Boeing technicians join Node 1 for ISS to PMA-1 in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Boeing technicians join Node 1 for the International Space Station (ISS) with the Pressurized Mating Adapter (PMA)-1 in KSC's Space Station Processing Facility. This PMA, identifiable by its bright red ring, is a cone-shaped connector for the space station's structural building block, known as Node 1. Seen here surrounded by scaffolding, Node 1 will have two PMAs attached, the second of which is scheduled for mating to the node in January 1998. The node and PMAs, which will be the first element of the ISS, are scheduled to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998.
2004-02-03
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
2004-02-03
KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
NASA Technical Reports Server (NTRS)
Williams, David E.
2011-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.
2004-02-03
KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (facing camera) aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
2004-02-03
KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra talks to a technician (off-camera) during Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
2004-02-03
KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
International Space Station (ISS) Nodes 2/3 Thermal Control System Overview and Design
NASA Technical Reports Server (NTRS)
Clanton, Stephen; Croomes, Scott (Technical Monitor)
2002-01-01
The goals of this viewgraph presentation are to: (1) provide general International Space Station (ISS) Node 2 and 3 information; (2) give an overview of the ISS Thermal Control System (TCS) design, including details on the passive TCS and internal and external TCS; (3) give TCS components examples; and (4) describe the thermal and hydraulic analytical tools.
Boeing technicians discuss mating PMA-2 to Node 1 in the SSPF as STS-88 launch preparations continue
NASA Technical Reports Server (NTRS)
1998-01-01
Boeing technicians discuss mating Pressurized Mating Adapter (PMA)-2 to Node 1 of the International Space Station (ISS) in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year, along with PMAs 1 and 2. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements.
Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/Unity
2005-04-17
ISS011-E-05161 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, uses the ISS wet/dry vacuum cleaner assembly to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).
PMA-2 is in the process of being mated to Node 1 in the SSPF as STS-88 launch preparations continue
NASA Technical Reports Server (NTRS)
1998-01-01
Pressurized Mating Adapter (PMA)-2 is in the process of being mated to Node 1 of the International Space Station (ISS) under the supervision of Boeing technicians in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS- 88 later this year, along with PMAs 1 and 2. This PMA is a cone- shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements.
Lu and Kaleri in Node 1/Unity module
2003-10-26
ISS007-E-18035 (26 October 2003) --- Cosmonaut Alexander Y. Kaleri (left), Expedition 8 flight engineer, and astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, hold tools in the Unity node on the International Space Station (ISS). Kaleri represents Rosaviakosmos.
Expedition Seven Science Officer Lu works with IRED hardware in Node 1/Unity
2003-06-23
ISS007-E-08023 (23 June 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, performs maintenance on the Interim Resistive Exercise Device (IRED) Assembly in the Unity node on the International Space Station (ISS).
1998-05-05
Pressurized Mating Adapter (PMA)-2 is in the process of being mated to Node 1 of the International Space Station (ISS) under the supervision of Boeing technicians in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year, along with PMAs 1 and 2. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements
2003-08-27
KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.
NASA Technical Reports Server (NTRS)
Williams, David E.
2004-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system performance can be impacted by operations on ISS. This is especially important for the Temperature and Humidity Control (THC) and for the Fire Detection and Suppression (FDS) subsystems. It is also more important for Node 1 since it has become a convenient area for many crew tasks and for stowing hardware prior to Shuttle arrival. This paper will discuss the current requirements for ECLS keep out zones in Node 1; the issues with stowage in Node 1 during Increment 7 and how they impacted the keep out zone requirements; and the solution during Increment 7 and 8 for maintaining the keep out zones in Node 1.
1997-07-26
International Space Station (ISS) contractors erect access scaffolding around the Pressurized Mating Adapter-1 (PMA-1) for the ISS in KSC’s Space Station Processing Facility. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The white flight cables around PMA-1 will assist in connecting the node to the U.S.-financed, Russian-built Functional Cargo Block, a component that supplies early power and propulsion systems for the station. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998
1997-07-26
International Space Station (ISS) contractors erect access scaffolding around the Pressurized Mating Adapter-1 (PMA-1) for the ISS in KSC’s Space Station Processing Facility. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The white flight cables around PMA-1 will assist in connecting the node to the U.S.-financed, Russian-built Functional Cargo Block, a component that supplies early power and propulsion systems for the station. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998
Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/ Unity
2005-04-17
ISS011-E-05163 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, poses for a photo with the ISS wet/dry vacuum cleaner assembly he used to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).
Horowitz and Sturckow with the ISS logbook in Node 1
2001-08-01
ISS003-E-6185 (August 2001) --- Astronauts Frederick W. (Rick) Sturckow (left), STS-105 pilot, and Scott J. Horowitz, mission commander, add their names to the ships log of visitors in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.
Barry and Forrester with the ISS logbook in Node 1
2001-08-01
ISS003-E-6188 (August 2001) --- Astronauts Daniel T. Barry (left) and Patrick G. Forrester, both STS-105 mission specialists, add their names to the list of International Space Station (ISS) visitors in the ships log in the Unity node. This image was taken with a digital still camera.
NASA Technical Reports Server (NTRS)
Williams, David E.
2009-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS ACS subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
NASA Technical Reports Server (NTRS)
Wise, Stephen A.; Holt, James M.
2002-01-01
The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the systems dynamics was created using an Excel Spreadsheet. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.
NASA Technical Reports Server (NTRS)
Wise, Stephen A.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the system dynamics was created using Excel. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.
International Space Station (ISS)
1997-06-01
This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
2008-12-06
ISS018-E-010645 (6 Dec. 2008) --- Astronaut Michael Fincke, Expedition 18 commander, works on the Multi-User Droplet Combustion Apparatus (MDCA) Chamber Insert Assembly (CIA) in the Harmony node of the International Space Station.
Usachev with IRED hardware in Node 1/Unity module
2001-04-07
ISS002-E-5508 (7 April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander, wears a harness while conducting resistance exercises in the Unity Node 1 on the International Space Station (ISS). The image was recorded with a digital still camera.
2001-04-07
ISS002-E-5511 (07 April 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, pauses from moving through the Node 1 / Unity module of the International Space Station (ISS) to pose for a photograph. This image was recorded with a digital still camera.
2007-11-02
ISS016-E-008034 (2 Nov. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, sleeps in his sleeping bag in the Unity node of the International Space Station while Space Shuttle Discovery is docked with the station.
Krikalev with CPAs in Node 1/Unity CBA
2005-06-21
ISS011-E-09392 (21 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, moves one of the two Control Panel Assemblies (CPA) from the Unity nodes Common Berthing Assembly (CBA) on the International Space Station (ISS).
Usachev with IRED hardware in Node 1/Unity module
2001-04-07
ISS002-E-5507 (07 April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two mission commander, wears a harness while conducting resistance exercises in the Node 1 / Unity module of the International Space Station (ISS). This image was recorded with a digital still camera.
International Space Station (ISS)
2000-09-01
This image of the International Space Station (ISS) was taken during the STS-106 mission. The ISS component nearest the camera is the U.S. built Node 1 or Unity module, which cornected with the Russian built Functional Cargo Block (FGB) or Zarya. The FGB was linked with the Service Module or Zvezda. On the far end is the Russian Progress supply ship.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
Krikalev with CPAs in Node 1/Unity CBA
2005-06-21
ISS011-E-09373 (21 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, prepares to uninstall two of the four Control Panel Assemblies (CPA) from the Unity nodes Common Berthing Assembly (CBA) on the International Space Station (ISS).
Swanson in Node 2 with ACE samples
2014-07-14
ISS040-E-060673 (14 July 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, works with test samples for the Advanced Colloids Experiment (ACE) at a work station in the Harmony node of the International Space Station.
STS-96 Astronauts Adjust Unity Hatch
NASA Technical Reports Server (NTRS)
1999-01-01
Aboard the International Space Station (ISS), astronauts Rick D. Husband and Tamara E. Jernigan adjust the hatch for the U.S. built Unity node. The task was part of an overall effort of seven crew members to prepare the existing portion of the International Space Station (ISS). Launched on May 27, 1999, aboard the Orbiter Discovery, the STS-96 mission was the second ISS assembly flight and the first shuttle mission to dock with the station.
Expedition Six crewmember Budarin with mission patch in Unity /Node 1
2003-05-03
ISS007-E-05246 (3 May 2003) --- Cosmonaut Nikolai M. Budarin, Expedition Six flight engineer, adds his crews patch to the growing collection, in the Unity node, of insignias representing crews who have worked on the International Space Station (ISS). Budarin represents Rosaviakosmos.
International Space Station (ISS)
2001-06-08
Astronaut Susan J. Helms, Expedition Two flight engineer, mounts a video camera onto a bracket in the Russian Zarya or Functional Cargo Block (FGB) of the International Space Station (ISS). Launched by a Russian Proton rocket from the Baikonu Cosmodrome on November 20, 1998, the Unites States-funded and Russian-built Zarya was the first element of the ISS, followed by the U.S. Unity Node.
2003-08-27
KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
ISS Expedition 18 Multi Purpose Logistics Module (MPLM) Interior
2008-11-19
ISS018-E-009225 (18 Nov. 2008) --- Astronaut Shane Kimbrough, STS-126 mission specialist, floats in the Leonardo Multi-Purpose Logistics Module attached to the Earth-facing port of the International Space Station's Harmony node while Space Shuttle Endeavour is docked with the station.
ISS Expedition 18 Multi Purpose Logistics Module (MPLM) Interior
2008-11-19
ISS018-E-009227 (18 Nov. 2008) --- Astronaut Donald Pettit, STS-126 mission specialist, floats in the Leonardo Multi-Purpose Logistics Module attached to the Earth-facing port of the International Space Station's Harmony node while Space Shuttle Endeavour is docked with the station.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-06-06
KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.
2003-06-06
KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.
International Space Station (ISS)
2000-09-01
This image of the International Space Station (ISS) was taken when Space Shuttle Atlantis (STS-106 mission) approached the ISS for docking. At the top is the Russian Progress supply ship that is linked with the Russian built Service Module or Zvezda. The Zvezda is cornected with the Russian built Functional Cargo Block (FGB) or Zarya. The U.S. built Node 1 or Unity module is seen at the bottom.
Forrester is presented with a medal by Voss and Horowitz in Node 1
2001-08-01
ISS003-E-6191 (August 2001) --- Astronauts James S. Voss (left), Expedition Two flight engineer, Patrick G. Forrester, STS-105 mission specialist, and Scott J. Horowitz, mission commander, are photographed in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.
Forrester is presented with a medal by Voss and Horowitz in Node 1
2001-08-01
ISS003-E-6193 (August 2001) --- Astronauts James S. Voss (left), Expedition Two flight engineer, Patrick G. Forrester, STS-105 mission specialist, and Scott J. Horowitz, mission commander, exchange greetings in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.
International Space Station (ISS)
1997-01-01
This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-01-01
This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
2007-11-05
Back dropped by the blackness of space and Earth's horizon is the International Space Station (ISS) as seen from Space Shuttle Discovery as the two spacecraft begin their relative separation. The latest configuration of the ISS includes the Italian-built U.S. Node 2, named Harmony, and the P6 truss segment installed over 11 days of cooperative work onboard the shuttle and station by the STS-120 and Expedition 16 crews. Undocking of the two spacecraft occurred at 4:32 a.m. (CST) on Nov. 5, 2007.
International Space Station (ISS)
2007-11-05
Back dropped by the blueness of Earth is the International Space Station (ISS) as seen from Space Shuttle Discovery as the two spacecraft begin their relative separation. The latest configuration of the ISS includes the Italian-built U.S. Node 2, named Harmony, and the P6 truss segment installed over 11 days of cooperative work onboard the shuttle and station by the STS-120 and Expedition 16 crews. Undocking of the two spacecraft occurred at 4:32 a.m. (CST) on Nov. 5, 2007.
2009-06-08
CAPE CANAVERAL, Fla. – During a media event at NASA's Kennedy Space Center in Florida to showcase the newest section of the International Space Station, the Tranquility node, STS-130 Commander George Zamka speaks to the media and guests. Tranquility will be delivered to the station during space shuttle Endeavour's STS-130 mission, targeted for launch in February 2010. Others present at right of Zamka are Russ Romanella, director of the ISS and Payload Processing Directorate, STS-130 Pilot Terry Virts and Mission Specialists Stephen Robinson and Kathryn Hire, Philippe Deloo, ISS Nodes project manager with the European Space Agency, and Rafael Garcia, ISS Nodes and Express Logistics Carrier project manager with NASA's Johnson Space Center. Managers from NASA, the European Space Agency, Thales Alenia Space and Boeing -- the organizations involved in building and processing the module for flight -- were available for a question-and-answer session during the event. Tranquility will be delivered to the station during space shuttle Endeavour's STS-130 mission, targeted for launch in February 2010. Photo credit: NASA/Jim Grossmann
International Space Station (ISS)
2001-08-12
In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.
Phillips exercises with RED in Node 1/Unity module
2005-05-18
ISS011-E-06404 (18 May 2005) --- Astronaut John L. Phillips, Expedition 11 NASA space station science officer and flight engineer, wearing squat harness pads, exercises using the Interim Resistive Exercise Device (IRED) equipment in the Unity node of the International Space Station.
2009-06-08
CAPE CANAVERAL, Fla. – During a media event in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida to showcase the newest section of the International Space Station, the Tranquility node, astronauts who will deliver the node on the STS-130 mission were available for questions. From left are Pilot Terry Virts and Mission Specialists Stephen Robinson and Kathryn Hire. At right are other guests, Philippe Deloo, ISS Nodes project manager with the European Space Agency, and Rafael Garcia, ISS Nodes and Express Logistics Carrier project manager with NASA's Johnson Space Center. Managers from NASA, the European Space Agency, Thales Alenia Space and Boeing -- the organizations involved in building and processing the module for flight -- were available for a question-and-answer session during the event. Tranquility is a pressurized module that will provide room for many of the station's life support systems. Photo credit: NASA/Jim Grossmann
Astronaut Susan Helms in the ISS Unity Node
NASA Technical Reports Server (NTRS)
2001-01-01
In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company, shows Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS), with its hatch door installed. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Gift exchange between crews in ISS Node 1/Unity
2001-08-12
STS105-E-5152 (12 August 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity node aboard the International Space Station (ISS). The photo was taken with a digital still camera by one of the STS-105 crew members currently visiting the ISS. Helms will accompany the shuttle crew back to Earth after having spent five months with two crew mates aboard the orbital outpost.
2011-08-17
ISS028-E-032133 (17 Aug. 2011) --- Russian cosmonaut Sergei Volkov, Expedition 28 flight engineer, is pictured in the Unity node of the International Space Station while filming an installment of the ?The Orbital Station. Life on Orbit? video, intended for a documentary film to be prepared by the Roscosmos TV studio for the ?Kultura? State TV channel.
Fincke watches apples and a tennis ball float in the Service Module during Expedition 9
2004-08-15
ISS009-E-18563 (15 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, is pictured near fresh fruit floating freely in the Unity node of the International Space Station (ISS).
Tani in the U.S. Laboratory during Node 2/PMA-2 Relocation
2007-11-14
ISS016-E-011253 (14 Nov. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, works the controls of the space station's robotic Canadarm2 in the Destiny laboratory of the International Space Station, during the relocation of the Harmony node and Pressurized Mating Adapter 2 (PMA2) from the Unity node to the front of Destiny.
The International Space Station Habitat
NASA Technical Reports Server (NTRS)
Watson, Patricia Mendoza; Engle, Mike
2003-01-01
The International Space Station (ISS) is an engineering project unlike any other. The vehicle is inhabited and operational as construction goes on. The habitability resources available to the crew are the crew sleep quarters, the galley, the waste and hygiene compartment, and exercise equipment. These items are mainly in the Russian Service Module and their placement is awkward for the crew to deal with ISS assembly will continue with the truss build and the addition of International Partner Laboratories. Also, Node 2 and 3 will be added. The Node 2 module will provide additional stowage volume and room for more crew sleep quarters. The Node 3 module will provide additional Environmental Control and Life Support Capability. The purpose of the ISS is to perform research and a major area of emphasis is the effects of long duration space flight on humans, a result of this research they will determine what are the habitability requirements for long duration space flight.
Whitson and Nespoli open Node 2 hatch
2007-10-27
ISS016-E-006856 (27 Oct. 2007) --- NASA astronaut Peggy A. Whitson (left), Expedition 16 commander, and European Space Agency (ESA) astronaut Paolo Nespoli, STS-120 mission specialist, open the hatch to the Harmony node -- the newest additional to the International Space Station -- while Space Shuttle Discovery is docked with the station.
Lopez-Alegria adds patch to bulkhead in Node 1 / Unity module
2007-04-17
ISS014-E-19541 (17 April 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, adds the Expedition 14 patch to the Unity node's growing collection of insignias representing crews who have lived and worked on the International Space Station.
STS-129 Crew Members in the Node 2
2009-11-20
ISS021-E-032172 (20 Nov. 2009) --- NASA astronauts Charles O. Hobaugh (center), STS-129 commander; along with Leland Melvin (left) and Robert L. Satcher Jr., both mission specialists, are pictured in the Harmony node of the International Space Station while space shuttle Atlantis remains docked with the station.
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
2011-08-17
ISS028-E-032136 (17 Aug. 2011) --- Russian cosmonaut Sergei Volkov, Expedition 28 flight engineer, is pictured floating freely in the Unity node of the International Space Station while filming an installment of the ?The Orbital Station. Life on Orbit? video, intended for a documentary film to be prepared by the Roscosmos TV studio for the ?Kultura? State TV channel.
2009-06-30
ISS020-E-016151 (30 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, enters data in a computer in the Harmony node of the International Space Station.
International Space Station Environmental Control and Life Support System Status: 2002-2003
NASA Technical Reports Server (NTRS)
Wiliams, David E.; Lewis, John F.; Gentry, Gregory
2003-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2002 and March 2003. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements with Node 3 just completing its final design review so that it can proceed towards manufacturing and the continued manufacturing of the regenerative ECLS equipment that will be integrated into Node 3.
2001-02-10
ISS01-E-5325 (10 February 2001) --- Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly attached Destiny laboratory aboard the International Space Station (ISS). The picture was recorded with a digital still camera on the day the hatch was initially opened.
Voss retrieves a small tool from a tool kit in ISS Node 1/Unity
2001-08-13
STS105-E-5175 (13 August 2001) --- Astronaut James S. Voss, retrieves a small tool from a tool case in the U.S.-built Unity node aboard the International Space Station (ISS). The Expedition Two flight engineer is only days away from returning to Earth following five months aboard the orbital outpost. The image was recorded with a digital still camera.
Tyurin with guitar in Node 1 / Unity module
2007-01-19
ISS014-E-12466 (19 Jan. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, plays a guitar in the Unity node of the International Space Station.
International Space Station USOS Crew Quarters On-orbit vs Design Performance Comparison
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.
2008-01-01
The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The CQs provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The racksized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to the Node is described. Additionally, the comparison of on-orbit to original design performance is outlined for the following key operational parameters: interior acoustic performance, air flow rate, temperature rise, and crewmember feedback on provisioning and restraint layout.
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. At center left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. On the left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.
1998-05-22
KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan
1998-05-22
KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan
2003-06-03
KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility lifts the U.S. Node 2 out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.
Simple Solutions for Space Station Audio Problems
NASA Technical Reports Server (NTRS)
Wood, Eric
2016-01-01
Throughout this summer, a number of different projects were supported relating to various NASA programs, including the International Space Station (ISS) and Orion. The primary project that was worked on was designing and testing an acoustic diverter which could be used on the ISS to increase sound pressure levels in Node 1, a module that does not have any Audio Terminal Units (ATUs) inside it. This acoustic diverter is not intended to be a permanent solution to providing audio to Node 1; it is simply intended to improve conditions while more permanent solutions are under development. One of the most exciting aspects of this project is that the acoustic diverter is designed to be 3D printed on the ISS, using the 3D printer that was set up earlier this year. Because of this, no new hardware needs to be sent up to the station, and no extensive hardware testing needs to be performed on the ground before sending it to the station. Instead, the 3D part file can simply be uploaded to the station's 3D printer, where the diverter will be made.
2011-04-15
ISS027-E-013097 (15 April 2011) --- NASA astronauts Ron Garan and Cady Coleman, both Expedition 27 flight engineers, work with extravehicular activity (EVA) grease guns in the Unity node of the International Space Station.
2011-04-15
ISS027-E-013096 (15 April 2011) --- NASA astronauts Ron Garan and Cady Coleman, both Expedition 27 flight engineers, work with extravehicular activity (EVA) grease guns in the Unity node of the International Space Station.
Parmitano with food packets in Node 1
2013-06-24
ISS036-E-019775 (24 June 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, is pictured near food packages floating freely in the Unity node of the International Space Station.
Parmitano with food packets in Node 1
2013-06-24
ISS036-E-019772 (24 June 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, is pictured near food packages floating freely in the Unity node of the International Space Station.
2013-06-03
ISS036-E-005939 (3 June 2013) --- NASA astronaut Karen Nyberg, Expedition 36 flight engineer, gets a workout on the Advanced Resistive Exercise Device (ARED) in the Tranquility node of the International Space Station.
Ryazanskiy and Nyberg in Node 1
2013-10-02
ISS037-E-005750 (2 Oct. 2013) --- NASA astronaut Karen Nyberg and Russian cosmonaut Sergey Ryazanskiy, both Expedition 37 flight engineers, look at a computer monitor in the Unity node of the International Space Station.
SPHERES ultrasound beacon tester floats in Node 1 during Expedition 8
2004-03-24
ISS008-E-19132 (24 March 2004) --- The Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester floats in the Unity node of the International Space Station.
2014-06-17
ISS040-E-012306 (16 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts an Extravehicular Mobility Unit (EMU) long life battery (LLB) auto-cycle initiate in the Harmony node of the International Space Station.
2011-08-27
ISS028-E-035028 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims astronaut Ron Garan's hair in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.
2011-08-27
ISS028-E-035053 (27 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, trims astronaut Mike Fossum's hair in the Tranquility node of the International Space Station. Garan used hair clippers fashioned with a vacuum device to garner freshly cut hair.
NASA Technical Reports Server (NTRS)
Williams, David E.
2007-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
ISS Node-1 and PMA-1 rotated in KSC's SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
The International Space Station's Node 1 and Pressurized Mating Adapter-1 (PMA-1) are rotated by workers in KSC's Space Station Processing Facility. The node is rotated to provide access to different areas of the flight element for processing. Here, the node is rotated to provide access for the installation of heat pipe radiators and a flight computer. The node is scheduled to launch into space on STS-88, slated for a July 9 liftoff at 1:11 p.m. from KSC's Launch Pad 39B.
2009-10-05
ISS020-E-045314 (5 Oct. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer and Expedition 21 commander, uses a communication system near a computer in the Harmony node of the International Space Station.
Wiseman in hatch between U.S. Lab and Node 1
2014-05-30
ISS040-E-006564 (30 May 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, floats through the hatch between the Destiny laboratory and the Unity node of the International Space Station.
Gerst in hatch between Node 2 and JEM
2014-05-29
ISS040-E-006038 (30 May 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, floats through the hatch between the Kibo laboratory and the Harmony node of the International Space Station.
Gerst in hatch between Node 2 and JEM
2014-05-29
ISS040-E-006037 (30 May 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, floats through the hatch between the Kibo laboratory and the Harmony node of the International Space Station.
Gerst in hatch between Node 2 and JEM
2014-05-29
ISS040-E-006039 (30 May 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, floats through the hatch between the Kibo laboratory and the Harmony node of the International Space Station.
Wakata with Food packets in Node 1
2009-06-03
ISS020-E-006349 (3 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, holds chopsticks near two food containers floating freely in Unity node of the International Space Station.
2014-06-01
ISS040-E-006339 (1 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2014-06-01
ISS040-E-006343 (1 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
Ivanishin at the ARED in the Node 3
2012-01-02
ISS030-E-032246 (2 Jan. 2012) --- Russian cosmonaut Anatoly Ivanishin, Expedition 30 flight engineer, is pictured near the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2013-10-04
ISS037-E-006528 (4 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, holds a light fixture as he enters data into a computer in the Harmony node of the International Space Station.
2009-06-01
ISS020-E-006212 (1 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata (left) and NASA astronaut Michael Barratt, both Expedition 20 flight engineers, work in the Harmony node of the International Space Station.
2009-06-14
ISS020-E-008964 (14 June 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, work in the Harmony node of the International Space Station.
2009-06-14
ISS020-E-008958 (14 June 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, work in the Harmony node of the International Space Station.
2009-06-14
ISS020-E-008956 (14 June 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, work in the Harmony node of the International Space Station.
Noguchi uses laptop computer in the Node 2 during Expedition 22
2010-01-19
ISS022-E-030641 (19 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, uses a computer in the Harmony node of the International Space Station.
2012-10-03
ISS033-E-009199 (3 Oct. 2012) --- NASA astronaut Sunita Williams, Expedition 33 commander, conducts the continuing preventive inspection and cleaning of accessible Atmosphere Revitalization (AR) system bacteria filters in the Tranquility node of the International Space Station.
2012-10-14
ISS033-E-012429 (14 Oct. 2012) --- Attached to the Earth-facing side of the Harmony node, the SpaceX Dragon commercial cargo craft is featured in this image photographed by an Expedition 33 crew member on the International Space Station. Dragon was berthed to Harmony on Oct. 10 and is scheduled to spend 18 days attached to the station.
2012-10-14
ISS033-E-012422 (14 Oct. 2012) --- Attached to the Earth-facing side of the Harmony node, the SpaceX Dragon commercial cargo craft is featured in this image photographed by an Expedition 33 crew member on the International Space Station. Dragon was berthed to Harmony on Oct. 10 and is scheduled to spend 18 days attached to the station.
2012-10-14
ISS033-E-012424 (14 Oct. 2012) --- Attached to the Earth-facing side of the Harmony node, the SpaceX Dragon commercial cargo craft is featured in this image photographed by an Expedition 33 crew member on the International Space Station. Dragon was berthed to Harmony on Oct. 10 and is scheduled to spend 18 days attached to the station.
Crewmembers in the Node 1/Unity during Expedition 13
2006-07-29
ISS013-E-62373 (29 July 2006) --- Astronaut Jeffrey N. Williams, Expedition 13 NASA space station science officer and flight engineer, trims astronaut Thomas Reiter's hair in the Unity node of the International Space Station. Williams used hair clippers fashioned with a vacuum device to garner freshly cut hair. Reiter, flight engineer, represents the European Space Agency (ESA).
Exterior view of the ISS taken during EVA-3
2011-05-25
ISS028-E-005416 (25 May 2011) --- The forward section of the space shuttle Endeavour is pictured with two components of the International Space Station (ISS) -- the Harmony node (left) and the European Space Agency's Columbus laboratory. Nine astronauts and cosmonauts continue to work inside the shirt-sleeve environment of the ISS and preparing for the final of four spacewalks on May 26.
Chamitoff plays chess in the Node 2 during Expedition 17
2008-07-19
ISS017-E-011577 (19 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, ponders his next move as he plays a game of chess in the Harmony node of the International Space Station.
Food Stowage in Node 2 Harmony
2009-04-04
ISS018-E-044614 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, is pictured near food and drink containers floating freely in the Harmony node of the International Space Station.
FE Furukawa poses for a photo in the Node 3
2011-07-31
ISS028-E-019583 (31 July 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, holds hair clippers attached to a vacuum cleaner in the Tranquility node of the International Space Station.
2014-05-30
ISS040-E-006102 (31 May 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2014-05-30
ISS040-E-006099 (30 May 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
Node 1 taken during Expedition 26
2010-11-26
ISS026-E-005318 (26 Nov. 2010) --- A fish-eye lens attached to an electronic still camera was used by an Expedition 26 crew member to capture this image of the Unity node of the International Space Station.
Node 1 taken during Expedition 26
2010-11-26
ISS026-E-005316 (26 Nov. 2010) --- A fish-eye lens attached to an electronic still camera was used by an Expedition 26 crew member to capture this image of the Unity node of the International Space Station.
Robinson and Camarda in Node 1 / Unity module
2005-07-30
ISS011-E-11357 (30 July 2005) --- Astronauts Stephen K. Robinson and Charles J. Camarda, STS-114 mission specialists, share a light moment while Robinson plays a guitar in the Unity node of the International Space Station.
NASA Technical Reports Server (NTRS)
Holt, James M.; Clanton, Stephen E.
1999-01-01
Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flowrates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effects resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.
NASA Technical Reports Server (NTRS)
Holt, James M.; Clanton, Stephen E.
2001-01-01
Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flow rates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA85/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effect resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.
2003-06-03
KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility is attached to the U.S. Node 2 to lift it out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.
Lopez-Alegria gives Tyurin a haircut in the Node 1 /Unity module
2007-01-11
ISS014-E-11687 (11 Jan. 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, trims cosmonaut Mikhail Tyurin's hair in the Unity node of the International Space Station. Lopez-Alegria used hair clippers fashioned with a vacuum device to garner freshly cut hair. Tyurin, flight engineer, represents Russia's Federal Space Agency.
Wakata uses Advanced Resistive Exercise Device (ARED) in Node 1 Unity
2009-03-22
ISS018-E-042651 (22 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Unity node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.
Kotov and Williams with SSRMS arm training session in Node 1 / Unity module
2007-04-18
ISS014-E-19587 (17 April 2007) --- Cosmonaut Oleg V. Kotov (foreground), Expedition 15 flight engineer representing Russia's Federal Space Agency, and astronaut Sunita L. Williams, flight engineer, participate in a Space Station Remote Manipulator System (SSRMS) training session using the Robotic Onboard Trainer (ROBOT) simulator in the Unity node of the International Space Station.
MS Malenchenko poses for a photo in Node 1 during STS-106
2000-09-17
STS106-319-022 (8-20 September 2000)--- Cosmonaut Yuri I. Malenchenko, mission specialist representing the Russian Aviation and Space Agency, works aboard the U.S.-built Unity node on the International Space Station (ISS).
Kuipers watches food and drink packets float in the Node 1
2012-01-30
ISS030-E-166649 (30 Jan. 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, is pictured near food and beverage packages floating freely in the Unity node of the International Space Station.
Williams in Node 1 / Unity module
2007-03-01
ISS014-E-15830 (4 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with a portion of the Treadmill Vibration Isolation System (TVIS) during in-flight maintenance (IFM) in the Unity node of the International Space Station.
Marshburn updates software on the WHC UPA in the Node 3
2013-01-17
ISS034-E-031133 (17 Jan. 2013) --- NASA astronaut Tom Marshburn, Expedition 34 flight engineer, updates software on the Waste and Hygiene Compartment?s Urine Processor Assembly in the Tranquility node of the International Space Station.
Marshburn updates software on the WHC UPA in the Node 3
2013-01-17
ISS034-E-031130 (17 Jan. 2013) --- NASA astronaut Tom Marshburn, Expedition 34 flight engineer, updates software on the Waste and Hygiene Compartment?s Urine Processor Assembly in the Tranquility node of the International Space Station.
2014-05-31
ISS040-E-006091 (31 May 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, equipped with a bungee harness, exercises on the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) in the Tranquility node of the International Space Station.
International Space Station (ISS)
1997-07-20
Photograph shows the International Space Station Laboratory Module under fabrication at Marshall Space Flight Center (MSFC), Building 4708 West High Bay. Although management of the U.S. elements for the Station were consolidated in 1994, module and node development continued at MSFC by Boeing Company, the prime contractor for the Space Station.
The Soyuz Taxi crew pose with the ISS ship log in Node 1 during Expedition Three
2001-10-23
ISS003-E-7084 (23-31 October 2001) --- The Soyuz Taxi crewmembers, Flight Engineer Konstantin Kozeev (left), Commander Victor Afanasyev and French Flight Engineer Claudie Haignere add their names to the list of the International Space Station (ISS) visitors in the ships log in the Unity node. Afanasyev and Kozeev represent Rosaviakosmos, and Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.
Unity with PMA-2 attached awaits further processing in the SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.
Unity with PMA-2 attached awaits further processing in the SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.- funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.
1998-05-22
KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan
2014-02-18
ISS038-E-053780 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a Microbial Air Sampler to collect air samples in the Unity node of the International Space Station. These air samples will be incubated for five days and tested for signs of microbial contamination.
2011-08-27
ISS028-E-035074 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims the hair of Japan Aerospace Exploration Agency astronaut Satoshi Furukawa in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.
2011-08-27
ISS028-E-035073 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims the hair of Japan Aerospace Exploration Agency astronaut Satoshi Furukawa in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.
2011-08-27
ISS028-E-035071 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims the hair of Japan Aerospace Exploration Agency astronaut Satoshi Furukawa in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.
WA1 Antenna assembly cables and connector
2002-08-06
ISS005-E-08718 (6 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, holds one of the two amateur radio antennas in the Unity node on the International Space Station (ISS). The antennas will be installed during a spacewalk scheduled for August 22, 2002.
International Space Station Temperature and Humidity Control Subsystem Verification for Node 1
NASA Technical Reports Server (NTRS)
Williams, David E.
2007-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.
Haignere and Culbertson pose in Node 1 during Expedition Three
2001-10-23
ISS003-E-7061 (23-31 October 2001) --- Astronaut Frank L. Culbertson, Jr. (right), Expedition Three mission commander, shakes hands with French Flight Engineer Claudie Haignere of the Soyuz Taxi crew, in the Unity node on the International Space Station (ISS). Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.
Wiseman in hatch between U.S. Lab and Node 1
2014-05-30
ISS040-E-006565 (30 May 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, holds a beverage container as he floats through the hatch between the Destiny laboratory and the Unity node of the International Space Station.
Wakata with water bubble in Node 2
2009-06-16
ISS020-E-011077 (16 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, squeezes a water bubble out of his beverage container, showing his image refracted, in the Harmony node of the International Space Station.
Wakata with water bubble in Node 2
2009-06-16
ISS020-E-011068 (16 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, squeezes a water bubble out of his beverage container, showing his image refracted, in the Harmony node of the International Space Station.
Ford watches a water bubble float in the Node 1
2013-01-21
ISS034-E-031855 (21 Jan. 2013) --- NASA astronaut Kevin Ford, Expedition 34 commander, watches a water bubble float freely between him and the camera, showing his image refracted, in the Unity node of the International Space Station.
Ivanishin trims his hair in the Node 3
2011-12-18
ISS030-E-012662 (18 Dec. 2011) --- Russian cosmonaut Anatoly Ivanishin, Expedition 30 flight engineer, trims his hair in the Tranquility node of the International Space Station. Ivanishin used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Burbank performs in-flight maintenance on the WRS-2 in the Node 3
2012-01-28
ISS030-E-051116 (28 Jan. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, performs in-flight maintenance on the Water Recovery System 2 (WRS-2) in the Tranquility node of the International Space Station.
Reiter conducts EVA tool config in Node 1 / Unity module
2006-11-16
ISS014-E-08055 (16 Nov. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, takes inventory of hardware during an Information Management System (IMS) update in the Unity node of the International Space Station.
2014-02-22
ISS038-E-054117 (22 Feb. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, trims the hair of NASA astronaut Rick Mastracchio, flight engineer, in the Unity node of the International Space Station. Wakata used hair clippers fashioned with a vacuum device to garner freshly cut hair.
2014-02-22
ISS038-E-054116 (22 Feb. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, trims the hair of NASA astronaut Rick Mastracchio, flight engineer, in the Unity node of the International Space Station. Wakata used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Lopez-Alegria adds patch to collection in Node 1 / Unity module
2007-04-17
ISS014-E-19545 (17 April 2007) --- Astronauts Michael E. Lopez-Alegria (right), Expedition 14 commander and NASA space station science officer; Sunita L. Williams, flight engineer; and cosmonaut Mikhail Tyurin (left), flight engineer representing Russia's Federal Space Agency, add the Expedition 14 patch to the Unity node's growing collection of insignias representing crews who have lived and worked on the International Space Station.
Calibration of International Space Station (ISS) Node 1 Vibro-Acoustic Model
NASA Technical Reports Server (NTRS)
Zhang, Weiguo; Raveendra, Ravi
2014-01-01
Reported here is the ability of utilizing the Energy Finite Element Method (E-FEM) to predict the vibro-acoustic sound fields within the International Space Station (ISS) Node 1 and to compare the results with actual measurements of leak sounds made by a one atmosphere to vacuum leak through a small hole in the pressure wall of the Node 1 STA module during its period of storage at Stennis Space Center (SSC). While the E-FEM method represents a reverberant sound field calculation, of importance to this application is the requirement to also handle the direct field effect of the sound generation. It was also important to be able to compute the sound fields in the ultrasonic frequency range. This report demonstrates the capability of this technology as applied to this type of application.
Padalka holds packages of food unloaded from the Progress 15P vehicle during Expedition 9
2004-08-15
ISS009-E-18558 (15 August 2004) --- Cosmonaut Gennady I. Padalka, Expedition 9 commander representing Russia's Federal Space Agency, holds packages of food, as two apples float freely near him, in the Unity node of the International Space Station (ISS). The food was recently unloaded from the Progress 15 supply vehicle docked to the Station. The functional cargo block (FGB) or Zarya hatchway is visible in the background.
NASA Technical Reports Server (NTRS)
Clanton, Stephen E.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
A challenging part of International Space Station (ISS) thermal control design is the ability to incorporate design changes into an integrated system without negatively impacting performance. The challenge presents itself in that the typical ISS Internal Active Thermal Control System (IATCS) consists of an integrated hardware/software system that provides active coolant resources to a variety of users. Software algorithms control the IATCS to specific temperatures, flow rates, and pressure differentials in order to meet the user-defined requirements. What may seem to be small design changes imposed on the system may in fact result in system instability or the temporary inability to meet user requirements. The purpose of this paper is to provide a brief description of the solution process and analyses used to implement one such design change that required the incorporation of an automatic coolant bypass in the ISS Node 2 element.
Wakata with water bubble in Node 2
2009-06-16
ISS020-E-011082 (16 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Harmony node of the International Space Station.
Kuipers trims his hair in the Node 3
2011-12-30
ISS030-E-033523 (30 Dec. 2011) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, trims his hair in the Tranquility node of the International Space Station. Kuipers used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Whitson gives Tani a haircut in Node 2
2007-12-01
ISS016-E-014192 (1 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, trims astronaut Daniel Tani's hair in the Harmony node of the International Space Station. Whitson used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Whitson gives Tani a haircut in Node 2
2007-12-01
ISS016-E-014193 (1 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, trims astronaut Daniel Tani's hair in the Harmony node of the International Space Station. Whitson used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Kuipers trims his hair in the Node 3
2011-12-30
ISS030-E-033548 (30 Dec. 2011) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, trims his hair in the Tranquility node of the International Space Station. Kuipers used hair clippers fashioned with a vacuum device to garner freshly cut hair.
2012-10-14
ISS033-E-013091 (14 Oct. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, holds a computer attached to a stand in the Harmony node of the International Space Station. A signed poster of SpaceX personnel floats freely at upper left.
2012-10-14
ISS033-E-013092 (14 Oct. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, holds a computer attached to a stand in the Harmony node of the International Space Station. A signed poster of SpaceX personnel floats freely at upper left.
Burbank uses ARED in the Node 3
2011-12-18
ISS030-E-012727 (18 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Tranquility node of the International Space Station.
Burbank uses ARED in the Node 3
2011-12-18
ISS030-E-012724 (18 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Tranquility node of the International Space Station.
Burbank uses ARED in the Node 3
2011-12-18
ISS030-E-012725 (18 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Tranquility node of the International Space Station.
Wakata exercises with Advanced Resistive Exercise Device (ARED) in Node 1 Unity
2009-04-04
ISS018-E-044585 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
Wakata exercises with Advanced Resistive Exercise Device (ARED) in Node 1 Unity
2009-04-04
ISS018-E-044576 (4 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
International Space Station USOS Waste and Hygiene Compartment Development
NASA Technical Reports Server (NTRS)
Link, Dwight E., Jr.; Broyan, James Lee, Jr.; Gelmis, Karen; Philistine, Cynthia; Balistreri, Steven
2007-01-01
The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. Additional hardware is planned for the United States Operational Segment (USOS) to support expansion of the crew to six person capability. The additional hardware will be integrated in an ISS standard equipment rack structure that was planned to be installed in the Node 3 element; however, the ISS Program Office recently directed implementation of the rack, or Waste and Hygiene Compartment (WHC), into the U.S. Laboratory element to provide early operational capability. In this configuration, preserved urine from the WHC waste collection system can be processed by the Urine Processor Assembly (UPA) in either the U.S. Lab or Node 3 to recover water for crew consumption or oxygen production. The human waste collection hardware is derived from the Service Module system and is provided by RSC-Energia. This paper describes the concepts, design, and integration of the WHC waste collection hardware into the USOS including integration with U.S. Lab and Node 3 systems.
2013-10-28
ISS037-E-021962 (28 Oct. 2013) --- NASA astronaut Michael Hopkins, Expedition 37 flight engineer, performs routine in-flight maintenance within the Carbon Dioxide Removal Assembly in the International Space Station?s Tranquility node. This device removes carbon dioxide from the station?s atmosphere and is part of the station?s Environmental Control and Life Support System that provides clean water and air to the crew.
WA1 Antenna assembly cables and connector
2002-08-06
ISS005-E-08721 (6 August 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, holds one of the two amateur radio antennas in the Unity node on the International Space Station (ISS). The antennas will be installed during a spacewalk scheduled for August 22, 2002. Korzun represents Rosaviakosmos.
Tyurin packs the docking probe in Node 1 during Expedition Three
2001-09-17
ISS003-E-5634 (17 September 2001) --- Cosmonaut Mikhail Tyurin, Expedition Three flight engineer, packs the docking probe in a stowage bag in Unity. The docking probe successfully guided the arrival of the Russian-built Pirs docking compartment to the International Space Station (ISS). Tyurin represents Rosaviakosmos.
Horowitz adheres a STS-105 mission logo to a Node 1 panel
2001-08-01
ISS003-E-6189 (August 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, adds the STS-105 crew patch to the growing collection of those representing Shuttle crews who have worked on the International Space Station (ISS). This image was taken with a digital still camera.
Managing Complexity - Developing the Node Control Software For The International Space Station
NASA Technical Reports Server (NTRS)
Wood, Donald B.
2000-01-01
On December 4th, 1998 at 3:36 AM STS-88 (the space shuttle Endeavor) was launched with the "Node 1 Unity Module" in its payload bay. After working on the Space Station program for a very long time, that launch was one of the most beautiful sights I had ever seen! As the Shuttle proceeded to rendezvous with the Russian American module know as Zarya, I returned to Houston quickly to start monitoring the activation of the software I had spent the last 3 years working on. The FGB module (also known as "Zarya"), was grappled by the shuttle robotic arm, and connected to the Unity module. Crewmembers then hooked up the power and data connections between Zarya and Unity. On December 7th, 1998 at 9:49 PM CST the Node Control Software was activated. On December 15th, 1998, the Node-l/Zarya "cornerstone" of the International Space Station was left on-orbit. The Node Control Software (NCS) is the first software flown by NASA for the International Space Station (ISS). The ISS Program is considered the most complex international engineering effort ever undertaken. At last count some 18 countries are active partners in this global venture. NCS has performed all of its intended functions on orbit, over 200 miles above us. I'll be describing how we built the NCS software.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
Crew poses near the Node 1/Unity insignia collection during Expedition 13
2006-09-04
ISS013-E-75815 (4 Sept. 2006) --- Astronaut Jeffrey N. Williams (left), Expedition 13 NASA space station science officer and flight engineer; European Space Agency (ESA) astronaut Thomas Reiter, flight engineer; and cosmonaut Pavel V. Vinogradov, commander representing Russia's Federal Space Agency, pose for a photo near the Unity node's growing collection of insignias representing crews who have lived and worked on the International Space Station.
Hadfield watches a water bubble float freely in the Node 1
2013-01-21
ISS034-E-031694 (21 Jan. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Unity node of the International Space Station.
Hadfield watches a water bubble float freely in the Node 1
2013-01-21
ISS034-E-031695 (21 Jan. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Unity node of the International Space Station.
Creamer gives Skvortsov a Haircut in Node 2
2010-05-09
ISS023-E-036484 (9 May 2010) --- NASA astronaut T.J. Creamer, Expedition 23 flight engineer, trims Russian cosmonaut Alexander Skvortsov's hair in the Harmony node of the International Space Station. Creamer used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Creamer gives Skvortsov a Haircut in Node 2
2010-05-09
ISS023-E-036485 (9 May 2010) --- NASA astronaut T.J. Creamer, Expedition 23 flight engineer, trims Russian cosmonaut Alexander Skvortsov's hair in the Harmony node of the International Space Station. Creamer used hair clippers fashioned with a vacuum device to garner freshly cut hair.
2010-10-11
ISS025-E-007052 (12 Oct. 2010) --- NASA astronaut Scott Kelly, Expedition 25 flight engineer, is pictured inside the Unity node onboard the International Space Station some three days after his arrival and that of two crewmates to bring the total population on the orbital outpost to six.
Marshburn gives Vinogradov a haircut in Node 1
2013-04-28
ISS035-E-030128 (28 April 2013) --- Most of the six Expedition 35 crew members got haircuts on April 28 in the Unity node of the Earth-orbiting International Space Station. Here, NASA astronaut Tom Marshburn trims the head of Russian cosmonaut Pavel Vinogradov.
Krikalev with mission patch in Node 1 / Unity module
2005-06-21
ISS011-E-09363 (21 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, adds the Expedition 11 patch to the Unity nodes growing collection of insignias representing crews who have worked on the international space station.
International Space Station (ISS)
2001-02-10
Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.
Hopkins installs wire harnesses
2013-11-24
ISS038-E-008291 (24 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, installs wire harnesses in the International Space Station?s Harmony node to support the installation of Ethernet video cables for the station?s local area network. These new cables will provide Ethernet connectivity to the visiting vehicles that dock to Harmony?s Earth-facing port.
Burbank trims Shkaplero's hair in the Node 3
2011-12-18
ISS030-E-012660 (18 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, trims the hair of Russian cosmonaut Anton Shkaplerov, flight engineer, in the Tranquility node of the International Space Station. Burbank used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Burbank trims Shkaplerov's hair in the Node 3
2012-03-18
ISS030-E-161707 (18 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, trims the hair of Russian cosmonaut Anton Shkaplerov, flight engineer, in the Tranquility node of the International Space Station. Burbank used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Shkaplerov trims Burbank's hair in the Node 3
2011-12-18
ISS030-E-012655 (18 Dec. 2011) --- Russian cosmonaut Anton Shkaplerov, Expedition 30 flight engineer, trims the hair of NASA astronaut Dan Burbank, commander, in the Tranquility node of the International Space Station. Shkaplerov used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Whitson gives Tani a haircut in Node 2
2007-12-30
ISS016-E-019457 (30 Dec. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, trims his hair in the Harmony node of the International Space Station. Tani used hair clippers fashioned with a vacuum device to garner freshly cut hair. Astronaut Peggy Whitson, commander, assisted Tani.
Tani Exercises on the RED in Node 1
2008-02-06
ISS016-E-027909 (6 Feb. 2008) --- Astronaut Daniel Tani, Expedition 16 flight engineer, uses the short bar for the Interim Resistive Exercise Device (IRED) to perform upper body strengthening pull-ups. The IRED hardware is located in the Unity node of the International Space Station.
Marshburn gives Misurkin a haircut in Node 1
2013-04-28
ISS035-E-030120 (28 April 2013) --- Most of the six Expedition 35 crew members got haircuts on April 28 in the Unity node of the Earth-orbiting International Space Station. Here, NASA astronaut Tom Marshburn prepares to trim the head of Russian cosmonaut Alexander Misurkin.
Marshburn gives Cassidy a haircut in Node 1
2013-04-28
ISS035-E-030120 (28 April 2013) --- Most of the six Expedition 35 crew members got haircuts on April 28 in the Unity node of the Earth-orbiting International Space Station. Here, NASA astronaut Tom Marshburn prepares to trim the head of Russian cosmonaut Alexander Misurkin.
Swanson, Wiseman and Gerst in Node 2
2014-05-29
ISS040-E-006033 (29 May 2014) --- NASA astronaut Steve Swanson (center), Expedition 40 commander; along with European Space Agency astronaut Alexander Gerst (left) and NASA astronaut Reid Wiseman, both flight engineers, give a “thumbs up” signal in the Harmony node of the International Space Station.
2009-06-10
ISS020-E-008162 (10 June 2009) --- Backdropped by Earth?s horizon and the blackness of space, a portion of the International Space Station and a docked Soyuz spacecraft are featured in this image photographed by an Expedition 20 crew member aboard the station.
2014-08-04
ISS040-E-088730 (4 Aug. 2014) --- In the International Space Station?s Harmony node, NASA astronauts Steve Swanson (foreground), Expedition 40 commander; and Reid Wiseman, flight engineer, perform a portable onboard computer Dynamic Onboard Ubiquitous Graphics (DOUG) software review in preparation for two upcoming U.S. spacewalks.
International Space Station (ISS)
1998-11-08
Designed by the STS-88 crew members, this patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task was to assemble the cornerstone of the Space Station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the Space Shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future.
NASA Technical Reports Server (NTRS)
Williams, David E.
2010-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.
NASA Technical Reports Server (NTRS)
Williams, David E.
2011-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-070943 (25 May 2012) --- Backdropped against the Namib Desert on the Atlantic coast of Namibia, the SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station's Harmony node at 12:02 p.m.
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Commander Bob Cabana participates in the Crew Equipment Interface Test (CEIT) for STS-88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on- orbit. Here, Cabana inspects one of the six hatches on Node 1 of the International Space Station (ISS). STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
International Space Station (ISS)
2000-01-01
This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
International Space Station (ISS)
2000-01-01
This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
Chamitoff gives Volkov a haircut in the Node 2 during Expedition 17
2008-07-20
ISS017-E-011556 (20 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, trims Russian Federal Space Agency cosmonaut Sergei Volkov's hair in the Harmony node of the International Space Station. Chamitoff used hair clippers fashioned with a vacuum device to garner freshly cut hair.
View of Expedition 28 Crew Members giving and receiving a haircut in the Node 3
2011-07-31
ISS028-E-019487 (31 July 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, trims astronaut Mike Fossum?s hair in the Tranquility node of the International Space Station. Garan used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Volkov gives Chamitoff a haircut in the Node 2 during Expedition 17
2008-07-20
ISS017-E-011547 (20 July 2008) --- Russian Federal Space Agency cosmonaut Sergei Volkov, Expedition 17 commander, trims NASA astronaut Greg Chamitoff's hair in the Harmony node of the International Space Station. Volkov used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Tani Exercises on the RED in Node 1
2008-02-06
ISS016-E-027914 (6 Feb. 2008) --- Astronaut Daniel Tani, Expedition 16 flight engineer, prepares to use the short bar for the Interim Resistive Exercise Device (IRED) to perform upper body strengthening pull-ups. The IRED hardware is located in the Unity node of the International Space Station.
Vinogradov adds a patch to the Node 1/Unity collection during Expedition 13
2006-09-04
ISS013-E-75813 (4 Sept. 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, adds the Expedition 13 patch to the Unity node's growing collection of insignias representing crews who have lived and worked on the International Space Station.
Coleman works at the AR OGS Rack in the Node 3
2011-02-08
ISS026-E-025143 (8 Feb. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, works at the Atmosphere Revitalization / Oxygen Generation System (AR OGS) rack in the Harmony node of the International Space Station. Coleman collected recirculation loop samples for subsequent analysis for pH value.
Coleman works at the AR OGS Rack in the Node 3
2011-02-08
ISS026-E-025142 (8 Feb. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, works at the Atmosphere Revitalization / Oxygen Generation System (AR OGS) rack in the Harmony node of the International Space Station. Coleman collected recirculation loop samples for subsequent analysis for pH value.
International Space Station (ISS)
1997-10-03
In this photograph, Russians are working on the aft portion of the United States-funded, Russian-built Functional Cargo Bay (FGB) also known as Zarya (Russian for sunrise). Built at Khrunichev, the FGB began pre-launch testing shortly after this photo was taken. Launched by a Russian Proton rocket from the Baikonu Cosmodrome on November 20, 1998, Zarya was the first element of the International Space Station (ISS) followed by the U.S. Unity Node. The aft docking mechanism, Pirs, on the far right with ventilation ducting rurning through it, will be docked with the third Station element, the Russian Service Module, or Zvezda.
Commanders Kotov and Ham Bid Farewell
2010-05-23
ISS023-E-051146 (23 May 2010) --- Russian cosmonaut Oleg Kotov (left), Expedition 23 commander; and NASA astronaut Ken Ham, STS-132 commander, are pictured during a farewell ceremony in the Harmony node of the International Space Station while space shuttle Atlantis remains docked with the station.
View of the STS-88 crew in the Node 1/Unity module
1998-12-11
STS088-332-010 (4-15 Dec. 1998) --- Cosmonaut Sergei K. Krikalev (left), mission specialist representing the Russian Space Agency (RSA), and astronaut Robert D. Cabana mission commander, plan their approach to tasks as they huddle at an internal hatch in the Russian built FGB, also called Zarya. All six STS-88 crew members were involved in tasks to ready Zarya and the now-connected U.S. Node 1, also called Unity, for their International Space Station (ISS) roles. Krikalev has been named as a member of the first ISS crew.
Horowitz and Dezhurov float into Node 1/Unity from U.S. Laboratory/Destiny
2001-08-12
STS105-E-5109 (12 August 2001) --- Scott J. Horowitz (left), STS-105 commander, and cosmonaut Vladimir N. Dezhurov, Expedition Three flight engineer, move into Unity Node 1 during the initial ingress into the International Space Station (ISS) during the STS-105 mission. Dezhurov, accompanied by cosmonaut Mikhail Tyurin and astronaut Frank L. Culbertson, Jr., will be replacing astronauts Susan J. Helms and James S. Voss and cosmonaut Yury V. Usachev as the temporary residents of the ISS. This image was taken with a digital still camera.
Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility
NASA Technical Reports Server (NTRS)
2003-01-01
Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.
2013-10-28
ISS037-E-021985 (28 Oct. 2013) --- In the International Space Station?s Tranquility node, NASA astronaut Michael Hopkins (right) and European Space Agency astronaut Luca Parmitano, both Expedition 37 flight engineers, perform routine in-flight maintenance within the Carbon Dioxide Removal Assembly. This device removes carbon dioxide from the station?s atmosphere and is part of the station?s Environmental Control and Life Support System that provides clean water and air to the crew.
Whitson during Expedition 16 EVA 10/Alpha
2007-11-09
ISS016-E-010001 (9 Nov. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Whitson and cosmonaut Yuri I. Malenchenko (out of frame), flight engineer representing Russia's Federal Space Agency, prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.
Whitson during Expedition 16 EVA 10/Alpha
2007-11-09
ISS016-E-009989 (9 Nov. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Whitson and cosmonaut Yuri I. Malenchenko (out of frame), flight engineer representing Russia's Federal Space Agency, prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.
Malenchenko during Expedition 16 EVA 10/Alpha
2007-11-09
ISS016-E-009981 (9 Nov. 2007) --- Cosmonaut Yuri I. Malenchenko, Expedition 16 flight engineer representing Russia's Federal Space Agency, participates in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Malenchenko and astronaut Peggy A. Whitson (out of frame), commander, prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.
2011-11-02
ISS029-E-037421 (2 Nov. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, enjoys eating a fresh apple in the Unity node of the International Space Station.
2011-11-02
ISS029-E-037417 (2 Nov. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, enjoys eating a fresh apple in the Unity node of the International Space Station.
Skripochka during Emergency Scario Drill
2011-01-11
ISS026-E-016987 (11 Jan. 2011) --- Russian cosmonaut Oleg Skripochka, Expedition 26 flight engineer, participates in an emergency scenarios drill in the Harmony node of the International Space Station.
Kondratyev during Emergency Scario Drill
2011-01-11
ISS026-E-016985 (11 Jan. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, participates in an emergency scenarios drill in the Harmony node of the International Space Station.
2013-09-29
ISS037-E-004299 (29 Sept. 2013) --- NASA astronaut Karen Nyberg, Expedition 37 flight engineer, uses a payload and general support computer (PGSC) in the Harmony node of the International Space Station.
Multi-User Droplet Combustion Apparatus (MDCA) Chamber Insert Assembly (CIA)
2013-07-24
ISS036-E-024569 (24 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, works on the Multi-User Droplet Combustion Apparatus (MDCA) Chamber Insert Assembly (CIA) at a maintenance work station in the Harmony node of the International Space Station.
Multi-User Droplet Combustion Apparatus (MDCA) Chamber Insert Assembly (CIA)
2013-07-24
ISS036-E-024605 (24 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, works on the Multi-User Droplet Combustion Apparatus (MDCA) Chamber Insert Assembly (CIA) at a maintenance work station in the Harmony node of the International Space Station.
Multi-User Droplet Combustion Apparatus (MDCA) Chamber Insert Assembly (CIA)
2013-07-24
ISS036-E-024637 (24 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, works on the Multi-User Droplet Combustion Apparatus (MDCA) Chamber Insert Assembly (CIA) at a maintenance work station in the Harmony node of the International Space Station.
International Space Station (ISS)
2000-12-01
This image of the International Space Station in orbit was taken from the Space Shuttle Endeavour prior to docking. Most of the Station's components are clearly visible in this photograph. They are the Node 1 or Unity Module docked with the Functional Cargo Block or Zarya (top) that is linked to the Zvezda Service Module. The Soyuz spacecraft is at the bottom.
2009-04-27
ISS019-E-011053 (27 April 2009) --- Cosmonaut Gennady Padalka, Expedition 19/20 commander, exercises using the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
2009-07-31
ISS020-E-026695 (31 July 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with a carbon dioxide removal kit adapter in the Unity node of the International Space Station.
Lessons Learned from the Node 1 Temperature and Humidity Control Subsystem Design
NASA Technical Reports Server (NTRS)
Williams, David E.
2010-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1
Tyurin gives Lopez-Alegria a hair cut in Node 1 module
2007-02-20
ISS014-E-14031 (20 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, trims commander Michael E. Lopez-Alegria's hair in the Unity node of the International Space Station. Tyurin used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Williams exercises with short bar from the IRED in the Node 1 during Expedition 15
2007-05-07
ISS015-E-06911 (7 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, uses the short bar for the Interim Resistive Exercise Device (IRED) to perform upper body strengthening pull-ups. The IRED hardware is located in the Unity node of the International Space Station.
2013-03-30
ISS035-E-010396 (30 March 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 35 flight engineer, and the other two new arrivals (out of frame) to the International Space Station wasted little time in moving and stowage operations. During the second day of their stay, Misurkin can be seen inspecting a bag of pantry-type items in the Unity node.
Malenchenko and Whitson during Expedition 16 EVA 10/Alpha
2007-11-09
ISS016-E-009992 (9 Nov. 2007) --- Astronaut Peggy A. Whitson (right), Expedition 16 commander; and cosmonaut Yuri I. Malenchenko, flight engineer representing Russia's Federal Space Agency, participate in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Whitson and Malenchenko prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.
Burbank works on the EPIC in the Node 2
2012-02-28
ISS030-E-114433 (29 Feb. 2012) --- In the International Space Station?s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, upgrades Multiplexer/Demultiplexer (MDM) computers and Portable Computer System (PCS) laptops and installs the Enhanced Processor & Integrated Communications (EPIC) hardware in the Payload 1 (PL-1) MDM.
View of Expedition 32 FE Hoshide during HTV3 Ingress
2012-07-28
ISS032-E-011406 (28 July 2012) --- Japan Aerospace Exploration Agency (JAXA) astronaut Aki Hoshide, Expedition 32 flight engineer, using a Russian AK-1M absorber, samples the air in the newly attached JAXA H-II Transfer Vehicle (HTV-3) docked to the International Space Station?s Harmony node.
2013-08-31
ISS036-E-038720 (31 Aug. 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2013-08-31
ISS036-E-038715 (31 Aug. 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, gets a workout on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2009-08-24
ISS020-E-033995 (24 Aug. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, works with the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
2010-09-09
ISS024-E-014009 (9 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, works with the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
Mastracchio conducts Gravi-2 Culture Hydration
2014-05-05
ISS039-E-018462 (5 May 2014) --? In the Harmony node of the Earth-orbiting International Space Station, NASA astronaut Rick Mastracchio, Expedition 39 flight engineer, prepares culture chambers for an experiment.
2003-08-27
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
NASA Technical Reports Server (NTRS)
Matty, Christopher M.
2013-01-01
Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.
Calibration of International Space Station (ISS) Node 1 Vibro-Acoustic Model-Report 2
NASA Technical Reports Server (NTRS)
Zhang, Weiguo; Raveendra, Ravi
2014-01-01
Reported here is the capability of the Energy Finite Element Method (E-FEM) to predict the vibro-acoustic sound fields within the International Space Station (ISS) Node 1 and to compare the results with simulated leak sounds. A series of electronically generated structural ultrasonic noise sources were created in the pressure wall to emulate leak signals at different locations of the Node 1 STA module during its period of storage at Stennis Space Center (SSC). The exact sound source profiles created within the pressure wall at the source were unknown, but were estimated from the closest sensor measurement. The E-FEM method represents a reverberant sound field calculation, and of importance to this application is the requirement to correctly handle the direct field effect of the sound generation. It was also important to be able to compute the sound energy fields in the ultrasonic frequency range. This report demonstrates the capability of this technology as applied to this type of application.
NASA Technical Reports Server (NTRS)
1998-01-01
This video is a collection of computer animations and live footage showing the construction and assembly of the International Space Station (ISS). Computer animations show the following: (1) ISS fly around; (2) ISS over a sunrise seen from space; (3) the launch of the Zarya Control Module; (4) a Proton rocket launch; (5) the Space Shuttle docking with Zarya and attaching Zarya to the Unity Node; (6) the docking of the Service Module, Zarya, and Unity to Soyuz; (7) the Space Shuttle docking to ISS and installing the Z1 Truss segment and the Pressurized Mating Adapter (PMA); (8) Soyuz docking to the ISS; (9) the Transhab components; and (10) a complete ISS assembly. Live footage shows the construction of Zarya, the Proton rocket, Unity Node, PMA, Service Module, US Laboratory, Italian Multipurpose Logistics Module, US Airlock, and the US Habitation Module. STS-88 Mission Specialists Jerry Ross and James Newman are seen training in the Neutral Buoyancy Laboratory (NBL). The Expedition 1 crewmembers, William Shepherd, Yuri Gidzenko, and Sergei Krikalev, are shown training in the Black Sea and at Johnson Space Flight Center for water survival.
Tyurin packs the docking probe in Node 1 during Expedition Three
2001-09-17
ISS003-E-5632 (17 September 2001) --- Cosmonaut Mikhail Tyurin, Expedition Three flight engineer, packs the docking probe in a stowage bag in Unity. Cosmonaut Vladimir Dezhurov, flight engineer, videotapes the event. The docking probe successfully guided the arrival of the Russian-built Pirs docking compartment to the International Space Station (ISS). Tyurin and Dezhurov represent Rosaviakosmos.
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51263 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51264 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51265 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm (out of frame) grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.
Astronaut Voss Works in the Destiny Laboratory
NASA Technical Reports Server (NTRS)
2001-01-01
In this photograph, Astronaut James Voss, flight engineer of Expedition Two, performs a task at a work station in the International Space Station (ISS) Destiny Laboratory, or U.S. Laboratory, as Astronaut Scott Horowitz, STS-105 mission commander, floats through the hatchway leading to the Unity node. After spending five months aboard the orbital outpost, the ISS Expedition Two crew was replaced by Expedition Three and returned to Earth aboard the STS-105 Space Shuttle Discovery on August 22, 2001. The Orbiter Discovery was launched from the Kennedy Space Center on August 10, 2001.
2013-03-03
ISS034-E-062050 (3 March 2013) --- Taking advantage of a weightless environment onboard the Earth-orbiting International Space Station, Expedition 34 Commander Kevin Ford juggles some tomatoes, which he probably considers to be among the more delicious components of a recent "package" that arrived from Earth on March 3. The SpaceX Dragon 2 spacecraft brought up a large shipment of food and other supplies, and the spacecraft will remain docked to the station for three weeks. Ford is in Node 1 or Unity. The U.S. lab or Destiny is in the background.
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Mission Specialist Nancy Currie and Commander Bob Cabana participate in the Crew Equipment Interface Test (CEIT) for STS- 88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. Here, Currie and Cabana inspect one of the six hatches on Node 1 of the International Space Station (ISS). STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Italian-built module, U.S. Node 2, for the International Space Station is offloaded from a Beluga at the Shuttle Landing Facility. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.
Culbertson leads the way from the U.S. Laboratory into Node 1
2001-08-12
STS105-E-5108 (12 August 2001) --- Frank L. Culbertson, Jr., Expedition Three mission commander, leads cosmonaut Vladimir N. Dezhurov (back top), Expedition Three flight engineer, and Scott J. Horowitz, STS-105 commander, into Unity Node 1 during the initial ingress into the International Space Station (ISS) during the STS-105 mission. Culbertson and Dezhurov, accompanied by cosmonaut Mikhail Tyurin, will be replacing astronauts Susan J. Helms and James S. Voss and cosmonaut Yury V. Usachev as the temporary residents of the ISS. This image was taken with a digital still camera.
The Soyuz Taxi crew adhere their logo to a wall in Node 1 during Expedition Three
2001-10-23
ISS003-E-7056 (23-31 October 2001) --- The Soyuz Taxi crewmembers, Commander Victor Afanasyev (left), French Flight Engineer Claudie Haignere and Flight Engineer Konstantin Kozeev, add their crew patch to the growing collection, in the Unity node, of insignias representing crews who have worked on the International Space Station (ISS). Afanasyev and Kozeev represent Rosaviakosmos, and Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.
2009-06-05
ISS020-E-007089 (5 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
Shkaplerov exercises on the aRED
2012-01-05
ISS030-E-235507 (5 Jan. 2012) --- Russian cosmonaut Anton Shkaplerov, Expedition 30 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
Yurchikhin gives Kotov a haircut in the Node 1 during Expedition 15
2007-05-13
ISS015-E-07565 (13 May 2007) --- Cosmonaut Fyodor N. Yurchikhin, Expedition 15 commander, trims cosmonaut Oleg V. Kotov's hair in the Unity node of the International Space Station. Yurchikhin used hair clippers fashioned with a vacuum device to garner freshly cut hair. Kotov, flight engineer, and Yurchikhin represent Russia's Federal Space Agency.
Yurchikhin gives Kotov a haircut in the Node 1 during Expedition 15
2007-05-13
ISS015-E-07566 (13 May 2007) --- Cosmonaut Fyodor N. Yurchikhin, Expedition 15 commander, trims cosmonaut Oleg V. Kotov's hair in the Unity node of the International Space Station. Yurchikhin used hair clippers fashioned with a vacuum device to garner freshly cut hair. Kotov, flight engineer, and Yurchikhin represent Russia's Federal Space Agency.
Rick Husband and Tamara Jernigan perform IFM on Node 1/Unity aft hatch
2016-08-30
STS096-383-021 (27 May - 6 June 1999) -- Astronauts Rick D. Husband and Tamara E. Jernigan adjust the hatch for the U.S.-built Unity node. The task was part of the overall effort by the seven-member STS-96 crew to prepare the existing portion of the International Space Station (ISS).
Sturckow in the Node 1/Unity module
1999-01-11
STS088-359-003 (4-15 Dec. 1998) --- Astronaut Frederick W. ?Rick? Sturckow, pilot, holds up a panel while putting final touches on the interior of Node 1 or Unity. Sturckow, who had been working with a battery-powered tool, was joined by other crew members in preparing the module for its International Space Station (ISS) duty.
View of Expedition 15 FE Anderson performing the ANITA Experiment in the Node 1
2007-10-06
ISS015-E-32200 (6 Oct. 2007) --- Astronaut Clay Anderson, Expedition 15 flight engineer, uses an air sample pump and 2.5 liter gas sample bag to gather and analyze air samples for the Analyzing Interferometer for Ambient Air (ANITA) experiment in the Unity node of the International Space Station.
2012-08-15
ISS032-E-019031 (15 Aug. 2012) --- Various food items are featured in this image as an Expedition 32 crew member (mostly out of frame) prepares to eat a meal in the Unity node of the International Space Station.
Micro-7 BioCell Habitat Fixation Operations
2014-04-25
ISS039-E-015593 (25 April 2014) --- In the Harmony node of the Earth-orbiting International Space Station, NASA astronaut Rick Mastracchio, Expedition 39 flight engineer, works with the Micro-7 BioCell habitat.
Micro-7 BioCell Habitat Fixation Operations
2014-04-25
ISS039-E-015646 (25 April 2014) --- In the Harmony node of the Earth-orbiting International Space Station, NASA astronaut Rick Mastracchio, Expedition 39 flight engineer, works with the Micro-7 BioCell habitat.
2013-07-12
ISS036-E-018290 (12 July 2013) --- NASA astronaut Karen Nyberg, Expedition 36 flight engineer, squeezes a water bubble out of her beverage container, showing her image refracted, in the Unity node of the International Space Station.
Commander De Wine poses for a photo
2009-11-08
ISS021-E-022397 (8 Nov. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, holds a stowage bag containing various beverages in the Unity node of the International Space Station.
2014-06-17
ISS040-E-013856 (17 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test (BCAT) experiment at a workstation in the Harmony node of the International Space Station.
2013-10-03
ISS037-E-006562 (3 Oct. 2013) --- NASA astronaut Michael Hopkins, Expedition 37 flight engineer, performs routine in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2013-10-03
ISS037-E-006563 (3 Oct. 2013) --- NASA astronaut Michael Hopkins, Expedition 37 flight engineer, performs routine in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2012-06-05
ISS031-E-157839 (5 June 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, exercises using the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
2009-06-05
ISS020-E-007087 (5 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, prepares to use the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
2011-11-19
ISS029-E-043420 (19 Nov. 2011) --- NASA astronauts Mike Fossum (background), Expedition 29 commander; and Dan Burbank, flight engineer, work with the Advanced Recycle Filter Tank Assembly (ARFTA) in the Tranquility node of the International Space Station.
Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Jones, Harry; Kliss, Mark
2005-01-01
This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
NASA Technical Reports Server (NTRS)
Williams, David E.; Spector Lawrence N.
2010-01-01
Node 1 (Unity) flew to International Space Station (ISS) on Flight 2A. Node 1 was the first module of the United States On-Orbit Segment (USOS) launched to ISS. The Node 1 ISS Environmental Control and Life Support (ECLS) design featured limited ECLS capability. The main purpose of Node 1 was to provide internal storage by providing four stowage rack locations within the module and to allow docking of multiple modules and a truss segment to it. The ECLS subsystems inside Node 1 were routed through the element prior to launch to allow for easy integration of the attached future elements, particularly the Habitation Module which was planned to be located at the nadir docking port of Node 1. After Node I was on-orbit, the Program decided not to launch the Habitation Module and instead, to replace it with Node 3 (Tranquility). In 2007, the Program became concerned with a potential Russian docking port approach issue for the Russian FGB nadir docking port after Node 3 is attached to Node 1. To solve this concern the Program decided to relocate Node 3 from Node I nadir to Node 1 port. To support the movement of Node 3 the Program decided to build a modification kit for Node 1, an on-orbit feedthrough leak test device, and new vestibule jumpers to support the ECLS part of the relocation. This paper provides a design overview of the modification kit for Node 1, a summary of the Node 1 ECLS re-verification to support the Node 3 relocation from Node 1 nadir to Node 1 port, and a status of the ECLS modification kit installation into Node 1.
NASA Technical Reports Server (NTRS)
Williams, David E.; Spector, Lawrence N.
2009-01-01
Node 1 (Unity) flew to International Space Station (ISS) on Flight 2A. Node 1 was the first module of the United States On-Orbit Segment (USOS) launched to ISS. The Node 1 ISS Environmental Control and Life Support (ECLS) design featured limited ECLS capability. The main purpose of Node 1 was to provide internal storage by providing four stowage rack locations within the module and to allow docking of multiple modules and a truss segment to it. The ECLS subsystems inside Node 1 were routed through the element prior to launch to allow for easy integration of the attached future elements, particularly the Habitation Module which was planned to be located at the nadir docking port of Node 1. After Node 1 was on-orbit, the Program decided not to launch the Habitation Module and instead, to replace it with Node 3 (Tranquility). In 2007, the Program became concerned with a potential Russian docking port approach issue for the Russian FGB nadir docking port after Node 3 is attached to Node 1. To solve this concern the Program decided to relocate Node 3 from Node 1 nadir to Node 1 port. To support the movement of Node 3 the Program decided to build a modification kit for Node 1, an on-orbit feedthrough leak test device, and new vestibule jumpers to support the ECLS part of the relocation. This paper provides a design overview of the modification kit, a summary of the Node 1 ECLS re-verification to support the Node 3 relocation from Node 1 nadir to Node 1 port, and a status of the ECLS modification kit installation into Node 1.
NASA Technical Reports Server (NTRS)
Williams, David E.
2008-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 Emergency Response capability, which includes nominal and off-nominal FDS operation, off nominal ACS operation, and off-nominal THC operation. These subsystems provide the capability to help aid the crew members during an emergency cabin depressurization, a toxic spill, or a fire. The paper will also provide a discussion of the detailed Node 1 ECLS Element Verification methodologies for operation of the Node 1 Emergency Response hardware operations utilized during the Qualification phase.
2013-07-12
ISS036-E-018302 (12 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Unity node of the International Space Station.
Install of Cygnus controller cable
2014-07-15
ISS040-E-063760 (15 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, works with power and data cables in the vestibule between the Destiny laboratory and Unity node of the International Space Station.
2012-11-06
ISS033-E-018790 (6 Nov. 2012) --- NASA astronaut Kevin Ford, Expedition 33 flight engineer, performs in-flight maintenance on the Waste and Hygiene Compartment (WHC) toilet facilities in the Unity node of the International Space Station.
Multi-user Droplet Combustion Apparatus (MDCA) Hardware Replacement
2013-10-02
ISS037-E-004956 (2 Oct. 2013) --- NASA astronaut Karen Nyberg, Expedition 37 flight engineer, performs the Multi-user Droplet Combustion Apparatus (MDCA) hardware replacement in the Harmony node of the International Space Station.
Multi-user Droplet Combustion Apparatus (MDCA) Hardware Replacement
2013-10-02
ISS037-E-004959 (2 Oct. 2013) --- NASA astronaut Karen Nyberg, Expedition 37 flight engineer, performs the Multi-user Droplet Combustion Apparatus (MDCA) hardware replacement in the Harmony node of the International Space Station.
2009-07-31
ISS020-E-026697 (31 July 2009) --- NASA astronaut Tim Kopra (foreground) and European Space Agency astronaut Frank De Winne, both Expedition 20 flight engineers, work with a carbon dioxide removal kit adapter in the Unity node of the International Space Station.
2009-06-23
ISS020-E-013993 (23 June 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, performs in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
Hopkins works with tanks from the ARFTA
2013-11-24
ISS038-E-008287 (24 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, works with tanks from the Advanced Recycle Filter Tank Assembly (ARFTA) in the Tranquility node of the International Space Station.
Hopkins works with tanks from the ARFTA
2013-11-24
ISS038-E-008289 (24 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, works with tanks from the Advanced Recycle Filter Tank Assembly (ARFTA) in the Tranquility node of the International Space Station.
International Space Station (ISS) Crew Quarters On-Orbit Performance and Sustaining
NASA Technical Reports Server (NTRS)
Schlesinger, Thilini P.; Rodriquez, Branelle R.
2013-01-01
The International Space Station (ISS) Crew Quarters (CQ) is a permanent personal space for crew members to sleep, perform personal recreation and communication, as well as provide on-orbit stowage of personal belongings. The CQs provide visual, light, and acoustic isolation for the crew member. Over a 2-year period, four CQs were launched to the ISS and currently reside in Node 2. Since their deployment, all CQs have been occupied and continue to be utilized. This paper will review failures that have occurred after 4 years on-orbit, and the investigations that have resulted in successful on-orbit operations. This paper documents the on-orbit performance and sustaining activities that have been performed to maintain the integrity and utilization of the CQs.
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51269 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm (out of frame) grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth. Discovery's vertical stabilizer is at left.
1998-01-14
The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved past Node 1, seen at left, of the International Space Station (ISS) in Kennedy Space Center’s Space Station Processing Facility (SSPF). The IEA will be processed at the SSPF for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the ISS. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF
2013-03-03
ISS034-E-062051 (3 March 2013) --- Taking advantage of a weightless environment onboard the Earth-orbiting International Space Station, Expedition 34 Flight Engineer Chris Hadfield of the Canadian Space Agency juggles some tomatoes, which he probably considers to be among the more delicious components of a recent "package" that arrived from Earth on March 3. The SpaceX Dragon 2 spacecraft brought up a large shipment of food and other supplies, and the spacecraft will remain docked to the station for three weeks. Hadfield is in Node 1 or Unity. The U.S. lab or Destiny is in the background.
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
STS-88 crew members and Boeing Manufacturing Engineer Harry Feinberg enjoy a moment inside Node 1 of the International Space Station (ISS) during the mission's Crew Equipment Interface Test (CEIT) in KSC's Space Station Processing Facility. Discussing the mission are, from left to right, Feinberg, Commander Bob Cabana, Mission Specialist Nancy Currie, and Pilot Rick Sturckow. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Commander Bob Cabana participates in the Crew Equipment Interface Test (CEIT) for STS-88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on- orbit. Here, Cabana sits inside the Pressurized Mating Adapter-1 (PMA-1) for a close-up look at some of the connecting ducts and wires. Node 1 of the International Space Station (ISS) is behind him. STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
2015-04-06
ISS043E089469 (04/06/2015) --- NASA astronaut Scott Kelly, one of two One-Year crew members on the International Space Station, has his morning coffee and TV news from the Houston area on Apr. 6, 2015. His tweeted comment with this image: " Morning @space_station with my coffee and news from Earth with @KHOU News Houston and @KHOU Lily Jang".
2008-11-25
ISS018-E-009514 (25 Nov. 2008) --- Astronauts Michael Fincke (left, front row), Expedition 18 commander; Chris Ferguson (right, front row), STS-126 commander; Eric Boe (left, back row), STS-126 pilot; and Donald Pettit, STS-126 mission specialist, pose for a photo in the Harmony node of the International Space Station while Space Shuttle Endeavour remains docked with the station.
2013-07-19
ISS036-E-021797 (18 July 2013) --- NASA astronaut Karen Nyberg, Expedition 36 flight engineer, performs a remove and replace of the Oxygen Generation System (OGS) Hydrogen (H2) Sensor in the Tranquility node of the International Space Station.
2014-01-12
ISS038-E-029077 (12 Jan. 2014) --- In the International Space Station's Harmony node, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, uses a video camera to photograph the Ant Forage Habitat Facility which will study ant behavior and colonization in microgravity.
FE Fossum performs aRED In-Flight Maintenance
2011-07-28
ISS028-E-019392 (28 July 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
FE Fossum performs aRED In-Flight Maintenance
2011-07-28
ISS028-E-019399 (28 July 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.
Lindgren exercises in Node 3 module
2015-07-28
ISS044E024392 (07/28/2015) --- Newly arrived NASA astronaut Kjell Lindgren exercises on the International Space Station using the Advanced Resistive Exercise Device to help mitigate the potentially adverse effects of long duration stays in microgravity.
STS-88 Onboard Photograph - Unity and Zarya Modules
NASA Technical Reports Server (NTRS)
1998-01-01
This photograph, taken during the STS-88 mission, shows the cornected Unity Module or Node 1 and Zarya or the Functional Cargo Block (FGB) after having been released from the Orbiter Endeavour's cargo bay. The Unity (also called Node 1), the first U.S. Module for the International Space Station (ISS), is a six-sided connector to which all future U.S. Station modules will attach. It was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity Module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Astronaut Susan J. Helms Mounts a Videao Camera in Zarya
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut Susan J. Helms, Expedition Two flight engineer, mounts a video camera onto a bracket in the Russian Zarya or Functional Cargo Block (FGB) of the International Space Station (ISS). Launched by a Russian Proton rocket from the Baikonu Cosmodrome on November 20, 1998, the Unites States-funded and Russian-built Zarya was the first element of the ISS, followed by the U.S. Unity Node.
Phillips removes Failed RPCM (Remote Power Controller Module)
2005-09-20
ISS011-E-13361 (20 September 2005) --- Astronaut John L. Phillips, Expedition 11 NASA science officer and flight engineer, performs a Remote Power Control Module (RPCM) remove and replacement in the Unity node of the international space station.
Wakata eats an apple in Node 2 Harmony
2009-03-20
S119-E-006810 (20 March 2009) --- Japan Aerospace Exploration Agency's Koichi Wakata, pictured here on the International Space Station, changes over from STS-119 mission specialist to an ISS flight engineer for a tour aboard the orbital outpost.
Kondratyev and Skripochka during emergency scenario drill
2011-01-11
ISS026-E-016976 (11 Jan. 2011) --- Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, look over a procedures manual during an emergency scenarios drill in the Harmony node of the International Space Station.
Garrett Reisman, Expedition 17 Haircut in Harmony
2008-05-04
ISS017-E-006253 (4 May 2008) --- Astronaut Garrett Reisman, Expedition 17 flight engineer, trims his hair in the Harmony node of the International Space Station, using hair clippers fashioned with a vacuum device to garner freshly cut hair.
2013-08-09
ISS036-E-030213 (9 Aug. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, prepares to open the hatch to the newly attached Japanese "Kounotori" H2 Transfer Vehicle-4 (HTV-4) docked to the International Space Station's Harmony node.
Burbank and Shkaplerov playing musical instruments
2012-04-21
ISS030-E-267658 (21 April 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, plays a guitar, while Russian cosmonaut Anton Shkaplerov, flight engineer, plays a musical keyboard during off-time in the Unity node of the International Space Station.
Burbank and Shkaplerov with musical instruments
2012-04-21
ISS030-E-267652 (21 April 2012) --- NASA astronaut Dan Burbank (with guitar), Expedition 30 commander, and Russian cosmonaut Anton Shkaplerov, flight engineer, are pictured at a musical keyboard during off-time in the Unity node of the International Space Station.
Burbank and Shkaplerov playing musical instruments
2012-04-21
ISS030-E-267651 (21 April 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, plays a guitar, while Russian cosmonaut Anton Shkaplerov, flight engineer, plays a musical keyboard during off-time in the Unity node of the International Space Station.
Expedition 26 Crew Members in the Node 1
2010-12-31
ISS026-E-013632 (31 Dec. 2010) --- Expedition 26 crew members are pictured in the Unity node of the International Space Station on New Year’s Eve. Clockwise from the left are Russian cosmonaut Oleg Skripochka, NASA astronaut Catherine (Cady) Coleman, Russian cosmonaut Alexander Kaleri, all flight engineers; NASA astronaut Scott Kelly, commander; Russian cosmonaut Dmitry Kondratyev and European Space Agency astronaut Paolo Nespoli, both flight engineers.
Expedition 26 Crew Members in the Node 1
2010-12-31
ISS026-E-013631 (31 Dec. 2010) --- Five of the six Expedition 26 crew members are pictured in the Unity node of the International Space Station on New Year’s Eve. From the left are Russian cosmonaut Dmitry Kondratyev, flight engineer; NASA astronaut Scott Kelly, commander; NASA astronaut Catherine (Cady) Coleman, European Space Agency astronaut Paolo Nespoli and Russian cosmonaut Alexander Kaleri, all flight engineers.
Expedition 26 Crew Members in the Node 1
2010-12-31
ISS026-E-013630 (31 Dec. 2010) --- Expedition 26 crew members are pictured in the Unity node of the International Space Station on New Year’s Eve. From the left are Russian cosmonauts Oleg Skripochka and Dmitry Kondratyev, both flight engineers; NASA astronaut Scott Kelly, commander; NASA astronaut Catherine (Cady) Coleman, European Space Agency astronaut Paolo Nespoli and Russian cosmonaut Alexander Kaleri, all flight engineers.
Coleman wearing electrodes in the Node 1
2011-01-20
ISS026-E-018798 (20 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, is pictured in the Unity node of the International Space Station. Coleman is wearing electrodes, a Holter Monitor 2 (HM2) for recording Electrocardiogram (ECG), a European Space Agency (ESA) Cardio pressure / Blood Pressure unit to continuously monitor blood pressure and two Actiwatches (hip/waist and ankle) for monitoring activity levels.
Burbank performs the WHC Yearly Maintenance in the Node 3
2012-01-11
ISS030-E-032750 (11 Jan. 2012) --- NASA astronaut Dan Burbank, Expedition 30 flight commander, performs the Waste and Hygiene Compartment (WHC) yearly maintenance in the Tranquility node of the International Space Station. The maintenance included removing and replacing the urine hydraulic components which include urine lines, urine valve block and urine pressure sensors, and removing and replacing the Flush Water Tank Pressure Sensor.
Diagram of the Water Recovery and Management for the International Space Station
NASA Technical Reports Server (NTRS)
2000-01-01
This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
Node 1 CPA docking mechanism installation
2015-05-26
ISS043E256577 (05/26/2015) --- Expedition 43 commander and NASA astronaut Terry Virts is seen here closing the hatch to the Leonardo Permanent Multipurpose Module (PMM.) The PMM was moved on May 27, 2015 from the Unity node to the Tranquility node. This freed up a docking port on the Earth-facing side of Unity for visiting cargo vehicles and was the latest activity in the ongoing upgrades to the station to prepare for future U.S. commercial crew vehicles.
Japanese Kounotori HTV-2 Transfer Vehicle
2011-01-27
ISS026-E-020932 (27 Jan. 2011) --- Backdropped by Earth?s horizon and the blackness of space, the International Space Station's Canadarm2 grapples the unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) as it approaches the station. NASA astronaut Catherine (Cady) Coleman and European Space Agency astronaut Paolo Nespoli, both Expedition 26 flight engineers, used the station?s robotic arm to attach the HTV2 to the Earth-facing port of the station?s Harmony node. The attachment was completed at 9:51 a.m. (EST) on Jan. 27, 2011.
2014-06-10
ISS040-E-009125 (10 June 2014) --- In the International Space Station?s Harmony node, NASA astronaut Steve Swanson, Expedition 40 commander, harvests a crop of red romaine lettuce plants that were grown from seed inside the station?s Veggie facility, a low-cost plant growth chamber that uses a flat-panel light bank for plant growth and crew observation. For the Veg-01 experiment, researchers are testing and validating the Veggie hardware, and the plants will be returned to Earth to determine food safety.
2014-06-10
ISS040-E-009124 (10 June 2014) --- In the International Space Station?s Harmony node, NASA astronaut Steve Swanson, Expedition 40 commander, harvests a crop of red romaine lettuce plants that were grown from seed inside the station?s Veggie facility, a low-cost plant growth chamber that uses a flat-panel light bank for plant growth and crew observation. For the Veg-01 experiment, researchers are testing and validating the Veggie hardware, and the plants will be returned to Earth to determine food safety.
2014-06-10
ISS040-E-009116 (10 June 2014) --- In the International Space Station?s Harmony node, NASA astronaut Steve Swanson, Expedition 40 commander, harvests a crop of red romaine lettuce plants that were grown from seed inside the station?s Veggie facility, a low-cost plant growth chamber that uses a flat-panel light bank for plant growth and crew observation. For the Veg-01 experiment, researchers are testing and validating the Veggie hardware, and the plants will be returned to Earth to determine food safety.
Wakata exercises on the COLBERT
2013-11-15
ISS038-E-002210 (14 Nov. 2013) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, equipped with a bungee harness, exercises on the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) in the Tranquility node of the International Space Station.
Kuipers lubricates and cleans the beverage adapter on the PWD
2012-01-23
ISS030-E-156300 (23 Jan. 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, lubricates and cleans the beverage adapter on the Potable Water Dispenser (PWD) in the Harmony node of the International Space Station.
2014-08-05
ISS040-E-088794 (5 Aug. 2014) --- In the Unity node of the International Space Station, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, uses a laptop computer 3D virtual spacewalk trainer in preparation for two upcoming U.S. sessions of extravehicular activity (EVA).
Kuipers performs Water Sample Analysis
2012-05-15
ISS031-E-084619 (15 May 2012) --- After collecting samples from the Water Recovery System (WRS), European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, processes the samples for chemical and microbial analysis in the Unity node of the International Space Station.
2009-07-15
ISS020-E-020652 (15 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, uses the Surface Sample Kit (SSK) to collect microbiology samples from specific sampling locations in the Harmony node and other modules of the International Space Station.
Thirsk performs IFM on cable cartridge
2009-06-23
ISS020-E-013990 (23 June 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, performs in-flight maintenance on a cable cartridge for the advanced Resistive Exercise Device (aRED) in the Unity node of the International Space Station.
Marshburn removing and replacing the WHC piping during routine maintenance
2013-01-03
ISS034-E-031142 (3 Jan. 2013) --- NASA astronaut Tom Marshburn, Expedition 34 flight engineer, removes and replaces the Waste and Hygiene Compartment (WHC) piping during routine in-flight maintenance in the Tranquility node of the International Space Station.
sts-130patch-design-finalthreads
2009-09-18
STS130-S-001 (September 2009) --- The STS-130 patch was designed by the crew to reflect both the objectives of the mission and its place in the history of human spaceflight. The main goal of the mission is to deliver Node 3 and the Cupola to the International Space Station (ISS). Node 3, named ?Tranquility,? will contain life support systems enabling continued human presence in orbit aboard the ISS. The shape of the patch represents the Cupola, which is the windowed robotics viewing station, from which astronauts will have the opportunity not only to monitor a variety of ISS operations, but also to study our home planet. The image of Earth depicted in the patch is the first photograph of Earth taken from the moon by Lunar Orbiter I on Aug. 23, 1966. As both a past and a future destination for explorers from planet Earth, the moon is thus represented symbolically in the STS-130 patch. The space shuttle Endeavour is pictured approaching the ISS, symbolizing the space shuttle's role as the prime construction vehicle for the ISS. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
Smith, M. B.; Khulapko, S.; Andrews, H. R.; Arkhangelsky, V.; Ing, H.; Koslowksy, M. R.; Lewis, B. J.; Machrafi, R.; Nikolaev, I.; Shurshakov, V.
2016-01-01
Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70 % of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. PMID:25899609
Daniel Barry in Node 1/Unity module with tools
2017-04-20
S96-E-5080 (31 May 1999) --- Astronaut Daniel T. Barry, mission specialist, participates in the Flight Day 5 team effort to ready International Space Station (ISS) hardware. After ingressing the Pressurized Mating Adapter (PMA2), Barry and fellow crew members went into the Unity node to perform a variety of chores. The scene was recorded with an electronic still camera (ESC) at 01:54:41 GMT, May 31, 1999.
Expedition 32 FE Acaba poses for a photo in the Cupola
2012-07-27
ISS032-E-010613 (27 July 2012) --- NASA astronaut Joe Acaba is pictured in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
2014-02-12
ISS038-E-046404 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works on the COLBERT treadmill in the Unity node of the International Space Station. He replaced a failed accelerometer in the exercise device then activated COLBERT for a speed test.
2014-02-12
ISS038-E-046401 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works on the COLBERT treadmill in the Unity node of the International Space Station. He replaced a failed accelerometer in the exercise device then activated COLBERT for a speed test.
2014-02-12
ISS038-E-046405 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works on the COLBERT treadmill in the Unity node of the International Space Station. He replaced a failed accelerometer in the exercise device then activated COLBERT for a speed test.
2013-07-04
ISS036-E-014568 (4 July 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, trims the hair of Russian cosmonaut Alexander Misurkin, flight engineer, in the Unity node of the International Space Station. Yurchikhin used hair clippers fashioned with a vacuum device to garner freshly cut hair.
2012-11-10
ISS033-E-018991 (10 Nov. 2012) --- Russian cosmonaut Oleg Novitskiy, Expedition 33 flight engineer, trims the hair of Russian cosmonaut Evgeny Tarelkin, flight engineer, in the Tranquility node of the International Space Station. Novitskiy used hair clippers fashioned with a vacuum device to garner freshly cut hair.
Kotov receives haircut during Expedition 22
2010-01-19
ISS022-E-030607 (19 Jan. 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, trims Russian cosmonaut Oleg Kotov’s hair in the Harmony node of the International Space Station. Williams used hair clippers fashioned with a vacuum device to garner freshly cut hair.
2013-10-05
ISS037-E-006571 (5 Oct. 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 37 commander, trims the hair of NASA astronaut Michael Hopkins, flight engineer, in the Unity node of the International Space Station. Yurchikhin used hair clippers fashioned with a vacuum device to garner freshly cut hair.
2013-10-05
ISS037-E-006565 (5 Oct. 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 37 commander, trims the hair of NASA astronaut Michael Hopkins, flight engineer, in the Unity node of the International Space Station. Yurchikhin used hair clippers fashioned with a vacuum device to garner freshly cut hair.
2014-06-11
ISS040-E-010261 (11 June 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, works with the Multi-user Drop Combustion Apparatus (MDCA) at a workstation in the Harmony node of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.
2014-06-11
ISS040-E-010258 (11 June 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, works with the Multi-user Drop Combustion Apparatus (MDCA) at a workstation in the Harmony node of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.
International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.
2009-01-01
The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.
Quest airlock maneuvered into position
2001-07-15
STS104-E-5068 (15 July 2001) --- Backdropped against a blue and white Earth, some 237 miles below, the Quest airlock is in the process of being installed onto the starboard side of Unity Node 1 of the International Space Station (ISS). Astronaut Susan J. Helms, Expedition Two flight engineer, used controls onboard the station to maneuver the Airlock into place with the Canadarm2 or Space Station Remote Manipulator System (SSRMS). This image was recorded with a digital still camera.
STS-114 Crew Interview: James M. Kelly, PLT
NASA Technical Reports Server (NTRS)
2003-01-01
Pilot James M. Kelly, Lieutenant Colonel USAF, is shown during a prelaunch interview. He expresses the major goals of the mission which are to replace the Expedition Six crew of the International Space Station (ISS), install the Raffello Multi-Purpose Logistics Module, deliver the External Stowage Platform to the ISS, and replace the Control Moment Gyroscope (CMG). The major task that he has is to be the backup pilot for Commander Eileen Collins. He talks about the three new research racks brought up to the International Space Station inside the U.S. Destiny Laboratory along with the Window Observational Research Facility (WORF), Human Research Facility 2 (HRF-2), and a Minus Eighty Degree Laboratory Freezer (MELF-1). Kelly also explains how he uses the ISS' Robotic arm to lift the MPLM out of Atlantis' payload bay and attach it to the Unity node to unload hardware, supplies and maintenance items. This will be his second trip to the International Space Station.
Dragon Spacecraft Approaches ISS for Grapple
2012-05-25
ISS031-E-071143 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS for Grapple
2012-05-25
ISS031-E-071146 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is about to be grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-070730 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071121 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071135 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071134 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-070663 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071075 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Water Processing Assembly Particulate Filter Remove and Replace (R&R)
2013-07-12
ISS036-E-018008 (12 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, removes and replaces the particulate filter for the Water Pump Assembly 2 (WPA2) in Tranquility (also called Node 3) on the International Space Station.
Water Processing Assembly Particulate Filter Remove and Replace (R&R)
2013-07-12
ISS036-E-018007 (12 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, removes and replaces the particulate filter for the Water Pump Assembly 2 (WPA2) in Tranquility (also called Node 3) on the International Space Station.
FE Furukawa exercising with the ARED
2011-07-30
ISS028-E-019507 (30 July 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses the short bar for the advanced Resistive Exercise Device (aRED) equipment to perform upper body strengthening pull-ups in the Tranquility node of the International Space Station.
2013-08-09
ISS036-E-030115 (9 Aug. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, using a Russian AK-1M absorber, samples the air in the newly attached Japanese "Kounotori" H2 Transfer Vehicle-4 (HTV-4) docked to the International Space Station's Harmony node.
STS-114 Flight Day 11 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
Flight Day 11 begins with the STS-114 crew of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) awaking to "Anchors Away," to signify the undocking of the Raffaello Multipurpose Logistics Module (MPLM) from the International Space Station (ISS). Canadarm 2, the Space Station Remote Manipulator System (SSRMS), retrieves the Raffaello Multipurpose Logistics Module (MPLM) from the nadir port of the Unity node of the ISS and returns it to Discovery's payload bay. The Shuttle Remote Manipulator System (SRMS) hands the Orbiter Boom Sensor System (OBSS) to its counterpart, the SSRMS, for rebearthing in the payload bay as well. The rebearthing of the OBSS is shown in detail, including centerline and split-screen views. Collins sends a message to her husband, and talks with Representative Tom DeLay (R-TX). Earth views include the Amalfi coast of Italy. The ISS control room bids farewell to the STS-114 crew and the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS.
2013-06-14
ISS036-E-008126 (14 June 2013) --- Expedition 36 Flight Engineer Karen Nyberg of NASA puts together a meal in the Unity node of the International Space Station on the eve of a special but busy day for the six person crew aboard the outpost. The European Space Agency's Automated Transfer Vehicle-4 (ATV-4) “Albert Einstein” is scheduled to dock to the orbital outpost June 15, 2013, following a ten-day period of free-flight.
Smokey the Bear Toy in the Node 1
2012-08-03
ISS032-E-011662 (3 Aug. 2012) --- Smokey Bear floats freely in the Unity node of the International Space Station. On May 15, 2012, Smokey traveled aboard the Soyuz spacecraft with NASA astronaut Joe Acaba and Russian cosmonauts Gennady Padalka and Sergei Revin to the space station. As a recognized symbol for wildland fire prevention, his presence on the orbiting complex also highlights the many areas of active space station research related to Earth observations, plant growth and combustion and materials sciences, as well as existing spinoff technologies in these areas. NASA, the U.S. Forest Service (USFS) and the Texas Forest Service are teaming up to celebrate Smokey's 68th birthday Aug. 9 at NASA's Johnson Space Center in Houston.
Smokey the Bear Toy in the Node 1
2012-08-03
ISS032-E-011654 (3 Aug. 2012) --- Smokey Bear floats freely near crew insignias placed in the Unity node of the International Space Station. On May 15, 2012, Smokey traveled aboard the Soyuz spacecraft with NASA astronaut Joe Acaba and Russian cosmonauts Gennady Padalka and Sergei Revin to the space station. As a recognized symbol for wildland fire prevention, his presence on the orbiting complex also highlights the many areas of active space station research related to Earth observations, plant growth and combustion and materials sciences, as well as existing spinoff technologies in these areas. NASA, the U.S. Forest Service (USFS) and the Texas Forest Service are teaming up to celebrate Smokey's 68th birthday Aug. 9 at NASA's Johnson Space Center in Houston.
2003-08-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
View of the STS-88 crew in the Node 1/Unity module
1998-12-10
STS088-322-021 (4-15 DECEMBER 1998) --- Astronaut Robert D. Cabana (left), mission commander, and cosmonaut Sergei K. Krikalev, mission specialist representing the Russian Space Agency (RSA), plan their approach to tasks in the U.S.-built Unity module. All six STS-88 crew members were involved in tasks to ready Unity and the now-connected Russian-built FGB module, also called Zarya, for their International Space Station (ISS) roles. Krikalev has been named as a member of the first ISS crew.
Helms, Usachev and Voss pose with the ISS Ships Log
2001-08-20
STS105-E-5386 (20 August 2001) --- The Expedition Two crewmembers, Susan J. Helms (left), flight engineer, cosmonaut Yury V. Usachev, mission commander, and James S. Voss, flight engineer, pose in Unity Node 1 for their final group photograph aboard the International Space Station (ISS). With the arrival of Expedition Three, Usachev, Helms and Voss will return to Earth with the STS-105 crew thus completing their five month mission. This image was taken with a digital still camera.
2012-07-27
ISS032-E-010609 (27 July 2012) --- As seen through windows in the Cupola, the station's Canadarm2 robotic arm moves toward the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the International Space Station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
2012-07-27
ISS032-E-010834 (27 July 2012) --- The International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
2012-07-27
ISS032-E-010832 (27 July 2012) --- The International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Padalka and Polansky in the Node 1 during Joint Operations
2009-07-21
S127-E-007430 (21 July 2009) --- Astronaut Mark Polansky (right) and Russian Federal Space Agency cosmonaut Gennady Padalka take a break from a busy agenda onboard the International Space Station on the eve of the third of five spacewalks scheduled as part of more than a week's worth of joint activities for Endeavour and ISS crewmembers. Polansky is STS-127 commander, and Padalka is the station commander.
Polansky and Padalka in the Node 1 during Joint Operations
2009-07-21
S127-E-007453 (21 July 2009) --- Astronaut Mark Polansky (left) and Russian Federal Space Agency cosmonaut Gennady Padalka take a break from a busy agenda onboard the International Space Station on the eve of the third of five spacewalks scheduled as part of more than a week's worth of joint activities for Endeavour and ISS crewmembers. Polansky is STS-127 commander, and Padalka is the station commander.
Expedition 18 Station Development Test Objectives (STDO) Session 1
2009-02-19
ISS018-E-033816 (19 Feb. 2009) --- Astronaut Michael Fincke, Expedition 18 commander, removes, cleans and replaces electronic test components on a single test card using Component Repair Equipment (CRE-1) hardware in a portable glovebox facility in the Harmony node of the International Space Station. Fincke unsoldered 1 1/2 components from an integrated circuit board and re-soldered new components including an integrated circuit chip.
Expedition 18 Station Development Test Objectives (STDO) Session 1
2009-02-19
ISS018-E-033818 (19 Feb. 2009) --- Astronaut Michael Fincke, Expedition 18 commander, removes, cleans and replaces electronic test components on a single test card using Component Repair Equipment (CRE-1) hardware in a portable glovebox facility in the Harmony node of the International Space Station. Fincke unsoldered 1 1/2 components from an integrated circuit board and re-soldered new components including an integrated circuit chip.
Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Koslowksy, M R; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V
2016-02-01
Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70% of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wilmore and Wiseman at the Cupola Hatch
2014-09-28
ISS041-E-046056 (28 Sept. 2014) --- NASA astronauts Barry Wilmore (Captain, U.S. Navy) (left) and Reid Wiseman (Commander, U.S. Navy), both Expedition 41 flight engineers, pose for a photo near the hatch between the Tranquility node and the Cupola of the International Space Station.
2009-02-19
ISS018-E-033765 (19 Feb. 2009) --- Astronaut Michael Fincke (right), Expedition 18 commander; astronaut Sandra Magnus and cosmonaut Yury Lonchakov, both flight engineers, pose for a crew photo between a Russian Orlan spacesuit and an Extravehicular Mobility Unit (EMU) spacesuit in the Harmony node of the International Space Station.
2009-02-19
ISS018-E-033767 (19 Feb. 2009) --- Astronaut Michael Fincke (right), Expedition 18 commander; astronaut Sandra Magnus and cosmonaut Yury Lonchakov, both flight engineers, pose for a crew photo between a Russian Orlan spacesuit and an Extravehicular Mobility Unit (EMU) spacesuit in the Harmony node of the International Space Station.
Marshburn removes and replaces the WHC pre-treat tank during in-flight maintenance
2013-02-11
ISS034-E-045742 (11 Feb. 2013) --- NASA astronaut Tom Marshburn, Expedition 34 flight engineer, removes and replaces the Waste and Hygiene Compartment (WHC) pretreat tank as part of routine in-flight maintenance in the Tranquility node of the International Space Station.
NASA Technical Reports Server (NTRS)
Erickson, Robert J.; Howe, John, Jr.; Kulp, Galen W.; VanKeuren, Steven P.
2008-01-01
The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) was originally intended to be installed in ISS Node 3. The OGS rack delivery was accelerated, and it was launched to ISS in July of 2006 and installed in the US Laboratory Module. Various modification kits were installed to provide its interfaces, and the OGS was first activated in July of 2007 for 15 hours, In October of 2007 it was again activated for 76 hours with varied production rates and day/night cycling. Operational time in each instance was limited by the quantity of feedwater in a Payload Water Reservoir (PWR) bag. Feedwater will be provided by PWR bag until the USOS Water Recovery System (WRS) is delivered to SS in fall of 2008. This paper will discuss operating experience and characteristics of the OGS, as well as operational issues and their resolution.
International Space Station (ISS)
2007-02-09
The STS-120 patch reflects the role of the mission in the future of the space program. The shuttle payload bay carries Node 2, Harmony, the doorway to the future international laboratory elements on the International Space Station (ISS). The star on the left represents the ISS; the red colored points represent the current location of the P6 solar array, furled and awaiting relocation when the crew arrives. During the mission, the crew will move P6 to its final home at the end of the port truss. The gold points represent the P6 solar array in its new location, unfurled and producing power for science and life support. On the right, the moon and Mars can be seen representing the future of NASA. The constellation Orion rises in the background, symbolizing NASA's new exploration vehicle. Through all, the shuttle rises up and away, leading the way to the future.
Cosmonaut Gidzenko Near Hatch Between Unity and Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.
Expedition 32 FE Hoshide poses for a photo in the Cupola
2012-07-27
ISS032-E-010583 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide is pictured near the windows in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and NASA astronaut Joe Acaba (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Expedition 32 Crew Members in the Cupola during HTV3 Approach
2012-07-27
ISS032-E-010605 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide (left) and NASA astronaut Joe Acaba, both Expedition 32 flight engineers, are pictured near the windows in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Julie Payette installs camera on mount in the Node 1/Unity module
2016-08-30
STS096-407-011 (27 May - 6 June 1999) --- Astronauts Kent V. Rominger, mission commander, and Julie Payette, mission specialist, participate in the overall chore of STS-96 of preparing International Space Station (ISS) for occupancy. The two are in the U.S.-built Unity node near the hatch leading to the Russian-built Zarya or FGB. Payette, an alumnus of the 1996 class of astronaut trainees, represents the Canadian Space Agency (CSA).
Expedition 20 crew portrait in Node 2
2009-08-10
ISS020-E-029759 (10 Aug. 2009) --- Expedition 20 crew members give a “thumbs-up” signal as they pose in "star-burst" formation for an in-flight portrait in the Harmony node of the International Space Station. Pictured clockwise from the bottom (center) are cosmonaut Gennady Padalka, commander; NASA astronaut Tim Kopra, Canadian Space Agency astronaut Robert Thirsk, cosmonaut Roman Romanenko, European Space Agency astronaut Frank De Winne and NASA astronaut Michael Barratt, all flight engineers.
Hadfield poses with MSL FLSS in the Node 2
2012-12-23
ISS034-E-010603 (28 Dec. 2012) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, poses with a Materials Science Laboratory (MSL) Furnace Launch Support Structure (FLSS) in the Destiny laboratory of the International Space Station. NASA astronaut Tom Marshburn, flight engineer, uses a computer in the background.
2015-09-19
ISS045e019776 (09/19/2015) --- International Space Station Expedition 45 crewmembers watch an advance screening of "The Martian" movie in the Unity Node 1. Clockwise from left, are Russian cosmonauts flight engineers Oleg Kononenko and Sergei Volkov, NASA astronaut Commander Scott Kelly, and cosmonaut Mikhail Kornienko. This image was released on social media.
Dragon Spacecraft on Approach to the ISS
2012-05-25
ISS031-E-070745 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft on Approach to the ISS
2012-05-25
ISS031-E-071140 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Oxygen Generation Assembly Technology Development
NASA Technical Reports Server (NTRS)
Bagdigian, Robert; Cloud, Dale
1999-01-01
Hamilton Standard Space Systems International (HSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop an Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The International Space Station Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range above ambient to support future utilization. Initially, the hydrogen will be vented overboard to space vacuum. This paper describes the OGA integration into the ISS Node 3. It details the development history supporting the design and describes the OGA System characteristics and its physical layout.
International Space Station (ISS)
2001-07-15
At the control of Expedition Two Flight Engineer Susan B. Helms, the newly-installed Canadian-built Canadarm2, Space Station Remote Manipulator System (SSRMS) maneuvers the Quest Airlock into the proper position to be mated onto the starboard side of the Unity Node I during the first of three extravehicular activities (EVA) of the STS-104 mission. The Quest Airlock makes it easier to perform space walks, and allows both Russian and American spacesuits to be worn when the Shuttle is not docked with the International Space Station (ISS). American suits will not fit through Russion airlocks at the Station. The Boeing Company, the space station prime contractor, built the 6.5-ton (5.8 metric ton) airlock and several other key components at the Marshall Space Flight Center (MSFC), in the same building where the Saturn V rocket was built. Installation activities were supported by the development team from the Payload Operations Control Center (POCC) located at the MSFC and the Mission Control Center at NASA's Johnson Space Flight Center in Houston, Texas.
NASA Technical Reports Server (NTRS)
Liddle, Donn
2017-01-01
When photogrammetrists read an article entitled "Photogrammetry in Space" they immediately think of terrestrial mapping using satellite imagery. However in the last 19 years the roll of close range photogrammetry in support of the manned space flight program has grown exponentially. Management and engineers have repeatedly entrusted the safety of the vehicles and their crews to the results of photogrammetric analysis. In February 2010, the Node 3 module was attached to the port side Common Berthing Mechanism (CBM) of the International Space Station (ISS). Since this was not the location at which the module was originally designed to be located on the ISS, coolant lines containing liquid ammonia, were installed externally from the US Lab to Node 3 during a spacewalk. During mission preparation I had developed a plan and a set of procedures to have the astronauts acquire stereo imagery of these coolant lines at the conclusion of the spacewalk to enable us to map their as-installed location relative to the rest of the space station. Unfortunately, the actual installation of the coolant lines took longer than expected and in an effort to wrap up the spacewalk on time, the mission director made a real-time call to drop the photography. My efforts to reschedule the photography on a later spacewalk never materialized, so rather than having an as-installed model for the location of coolant lines, the master ISS CAD database continued to display an as-designed model of the coolant lines. Fast forward to the summer of 2015, the ISS program planned to berth a Japanese cargo module to the nadir Common Berthing Mechanism (CBM), immediately adjacent to the Node 3 module. A CAD based clearance analysis revealed a negative four inch clearance between the ammonia lines and a thruster nozzle on the port side of the cargo vehicle. Recognizing that the model of the ammonia line used in the clearance analysis was "as-designed" rather than "as-installed", I was asked to determine the real clearance between the ammonia lines and expected position of the thruster bell using existing on-orbit imagery. Imagery of the area of interest, taken several years earlier from the Space Shuttle during a fly-around of the ISS, was found and used to set a stereo pair. Space Vision System Targets and Handrail bolts measured in the ISS analytical coordinate system (ISSACS) prior to launch, were used to obtain an absolute orientation so all photogrammetric measurement's would be in the ISSACS coordinate system. Coordinates for the design location of the edges of the thruster bell, when the cargo vehicle was fully berthed to the ISS, were displayed in 3-D relative to the as-installed ammonia lines. This immediately revealed a positive clearance, which was later quantified to be a minimum of 10" +/0.5". The analysis was completed over a single weekend by a single analyst. Using updated imagery, acquired from the station's robotic arm, a complete as-installed model of the coolant lines was generated from stereo photography and replaced the design model in the master ISS CAD database.
International Space Station Acoustics - A Status Report
NASA Technical Reports Server (NTRS)
Allen, Christopher S.
2015-01-01
It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.
International Space Station USOS Crew Quarters Development
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.
2008-01-01
The International Space Station (ISS) United States Operational Segment (USOS) currently provides a Temporary Sleep Station (TeSS) as crew quarters for one crewmember in the Laboratory Module. The Russian Segment provides permanent crew quarters (Kayutas) for two crewmembers in the Service Module. The TeSS provides limited electrical, communication, and ventilation functionality. A new permanent rack sized USOS ISS Crew Quarters (CQ) is being developed. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The new CQs will provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, controllable airflow, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack sized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. Providing an acoustically quiet and visually isolated environment, while ensuring crewmember safety, is critical for obtaining crewmember rest and comfort to enable long term crewmember performance. The numerous human factor, engineering, and program considerations during the concept, design, and prototyping are outlined in the paper.
International Space Station: Expedition 2000
NASA Technical Reports Server (NTRS)
2000-01-01
Live footage of the International Space Station (ISS) presents an inside look at the groundwork and assembly of the ISS. Footage includes both animation and live shots of a Space Shuttle liftoff. Phil West, Engineer; Dr. Catherine Clark, Chief Scientist ISS; and Joe Edwards, Astronaut, narrate the video. The first topic of discussion is People and Communications. Good communication is a key component in our ISS endeavor. Dr. Catherine Clark uses two soup cans attached by a string to demonstrate communication. Bill Nye the Science Guy talks briefly about science aboard the ISS. Charlie Spencer, Manager of Space Station Simulators, talks about communication aboard the ISS. The second topic of discussion is Engineering. Bonnie Dunbar, Astronaut at Johnson Space Flight Center, gives a tour of the Japanese Experiment Module (JEM). She takes us inside Node 2 and the U.S. Lab Destiny. She also shows where protein crystal growth experiments are performed. Audio terminal units are used for communication in the JEM. A demonstration of solar arrays and how they are tested is shown. Alan Bell, Project Manager MRMDF (Mobile Remote Manipulator Development Facility), describes the robot arm that is used on the ISS and how it maneuvers the Space Station. The third topic of discussion is Science and Technology. Dr. Catherine Clark, using a balloon attached to a weight, drops the apparatus to the ground to demonstrate Microgravity. The bursting of the balloon is observed. Sherri Dunnette, Imaging Technologist, describes the various cameras that are used in space. The types of still cameras used are: 1) 35 mm, 2) medium format cameras, 3) large format cameras, 4) video cameras, and 5) the DV camera. Kumar Krishen, Chief Technologist ISS, explains inframetrics, infrared vision cameras and how they perform. The Short Arm Centrifuge is shown by Dr. Millard Reske, Senior Life Scientist, to subject astronauts to forces greater than 1-g. Reske is interested in the physiological effects of the eyes and the muscular system after their exposure to forces greater than 1-g.
CFE-2 Experiment ICF-5 in the Node 2
2014-01-03
ISS038-E-025000 (3 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, speaks in a microphone while conducting a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
2013-09-03
ISS036-E-039129 (3 Sept. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, closes the hatch in the vestibule between the International Space Station’s Harmony node and the Japanese "Kounotori" H2 Transfer Vehicle-4 (HTV-4) in preparation to release the HTV-4 ending its one-month stay at the space station. The automated resupply craft will be grappled by the Canadarm2, removed from the Harmony node and released for a destructive reentry into Earth’s atmosphere.
2013-09-03
ISS036-E-039132 (3 Sept. 2013) --- European Space Agency astronaut Luca Parmitano and NASA astronaut Karen Nyberg, both Expedition 36 flight engineers, close the hatch in the vestibule between the International Space Station’s Harmony node and the Japanese "Kounotori" H2 Transfer Vehicle-4 (HTV-4) in preparation to release the HTV-4 ending its one-month stay at the space station. The automated resupply craft will be grappled by the Canadarm2, removed from the Harmony node and released for a destructive reentry into Earth’s atmosphere.
View of HTV3 berthed to Node 2
2012-07-27
ISS032-E-010473 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.
View of HTV3 berthed to Node 2
2012-07-27
ISS032-E-010464 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.
View of HTV3 berthed to Node 2
2012-07-27
ISS032-E-010476 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.
Tamara Jernigan, Valeri Tokarev and Julie Payette pose for photo in Node 1/Unity module
2017-04-20
S96-E-5078 (31 May 1999) --- Flight Day 5 activity called for some of Discovery's crew members to work in the Unity node, part of the International Space Station (ISS). From the left are astronauts Tamara Jernigan and Julie Payette, along with cosmonaut Valery I. Tokarev. Payette represents the Canadian Space Agency (CSA) and Tokarev is with the Russian Space Agency (RSA). The photo was taken at 01:50:38, May 31, 1999.
Prepping Orbital Sciences? Cygnus commercial cargo spacecraft for undock
2013-10-21
ISS037-E-016758 (21 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, gives a thumbs up signal after closing the hatch between the International Space Station’s Harmony node and the Orbital Sciences’ Cygnus commercial cargo spacecraft in preparation for its release after completing a successful demonstration mission to the space station. Cygnus delivered 1,300 pounds of gear on Sept. 29 when it arrived and was captured by Canadarm2 and berthed to the Harmony node.
View of Anderson and Yurchikhin working in the US Lab during Expedition 15
2007-08-30
ISS015-E-25420 (30 Aug. 2007) --- Astronaut Clay Anderson (left), Expedition 15 flight engineer, works the controls of the station's robotic arm, Canadarm2; while cosmonaut Fyodor N. Yurchikhin, commander representing Russia's Federal Space Agency, works with docking systems in the Destiny laboratory of the International Space Station during Pressurized Mating Adapter-3 (PMA-3) transfer operations. Using the Canadarm2, the PMA-3 was undocked from the Unity node's left side at 7:18 a.m. (CDT) and docked to Unity's lower port at 8:07 a.m. to prepare for the arrival of Node 2, the Harmony module, on the STS-120 flight of Space Shuttle Discovery in October 2007.
2009-03-20
ISS018-E-041340 (20 March 2009) --- Expedition 18 crewmembers pose for a group photo in the Harmony node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. From the right are NASA astronaut Michael Fincke, commander; Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata and cosmonaut Yury Lonchakov, both flight engineers; along with NASA astronaut Sandra Magnus, STS-119 mission specialist. Magnus flew to the station on STS-126 to serve as a flight engineer for Expedition 18, and will return to Earth as mission specialist with the STS-119 crew.
Expedition 32 Crew Members monitor HTV-3 Approach
2012-07-27
ISS032-E-010681 (27 July 2012) --- NASA astronaut Joe Acaba (with still camera) and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
View of HTV3 grappled by SSRMS
2012-07-27
ISS032-E-010443 (27 July 2012) --- Backdropped by Earth’s horizon and the blackness of space, the International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
View of HTV3 grappled by SSRMS
2012-07-27
ISS032-E-010436 (27 July 2012) --- As seen through a window in the Cupola, the International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Expedition 32 Crew Members monitor HTV-3 Approach
2012-07-27
ISS032-E-010672 (27 July 2012) --- NASA astronaut Joe Acaba (foreground) and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
International Space Station Major Constituent Analyzer On-Orbit Performance
NASA Technical Reports Server (NTRS)
Gardner, Ben D.; Erwin, Philip M.; Thoresen, Souzan; Granahan, John; Matty, Chris
2011-01-01
The Major Constituent Analyzer (MCA) is an integral part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor. These gases are sampled continuously and automatically in all United States On-Orbit Segment (USOS) modules via the Sample Distribution System (SDS). The MCA is the primary tool for management of atmosphere constituents and is therefore critical for ensuring a habitable ISS environment during both nominal ISS operations and campout EVA preparation in the Airlock. The MCA has been in operation in the US Destiny Laboratory Module for over 10 years, and a second MCA has been delivered to the ISS for Node 3 operation. This paper discusses the performance of the MCA over the two past year, with particular attention to lessons learned regarding the operational life of critical components. Recent data have helped drive design upgrades for a new set of orbit-replaceable units (ORUs) currently in production. Several ORU upgrades are expected to increase expected lifetimes and reliability.
Fruit Floating at Cupola Window
2014-01-12
ISS038-E-029073 (12 Jan. 2014) --- A fresh apple floating freely near a window in the Cupola of the International Space Station is featured in this image photographed by an Expedition 38 crew member. Attached to the Harmony node, the Orbital Sciences Corp. Cygnus commercial cargo craft, which brought the fresh fruit, is visible at center.
2011-11-20
ISS029-E-043204 (20 Nov. 2011) --- In the Unity node, Expedition 29 crew members add the Expedition 29 patch to the growing collection of insignias representing crews who have worked on the International Space Station. Pictured are NASA astronaut Mike Fossum (center), commander; Japan Aerospace Exploration Agency astronaut Satoshi Furukawa (left) and Russian cosmonaut Sergei Volkov, both flight engineers.
McArthur conducts SAFER onboard training during Expedition 12
2005-10-21
ISS012-E-06035 (21 October 2005) --- Astronaut William S. McArthur Jr., Expedition 12 commander and NASA science officer, holds a Hand Control Module (HCM) while looking at laptop computer graphics during a Simplified Aid for EVA Rescue (SAFER) training session in the Unity node of the international space station.
McArthur conducts SAFER onboard training during Expedition 12
2005-10-21
ISS012-E-06030 (21 October 2005) --- Astronaut William S. McArthur Jr., Expedition 12 commander and NASA science officer, holds a Hand Control Module (HCM) while looking at laptop computer graphics during a Simplified Aid for EVA Rescue (SAFER) training session in the Unity node of the international space station.
SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit
2010-10-31
ISS025-E-010145 (31 Oct. 2010) --- NASA astronaut Scott Kelly (left) and Russian cosmonaut Oleg Skripochka, both Expedition 25 flight engineers, are pictured during transfer activities of the European Space Agency?s SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit in the Unity node of the International Space Station.
SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit
2010-10-31
ISS025-E-010146 (31 Oct. 2010) --- NASA astronaut Scott Kelly (left) and Russian cosmonaut Oleg Skripochka, both Expedition 25 flight engineers, are pictured during transfer activities of the European Space Agency?s SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit in the Unity node of the International Space Station.
2012-11-10
ISS033-E-018986 (10 Nov. 2012) --- Russian cosmonaut Evgeny Tarelkin, Expedition 33 flight engineer, trims the hair of Russian cosmonaut Oleg Novitskiy, flight engineer, in the Tranquility node of the International Space Station. Tarelkin used hair clippers fashioned with a vacuum device to garner freshly cut hair. NASA astronaut Kevin Ford, flight engineer, is visible in the background.
Kotov exercises on the SchRED during Expedition 15
2007-05-06
ISS015-E-08320 (6 May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, uses the short bar for the Interim Resistive Exercise Device (IRED) to perform upper body strengthening pull-ups. The IRED hardware is located in the Unity node of the International Space Station.
Mapping Sequence performed during the STS-120 R-Bar Pitch Maneuver
2007-10-25
ISS016-E-005926 (25 Oct. 2007) --- A close-up view of the Harmony node in the payload bay of Space Shuttle Discovery is provided by this image photographed by an Expedition 16 crewmember during a backflip maneuver performed by the approaching visitors (STS-120) to the International Space Station.
View of the STS-88 crew in the Node 1/Unity module
2013-11-19
STS088-334-012 (4-15 Dec. 1998) --- Astronaut Frederick W. Sturckow, pilot, works with furnishings on the U.S.-built Unity module as he and five crew mates teamed up to prepare Unity and the connected Russian-built Zarya module for their International Space Station (ISS) roles.
Art concept, line drawing and Service Module of the ISS
1998-04-13
S98-04904 (21 July 1997) --- The Space Shuttle Endeavour prepares to capture the Functional Cargo Block (FGB) using the shuttle's mechanical arm in this artist's depiction of the first Space Shuttle assembly flight for the International Space Station (ISS), mission STS-88 scheduled to launch in December 1998. The shuttle will carry the first United States-built component for the station, a connecting module called Node 1 or Unity, and attach it to the already orbiting FGB, which supplies early electrical power and propulsion. The FGB, Zarya, will have been launched about two weeks earlier on a Russian Proton rocket from the Baikonur Cosmodrome, Kazahkstan. Once the FGB is captured using the mechanical arm, astronaut Nancy J. Currie will maneuver the arm to dock the FGB to the conical mating adapter at the top of Node 1 in the Shuttle's cargo bay. In ensuing days, three Extravehicular Activity?s (EVA) by astronauts Jerry L. Ross and James H. Newman will be performed to make power, data and utility connections between the two modules.
Metcalf-Lindenburger and Yamazaki in Node 2 following Hatch Opening
2010-04-07
ISS023-E-020639 (7 April 2010) --- NASA astronaut Dorothy Metcalf-Lindenburger (left) and Japan Aerospace Exploration Agency astronaut Naoko Yamazaki appear especially happy to be aboard the International Space Station shortly after the Discovery docked with the orbital outpost. Each of the two mission specialists is enjoying her first trip into space, and the two are joined by two other women and nine men for several days of joint activities as work continues on the station.
International Space Station (ISS) Low Pressure Intramodule Quick Disconnect Failures
NASA Technical Reports Server (NTRS)
Lewis, John F.; Harris, Danny; Link, Dwight; Morrison, Russel
2004-01-01
A failure of an ISS intermodule Quick Disconnect (QD) during protoflight vibration testing of ISS regenerative Environmental Control and Life Support (ECLS) hardware led to the discovery of QD design, manufacturing, and test flaws which can yield the male QD susceptible to failure of the secondary housing seal and inadequate housing assembly locking mechanisms. Discovery of this failure had large implications when considering that currently there are 399 similar units on orbit and approximately 1100 units on the ground integrated into flight hardware. Discovery of the nature of the failure required testing and analysis and implementation of a recovery plan requiring part screening and review of element level and project hazard analysis to determine if secondary seals are required. Implementation also involves coordination with the Nodes and MPLM project offices, Regenerative ECLS Project, ISS Payloads, JAXA, ESA, and ISS Logistics and Maintenance.
International Space Station Crew Quarters Ventilation and Acoustic Design Implementation
NASA Technical Reports Server (NTRS)
Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.
2010-01-01
The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.
Evolution of the Baseline ISS ECLSS Technologies: The Next Logical Steps
NASA Technical Reports Server (NTRS)
Carrasquillo, Robyn L.; Bagdigian, Bob; Perry, Jay; Lewis, John; Williams, Dave
2004-01-01
The baseline Environmental Control and Life Support Systems which are currently deployed on the International Space Station or planned to be launched in Node 3 are based on technologies selected in the early 1990's. While they are generally meeting or exceeding requirements for supporting the ISS crew, lessons learned from years of on orbit and ground testing, new advances in technology state of the art, and requirements for future manned missions prompt consideration of the next logical step to enhance these systems to increase performance, robustness, reliability, and reduce on-orbit and logistical resource requirements. This paper discusses the current state of the art in ISS ECLSS technologies, and possible areas for enhancement/improvement. Potential utilization of the ISS as a testbed for on-orbit checkout of selected technology improvements is also addressed.
2013-09-12
ISS037-E-001078 (12 Sept. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, performs in-flight maintenance behind a rack in Tranquility node of the International Space Station. Parmitano replaced a mass spectrometer inside the Major Constituent Analyzer (MCA). The MCA measures the levels of nitrogen, oxygen, carbon dioxide, methane, hydrogen and water vapor inside the space station’s atmosphere.
Lab-on-a-Chip: From Astrobiology to the International Space Station
NASA Technical Reports Server (NTRS)
Maule, Jake; Wainwright, Nor; Steele, Andrew; Gunter, Dan; Monaco, Lisa A.; Wells, Mark E.; Morris, Heather C.; Boudreaux, Mark E.
2008-01-01
The continual and long-term habitation of enclosed environments, such as Antarctic stations, nuclear submarines and space stations, raises unique engineering, medical and operational challenges. There is no easy way out and no easy way to get supplies in. This situation elevates the importance of monitoring technology that can rapidly detect events within the habitat that affect crew safety such as fire, release of toxic chemicals and hazardous microorganisms. Traditional methods to monitor microorganisms on the International Space Station (ISS) have consisted of culturing samples for 3-5 days and eventual sample return to Earth. To augment these culture methods with new, rapid molecular techniques, we developed the Lab-on-a-Chip Application Development - Portable Test System (LOCAD-PTS). The system consists of a hand-held spectrophotometer, a series of interchangeable cartridges and a surface sampling/dilution kit that enables crew to collect samples and detect a range of biological molecules, all within 15 minutes. LOCAD-PTS was launched to the ISS aboard Space Shuttle Discovery in December 2006, where it was operated for the first time during March-May 2007. The surfaces of five separate sites in the US Lab and Node 1 of ISS were analyzed for endotoxin, using cartridges that employ the Limulus Amebocyte Lysate (LAL) assay; results of these tests will be presented. LOCAD-PTS will remain permanently onboard ISS with new cartridges scheduled for launch in February and October of 2008 for the detection of fungi (Beta-glucan) and Gram-positive bacteria (lipoteichoic acid), respectively.
Regenerative Environmental Control and Life Support System Diagram
NASA Technical Reports Server (NTRS)
2000-01-01
This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
NASA Technical Reports Server (NTRS)
Leveton, Lauren; Brainard, George; Whitmire, Alexandra; Kubey, Alan; Maida, Jim; Bowen, Charles; Johnston, Smith
2010-01-01
The International Space Station (ISS) currently uses General Luminaire Assemblies (GLAs) as its primary light source. These GLAs are composed of fluorescent lighting and are integrated into the electrical system on Station. Seventy seven of these units are distributed throughout the vehicle, and many of the lights, having reached their lifespan, are no longer functional; while backup panels are available on orbit, it is anticipated that the supplies of fluorescents on the station will be exhausted by 2015. The ISS vehicle office is therefore preparing to replace all of the GLAs, with Solid State Light Assemblies (SSLAs) composed of white Light Emitting Diodes (LEDs). In the Spring of 2010, an announcement for the replacement lights was released. The announcement specified that proposed lighting systems should use LED technology, given certain power draw restrictions and no changes to how the lights are currently controlled (a central on/off switch per node, and a dial to turn on/off and increase brightness on each lighting unit). The replacement lights are to follow current specifications for brightness levels (lux) and color temperature (degrees Kelvin, or K). Reportedly, the lighting on orbit is dim and suboptimal. The average brightness of the lights (given all lights within a node are operational) is 291 lux; by comparison, recommended office lighting ranges from 200 to 500 lux, and daylight ranges on a typical overcast day, consists of 10,000 to 25,000 lux. Representatives from NASA Behavioral Health and Performance Element (BHP) and Human Factors and Habitability identified that maintaining current brightness levels limits visual acuity, work space, and the use of light as a countermeasure for improving circadian entrainment, hastening phase shifting, evoking acute alertness and enhancing performance. Revised lighting specifications are therefore needed to optimize the replacement lights for the ISS.
Expedition 21 Crew Members participate in PAO Interview in the Node 2
2009-10-12
ISS021-E-016897 (12 Oct. 2009) --- Russian cosmonauts Roman Romanenko (left) and Maxim Suraev, both Expedition 21 flight engineers, participate in a PAO/TV downlink event from the Harmony node of the International Space Station. During the event, the crew members sent greetings to AK-47 Chief Designer M. T. Kalashnikov on his 90th birthday and to the participants of the Tenth Youth Tsiolkovsky Readings; along with a greeting to the 17th Annual International Space Olympiad for School Children, hosted by the City of Korolev.
Expedition 21 Crew Members participate in PAO Interview in the Node 2
2009-10-12
ISS021-E-016899 (12 Oct. 2009) --- Russian cosmonauts Roman Romanenko (left) and Maxim Suraev, both Expedition 21 flight engineers, participate in a PAO/TV downlink event from the Harmony node of the International Space Station. During the event, the crew members sent greetings to AK-47 Chief Designer M. T. Kalashnikov on his 90th birthday and to the participants of the Tenth Youth Tsiolkovsky Readings; along with a greeting to the 17th Annual International Space Olympiad for School Children, hosted by the City of Korolev.
2009-03-20
ISS018-E-041334 (20 March 2009) --- Expedition 18 crewmembers pose for a group photo in the Harmony node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. From the left (front row) are cosmonaut Yury Lonchakov and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both flight engineers. From the left (back row) are NASA astronauts Sandra Magnus, STS-119 mission specialist, and Michael Fincke, commander. Magnus flew to the station on STS-126 to serve as a flight engineer for Expedition 18, and will return to Earth as mission specialist with the STS-119 crew.
Expedition 32 FE Hoshide poses for a photo in the Cupola
2012-07-27
ISS032-E-010615 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide is pictured in the Cupola of the International Space Station during rendezvous operations with the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3). Hoshide and NASA astronaut Joe Acaba (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
2014-06-03
ISS040-E-006739 (3 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, uses the Optical Coherence Tomography (OCT) camera during an Ocular Health (OH) vision test in the Harmony node of the International Space Station. The OH experiment observes and seeks to understand vision changes during long-term space missions. NASA astronaut Steve Swanson (left), Expedition 40 commander, assists Gerst.
2011-11-20
ISS029-E-043205 (20 Nov. 2011) --- In the Unity node, Expedition 29 crew members pose for a photo after adding the Expedition 29 patch to the growing collection of insignias representing crews who have worked on the International Space Station. Pictured are NASA astronaut Mike Fossum (center), commander; Japan Aerospace Exploration Agency astronaut Satoshi Furukawa (left) and Russian cosmonaut Sergei Volkov, both flight engineers.
Reiter cuts Tyurins hair in the Zvezda Service module
2006-11-05
ISS014-E-07174 (5 Nov. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, cuts the hair of cosmonaut Mikhail Tyurin, flight engineer representing Russia's Federal Space Agency, in the Unity node of the International Space Station. Reiter used hair clippers fashioned with a vacuum device to prevent freshly cut hair from being scattered throughout the module.
Expedition 27 and STS-134 Crewmembers share a meal in Node 1
2011-05-21
ISS027-E-035370 (20 May 2011) --- While NASA astronauts Mark Kelly (center), STS-134 commander, and Michael Fincke, mission specialist, appear to have firm grips on their food items, NASA astronaut Greg Chamitoff, mission specialist pursues a free-floating morsel. The three represent one fourth of the current population on the joint Endeavour/International Space Station complex.
Modeling a Wireless Network for International Space Station
NASA Technical Reports Server (NTRS)
Alena, Richard; Yaprak, Ece; Lamouri, Saad
2000-01-01
This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.
International Space Station (ISS)
1997-10-01
The Zvezda Service Module, the first Russian contribution and third element to the International Space Station (ISS), is shown under construction in the Krunichev State Research and Production Facility (KhSC) in Moscow. Russian technicians work on the module shortly after it completed a pressurization test. In the foreground is the forward portion of the module, including the spherical transfer compartment and its three docking ports. The forward port docked with the cornected Functional Cargo Block, followed by Node 1. Launched via a three-stage Proton rocket on July 12, 2000, the Zvezda Service Module serves as the cornerstone for early human habitation of the Station, providing living quarters, life support system, electrical power distribution, data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
2013-05-29
ISS036-E-004795 (29 May 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, gives himself a "serious" haircut in the Harmony node onboard the Earth-orbiting International Space Station. Cassidy, who has displayed his sense of humor more than once since coming aboard the orbital outpost in late March, ended up with a completely bald pate when this task was done. The three crew members due to come aboard the station later on this day include one -- Luca Parmitano of the European Space Agency -- who sports a similarly hairless head.
Hadfield with the Reassembled Amine Swingbed in the U.S. Lab
2013-03-20
ISS035-E-006230 (20 March 2013) --- Expedition 35 Commander Chris Hadfield in Harmony Node 2 aboard the Earth-orbiting International Space Station examines his work after reassembling the amine swing bed into its locker chassis. This device examines whether a vacuum-regenerated amine system can effectively remove carbon dioxide from the space station atmosphere using a smaller, more efficient vacuum regeneration system. The goal is to recover carbon dioxide from the atmosphere, and separate the dioxide from the carbon, so that the oxygen molecules can be used for crew life support.
NASA Technical Reports Server (NTRS)
1998-01-01
Designed by the STS-88 crew members, this patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task was to assemble the cornerstone of the Space Station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the Space Shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future.
Expedition 40 crew in Node 2 after German - U.S. soccer game
2014-06-26
ISS040-E-020368 (26 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, shaves the head of NASA astronaut Steve Swanson, commander, in the Unity node of the International Space Station. Gerst used hair clippers fashioned with a vacuum device to garner freshly cut hair. A friendly World Cup Soccer-related agreement between the crew members representing the USA, and Gerst, a German citizen who represents the European Space Agency, called for the American losers of a German-USA match to have their heads shaved. The German team won the match 1-0.
Expedition 40 crew in Node 2 after German - U.S. soccer game
2014-06-26
ISS040-E-020364 (26 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, shaves the head of NASA astronaut Steve Swanson, commander, in the Unity node of the International Space Station. Gerst used hair clippers fashioned with a vacuum device to garner freshly cut hair. A friendly World Cup Soccer-related agreement between the crew members representing the USA, and Gerst, a German citizen who represents the European Space Agency, called for the American losers of a German-USA match to have their heads shaved. The German team won the match 1-0.
Expedition 40 crew in Node 2 after German - U.S. soccer game
2014-06-26
ISS040-E-020378 (26 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, shaves the head of NASA astronaut Reid Wiseman, flight engineer, in the Unity node of the International Space Station. Gerst used hair clippers fashioned with a vacuum device to garner freshly cut hair. A friendly World Cup Soccer-related agreement between the crew members representing the USA, and Gerst, a German citizen who represents the European Space Agency, called for the American losers of a German-USA match to have their heads shaved. The German team won the match 1-0.
Expedition 40 crew in Node 2 after German - U.S. soccer game
2014-06-26
ISS040-E-020383 (26 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, shaves the head of NASA astronaut Reid Wiseman, flight engineer, in the Unity node of the International Space Station. Gerst used hair clippers fashioned with a vacuum device to garner freshly cut hair. A friendly World Cup Soccer-related agreement between the crew members representing the USA, and Gerst, a German citizen who represents the European Space Agency, called for the American losers of a German-USA match to have their heads shaved. The German team won the match 1-0.
Expedition 40 crew in Node 2 after German - U.S. soccer game
2014-06-26
ISS040-E-020384 (26 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, shaves the head of NASA astronaut Reid Wiseman, flight engineer, in the Unity node of the International Space Station. Gerst used hair clippers fashioned with a vacuum device to garner freshly cut hair. A friendly World Cup Soccer-related agreement between the crew members representing the USA, and Gerst, a German citizen who represents the European Space Agency, called for the American losers of a German-USA match to have their heads shaved. The German team won the match 1-0.
Expedition 28 Crew Members during IFM
2011-06-30
ISS028-E-010781 (30 June 2011) --- NASA astronauts Mike Fossum (left) and Ron Garan, both Expedition 28 flight engineers, perform in-flight maintenance in the Harmony node of the International Space Station. The maintenance involved removing and replacing the failed Common Cabin Air Assembly (CCAA) heat exchanger in the P3 Midbay with a new spare Heat Exchanger Orbit Replaceable Unit (HX ORU) and lines.
STS-88 Onboard Photograph - The Unity Module and the Zarya
NASA Technical Reports Server (NTRS)
1998-01-01
This photograph taken during the STS-88 mission, shows the cornected Zarya (top with solar wings) and the Unity Module after having been released from the Orbiter Endeavour's cargo bay. The Unity (also called Node 1), the first U.S. Module for the International Space Station (ISS), is a six-sided connector to which all future U.S. Station modules will attach and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
NASA Technical Reports Server (NTRS)
Patel, Vipul P.; Winton, Dale; Ibarra, Thomas H.
2004-01-01
The Internal Thermal Control System (ITCS) has been developed jointly by Boeing Corporation, Huntsville, Alabama and Honeywell Engines & Systems, Torrance, California to meet the internal thermal control needs for the International Space Station (ISS). The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first US Element containing the ITCS, Node 1, was launched in December 1998. Since Node 1 does not contain a pump to circulate the fluid it was not filled with ITCS fluid until after the US Laboratory Module was installed. The second US Element module, US Laboratory Module, which contains the pumps and all the major ITCS control hardware, was launched in February 2001. The third US Element containing the ITCS, the US Airlock, was launched in July 2001. The dual loop system of the ITCS is comprised of a lowtemperature loop (LTL) and a moderate-temperature loop (MTL). Each loop has a pump package assembly (PPA), a system flow control assembly (SFCA), a threeway mixing valve (TWMV), several rack flow control assemblies (RFCA), cold plates, pressure sensors, temperature sensors, pump bypass assembly (PBA) and a heat exchanger. In addition, the MTL has an additional TWMV, a payload regeneration heat exchanger (P/RHE) and a manual flow control valve (MFCV). The LTL has a service performance and checkout unit (SPCU) heat exchanger. The two loops are linked via one loop crossover assembly (LCA) providing cross loop capabilities and a single PPA, two-loop functionality. One important parameter monitored by the ground stations and on-orbit is the amount of fluid leakage from the ITCS. ISS fluid leakage is of importance since ITCS fluid is costly to re-supply, may be difficult to clean up in zero-g, and if uncontained could lead to equipment failures and potential hazards. This paper examines the nominal leakage observed over period of a year of on-orbit operation and compares this with analysis predictions. This paper also addresses the off-nominal leakage and a fluid transfer event causing significant changes in accumulator quantity.
Fruit Floating at Cupola Window
2014-01-12
ISS038-E-029068 (12 Jan. 2014) --- A fresh apple floating freely near a window in the Cupola of the International Space Station is featured in this image photographed by an Expedition 38 crew member. Attached to the Harmony node, the Orbital Sciences Corp. Cygnus commercial cargo craft, which brought the fresh fruit, is visible at center. The bright sun, Earth's horizon and the blackness of space provide the backdrop for the scene.
2012-04-18
ISS030-E-236919 (18 April 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, works with the Oxygen Generator System (OGS) rack in the Tranquility node of the International Space Station. Burbank unpowered the OGS, purged the hydrogen sensor Orbital Replacement Unit (ORU) with the Hydrogen Sensor ORU Purge Adapter (HOPA) for return to Earth, and replaced the hydrogen sensor with a new spare, then cleaned the rack Avionics Air Assembly (AAA).
Newman and Cabana in the Node 1/Unity module
1998-12-11
STS088-357-016 (4-15 Dec. 1998) --- Astronauts James H. Newman (left), mission specialist, and Robert D. Cabana, mission commander, look over checklists as they prepare to continue work in the U.S.-built Unity connecting module in Earth orbit. The STS-88 crew went on to spend eleven days in space preparing Unity and the attached Russian-built Zarya module for their International Space Station (ISS) roles.
Burbank closes the Node 2 Hatch
2012-03-24
ISS030-E-173920 (24 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, closes a hatch in the International Space Station as crew members prepare to move to the appropriate Soyuz vehicles, due to the possibility that space debris could pass close to the station. NASA astronaut Don Pettit, flight engineer, is at left. Burbank, Shkaplerov and Ivanishin sheltered in the Soyuz TMA-22 spacecraft attached to the Poisk Mini-Research Module 2 (MRM2) while Kononenko, Kuipers and Pettit took to the Soyuz TMA-03M docked to the Rassvet Mini-Research Module 1 (MRM-1).
Burbank and Kuipers review crew procedures
2012-03-24
ISS030-E-171093 (24 March 2012) --- NASA astronaut Dan Burbank (left), Expedition 30 commander; and European Space Agency astronaut Andre Kuipers, flight engineer, work in the Unity node of the International Space Station. Crew members were preparing for their move to the appropriate Soyuz vehicles, due to the possibility that space debris could pass close to the station. Burbank, Shkaplerov and Ivanishin sheltered in the Soyuz TMA-22 spacecraft attached to the Poisk Mini-Research Module 2 (MRM2) while Kononenko, Kuipers and Pettit took to the Soyuz TMA-03M docked to the Rassvet Mini-Research Module 1 (MRM-1).
Expedition 32 Crew Members pose for a photo in the Cupola
2012-07-27
ISS032-E-010701 (27 July 2012) --- NASA astronauts Sunita Williams and Joe Acaba (center), along with Japan Aerospace Exploration Agency astronaut Aki Hoshide, all Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola following the rendezvous with the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3). Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Expedition 32 Crew Members pose for a photo in the Cupola
2012-07-27
ISS032-E-010700 (27 July 2012) --- NASA astronauts Sunita Williams and Joe Acaba (center), along with Japan Aerospace Exploration Agency astronaut Aki Hoshide, all Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola following the rendezvous with the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3). Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Installation of Radioskaf 11.2 Kit and batteries for Radioskaf (Suitsat-1) on Expedition 12
2006-01-24
ISS012-E-15655 (24 Jan. 2006) --- In the Unity node of the International Space Station, cosmonaut Valery I. Tokarev, Expedition 12 flight engineer representing Russia's Federal Space Agency, puts finishing touches on an old Russian Orlan spacesuit that will be released by hand from the space station during a spacewalk Feb. 3, 2006. Outfitted with a special radio transmitter and other gear, the spacesuit comprises a Russian experiment called SuitSat. It will fly free from the station as a satellite in orbit for several weeks of scientific research and radio tracking, including communications by amateur radio operators. Eventually, it will enter the atmosphere and be destroyed.
Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling
NASA Technical Reports Server (NTRS)
Hojnicki, Jeffrey S.; Rusick, Jeffrey J.
2005-01-01
Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).
Deep Space Habitat Configurations Based On International Space Station Systems
NASA Technical Reports Server (NTRS)
Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples,Dauphne; Miernik, Janie
2012-01-01
A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.
Deep Space Habitat Configurations Based on International Space Station Systems
NASA Technical Reports Server (NTRS)
Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie
2012-01-01
A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.
Documentation of STS-88 Node evaluation
1997-09-08
S97-11949 (8 Sept 1997) --- Wearing training versions of the Shuttle Extravehicular Mobility Unit (EMU) space suit, astronauts Jerry L. Ross (left), and James Newman perform the first training session in the Neutral Buoyancy Laboratory (NBL) of the Sonny Carter Training Facility. The training was actually a dress rehearsal of three Extravehicular Activity?s (EVA) the pair will conduct during the July 1998 flight (STS-88) -- the first International Space Station (ISS) assembly mission. During the six-hour training session, the crew practiced hooking up power and data cables between full-scale mockups of the Functional Cargo Block and the United States-built Node 1 (foreground).
Expedition 40 crew in Node 2 after German - U.S. soccer game
2014-06-26
ISS040-E-020361 (26 June 2014) --- NASA astronaut Steve Swanson (right), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, enjoy a light moment in the Unity node of the International Space Station. Gerst is holding hair clippers fashioned with a vacuum device to garner freshly cut hair. A friendly World Cup Soccer-related agreement between the crew members representing the USA, and Gerst, a German citizen who represents the European Space Agency, called for the American losers of a German-USA match to have their heads shaved. The German team won the match 1-0.
STS-96 In-flight crew portrait in the Node 1/Unity module
2016-08-30
STS096-380-019 (27 May - 6 June 1999) --- The seven crew members for the STS-96 mission pose for the traditional inflight crew portrait in the hatch way of the U.S.-built Unity node for the International Space Station (ISS). From to left to right, bottom, are astronauts Daniel T. Barry, Julie Payette and Ellen Ochoa. On top are cosmonaut Valery I. Tokarev, along with astronauts Tamara E. Jernigan and Kent V. Rominger. Astronaut Rick D. Husband is between Rominger and Ochoa. Payette represents the Canadian Space Agency (CSA) and Tokarev is with the Russian Space Agency (RSA).
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined
2013-11-11
ISS038-E-000269 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
2013-11-11
ISS038-E-000263 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
2014-07-03
ISS040-E-032827 (3 July 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
2014-06-19
ISS040-E-015539 (19 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
2014-07-03
ISS040-E-032825 (3 July 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
2014-07-03
ISS040-E-032820 (3 July 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
Burbank performs Part 1 of the WRS-1 Repair
2012-03-08
ISS030-E-128752 (8 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, performs part one of the Water Recovery System-1 (WRS-1) repair in the Tranquility node of the International Space Station. Burbank removed and replaced the failed Catalytic Reactor (CR), and installed a temporary filter kit between the new CR and the Microbial Check Valve (MCV) to support a system flush of the new Orbital Replacement Unit (ORU).
Time Serial Analysis of the Induced LEO Environment within the ISS 6A
NASA Technical Reports Server (NTRS)
Wilson, John W.; Nealy, John E.; Tomov, B. T.; Cucinotta, Francis A.; Badavi, Frank F.; DeAngelis, Giovanni; Atwell, William; Leutke, N.
2006-01-01
Anisotropies in the low Earth orbit (LEO) radiation environment were found to influence the thermoluminescence detectors (TLD) dose within the (International Space Station) ISS 7A Service Module. Subsequently, anisotropic environmental models with improved dynamic time extrapolation have been developed including westward and northern drifts using AP8 Min & Max as estimates of the historic spatial distribution of trapped protons in the 1965 and 1970 era, respectively. In addition, a directional dependent geomagnetic cutoff model was derived for geomagnetic field configurations from the 1945 to 2020 time frame. A dynamic neutron albedo model based on our atmospheric radiation studies has likewise been required to explain LEO neutron measurements. The simultaneous measurements of dose and dose rate using four Liulin instruments at various locations in the US LAB and Node 1 has experimentally demonstrated anisotropic effects in ISS 6A and are used herein to evaluate the adequacy of these revised environmental models.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-071534 (25 May 2012) --- With clouds over Earth forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station's Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
View taken during berthing of MPLM
2005-08-05
ISS011-E-11517 (5 August 2005) --- Canadarm2 or the Space Station Remote Manipulator System arm grasps the Italian-built Multi-Purpose Logistics Module Raffaello to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the U.S. Lab, Destiny, on the international space station, Astronauts James M. Kelly, pilot, and Wendy B. Lawrence, mission specialist, were in control of the transfer. The MPLM was being moved from its temporary parking place on the Station's Unity node to the payload bay of Discovery for the return trip to Earth. The Discovery astronauts arrived nine days ago with tons of fresh supplies for the Station, and with much effort, replaced that space on Raffaello with unneeded materials from the orbital outpost.
International Space Station Urine Monitoring System Functional Integration and Science Testing
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle R.; Broyan, James Lee, Jr.
2011-01-01
Exposure to microgravity during human spaceflight needs to be better understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Measuring the calcium and other metabolic byproducts in a crew member s urine can evaluate the effectiveness of bone loss countermeasures. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross-contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross-contamination (<0.7 mL urine) and has volume accuracy of 2% between 100 to 1000 mL urine voids. Designed to provide a non-invasive means to collect urine samples from crew members, the ISS UMS operates in-line with the Node 3 Waste and Hygiene Compartment (WHC). The ISS UMS has undergone modifications required to interface with the WHC, including material changes, science algorithm improvements, and software platform revisions. Integrated functional testing was performed to determine the pressure drop, air flow rate, and the maximum amount of fluid capable of being discharged from the UMS to the WHC. This paper will detail the results of the science and the functional integration tests.
NASA Technical Reports Server (NTRS)
Holbrook, Mark; Pitts, Robert Lee; Gifford, Kevin K.; Jenkins, Andrew; Kuzminsky, Sebastian
2010-01-01
The International Space Station (ISS) is in an operational configuration and nearing final assembly. With its maturity and diverse payloads onboard, the opportunity exists to extend the orbital lab into a facility to exercise and demonstrate Delay/Disruption Tolerant Networking (DTN). DTN is an end-to-end network service providing communications through environments characterized by intermittent connectivity, variable delays, high bit error rates, asymmetric links and simplex links. The DTN protocols, also known as bundle protocols, provide a store-and-forward capability to accommodate end-to-end network services. Key capabilities of the bundling protocols include: the Ability to cope with intermittent connectivity, the Ability to take advantage of scheduled and opportunistic connectivity (in addition to always up connectivity), Custody Transfer, and end-to-end security. Colorado University at Boulder and the Huntsville Operational Support Center (HOSC) have been developing a DTN capability utilizing the Commercial Generic Bioprocessing Apparatus (CGBA) payload resources onboard the ISS, at the Boulder Payload Operations Center (POC) and at the HOSC. The DTN capability is in parallel with and is designed to augment current capabilities. The architecture consists of DTN endpoint nodes on the ISS and at the Boulder POC, and a DTN node at the HOSC. The DTN network is composed of two implementations; the Interplanetary Overlay Network (ION) and the open source DTN2 implementation. This paper presents the architecture, implementation, and lessons learned. By being able to handle the types of environments described above, the DTN technology will be instrumental in extending networks into deep space to support future missions to other planets and other solar system points of interest. Thus, this paper also discusses how this technology will be applicable to these types of deep space exploration missions.
Exterior view of the ISS taken during a session of EVA
2011-07-12
ISS028-E-016225 (12 July 2011) --- Components of the International Space Station, though moving along at 17,500 miles per hour, appear to hover above the Pacific Ocean just off the California coast. Ten cosmonauts and astronauts were working together when this photo was taken -- four of them as STS-135 visitors from the docked space shuttle Atlantis and six as members of the Expedition 28 crew. The Cupola, near center of frame, is attached to Node 3 or Tranquility. A Russian Soyuz and a Russian Progress spacecraft are parked at the station, left side of frame. While much of the coast is obscured by clouds, just inland from left to right, one can see the agriculture of the San Joaquin Valley, the southern Sierra Nevada, the Los Angeles Basin (center), the Mojave Desert, coastal mountains of southern California, the Salton Sea, the Imperial Valley, and the mouth of the Colorado River on the extreme right edge.
Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test
NASA Technical Reports Server (NTRS)
Barido, Richard A.
2011-01-01
The International Space Station (ISS) Crew Quarters (CQ) is a permanent personal space for crewmembers to sleep, perform personal recreation and communication, as well as provide on-orbit stowage of personal belongings. The CQs provide visual, light, and acoustic isolation for the crewmember. Over a two year period, four CQs were launched to the ISS and currently reside in Node 2. Since their deployment, all CQs have been occupied and continue to be utilized. After four years on-orbit, this paper will review failures that have occurred and the investigations that have resulted in successful on-orbit operations. This paper documents the on-orbit performance and sustaining activities that have been performed to maintain the integrity and utilization of the CQs.
Why Deep Space Habitats Should Be Different from the International Space Station
NASA Technical Reports Server (NTRS)
Griffin, Brand; Brown, MacAulay
2016-01-01
It is tempting to view the International Space Station (ISS) as a model for deep space habitats. This is not a good idea for many reasons. The ISS does not have a habitation module; instead the individual crew quarters are dispersed across several modules, the galley is in the US Laboratory and the waste hygiene compartment is in a Node. This distributed arrangement may be inconvenient but more important differences distinguish a deep space habitat from the ISS. First, the Space Shuttle launch system that shaped, sized, and delivered most ISS elements has been retired. Its replacement, the Space Launch System (SLS), is specifically designed for human exploration beyond low-Earth orbit and is capable of transporting more efficient, large diameter, heavy-lift payloads. Next, because of the Earth's protective geomagnetic field, ISS crews are naturally shielded from lethal radiation. Deep space habitat designs must include either a storm shelter or strategically positioned equipment and stowage for radiation protection. Another important difference is the increased transit time with no opportunity for an ISS-type emergency return. It takes 7 to 10 days to go between Earth and cis-lunar locations and 1000 days for the Mars habitat transit. This long commute calls for greater crew autonomy with habitats designed for the crew to fix their own problems. The ISS rack-enclosed, densely packaged subsystems are a product of the Shuttle era and not maintenance friendly. A solution better suited for deep space habitats spreads systems out allowing direct access to single-layer packaging and providing crew access to each component without having to remove another. Operational readiness is another important discriminator. The ISS required over 100 flights to build, resupply, and transport the crew, whereas SLS offers the capability to launch a fully provisioned habitat that is operational without additional outfitting or resupply flights.
Rapid culture-independent microbial analysis aboard the International Space Station (ISS).
Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark
2009-10-01
A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria) was distributed throughout the ISS, despite previous indications that mostbacteria on ISS surfaces were Gram-positive [corrected].Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm(2), which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm(2)). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm(2); defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm(2)) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm(2)). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm(2)) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm(2)).
Rapid Culture-Independent Microbial Analysis Aboard the International Space Station (ISS)
NASA Astrophysics Data System (ADS)
Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark
2009-10-01
A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria and fungi) was distributed throughout the ISS, despite previous indications that most bacteria on ISS surfaces were Gram-positive. Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm2, which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm2). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm2; defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm2) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm2). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm2) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm2).
2014-01-03
ISS038-E-025016 (3 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
2014-06-19
ISS040-E-015545 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
Hopkins during CFE-2 Experiment
2013-11-20
ISS038-E-005962 (19 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the Capillary Flow Experiment-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
Nadir (+ZA/Plane I) side of Node 1/Unity and FGB/Zarya
1999-06-04
STS096-712-034 (3 June 1999) --- A STS-96 crew member aboard Discovery handling a 70mm camera recorded this image of the International Space Station (ISS) during a fly-around following separation of the two spacecraft. A portion of the work performed on the May 30 space walk by astronauts Tamara E. Jernigan and Daniel T. Barry is evident in the photo, including the installation of the Russian-built crane (called Strela).
2014-06-19
ISS040-E-015532 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
2014-06-19
ISS040-E-015523 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.