield, Peter J.; Klatte, Joerg; Dreyer, Michael E.

    2015-01-01

    It would be signicantly easier to design fluid systems for spacecraft if the fluid phases behaved similarly to those on earth. In this research an open 15:8 degree wedge-sectioned channel is employed to separate bubbles from a two-phase flow in a microgravity environment. The bubbles appear to rise in the channel and coalesce with the free surface in much the same way as would bubbles in a terrestrial environment, only the combined effects of surface tension, wetting, and conduit geometry replace the role of buoyancy. The host liquid is drawn along the channel by a pump and noncondensible gas bubbles are injected into it near the channel vertex at the channel inlet. Control parameters include bubble volume, bubble frequency, liquid volumetric flow rate, and channel length. The asymmetrically confined bubbles are driven in the cross-flow direction by capillary forces until they at least become inscribed within the section or until they come in contact with the free surface, whereupon they usually coalesce and leave the flow. The merging of bubbles enhances, but does not guarantee, the latter. The experiments are performed aboard the International Space Station as a subset of the Capillary Channel Flow experiments. The flight hardware is commanded remotely and continuously from ground stations during the tests and an extensive array of experiments is conducted identifying numerous bubble flow regimes and regime transitions depending on the ratio and magnitude of the gas and liquid volumetric flow rates. The breadth of the publicly available experiments is conveyed herein primarily by narrative and by regime maps, where transitions are approximated by simple expressions immediately useful for the purposes of design and deeper analysis.

  15. Cabin Air Quality Dynamics On Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Peterson, B. V.

    2003-01-01

    Spacecraft cabin air quality is influenced by a variety of factors. Beyond normal equipment offgassing and crew metabolic loads, the vehicle s operational configuration contributes significantly to overall air quality. Leaks from system equipment and payload facilities, operational status of the atmospheric scrubbing systems, and the introduction of new equipment and modules to the vehicle all influence air quality. The dynamics associated with changes in the International Space Station's (ISS) configuration since the launch of the U.S. Segment s laboratory module, Destiny, is summarized. Key classes of trace chemical contaminants that are important to crew health and equipment performance are emphasized. The temporary effects associated with attaching each multi-purpose logistics module (MPLM) to the ISS and influence of in-flight air quality on the post-flight ground processing of the MPLM are explored.

  16. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  17. ISS Utilization for Exploration-Class Missions

    NASA Technical Reports Server (NTRS)

    FIncke, R.; Davis-Street, J.; Korth, D.

    2006-01-01

    Exercise countermeasures are the most commonly utilized approach for maintaining the health and performance of astronauts during spaceflight missions. However, International Space Station (ISS) exercise countermeasure hardware reliability and prescriptions are not at a point of departure to support exploration-class missions. The JSC Exercise Countermeasures Project (ECP) plans to use ISS as a research and hardware evaluation platform to define and validate improved exercise hardware, prescriptions, and monitoring strategies to support crewmember operations on the Moon and Mars. The ECP will partner with JSC's Space Medicine Division to standardize elements of ISS exercise prescriptions to better understand their efficacy and to propose modified prescriptions for implementation that may be used in the crew exploration vehicle and/or lunar habitat. In addition, evaluations of the ISS treadmill harness will be conducted to define and improve fit and function, and assess the next generation medical monitoring devices such as the portable unit for metabolic analysis and the muscle atrophy research and exercise system for completion of periodic fitness evaluations during lunar and Mars travel. Finally, biomechanical data from ISS crew exercise sessions will be obtained to better understand loading and restraint systems, and identify the physiologic requirements during ISS extravehicular activities that may be analogous to extended excursions from the lunar habitat. It is essential to optimize exercise prescriptions, hardware, and monitoring strategies for exploration initiatives using ISS as a platform before the planned retirement of the Shuttle in 2010 and the declining NASA emphasis on ISS to maximize knowledge before embarking on travel to the Moon and Mars.

  18. Chlorofluorocarbon leak detection technology

    SciTech Connect

    Munday, E.B.

    1990-12-01

    There are about 590 large coolant systems located at the Portsmouth Gaseous Diffusion Plant (PORTS) and the Paducah Gaseous Diffusion Plant (PGDP) leaking nearly 800,000 lb of R-114 refrigerant annually (1989 estimate). A program is now under way to reduce the leakage to 325,000 lb/year -- an average loss of 551 lb/year (0.063 lb/h) per coolant system, some of which are as large as 800 ft. This report investigates leak detection technologies that can be used to locate leaks in the coolant systems. Included are descriptions, minimum leak detection rate levels, advantages, disadvantages, and vendor information on the following technologies: bubbling solutions; colorimetric leak testing; dyes; halogen leak detectors (coronea discharge detectors; halide torch detectors, and heated anode detectors); laser imaging; mass spectroscopy; organic vapor analyzers; odorants; pressure decay methods; solid-state electrolytic-cell gas sensors; thermal conductivity leak detectors; and ultrasonic leak detectors.

  19. Sealing Nitrogen Tetroxide Leaks

    NASA Technical Reports Server (NTRS)

    Garrard, George G.; Houston, Donald W.; Scott, Frank D.

    1990-01-01

    Use of Furmanite FSC-N-6B sealant in clam-shell sealing device makes it possible to stop leaks of nitrogen tetroxide through defective or improperly-seated plumbing fittings. Devised to stop leaks in vent line of small rocket motor on Space Shuttle. Also used on plumbing containing hydrazine and other hazardous fluids, and repair withstands severe temperature, vibration, and shock. Leaks stopped in place, without draining or replacement of leaking parts.

  20. Measuring Small Leak Holes

    NASA Technical Reports Server (NTRS)

    Koch, D. E.; Stephenson, J. G.

    1983-01-01

    Hole sizes deduced from pressure measurements. Measuring apparatus consists of pitot tube attached to water-filled manometer. Compartment tested is pressurized with air. Pitot probe placed at known distance from leak. Dynamic pressure of jet measured at that point and static pressure measured in compartment. Useful in situations in which small leaks are tolerable but large leaks are not.

  1. Leak detector uses ultrasonics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.; Keir, A. R.

    1978-01-01

    Probe located on outer wall of vacuum-jacketed fluid lines detects leaks on inner wall. Probe picks up and amplifies vibrations that occur when gas rushes through leak and converts them to audible signal or CRT display. System is considerably simpler to use than helium leak detectors and allows rapid checks to be made as part of routine maintenance.

  2. ISS Logistics Hardware Disposition and Metrics Validation

    NASA Technical Reports Server (NTRS)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  3. Endeavor Approaches Docking Port of ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Pictured here is the forward docking port on the International Space Station's (ISS) Destiny Laboratory as seen by one of the STS-111 crewmembers from the Space Shuttle Orbiter Endeavour just prior to docking. In June 2002, STS-111 provided the Space Station with a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments form the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  4. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex combination of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. In this paper we provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  5. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex mix of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. This presentation will provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  6. ISS ECLSS Technology Evolution for Exploration

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn

    2005-01-01

    The baseline environmental control and life support systems (ECLSS) currently deployed on the International Space Station (ISS) and the regenerative oxygen generation and water early 1990's. While they are generally meeting, or exceeding requirements for supporting the ISS crew, lessons learned from hardware development and on orbit experience, together with advances in technology state of the art, and th&e unique requirements for future manned exploration missions prompt consideration of the next steps to be taken to evolve these technologies to improve robustness and reliability, enhance performance, and reduce resource requirements such as power and logistics upmass This paper discusses the current state of ISS ECLSS technology and identifies possible areas for evolutionary enhancement or improvement.

  7. ISS ECLSS Technology Evolution for Exploration

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn L.

    2005-01-01

    The baseline environmental control and life support systems (ECLSS) currently deployed on the International Space Station (ISS) and the regenerative oxygen generation and water reclamation systems to be added in 2008 are based on technologies selected during the early 1990's. While they are generally meeting, or exceeding requirements for supporting the ISS crew, lessons learned from hardware development and on orbit experience, together with advances in technology state of the art, and the unique requirements for future manned exploration missions prompt consideration of the next steps to be taken to evolve these technologies to improve robustness and reliability, enhance performance, and reduce resource requirements such as power and logistics upmass. This paper discusses the current state of ISS ECLSS technology and identifies possible areas for evolutionary enhancement or improvement.

  8. ISS Update: Suitport Testing

    NASA Video Gallery

    ISS Update commentator Lynnette Madison interviews Joel Maganza, Test Director, about thermal vacuum chambers and unmanned and human-testing with the Suitport. Questions? Ask us on Twitter @NASA_Jo...

  9. Holodeck-ISS Experience

    NASA Technical Reports Server (NTRS)

    Rainbolt, Phillip

    2016-01-01

    For the duration of my internship here at JSC for the summer 2016 session, the main project that I worked on dealt with hybrid reality simulations of the ISS. As an ER6 intern for the spacecraft software division, the main project that I worked alongside others was with regards to the Holodeck Virtual Reality Project, specifically with the ISS experience, with the use of the HTC Vive and controllers.

  10. ISS Payload Human Factors

    NASA Technical Reports Server (NTRS)

    Ellenberger, Richard; Duvall, Laura; Dory, Jonathan

    2016-01-01

    The ISS Payload Human Factors Implementation Team (HFIT) is the Payload Developer's resource for Human Factors. HFIT is the interface between Payload Developers and ISS Payload Human Factors requirements in SSP 57000. ? HFIT provides recommendations on how to meet the Human Factors requirements and guidelines early in the design process. HFIT coordinates with the Payload Developer and Astronaut Office to find low cost solutions to Human Factors challenges for hardware operability issues.

  11. Use of DSC and DMA Techniques to Help Investigate a Material Anomaly for PTFE Used in Processing a Piston Cup for the Urine Processor Assembly (UPA) on International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2010-01-01

    Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.

  12. The U.S. Lab is placed in vacuum chamber for leak test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  13. The U.S. Lab is placed in vacuum chamber for leak test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  14. The U.S. Lab is placed in vacuum chamber for leak test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    - An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  15. The U.S. Lab placed in vacuum chamber for leak test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  16. The U.S. Lab is placed in vacuum chamber for leak test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  17. Astronaut Whitson Displays Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  18. Exploration of COTS Ultrasonic NDE Methods for ISS MMOD Impact Analysis

    NASA Technical Reports Server (NTRS)

    Violette, Daniel P.; Koshti, Ajay; Stanley, David

    2012-01-01

    The high orbital speed of the International Space Station (ISS) has created a concern about Micro-Meteorite and Orbital Debris (MMOD). The possibility exists that such an impact could cause significant damage to the ISS pressure wall, and possibly lead to a pressure leak. This paper explores the potential of using commercial off-the-shelf (COTS) Ultrasonic Non-Destructive Evaluation (NDE) techniques in order to inspect and analyze MMOD impact damage if such an event would happen to occur. Different types of intra vehicular activity (IVA) Ultrasonic NDE equipment were evaluated, including the Olympus Omniscan MX and the General Electric Phasor XS. The equipment was tested by inspecting various aluminum standards and impact damage test plates in order to determine technological limitations of the equipment as well as the ease of use and availability of features. This study allowed for the design of scanning procedures in order to evaluate the extent of damage caused by an MMOD impact. Lastly, comparisons were drawn between the different pieces of COTS software and a recommendation is made based on each device s capability.

  19. Leak detection/verification

    SciTech Connect

    Krhounek, V.; Zdarek, J.; Pecinka, L.

    1997-04-01

    Loss of coolant accident (LOCA) experiments performed as part of a Leak Before Break (LBB) analysis are very briefly summarized. The aim of these experiments was to postulate the leak rates of the coolant. Through-wall cracks were introduced into pipes by fatigue cycling and hydraulically loaded in a test device. Measurements included coolant pressure and temperature, quantity of leaked coolant, displacement of a specimen, and acoustic emission. Small cracks were plugged with particles in the coolant during testing. It is believed that plugging will have no effect in cracks with leak rates above 35 liters per minute. The leak rate safety margin of 10 is sufficient for cracks in which the leak rate is more than 5 liters per minute.

  20. Permanent underwater leak detector

    NASA Astrophysics Data System (ADS)

    Costello, L.; McStay, D.; Moodie, D.; Kane, D.

    2009-07-01

    A new optoelectronic sensor for the real time monitoring of key components such as valves and connectors within the subsea production equipment for leaks of hydraulic fluid is reported. The sensor is capable of detecting low concentrations of such fluids, allowing the early detection of small leaks, and the ability to monitor the evolution of the leak-rate with time, hence providing an important new tool in complying with environmental requirements, enabling early intervention and optimising subsea production

  1. Detecting Methane Leaks

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D.

    1984-01-01

    Remote sensor uses laser radiation backscattered from natural targets. He/Ne Laser System for remote scanning of Methane leaks employs topographic target to scatter light to receiver near laser transmitter. Apparatus powered by 1.5kW generator transported to field sites and pointed at suspected methane leaks. Used for remote detection of natural-gas leaks and locating methane emissions in landfill sites.

  2. International Space Station in Orbit

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after deparating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  3. International Space Station in Orbit

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after separating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistic Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  4. ISS Update: Testing Space Station Gear

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean interviews Monica Visinsky, test coordinator for the Japanese Experiment Module ORU Transfer Interface, about testing an airlock transfer device to pass orbi...

  5. ISS Update: Computer Upgrade on Station

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean interviews Gary Cox, EPIC Project Manager, about EPIC (Enhanced Processor and Integrated Communications), the computer upgrade program for the International ...

  6. ISS Update: Human Research Aboard Station

    NASA Video Gallery

    NASA Public Affairs Officer Lori Meggs at the Marshall Space Flight Center’s Payload Operations Integration Center in Huntsville, Ala., recently spoke with Public Affairs Officer Kelly Humphries ...

  7. Space station MMOD shielding

    NASA Astrophysics Data System (ADS)

    Christiansen, Eric L.; Nagy, Kornel; Lear, Dana M.; Prior, Thomas G.

    2009-10-01

    This paper describes the International Space Station (ISS) micro-meteoroid orbital debris (MMOD) impact shielding including the requirements for protection as well as technical approaches to meeting the requirements. Current activities in providing MMOD protection for ISS are described, including efforts to augment MMOD protection by adding shields on-orbit. Another activity is to observe MMOD impact damage on ISS elements and returned hardware, and to compare the observed damage with predicted damage using Bumper code risk assessment software. A conclusion of this paper is that ISS will be protected adequately from MMOD impact after completing augmentation of ISS shielding for service module, and after improving MMOD protection for Soyuz and Progress vehicles. Another conclusion is that impact damage observed to the ISS mini-pressurized logistics module matches the distribution of impacts predicted by Bumper code.

  8. ISS Service Module Pre-Launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Various shots show Discovery at the launch pad during the final 30-minute countdown. The prelaunch conditions are described and information is given on the upcoming launch and the orbiter's docking with the International Space Station (ISS). A brief collage of rollout and launch footage of STS-92 Endeavour commemorates the 100th Space Shuttle mission and the 100th anniversary of the Philadelphia Orchestra (also seen). The music of '2001: A Space Odyssey) is played by the orchestra.

  9. Service on demand for ISS users

    NASA Astrophysics Data System (ADS)

    Hüser, Detlev; Berg, Marco; Körtge, Nicole; Mildner, Wolfgang; Salmen, Frank; Strauch, Karsten

    2002-07-01

    Since the ISS started its operational phase, the need of logistics scenarios and solutions, supporting the utilisation of the station and its facilities, becomes increasingly important. Our contribution to this challenge is a SERVICE On DEMAND for ISS users, which offers a business friendly engineering and logistics support for the resupply of the station. Especially the utilisation by commercial and industrial users is supported and simplified by this service. Our industrial team, consisting of OHB-System and BEOS, provides experience and development support for space dedicated hard- and software elements, their transportation and operation. Furthermore, we operate as the interface between customer and the envisaged space authorities. Due to a variety of tailored service elements and the ongoing servicing, customers can concentrate on their payload content or mission objectives and don't have to deal with space-specific techniques and regulations. The SERVICE On DEMAND includes the following elements: ITR is our in-orbit platform service. ITR is a transport rack, used in the SPACEHAB logistics double module, for active and passive payloads on subrack- and drawer level of different standards. Due to its unique late access and early retrieval capability, ITR increases the flexibility concerning transport capabilities to and from the ISS. RIST is our multi-functional test facility for ISPR-based experiment drawer and locker payloads. The test program concentrates on physical and functional interface and performance testing at the payload developers site prior to the shipment to the integration and launch. The RIST service program comprises consulting, planning and engineering as well. The RIST test suitcase is planned to be available for lease or rent to users, too. AMTSS is an advanced multimedia terminal consulting service for communication with the space station scientific facilities, as part of the user home-base. This unique ISS multimedia kit combines

  10. Opportunities for Science on the ISS: A Unique Laboratory Environment

    NASA Technical Reports Server (NTRS)

    Kugler, Justin; Edeen, Marybeth

    2010-01-01

    This slide presentation reviews the opportunities for scientific discoveries on the International Space Station (ISS). With the crew tended, and availability of long-term studies and the capabilities of the ISS (i.e. microgravity, exposure to the thermosphere and observations at high altitude and velocity) there are many examples of scientific experiments. There are several examples showing that microgravity is different from the effects of gravity.

  11. Astronaut Susan Helms in the ISS Unity Node

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.

  12. ISS Asset Tracking Using SAW RFID Technology

    NASA Technical Reports Server (NTRS)

    Schellhase, Amy; Powers, Annie

    2004-01-01

    A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.

  13. ISS SGANT Group Level Offloading Test Mechanism

    NASA Technical Reports Server (NTRS)

    Zhang, Xi-Lin

    2002-01-01

    The International Space Station (ISS) Space-to-Ground Antenna (SGANT) is used for ISS communication with earth through the Tracking and Data Relay Satellite (TDRSS). Due to the different speeds of travel between earth, ISS and TDRSS, a steerable SGANT was required on the ISS. The mechanical design of SGANT is an unbalanced mechanism with insufficient strength and driving torque to support and drive itself in a 1G environment. For ground testing, a specially designed offloading mechanism is required. Basically, the test mechanism must offload the SGANT in a two-axis operation, allowing the SGANT to move within a specific range, speed and acceleration; therefore the SGANT can move from elevation 0 to 90 deg and be tested at both the 0 and 90 deg positions. The load introduced by the test equipment should be less than 10.17 N-m (7.5 ft-lbf). The on-ground group level tracking test is quite challenging due to the unbalanced antenna mechanical design and tough specification requirements. This paper describes the detailed design, fabrication, and calibration of the test mechanism, and how the above requirements are met. The overall antenna is simplified to a mass model in order to facilitate the offloading mechanism design and analysis. An actual SGANT mass dummy was made to calibrate the system. This paper brings together the theoretical analysis and the industrial experience that were relied upon to meet the above-mentioned requirements for the ground test. The lessons learned during the calibration phase are extremely important for future double or multiple offloading system designs. The ISS SGANT QM and FM units passed their ground test and the SGANT/Boom fit check successfully, and the Flight Model (FM) was delivered to SSPF in April 1998. It is now installed on ISS and functioning well.

  14. Apparatus for detecting leaks

    DOEpatents

    Booth, Eugene T.

    1976-02-24

    A method and apparatus for determining the position of and estimating the size of leaks in an evacuating apparatus comprising the use of a testing gas such as helium or hydrogen flowing around said apparatus whereby the testing gas will be drawn in at the site of any leaks.

  15. Albedo protons and electrons at ISS - an important contribution to astronaut dose?

    NASA Astrophysics Data System (ADS)

    Norman, R. B.; Slaba, T. C.; Badavi, F. F.; Mertens, C. J.; Blattnig, S.

    2015-12-01

    Albedo particles, which are created by cosmic ray interactions in the atmosphere and are moving upwards away from the surface of the earth, are often considered a negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Models of astronaut exposure, however, consistently underestimate measurements onboard ISS when these albedo particles are neglected. Recent measurements by instruments on ISS (AMS, PAMELA, and SEDA-AP) hint that there are high energy protons and electrons which are not being modeled and that may contribute to radiation exposure on ISS. Estimates of the contribution of radiation exposure on ISS due to albedo particles, along with open questions, will be discussed.

  16. An Onboard ISS Virtual Reality Trainer

    NASA Technical Reports Server (NTRS)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the station to perform these repairs. After the retirement of the shuttle, this is no longer an available option. As such, the need for the ISS crew members to review scenarios while on flight, either for tasks they already trained or for contingency operations has become a very critical subject. In many situations, the time between the last session of Neutral Buoyancy Laboratory (NBL) training and an Extravehicular Activity (EVA) task might be 6 to 8 months. In order to help with training for contingency repairs and to maintain EVA proficiency while on flight, the Johnson Space Center Virtual Reality Lab (VRLab) designed an onboard immersive ISS Virtual Reality Trainer (VRT), incorporating a unique optical system and making use of the already successful Dynamic Onboard Ubiquitous Graphical (DOUG) graphics software, to assist crew members with current procedures and contingency EVAs while on flight. The VRT provides an immersive environment similar to the one experienced at the VRLab crew training facility at NASA Johnson Space Center. EVA tasks are critical for a mission since as time passes the crew members may lose proficiency on previously trained tasks. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the ISS ages. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before.

  17. Design And Testing of The Floating Potential Probe For ISS

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Ferguson, Dale C.

    2001-01-01

    Flight 4A was an especially critical mission for the International Space Station (ISS). For the first time, the high voltage solar arrays generated significant amounts of power and long predicted environmental interactions (high negative floating potential and concomitant dielectric charging) became serious concerns. Furthermore, the same flight saw the Plasma Contacting Unit (PCU) deployed and put into operation to mitigate and control these effects. The ISS program office has recognized the critical need to verify, by direct measurement, that ISS does not charge to unacceptable levels. A Floating Potential Probe (FPP) was therefore deployed on ISS to measure ISS floating potential relative to the surrounding plasma and to measure relevant plasma parameters. The primary objective of FPP is to verify that ISS floating potential does not exceed the specified level of 40 volts with respect to the ambient. Since it is expected that in normal operations the PCU will maintain ISS within this specification, it is equivalent to say that the objective of FPP is to monitor the functionality of the PCU. In this paper, we report on the design and testing of the ISS FPP. In a separate paper, the operations and results obtained so far by the FPP will be presented.

  18. An Onboard ISS Virtual Reality Trainer

    NASA Technical Reports Server (NTRS)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  19. Toxicological Assessment of the International Space Station Atmosphere from Mission 5A to 8A

    NASA Technical Reports Server (NTRS)

    James, John T.; Limero, Thomas; Boyd, John; Martin, Millie; Beck, Steve; Covington, Phillip; Peters, Randy

    2002-01-01

    There are many sources of air pollution that can threaten air quality during space missions. The International Space Station (ISS) is an extremely complex platform that depends on a multi-tiered strategy to control the risk of excessive air pollution. During the seven missions surveyed by th is report, the ISS atmosphere was in a safe, steady-state condition; however, there were minor loads added as new modules were attached. There was a series of leaks of octafluoropropane, which is not directly toxic to humans, but did cause changes in air purification operations that disrupted the steady state condition . In addition, off-nominal regeneration of metal oxide canisters used during extravehicular activity caused a serious pollution incident.

  20. Spheres: from Ground Development to ISS Operations

    NASA Technical Reports Server (NTRS)

    Katterhagen, A.

    2016-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.

  1. ISS Hygiene Activities - Issues and Resolutions

    NASA Technical Reports Server (NTRS)

    Prokhorov, Kimberlee S.; Feldman, Brienne; Walker, Stephanie; Bruce, Rebekah

    2009-01-01

    Hygiene is something that is usually taken for granted by those of us on the Earth. The ability to perform hygiene satisfactorily during long duration space flight is crucial for the crew's ability to function. Besides preserving the basic health of the crew, crew members have expressed that the ability to clean up on-orbit is vital for mental health. Providing this functionality involves more than supplying hygiene items such as soap and toothpaste. On the International Space Station (ISS), the details on where and how to perform hygiene were left to the crew discretion for the first seventeen increments. Without clear guidance, the methods implemented on-orbit have resulted in some unintended consequences to the ISS environment. This paper will outline the issues encountered regarding hygiene activities on-board the ISS, and the lessons that have been learned in addressing those issues. Additionally, the paper will address the resolutions that have been put into place to protect the ISS environment while providing the crew sufficient means to perform hygiene.

  2. Development of Test Protocols for International Space Station Particulate Filters

    NASA Technical Reports Server (NTRS)

    Vijayakumar, R.; Green, Robert D.; Agui, Juan H.

    2015-01-01

    Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High-Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. The filter element for this system has a non-standard cross-section with a length-to-width ratio (LW) of 6.6. A filter test setup was designed and built to meet industry testing standards. A CFD analysis was performed to initially determine the optimal duct geometry and flow configuration. Both a screen and flow straighter were added to the test duct design to improve flow uniformity and face velocity profiles were subsequently measured to confirm. Flow quality and aerosol mixing assessments show that the duct flow is satisfactory for the intended leak testing. Preliminary leak testing was performed on two different ISS filters, one with known perforations and one with limited use, and results confirmed that the testing methods and photometer instrument are sensitive enough to detect and locate compromised sections of an ISS BFE.Given the engineering constraints in designing spacecraft life support systems, it is anticipated that non-industry standard filters will be required in future designs. This work is focused on developing test protocols for testing the ISS BFE filters, but the methodology is general enough to be extended to other present and future spacecraft filters. These techniques for characterizing the test duct and perform leak testing

  3. Battery Resistance Analysis of ISS Power System

    NASA Technical Reports Server (NTRS)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has

  4. Leak checking in ISABELLE

    SciTech Connect

    Briggs, J.; Halama, H.J.

    1981-01-01

    The Intersecting Storage Accelerator (ISABELLE) contains two completely independent vacuum systems. One known as Beam Vacuum operates at 1 x 10/sup -11/ Torr and maintains a very clean environment for the circulating proton beam. The other system known as Insulating Vacuum maintains superconducting magnet vessels at a pressure below 1 x 10/sup -6/ Torr. In this system all gasses except helium are cryocondensed on the cold surfaces of superconducting magnets and cryogenic circuits. Turbomolecular pumps pump the inadvertent small helium leaks. The helium background both in the MagCOOL area and in the ISABELLE tunnel limits the sensitivity of conventional leak detectors. Leak detection in ISABELLE is one of the most important functions, since there are thousands of bellows and welds operating at 4 K and at 15 atmosphere pressure and that many welds can only be leak checked at room temperature. Leak rates are known to increase by 4 orders of magnitude when cooled from 300 K to 4 K. Thus the required 10/sup -10/ Torr liters s/sup -1/ sensitivity is essential for proper operation and methods and equipment which permit the location of such leaks in large systems have been developed and tested on the First Cell and the refrigerators. They produced a completely leak free system, i.e. the helium background did not change when all pumps were closed for 24 hours. These methods and the equipment are discussed in detail.

  5. Automated leak test systems

    SciTech Connect

    Cordaro, J.V.; Thompson, W.D.; Reeves, G.

    1997-09-15

    An automated leak test system for tritium shipping containers has been developed at Westinghouse Savannah River Co. (WSRC). The leak detection system employs a computer controlled helium detector which allows an operator to enter key information when prompted. The software for controlling the tests and the equipment apparatus were both designed and manufactured at the Savannah River Technology Center within WSRC. Recertification Test: Every twelve months, the pressure vessel portion of the shipping container itself must undergo a rigorous recertification leak test. After an empty pressure vessel (shipping container) is assembled, it is placed into one of six stainless steel belljars for helium leak testing. The belljars are fashioned in row much the same as assembly line arrangement. Post-load Test: A post-load leak test is performed upon reservoirs that have been filled with tritium and placed inside the shipping containers mentioned above. These leak tests are performed by a rate-of-rise method where the area around the shipping container seals is evacuated, valved off from the vacuum pump, and then the vacuum pressure is monitored over a two-minute period. The Post Load Leak Test is a quality verification test to ensure that the shipping container has been correctly assembled. 2 figs.

  6. Stability Analysis of ISS Medications

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.

    2014-01-01

    It is known that medications degrade over time, and that extreme storage conditions will hasten their degradation. The temperature and humidity conditions of the ISS have been shown to be within the ideal ranges for medication storage, but the effects of other environmental factors, like elevated exposure to radiation, have not yet been evaluated. Current operational procedures ensure that ISS medications are re-stocked before expiration, but this may not be possible on long duration exploration missions. For this reason, medications that have experienced long duration storage on the ISS were returned to JSC for analysis to determine any unusual effects of aging in the low- Earth orbit environment. METHODS Medications were obtained by the JSC Pharmacy from commercial distributors and were re-packaged by JSC pharmacists to conserve up mass and volume. All medication doses were part of the ISS crew medical kit and were transported to the International Space Station (ISS) via NASA's Shuttle Transportation System (Space Shuttle). After 568 days of storage, the medications were removed from the supply chain and returned to Earth on a Dragon (SpaceX) capsule. Upon return to Earth, medications were transferred to temperature and humidity controlled environmental chambers until analysis. Nine medications were chosen on the basis of their availability for study. The medications included several of the most heavily used by US crewmembers: 2 sleep aids, 2 antihistamines/decongestants, 3 pain relievers, an antidiarrheal and an alertness medication. Each medication was available at a single time point; analysis of the same medication at multiple time points was not possible. Because the samples examined in this study were obtained opportunistically from medical supplies, there were no control samples available (i.e. samples aged for a similar period of time on the ground); a significant limitation of this study. Medications were analyzed using the HPLC/MS methods described in

  7. Leak detection aid

    DOEpatents

    Steeper, T.J.

    1989-12-26

    A leak detection apparatus and method for detecting leaks across an O-ring sealing a flanged surface to a mating surface is an improvement in a flanged surface comprising a shallow groove following O-ring in communication with an entrance and exit port intersecting the shallow groove for injecting and withdrawing, respectively, a leak detection fluid, such as helium. A small quantity of helium injected into the entrance port will flow to the shallow groove, past the O-ring and to the exit port. 2 figs.

  8. Leak detection aid

    DOEpatents

    Steeper, Timothy J.

    1989-01-01

    A leak detection apparatus and method for detecting leaks across an O-ring sealing a flanged surface to a mating surface is an improvement in a flanged surface comprising a shallow groove following O-ring in communication with an entrance and exit port intersecting the shallow groove for injecting and withdrawing, respectively, a leak detection fluid, such as helium. A small quantity of helium injected into the entrance port will flow to the shallow groove, past the O-ring and to the exit port.

  9. STS-112 Onboard Photograph of ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This view of the International Space Station (ISS) was photographed by an STS-112 crew member aboard the Space Shuttle Atlantis during rendezvous and docking operations. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss, installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the railway on the ISS providing a mobile work platform for future extravehicular activities by astronauts.

  10. Gaseous leak detector

    DOEpatents

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  11. Improved gaseous leak detector

    DOEpatents

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  12. ISS GN and C - First Year Surprises

    NASA Technical Reports Server (NTRS)

    Begley, Michael

    2002-01-01

    Assembly of the International Space Station (ISS) began in late 1998 with the joining of the first two US and Russ ian elements. For more than two years, the outpost was served by two Russian Guidance, Navigation, and Control (GN&C) systems. The station requires orbital translation and attitude control functions for its 100+ configurations, from the nascent two-module station to the half million kilogram completed station owned and operated by seventeen nations. With the launch of the US Laboratory module in February 2001, the integration of the US GN&C system with its Russian counterpart laid the foundation for such a robust system. In its first year of combined operation, the ISS GN&C system has performed admirably, even better than many expected, but there have been surprises. Loss of command capability, loss of communication between segments, a control system force-fight, and "non-propulsive vents" that weren't - such events have repeatedly underscored the importance of thorough program integration, testing, and operation, both across subsystem boundaries and across international borders.

  13. ISS Robotic Student Programming

    NASA Technical Reports Server (NTRS)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  14. IR Thermography NDE of ISS Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, William; Morton, Richard; Wilson, Walter; Reynolds, Gary

    2010-01-01

    The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.

  15. Specification of ISS Plasma Environment Variability

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Neergaard, Linda F.; Bui, Them H.; Mikatarian, Ronald R.; Barsamian, H.; Koontz, Steven L.

    2004-01-01

    Quantifying spacecraft charging risks and associated hazards for the International Space Station (ISS) requires a plasma environment specification for the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IRI) model typically only provide long term (seasonal) mean Te and Ne values for the low Earth orbit environment. This paper describes a statistical analysis of historical ionospheric low Earth orbit plasma measurements from the AE-C, AE-D, and DE-2 satellites used to derive a model of deviations of observed data values from IRI-2001 estimates of Ne, Te parameters for each data point to provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output. Application of the deviation model with the IRI-2001 output yields a method for estimating extreme environments for the ISS spacecraft charging analysis.

  16. Shuttle and ISS Food Systems Management

    NASA Technical Reports Server (NTRS)

    Kloeris, Vickie

    2000-01-01

    Russia and the U.S. provide the current International Space Station (ISS) food system. Each country contributes half of the food supply in their respective flight food packaging. All of the packaged flight food is stowed in Russian provided containers, which interface with the Service Module galley. Each country accepts the other's flight worthiness inspections and qualifications. Some of the food for the first ISS crew was launched to ISS inside the Service Module in July of 2000, and STS-106 in September 2000 delivered more food to the ISS. All subsequent food deliveries will be made by Progress, the Russian re-supply vehicle. The U.S. will ship their portion of food to Moscow for loading onto the Progress. Delivery schedules vary, but the goal is to maintain at least a 45-day supply onboard ISS at all times. The shelf life for ISS food must be at least one year, in order to accommodate the long delivery cycle and onboard storage. Preservation techniques utilized in the US food system include dehydration, thermo stabilization, intermediate moisture, and irradiation. Additional fresh fruits and vegetables will be sent with each Progress and Shuttle flights as permitted by volume allotments. There is limited refrigeration available on the Service Module to store fresh fruits and vegetables. Astronauts and cosmonauts eat half U.S. and half Russian food. Menu planning begins 1 year before a planned launch. The flight crews taste food in the U.S. and in Russia and rate the acceptability. A preliminary menu is planned, based on these ratings and the nutritional requirements. The preliminary menu is then evaluated by the crews while training in Russia. Inputs from this evaluation are used to finalize the menu and flight packaging is initiated. Flight food is delivered 6 weeks before launch. The current challenge for the food system is meeting the nutritional requirements, especially no more than 10 mg iron, and 3500 mg sodium. Experience from Shuttle[Mir also indicated

  17. [Air quality monitoring on the International Space Station].

    PubMed

    Pakhomova, A A; Mukhamedieva, L N; Mikos, K N

    2006-01-01

    Chemical contamination of air in space cabins occurs mainly due to permanent offgassing of equipment and materials, and leaks. Methods and means of qualitative and quantitative air monitoring on the ISS are powerful enough as for routine so emergency (e.g. local fire, toxic leak) air control. The ISS air quality has suited to the adopted standards and crew safety requirements. Yet, there is a broad field of action toward improvement of the space cabin air monitoring.

  18. New Method for Updating Mean Time Between Failure for ISS Orbital Replaceable Units Consultation Report

    NASA Technical Reports Server (NTRS)

    Parsons, Vickie S.

    2009-01-01

    A request to conduct a peer review of the International Space Station (ISS) proposal to use Bayesian methodology for updating Mean Time Between Failure (MTBF) for ISS Orbital Replaceable Units (ORU) was submitted to the NASA Engineering and Safety Center (NESC) on September 20, 2005. The results were requested by October 20, 2005 in order to be available during the process of reworking the current ISS flight manifest. The results are included in this report.

  19. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  20. Space product development experiment module utilizing the ISS

    NASA Astrophysics Data System (ADS)

    Watson, Christine; Lundquist, Charles; Wessling, Francis; Smith, James; Naumann, Robert

    1999-01-01

    Furnace facilities for materials processing on the International Space Station (ISS) will include the Space Product Development Experiment Module (SPDEM) which includes a transparent Furnace module and an opaque Furnace Module. The SPDEM is scheduled currently for UF-3 aboard the Materials Science Research Rack(MSRR). Various commercial interests can be satisfied sequentially by scheduled employment of the SPDEM. The CMDS will be the facility manager through whom arrangements can be made for SPDEM access. The ISS should provide long growth periods which are needed to grow large single crystals in microgravity. A typical area of commercial interest is acousto-optic filters (AOTF) based on mercurous halide research which would continue on the ISS, research begun on the STS-77 mission. Another area of commercial interest planned for implementation on ISS is liquid metal sintering of composites to further improve techniques for making better quality materials.

  1. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more

  2. ISS Local Environment Spectrometers (ISLES)

    NASA Technical Reports Server (NTRS)

    Krause, Linda Habash; Gilchrist, Brian E.

    2014-01-01

    In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.

  3. ISS FPP Ionospheric Electron Density and Temperature Measurements: Results, Comparison with the IRI-90 Model, and Implications for ISS Charging

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Morton, T. L.; Personen, R.

    2003-01-01

    We give measurement results of electron temperature and electron density from the Floating Potential Probe (FPP) on the International Space Station (ISS), and relate them to the electron current collection of the ISS solar arrays and the degree of charging of ISS when its Plasma Contacting Units (PCUs) are not operating. We show that on days of high solar activity index Kp, high levels of ISS charging are significantly more probable than on days of low solar activity, due to some abnormally low morning electron temperatures. Although the FPP electron temperatures measured are almost always higher than predicted by the International Reference Ionosphere 90 model (IRI-90), it is shown that the CHAMP satellite Langmuir Probe (PLP) also shows low dawn electron temperatures on the same day as those found by FPP. It is further shown that similar high levels of predicted charging, accompanied by vxB charging on the ISS structure, could exceed the -40 V specification on ISS charging, and could be dangerous to ISS astronauts if the PCUs fail to operate.

  4. Communications and Tracking of Visiting Vehicles near ISS: The Design of the Reusable Launch Vehicle Communications

    NASA Technical Reports Server (NTRS)

    Stillwagen, Frederic H.

    1999-01-01

    The International Space Station (ISS) will provide for the visitation of various vehicles such as the Shuttle, Automated Transfer Vehicle (ATV), H-II Transfer Vehicle (HTV), Crew Return Vehicle (CRV), Reusable Launch Vehicle (RLV) and Soyuz. These vehicles will provide for crew replacement, consumables resupply, and equipment delivery. In order for these vehicles to approach and eventually dock with the ISS, there must be near continuous communications coverage between the visiting vehicle and the ISS, as well as communications between the vehicle and a Mission Control Center (MCC). Since the ISS communications systems are already designed and scheduled for ISS activation, the vehicles must either utilize these communications systems or provide their own. There are two means of two-way communications with the ISS. These are (1) S-Band communications using TDRSS, and (2) UHF communications using some form of the Space to Space Station Radio (SSSR) link. The RLV utilizes ISS compatible communications systems to communicate with both the ISS and a Mission Control Center. Since all vehicles must adhere to the Visiting Vehicle Interface requirements given in reference 1, the RLV communications system design must meet these requirements during entry into the ISS Approach Ellipsoid (AE) and during Proximity Operations. Included in this paper are descriptions of these communications approaches as well as their potential utilization in the ISS communications system.

  5. The Situational Awareness Sensor Suite for the ISS (SASSI): A Mission Concept to Investigate ISS Charging and Wake Effects

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Minow, J. I.; Coffey, V. N.; Gilchrist, Brian E.; Hoegy, W. R.

    2014-01-01

    The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for real-time monitoring. Space environment data collected in real-time (or near-real time) can be used operationally for both real-time alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for long-term "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for short-term "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wake-induced ion waves in both

  6. The P3 truss, an ISS segment, is prepared for transfer to O&C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers secure the P3 truss on the transporter for the trip to the Operations and Checkout Building. The second port-side truss is a segment of the International Space Station (ISS), scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. P3 will be attached to the first port truss segment (P1).

  7. Modeling Ionosphere Environments: Creating an ISS Electron Density Tool

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Minow, Joseph I.

    2011-01-01

    The International Space Station (ISS) maintains an altitude typically between 300 km and 400 km in low Earth orbit (LEO) which itself is situated in the Earth's ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. It is important to understand what electron density the spacecraft is/will be operating in because the ionized gas along the ISS orbit interacts with the electrical power system resulting in charging of the vehicle. One instrument that is already operational onboard the ISS with a goal of monitoring electron density, electron temperature, and ISS floating potential is the Floating Potential Measurement Unit (FPMU). Although this tool is a valuable addition to the ISS, there are limitations concerning the data collection periods. The FPMU uses the Ku band communication frequency to transmit data from orbit. Use of this band for FPMU data runs is often terminated due to necessary observation of higher priority Extravehicular Activities (EVAs) and other operations on ISS. Thus, large gaps are present in FPMU data. The purpose of this study is to solve the issue of missing environmental data by implementing a secondary electron density data source, derived from the COSMIC satellite constellation, to create a model of ISS orbital environments. Extrapolating data specific to ISS orbital altitudes, we model the ionospheric electron density along the ISS orbit track to supply a set of data when the FPMU is unavailable. This computer model also provides an additional new source of electron density data that is used to confirm FPMU is operating correctly and supplements the original environmental data taken by FPMU.

  8. Impact of Solar Array Position on ISS Vehicle Charging

    NASA Technical Reports Server (NTRS)

    Alred, John; Mikatarian, Ronald; Koontz, Steve

    2006-01-01

    The International Space Station (ISS), because of its large structure and high voltage solar arrays, has a complex plasma interaction with the ionosphere in low Earth orbit (LEO). This interaction of the ISS US Segment photovoltaic (PV) power system with the LEO ionospheric plasma produces floating potentials on conducting elements of the ISS structure relative to the local plasma environment. To control the ISS floating potentials, two Plasma Contactor Units (PCUs) are installed on the Z1 truss. Each PCU discharges accumulated electrons from the Space Station structure, thus reducing the potential difference between the ISS structure and the surrounding charged plasma environment. Operations of the PCUs were intended to keep the ISS floating potential to 40 Volts (Reference 1). Exposed dielectric surfaces overlying conducting structure on the Space Station will collect an opposite charge from the ionosphere as the ISS charges. In theory, when an Extravehicular Activity (EVA) crewmember is tethered to structure via the crew safety tether or when metallic surfaces of the Extravehicular Mobility Unit (EMU) come in contact with conducting metallic surfaces of the ISS, the EMU conducting components, including the perspiration-soaked crewmember inside, can become charged to the Space Station floating potential. The concern is the potential dielectric breakdown of anodized aluminum surfaces on the EMU producing an arc from the EMU to the ambient plasma, or nearby ISS structure. If the EMU arcs, an electrical current of an unknown magnitude and duration may conduct through the EVA crewmember, producing an unacceptable condition. This electrical current may be sufficient to startle or fatally shock the EVA crewmember (Reference 2). Hence, as currently defined by the EVA community, the ISS floating potential for all nominal and contingency EVA worksites and translation paths must have a magnitude less than 40 volts relative to the local ionosphere at all times during EVA

  9. March 20, 2012 Space Station Briefing: Station Configuration

    NASA Video Gallery

    This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the configuration of the space station durin...

  10. March 20, 2012 Space Station Briefing: Station Configuration (Narrated)

    NASA Video Gallery

    This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the configuration of the space station durin...

  11. Glycol leak detection system

    NASA Astrophysics Data System (ADS)

    Rabe, Paul; Browne, Keith; Brink, Janus; Coetzee, Christiaan J.

    2016-07-01

    MonoEthylene glycol coolant is used extensively on the Southern African Large Telescope to cool components inside the telescope chamber. To prevent coolant leaks from causing serious damage to electronics and optics, a Glycol Leak Detection System was designed to automatically shut off valves in affected areas. After two years of research and development the use of leaf wetness sensors proved to work best and is currently operational. These sensors are placed at various critical points within the instrument payload that would trigger the leak detector controller, which closes the valves, and alerts the building management system. In this paper we describe the research of an initial concept and the final accepted implementation and the test results thereof.

  12. ISS qualified thermal carrier equipment

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Jennings, Wm. M.

    2000-01-01

    Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments, which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. For over eight years, the thermal carrier development team at SHOT has been working with government and commercial sector scientists who are conducting microgravity experiments that require thermal control. SHOT realized several years ago that the hardware currently being used for microgravity thermal control was becoming obsolete. It is likely that the government, academic, and industrial bioscience community members could utilize SHOT's hardware as a replacement to their current microgravity thermal carrier equipment. Moreover, SHOT is aware of several international scientists interested in utilizing our space qualified thermal carrier. SHOT's economic financing concept could be extremely beneficial to the international participant, while providing a source of geographic return for their particular region. Beginning in 2000, flight qualified thermal carriers are expected to be available to both the private and government sectors. .

  13. SEALING SIMULATED LEAKS

    SciTech Connect

    Michael A. Romano

    2004-09-01

    This report details the testing equipment, procedures and results performed under Task 7.2 Sealing Simulated Leaks. In terms of our ability to seal leaks identified in the technical topical report, Analysis of Current Field Data, we were 100% successful. In regards to maintaining seal integrity after pigging operations we achieved varying degrees of success. Internal Corrosion defects proved to be the most resistant to the effects of pigging while External Corrosion proved to be the least resistant. Overall, with limitations, pressure activated sealant technology would be a viable option under the right circumstances.

  14. European dosimetry activities for the ISS.

    PubMed

    Reitz, G

    2001-01-01

    In cooperation with the University of Kiel, the University GH of Siegen, the Physikalisch-Technische Bundesanstalt in Braunschweig, the Atomic Energy Research Institute in Budapest and the Institute for Biomedical Problems in Moscow, DLR performed measurements of the radiation environment inside and outside spacecrafts on numerous missions with the main objective to determine as precise as possible the radiation exposure of the astronauts. This report comprises some selected results of recent manned missions and indicates where improvements should be achieved and closes with the description of future measurements planned onboard the International Space Station (ISS).

  15. ISS: A Science Classroom for America

    NASA Astrophysics Data System (ADS)

    McPherson, Alexander; Jenkins, Greg; Kenny, Nate

    2002-01-01

    Four years ago the scientific and engineering staff of our laboratory at the University of California Irvine initiated a student outreach program with the objective of teaching structural biology through involvement with scientific experiments on the International Space Station. That program is now active in 28 of the 50 United States, and has reached approximately 1100 middle and high school teachers, and 50,000 of their students. It will soon have a presence in every state through the support of NASA, The Space Grant Consortium, and a host of other private and public sector institutions. The program is based on a protein and virus crystallization experiment we are conducting at regular intervals of about 2-6 months on the International Space Station. The experiment utilizes a device called the Enhanced GN2 Dewar, and it has now been flown to Mir and the International Space Station more than ten times. The Enhanced GN2 Dewar is an extremely inexpensive, simple, high capacity system for the crystallization of macromolecules, including proteins, nucleic acids, and viruses, in a microgravity environment aboard the ISS (International Space Station). The samples, which are prepared by hand, are frozen by plunging them into liquid nitrogen and maintained in a common freezer until the time of mission launch. The Dewar keeps the samples frozen for periods up to twelve days, including that period during which they are placed on board the Space Shuttle, carried into space from Kennedy Space Center, and transferred to the ISS. We began the classroom experiments in November 1998 and the first workshop was given in January 1999. We have participated in four missions to the ISS. STS-106 on 9/8/2000, STS-98 on 2/7/2001, STS-104 on 7/12/2001, and STS-110 on 4/8/2002. To date we have conducted 28 teacher kit training workshops and 24-flight sample loading workshops. We have had 406 students and 266 teachers load actual flight samples. These participants selected through essay and

  16. Students Speak With Station Capcom

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, ISS capcom Hal Getzelman participates in a Digital Learning Network (DLN) event with students at Colvin Run Elementary School in Vien...

  17. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  18. STS-104 Onboard Photograph-ISS Airlock Installation

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Quest Airlock is in the process of being installed onto the starboard side of the Unity Node 1 of the International Space Station (ISS). Astronaut Susan J. Helms, Expedition Two flight engineer, used controls onboard the station to maneuver the Airlock into place with the Canadarm2, or Space Station Remote Manipulator System (SSRMS). The Joint Airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a cornecting bulkhead and hatch. Once installed and activated, the ISS Airlock becomes the primary path for ISS space walk entry and departure for U.S. spacesuits, which are known as Extravehicular Mobility Units (EMUs). In addition, it is designed to support the Russian Orlan spacesuit for extravehicular activity (EVA). The Joint Airlock is 20-feet long, 13-feet in diameter and weighs 6.5 tons. It was built at the Marshall Space Flight Center (MSFC) by the Space Station prime contractor Boeing. The ISS Airlock has two main components: a crew airlock and an equipment airlock for storing EVA and EVA preflight preps. The Airlock was launched on July 21, 2001 aboard the Space Shuttle Orbiter Atlantis for the STS-104 mission.

  19. ISS truss attached payload accommodations overview

    NASA Astrophysics Data System (ADS)

    Youmans, Janella S.; Olson, Michael F.; Foster, Mark A.; Watkins, Barbara S.

    1999-01-01

    One of the defining features of the International Space Station (ISS) is its capacity to accommodate long-term science in the external environment of space. The large truss structure spanning the vehicle is designed to support core system equipment such as solar arrays, thermal radiators, and the pressurized module structures. In addition to supporting core systems, the truss structure also accommodates four attached payload facilities and two logistics carriers. This paper focuses on the capabilities of the ISS in accommodating externally attached science payloads, defines the locations where experiments can be conducted, explains the environment wherein typical experiments will be performed, and identifies the payload interfaces and access to resources such as power and data. The paper will also summarize the robotic accommodations which will support attached payloads and describes typical procedures for installation of the payloads onto the sites. Finally, the paper will provide a summary description of the attach sites on the NASDA Exposed Facility and the potential for use of alternative attach sites on the ISS.

  20. Quartz enhanced photoacoustic leak sensor for mechatronic components

    NASA Astrophysics Data System (ADS)

    Sampaolo, A.; Patimisco, P.; Giglio, M.; Calabrese, P. P.; Chieco, L.; Scamarcio, G.; Tittel, F. K.; Spagnolo, V.

    2016-02-01

    We report the first demonstration of a leak sensor based on a mid-IR quartz-enhanced photoacoustic (QEPAS) spectroscopic technique. A QEPAS sensor was integrated in a vacuum seal test station for mechatronic components. The laser source is a quantum cascade laser emitting at 10.56 μm, resonant with a strong absorption band of sulfur hexafluoride (SF6), which was selected as target gas for leak detection. The minimum detectable concentration of the QEPAS sensor is 6.9 ppb with an integration time of 1 s. This detection sensitivity allowed to measure SF6 leak flows as low as 3x10-5 standard cm3.

  1. ISS Update: Astronaut Shannon Walker – 07.17.2012

    NASA Video Gallery

    In the International Space Station flight control room at NASA’s Johnson Space Center, Houston, ISS Update commentator Amiko Kauderer interviewed Shannon Walker, NASA astronaut and Expedition 24 ...

  2. The Floating Potential Probe (FPP) for ISS: Operations and Initial Results

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry; Morton, Thomas L.

    2001-01-01

    In this paper we report early results from the Floating Potential Probe (FPP) recently installed on the International Space Station (ISS). The data show that FPP properly measures the electrical potential of ISS structure with respect to the plasma it is flying through. FPP Langmuir probe data seem to give accurate measurements of the ambient plasma density, and are generally consistent with the IRI-90 model. FPP data are used to judge the performance of the ISS Plasma Contacting Units (PCUs), and to evaluate the extent of ISS charging in the absence of the PCUs.

  3. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  4. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  5. Chromosomal aberrations in ISS crew members

    NASA Astrophysics Data System (ADS)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra

    2012-07-01

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second one within 3 days after return from flight. From lymphocyte cultures metaphase plates were prepared on glass slides. Giemsa stained and in situ hybridised metaphases were scored for chromosome changes in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to elevated radiation levels. Overall slight but significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed. Our data indicate no elevation of mutation rates due to short term stays on-board the ISS.

  6. On-Orbit Propulsion System Performance of ISS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Martin, Mary Regina M.; Swanson, Robert A.; Kamath, Ulhas P.; Hernandez, Francisco J.; Spencer, Victor

    2013-01-01

    The International Space Station (ISS) represents the culmination of over two decades of unprecedented global human endeavors to conceive, design, build and operate a research laboratory in space. Uninterrupted human presence in space since the inception of the ISS has been made possible by an international fleet of space vehicles facilitating crew rotation, delivery of science experiments and replenishment of propellants and supplies. On-orbit propulsion systems on both ISS and Visiting Vehicles are essential to the continuous operation of the ISS. This paper compares the ISS visiting vehicle propulsion systems by providing an overview of key design drivers, operational considerations and performance characteristics. Despite their differences in design, functionality, and purpose, all visiting vehicles must adhere to a common set of interface requirements along with safety and operational requirements. This paper addresses a wide variety of methods for satisfying these requirements and mitigating credible hazards anticipated during the on-orbit life of propulsion systems, as well as the seamless integration necessary for the continued operation of the ISS.

  7. Psychological Support Operations and the ISS One-Year Mission

    NASA Technical Reports Server (NTRS)

    Beven, G.; Vander Ark, S. T.; Holland, A. W.

    2016-01-01

    Since NASA began human presence on the International Space Station (ISS) in November 1998, crews have spent two to seven months onboard. In March 2015 NASA and Russia embarked on a new era of ISS utilization, with two of their crewmembers conducting a one-year mission onboard ISS. The mission has been useful for both research and mission operations to better understand the human, technological, mission management and staffing challenges that may be faced on missions beyond Low Earth Orbit. The work completed during the first 42 ISS missions provided the basis for the pre-flight, in-flight and post-flight work completed by NASA's Space Medicine Operations Division, while our Russian colleagues provided valuable insights from their long-duration mission experiences with missions lasting 10-14 months, which predated the ISS era. Space Medicine's Behavioral Health and Performance Group (BHP) provided pre-flight training, evaluation, and preparation as well as in-flight psychological support for the NASA crewmember. While the BHP team collaboratively planned for this mission with the help of all ISS international partners within the Human Behavior and Performance Working Group to leverage their collective expertise, the US and Russian BHP personnel were responsible for their respective crewmembers. The presentation will summarize the lessons and experience gained within the areas identified by this Working Group as being of primary importance for a one-year mission.

  8. Steering the station back on course.

    PubMed

    David, Leonard

    2002-04-01

    Rising costs of the International Space Station prompted NASA to convene a panel of experts to assess the quality of ISS cost estimates and review program assumptions and requirements. The panel concluded that NASA was unable to accurately predict ISS costs or to support requests for increased funding for the ISS through 2006 and should maintain a U.S. core complete program with three-person crews with 6-month stays on the ISS. International response to the panel report was negative with space agencies from Japan, Russia, Canada, and Europe taking issue with the expected impact on ISS construction and use.

  9. ISS Update: Supermoon

    NASA Video Gallery

    Public Affairs Officer Kyle Herring narrates video of the "supermoon" captured from the International Space Station during Expedition 31. Questions? Ask us on Twitter @NASA_Johnson and include the ...

  10. ISS Update: Astronaut's Perspective

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews veteran NASA astronaut Cady Coleman about what it's like to receive visitors on the International Space Station as well as her other experience...

  11. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  12. The Leaking-Toilet Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2008-01-01

    Leaking toilets can cost homeowners big dollars--often before it is even realized. Homeowners do not necessarily hear it leaking. It just does, and when the water bill comes due, it can be a most unpleasant surprise. This article presents a classroom challenge to try to develop leak-detection ideas that would be inexpensive and easily added to…

  13. ISS Interface Mechanisms and their Heritage

    NASA Technical Reports Server (NTRS)

    Cook, John G.; Aksamentov, Valery; Hoffman, Thomas; Bruner, Wes

    2011-01-01

    The International Space Station, by nurturing technological development of a variety of pressurized and unpressurized interface mechanisms fosters "competition at the technology level". Such redundancy and diversity allows for the development and testing of mechanisms that might be used for future exploration efforts. The International Space Station, as a test-bed for exploration, has 4 types of pressurized interfaces between elements and 6 unpressurized attachment mechanisms. Lessons learned from the design, test and operations of these mechanisms will help inform the design for a new international standard pressurized docking mechanism for the NASA Docking System. This paper will examine the attachment mechanisms on the ISS and their attributes. It will also look ahead at the new NASA docking system and trace its lineage to heritage mechanisms.

  14. Specification of the ISS Plasma Environment Variability

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Neergaard, Linda F.; Bui, Them H.; Mikatarian, Ronald R.; Barsamian, H.; Koontz, Steven L.

    2002-01-01

    Quantifying the spacecraft charging risks and corresponding hazards for the International Space Station (ISS) requires a plasma environment specification describing the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IRI) model typically only provide estimates of long term (seasonal) mean Te and Ne values for the low Earth orbit environment. Knowledge of the Te and Ne variability as well as the likelihood of extreme deviations from the mean values are required to estimate both the magnitude and frequency of occurrence of potentially hazardous spacecraft charging environments for a given ISS construction stage and flight configuration. This paper describes the statistical analysis of historical ionospheric low Earth orbit plasma measurements used to estimate Ne, Te variability in the ISS flight environment. The statistical variability analysis of Ne and Te enables calculation of the expected frequency of Occurrence of any particular values of Ne and Te, especially those that correspond to possibly hazardous spacecraft charging environments. The database used in the original analysis included measurements from the AE-C, AE-D, and DE-2 satellites. Recent work on the database has added additional satellites to the database and ground based incoherent scatter radar observations as well. Deviations of the data values from the IRI estimated Ne, Te parameters for each data point provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output. This technique, while developed specifically for the Space Station analysis, can also be generalized to provide ionospheric plasma environment risk specification models for low Earth orbit over an altitude range of 200 km through approximately 1000 km.

  15. Research Progress and Accomplishments on ISS

    NASA Technical Reports Server (NTRS)

    Roe, Lesa B.; Uri, John J.

    2002-01-01

    The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. The first research payloads arrived at ISS more than two years ago, and continuous science has been ongoing for more than one and a half years. During this time, the research capabilities have been tremendously increased, even as assembly of the overall platform continues. Despite significant challenges along the way, ISS continues to successfully support a large number of investigations in a variety of research disciplines. The results of some of the early investigations are reaching the publication stage. The near future looms with new challenges, but experience to date and dedicated efforts give reason to be optimistic that the challenges will be overcome and that new and greater successes will be added to past ones.

  16. The IEA for the ISS is being processed in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An Integrated Equipment Assembly (IEA) is moved from the low bay into the high bay at the Space Station Processing Facility at KSC. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the ISS. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999.

  17. The January 2015 Repressurization of ISS ATCS Loop B - Analysis Limitations and Concerns

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene; Rankin, J. Gary; Schaff, Mary; Figueroa, Marcelino

    2015-01-01

    In January 2013 a false ammonia leak alarm resulted in the shutdown and partial depressurization of one of the two International Space Station (ISS) External Active Thermal Control System (EATCS) loops. The depressurization resulted in a vapor bubble of 18 liters in warm parts of the stagnant loop. To repressurize the loop and regain system operation, liquid would have to be moved from the Ammonia Tank Assembly (ATA) into the loop. This resulted in the possibility of moving cold (as low as -30 C) ammonia into the water-filled Internal Active Thermal Control System (IATCS) interface heat exchangers. Before moving forward, the freezing potential of the repressurization was evaluated through analysis - using both a Thermal Desktop SINDA/FLUINT model and hand calculations. The models yielded very different results, but both models indicated that heat exchanger freezing was not an issue. Therefore, the repressurization proceeded. The presentation describes the physical situation of the EATCS prior to repressurization and discusses the potential limits and pitfalls of the repressurization. The pre-repressurization analytical models and their results are discussed. The successful repressurization is describled and the results of a post-event model assessment is detailed.

  18. Improved Portable Ultrasonic Leak Detectors

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Strobel, James P.; Luaces, Frank

    1995-01-01

    Improved portable ultrasonic leak detector features three interchangeable ultrasonic-transducer modules, each suited for operation in unique noncontact or contact mode. One module equipped with ultrasound-collecting horn for use in scanning to detect leaks from distance; horn provides directional sensitivity pattern with sensitivity multiplied by factor of about 6 in forward direction. Another module similar, does not include horn; this module used for scanning close to suspected leak, where proximity of leak more than offsets loss of sensitivity occasioned by lack of horn. Third module designed to be pressed against leaking vessel; includes rugged stainless-steel shell. Improved detectors perform significantly better, smaller, more rugged, and greater sensitivity.

  19. Hazardous fluid leak detector

    DOEpatents

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  20. Industry's Commercial Initiatives on ISS

    NASA Astrophysics Data System (ADS)

    Shields, C. E.; Kessler, C.; Lavitola, M. S.

    2002-01-01

    For more than ten years, private industry has worked to develop a commercial human space market and to create a sustainable ISS commercial utilization customer base. Before ISS assembly was underway - and long before NASA and the international space agencies began to craft ISS commercial business terms and conditions - industry planted and nurtured the seeds of interest in exploiting human space utilization for commerce. These early initiatives have yielded the impetus and framework for industry approaches to ISS commercial utilization today and for NASA's and the International Partners' planned accommodation of private sector interests and desires on the ISS. This paper chronicles major industry initiatives for commercial ISS utilization, emphasizing successful marketing and business approaches and why these approaches have a higher likelihood of success than others. It provides an overview of individual companies' initiatives, as well as collaborative efforts that cross company lines and country borders; and it assesses the relative success of each. Rather than emphasize negative issues and barriers, this paper characterizes and prioritizes actionable success factors for industry and government to make ISS commercial utilization a sustainable reality.

  1. Aspects of leak detection

    SciTech Connect

    Chivers, T.C.

    1997-04-01

    A requirement of a Leak before Break safety case is that the leakage from the through wall crack be detected prior to any growth leading to unacceptable failure. This paper sets out to review some recent developments in this field. It does not set out to be a comprehensive guide to all of the methods available. The discussion concentrates on acoustic emission and how the techniques can be qualified and deployed on operational plant.

  2. ISS Assembly Progress and Future Activities

    NASA Astrophysics Data System (ADS)

    Holloway, Thomas

    2002-01-01

    The International Space Station is 300,000 pounds of orbiting microgravity facility with a permanent international crew on board performing assembly, operations and research tasks. Twenty-four missions have been flown to the ISS since 1998. The July 12, 2000, Service Module launch set in motion an unprecedented succession of space flights - nine U.S. and 11 Russian. In the year and a half before the Service Module launch, four missions went to ISS. A total of 24 flights (12 U.S./12 Russian) gave us the 300,000 pounds of microgravity facility we have today, with nearly 15,000 cubic feet of living and working space. We've added 19kw of power with the P6 solar array on STS-97, quintupled on board computing and activated a fully functioning laboratory delivered on STS-98 in February 2001. All major systems are functioning nominally. On ISS flight 6A, STS-100, in April 2001, we added a state-of-the-art robotics system by deploying Canadarm2. We also installed an American joint airlock Quest in August 2001 and a Russian docking compartment called Pirs in September 2001, enhancing a record schedule of spacewalking activity. We have deployed 12 major elements on orbit: Zarya, Zvezda, Unity, 3 PMAs, Z-1, P6, Destiny, CanadaArm2, Quest and Pirs. The Station has a Soyuz lifeboat, reusable moving vans (MPLMs) and refuel/resupply (Progress) services. We've logged 70,000 hours of U.S. payload run-time since STS-106 (September 2000). We have been experimenting in both U.S. and Russian segments and Expeditions have been averaging about 19 hours a week since April 2001. Our fourth Expedition crew arrived in December 2001 and is just beginning their increment, which will include work on 25 scientific payloads. Its been characterized as "the most diverse, most complex research program of any Expedition so far. Phase 3 assembly and operations of ISS focuses on expanding and powering up the station towards its permanent configuration. We have an executable plan for 2002 and 2003, where

  3. The ISS protontherapy LINAC

    NASA Astrophysics Data System (ADS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-02-01

    The TERA foundation stimulated in the past years a comparative study of compact proton accelerators for therapy and at the end of 1995 the Italian National Institute of Health (Istituto Superiore di Sanità, ISS) decided for the construction of a proton linac for its TOP (Terapia Oncologica con Protoni) project. The TOP-LINAC will be composed of a 7 MeV RFQ+DTL injector followed by a 7-65 MeV section of the innovative 3 GHz SCDTL structure and a 65-200 MeV variable energy SCL 3 GHz structure. A 5-cavity model of the SCDTL has been built and measured on a RF test bench while a 11-cavities prototype (accelerating until 12.5 MeV) is under construction and will be assembled within few months. The TOP LINAC whose construction will start at the end of 1996, will be the first linear accelerator dedicated to proton therapy, and the first 3 GHz proton linac. In this paper the accelerator design and the construction schedule will be presented, and the SCDTL structure RF measurements will be discussed.

  4. Unique Offerings of the ISS as an Earth Observing Platform

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    2013-01-01

    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.

  5. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  6. Thermally-Constrained Fuel-Optimal ISS Maneuvers

    NASA Technical Reports Server (NTRS)

    Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol

    2015-01-01

    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.

  7. ISS-CREAM Thermal and Fluid System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Thorpe, Rosemary S.

    2015-01-01

    Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.

  8. NASA utilization of ISS -past, present and future

    NASA Astrophysics Data System (ADS)

    Uri, John J.

    2007-09-01

    Construction of International Space Station (ISS) began in 1998, with permanent human occupancy commencing in late 2000. The first NASA research experiment reached ISS in September 2000. The February 2001 launch of the US Laboratory Destiny enabled the gradual outfitting of the module with research facilities and heralded the start of continuous research operations in March 2001. Initially, the NASA utilization program consisted of basic and applied peer-reviewed research in a variety of research disciplines. Between March 2001 and June 2002, as assembly of the station continued, Destiny was outfitted with seven research racks, launched on the Space Shuttle, to support the planned investigations, also transported to and from ISS on the Shuttle. The Columbia accident in February 2003 grounded the Shuttle fleet for more than two years, during which time NASA relied on Russian vehicles for transportation of research material. This along with the reduction of the ISS crew size from three to two, dramatically impacted the research conducted. The January 2004 announcement of the Vision for Space Exploration significantly altered the focus of NASA's ISS utilization program toward developing medical countermeasures and using ISS as a technology testbed for exploration missions. The resumption of Shuttle flights in July 2005 also resumed the outfitting of Destiny with research racks, with the subsequent return of ISS crew size to three and resumption of ISS assembly. In late 2007-early 2008, we will see the addition of the European Columbus module, with its five research racks and two external payloads, followed by the Japanese Kibo pressurized modules, with two research racks, and the Canadian dexterous robotic arm. Subsequent Shuttle flights will deliver more NASA racks, the Japanese external pay-load platform and NASA external payloads while Japanese H-II Transfer Vehicles (HTV) will deliver racks and external pay-loads. Significant international collaboration is

  9. ISS Update: Transit of Venus

    NASA Video Gallery

    ISS Update commentator Brandi Dean interviews Mario Runco, NASA astronaut, about Venus's transit across the sun on June 5, 2012. Questions? Ask us on Twitter @NASA_Johnson and include the hashtag #...

  10. Methodology and Assumptions of Contingency Shuttle Crew Support (CSCS) Calculations Using ISS Environmental Control and Life Support Systems

    NASA Technical Reports Server (NTRS)

    Prokhorov, Kimberlee; Shkedi, Brienne

    2006-01-01

    The current International Space Station (ISS) Environmental Control and Life Support (ECLS) system is designed to support an ISS crew size of three people. The capability to expand that system to support nine crew members during a Contingency Shuttle Crew Support (CSCS) scenario has been evaluated. This paper describes how the ISS ECLS systems may be operated for supporting CSCS, and the durations expected for the oxygen supply and carbon dioxide control subsystems.

  11. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Orbiting approximately 400 km above the Earth, the International Space Station (ISS) is a unique research laboratory used to conduct ground-breaking science experiments in space. The ISS has eight Solar Array Wings (SAW), and each wing is 11.7 meters wide and 35.1 meters long. The SAWs are controlled individually to maximize power output, minimize stress to the ISS structure, and minimize interference with other ISS operations such as vehicle dockings and Extra-Vehicular Activities (EVA). The Solar Arrays are designed to operate at 160 Volts. These large, high power solar arrays are negatively grounded to the ISS and collect charged particles (predominately electrons) as they travel through the space plasma in the Earth's ionosphere. If not controlled, this collected charge causes floating potential variations which can result in arcing, causing injury to the crew during an EVA or damage to hardware [1]. The environmental catalysts for ISS floating potential variations include plasma density and temperature fluctuations and magnetic induction from the Earth's magnetic field. These alone are not enough to cause concern for ISS, but when they are coupled with the large positive potential on the solar arrays, floating potentials up to negative 95 Volts have been observed. Our goal is to differentiate the operationally induced fluctuations in floating potentials from the environmental causes. Differentiating will help to determine what charging can be controlled, and we can then design the proper operations controls for charge collection mitigation. Additionally, the knowledge of how high power solar arrays interact with the environment and what regulations or design techniques can be employed to minimize charging impacts can be applied to future programs.

  12. Total Petroleum Puerto Rico Corp. Agrees to Spend $1.6 Million to Improve Leak Detection in At Least 125 Gas Stations Across Puerto Rico and U.S. Virgin Islands

    EPA Pesticide Factsheets

    (New York, N.Y.) A settlement announced today between the United States and Total Petroleum Puerto Rico Corp. (Total Puerto Rico) resolves Resource Conservation Recovery Act (RCRA) violations alleged at 31 gas stations in Puerto Rico and four gas stations

  13. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very early days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for combustion, complex fluids, and fluid physics; GRC has led the successful implementation of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion; fire detection; fire extinguishment; soot phenomena; flame liftoff and stability; and material flammability. The fluids experiments have studied capillary flow; magneto-rheological fluids; colloidal systems; extensional rheology; pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years.

  14. Integrating International Engineering Organizations For Successful ISS Operations

    NASA Technical Reports Server (NTRS)

    Blome, Elizabeth; Duggan, Matt; Patten, L.; Pieterek, Hhtrud

    2006-01-01

    The International Space Station (ISS) is a multinational orbiting space laboratory that is built in cooperation with 16 nations. The design and sustaining engineering expertise is spread worldwide. As the number of Partners with orbiting elements on the ISS grows, the challenge NASA is facing as the ISS integrator is to ensure that engineering expertise and data are accessible in a timely fashion to ensure ongoing operations and mission success. Integrating international engineering teams requires definition and agreement on common processes and responsibilities, joint training and the emergence of a unique engineering team culture. ISS engineers face daunting logistical and political challenges regarding data sharing requirements. To assure systematic information sharing and anomaly resolution of integrated anomalies, the ISS Partners are developing multi-lateral engineering interface procedures. Data sharing and individual responsibility are key aspects of this plan. This paper describes several examples of successful multilateral anomaly resolution. These successes were used to form the framework of the Partner to Partner engineering interface procedures, and this paper describes those currently documented multilateral engineering processes. Furthermore, it addresses the challenges experienced to date, and the forward work expected in establishing a successful working relationship with Partners as their hardware is launched.

  15. Generalized Separation of an Object Jettisoned from the ISS

    NASA Technical Reports Server (NTRS)

    Bacon, Jack; Menkin, Evgeny

    2006-01-01

    The International Space Station (ISS) Program faces unprecedented logistics challenges in both upmass and downmass. Some items employed on the ISS exterior present significant technical issues for a controlled de-orbit on either the shuttle or an expendable supply vehicle. Such manifest problems arise due to structural degradation, insufficient containment of hazardous pressures or contents, excessive size, or some combination of all of these factors. In addition, the mounting hardware and other flight service equipment to manifest the returned equipment must itself be launched, competing with other upmass. EVA techniques and equipment to successfully contain and secure such problematic equipment result in numerous significant risks to the spacewalking crews and cost and schedule risks to the program. The ISS Program office has therefore developed a policy that advises the jettison of the most problematic objects. Such jettisoned items join a small family of nearly co-planar orbital debris objects that threaten the ISS on several timescales, besides threatening all satellites with perigee below the ISS orbit and the general human population on Earth. This analysis addresses the governing physics and the ensuing risks when an object is jettisoned. It is shown that there are four time domains which must be considered, each with its own inherent problems, and that a ballistic solution is usually possible that satsfies all constraints in all domains.

  16. Leak test fitting

    DOEpatents

    Pickett, P.T.

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  17. Leak test fitting

    DOEpatents

    Pickett, Patrick T.

    1981-01-01

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  18. Variable leak gas source

    DOEpatents

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.

  19. Astrobee: Space Station Robotic Free Flyer

    NASA Technical Reports Server (NTRS)

    Provencher, Chris; Bualat, Maria G.; Barlow, Jonathan; Fong, Terrence W.; Smith, Marion F.; Smith, Ernest E.; Sanchez, Hugo S.

    2016-01-01

    Astrobee is a free flying robot that will fly inside the International Space Station and primarily serve as a research platform for robotics in zero gravity. Astrobee will also provide mobile camera views to ISS flight and payload controllers, and collect various sensor data within the ISS environment for the ISS Program. Astrobee consists of two free flying robots, a dock, and ground data system. This presentation provides an overview, high level design description, and project status.

  20. Current Psychological Support for US astronauts on the International Space Station

    NASA Technical Reports Server (NTRS)

    Sipes, Walter; Fiedler, Edna

    2007-01-01

    This viewgraph presentation describes the psychological support services that are offered to the United States astronauts on the International Space Station (ISS). The contents include: 1) Operational Psychology; 2) NASA Extreme Environment Mission Operation (NEEMO); and 3) ISS.

  1. Space Station Views of African Sedimentary Basins-Analogs for Subsurface Patterns

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. Justin

    2007-01-01

    Views of African sedimentary basins from the International Space Station (ISS) is presented. The images from ISS include: 1) Inland deltas; 2) Prediction; 3) Significance; 4) Exploration applications; and 5) Coastal megafans

  2. Superfluid helium leak sealant study

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.

    1981-01-01

    Twenty-one leak specimens were fabricated in the ends of stainless steel and aluminum tubes. Eighteen of these tubes were coated with a copolymer material to seal the leak. The other three specimens were left uncoated and served as control specimens. All 21 tubes were cold shocked in liquid helium 50 times and then the leak rate was measured while the tubes were submerged in superfluid helium at 1.7 K. During the cold shocks two of the coated specimens were mechanically damaged and eliminated from the test program. Of the remaining 16 coated specimens one suffered a total coating failure and resulting high leak rate. Another three of the coated specimens suffered partial coating failures. The leak rates of the uncoated specimens were also measured and reported. The significance of various leak rates is discussed in view of the infrared astronomical satellite (IRAS) Dewar performance.

  3. ISS Potable Water Quality for Expeditions 26 through 30

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin

    2012-01-01

    International Space Station (ISS) Expeditions 26-30 spanned a 16-month period beginning in November of 2010 wherein the final 3 flights of the Space Shuttle program finished ISS construction and delivered supplies to support the post-shuttle era of station operations. Expedition crews relied on several sources of potable water during this period, including water recovered from urine distillate and humidity condensate by the U.S. water processor, water regenerated from humidity condensate by the Russian water recovery system, and Russian ground-supplied potable water. Potable water samples collected during Expeditions 26-30 were returned on Shuttle flights STS-133 (ULF5), STS-134 (ULF6), and STS-135 (ULF7), as well as Soyuz flights 24-27. The chemical quality of the ISS potable water supplies continued to be verified by the Johnson Space Center s Water and Food Analytical Laboratory (WAFAL) via analyses of returned water samples. This paper presents the chemical analysis results for water samples returned from Expeditions 26-30 and discusses their compliance with ISS potable water standards. The presence or absence of dimethylsilanediol (DMSD) is specifically addressed, since DMSD was identified as the primary cause of the temporary rise and fall in total organic carbon of the U.S. product water that occurred in the summer of 2010.

  4. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  5. Physics of Colloids in Space: Flight Hardware Operations on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.

  6. STS-104 Onboard Photograph-Astronaut in the ISS Airlock

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut James F. Reilly participated in the first ever space walk to egress from the International Space Station (ISS) by utilizing the newly-installed Joint Airlock Quest. The Joint Airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a cornecting bulkhead and hatch. Once installed and activated, the ISS Airlock becomes the primary path for ISS space walk entry and departure for U.S. spacesuits, which are known as Extravehicular Mobility Units (EMUs). In addition, it is designed to support the Russian Orlan spacesuit for extravehicular activity (EVA). The Joint Airlock is 20-feet long, 13- feet in diameter and weighs 6.5 tons. It was built at the Marshall Space Flight Center (MSFC) by the Space Station prime contractor Boeing. The ISS Airlock has two main components: a crew airlock and an equipment airlock for storing EVA and EVA preflight preps. The Airlock was launched on July 21, 2001 aboard the Space Shuttle Orbiter Atlantis for the STS-104 mission.

  7. SSME propellant path leak detection

    NASA Technical Reports Server (NTRS)

    Crawford, Roger; Shohadaee, Ahmad Ali

    1989-01-01

    The complicated high-pressure cycle of the space shuttle main engine (SSME) propellant path provides many opportunities for external propellant path leaks while the engine is running. This mode of engine failure may be detected and analyzed with sufficient speed to save critical engine test hardware from destruction. The leaks indicate hardware failures which will damage or destroy an engine if undetected; therefore, detection of both cryogenic and hot gas leaks is the objective of this investigation. The primary objective of this phase of the investigation is the experimental validation of techniques for detecting and analyzing propellant path external leaks which have a high probability of occurring on the SSME. The selection of candidate detection methods requires a good analytic model for leak plumes which would develop from external leaks and an understanding of radiation transfer through the leak plume. One advanced propellant path leak detection technique is obtained by using state-of-the-art technology infrared (IR) thermal imaging systems combined with computer, digital image processing, and expert systems for the engine protection. The feasibility of IR leak plume detection is evaluated on subscale simulated laboratory plumes to determine sensitivity, signal to noise, and general suitability for the application.

  8. What it takes to Fly in Space...Training to be an Astronaut and Daily Operations on ISS

    NASA Technical Reports Server (NTRS)

    Ham, Michelle

    2009-01-01

    This presentation highlights NASA requirements to become an astronaut, training astronauts must do to fly on the International Space Station (ISS), systems and other training, and day-to-day activities onboard ISS. Additionally, stowage, organization and methods of communication (email, video conferenceing, IP phone) are discussed.

  9. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  10. Amine Swingbed Payload Testing on ISS

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffery

    2014-01-01

    One of NASA/Johnson Space Center's test articles of the amine-based carbon dioxide (CO2) and water vapor sorbent system known as the CO2 And Moisture Removal Amine Swing-bed, or CAMRAS, was incorporated into a payload on the International Space Station (ISS). The intent of the payload is to demonstrate the spacecraft-environment viability of the core atmosphere revitalization technology baselined for the new Orion vehicle. In addition to the air blower, vacuum connection, and controls needed to run the CAMRAS itself, the payload incorporates a suite of sensors for scientific data gathering, a water save function, and an air save function. The water save function minimizes the atmospheric water vapor reaching the CAMRAS unit, thereby reducing ISS water losses that are otherwise acceptable, and even desirable, in the Orion environment. The air save function captures about half of the ullage air that would normally be vented overboard every time the cabin air-adsorbing and space vacuum-desorbing CAMRAS beds swap functions. The JSC team conducted 1000 hours of on-orbit Amine Swingbed Payload testing in 2013. This paper presents the basics of the payload's design and history, as well as a summary of the test results, including comparisons with prelaunch testing.

  11. Amine Swingbed Payload Testing on ISS

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.

    2014-01-01

    One of NASA Johnson Space Center's test articles of the amine-based carbon dioxide (CO2) and water vapor sorbent system known as the CO2 And Moisture Removal Amine Swing-bed, or CAMRAS, was incorporated into a payload on the International Space Station (ISS). The intent of the payload is to demonstrate the spacecraft-environment viability of the core atmosphere revitalization technology baselined for the new Orion vehicle. In addition to the air blower, vacuum connection, and controls needed to run the CAMRAS, the payload incorporates a suite of sensors for scientific data gathering, a water save function, and an air save function. The water save function minimizes the atmospheric water vapor reaching the CAMRAS unit, thereby reducing ISS water losses that are otherwise acceptable, and even desirable, in the Orion environment. The air save function captures about half of the ullage air that would normally be vented overboard every time the cabin air-adsorbing and space vacuum-desorbing CAMRAS beds swap functions. The JSC team conducted 1000 hours of on-orbit Amine Swingbed Payload testing in 2013 and early 2014. This paper presents the basics of the payload's design and history, as well as a summary of the test results, including comparisons with prelaunch testing.

  12. Boeing technicians join Node 1 for ISS to PMA-1 in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Boeing technicians join Node 1 for the International Space Station (ISS) with the Pressurized Mating Adapter (PMA)-1 in KSC's Space Station Processing Facility. This PMA, identifiable by its bright red ring, is a cone-shaped connector for the space station's structural building block, known as Node 1. Seen here surrounded by scaffolding, Node 1 will have two PMAs attached, the second of which is scheduled for mating to the node in January 1998. The node and PMAs, which will be the first element of the ISS, are scheduled to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998.

  13. The IEA for the ISS is being processed in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An Integrated Equipment Assembly (IEA) is lifted from a rotation stand in the Space Station Processing Facility at KSC to be placed on a work stand. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS- 97, scheduled to launch August 5, 1999.

  14. The IEA for the ISS is being processed in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Technicians in the Space Station Processing Facility at KSC prepare to lower an Integrated Equipment Assembly (IEA) onto a work stand. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999.

  15. The IEA for the ISS is being processed in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An Integrated Equipment Assembly (IEA) is suspended in air after being lifted from a rotation stand in the Space Station Processing Facility at KSC in order to be moved to a work stand. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999.

  16. The IEA for the ISS is being processed in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An Integrated Equipment Assembly (IEA) is moved into the center of the Space Station Processing Facility clean room at KSC for transition to the high bay. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS- 97, scheduled to launch August 5, 1999.

  17. The IEA for the ISS is being processed in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Technicians carefully lower an Integrated Equipment Assembly (IEA) onto a work stand in the Space Station Processing Facility at KSC . The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999.

  18. Soyez Departs From International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Seven photographed the Soyez TMA-1 Capsule through a window of the International Space Station (ISS) as it departed for Earth. Aboard were Expedition Six crew members, astronauts Kerneth D. Bowersox and Donald R. Pettit, and cosmonaut Nikolai M. Budarin. Expedition Six served a 5 and 1/2 month stay aboard the ISS, the longest stay to date.

  19. Build the Station Simulation. Educator's Guide

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration (NASA), 2013

    2013-01-01

    With just a few materials, building a paper model of the International Space Station (ISS) can become an excellent group, troop, or class project. This publication contains a brief overview of the ISS, its parts, the science that occurs on board, instructions, and extensions for an interdisciplinary technology experience. Discover more about the…

  20. STS-106 Onboard Photograph - International Space Station

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of the International Space Station (ISS) was taken during the STS-106 mission. The ISS component nearest the camera is the U.S. built Node 1 or Unity module, which cornected with the Russian built Functional Cargo Block (FGB) or Zarya. The FGB was linked with the Service Module or Zvezda. On the far end is the Russian Progress supply ship.

  1. Application of IRTAM to Support ISS Program Safety

    NASA Technical Reports Server (NTRS)

    Hartman, William A.; Schmidl, William D.; Mikatarian, Ronald; Koontz, Steven; Galkin, Ivan

    2017-01-01

    The International Space Station (ISS) orbits near the F-peak of the ionosphere (approximately 400 km altitude). Generally, satellites orbiting at this altitude would have a floating potential (FP) of approximately -1 V due to the electron temperature (Te). However, the ISS has 8 large negatively grounded 160 V solar array wings (SAW) that collect a significant electron current from the ionosphere. This current drives the ISS FP much more negative during insolation and is highly dependent on the electron density (Ne). Also, due to the size of the ISS, magnetic inductance caused by the geomagnetic field produces a delta potential up to 40 V across the truss, possibly producing positive potentials. During Extravehicular Activity (EVA) the negative FP can lead to an arcing hazard when it exceeds -45.5 V, and the positive FP can produce a DC current high enough to stimulate the astronaut's muscles and also cause a hazard. Data collected from the Floating Potential Monitoring Unit (FPMU) have shown that the probability of either of these hazards occurring during times with quiet to moderately disturbed geomagnetic activity is low enough to no longer be considered a risk. However, a study of the ionosphere Ne during severe geomagnetic storm activity has shown that the Ne can be enhanced by a factor of 6 in the ISS orbit. As a result, the ISS Safety Review Panel (SRP) requires that ionospheric conditions be monitored using the FPMU in conjunction with the ISS Plasma Interaction Model (PIM) to determine if a severe geomagnetic storm could result in a plasma environment that could produce a hazard. A 'Real-Time' plasma hazard assessment process was developed to support ISS Program real-time decision making providing constraint relief information for EVAs planning and operations. This process incorporates 'real time' ionospheric conditions, ISS solar arrays' orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real time

  2. Development of the ISS EMU Dashboard Software

    NASA Technical Reports Server (NTRS)

    Bernard, Craig; Hill, Terry R.

    2011-01-01

    The EMU (Extra-Vehicular Mobility Unit) Dashboard was developed at NASA s Johnson Space Center to aid in real-time mission support for the ISS (International Space Station) and Shuttle EMU space suit by time synchronizing down-linked video, space suit data and audio from the mission control audio loops. Once the input streams are synchronized and recorded, the data can be replayed almost instantly and has proven invaluable in understanding in-flight hardware anomalies and playing back information conveyed by the crew to missions control and the back room support. This paper will walk through the development from an engineer s idea brought to life by an intern to real time mission support and how this tool is evolving today and its challenges to support EVAs (Extra-Vehicular Activities) and human exploration in the 21st century.

  3. Outgassing of ISS payload pointing devices

    NASA Astrophysics Data System (ADS)

    Lobascio, Cesare; Rampini, Riccardo

    2003-09-01

    Hexapod and the Coarse Pointing Device (CPD) are specific devices currently planned for utilization on the International Space Station (ISS) external payload facilities, with the scope of pointing scientific payload instrumentation. During the design and development phases, the devices have been extensively analyzed for their outgassing characteristics, as relevant for the potential adverse contamination effects on sensitive instrumentation surfaces. Outgassing kinetics characteristics of selected materials in dedicated test facilities have been determined as per guidelines established in ASTM-E-1559, and ESTEC VBQC method. An analysis of molecular emissions and depositions from the integrated devices has been conducted. Outgassing rates (OGRs) on representative targets enveloping the complete payloads have been calculated. Generally, the outgassing emissions comply with the imposed requirements. In case of potential requirement violations, and for the protection of sensitive surfaces, countermeasures have been devised, such as vacuum bake-out and directional venting.

  4. Upgrades to the ISS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Kayatin, Matthew J.; Carter, Donald L.; Schunk, Richard G.; Pruitt, Jennifer M.

    2016-01-01

    The International Space Station Water Recovery System (WRS) is comprised of the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to reduce the resupply mass of the WPA Multifiltration Bed, develop improved catalyst for the WPA Catalytic Reactor, evaluate optimum operation of UPA through parametric testing, and improve reliability of the UPA fluids pump and Distillation Assembly.

  5. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  6. Biological Imaging Capability in the ABRS Facility on ISS

    NASA Technical Reports Server (NTRS)

    Cox, David R.; Murdoch, T.; Regan, M. F.; Meshlberger, R. J.; Mortenson, T. E.; Albino, S. A.; Paul, A. L.; Ferl, R. J.

    2010-01-01

    This slide presentation reviews the Advanced Biological Research System (ABRS) on the International Space Station (ISS) and its biological imaging capability. The ABRS is an environmental control chamber. It has two indpendently controlled Experiment Research Chambers (ERCs) with temperature, relative humidity and carbon dioxide controls. ABRS is a third generation plant growth system. Several experiments are reviewed, with particular interest in the use of Green Fluorescent Protein (GFP) a non-destructive plant stress reporting mechanism, naturally found in jellyfish.

  7. 2nd ISS Treadmill Development "T2 Project"

    NASA Technical Reports Server (NTRS)

    MacNeill, Kevin; Wiederhoeft, Curt

    2007-01-01

    An overview of the development of a treadmill for the International Space Station is presented. Topics discussed include: flight certification of a Commercial Off the Shelf (COTS) Woodway Path treadmill; development and certificaiton of a crew interface to optimize use of the COTS design and/or existing NASA design (such as the ARED Pacebook); development and certification of a power supply to provide power from the ISS Vehicle to the treadmill system (crew interfaces, motor, controller and subject loading devices).

  8. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  9. Passive vapor monitoring of underground storage tanks for leak detection.

    PubMed

    Weber, D; Schwille, F

    1991-02-01

    Passive vapor monitoring of underground storage tanks (USTs) containing volatile hydrocarbons at locations external to the tank (an external system) is touted as a fast and effective method of leak detection. However, major gaps remain in our knowledge of the physical processes that relate a measured vapor concentration to the leak rate, thus making network design according to a quantitative design criterion nearly impossible, and differentiation between surface spills and a leaking UST requires certain levels of sophistication in the leak detection system and in the analysis that are not usually available. Heavier-than-air vapors from the constituents of stored hydrocarbons could result in a density-driven convective propagation component that complicates the design of leak detection systems, and finally, detection times are highly sensitive to concentration detection threshold levels set by the system. The use of inadequate systems and analyses can lead to either wasted efforts or excessive subsurface contamination. This paper discusses the physical processes involved, explores the above aspects of external passive vapor leak detection design, and suggests some alternatives as they pertain to gasoline service stations.

  10. Hermetic Seal Leak Detection Apparatus

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor)

    2013-01-01

    The present invention is a hermetic seal leak detection apparatus, which can be used to test for hermetic seal leaks in instruments and containers. A vacuum tight chamber is created around the unit being tested to minimize gas space outside of the hermetic seal. A vacuum inducing device is then used to increase the gas chamber volume inside the device, so that a slight vacuum is pulled on the unit being tested. The pressure in the unit being tested will stabilize. If the stabilized pressure reads close to a known good seal calibration, there is not a leak in the seal. If the stabilized pressure reads closer to a known bad seal calibration value, there is a leak in the seal. The speed of the plunger can be varied and by evaluating the resulting pressure change rates and final values, the leak rate/size can be accurately calculated.

  11. Overview and Results of ISS Space Medicine Operations Team (SMOT) Activities

    NASA Technical Reports Server (NTRS)

    Johnson, H. Magee; Sargsyan, Ashot E.; Armstrong, Cheryl; McDonald, P. Vernon; Duncan, James M.; Bogomolov, V. V.

    2007-01-01

    The Space Medicine Operations Team (SMOT) was created to integrate International Space Station (ISS) Medical Operations, promote awareness of all Partners, provide emergency response capability and management, provide operational input from all Partners for medically relevant concerns, and provide a source of medical input to ISS Mission Management. The viewgraph presentation provides an overview of educational objectives, purpose, operations, products, statistics, and its use in off-nominal situations.

  12. The P3 truss, an ISS segment, is prepared for transfer to O&C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the waning afternoon light, cranes secure the P3 truss on the transporter while a tractor and driver wait to move it to the Operations and Checkout Building. The second port-side truss is a segment of the International Space Station (ISS), scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. P3 will be attached to the first port truss segment (P1).

  13. In the O&C Building, the P3 truss, an ISS segment, is moved

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Operations and Checkout Building, overhead cranes move a segment of the International Space Station (ISS), the port-side P3 truss, toward a workstand. The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1).

  14. In the O&C Building, the P3 truss, an ISS segment, is uncovered

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Operations and Checkout Building, overhead cranes lift another segment of the International Space Station (ISS), the port-side P3 truss, from its shipping container. The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1).

  15. The FCF Fluids Integrated Rack: Microgravity Fluid Physics Experimentation on Board the ISS

    NASA Technical Reports Server (NTRS)

    Gati, Frank G.; Hill, Myron E.; SaintOnge, Tom (Technical Monitor)

    2001-01-01

    The Fluids Integrated Rack (FIR) is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The FIR will be one of the racks that will constitute the Fluids and Combustion Facility (FCF). The ISS will provide the FCF and therefore the FIR with the necessary resources, such as power and cooling, so that the FIR can carry out its primary mission of accommodating fluid physics science experiments. This paper discusses the mission, design, and the capabilities of the FIR in carrying out research on the ISS.

  16. Approximating Fluid Flow from Ambient to Very Low Pressures: Modeling ISS Experiments that Vent to Vacuum

    NASA Technical Reports Server (NTRS)

    Minor, Robert

    2002-01-01

    Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.

  17. Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2015-01-01

    As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.

  18. Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2011-01-01

    As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still successfully supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.

  19. Cerebrospinal fluid leaks following septoplasty.

    PubMed

    Venkatesan, Naren N; Mattox, Douglas E; Del Gaudio, John M

    2014-12-01

    We conducted a retrospective review to identify the characteristics of cerebrospinal fluid (CSF) leak in patients who had undergone septoplasty and in selected patients who had experienced a spontaneous CSF leak. CSF leak is a known but infrequently reported complication of septoplasty; to the best of our knowledge, only 4 cases have been previously published in the literature. A review of our institution's database revealed 3 cases of postseptoplasty CSF leak. We reviewed all the available data to look for any commonalities among these 7 cases. In addition, we reviewed 6 cases of spontaneous CSF leak selected from our database for the same purpose. For all patients, we noted the side of the cribriform plate defect, its size and, for the postseptoplasty cases, the interval between the septoplasty and the leak repair. Overall, we found that leaks were much more common on the right side than on the left. The sizes of the leaks in the 2 postseptoplasty groups were comparable (mean: 14.0 × 6.4 mm). The interval between septoplasty and leak repair ranged from 2.5 to 20 years in our cases and from 3 days to 22 weeks in the previously published cases. All 3 of the postseptoplasty patients in our database presented with clear rhinorrhea. Two of the 3 patients had meningitis; 1 of these 2 also had pneumocephalus. Of the 6 cases of spontaneous CSF leaks, 4 occurred on the right and 2 on the left; the average size of the defect was 5.8 mm in the greatest dimension. The finding that cribriform plate defects after septoplasty were typically right-sided likely reflects the prevalence of left-sided surgical approaches. Also, the fact that the defects were larger in the postseptoplasty cases than in the spontaneous cases is likely attributable to the torque effect toward the thin skull base that occurs when the perpendicular plate is twisted during septoplasty.

  20. Current ISS Exercise Countermeasures: Where are we now?

    NASA Technical Reports Server (NTRS)

    Hayes, J. C.; Loerch, L.; Davis-Street, J.; Haralson, Cortni; Sams, C.

    2006-01-01

    Current International Space Station (ISS) crew schedules include 1.5 h/d for completion of resistive exercise and 1 h/d of aerobic exercise , 6 d/wk. While ISS post flight decrements in muscle strength, bone m ineral density, and aerobic capacity improved in some crewmembers, de conditioning was still evident even with this volume of exercise. Res ults from early ISS expeditions show maximum loss in bone mineral density of the lumbar spine and pelvis in excess of 1.5% per month, with all crewmembers demonstrating significant bone loss in one or more re gions. Similarly, post flight muscle strength losses in the hamstring and quadriceps muscle groups exceeded 30% in the immediate post miss ion period in some crewmembers. Measures of aerobic capacity early in the mission show average decrements of 15%, but with onboard aerobic exercise capability, the crew has been able to "train up" over the co urse of the mission. These findings are highly variable among crewmem bers and appear to be correlated with availability and reliability of the inflight resistive exercise device (RED), cycle ergometer, and t readmill. This suite of hardware was installed on ISS with limited op erational evaluation in groundbased test beds. As a result, onorbit hardware constraints have resulted in inadequate physical stimulus, d econditioning, and increased risk for compromised performance during intra and extravehicular activities. These issues indicate that the c urrent ISS Countermeasures System reliability or validity are not ade quate for extendedduration exploration missions. Learning Objective: A better understanding of the status of ISS exercise countermeasures , their ability to protect physiologic systems, and recommendations for exploration exercise countermeasures.

  1. Service Life Extension of the ISS Propulsion System Elements

    NASA Technical Reports Server (NTRS)

    Kamath, Ulhas; Grant, Gregory; Kuznetsov, Sergei; Shaevich, Sergey; Spencer, Victor

    2014-01-01

    The International Space Station (ISS) is a result of international collaboration in building a sophisticated laboratory of an unprecedented scale in Low Earth Orbit. After a complex assembly sequence spanning over a decade, some of the early modules launched at the beginning of the program would reach the end of their certified lives, while the newer modules were just being commissioned into operation. To maximize the return on global investments in this one-of-a-kind orbiting platform that was initially conceived for a service life until 2016, it is essential for the cutting edge research on ISS to continue as long as the station can be sustained safely in orbit. ISS Program is assessing individual modules in detail to extend the service life of the ISS to 2024, and possibly to 2028. Without life extension, Functional Cargo Block (known by its Russian acronym as FGB) and the Service Module (SM), two of the early modules on the Russian Segment, would reach the end of their certified lives in 2013 and 2015 respectively. Both FGB and SM are critical for the propulsive function of the ISS. This paper describes the approach used for the service life extension of the FGB propulsion system. Also presented is an overview of the system description along with the process adopted for developing the life test plans based on considerations of system failure modes, fault tolerance and safety provisions. Tests and analyses performed, important findings and life estimates are summarized. Based on the life extension data, FGB propulsion system, in general, is considered ready for a service life until 2028.

  2. Service Life Extension of the ISS Propulsion System Elements

    NASA Technical Reports Server (NTRS)

    Kamath, Ulhas; Grant, Gregory; Kuznetsov, Sergei; Shaevich, Sergey; Spencer, Victor

    2015-01-01

    The International Space Station (ISS) is a result of international collaboration in building a sophisticated laboratory of an unprecedented scale in Low Earth Orbit. After a complex assembly sequence spanning over a decade, some of the early modules launched at the beginning of the program would reach the end of their certified lives, while the newer modules were just being commissioned into operation. To maximize the return on global investments in this one-of-a-kind orbiting platform that was initially conceived for a service life until 2016, it is essential for the cutting edge research on ISS to continue as long as the station can be sustained safely in orbit. ISS Program is assessing individual modules in detail to extend the service life of the ISS to 2024, and possibly to 2028. Without life extension, Functional Cargo Block (known by its Russian acronym as FGB) and the Service Module (SM), two of the early modules on the Russian Segment, would reach the end of their certified lives in 2013 and 2015 respectively. Both FGB and SM are critical for the propulsive function of the ISS. This paper describes the approach used for the service life extension of the FGB propulsion system. Also presented is an overview of the system description along with the process adopted for developing the life test plans based on considerations of system failure modes, fault tolerance and safety provisions. Tests and analyses performed, important findings and life estimates are summarized. Based on the life extension data, FGB propulsion system, in general, is considered ready for a service life until 2028.

  3. International Space Station

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer; Gordon, Randy

    2010-01-01

    This slide presentation reviews the research on the International Space Station (ISS), including the sponsorship of payloads by country and within NASA. Included is a description of the space available for research, the Laboratory "Rack" facilities, the external research facilities and those available from the Japanese Experiment Module (i.e., Kibo), and highlights the investigations that JAXA has maintained. There is also a review of the launch vehicles and spacecraft that are available for payload transportation to the ISS, including cargo capabilities of the spacecraft.

  4. Expandable coating cocoon leak detection system

    NASA Technical Reports Server (NTRS)

    Hauser, R. L.; Kochansky, M. C.

    1972-01-01

    Development of system and materials for detecting leaks in cocoon protective coatings are discussed. Method of applying materials for leak determination is presented. Pressurization of system following application of materials will cause formation of bubble if leak exists.

  5. Progress Resupply Craft Docks to Space Station

    NASA Video Gallery

    The 39th ISS Progress resupply vehicle automatically docked to the aft port of the Zvezda service module of the International Space Station at 7:58 a.m. EDT on September 12 using the Kurs automated...

  6. Russian Prime Minister Calls the Station Crew

    NASA Video Gallery

    Russian Prime Minister Vladimir Putin called the International Space Station from the Russian Mission Control Center in Korolev, Russia, on Jan. 11, 2011. Putin also offered his condolences to ISS ...

  7. STS-97 Onboard Photograph - International Space Station

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of the International Space Station (ISS) in orbit was taken during a fly-around inspection by the Space Shuttle Endeavour after successfull attachment of the 240-foot-long, 38-foot-wide solar array.

  8. Low Temperature Microgravity Physics Facility Payload for the ISS

    NASA Technical Reports Server (NTRS)

    Langford, Don; Pensinger, John

    2003-01-01

    The LTMPF Payload is a 182-liter superfluid-helium dewar that will be attached to the JEM-EF facility of the International Space Station after launch in the cargo bay of the Space Shuttle. The LTMPF Payload will provide a major low-temperature research laboratory for Fundamental Physics experiments on the International Space Station. The LTMPF payload will provide instrument temperatures below superfluid helium temperatures and the ISS will provide microgravity to allow the experiments to study condensed matter and gravitational physics. Each flight will be allocated to one condensed matter instrument and one gravitation instrument.

  9. Scientists Inspect Plant Grown onboard the ISS in 2002

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Advanced Astroculture (tm) unit is growing plants on its second flight on the International Space Station. Dr. Weijia Zhou (left), director of the Wisconsin Center for Space Automation and Robotics at the University of Wisconsin-Madison, inspects soybeans grown in the plant growth unit aboard ISS in 2002. Coating technology is used inside the miniature plant greenhouse to remove ethylene, a chemical produced by plant leaves that can cause plants to mature too quickly. This same coating technology is used in a new anthrax-killing device. The Space Station experiment is managed by the Space Partnership Development Program at NASA's Marshall Space Flight Center in Huntsville, Ala.

  10. Applications of the International Space Station Probabilistic Risk Assessment Model

    NASA Technical Reports Server (NTRS)

    Grant, Warren; Lutomski, Michael G.

    2011-01-01

    Recently the International Space Station (ISS) has incorporated more Probabilistic Risk Assessments (PRAs) in the decision making process for significant issues. Future PRAs will have major impact to ISS and future spacecraft development and operations. These PRAs will have their foundation in the current complete ISS PRA model and the current PRA trade studies that are being analyzed as requested by ISS Program stakeholders. ISS PRAs have recently helped in the decision making process for determining reliability requirements for future NASA spacecraft and commercial spacecraft, making crew rescue decisions, as well as making operational requirements for ISS orbital orientation, planning Extravehicular activities (EVAs) and robotic operations. This paper will describe some applications of the ISS PRA model and how they impacted the final decision. This paper will discuss future analysis topics such as life extension, requirements of new commercial vehicles visiting ISS.

  11. Enterprise: an International Commercial Space Station Option

    NASA Astrophysics Data System (ADS)

    Lounge, John M.

    2002-01-01

    In December 1999, the U.S. aerospace company SPACEHAB, Inc., (SPACEHAB) and the Russian aerospace company Rocket and Space Corporation Energia (RSC-Energia), initiated a joint project to establish a commercial venture on the International Space Station (ISS). The approach of this venture is to use private capital to build and attach a commercial habitable module (the "Enterprise Module") to the Russian Segment of the ISS. The module will become an element of the Russian Segment; in return, exclusive rights to use this module for commercial business will be granted to its developers. The Enterprise Module has been designed as a multipurpose module that can provide research accommodation, stowage and crew support services. Recent NASA budget decisions have resulted in the cancellation of NASA's ISS habitation module, a significant delay in its new ISS crew return vehicle, and a mandate to stabilize the ISS program. These constraints limit the ISS crew size to three people and result in very little time available for ISS research support. Since research activity is the primary reason this Space Station is being built, the ISS program must find a way to support a robust international research program as soon as possible. The time is right for a commercial initiative incorporating the Enterprise Module, outfitted with life support systems, and commercially procured Soyuz vehicles to provide the capability to increase ISS crew size to six by the end of 2005.

  12. Ionospheric Drivers of ISS Charging

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Willis, E. M.

    2015-12-01

    Severe spacecraft surface charging in terrestrial environments typically results from exposure to energetic electrons at some 10's of keV within auroral environments at high latitudes in low Earth orbit or hot thermal plasma in geostationary orbit. Predicting surface charging of a vehicle in these environments depends on our ability to specify and forecast auroral acceleration events and geomagnetic storms. Measurements of ISS frame charging to date, in contrast, are dominated by US 160V solar array interactions with the ionospheric plasma environment with little evidence for strong charging during geomagnetic storms. Predicting ISS charging, therefore, requires an ability to specify and forecast components of ionospheric variability of importance to high voltage solar array interactions with the plasma environment. This presentation provides examples of the ionospheric conditions responsible for typical and extreme ISS charging and discusses current capabilities to forecast these events. Specific examples are given for ISS frame charging observed when the vehicle passes through low latitude dawn density depletions, high latitude plasma troughs, and plasma depletions associated with equatorial spread-f conditions.

  13. The International Space Station in Space Exploration

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; McKay, Meredith M.

    2006-01-01

    The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.

  14. A Leak Monitor for Industry

    NASA Technical Reports Server (NTRS)

    1996-01-01

    GenCorp Aerojet Industrial Products, Lewis Research Center, Marshall Space Flight Center, and Case Western Reserve University developed a gas leak detection system, originally for use with the Space Shuttle propulsion system and reusable launch vehicles. The Model HG200 Automated Gas Leak Detection System has miniaturized sensors that can identify extremely low concentrations of hydrogen without requiring oxygen. A microprocessor-based hardware/software system monitors the sensors and displays the source and magnitude of hydrogen leaks in real time. The system detects trace hydrogen around pipes, connectors, flanges and pressure tanks, and has been used by Ford Motor Company in the production of a natural gas-powered car.

  15. Aerospace Payloads Leak Test Methodology

    NASA Technical Reports Server (NTRS)

    Lvovsky, Oleg; Grayson, Cynthia M.

    2010-01-01

    Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.

  16. Reference Guide to the International Space Station

    NASA Technical Reports Server (NTRS)

    Kitmacher, Gary H.

    2006-01-01

    The International Space Station (ISS) is a great international, technological, and political achievement. It is the latest step in humankind's quest to explore and live in space. The research done on the ISS may advance our knowledge in various areas of science, enable us to improve life on this planet, and give us the experience and increased understanding that can eventually equip us to journey to other worlds. As a result of the Station s complexity, few understand its configuration, its design and component systems, or the complex operations required in its construction and operation. This book provides high-level insight into the ISS. The ISS is in orbit today, operating with a crew of three. Its assembly will continue through 2010. As the ISS grows, its capabilities will increase, thus requiring a larger crew. Currently, 16 countries are involved in this venture. This CD-ROM includes multimedia files and animations.

  17. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  18. The ISS Fluids and Combustion Facility: Experiment Accommodations Summary

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.; Simons, Stephen N. (Technical Monitor)

    2001-01-01

    The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.

  19. Audible Noise Design of ISS Cargo Module "Cygnus"

    NASA Astrophysics Data System (ADS)

    Destefanis, Stefano; Paron, Alberto; Bandini, Flavio

    2014-06-01

    Orbital developed the Cygnus advanced manoeuvring spacecraft to demonstrate cargo delivery services under a NASA Commercial Orbital Transportation Services (COTS) Space Act Agreement.In addition to the COTS development and demonstration program, Orbital will utilize Cygnus to perform ISS resupply flights under the Commercial Resupply Service (CRS) contract.Starting in January 2014 Orbital launched its first of eight missions to deliver approximately 20,000 kilograms of cargo to the ISS (International Space Station). Cygnus will carry crew supplies, spares and scientific experiments to the ISS.Cygnus consists of a common service module and a pressurized cargo module. The pressurized cargo module is based on the Multi-Purpose Logistics Module (MPLM), developed by Thales Alenia Space for NASA. Since Cygnus pressurized cargo module will host astronauts performing daily tasks, it is required to be compliant with NASA guidelines related to acoustic comfort (working areas noise not to exceed NC-50 requirement) and safety (caution and warning alarms audibility).The main source of noise inside Cygnus is the ventilation fan, which happens to be the same model already installed on the ATV (Automated Transfer Vehicle) cargo module: however, the strategy adopted to limit its acoustic disturbance had to be differently tailored.This paper presents the activities (assumptions, design, characterization, testing) that led to define the type of noise control devices used on Cygnus, up to its first successful flight (module labelled "PCM0") to the ISS, where it reached 2nd place in the "quietest visiting modules" ranking.

  20. SPHERES: From Ground Development to Operations on ISS

    NASA Technical Reports Server (NTRS)

    Katterhagen, A.

    2015-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of

  1. Influence of gaseous contaminants in the atmosphere of ISS on growth and development of higher plants

    NASA Astrophysics Data System (ADS)

    Levinskikh, Margarita; Sychev, Vladimir; Podolsky, Igor; Moukhamedieva, Lana; Gostimskiy, Sergey; Bingham, Gail

    Continues exploitation of pressurized manned objects revealed that artificial gaseous atmosphere is a multi-component mixture containing adverse micro-dirt consisted of 14 classes of chemical compounds (Moukhamedieva, 2003). Dynamics of descendant process depend on duration of pressurized object utilization, resources of life support (e.g. level of closeness), parameters of microclimate and experimental tasks conducted by a crew. Previously it was shown that composition of gas environment of the space station remarkably altered growth and development of higher plants (Levinskikh et al., 2000). Specifically, it was found that the main changes in productivity and morphometric characteristics of the spaceflight plants of superdwarf wheat were caused by phytotoxic effect of ethylene (1,1-2,0 mg/m3) in the atmosphere of MIR orbital station. From 2003 to April, 2007 we have conducted 7 experiments focused on cultivation of dwarf peas in space greenhouse LADA onboard International Space Station (ISS-6-10, 12, 14). Results of the first 5 experiments showed that characteristics of growth and development of the peas planted in the space greenhouse had no differences if compared with ground control variants. In the similar experiments with peas during ISS-12 and ISS-14 it was found that total and seed productions of the plants were lower than ones of the previous experiments and ones of the ground controls. Cytological analysis of roots of the space seeds for the first time revealed significant increase of chromosomal aberrations in comparison with laboratory controls Analysis of total contamination of the atmosphere of the ISS by gaseous dirt showed consistent (starting from ISS-11) increasing of the toxicity coefficient (Kt). W e suppose that the accumulation of pollutant in the atmosphere of ISS is the main reason causing general decreasing of productivity and increasing of the number of chromosomal aberrations in the peas cultivated in space greenhouse LADA at the stage

  2. Predictors of alveolar air leaks.

    PubMed

    Loran, David B; Woodside, Kenneth J; Cerfolio, Robert J; Zwischenberger, Joseph B

    2002-08-01

    Persistent air leaks are caused by the failure of the postoperative lung to achieve a configuration that is physiologically amenable to healing. The raw pulmonary surface caused by the dissection of the fissure often is separated from the pleura, and the air leak fails to close. Additionally, higher air flow thorough an alveolar-pleural fistula seems to keep the fistula open. Other factors that interfere with wound healing, such as steroid use, diabetes, or malnutrition, can result in persistence of the leak. A thoracic surgeon can minimize the incidence of air leak through meticulous surgical technique and can identify patients in whom the balance of risks (Table 1) and benefits warrant operative intervention based on an understanding of the underlying pathophysiology.

  3. Leak detection with expandable coatings

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Developed and evaluated is a system for leak detection that can be easily applied over separable connectors and that expands into a bubble or balloon if a leak is present. This objective is accomplished by using thin films of Parafilm tape wrapped over connectors, which are then overcoated with a special formulation. The low yield strength and the high elongation of the envelope permit bubble formation if leakage occurs. This system is appropriate for welds and other hardware besides separable connectors. The practical limit of this system appears to be for leaks exceeding 0.000001 cc/sec. If this envelope is used to trap gases for mass spectrometer inspection, leaks in the range of ten to the minus 8th power cc/sec. may be detectable.

  4. Leak test adapter for containers

    DOEpatents

    Hallett, Brian H.; Hartley, Michael S.

    1996-01-01

    An adapter is provided for facilitating the charging of containers and leak testing penetration areas. The adapter comprises an adapter body and stem which are secured to the container's penetration areas. The container is then pressurized with a tracer gas. Manipulating the adapter stem installs a penetration plug allowing the adapter to be removed and the penetration to be leak tested with a mass spectrometer. Additionally, a method is provided for using the adapter.

  5. Integrating MBSE into Ongoing Projects: Requirements Validation and Test Planning for the ISS SAFER

    NASA Technical Reports Server (NTRS)

    Anderson, Herbert A.; Williams, Antony; Pierce, Gregory

    2016-01-01

    The International Space Station (ISS) Simplified Aid for Extra Vehicular Activity (EVA) Rescue (SAFER) is the spacewalking astronaut's final safety measure against separating from the ISS and being unable to return safely. Since the late 1990s, the SAFER has been a standard element of the spacewalking astronaut's equipment. The ISS SAFER project was chartered to develop a new block of SAFER units using a highly similar design to the legacy SAFER (known as the USA SAFER). An on-orbit test module was also included in the project to enable periodic maintenance/propulsion system checkout on the ISS SAFER. On the ISS SAFER project, model-based systems engineering (MBSE) was not the initial systems engineering (SE) approach, given the volume of heritage systems engineering and integration (SE&I) products. The initial emphasis was ensuring traceability to ISS program standards as well as to legacy USA SAFER requirements. The requirements management capabilities of the Cradle systems engineering tool were to be utilized to that end. During development, however, MBSE approaches were applied selectively to address specific challenges in requirements validation and test and verification (T&V) planning, which provided measurable efficiencies to the project. From an MBSE perspective, ISS SAFER development presented a challenge and an opportunity. Addressing the challenge first, the project was tasked to use the original USA SAFER operational and design requirements baseline, with a number of additional ISS program requirements to address evolving certification expectations for systems operating on the ISS. Additionally, a need to redesign the ISS SAFER avionics architecture resulted in a set of changes to the design requirements baseline. Finally, the project added an entirely new functionality for on-orbit maintenance. After initial requirements integration, the system requirements count was approaching 1000, which represented a growth of 4x over the original USA SAFER system

  6. Characterizing ISS Charging Environments with On-Board Ionospheric Plasma Measurements

    NASA Technical Reports Server (NTRS)

    Minow, Jospeh I.; Craven, Paul D.; Coffey, Victoria N.; Schneider, Todd A.; Vaughn, Jason A.; Wright Jr, Kenneth; Parker, Paul D.; Mikatarian, Ronald R.; Kramer, Leonard; Hartman, William A.; Alred, John W.; Koontz, Steven L.

    2008-01-01

    Charging of the International Space Station (ISS) is dominated by interactions of the biased United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment in low Earth orbit. Conducting surfaces on the vehicle structure charge negative relative to the ambient plasma environment because ISS structure is grounded to the negative end of the US solar arrays. Transient charging peaks reaching potentials of some tens of volts negative controlled by photovoltaic array current collection typically occur at orbital sunrise and sunset as well as near orbital noon. In addition, surface potentials across the vehicle structure vary due to an induced v x B (dot) L voltage generated by the high speed motion of the conducting structure across the Earth's magnetic field. Induced voltages in low Earth orbit are typically only approx.0.4 volts/meter but the approx.100 meter scale dimensions of the ISS yield maximum induced potential variations ofapprox.40 volts across the vehicle. Induced voltages are variable due to the orientation of the vehicle structure and orbital velocity vector with respect to the orientation of the Earth's magnetic field along the ISS orbit. In order to address the need to better understand the ISS spacecraft potential and plasma environments, NASA funded development and construction of the Floating Potential Measurement Unit (FPMU) which was deployed on an ISS starboard truss arm in August 2006. The suite of FPMU instruments includes two Langmuir probes, a plasma impedance probe, and a potential probe for use in in-situ monitoring of electron temperatures and densities and the vehicle potential relative to the plasma environment. This presentation will describe the use of the FPMU to better characterize interactions of the ISS with the space environment, changes in ISS charging as the vehicle configuration is modified during ISS construction, and contributions of FPMU vehicle potential and plasma environment

  7. Computational Model of Heat Transfer on the ISS

    NASA Technical Reports Server (NTRS)

    Torian, John G.; Rischar, Michael L.

    2008-01-01

    SCRAM Lite (SCRAM signifies Station Compact Radiator Analysis Model) is a computer program for analyzing convective and radiative heat-transfer and heat-rejection performance of coolant loops and radiators, respectively, in the active thermal-control systems of the International Space Station (ISS). SCRAM Lite is a derivative of prior versions of SCRAM but is more robust. SCRAM Lite computes thermal operating characteristics of active heat-transport and heat-rejection subsystems for the major ISS configurations from Flight 5A through completion of assembly. The program performs integrated analysis of both internal and external coolant loops of the various ISS modules and of an external active thermal control system, which includes radiators and the coolant loops that transfer heat to the radiators. The SCRAM Lite run time is of the order of one minute per day of mission time. The overall objective of the SCRAM Lite simulation is to process input profiles of equipment-rack, crew-metabolic, and other heat loads to determine flow rates, coolant supply temperatures, and available radiator heat-rejection capabilities. Analyses are performed for timelines of activities, orbital parameters, and attitudes for mission times ranging from a few hours to several months.

  8. Transformation of Air Quality Monitor Data from the International Space Station into Toxicological Effect Groups

    NASA Technical Reports Server (NTRS)

    James, John T.; Zalesak, Selina M.

    2011-01-01

    The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.

  9. NCERA-101 STATION REPORT - KENNEDY SPACE CENTER: Large Plant Growth Hardware for the International Space Station

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.

    2013-01-01

    This is the station report for the national controlled environments meeting. Topics to be discussed will include the Veggie and Advanced Plant Habitat ISS hardware. The goal is to introduce this hardware to a potential user community.

  10. Robonaut 2 - IVA Experiments On-Board ISS and Development Towards EVA Capability

    NASA Technical Reports Server (NTRS)

    Diftler, Myron; Hulse, Aaron; Badger, Julia; Thackston, Allison; Rogers, Jonathan

    2014-01-01

    prohibitively low. The upgraded R2 control and safety systems solve this problem using momentum limiting, momentum control, and kinetic energy minimization. Momentum and kinetic energy take the robot mass into account relieving low velocity restrictions on low inertia end-effectors while ensuring that the overall mass of R2 is limited from hazardous velocities. The momentum of R2's five safety nodes (each of the four end-effectors and the body) is monitored and compared to a single momentum limit. If any of the five nodes exceeds the safety limit, the motor power is removed and the robot comes to a stop. Momentum control/limiting also provides a simple, reliable method to integrate hand held tools into the safety system by providing the tool mass to the control system thus automatically reducing the allowable velocity of the end-effector with the tool. Work on the ground continues to build the skill set for an EVA Robonaut. Recent experiments (Figure 2) demonstrate how a teleoperator can use R2 to manipulate a tether hook, an important safety precaution on spacewalks. Another task displayed Robonaut's ability to pull back a protective jacket over a hose and search for damage, as well as inspect a quick-disconnect fitting for debris. Demonstrations such as these are indicative of EVA work done on ISS, specifically seen during a series of spacewalks over 2012 and 2013 where astronauts searched for an ammonia leak in one of the external cooling loops. Through experiments both on ISS and on the ground, R2 is evolving and providing the information needed to plan out the upgrades that will make an EVA Robonaut an effective tool. With the addition of legs, R2 will start climbing inside the space station and supply invaluable information on how the climbing strategies and task stabilization techniques must be refined. Ground R2 systems will continue to work with additional EVA tools and equipment in preparation for onboard IVA testing and future EVA applications.

  11. ISS Update: Capturing a Dragon

    NASA Video Gallery

    NASA Public Affairs Officer Josh Byerly talks with space station training instructors Jeff Tuxhorn and Graeme Newman, who trained the space station crews on how to capture SpaceX’s Dragon spacecr...

  12. ISS Update: Plants in Space

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries talks with Camille Alleyne, International Space Station Program Scientist, about the plant research taking place aboard the station. Dr. Anna-Lisa Paul, ...

  13. Leak detection by acoustic emission monitoring. Phase 1: Feasibility study

    NASA Astrophysics Data System (ADS)

    Lichtenstein, Bernard; Winder, A. A.

    1994-05-01

    This investigation was conducted to determine the feasibility of detecting leaks from underground storage tanks or pipelines using acoustic emissions. An extensive technical literature review established that distinguishable acoustic emission signals will be generated when a storage tank is subjected to deformation stresses. A parametric analysis was performed which indicated that leak rates less than 0.1 gallons per hour can be detected for leak sizes less than 1/32 inch with 99% probability if the transient signals were sensed with an array of accelerometers (cemented to the tank or via acoustic waveguides), each having a sensitivity greater than 250 mv/g over a frequency range of 0.1 to 4000 Hz, and processed in a multi-channel Fourier spectrum analyzer with automatic threshold detection. An acoustic transient or energy release processor could conceivably detect the onset of the leak at the moment of fracture of the tank wall. The primary limitations to realizing reliable and robust acoustic emission monitoring of underground fluid leaks are the various masking noise sources prevalent at Air Force bases, which are attributed to aircraft, motor traffic, pump station operation, and ground tremors.

  14. Simulations of MATROSHKA experiment outside the ISS using PHITS

    NASA Astrophysics Data System (ADS)

    Puchalska, M.; Sihver, L.; Sato, T.; Berger, T.; Reitz, G.

    2012-08-01

    The radiation environment at the altitude of the International Space Station (ISS) is substantially different than anything typically encountered on Earth in both the character of the radiation field and the significantly higher dose rates. Concerns about the biological effects on humans of this highly complex natural radiation field are increasing due to higher amount of astronauts performing long-duration missions onboard the ISS and especially if looking into planned future manned missions to Mars. In order to begin the process of predicting the dose levels seen by the organs of an astronaut, being the prerequisite for radiation risk calculations, it is necessary to understand the character of the radiation environment both in- and outside of the ISS as well as the relevant contributions from the radiation field to the organ doses. In this paper the three-dimensional Monte Carlo Particle and Heavy Ion Transport code System (PHITS) and a voxel-based numerical human model NUNDO (Numerical RANDO) were used to estimate the radiation load of human organs during a long term activity outside the ISS. The baseline measured data was generated with the MATROSHKA-1 (MTR-1) experiment taking place from February 2004 up to October 2005 outside the Russian Zvezda module of the ISS, thereby simulating a long term extravehicular activity (EVA) of an astronaut. The organ absorbed dose values calculated by PHITS for the inner organs are in a good agreement with the experimental data. However, a rather large disagreement was observed for the most outer organs. This disagreement appears to be due to the strong dependence that the thickness of the applied carbon fiber container, acting as the EVA suit of the astronaut, has on the effects caused by the trapped electron (TE) component. The organ dose equivalent values for the deeper organs are a factor of two lower than the experimental data. The detailed reason behind this is still under investigation.

  15. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in

  16. Assessment of RFID Read Accuracy for ISS Water Kit

    NASA Technical Reports Server (NTRS)

    Chu, Andrew

    2011-01-01

    The Space Life Sciences Directorate/Medical Informatics and Health Care Systems Branch (SD4) is assessing the benefits Radio Frequency Identification (RFID) technology for tracking items flown onboard the International Space Station (ISS). As an initial study, the Avionic Systems Division Electromagnetic Systems Branch (EV4) is collaborating with SD4 to affix RFID tags to a water kit supplied by SD4 and studying the read success rate of the tagged items. The tagged water kit inside a Cargo Transfer Bag (CTB) was inventoried using three different RFID technologies, including the Johnson Space Center Building 14 Wireless Habitat Test Bed RFID portal, an RFID hand-held reader being targeted for use on board the ISS, and an RFID enclosure designed and prototyped by EV4.

  17. ISS ECLSS: 3 Years of Logistics for Maintenance

    NASA Technical Reports Server (NTRS)

    Shkedi, Brienne; Thompson, Dean

    2004-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) is designed to be maintainable. During the 3 years since the ISS US Lab became operational, there have been numerous ECLSS Orbital Replacement Units (ORUs) launched and returned to Maintain the ECLSS operation in the US segments. The maintenance logistics have provided tools for maintenance, replaced limited life ORUs and failed ORUs, upgraded ECLSS hardware to improve reliability and placed critical spares onboard prior to need. In most cases, the removed ORUs have been returned for either failure analysis and repair or refurbishment. This paper describes the ECLSS manifesting history and maintenance events and quantifies the numbers of ECLSS items, weights, and volumes.

  18. Modeling Common Cause Failures of Thrusters on ISS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Haught, Megan

    2014-01-01

    This paper discusses the methodology used to model common cause failures of thrusters on the International Space Station (ISS) Visiting Vehicles. The ISS Visiting Vehicles each have as many as 32 thrusters, whose redundancy makes them susceptible to common cause failures. The Global Alpha Model (as described in NUREG/CR-5485) can be used to represent the system common cause contribution, but NUREG/CR-5496 supplies global alpha parameters for groups only up to size six. Because of the large number of redundant thrusters on each vehicle, regression is used to determine parameter values for groups of size larger than six. An additional challenge is that Visiting Vehicle thruster failures must occur in specific combinations in order to fail the propulsion system; not all failure groups of a certain size are critical.

  19. Modeling Common Cause Failures of Thrusters on ISS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Haught, Megan; Duncan, Gary

    2014-01-01

    This paper discusses the methodology used to model common cause failures of thrusters on the International Space Station (ISS) Visiting Vehicles. The ISS Visiting Vehicles each have as many as 32 thrusters, whose redundancy and similar design make them susceptible to common cause failures. The Global Alpha Model (as described in NUREG/CR-5485) can be used to represent the system common cause contribution, but NUREG/CR-5496 supplies global alpha parameters for groups only up to size six. Because of the large number of redundant thrusters on each vehicle, regression is used to determine parameter values for groups of size larger than six. An additional challenge is that Visiting Vehicle thruster failures must occur in specific combinations in order to fail the propulsion system; not all failure groups of a certain size are critical.

  20. Intelligent Leak Detection System

    SciTech Connect

    Mohaghegh, Shahab D.

    2014-10-27

    apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise