Kennedy Space Center Launch and Landing Support
NASA Technical Reports Server (NTRS)
Wahlberg, Jennifer
2010-01-01
The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.
2018-05-02
The 2017 class of astronaut candidates are at United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station (CCAFS) in Florida for a familiarization tour. They also toured facilities at Kennedy Space Center, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, the Vehicle Assembly Building, Boeing's Commercial Crew and Cargo Facility, and SpaceX's Launch Complex 39A. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.
OA-7 Preparations and move from SSPF to PHSF
2017-02-21
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Orbital ATK CYGNUS pressurized cargo module is bagged with a protective coverage and lifted up by crane for transfer to the KAMAG transporter. The module is secured on the transporter and moved to the Payload Hazardous Servicing Facility. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.
2018-05-01
The 2017 class of astronaut candidates tour Boeing's Commercial Crew and Cargo Facility at NASA's Kennedy Space Center in Florida on May 1. They are at the center for a familiarization tour of facilities, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, and the Vehicle Assembly Building. They also toured United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station, and SpaceX's Launch Complex 39A at Kennedy. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.
2018-05-01
The 2017 class of astronaut candidates arrive at Boeing's Commercial Crew and Cargo Facility at NASA's Kennedy Space Center in Florida on May 1. They are at the center for a familiarization tour of facilities, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, and the Vehicle Assembly Building. They also toured United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station, and SpaceX's Launch Complex 39A at Kennedy. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.
Unity connecting module in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1998-01-01
Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.
Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...
Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL
Unity connecting module viewed from above in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1998-01-01
The Unity connecting module is viewed from above while it awaits processing in the Space Station Processing Facility (SSPF). On the side can be seen the connecting hatch. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.
Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.
Cape Canaveral Air Force Station, Launch Complex 39, The Solid ...
Cape Canaveral Air Force Station, Launch Complex 39, The Solid Rocket Booster Assembly and Refurbishment Facility Manufacturing Building, Southeast corner of Schwartz Road and Contractors Road, Cape Canaveral, Brevard County, FL
A panoramic view of the Space Station Processing Facility with Unity connecting module
NASA Technical Reports Server (NTRS)
1998-01-01
In this panoramic view of the Space Station Processing Facility (SSPF) can be seen (left to right) Unity connecting module, the Rack Insertion Device and the first Multi-Purpose Launch Module, the Leonardo. Windows at the right above Leonardo allow visitors on tour to watch the activities in the SSPF. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station. The Italian-built MPLM, scheduled to be launched on STS-100 on Dec. 2, 1999, will be carried in the payload bay of the Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the International Space Station.
Post-Launch Status of Orbital ATK’s Mission to the International Space Station
2017-11-12
On Nov. 12, Orbital ATK launched its Cygnus cargo spacecraft atop an Antares rocket to the International Space Station, from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia. Following the launch mission managers provided a status update on the mission.
Preparation for Bagging OA-7 CYGNUS
2017-02-21
In the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians are preparing Orbital ATK's CYGNUS pressurized cargo module for bagging. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.
KSC ground operations planning for Space Station
NASA Technical Reports Server (NTRS)
Lyon, J. R.; Revesz, W., Jr.
1993-01-01
At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.
4. GENERAL VIEW OF LAUNCH PAD B FROM LAUNCH PAD ...
4. GENERAL VIEW OF LAUNCH PAD B FROM LAUNCH PAD A MOBILE SERVICE STRUCTURE; VIEW TO SOUTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Blue Origin Facility - Construction Progress
2017-03-21
Construction is progressing on Blue Origin's 750,000-square-foot facility being built at Exploration Park on NASA Kennedy Space Center property in Florida. Blue Origin will use the factory to manufacture its two-stage super-heavy-lift New Glenn launch vehicle and launch the vehicles from Space Launch Complex 46 at Cape Canaveral Air Force Station.
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2012-02-17
Industrial Area Construction: Located 5 miles south of Launch Complex 39, construction of the main buildings -- Operations and Checkout Building, Headquarters Building, and Central Instrumentation Facility – began in 1963. In 1992, the Space Station Processing Facility was designed and constructed for the pre-launch processing of International Space Station hardware that was flown on the space shuttle. Along with other facilities, the industrial area provides spacecraft assembly and checkout, crew training, computer and instrumentation equipment, hardware preflight testing and preparations, as well as administrative offices. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
2017-03-10
The Orbital ATK Cygnus spacecraft was encapsulted in its payload fairings inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 24, 2017. CYGNUS will deliver 7,600 of pounds of supplies, equipment and scientific research materials to the space station.
2017-02-07
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, thousands of pounds of supplies, equipment and scientific research materials are prepared for loading aboard a Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
2017-02-21
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a KAMAG transporter has arrived in the high bay. Technicians are preparing Orbital ATK's CYGNUS pressurized cargo module for bagging. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
1998-12-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, arrives at the Space Station Processing Facility, where it will be processed for launch. The state-of-the-art particle physics detector arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. It will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians prepare several Nanoracks for installation on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians have installed several Nanoracks on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians prepare to install several Nanoracks on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-03-17
The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is lowered onto the Centaur upper stage, or second stage, of the United Launch Alliance (ULA) rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-03-17
The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is mated to the Centaur upper stage, or second stage, of the United Launch Alliance (ULA) rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-03-03
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians perform the late cargo installation in the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station targeted for March 24, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD ...
32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD WITH CAMERA AIMED AT LAUNCH DECK; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, several varieties of Arabidopsis seeds, commonly known as thale cress, are being prepared for securing in the science carrier, or base, of the Advanced Plant Habitat (APH) on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, research scientists prepare the science carrier, or base, of the Advanced Plant Habitat (APH) for planting of Arabidopsis seeds, commonly known as thale cress, on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians begin to deploy an antenna from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians test the deployment of an antenna from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians test the deployment of an antenna and boom from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians test the deployment of an antenna from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians begin to deploy an antenna from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians deploy an antenna from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians test the deployment of an antenna and boom from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians test the deployment of an antenna and boom from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
STS-101 Mission Specialist Williams arrives at KSC for 4th launch attempt
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Mission Specialist Jeffrey N. Williams stands ready to begin preparations for the launch on May 18 after arriving at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.
STS-101 Commander Halsell arrives at KSC for 4th launch attempt
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Mission Commander James D. Halsell Jr. arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to prepare for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.
STS-101 M.S. Usachev arrives at KSC for 4th launch attempt
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Mission Specialist Yuri Usachev waves on his arrival KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to prepare for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.
5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK ...
5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK AT RIGHT; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
NASA Technical Reports Server (NTRS)
Mellett, Kevin
2006-01-01
This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.
OA-7 Cargo Module Hatch Closure and Rotate to Vertical at SSPF
2017-02-12
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the hatch is closed on the Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. The module is then rotated to vertical for mating to the service module. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
OA-7 Final "Powered" Cargo Loading and Closeouts Banner Installation
2017-03-06
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians perform final cargo and power installation in the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station
2017-03-17
United Launch Alliance (ULA) technicians monitor the progress as the payload fairing containing the Orbital ATK Cygnus pressurized cargo module is lowered onto the Centaur upper stage, or second stage, of the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-03-02
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians open the hatch on the Orbital ATK Cygnus pressurized cargo module to prepare for late stowage of supplies and hardware. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station targeted for March 24, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
OA-7 Cargo Module Installation onto KAMAG
2017-03-15
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians use a crane to lift the Orbital ATK Cygnus pressurized cargo module, enclosed in its payload fairing, for transfer to a KAMAG transporter. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, preparations are underway to install the Nanoracks on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians begin the process to install several Nanoracks on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians install thermal blankets around the area where several Nanoracks will be installed on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians prepare thermal blankets for several Nanoracks that will be installed on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
OA-7 CYGNUS Processing Activities: Nano-Rack Installation
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians install several Nanoracks on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-03-17
The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is lifted by crane at the United Launch Alliance (ULA) Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The payload will be hoisted up and mated to the ULA Atlas V rocket. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
Atlas_V_OA-7_Payload_Mate_to_Booster
2017-03-17
The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is lifted and mated onto the Centaur upper stage, or second stage, of the United Launch Alliance (ULA) rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-03-17
The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is hoisted up by crane at the United Launch Alliance (ULA) Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The payload will be mated to the ULA Atlas V rocket. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
OA-7 Mate Service Module to Cargo Module
2017-02-14
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers mate a Cygnus spacecraft's pressurized cargo module to its service module. Cygnus is being prepared to deliver thousands of pounds of supplies, equipment and scientific research materials on the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Jeffrey Richards, at left, a project science coordinator with URS Federal Services, secures Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Jeffrey Richards, a project science coordinator with URS Federal Services, secures Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a research scientist prepares a fixative which will be used to secure Arabidopsis seeds, commonly known as thale cress, inside the science carrier, or base, of the Advanced Plant Habitat (APH) on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Jeffrey Richards, a project science coordinator with URS Federal Services, uses a fixative to secure Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
STS-101 M.S. Helms arrives at KSC for 4th launch attempt
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Mission Specialist Susan Helms arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The last to arrive, she and the rest of the crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.
STS-101 M.S. Weber arrives at KSC for 4th launch attempt
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Mission Specialist Mary Ellen Weber waves before climbing out of a T-38 jet aircraft at KSC's Shuttle Landing Facility. She and the rest of the crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.
STS-101 Pilot Horowitz arrives at KSC for 4th launch attempt
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Pilot Scott J. Horowitz climbs out of a T-38 jet aircraft after arriving at KSC's Shuttle Landing Facility. He and the rest of the crew will begin preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Allison Caron, a QinetiQ mechanical engineer, checks out part of the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Bjorn, L. C.; Martin, M. L.; Murphy, C. W.; Niebla, J. F., V
1971-01-01
This document defines the facilities, equipment, and operational plans required to support the MSS Program at KSC. Included is an analysis of KSC operations, a definition of flow plans, facility utilization and modifications, test plans and concepts, activation, and tradeoff studies. Existing GSE and facilities that have a potential utilization are identified, and new items are defined where possible. The study concludes that the existing facilities are suitable for use in the space station program without major modification from the Saturn-Apollo configuration.
2003-10-21
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.
2018-04-10
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is inspected shortly after arrival. ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.
2018-04-10
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is removed from its shipping container. ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.
2017-06-06
Preparations are underway to launch the latest resupply run to the International Space Station. Another SpaceX Falcon 9 will lift off from historic Launch Complex 39A. The Dragon spacecraft will spend about a month attached to the space station and return to Earth in early July. The spacecraft is filled with supplies and experiments for more than 250 science and research investigations - all prepared in Kennedy’s world-class Space Station Processing Facility.
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lifts the next section of the Alpha Magnetic Spectrometer, or AMS, toward a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lowers the next section of the Alpha Magnetic Spectrometer, or AMS, onto a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lowers a section of the Alpha Magnetic Spectrometer, or AMS, onto a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane moves the next section of the Alpha Magnetic Spectrometer, or AMS, toward a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lifts a section of the Alpha Magnetic Spectrometer, or AMS, toward a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, at the Space Station Processing Facility, where it will be processed for launch. AMS arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload an Alpha Magnetic Spectrometer, or AMS, section from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, is on its way to the Space Station Processing Facility, where it will be processed for launch. AMS arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
Orbital ATK's Ground Support Equipment (GSE) Delivery for OA-7
2016-12-15
Sealed in its shipping container, the ground support equipment for the Orbital ATK OA-7 commercial resupply services mission has arrived at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The container will be moved inside the low bay of the facility. The Orbital ATK CRS-7 with the Cygnus cargo module will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
2017-03-17
The Orbital ATK Cygnus pressurized cargo module, enclosed in its payload fairing and secured on a KAMAG transporter, is transported from the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida to the Space Launch Complex 41 at Cape Canaveral Air Force Station, for mating to the United Launch Alliance (ULA) Atlas V rocket. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
OA-7 Atlas V Centaur mate to Booster
2017-02-23
The Centaur upper stage of the United Launch Alliance (ULA) Atlas V rocket arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Centaur stage is lifted and mated to the first stage booster. The rocket is being prepared for Orbital ATK's seventh commercial resupply mission, CRS-7, to the International Space Station. Orbital ATK's CYGNUS pressurized cargo module is scheduled to launch atop ULA's Atlas V rocket from Pad 41 on March 19, 2017. CYGNUS will deliver 7,600 of pounds of supplies, equipment and scientific research materials to the space station
Atlas V OA-7 LVOS Atlas Booster on Stand
2017-02-22
The first stage of the United Launch Alliance (ULA) Atlas V rocket is lifted by crane to vertical as it is moved into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket is being prepared for Orbital ATK's seventh commercial resupply mission, CRS-7, to the International Space Station. Orbital ATK's CYGNUS pressurized cargo module is scheduled to launch atop ULA's Atlas V rocket from Pad 41 on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician adjusts the thermal blankets around the area where several Nanoracks will be installed on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
NASA Technical Reports Server (NTRS)
1987-01-01
The use of orbital spacecraft consumables resupply system (OSCRS) at the Space Station is investigated, its use with the orbital maneuvering vehicle, and launch of the OSCRS on an expendable launch vehicles. A system requirements evaluation was performed initially to identify any unique requirements that would impact the design of OSCRS when used at the Space Station. Space Station documents were reviewed to establish requirements and to identify interfaces between the OSCRS, Shuttle, and Space Station, especially the Servicing Facility. The interfaces between OSCRS and the Shuttle consists of an avionics interface for command and control and a structural interface for launch support and for grappling with the Shuttle Remote Manipulator System. For use of the OSCRS at the Space Station, three configurations were evaluated using the results of the interface definition to increase the efficiency of OSCRS and to decrease the launch weight by Station-basing specific OSCRS subsystems. A modular OSCRS was developed in which the major subsystems were Station-based where possible. The configuration of an OSCRS was defined for transport of water to the Space Station.
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism, including the longeron trunnion/scuff plate, Payload Disconnect Assembly and WIF socket. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, John Carver, a project manager with Jacobs Technology checks the Advanced Plant Experiment, or APEX, experiment as it is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Terry Tullis, a QinetiQ North America mechanical engineer, places the Biological Research In Canisters, or BRIC, 18-1 and 18-2 experiments with others to be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, QinetiQ North America Project Manager Carole Miller, left, works with Allison Caron, a QinetiQ mechanical engineer in preparing the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Terry Tullis, a QinetiQ North America mechanical engineer, prepares the Biological Research In Canisters, or BRIC, 18-1 and 18-2 experiments which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Donald Houzer, a QinetiQ North America mechanical technician checks out the Advanced Plant Experiment, or APEX, experiment as it is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
Cygnus Arrives Safely to ISS on This Week @NASA – October 28, 2016
2016-10-28
On Oct. 23, Orbital ATK’s Cygnus cargo spacecraft safely arrived at the International Space Station – six days after being launched on an Antares rocket from NASA’s Wallops Flight Facility, in Virginia. The successful trip to orbit is the return of rocket launches to the space station from Virginia, following the loss of an Antares and a Cygnus spacecraft during a launch mishap in October 2014. The Cygnus delivered more than 5,100 pounds of science investigations, food and supplies to the crew onboard the station. Also, Next Space Station Crew Trains in Russia, Solar Hazards in Exploration, Preparing for Orion Water Recovery Test and more!
22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 ...
22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 MOBILE SERVICE TOWER 'A'-MECHANICAL, PROPULSION DRIVE TRUCKS AND KEY PLAN, MARCH 1967. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
2018-04-10
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers removed protective wrapping from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.
University Research-1 Payload for SpaceX Launch
2014-03-12
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the University Research-1 payload developed by Texas Southern University in Houston is being prepared for loading aboard the SpaceX Dragon spacecraft for launch to the International Space Station. The experiment involves an investigation of countermeasures involving research into the efficacy of benzofuran-2-carboxylic acid derivatives as pharmacological countermeasures in mitigating the adverse effects of space flight and the International Space Station radiation environment on the immune system. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
8. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...
8. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: SECTIONS AND DETAILS, 1971. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
2001-05-30
Workers supervise the off-loading of segments of a Lockheed Martin Atlas II rocket at the Skid Strip at Cape Canaveral Air Force Station.; The rocket will be used to launch the Geostationary Operational Environmental Satellite-M (GOES-M), the latest in the current series of advanced geostationary weather satellites in service.; GOES-M is being prepared for launch at the Astrotech Space Operations facility located in the Spaceport Florida Industrial Park in Titusville, Fla. The launch is scheduled for July 15 from Pad 36-A, Cape Canaveral Air Force Station
2001-05-30
Workers supervise the off-loading of segments of a Lockheed Martin Atlas II rocket at the Skid Strip at Cape Canaveral Air Force Station.; The rocket will be used to launch the Geostationary Operational Environmental Satellite-M (GOES-M), the latest in the current series of advanced geostationary weather satellites in service.; GOES-M is being prepared for launch at the Astrotech Space Operations facility located in the Spaceport Florida Industrial Park in Titusville, Fla. The launch is scheduled for July 15 from Pad 36-A, Cape Canaveral Air Force Station
LAUNCH VEHICLE STAGE ADAPTER MOVE TO TEST FACILITY
2016-10-12
A SLS LAUNCH VEHICLE STAGE ADAPTER IS MOVED FROM THE VERTICAL WELD TOOL STATION IN MSFC’S BUILDING 4755 TO THE WEST TEST AREA’S TEST STAND 4699 WHERE IT WILL UNDERGO FURTHER TESTING OF ITS ABILITY TO WITHSTAND THE STRESSES RELATED TO LAUNCH AND SPACE TRAVEL.
1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE ...
1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE STRUCTURE IN LOCKED POSITION OVER LAUNCHER BUILDING AND RETENTION POND AT RIGHT; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
40. Photocopy of engineering drawing. LC17B LONG TANK DELTA UPBUILD ...
40. Photocopy of engineering drawing. LC-17B LONG TANK DELTA UPBUILD LAUNCH DECK: NEW PLATE AT LAUNCH MOUNT AREA-STRUCTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
8. VIEW OF NEW CONSTRUCTION ON LAUNCH DECK WITH CASTINPLACE ...
8. VIEW OF NEW CONSTRUCTION ON LAUNCH DECK WITH CAST-IN-PLACE CONCRETE WALLS AND STEEL STRUCTURE FOR NEW SOUTH-FACING FLAME DEFLECTOR; VIEW TO EAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
2003-10-21
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is on a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered onto a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
7. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...
7. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: ELEVATIONS, FLOOR AND FOUNDATION PLANS, 1971. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
ULA's Atlas V for Boeing's Orbital Flight Test
2017-10-24
The Atlas V rocket that will launch Boeing’s CST-100 Starliner spacecraft on the company’s uncrewed Orbital Flight Test for NASA’s Commercial Crew Program is coming together inside a United Launch Alliance facility in Decatur, Alabama. The flight test is intended to prove the design of the integrated space system prior to the Crew Flight Test. These events are part of NASA’s required certification process as the company works to regularly fly astronauts to and from the International Space Station. Boeing's Starliner will launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload a section of the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload the next section of the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves across the facility via an overhead crane to the payload canister for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2003-04-10
In the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) is ready for encapsulation. A fairing will be installed around the spacecraft to protect it during launch. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch April 18 aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station.
2003-04-10
In the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station, the first part of the fairing is place around the Space Infrared Telescope Facility (SIRTF). The fairing protects the spacecraft during launch. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch April 18 aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station.
MPLM Leonardo is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- After being moved from its workstand in the Space Station Processing Facility, the Multi-Purpose Logistics Module Leonardo is suspended above the open doors of the payload canister below. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.
MPLM Leonardo is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, an overhead crane lifts the Multi-Purpose Logistics Module Leonardo from a workstand to move it to the payload canister. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.
MPLM Leonardo is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, a worker at the bottom of the payload canister checks the descent of the Multi-Purpose Logistics Module Leonardo. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.
MPLM Leonardo is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Space Station Processing Facility follow along as the Multi-Purpose Logistics Module Leonardo is moved along the ceiling toward the payload canister. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.
2017-11-12
The International Space Station received about 7,400 pounds of cargo, including new science and technology investigations, following the successful launch of Orbital ATK's Cygnus spacecraft from NASA's Wallops Flight Facility in Virginia on Sunday, Nov. 12, 2017. Orbital ATK's eighth contracted cargo delivery flight to the station launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at Wallops, and arrived at the International Space Station Tuesday, Nov. 14, 2017. For more footage in higher resolution go to: https://svs.gsfc.nasa.gov/12778
1998-08-27
KENNEDY SPACE CENTER, FLA. -- Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station
The UCP is placed in payload canister in SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
The Integrated Cargo Carrier (ICC), with equipment on top, sits in a workstand in the Space Station Processing Facility. It will be moved into the payload canister for transport to Launch Pad 39B in preparation for mission STS-106, scheduled to launch Sept. 8 at 8:31 a.m. EDT. During the mission to the International Space Station, the crew will complete service module support tasks on orbit, transfer supplies and outfit the Space Station for the first long-duration crew
2017-02-01
The Orbital ATK OA-7 Cygnus spacecraft's service module arrives inside the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The service module is sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
2017-01-09
The Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) arrives at the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The PCM is sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. Scheduled to launch in March 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
2010-08-18
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, shipping containers packed with tools and flight support equipment for orbital replacement units are ready for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller
OA-7 Cargo Module Move from Airlock to Highbay
2017-01-10
Inside an environmentally controlled shipping container the Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) moves from an airlock to the high bay of the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
OA-7 Cargo Module Move from Airlock to Highbay
2017-01-10
The Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) arrives at the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The PCM is sealed in an environmentally controlled shipping container. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
6. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...
6. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: MONUMENT LOCATION AND LINE-OF-SIGHT PLAN, 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
2000-07-31
A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At center left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the upper right hand corner of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch)
2000-07-31
A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At the bottom left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. The truss is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the center of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch)
Zenith 1 truss transfer ceremony
NASA Technical Reports Server (NTRS)
2000-01-01
A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At center left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the upper right hand corner of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch).
Fifth anniversary of the first element of the International Spac
2003-12-03
In the Space Station Processing Facility, (from left) David Bethay, Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing, give an overview of Space Station processing for the media. Members of the media were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
6. VIEW OF LAUNCHER BUILDING 28402 SHOWING STEEL STAIRS LEADING ...
6. VIEW OF LAUNCHER BUILDING 28402 SHOWING STEEL STAIRS LEADING UP TO LAUNCH DECK; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
STS-101 crew waves to media after arriving at KSC for 4th launch attempt
NASA Technical Reports Server (NTRS)
2000-01-01
Members of the STS-101 crew wave at media and photographers at KSC's Shuttle Landing Facility after their landing the night of May 14. Standing left to right are Mission Specialists Yuri Usachev, James Voss, Mary Ellen Weber and Jeff Williams; Commander James Halsell; and Pilot Scott Horowitz. Not present is Mission Specialist Susan Helms, who arrived later. The crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.
NASA Technical Reports Server (NTRS)
Weems, J.; Wyse, N.; Madura, J.; Secrist, M.; Pinder, C.
1991-01-01
Lightning plays a pivotal role in the operation decision process for space and ballistic launches at Cape Canaveral Air Force Station and Kennedy Space Center. Lightning forecasts are the responsibility of Detachment 11, 4th Weather Wing's Cape Canaveral Forecast Facility. These forecasts are important to daily ground processing as well as launch countdown decisions. The methodology and equipment used to forecast lightning are discussed. Impact on a recent mission is summarized.
2018-01-11
Mic Woltman, chief of the Fleet Systems Integration Branch of NASA's Launch Services Program, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
TDRS-M Atlas V 1st Stage Erection Launch Vehicle on Stand
2017-07-12
A United Launch Alliance Atlas V first stage is lifted at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.
Fifth anniversary of the first element of the International Spac
2003-12-03
In the Space Station Processing Facility (SSPF), Charles J. Precourt, deputy manager of NASA's International Space Station Program, is interviewed by a reporter from a local television station. Representatives from the media were invited to commemorate the fifth anniversary of the launch of the first element of the Station with a tour of the facility and had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. NASA and Boeing mission managers were on hand to talk about the various hardware elements currently being processed for flight.
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves across the facility via an overhead crane to the payload canister at right for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2003-09-03
KENNEDY SPACE CENTER, FLA. - A KSC employee wipes down some of the hoses of the ground support equipment in the Orbiter Processing Facility (OPF) where Space Shuttle Atlantis is being processed for flight. Preparations are under way for the next launch of Atlantis on mission STS-114, a utilization and logistics flight to the International Space Station.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is ready to be lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is being dismantled from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, start dismantling the Space Infrared Telescope Facility (SIRTF) observatory from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
STS-101 crew have a snack before getting ready for launch again
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch for the second time. The previous day's launch attempt was scrubbed due to high cross winds at the Shuttle Landing Facility. From left are Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia; Pilot Scott J. Horowitz; Commander James D. Halsell Jr.; and Mission Specialists Jeffrey N. Williams, Susan J. Helms and James S. Voss. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.
2010-08-18
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller
2010-08-18
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, shipping containers packed with tools and flight support equipment for orbital replacement units are loaded into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller
2010-08-18
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller
2010-08-18
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller
2017-01-09
Still sealed in its environmentally controlled shipping container, the Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) has arrived inside the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Once the Cygnus spacecraft is removed from its shipping container, engineers and technicians will begin preparing for launch scheduled for March 2017. Orbital ATK CRS-7 will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
2010-08-18
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller
2010-11-04
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) sits in its cargo element work stand, where technicians will continue to process the experiment for launch. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller
2010-11-04
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) sits in its cargo element work stand, where technicians will continue to process the experiment for launch. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller
SPACEHAB module is placed in payload canister in SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility check the progress of the SPACEHAB module as it is lowered toward the payload canister below. The module, part of the payload on mission STS-106, will be placed in the payload canister for transport to the launch pad. STS-106 is scheduled to launch Sept. 8 at 8:31 a.m. EDT. During the mission to the International Space Station, the crew will complete service module support tasks on orbit, transfer supplies and outfit the Space Station for the first long-duration crew.
2008-07-21
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, workers prepare to install the final solar array wing for the International Space Station onto the S6 truss element. Scheduled to launch on the STS-119 mission, space shuttle Discovery will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Launch is targeted for Feb. 12, 2009. Photo credit: NASA/Troy Cryder
2010-08-30
CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, begin processing the Alpha Magnetic Spectrometer, or AMS, to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, awaits processing for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
ECOSTRESS Arrival and Processing
2018-04-09
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) has arrived in its shipping container. The container is being inspected and thoroughly cleaned prior to opening. ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, equipment supporting the Advanced Plant Experiment, or APEX, experiment is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. The APEX investigation examines white spruce, picea glauca, to understand the influence of gravity on plant physiology, growth, and on the genetics of wood formation. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
2018-01-11
Russ DeLoach, director of Safety and Mission Assurance, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
2018-01-11
Kennedy Space Center Director Bob Cabana speaks to employees at the Florida spaceport about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
2018-01-11
Josie Burnett, director or Exploration Research and Technology Programs, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
ISS Expedition 55-56 Crew Launches to the International Space Station
2018-03-21
Expedition 55-56 Soyuz Commander Oleg Artemyev of Roscosmos and Flight Engineers Drew Feustel and Ricky Arnold of NASA launched on the Russian Soyuz MS-08 spacecraft on Mar. 21 from the Baikonur Cosmodrome in Kazakhstan to begin a two-day journey to the International Space Station and the start of a five month mission on the outpost. The footage also contains the crew's pre-launch activities that included their departure from their Cosmonaut Hotel crew quarters, their suit-up in the Cosmodrome's Integration Facility, walk out to their crew bus and arrival at the launch pad to board their spacecraft.
STS-101 crew returns from Launch Pad 39A after launch was scrubbed
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown at left is Commander James D. Halsell Jr. At right is astronaut James Wetherbee, deputy director of the Johnson Space Center. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days.
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members watch as Japanese Aerospace Exploration Agency, or JAXA, technicians maneuver the antenna in the Inter Orbit Communication System Extended Facility, or ICS-EF. Standing at right are Mission Specialists Dave Wolf, Christopher Cassidy, Tim Kopra and Tom Marshburn. Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members get a look at the antenna in the Inter Orbit Communication System Extended Facility, or ICS-EF. Standing next to a Japanese Aerospace Exploration Agency, or JAXA, technician at left are Mission Specialists Dave Wolf and Christopher Cassidy and Commander Mark Polansky. Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
Space Station services and design features for users
NASA Technical Reports Server (NTRS)
Kurzhals, Peter R.; Mckinney, Royce L.
1987-01-01
The operational design features and services planned for the NASA Space Station will furnish, in addition to novel opportunities and facilities, lower costs through interface standardization and automation and faster access by means of computer-aided integration and control processes. By furnishing a basis for large-scale space exploitation, the Space Station will possess industrial production and operational services capabilities that may be used by the private sector for commercial ventures; it could also ultimately support lunar and planetary exploration spacecraft assembly and launch facilities.
2006-06-23
KENNEDY SPACE CENTER, FLA. - An overview of the new Firing Room 4 shows the expanse of computer stations and the various operations the facility will be able to manage. FR4 is now designated the primary firing room for all remaining shuttle launches, and will also be used daily to manage operations in the Orbiter Processing Facilities and for integrated processing for the shuttle. The firing room now includes sound-suppressing walls and floors, new humidity control, fire-suppression systems and consoles, support tables with computer stations, communication systems and laptop computer ports. FR 4 also has power and computer network connections and a newly improved Checkout, Control and Monitor Subsystem. The renovation is part of the Launch Processing System Extended Survivability Project that began in 2003. United Space Alliance's Launch Processing System directorate managed the FR 4 project for NASA. Photo credit: NASA/Dimitri Gerondidakis
Station set requirements document. Volume 82: Fire support. Book 2: Preliminary functional fire plan
NASA Technical Reports Server (NTRS)
Gray, N. C.
1974-01-01
The fire prevention/protection requirements for all shuttle facility and ground support equipment are presented for the hazardous operations. These include: preparing the orbiter for launch, launch operations, landing operations, safing operations, and associated off-line activities.
2009-07-08
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage rolls into the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann
2009-07-08
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage is being transported to the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann
2009-07-08
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage rolls toward the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann
2009-07-08
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage is being transported to the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility close the fairing around the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility prepare the Galaxy Evolution Explorer (GALEX) for encapsulation. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility prepare the Galaxy Evolution Explorer (GALEX) for encapsulation. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
Butch Wilmore tour of ULA facility and viewing of ICPS
2017-03-16
Inside the United Launch Alliance Horizontal Integration Facility at Cape Canaveral Air Force Station in Florida, NASA astronaut Barry "Butch" Wilmore views the first integrated piece of flight hardware for NASA's Space Launch System (SLS) rocket, the Interim Cryogenic Propulsion Stage (ICPS). The ICPS is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission 1.
2003-09-08
KENNEDY SPACE CENTER, FLA. - The Minus Eighty Lab Freezer for ISS (MELFI), provided as Laboratory Support Equipment by the European Space Agency for the International Space Station, is seen in the Space Station Processing Facility. The lab will provide cooling and storage for reagents, samples and perishable materials in four insulated containers called dewars with independently selectable temperatures of -80°C, -26°C, and +4°C. It also will be used to transport samples to and from the station. The MELFI is planned for launch on the ULF-1 mission.
2003-09-08
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians remove the cover from the Minus Eighty Lab Freezer for ISS(MELFI) provided as Laboratory Support Equipment by the European Space Agency for the International Space Station. The lab will provide cooling and storage for reagents, samples and perishable materials in four insulated containers called dewars with independently selectable temperatures of -80°C, -26°C, and +4°C. It also will be used to transport samples to and from the station. The MELFI is planned for launch on the ULF-1 mission.
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. The U.S. Laboratory module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. The U.S. Laboratory module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined
2001-06-18
KENNEDY SPACE CENTER, Fla. -- In KSC’s Spacecraft Assembly and Encapsulation Facility -2, workers lower a canister over the Microwave Anisotropy Probe (MAP) before transporting to Launch Complex 17, Cape Canaveral Air Force Station. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30.
New Soyuz Crew Launches to the International Space Station
2017-09-12
Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA launched on the Russian Soyuz MS-06 spacecraft Sept. 13 (Kazakhstan time) from the Baikonur Cosmodrome in Kazakhstan. The trio began a six-hour journey to the International Space Station and the start of a five-and-a-half month mission on the outpost. The footage contains the crew’s prelaunch activities including their departure from their crew quarters, suit-up in the Cosmodrome’s Integration Facility, walkout to the crew bus and arrival at the launch pad to board the spacecraft
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is being mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
OA-7 CYGNUS Unbagging, Move from Airlock to Highbay, Lift to Stand at PHSF
2017-02-24
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians remove the protective covering from Orbital ATK's CYGNUS pressurized cargo module on a KAMAG transporter. CYGNUS is then moved from the airlock to the highbay inside the PHSF, followed by the payload being lifted and positioned on a work stand for final propellant loading and late cargo stowage. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.
2014-07-11
The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen on launch Pad-0A, Friday, July 11, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)
2014-10-25
The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is raised at launch Pad-0A, Saturday, Oct. 25, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Joel Kowsky)
2014-10-24
The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, arrives at launch Pad-0A, Friday, Oct. 24, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Joel Kowsky)
2014-07-12
The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen, Saturday, July 12, 2014, at launch Pad-0A of NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)
2004-02-03
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
2018-01-11
Lisa Colloredo, deputy program manager for the Commercial Crew Program, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
2018-01-11
Darrell Foster, chief of Project Management in Exploration Ground Systems, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to
2017-07-26
The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket, packed inside a canister, exits the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station for its move to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.
Interim Cryogenic Propulsion Stage (ICPS) Prep for Transport fro
2017-07-25
The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket is packed inside a canister and ready to be moved from the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.
Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to
2017-07-26
The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket, packed inside a canister, is transported from the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station along the route to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Workers in the Payload Hazardous Servicing Facility maneuver the second half of the fairing toward the Mars Reconnaissance Orbiter (right) for installation. The fairing protects the spacecraft during launch and flight through the atmosphere. Once in space, it is jettisoned. Launch of the MRO aboard an Atlas V rocket will be from Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The MRO is the next major step in Mars exploration and scheduled for launch from Cape Canaveral Air Force Station in a window opening Aug. 10. The MRO is an important next step in fulfilling NASAs vision of space exploration and ultimately sending human explorers to Mars and beyond.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Workers in the Payload Hazardous Servicing Facility stand by as the first half of the fairing (left) is moved closer to the Mars Reconnaissance Orbiter (right) for installation. The fairing protects the spacecraft during launch and flight through the atmosphere. Once in space, it is jettisoned. Launch of the MRO aboard an Atlas V rocket will be from Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The MRO is the next major step in Mars exploration and scheduled for launch from Cape Canaveral Air Force Station in a window opening Aug. 10. The MRO is an important next step in fulfilling NASAs vision of space exploration and ultimately sending human explorers to Mars and beyond.
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, training takes place atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training on a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members get a look at the extended antenna in the Inter Orbit Communication System Extended Facility, or ICS-EF, across from them. Standing next to a Japanese Aerospace Exploration Agency, or JAXA, technician at left are Mission Specialists Christopher Cassidy and Dave Wolf and Commander Mark Polansky (pointing). Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members get a look at the extended antenna (upper left) in the Inter Orbit Communication System Extended Facility, or ICS-EF. Standing next to a Japanese Aerospace Exploration Agency, or JAXA, technician (at center) are (from left) Mission Specialists Dave Wolf and Christopher Cassidy and Commander Mark Polansky. Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility maneuver the port fairing into place around the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility maneuver the port fairing into place around the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
The United Launch Alliance Atlas V Centaur second stage is lifted up for transfer into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility prepare to install the port fairing on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- -- Workers in the Multi-Payload Processing Facility prepare to install the port fairing on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility prepare to install the port fairing on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
2010-08-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lifts the Alpha Magnetic Spectrometer, or AMS, so it can be placed onto a work stand and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-27
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida an overhead crane moves the Alpha Magnetic Spectrometer, or AMS, to an area for technicians to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2010-08-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lifts the Alpha Magnetic Spectrometer, or AMS, so it can be lifted onto a work stand and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, arrives at the Space Station Processing Facility, where it will be prepared for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2010-08-27
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida an overhead crane lowers the Alpha Magnetic Spectrometer, or AMS, onto to floor for technicians to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2008-07-21
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, workers prepare to move the final solar array wing for the International Space Station for installation on the S6 truss element. Scheduled to launch on the STS-119 mission, space shuttle Discovery will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Launch is targeted for Feb. 12, 2009. Photo credit: NASA/Troy Cryder
2000-09-07
In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is lifted for moving to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program
2000-09-07
In the Space Station Processing Facility, workers watch as the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program
The Z1 truss is moved to check weight and balance
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.
The Z1 truss is moved to check weight and balance
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is lifted for moving to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.
2010-08-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media are on hand as the Alpha Magnetic Spectrometer, or AMS, is delivered to the Space Station Processing Facility, where it will be prepared for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility watch as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
2003-07-22
KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-18
KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-18
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-18
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-18
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-18
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
STS-101 Mission Specialist J.Williams arrives at KSC for TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-101 Mission Specialist Jeffrey Williams arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft flown by STS- 101 Pilot Scott Horowitz. They and the rest of the crew are at KSC to take part in Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a dress rehearsal for launch. The other crew members are Commander James Halsell and Mission Specialists Mary Ellen Weber, James Voss, Susan Helms and Yuri Usachev. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM ...
DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
STS-100 MS Parazynski looks over Destiny in SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-100 Mission Specialist Scott Parazynski looks over part of the U.S. Lab, Destiny. Mission STS-100 will be the ninth construction flight for the International Space Station. It is scheduled to launch April 19, 2001.
Space Power Facility at NASA’s Plum Brook Station
1969-02-21
Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.
Space station accommodations for lunar base elements: A study
NASA Technical Reports Server (NTRS)
Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.
1987-01-01
The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.
Work continues on Leonardo, the Multi-Purpose Logistics Module, in the Space Station Processing Faci
NASA Technical Reports Server (NTRS)
1999-01-01
Workers in the Space Station Processing Facility work on Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-102, targeted for June 2000. Leonardo shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM), targeted for launch in September 1999, and Destiny, the U.S. Lab module, targeted for mission STS-98 in late April 2000.
STS-101 Mission Specialist Helms suits up for second launch attempt.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, STS-101 Mission Specialist Susan J. Helms (left) and a suit technician grin with anticipation for a successful second attempt at launch of Space Shuttle Atlantis on mission STS-101. The previous day's launch attempt was scrubbed due to high cross winds at the Shuttle Landing Facility. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. Liftoff is targeted for 3:52 p.m. EDT. The mission is expected to last about 10 days, with Atlantis landing at KSC Saturday, May 6, about 11:53 a.m. EDT.
2007-11-19
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Mission Specialist Leopold Eyharts takes part in a press conference at the slidewire basket landing on Launch Pad 39A. Eyharts is with the European Space Agency and will remain on the International Space Station as a flight engineer for Expedition 16 following the STS-122 mission. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Raffaello rises off the workstand via an overhead crane that will move it to the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, an overhead crane is attached to the Multi-Purpose Logistics Module Raffaello in order to move the MPLM to the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - The overhead crane in the Space Station Processing Facility traverses the length of the SSPF with the Multi-Purpose Logistics Module Raffaello to reach the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, workers on the floor walk along with the suspended Multi-Purpose Logistics Module Raffaello traveling overhead to the payload canister at right. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, an overhead crane is ready to lift the Multi-Purpose Logistics Module Raffaello in order to move it to the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
2014-07-12
The full Moon sets in the fog behind the Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, Saturday, July 12, 2014, launch Pad-0A, NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)
2014-10-24
Workers are seen as they prepare the Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, to be raised at launch Pad-0A, Friday, Oct. 24, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Joel Kowsky)
2014-07-12
The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen during sunrise, Saturday, July 12, 2014, at launch Pad-0A of NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)
2007-02-12
KENNEDY SPACE CENTER, FLA. -- The payload canister on its transporter leaves the Canister Rotation Facility at NASA's Kennedy Space Center, heading for Launch Pad 39A. The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett
1998-10-22
In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
TDRS-M: Atlas V 2nd Stage Erection/Off-site Verticle Integration (OVI)
2017-07-13
A United Launch Alliance Atlas V Centaur upper stage arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. United Launch Alliance team members monitor the operation progress as the Centaur upper stage is lifted and mated to the Atlas V booster in the vertical position. The rocket is scheduled to help launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 in early August.
Parker Solar Probe Delta IV Heavy LVOS
2018-04-17
A view from above in the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The first stage of a United Launch Alliance Delta IV Heavy is being prepared to be lifted to vertical in the facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Texture Modification of the Shuttle Landing Facility Runway at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Yager, Thomas J.
1996-01-01
This paper describes the test procedures and the selection criteria used in selecting the best runway surface texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-kt crosswinds if desired. This 5-kt increase over the previous 15-kt limit drastically increases landing safety and the ability to make on-time launches to support missions where space station rendezvous is planned.
32. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
32. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODIFICATIONS FOR STRETCHED TANK DELTA, LAUNCH COMPLEX 17-A: UMBILICAL MAST ELEVATIONS-REMOVAL WORK, STRUCTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
26. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
26. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, MOBILE SERVICE TOWER: SOUTH AND EAST ELEVATIONS-MODIFICATIONS, ARCHITECTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PAD AREA PLAN-MODIFICATIONS CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
33. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
33. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODIFICATIONS FOR STRETCHED TANK DELTA, LAUNCH COMPLEX 17-A: PAD AREA PLAN-REMOVAL WORK, CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
27. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
27. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, MOBILE SERVICE TOWER: NORTH AND WEST ELEVATIONS-MODIFICATIONS, ARCHITECTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
2003-03-07
KENNEDY SPACE CENTER, FLA. -- -- At Building AE, the Space Infrared Telescope Facility (SIRTF) is prepared for testing. SIRTF is scheduled for launch aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2001-06-18
KENNEDY SPACE CENTER, Fla. -- In KSC’s Spacecraft Assembly and Encapsulation Facility -2, workers adjust the canister as it is lowered over the Microwave Anisotropy Probe (MAP). The spacecraft will be transported to Launch Complex 17, Cape Canaveral Air Force Station. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30
2007-05-28
KENNEDY SPACE CENTER, FLA. -- At Astrotech's Payload Processing Facility, technicians check the Dawn spacecraft as it is lowered onto a transporter. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
2007-05-28
KENNEDY SPACE CENTER, FLA. --At Astrotech's Payload Processing Facility, technicians maneuver the shipping container to place around the Dawn spacecraft, at right. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
STS-101 crew returns from Launch Pad 39A after launch was scrubbed
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yuri Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days.
2016-11-09
Enclosed in its payload fairing, NOAA's Geostationary Operational Environmental Satellite (GOES-R) is mated to the United Launch Alliance Atlas V Centaur upper stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The satellite will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2016-11-09
A crane begins to lift the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2016-09-09
At the Integration Facility at the Baikonur Cosmodrome in Kazakhstan, Expedition 49 crewmember Shane Kimbrough of NASA undergoes a pressure test on his Sokol launch and entry suit Sept. 9 during a pre-launch training fit check. Kimbrough and Sergey Ryzhikov and Andrey Borisenko of Roscosmos will launch Sept. 24, Kazakh time on the Soyuz MS-02 vehicle for a five-month mission on the International Space Station. NASA/Victor Zelentsov
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
Operations are underway to stack the United Launch Alliance Atlas V Centaur second stage onto the first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
A close-up view of the United Launch Alliance Atlas V Centaur second stage as it travels to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
The United Launch Alliance Atlas V Centaur second stage has been lifted up and transferred into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
United Launch Alliance team members assist as operation begin to lift the Atlas V Centaur second stage into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
The United Launch Alliance Atlas V Centaur second stage is lifted up by crane for transfer into Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
The United Launch Alliance Atlas V Centaur second stage has been mated to the first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
Fifth anniversary of the first element of the International Spac
2003-12-03
Members of the media (at left) were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at right, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
Fifth anniversary of the first element of the International Spac
2003-12-03
Members of the media (at right) were invited to commemorate the fifth anniversary of the launch of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at left, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
TDRS-M Spacecraft Lift to Transport Vehicle
2017-08-08
Inside the Astrotech facility in Titusville, Florida, the payload fairing for NASA's Tracking and Data Relay Satellite, TDRS-M, is lifted and placed into position on the transport vehicle, in preparation for transport to Launch Complex 41. TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18, 2017.
Expedition 52-53 Launches to the International Space Station
2017-07-28
Expedition 52-53 Soyuz Commander Sergey Ryazanskiy of Roscosmos and Flight Engineers Randy Bresnik of NASA and Paolo Nespoli of ESA (European Space Agency) launched on the Russian Soyuz MS-05 spacecraft July 28 from the Baikonur Cosmodrome in Kazakhstan. The trio began a six-hour journey to the International Space Station and the start of a four-and-a-half month mission on the outpost. The footage contains the crew’s prelaunch activities including their departure from their crew quarters, suit-up in the Cosmodrome’s Integration Facility, walk out to the crew bus and arrival at the launch pad to board the spacecraft.
Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to
2017-07-26
The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket is packed inside a canister and ready to exit the United Launch Alliance (ULA) Delta Operations Center near Space Launch Complex 37 at Cape Canaveral Air Force Station for its move to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.
STS-108 Endeavour Launch from Pad 39-B
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1788 KENNEDY SPACE CENTER, Fla. -- A pool of water near Launch Pad 39B turns crimson from the reflection of flames at the launch of Space Shuttle Endeavour on mission STS-109. The second attempt in two days, liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Workers in the Payload Hazardous Servicing Facility make adjustments as they get ready to move the second half of the fairing (right) and install it with the first half around the Mars Reconnaissance Orbiter. The fairing protects the spacecraft during launch and flight through the atmosphere. Once in space, it is jettisoned. Launch of the MRO aboard an Atlas V rocket will be from Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The MRO is the next major step in Mars exploration and scheduled for launch from Cape Canaveral Air Force Station in a window opening Aug. 10. The MRO is an important next step in fulfilling NASAs vision of space exploration and ultimately sending human explorers to Mars and beyond.
2010-08-20
CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida prepare to load the dexterous humanoid astronaut helper, Robonaut 2, or R2, into the Permanent Multipurpose Module, or PMM. Packed inside a launch box called SLEEPR, or Structural Launch Enclosure to Effectively Protect Robonaut, R2 will be placed in the in the same launch orientation as space shuttle Discovery's STS-133 crew members -- facing toward the nose of the shuttle with the back taking all the weight. Although R2 will initially only participate in operational tests, upgrades could eventually allow the robot to realize its true purpose -- helping spacewalking astronauts with tasks outside the International Space Station. STS-133 is targeted to launch Nov. 1. Photo credit: NASA/Frankie Martin
2007-11-19
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Pilot Alan Poindexter takes part in a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2007-11-19
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Mission Specialist Stanley Love takes part in a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2007-11-19
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Mission Specialist Leland Melvin takes part in a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges, Program Manager of the International Space Station (ISS) Randy Brinkley, and STS-98 crew members Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialist Marsha Ivins wait for the unveiling of the name "Destiny" for the U.S. Lab module, which is behind them on a workstand. The lab, scheduled to be launched on Space Shuttle Endeavour in early 2000, will become the centerpiece of scientific research on the ISS. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
1998-12-02
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and (right) STS-98 Commander Ken Cockrell applaud the unveiling of the name Destiny given the U.S. Lab module. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. Cockrell is part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
2003-07-22
KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) is lifted off its transporter on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be added to the launch vehicle in the background. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. SIRTF, consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- In its overhead passage down the Space Station Processing Facility, the U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo. Both are elements in the construction of the International Space Station. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
2010-08-30
CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, attach an overhead crane to the Alpha Magnetic Spectrometer, or AMS, so it can be lifted onto a work stand and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-27
CAPE CANAVERAL, Fla. -- Workers in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, monitor the progress of an overhead crane as it moves the Alpha Magnetic Spectrometer, or AMS, to an area for technicians to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2010-08-27
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the protective panels that covered the Alpha Magnetic Spectrometer, or AMS, have been removed so that the technicians can begin preparing it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2010-08-27
CAPE CANAVERAL, Fla. -- Workers and media at NASA's Kennedy Space Center in Florida, monitor the arrival of a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, to the Space Station Processing Facility, where it will be prepared for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
Orbital_ATK_Cygnus_OA9_Launch_2018_141_0800__655675
2018-05-22
U.S. COMMERCIAL CARGO VEHICLE HEADS TO THE SPACE STATION------ The unpiloted Orbital ATK Cygnus cargo craft launched May 20 from Pad 0A at the Wallops Flight Facility, Virginia atop an Antares rocket, headed for a rendezvous with the International Space Station to deliver several tons of supplies and scientific experiments for the station residents. Dubbed the SS “J.R. Thompson” in honor of the late spacefaring manager for both NASA and Orbital ATK, Cygnus will be robotically captured and installed to the earth-facing port of the station’s Unity module for a two-month stay at the orbital outpost.
The Z1 truss is moved to check weight and balance
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, workers watch as the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.
2010-08-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician monitors an overhead crane as it lifts the Alpha Magnetic Spectrometer, or AMS, so it can be placed onto a work stand and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
A worker in the Space Station Processing Facility watches as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Orbital ATK's Ground Support Equipment (GSE) Delivery for OA-7
2016-12-15
Sealed in its shipping container, the ground support equipment for the Orbital ATK OA-7 commercial resupply services mission was moved inside the low bay of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Orbital ATK CRS-7 with the Cygnus cargo module will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
1998-12-03
KENNEDY SPACE CENTER, FLA. -- Participants pose for a photo at the Space Station Processing Facility ceremony transferring the "Leonardo" Multipurpose Logistics Module (MPLM) from the Italian Space Agency, Agenzia Spaziale Italiana (ASI), to NASA. From left, they are astronaut Jim Voss, European Space Agency astronauts Umberto Guidoni of Italy and Christer Fuglesang of Sweden, NASA International Space Station Program Manager Randy Brinkley, NASA Administrator Daniel S. Goldin, ASI President Sergio De Julio and Stephen Francois, director, International Space Station Launch Site Support at KSC. The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000
25. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
25. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PLAN-RAIL BEAMS AND HURRICANE ANCHOR FOUNDATIONS, STRUCTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
2014-10-30
NASA’s Orion spacecraft was completed Thursday, Oct. 30, 2014 in the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. It will reside there until Nov. 10, when it will be rolled out to Launch Complex 37 at Cape Canaveral Air Force Station ahead of its Dec. 4 test flight. Photo credit: Lockheed Martin
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor is lifted on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- A worker in the Multi-Payload Processing Facility gestures toward the Galaxy Evolution Explorer (GALEX) being prepared for encapsulation. The first part of the fairing is behind him. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
2016-11-09
A crane is used to lift the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2016-11-09
Enclosed in its payload fairing, NOAA's Geostationary Operational Environmental Satellite (GOES-R) is lifted into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch aboard the rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2016-11-09
Preparations are underway to lift NOAA's Geostationary Operational Environmental Satellite (GOES-R), enclosed in its payload fairing at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2016-11-09
A crane has been attached to the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-S Countdown to T-Zero, Episode 4: Ready to Roll
2018-02-28
NOAA's GOES-S is encapsulated in its payload fairing inside Astrotech Space Operations in Titusville, Florida, and transported to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station. It was hoisted up and secured to the United Launch Alliance Atlas V rocket. GOES-S, the next in a series of advanced weather satellites, launched aboard the Atlas V on March 1, 2018.
2003-07-22
KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) is lifted to vertical on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-22
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, help guide the upper canister toward the Space Infrared Telescope Facility (SIRTF) at left. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-18
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-18
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting it up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-18
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-18
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lift the upper canister to move it to the Space Infrared Telescope Facility (SIRTF) at right. After encapsulation, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Deep Space 1 moves to CCAS for testing
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Payload Hazardous Servicing Facility lower Deep Space 1 onto its transporter, for movement to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, where it will undergo testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.
1998-09-30
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility lower Deep Space 1 onto its transporter, for movement to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, where it will undergo testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before unveiling the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him), and (left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, passes the Vehicle Assembly Building en route to the Space Station Processing Facility. The state-of-the-art particle physics detector arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. It will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
Space Station life sciences guidelines for nonhuman experiment accommodation
NASA Technical Reports Server (NTRS)
Arno, R.; Hilchey, J.
1985-01-01
Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.
STS-102 MPLM Leonardo is moved to the payload canister for transfer to Launch Pad 39B
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, an overhead crane begins lifting the Multi-Purpose Logistics Module Leonardo. The MPLM is being moved to the payload canister for transfer to Launch Pad 39B and installation in Space Shuttle Discovery. The Leonardo, one of Italy'''s major contributions to the International Space Station program, is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.
STS-102 MPLM Leonardo is moved to the payload canister for transfer to Launch Pad 39B
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, workers attach an overhead crane to the Multi-Purpose Logistics Module Leonardo. The MPLM is being moved to the payload canister for transfer to Launch Pad 39B and installation in Space Shuttle Discovery. The Leonardo, one of Italy'''s major contributions to the International Space Station program, is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.
OA-7 Service Module Arrival, Uncrating, Move from Airlock to Highbay inside SSPF
2017-02-01
The Orbital ATK OA-7 Cygnus spacecraft's service module arrives inside the Space Station Processing Facility of NASA's Kennedy Space Center in Florida, sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. The service module is uncrate from the shipping container, lifted and positioned on a work stand, and moved from the airlock to the highbay for processing. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- The U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo in its overhead passage down the Space Station Processing Facility. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
ISS Node-1 and PMA-1 rotated in KSC's SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
The International Space Station's Node 1 and Pressurized Mating Adapter-1 (PMA-1) are rotated by workers in KSC's Space Station Processing Facility. The node is rotated to provide access to different areas of the flight element for processing. Here, the node is rotated to provide access for the installation of heat pipe radiators and a flight computer. The node is scheduled to launch into space on STS-88, slated for a July 9 liftoff at 1:11 p.m. from KSC's Launch Pad 39B.
TDRS-M Spacecraft Encapsulation
2017-08-02
Inside the Astrotech facility in Titusville, Florida, NASA's Tracking and Data Relay Satellite, TDRS-M, is encapsulated into ULA's Atlas V payload fairing. TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18, 2017.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
1998-10-22
In the Space Station Processing Facility, a worker checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, a worker checks placement of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, workers look over the Unity connecting module, part of the International Space Station, after attaching the nameplate. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, workers make a final check of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
Prelaunch Status Briefing for Orbital ATK Resupply Mission to the Space Station
2018-05-20
Orbital ATK is scheduled to launch its ninth contracted cargo resupply mission to the International Space Station from NASA's Wallops Flight Facility in Virginia, no earlier than Monday, May 21, at 4:39 a.m. EDT. During a prelaunch briefing on May 20, mission managers provided an overview and status of launch operations for the mission. Populations all along the U.S. east coast will have the chance to catch a glimpse of the Antares rocket as it powers the Cygnus cargo spacecraft to orbit.
1998-10-22
In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
Prelaunch Science briefing for Orbital Resupply Mission to the Space Station
2018-05-19
Orbital ATK is scheduled to launch its ninth contracted cargo resupply mission to the International Space Station from NASA's Wallops Flight Facility in Virginia, no earlier than Monday, May 21, at 4:39 a.m. EDT. During a prelaunch briefing on May 20, mission managers provided an overview and status of launch operations for the mission. Populations all along the U.S. east coast will have the chance to catch a glimpse of the Antares rocket as it powers the Cygnus cargo spacecraft to orbit.
Senator Doug Jones (D-AL) Tour of MSFC Facilities
2018-02-22
Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, also tour the Payload Operations Integration Center (POIC) where Marshall controllers oversee stowage requirements aboard the International Space Station (ISS) as well as scientific experiments.
NASA Technical Reports Server (NTRS)
Wahlberg, Jennifer; Gordon, Randy
2010-01-01
This slide presentation reviews the research on the International Space Station (ISS), including the sponsorship of payloads by country and within NASA. Included is a description of the space available for research, the Laboratory "Rack" facilities, the external research facilities and those available from the Japanese Experiment Module (i.e., Kibo), and highlights the investigations that JAXA has maintained. There is also a review of the launch vehicles and spacecraft that are available for payload transportation to the ISS, including cargo capabilities of the spacecraft.
The payload canister leaves the O&C with the Joint Airlock Module inside
NASA Technical Reports Server (NTRS)
2000-01-01
The payload canister, with the Joint Airlock Module inside, backs out of the Operations and Checkout Building for a short trip to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.
2007-11-19
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Commander Steve Frick responds to a question from the media during a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
Robotic Refueling Mission-3 Arrival and Processing
2018-05-08
NASA’s Robotic Refueling Mission 3 (RRM3) arrived at Kennedy Space Center’s Space Station Processing Facility on May 8. The fluid transfer module will demonstrate innovative methods to store, transfer and freeze standard cryogenic fluid in space. RRM3 is scheduled to launch to the International Space Station later this year.
STS-97 crew arrives at KSC for launch
NASA Technical Reports Server (NTRS)
2000-01-01
At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.
TDRS-M Departure from Astrotech and Transport to VIF Pad 41
2017-08-09
Enclosed in its payload fairing, NASA's Tracking and Data Relay Satellite (TDRS-M) is transported from Astrotech Space Operations Facilityin Titusville Florida to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station. TDRS-M will be stacked atop the United Launch Alliance Atlas V Centaur upper stage. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 18, 2017.
James Webb Space Telescope Out of Chamber “A” on This Week @NASA – December 1, 2017
2017-12-01
Our James Webb Space Telescope is now out of the historic Chamber A vacuum facility at our Johnson Space Center in Houston, after completing cryogenic testing designed to ensure the telescope works well in the cold, airless environment of space. Set to launch in 2019, Webb will study every phase in the history of our Universe, starting with the first luminous glows following the Big Bang. Also, NASA’s Next Mars Rover Mission, New Space Station Crew Trains for Launch, Update for Next SpaceX Launch to Space Station, Giant Black Hole Pair Photobombs Andromeda Galaxy, and Historic Apollo Mission Control Center Will Be Restored!
Life sciences utilization of Space Station Freedom
NASA Technical Reports Server (NTRS)
Chambers, Lawrence P.
1992-01-01
Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.
ASTROMAG: A superconducting particle astrophysics magnet facility for the space station
NASA Technical Reports Server (NTRS)
Green, M. A.; Smoot, G. F.; Golden, R. L.; Israel, M. H.; Kephart, R.; Niemann, R.; Mewalt, R. A.; Ormes, J. F.; Spillantini, P.; Widenbeck, M. E.
1986-01-01
This paper describes a superconducting magnet system which is the heart of a particle astrophysics facility to be mounted on a portion of the proposed NASA space station. This facility will complete the studies done by the electromagnetic observatories now under development and construction by NASA. The paper outlines the selection process of the type of magnet to be used to analyze the energy and momentum of charged particles from deep space. The ASTROMAG superconducting magnet must meet all the criteria for a shuttle launch and landing, and it must meet safety standards for use in or near a manned environment such as the space station. The magnet facility must have a particle gathering aperture of at least 1 square meter steradian and the facility should be capable of resolving heavy nuclei with a total energy of 10 Tev or more.
The ceremonial transfer of Leonardo, the first MPLM, from ASI to NASA
NASA Technical Reports Server (NTRS)
1998-01-01
Participants pose for a photo at the Space Station Processing Facility ceremony transferring the 'Leonardo' Multipurpose Logistics Module (MPLM) from the Italian Space Agency, Agenzia Spaziale Italiana (ASI), to NASA. From left, they are astronaut Jim Voss, European Space Agency astronauts Umberto Guidoni of Italy and Christer Fuglesang of Sweden, NASA International Space Station Program Manager Randy Brinkley, NASA Administrator Daniel S. Goldin, ASI President Sergio De Julio and Stephen Francois, director, International Space Station Launch Site Support at KSC. The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000.
2014-04-14
CAPE CANAVERAL, Fla. - Social media representatives photograph the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson
2014-04-14
CAPE CANAVERAL, Fla. - Social media representatives photograph the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson
2014-04-14
CAPE CANAVERAL, Fla. - Social media representatives photograph the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson
2007-11-19
KENNEDY SPACE CENTER, FLA. -- The space shuttle Atlantis STS-122 crew poses for a group portrait at Launch Pad 39A as Atlantis undergoes final preparations for launch behind them. From left are Mission Specialists Hans Schlegel, Rex Walheim and Leland Melvin; Pilot Alan Poindexter; Commander Steve Frick; and Mission Specialists Stanley Love and Leopold Eyharts. Schlegel and Eyharts are with the European Space Agency. Eyharts will remain on the International Space Station as a flight engineer for Expedition 16 following the STS-122 mission. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility is prepared to conduct a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor has been lifted to the vertical position and moved into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida for mating to the United Launch Alliance Atlas V rocket. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Preparations are underway to lift the solid rocket motor up from its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor has been lifted to the vertical position for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Technicians with United Launch Alliance (ULA) assist as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Technicians with United Launch Alliance (ULA) monitor the progress as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2016-11-09
A view from high up inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. A crane lifts the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) for mating to the United Launch Alliance Atlas V Centaur upper stage. The satellite will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
The Z1 truss is moved to check weight and balance
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, photographers focus on the Integrated Truss Structure Z1, an element of the International Space Station, suspended by a crane overhead. The truss is being moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.
Canadian robotic arm is moved to the payload canister for STS-100
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - Centered over the payload canister in the Space Station Processing Facility, the overhead crane begins lowering the Canadian robotic arm, SSRMS, on its pallet inside. The arm is 57.7 feet (17.6 meters) long when fully extended and has seven motorized joints. It is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self-relocatable with a Latching End Effector, so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. The SSRMS is part of the payload on mission STS-100, scheduled to launch April 19 at 2:41 p.m. EDT from Launch Pad 39A, KSC.
Canadian robotic arm is moved to the payload canister for STS-100
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - An overhead crane moves along the top of the Space Station Processing Facility, carrying the Canadian robotic arm, SSRMS, on its pallet to the payload canister. The arm is 57.7 feet (17.6 meters) long when fully extended and has seven motorized joints. It is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self-relocatable with a Latching End Effector, so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. The SSRMS is part of the payload on mission STS-100, scheduled to launch April 19 at 2:41 p.m. EDT from Launch Pad 39A, KSC.
Canadian robotic arm is moved to the payload canister for STS-100
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, an overhead crane lifts the pallet holding the Canadian robotic arm, SSRMS, to move it to the payload canister. The arm is 57.7 feet (17.6 meters) long when fully extended and has seven motorized joints. It is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self- relocatable with a Latching End Effector, so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. The SSRMS is part of the payload on mission STS-100, scheduled to launch April 19 at 2:41 p.m. EDT from Launch Pad 39A, KSC.
2010-09-30
CAPE CANAVERAL, Fla. -- High overhead in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer (AMS) hovers over a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2010-09-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead hoist lowers the Alpha Magnetic Spectrometer (AMS) onto a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2010-09-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians guide the Alpha Magnetic Spectrometer (AMS) onto a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
A rack is installed in MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers (right, left and center) in the Space Station Processing Facility wait to install a laboratory rack in the Multi-Purpose Logistics Module Leonardo (background). Leonardo is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
A rack is installed in MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the Multi-Purpose Logistics Module Leonardo (right) is ready for installation of a laboratory rack (left center). Leonardo is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the Rack Insertion Unit lifts another laboratory rack to the Multi-Purpose Logistics Module Leonardo, in the background. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the International Space Station aboard the Space Shuttle. Leonardo will be launched for the first time March 1, 2001, on Shuttle mission STS-102. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Orbital ATK CRS-8 Mission Science Briefing
2017-11-10
NASA commercial cargo provider Orbital ATK is scheduled to launch its eighth mission to the International Space Station at 7:37 a.m. EST Saturday, Nov. 11 from NASA’s Wallops Flight Facility in Virginia. Live launch coverage will begin at 7 a.m. on NASA Television and the agency’s website. On Friday, Nov. 10 scientists and researchers discussed some of the investigations and technology demonstrations to be delivered to the station during a prelaunch briefing. Under NASA’s Commercial Resupply Services contract, Cygnus will carry about 7,400 pounds of crew supplies and hardware to the space station, including science and research in support of dozens of research investigations that will occur during Expeditions 53 and 54.
TDRS-L spacecraft lift to mate on Atlas V
2014-01-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is lifted for mounting atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
TDRS-L spacecraft lift to mate on Atlas V
2014-01-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is moved into position for mating atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
TDRS-L Spacecraft Fairing Encapsulation
2014-01-08
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians encapsulate the Tracking and Data Relay Satellite, or TDRS-L, spacecraft in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
TDRS-L Spacecraft Fairing Encapsulation
2014-01-08
TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians ensure precision as the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html
TDRS-L spacecraft lift to mate on Atlas V
2014-01-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been mated atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis
Commissioning of a new helium pipeline
NASA Technical Reports Server (NTRS)
2000-01-01
At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, Ramon Lugo, acting executive director, JPMO , presents a plaque to Center Director Roy Bridges. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad.
Commissioning of a new helium pipeline
NASA Technical Reports Server (NTRS)
2000-01-01
Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS) presents an award of appreciation to H.T. Everett, KSC Propellants manager, at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Center Director Roy Bridges;); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS.
Commissioning of a new helium pipeline
NASA Technical Reports Server (NTRS)
2000-01-01
Jerry Jorgensen welcomes the audience to the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. Jorgensen, with Space Gateway Support (SGS), is the pipeline project manager. To the right is Ramon Lugo, acting executive director, JPMO. Others at the ceremony were Center Director Roy Bridges; Col. Samuel Dick, representative of the 45th Space Wing; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad.
Commissioning of a new helium pipeline
NASA Technical Reports Server (NTRS)
2000-01-01
Center Director Roy Bridges addresses the audience at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center that will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile- long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS.
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Rex Walheim, at right, practices driving an M-113 armored personnel carrier as the instructor beside him monitors his performance. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Commander Stephen Frick takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Pilot Alan Poindexter takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Leland Melvin takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Hans Schlegel, of the European Space Agency, takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
STS-101 Commander Halsell and crew after arriving for TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yuri Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
2000-04-05
KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yury Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A
2000-04-05
KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yury Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A
2000-11-10
In the Space Station Processing Facility, the P6 integrated truss segment travels across the building to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. At left is the airlock module, another component of the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST
2000-11-10
Carried by an overhead crane, the P6 integrated truss segment travels the length of the Space Station Processing Facility toward a payload transport canister that will transfer it to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST
2000-11-10
The P6 integrated truss segment hangs suspended from an overhead crane that is moving it the length of the Space Station Processing Facility toward a payload transport canister for transfer to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST
2004-02-03
KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.
Life Science on the International Space Station Using the Next Generation of Cargo Vehicles
NASA Technical Reports Server (NTRS)
Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.
2011-01-01
With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.
U.S. Rep. Dave Weldon looks at the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the U.S. Lab, called 'Destiny,' which is in the Space Station Processing Facility, U.S. Rep. Dave Weldon (right) looks over equipment. In the background (center) is Thomas R. 'Randy' Galloway, with the Space Station Hardware Integration Office. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
U.S. Rep. Dave Weldon outside the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility, U.S. Rep Dave Weldon (at left) looks at the U.S. Lab, called Destiny. With him are Thomas R. 'Randy' Galloway, with the Space Station Hardware Integration Office, Dana Gartzke, the congressman's chief of staffm and Boeing workers. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
STS-97 P6 truss moves to a payload transport canister
NASA Technical Reports Server (NTRS)
2000-01-01
As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour'''s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST.
Vice President Pence Leads National Space Council Meeting, Tours Kennedy Space Center
2018-02-20
Vice President Mike Pence arrived at Kennedy Space Center in Florida on Tuesday, Feb. 20 at 5:10 p.m. aboard Air Force Two. The Vice President was greeted by Robert Lightfoot, acting NASA Administrator and Brig. Gen. Wayne Monteith, commander, 45th Space Wing. After arrival, the vice president toured commercial partner United Launch Alliance’s facility at Cape Canaveral Air Force Station adjacent to Kennedy. He also toured Blue Origin’s new rocket facility located at nearby Exploration Park. On Feb. 21, Vice President Mike Pence led a National Space Council meeting inside NASA Kennedy Space Center’s Space Station Processing Facility. This second meeting of the council, called, “Moon, Mars, and Worlds Beyond: Winning the Next Frontier,” included testimonials from leaders in the civil, commercial, and national security sectors about the importance of the United States’ space enterprise. Vice President Pence concluded his visit with a tour of Kennedy Space Center, which included stops at the Boeing Commercial Crew and Cargo Processing Facility, and SpaceX Launch Complex 39A.
2014-04-13
CAPE CANAVERAL, Fla. – At the News Center at NASA's Kennedy Space Center in Florida, Trent Smith of the agency's International Space Station Research and Utilization Office, discusses the Vegetable Production System "VEGGIE" experiment being launched to the ISS. This investigation will focus on the growth and development of "Outredgeous" Lettuce seedlings in the microgravity environment of space and its effects on composition of microbial flora in the Veggie facility. Plans call for lettuce plants to be harvested in-orbit, frozen and returned to the ground for post-flight evaluation. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
2014-04-13
CAPE CANAVERAL, Fla. – At the News Center at NASA's Kennedy Space Center in Florida, Trent Smith of the agency's International Space Station Research and Utilization Office, discusses the Vegetable Production System "VEGGIE" experiment being launched to the ISS. This investigation will focus on the growth and development of "Outredgeous" Lettuce seedlings in the microgravity environment of space and its effects on composition of microbial flora in the Veggie facility. Plans call for lettuce plants to be harvested in-orbit, frozen and returned to the ground for post-flight evaluation. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
2014-04-13
CAPE CANAVERAL, Fla. – At the News Center at NASA's Kennedy Space Center in Florida, Trent Smith of the agency's International Space Station Research and Utilization Office, discusses the Vegetable Production System "VEGGIE" experiment being launched to the ISS. This investigation will focus on the growth and development of "Outredgeous" Lettuce seedlings in the microgravity environment of space and its effects on composition of microbial flora in the Veggie facility. Plans call for lettuce plants to be harvested in-orbit, frozen and returned to the ground for post-flight evaluation. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
2014-04-13
CAPE CANAVERAL, Fla. – At the News Center at NASA's Kennedy Space Center in Florida, Trent Smith of the agency's International Space Station Research and Utilization Office, discusses the Vegetable Production System "VEGGIE" experiment being launched to the ISS. This investigation will focus on the growth and development of "Outredgeous" Lettuce seedlings in the microgravity environment of space and its effects on composition of microbial flora in the Veggie facility. Plans call for lettuce plants to be harvested in-orbit, frozen and returned to the ground for post-flight evaluation. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
2000-11-10
In the Space Station Processing Facility, an overhead crane lifts the P6 integrated truss segment from a workstand to place it in the payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST
2000-11-10
In the Space Station Processing Facility, an overhead crane moves the P6 integrated truss segment to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST
2000-04-24
The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yury Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days
2000-04-24
The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yury Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days
2000-04-24
The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown at left is Commander James D. Halsell Jr. At right is astronaut James Wetherbee, deputy director of the Johnson Space Center. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days
2000-04-24
The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown at left is Commander James D. Halsell Jr. At right is astronaut James Wetherbee, deputy director of the Johnson Space Center. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days
STS-101 crew sits for a snack before the third attempt at launch
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch for the third time. The previous two launch attempts were scrubbed due to high cross winds at the Shuttle Landing Facility. From left are Mission Specialists James S. Voss, Susan J. Helms and Jeffrey N. Williams; Commander James D. Halsell Jr.; Pilot Scott J. Horowitz; and Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module. Also, the crew will conduct one space walk. This is the third assembly flight to the Space Station. After the 10-day mission, Atlantis is expected to land at KSC May 6 at about 12:03 p.m. EDT.
Space Station Freedom avionics technology
NASA Technical Reports Server (NTRS)
Edwards, A.
1990-01-01
The Space Station Freedom Program (SSFP) encompasses the design, development, test, evaluation, verification, launch, assembly, and operation and utilization of a set of spacecraft in low earth orbit (LEO) and their supporting facilities. The spacecraft set includes: the Space Station Manned Base (SSMB), a European Space Agency (ESA) provided Man-Tended Free Flyer (MTFF) at an inclination of 28.5 degrees and nominal attitude of 410 km, a USA provided Polar Orbiting Platform (POP), and an ESA provided POP in sun-synchronous, near polar orbits at a nominal altitude of 822 km. The SSMB will be assembled using the National Space Transportation System (NSTS). The POPs and the MTFF will be launched by Expendable Launch Vehicles (ELVs): a Titan 4 for the US POP and an Ariane for the ESA POP and MTFF. The US POP will for the most part use derivatives of systems flown on unmanned LEO spacecraft. The SSMB portion of the overall program is presented.
2007-11-01
KENNEDY SPACE CENTER, FLA. -- At ground-breaking ceremonies for SpaceX's new Falcon 9 rocket launch facilities at Space Launch Complex 40 at Cape Canaveral, Elon Musk, founder and CEO of Space Exploration Technologies, talks about opportunity for both SpaceX and the 45th Space Wing that the new facility will provide. As part of NASA’s Commercial Orbital Transportation Services, or COTS, competition, SpaceX will launch a Falcon 9 with a cargo-carrying payload on a series of three demonstration missions from Cape Canaveral to the International Space Station, culminating with the delivery of supplies to the $100 billion dollar orbiting laboratory. SpaceX intends to demonstrate its launch, maneuvering, berthing and return abilities by 2009 – a year before NASA has scheduled the conclusion of Space Shuttle operations. Photo credit: NASA/George Shelton
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Pilot Rick Sturckow and Mission Specialist Jerry Ross, both members of the STS-88 crew, participate with technicians in the Crew Equipment Interface Test for that mission in KSC's Space Station Processing Facility. STS-88, the first International Space Station assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
2009-04-27
CAPE CANAVERAL, Fla. –– The Atlas V first stage is being transferred from the hangar at the Atlas Space Operations Facility to the Vertical Integration Facility near Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2009-04-27
CAPE CANAVERAL, Fla. –– The Atlas V first stage is moved from the hangar at the Atlas Space Operations Facility. It is going to the Vertical Integration Facility near Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2007-11-03
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the integrated cargo carrier-lite, or ICC-L, into the payload canister below. The ICC-L is an unpressurized cross-bay carrier providing launch and return transportation with the space shuttle. It rests on a keel yoke assembly, seen underneath. The ICC-L carries three elements: a nitrogen tank assembly that is part of the external active thermal control system on the International Space Station, the European technology Exposure Facility composed of nine science instruments and an autonomous temperature measurement unit, and the SOLAR payload designed for sun observation. The nitrogen tank assembly is mounted underneath. The exposure facility is seen at left on top, and the SOLAR is on the right. The SOLAR will be transferred and stowed on the Columbus module during the third spacewalk of the mission. STS-122 is targeted for launch on Dec. 6 on space shuttle Atlantis. Photo credit: NASA/Amanda Diller
2007-11-03
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the integrated cargo carrier-lite, or ICC-L, into the payload canister below. The ICC-L is an unpressurized cross-bay carrier providing launch and return transportation with the space shuttle. It rests on a keel yoke assembly, seen underneath. The ICC-L carries three elements: a nitrogen tank assembly that is part of the external active thermal control system on the International Space Station, the European technology Exposure Facility composed of nine science instruments and an autonomous temperature measurement unit, and the SOLAR payload designed for sun observation. The nitrogen tank assembly is mounted underneath. The exposure facility is seen at left on top, and the SOLAR is on the right. The SOLAR will be transferred and stowed on the Columbus module during the third spacewalk of the mission. STS-122 is targeted for launch on Dec. 6 on space shuttle Atlantis. Photo credit: NASA/Amanda Diller
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor has been lifted to the vertical position on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2015-01-12
Workers conduct a solar array illumination test on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
2015-01-12
Workers conduct a solar array illumination test on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
2015-01-12
A solar array illumination test is performed on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
2015-01-12
A solar array illumination test is performed on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
2003-07-22
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, a solid rocket booster (SRB) is lifted into the mobile service tower, joining two others. They are three of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-22
KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, help steady a solid rocket booster (SRB) being lifted into the mobile service tower. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-22
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, another solid rocket booster (SRB) is being raised from its transporter to lift it to vertical. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-18
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. Below the rocket is the flame trench, and in the foreground is the overflow pool. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-22
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket (background) is framed by the solid rocket boosters (foreground) suspended in the mobile service tower. The SRBs will be added to those already attached to the rocket. The Delta II Heavy will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-10
KENNEDY SPACE CENTER, FLA. - Before dawn, the Space Infrared Telescope Facility (SIRTF) arrives at Launch Pad 17-B, Cape Canaveral Air Force Station, where it will be lifted into the mobile service tower and prepared for launch. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-10
KENNEDY SPACE CENTER, FLA. - After dawn, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) and Center Director Jim Kennedy congratulate the launch team after the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) congratulates the launch team after the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. At far right is Center Director Jim Kennedy. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a United Launch Alliance Atlas V rocket, with its Centaur second stage atop, stands in the Vertical Integration Facility as preparations continue for lift off of the Tracking and Data Relay Satellite, or TDRS-L. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, a crane is positioned to support stacking of the United Launch Alliance Atlas V rocket that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, a technician supports lifting of a United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
2013-12-13
CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, a crane is positioned to support stacking of the United Launch Alliance Atlas V rocket that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser
S3/S4 Integrated Truss being moved into the Space Shuttle Payloa
2007-02-07
In the Space Station Processing Facility, an overhead crane moves the S3/S4 integrated truss to a payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.
S3/S4 Integrated Truss being moved into the Space Shuttle Payloa
2007-02-07
In the Space Station Processing Facility, an overhead crane settles the S3/S4 integrated truss into the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.
1. GENERAL VIEW OF EAST AND NORTH SIDES OF NORTH ...
1. GENERAL VIEW OF EAST AND NORTH SIDES OF NORTH WING; NOTE PLYWOOD COVERED WINDOWS DUE TO EXPLOSION ON LAUNCH PAD A IN MARCH 1997 WITH FIERY RAIN OF SOLID ROCKET FUEL AND PROLONGED CONCUSSION WAVES; VIEW TO SOUTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 36001, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
2007-05-28
KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, the Dawn spacecraft is weighed before fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
2003-01-05
KENNEDY SPACE CENTER, FLA. - Technicians in the Multi-Purpose Processing Facility move NASA's Solar Radiation and Climate Experiment (SORCE) toward the Pegasus XL Expendable Launch Vehicle for mating. SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla.
2003-01-05
KENNEDY SPACE CENTER, FLA. -- In the Multi-Purpose Processing Facility, NASA's Solar Radiation and Climate Experiment (SORCE) closes in on the Pegasus XL Expendable Launch Vehicle for mating. SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla.
2003-01-05
KENNEDY SPACE CENTER, FLA. -- In the Multi-Purpose Processing Facility, NASA's Solar Radiation and Climate Experiment (SORCE) closes in on the Pegasus XL Expendable Launch Vehicle for mating. SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla.
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before lowering the banner to unveil the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him on the left), and (the other side, left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrel and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
2016-09-07
After leaving the Vertical Integration Facility, a United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
GEOTAIL Spacecraft historical data report
NASA Technical Reports Server (NTRS)
Boersig, George R.; Kruse, Lawrence F.
1993-01-01
The purpose of this GEOTAIL Historical Report is to document ground processing operations information gathered on the GEOTAIL mission during processing activities at the Cape Canaveral Air Force Station (CCAFS). It is hoped that this report may aid management analysis, improve integration processing and forecasting of processing trends, and reduce real-time schedule changes. The GEOTAIL payload is the third Delta 2 Expendable Launch Vehicle (ELV) mission to document historical data. Comparisons of planned versus as-run schedule information are displayed. Information will generally fall into the following categories: (1) payload stay times (payload processing facility/hazardous processing facility/launch complex-17A); (2) payload processing times (planned, actual); (3) schedule delays; (4) integrated test times (experiments/launch vehicle); (5) unique customer support requirements; (6) modifications performed at facilities; (7) other appropriate information (Appendices A & B); and (8) lessons learned (reference Appendix C).
The U.S. Laboratory module arrives at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
NASA's 'Super Guppy' aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre- launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS- 98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000.
1998-11-13
KENNEDY SPACE CENTER, FLA. -- NASA's "Super Guppy" aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre-launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS-98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The Space Station Processing Facility is filled with hardware, components for the International Space Station. Lined up (left to right) are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined.
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The Space Station Processing Facility is filled with hardware, components for the International Space Station. Lined up (left to right) are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined.
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 crew members Pilot Mark Polansky, Mission Specialist Marsha Ivins and Commander Ken Cockrell pose underneath the banner revealing the name Destiny given to the U.S. Lab module. They are part of the five-member crew scheduled to carry the lab into space aboard Space Shuttle Endeavour early in the year 2000 where it will become the centerpiece of scientific research on the International Space Station. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the 'key' to the U.S. Laboratory Destiny is officially handed over to NASA during a brief ceremony while workers look on. Suspended overhead is the laboratory, being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the International Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC
1991-04-22
S91-35303 (22 April 1991) --- Astronauts Frederick D. Gregory (left) and Terrence T. Henricks (right), STS-44 commander and pilot, respectively, are joined near their launch and entry stations by F. Story Musgrave, mission specialist. The three pause while rehearsing some of the activities that will be performed during the scheduled ten-day November flight. Musgrave will be in a rear cabin station during launch and entry phases of the flight deck of the fixed-base Shuttle Mission Simulator (SMS) in the Johnson Space Center's mission simulation and training facility.
TDRS-M: Spacecraft Pre-Media Event "Clean Shots"
2017-07-13
Inside the Astrotech facility in Titusville, Florida, NASA's Tracking and Data Relay Satellite, TDRS-M, is undergoing final checkouts prior to encapsulation in its payload fairing. TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 9:02 a.m. EDT Aug. 3, 2017.
The Z1 truss is placed in stand to check weight and balance
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the Integrated Truss Structure Z1 rests in the workstand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.
The Z1 truss is lowered to stand to check weight and balance
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, an overhead crane lowers the Integrated Truss Structure Z1 onto a workstand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.
Unity nameplate is attached to module for ISS and Mission STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
- In the Space Station Processing Facility, a worker checks placement of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
Unity nameplate added to module for ISS and Mission STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, workers look over the Unity connecting module, part of the International Space Station, after attaching the nameplate. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
Unity nameplate examined after being attached to module for ISS and Mission STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, a worker checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
Unity nameplate is attached to module for ISS and Mission STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
- In the Space Station Processing Facility, a worker places the nameplate on the side of the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
2017-08-09
A crane is used to lift the payload fairing containing NASA's Tracking and Data Relay Satellite (TDRS-M) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. TDRS-M will be stacked atop the United Launch Alliance Atlas V Centaur upper stage. TDRS-M will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled for Aug. 18, 2017.
Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility
NASA Technical Reports Server (NTRS)
2003-01-01
Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.
Modular space station phase B extension integrated ground operations
NASA Technical Reports Server (NTRS)
Selegue, D. F.
1971-01-01
Requirements for development test, manufacturing, facilities, GSE, training, logistics support, and launch operations are described. The prime integrating requirement is the early establishment of a common data base and its use throughout the design, development, and operational life of the station. The common data base is defined, and the concept of its use is presented. Development requirements for the station modules and subsystems are outlined along with a master development phasing chart.
Report of the committee on a commercially developed space facility
NASA Technical Reports Server (NTRS)
Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III
1989-01-01
Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.
A space debris simulation facility for spacecraft materials evaluation
NASA Technical Reports Server (NTRS)
Taylor, Roy A.
1987-01-01
A facility to simulate the effects of space debris striking an orbiting spacecraft is described. This facility was purchased in 1965 to be used as a micrometeoroid simulation facility. Conversion to a Space Debris Simulation Facility began in July 1984 and it was placed in operation in February 1985. The facility consists of a light gas gun with a 12.7-mm launch tube capable of launching 2.5-12.7 mm projectiles with a mass of 4-300 mg and velocities of 2-8 km/sec, and three target tanks of 0.067 m, 0.53 a m and 28.5 a m. Projectile velocity measurements are accomplished via pulsed X-ray, laser diode detectors, and a Hall photographic station. This facility is being used to test development structural configurations and candidate materials for long duration orbital spacecraft. A summary of test results are also described.