Dual keel Space Station payload pointing system design and analysis feasibility study
NASA Technical Reports Server (NTRS)
Smagala, Tom; Class, Brian F.; Bauer, Frank H.; Lebair, Deborah A.
1988-01-01
A Space Station attached Payload Pointing System (PPS) has been designed and analyzed. The PPS is responsible for maintaining fixed payload pointing in the presence of disturbance applied to the Space Station. The payload considered in this analysis is the Solar Optical Telescope. System performance is evaluated via digital time simulations by applying various disturbance forces to the Space Station. The PPS meets the Space Station articulated pointing requirement for all disturbances except Shuttle docking and some centrifuge cases.
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
Space station and solar array data and the analyses which were performed in support of the integrated dynamic analysis study. The analysis methods and the formulated digital simulation were developed. Control systems for space station altitude control and solar array orientation control include generic type control systems. These systems have been digitally coded and included in the simulation.
NASA Technical Reports Server (NTRS)
Noll, Carey E.; Pearlman, Michael Reisman; Torrence, Mark H.
2013-01-01
Network stations provided system configuration documentation upon joining the ILRS. This information, found in the various site and system log files available on the ILRS website, is essential to the ILRS analysis centers, combination centers, and general user community. Therefore, it is imperative that the station personnel inform the ILRS community in a timely fashion when changes to the system occur. This poster provides some information about the various documentation that must be maintained. The ILRS network consists of over fifty global sites actively ranging to over sixty satellites as well as five lunar reflectors. Information about these stations are available on the ILRS website (http://ilrs.gsfc.nasa.gov/network/stations/index.html). The ILRS Analysis Centers must have current information about the stations and their system configuration in order to use their data in generation of derived products. However, not all information available on the ILRS website is as up-to-date as necessary for correct analysis of their data.
NASA Technical Reports Server (NTRS)
1972-01-01
Information backing up the key features of the manipulator system concept and detailed technical information on the subsystems are presented. Space station assembly and shuttle cargo handling tasks are emphasized in the concept analysis because they involve shuttle berthing, transferring the manipulator boom between shuttle and station, station assembly, and cargo handling. Emphasis is also placed on maximizing commonality in the system areas of manipulator booms, general purpose end effectors, control and display, data processing, telemetry, dedicated computers, and control station design.
International Space Station Remote Sensing Pointing Analysis
NASA Technical Reports Server (NTRS)
Jacobson, Craig A.
2007-01-01
This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument (in prototype development) is SHORE (Station High-Performance Ocean Research Experiment), a multiband optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. This analysis supported the preliminary studies to determine feasibility of utilizing the International Space Station as an observing platform for a SHORE type of instrument. Rigorous analyses will be performed if a SHORE flight program is initiated. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies.
Space Station communications system design and analysis
NASA Technical Reports Server (NTRS)
Ratliff, J. E.
1986-01-01
Attention is given to the methodologies currently being used as the framework within which the NASA Space Station's communications system is to be designed and analyzed. A key aspect of the CAD/analysis system being employed is its potential growth in size and capabilities, since Space Station design requirements will continue to be defined and modified. The Space Station is expected to furnish communications between itself and astronauts on EVA, Orbital Maneuvering Vehicles, Orbital Transfer Vehicles, Space Shuttle orbiters, free-flying spacecraft, coorbiting platforms, and the Space Shuttle's own Mobile Service Center.
NASA Astrophysics Data System (ADS)
Ke, Jyh-Bin; Lee, Wen-Chiung; Wang, Kuo-Hsiung
2007-07-01
This paper presents the reliability and sensitivity analysis of a system with M primary units, W warm standby units, and R unreliable service stations where warm standby units switching to the primary state might fail. Failure times of primary and warm standby units are assumed to have exponential distributions, and service times of the failed units are exponentially distributed. In addition, breakdown times and repair times of the service stations also follow exponential distributions. Expressions for system reliability, RY(t), and mean time to system failure, MTTF are derived. Sensitivity analysis, relative sensitivity analysis of the system reliability and the mean time to failure, with respect to system parameters are also investigated.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
NASA Technical Reports Server (NTRS)
1983-01-01
Space station systems characteristics and architecture are described. A manned space station operational analysis is performed to determine crew size, crew task complexity and time tables, and crew equipment to support the definition of systems and subsystems concepts. This analysis is used to select and evaluate the architectural options for development.
Space station tracking requirements feasibility study, volume 2
NASA Technical Reports Server (NTRS)
Udalov, Sergei; Dodds, James
1988-01-01
The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches should be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JSC. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 2, containing Appendices K through U.
Space station tracking requirements feasibility study, volume 1
NASA Technical Reports Server (NTRS)
Udalov, Sergei; Dodds, James
1988-01-01
The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JCS. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 1, containing the main body and Appendices A through J.
Research on comprehensive decision-making of PV power station connecting system
NASA Astrophysics Data System (ADS)
Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai
2018-04-01
In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.
NASA Technical Reports Server (NTRS)
1985-01-01
The initial task in the Space Station Data System (SSDS) Analysis/Architecture Study is the definition of the functional and key performance requirements for the SSDS. The SSDS is the set of hardware and software, both on the ground and in space, that provides the basic data management services for Space Station customers and systems. The primary purpose of the requirements development activity was to provide a coordinated, documented requirements set as a basis for the system definition of the SSDS and for other subsequent study activities. These requirements should also prove useful to other Space Station activities in that they provide an indication of the scope of the information services and systems that will be needed in the Space Station program. The major results of the requirements development task are as follows: (1) identification of a conceptual topology and architecture for the end-to-end Space Station Information Systems (SSIS); (2) development of a complete set of functional requirements and design drivers for the SSIS; (3) development of functional requirements and key performance requirements for the Space Station Data System (SSDS); and (4) definition of an operating concept for the SSIS. The operating concept was developed both from a Space Station payload customer and operator perspective in order to allow a requirements practicality assessment.
Environmental Control and Life Support Systems technology options for Space Station application
NASA Technical Reports Server (NTRS)
Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.
1985-01-01
Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.
Space Station communications and tracking systems modeling and RF link simulation
NASA Technical Reports Server (NTRS)
Tsang, Chit-Sang; Chie, Chak M.; Lindsey, William C.
1986-01-01
In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort.
Analysis of a rotating advanced-technology space station for the year 2025
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Garn, P. A.
1988-01-01
An analysis is made of several aspects of an advanced-technology rotating space station configuration generated under a previous study. The analysis includes examination of several modifications of the configuration, interface with proposed launch systems, effects of low-gravity environment on human subjects, and the space station assembly sequence. Consideration was given also to some aspects of space station rotational dynamics, surface charging, and the possible application of tethers.
NASA Technical Reports Server (NTRS)
Schunk, R. Gregory
2002-01-01
This paper presents the Modeling and Analysis of the Space Station Environment Control and Life Support System Pressure Control Pump Assembly (PCPA). The contents include: 1) Integrated PCPA/Manifold Analyses; 2) Manifold Performance Analysis; 3) PCPA Motor Heat Leak Study; and 4) Future Plans. This paper is presented in viewgraph form.
NASA Technical Reports Server (NTRS)
Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.
1986-01-01
A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.
Space station systems analysis study. Part 3: Documentation. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
The space stations systems analysis study is summarized. A cost efffective system concept capable of meeting a broad spectrum of mission requirements was developed. Candidate objectives were reviewed and implementation requirements were defined. Program options for both low earth and geosynchronous orbits were examined. Space construction concepts were analyzed and defined in detail.
Space station operating system study
NASA Technical Reports Server (NTRS)
Horn, Albert E.; Harwell, Morris C.
1988-01-01
The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.
Space Station on-orbit solar array loads during assembly
NASA Astrophysics Data System (ADS)
Ghofranian, S.; Fujii, E.; Larson, C. R.
This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.
2010-03-01
143 Table 12. High Level Analysis of O&S Costs of Different Training Options...Station On station 24/7 ( ETOS 80%) On station 24/7 for 30 consecutive days ( ETOS 95%) Mission Radius ≥ 2,000 nm ≥ 3,000 nm Net Ready-KPP COMMON...Training with As-Is Unique GCS Architectures 143 The results of the analysis for BUQs I-IV are shown in Table 11. The data shows that
Space station systems analysis study. Part 3: Documentation. Volume 5: Cost and schedule data
NASA Technical Reports Server (NTRS)
1977-01-01
Cost estimates for the space station systems analysis were recorded. Space construction base costs and characteristics were cited as well as mission hardware costs and characteristics. Also delineated were cost ground rules, the program schedule, and a detail cost estimate and funding distribution.
Automated power management and control
NASA Technical Reports Server (NTRS)
Dolce, James L.
1991-01-01
A comprehensive automation design is being developed for Space Station Freedom's electric power system. A joint effort between NASA's Office of Aeronautics and Exploration Technology and NASA's Office of Space Station Freedom, it strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. The initial station operation will use ground-based dispatches to perform the necessary command and control tasks. These tasks constitute planning and decision-making activities that strive to eliminate unplanned outages. We perceive an opportunity to help these dispatchers make fast and consistent on-line decisions by automating three key tasks: failure detection and diagnosis, resource scheduling, and security analysis. Expert systems will be used for the diagnostics and for the security analysis; conventional algorithms will be used for the resource scheduling.
Software technology testbed softpanel prototype
NASA Technical Reports Server (NTRS)
1991-01-01
The following subject areas are covered: analysis of using Ada for the development of real-time control systems for the Space Station; analysis of the functionality of the Application Generator; analysis of the User Support Environment criteria; analysis of the SSE tools and procedures which are to be used for the development of ground/flight software for the Space Station; analysis if the CBATS tutorial (an Ada tutorial package); analysis of Interleaf; analysis of the Integration, Test and Verification process of the Space Station; analysis of the DMS on-orbit flight architecture; analysis of the simulation architecture.
NASA Technical Reports Server (NTRS)
Biernacki, John; Juhasz, John; Sadler, Gerald
1991-01-01
A team of Space Station Freedom (SSF) system engineers are in the process of extensive analysis of the SSF requirements, particularly those pertaining to the electrical power system (EPS). The objective of this analysis is the development of a comprehensive, computer-based requirements model, using an enhanced modern structured analysis methodology (EMSA). Such a model provides a detailed and consistent representation of the system's requirements. The process outlined in the EMSA methodology is unique in that it allows the graphical modeling of real-time system state transitions, as well as functional requirements and data relationships, to be implemented using modern computer-based tools. These tools permit flexible updating and continuous maintenance of the models. Initial findings resulting from the application of EMSA to the EPS have benefited the space station program by linking requirements to design, providing traceability of requirements, identifying discrepancies, and fostering an understanding of the EPS.
Space station functional relationships analysis
NASA Technical Reports Server (NTRS)
Tullis, Thomas S.; Bied, Barbra R.
1988-01-01
A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.
NASA Technical Reports Server (NTRS)
Appleby, M. H.; Golightly, M. J.; Hardy, A. C.
1993-01-01
Major improvements have been completed in the approach to analyses and simulation of spacecraft radiation shielding and exposure. A computer-aided design (CAD)-based system has been developed for determining the amount of shielding provided by a spacecraft and simulating transmission of an incident radiation environment to any point within or external to the vehicle. Shielding analysis is performed using a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design programs such as a Mars transfer habitat, pressurized lunar rover, and the redesigned international Space Station. Results of analysis performed for the Space Station astronaut exposure assessment are provided to demonastrate the applicability and versatility of the system.
An update to the analysis of the Canadian Spatial Reference System
NASA Astrophysics Data System (ADS)
Ferland, R.; Piraszewski, M.; Craymer, M.
2015-12-01
The primary objective of the Canadian Spatial Reference System (CSRS) is to provide users access to a consistent geo-referencing infrastructure over the Canadian landmass. Global Navigation Satellite System (GNSS) positioning accuracy requirements ranges from meter level to mm level (e.g.: crustal deformation). The highest level of the Canadian infrastructure consist of a network of continually operating GPS and GNSS receivers, referred to as active control stations. The network includes all Canadian public active control stations, some bordering US CORS and Alaska stations, Greenland active control stations, as well as a selection of IGS reference frame stations. The Bernese analysis software is used for the daily processing and the combination into weekly solutions which form the basis for this analysis. IGS weekly final orbit, Earth Rotation parameters (ERP's) and coordinates products are used in the processing. For the more demanding users, the time dependant changes of station coordinates is often more important.All station coordinate estimates and related covariance information is used in this analysis. For each input solution, variance factor, translation, rotation and scale (and if needed their rates) or subsets of these are estimated. In the combination of these weekly solutions, station positions and velocities are estimated. Since the time series from the stations in these networks often experience changes in behavior, new (or reuse of) parameters are generally used in these situations. As is often the case with real data, unrealistic coordinates may occur. Automatic detection and removal of outliers is used in these cases. For the transformation, position and velocity parameters loose apriori estimates and uncertainties are provided. Alignment using the usual Helmert transformation to the latest IGb08 realization of ITRF is also performed during the adjustment.
Space station data system analysis/architecture study. Task 4: System definition report. Appendix
NASA Technical Reports Server (NTRS)
1985-01-01
Appendices to the systems definition study for the space station Data System are compiled. Supplemental information on external interface specification, simulation and modeling, and function design characteristics is presented along with data flow diagrams, a data dictionary, and function allocation matrices.
Integrated dynamic analysis simulation of space stations with controllable solar array
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.
Conceptual spacecraft systems design and synthesis
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Automated electric power management and control for Space Station Freedom
NASA Technical Reports Server (NTRS)
Dolce, James L.; Mellor, Pamela A.; Kish, James A.
1990-01-01
A comprehensive automation design is being developed for Space Station Freedom's electric power system. It strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. An integrated approach to the power system command and control problem is defined and used to direct technology development in: diagnosis, security monitoring and analysis, battery management, and cooperative problem-solving for resource allocation. The prototype automated power system is developed using simulations and test-beds.
System performance predictions for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.
1993-01-01
Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.
NASA Technical Reports Server (NTRS)
Turnquist, S. R.; Twombly, M.; Hoffman, D.
1989-01-01
A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.
Interactive systems design and synthesis of future spacecraft concepts
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
International Space Station Future Correlation Analysis Improvements
NASA Technical Reports Server (NTRS)
Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael
2018-01-01
Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.
RaPToRS Sample Delivery System
NASA Astrophysics Data System (ADS)
Henchen, Robert; Shibata, Kye; Krieger, Michael; Pogozelski, Edward; Padalino, Stephen; Glebov, Vladimir; Sangster, Craig
2010-11-01
At various labs (NIF, LLE, NRL), activated material samples are used to measure reaction properties. The Rapid Pneumatic Transport of Radioactive Samples (RaPToRS) system quickly and safely moves these radioactive samples through a closed PVC tube via airflow. The carrier travels from the reaction chamber to the control and analysis station, pneumatically braking at the outlet. A reversible multiplexer routes samples from various locations near the shot chamber to the analysis station. Also, the multiplexer allows users to remotely load unactivated samples without manually approaching the reaction chamber. All elements of the system (pneumatic drivers, flow control valves, optical position sensors, multiplexers, Geiger counters, and release gates at the analysis station) can be controlled manually or automatically using a custom LabVIEW interface. A prototype is currently operating at NRL in Washington DC. Prospective facilities for Raptors systems include LLE and NIF.
NASA Technical Reports Server (NTRS)
Josephs, R. H.
1982-01-01
The design and performance of a modestly sized utility-connected power conditioning system and its supporting photovoltaic collector are described and estimated. Utility preparations and guidelines to conform with the output of a small generating station with that of a large power network are examined.
Space station data system analysis/architecture study. Task 4: System definition report
NASA Technical Reports Server (NTRS)
1985-01-01
Functional/performance requirements for the Space Station Data System (SSDS) are analyzed and architectural design concepts are derived and evaluated in terms of their performance and growth potential, technical feasibility and risk, and cost effectiveness. The design concepts discussed are grouped under five major areas: SSDS top-level architecture overview, end-to-end SSDS design and operations perspective, communications assumptions and traffic analysis, onboard SSDS definition, and ground SSDS definition.
Modelling and simulation of Space Station Freedom berthing dynamics and control
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Garrison, James L., Jr.; Montgomery, Raymond C.; Wu, Shih-Chin; Stockwell, Alan E.; Demeo, Martha E.
1994-01-01
A large-angle, flexible, multibody, dynamic modeling capability has been developed to help validate numerical simulations of the dynamic motion and control forces which occur during berthing of Space Station Freedom to the Shuttle Orbiter in the early assembly flights. This paper outlines the dynamics and control of the station, the attached Shuttle Remote Manipulator System, and the orbiter. The simulation tool developed for the analysis is described and the results of two simulations are presented. The first is a simulated maneuver from a gravity-gradient attitude to a torque equilibrium attitude using the station reaction control jets. The second simulation is the berthing of the station to the orbiter with the station control moment gyros actively maintaining an estimated torque equilibrium attitude. The influence of the elastic dynamic behavior of the station and of the Remote Manipulator System on the attitude control of the station/orbiter system during each maneuver was investigated. The flexibility of the station and the arm were found to have only a minor influence on the attitude control of the system during the maneuvers.
NASA Technical Reports Server (NTRS)
Barber, Peter W.; Demerdash, Nabeel A. O.; Wang, R.; Hurysz, B.; Luo, Z.
1991-01-01
The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards.
Space station electrical power distribution analysis using a load flow approach
NASA Technical Reports Server (NTRS)
Emanuel, Ervin M.
1987-01-01
The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy
2006-01-01
This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement System measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-6/8 from November 2002 to April 2004.
User manual of the CATSS system (version 1.0) communication analysis tool for space station
NASA Technical Reports Server (NTRS)
Tsang, C. S.; Su, Y. T.; Lindsey, W. C.
1983-01-01
The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.
Space Station Systems Analysis Study. Volume 1: Executive summary, part 1 and 2
NASA Technical Reports Server (NTRS)
1977-01-01
The elements of space station programs required to support an operational base theme, a space laboratory theme, and advanced missions relatable to public needs/national interests are defined. Missions satisfying the foregoing requirements are identified, program scenarios/options are established. System options are evaluated for a selected number of program options. Subsystem analysis and programmatic comparisons are performed for selected primary concepts.
Analysis of shadowing effects on spacecraft power systems
NASA Technical Reports Server (NTRS)
Fincannon, H. J.
1995-01-01
This paper describes the Orbiting Spacecraft Shadowing Analysis (OSSA) computer program that was developed at NASA Lewis Research Center in order to assess the shadowing effects on various power systems. The algorithms, inputs and outputs are discussed. Examples of typical shadowing analyses that have been performed for the International Space Station Freedom, International Space Station Alpha and the joint United States/Russian Mir Solar Dynamic Flight Experiment Project are covered. Effects of shadowing on power systems are demonstrated.
Evaluation of Long Duration Flight on Venus
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Colozza, Anthony J.
2006-01-01
An analysis was performed to evaluate the potential of utilizing either an airship or aircraft as a flight platform for long duration flight within the atmosphere of Venus. In order to achieve long-duration flight, the power system for the vehicle had to be capable of operating for extended periods of time. To accomplish these, two types of power systems were considered, a solar energy-based power system utilizing a photovoltaic array as the main power source and a radioisotope heat source power system utilizing a Stirling engine as the heat conversion device. Both types of vehicles and power systems were analyzed to determine their flight altitude range. This analysis was performed for a station-keeping mission where the vehicle had to maintain a flight over a location on the ground. This requires the vehicle to be capable of flying faster than the wind speed at a particular altitude. An analysis was also performed to evaluate the altitude range and maximum duration for a vehicle that was not required to maintain station over a specified location. The results of the analysis show that each type of flight vehicle and power system was capable of flight within certain portions of Venus s atmosphere. The aircraft, both solar and radioisotope power proved to be the most versatile and provided the greatest range of coverage both for station-keeping and non-station-keeping missions.
Space station systems: A bibliography with indexes (supplement 6)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 1,133 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1987 and December 31, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future Space Station.
NASA Astrophysics Data System (ADS)
Kramer, J. L. A. M.; Ullings, A. H.; Vis, R. D.
1993-05-01
A real-time data acquisition system for microprobe analysis has been developed at the Free University of Amsterdam. The system is composed of two parts: a front-end real-time and a back-end monitoring system. The front-end consists of a VMEbus based system which reads out a CAMAC crate. The back-end is implemented on a Sun work station running the UNIX operating system. This separation allows the integration of a minimal, and consequently very fast, real-time executive within the sophisticated possibilities of advanced UNIX work stations.
Space station systems: A bibliography with indexes (supplement 3)
NASA Technical Reports Server (NTRS)
1987-01-01
This bibliography lists 780 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1986 and June 30, 1986. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite system. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station.
Space station systems: A bibliography with indexes (supplement 2)
NASA Technical Reports Server (NTRS)
1986-01-01
This bibliography lists 904 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1, 1985 and December 31, 1985. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station.
Space station systems: A bibliography with indexes
NASA Technical Reports Server (NTRS)
1987-01-01
This bibliography lists 967 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1987 and June 30, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station.
On developing the local research environment of the 1990s - The Space Station era
NASA Technical Reports Server (NTRS)
Chase, Robert; Ziel, Fred
1989-01-01
A requirements analysis for the Space Station's polar platform data system has been performed. Based upon this analysis, a cluster, layered cluster, and layered-modular implementation of one specific module within the Eos Data and Information System (EosDIS), an active data base for satellite remote sensing research has been developed. It is found that a distributed system based on a layered-modular architecture and employing current generation work station technologies has the requisite attributes ascribed by the remote sensing research community. Although, based on benchmark testing, probabilistic analysis, failure analysis and user-survey technique analysis, it is found that this architecture presents some operational shortcomings that will not be alleviated with new hardware or software developments. Consequently, the potential of a fully-modular layered architectural design for meeting the needs of Eos researchers has also been evaluated, concluding that it would be well suited to the evolving requirements of this multidisciplinary research community.
Advanced Power System Analysis Capabilities
NASA Technical Reports Server (NTRS)
1997-01-01
As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth; Jang, Jiann-Woei; McCants, Edward; Omohundro, Zachary; Ring, Tom; Templeton, Jeremy; Zoss, Jeremy; Wallace, Jonathan; Ziegler, Philip
2011-01-01
Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems.
ERIC Educational Resources Information Center
Padilla Mercado, Jeralyne B.; Coombs, Eri M.; De Jesus, Jenny P.; Bretz, Stacey Lowery; Danielson, Neil D.
2018-01-01
Multifunctional chemical analysis (MCA) systems provide a viable alternative for large scale instruction while supporting a hands-on approach to more advanced instrumentation. These systems are robust and typically use student stations connected to a remote central computer for data collection, minimizing the need for computers at every student…
NASA Astrophysics Data System (ADS)
Kazancı, Selma Zengin; Kayıkçı, Emine Tanır
2017-12-01
In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled "Using Regional GNSS Networks to Strengthen Severe Weather Prediction" was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.
Space station systems analysis study. Part 2, Volume 2. [technical report
NASA Technical Reports Server (NTRS)
1977-01-01
Specific system options are defined and identified for a cost effective space station capable of orderly growth with regard to both function and orbit location. Selected program options are analyzed and configuration concepts are developed to meet objectives for the satellite power system, earth servicing, space processing, and supporting activities. Transportation systems are analyzed for both LEO and GEO orbits.
Dynamic safety assessment of natural gas stations using Bayesian network.
Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj
2017-01-05
Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks. Copyright © 2016 Elsevier B.V. All rights reserved.
Personalized Rapid Transit Systems : a First Analysis
DOT National Transportation Integrated Search
1971-07-01
A preliminary systems analysis of the presonalized rapid transit system concept is given. It includes presentatin of the significant advantages and disadvantages. Question of system capacity, station capacity, urban grid design, and headway requireme...
Shielding requirements for the Space Station habitability modules
NASA Technical Reports Server (NTRS)
Avans, Sherman L.; Horn, Jennifer R.; Williamsen, Joel E.
1990-01-01
The design, analysis, development, and tests of the total meteoroid/debris protection system for the Space Station Freedom habitability modules, such as the habitation module, the laboratory module, and the node structures, are described. Design requirements are discussed along with development efforts, including a combination of hypervelocity testing and analyses. Computer hydrocode analysis of hypervelocity impact phenomena associated with Space Station habitability structures is covered and the use of optimization techniques, engineering models, and parametric analyses is assessed. Explosive rail gun development efforts and protective capability and damage tolerance of multilayer insulation due to meteoroid/debris impact are considered. It is concluded that anticipated changes in the debris environment definition and requirements will require rescoping the tests and analysis required to develop a protection system.
International Space Station Increment-2 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy
2002-01-01
This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 300 Hz. This summary report presents analysis of some selected quasisteady and vibratory activities measured by these accelerometers during Increment-2 from May to August 20, 2001.
Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams
Watson, Kara M.; Schopp, Robert D.
2009-01-01
Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed cooperatively by the U.S. Geological Survey and the Environmental Systems Research Institute, Inc., and was designed for national implementation. This web application has been recently implemented for use in New Jersey. This program used in conjunction with a geographic information system provides the computation of values for selected basin characteristics, estimates of flood magnitudes and frequencies, and statistics for stream locations in New Jersey chosen by the user, whether the site is gaged or ungaged.
Space station structures and dynamics test program
NASA Technical Reports Server (NTRS)
Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.
1987-01-01
The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.
NASA Technical Reports Server (NTRS)
Barber, Peter W.; Demerdash, Nabeel A. O.; Hurysz, B.; Luo, Z.; Denny, Hugh W.; Millard, David P.; Herkert, R.; Wang, R.
1992-01-01
The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards.
Performance of International Space Station Alpha Trace Contaminant Control Systems
NASA Technical Reports Server (NTRS)
Perry, J. L.
2016-01-01
The analysis presented herein was conducted during the early transitional period between the Space Station Freedom and the International Space Station programs as part of an effort to evaluate key design specifications and standards used by the United States and Russia. The analysis was originally documented under NASA cover letter ED62(36-94) dated August 16, 1994. The analysis was revised and rereleased under NASA cover letter ED62(51-94) dated November 14, 1994. These cover letters are provided here to guide programmatic context for the reader.
Operability of Space Station Freedom's meteoroid/debris protection system
NASA Technical Reports Server (NTRS)
Kahl, Maggie S.; Stokes, Jack W.
1992-01-01
The design of Space Station Freedom's external structure must not only protect the spacecraft from the hazardous environment, but also must be compatible with the extra vehicular activity system for assembly and maintenance. The external procedures for module support are utility connections, external orbital replaceable unit changeout, and maintenance of the meteoroid/debris shields and multilayer insulation. All of these interfaces require proper man-machine engineering to be compatible with the extra vehicular activity and manipulator systems. This paper discusses design solutions, including those provided for human interface, to the Space Station Freedom meteoroid/debris protection system. The system advantages and current access capabilities are illustrated through analysis of its configuration over the Space Station Freedom resource nodes and common modules, with emphasis on the cylindrical sections and endcones.
Spacecraft Electrical Power System (EPS) generic analysis tools and techniques
NASA Technical Reports Server (NTRS)
Morris, Gladys M.; Sheppard, Mark A.
1992-01-01
An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.
NASA Technical Reports Server (NTRS)
Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.
2006-01-01
The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.
Automated Meteor Detection by All-Sky Digital Camera Systems
NASA Astrophysics Data System (ADS)
Suk, Tomáš; Šimberová, Stanislava
2017-12-01
We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.
ERIC Educational Resources Information Center
Roman, Harry T.
2012-01-01
The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…
The Remote Analysis Station (RAS) as an instructional system
NASA Technical Reports Server (NTRS)
Rogers, R. H.; Wilson, C. L.; Dye, R. H.; Jaworski, E.
1981-01-01
"Hands-on" training in LANDSAT data analysis techniques can be obtained using a desk-top, interactive remote analysis station (RAS) which consists of a color CRT imagery display, with alphanumeric overwrite and keyboard, as well as a cursor controller and modem. This portable station can communicate via modem and dial-up telephone with a host computer at 1200 baud or it can be hardwired to a host computer at 9600 baud. A Z80 microcomputer controls the display refresh memory and remote station processing. LANDSAT data is displayed as three-band false-color imagery, one-band color-sliced imagery, or color-coded processed imagery. Although the display memory routinely operates at 256 x 256 picture elements, a display resolution of 128 x 128 can be selected to fill the display faster. In the false color mode the computer packs the data into one 8-bit character. When the host is not sending pictorial information the characters sent are in ordinary ASCII code. System capabilities are described.
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 5: Study analysis report
NASA Technical Reports Server (NTRS)
1989-01-01
The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be on-board the Freedom Space Station. The further analysis performed on the SCS study as part of task 2-Perform Studies and Parametric Analysis-of the SCS study contract is summarized. These analyses were performed to resolve open issues remaining after the completion of task 1, and the publishing of the SCS study issues report. The results of these studies provide inputs into SCS task 3-Develop and present SCS requirements, and SCS task 4-develop SCS conceptual designs. The purpose of these studies is to resolve the issues into usable requirements given the best available information at the time of the study. A list of all the SCS study issues is given.
Study of plasma environments for the integrated Space Station electromagnetic analysis system
NASA Technical Reports Server (NTRS)
Singh, Nagendra
1992-01-01
The final report includes an analysis of various plasma effects on the electromagnetic environment of the Space Station Freedom. Effects of arcing are presented. Concerns of control of arcing by a plasma contactor are highlighted. Generation of waves by contaminant ions are studied and amplitude levels of the waves are estimated. Generation of electromagnetic waves by currents in the structure of the space station, driven by motional EMF, is analyzed and the radiation level is estimated.
Space station data system analysis/architecture study. Task 5: Program plan
NASA Technical Reports Server (NTRS)
1985-01-01
Cost estimates for both the on-board and ground segments of the Space Station Data System (SSDS) are presented along with summary program schedules. Advanced technology development recommendations are provided in the areas of distributed data base management, end-to-end protocols, command/resource management, and flight qualified artificial intelligence machines.
NASA Technical Reports Server (NTRS)
Flynn, Michael T.; Bubenheim, David L.; Straight, Christian L.; Belisle, Warren
1994-01-01
The Controlled Ecological Life Support system (CELSS) Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and NASA project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. NASA goals are operational testing of CELSS technologies and the conduct of scientific studies to facilitate technology selection and system design. The NSF goals are that the food production, water purification, and waste treatment capabilities which will be provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. This report presents an analysis of wastewater samples taken from the Amundsen-Scott South Pole Station, Antarctica. The purpose of the work is to develop a quantitative understanding of the characteristics of domestic sewage streams at the South Pole Station. This information will contribute to the design of a proposed plant growth/waste treatment system which is part of the CELSS Antarctic Analog Project (CAAP).
NASA Technical Reports Server (NTRS)
1985-01-01
Task 2 in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make design/programmatic decisions. This volume identifies the preferred options in the programmatic category and characterizes these options with respect to performance attributes, constraints, costs, and risks. The programmatic category includes methods used to administrate/manage the development, operation and maintenance of the SSDS. The specific areas discussed include standardization/commonality; systems management; and systems development, including hardware procurement, software development and system integration, test and verification.
Space station WP-04 power system preliminary analysis and design document, volume 3
NASA Technical Reports Server (NTRS)
1986-01-01
Rocketdyne plans to generate a system level specification for the Space Station Electric Power System (EPS) in order to facilitate the usage, accountability, and tracking of overall system level requirements. The origins and status of the verification planning effort are traced and an overview of the Space Station program interactions are provided. The work package level interfaces between the EPS and the other Space Station work packages are outlined. A trade study was performed to determine the peaking split between PV and SD, and specifically to compare the inherent total peaking capability with proportionally shared peaking. In order to determine EPS cost drivers for the previous submittal of DRO2, the life cycle cost (LCC) model was run to identify the more significant costs and the factors contributing to them.
Availability Estimation for Facilities in Extreme Geographical Locations
NASA Technical Reports Server (NTRS)
Fischer, Gerd M.; Omotoso, Oluseun; Chen, Guangming; Evans, John W.
2012-01-01
A value added analysis for the Reliability. Availability and Maintainability of McMurdo Ground Station was developed, which will be a useful tool for system managers in sparing, maintenance planning and determining vital performance metrics needed for readiness assessment of the upgrades to the McMurdo System. Output of this study can also be used as inputs and recommendations for the application of Reliability Centered Maintenance (RCM) for the system. ReliaSoft's BlockSim. a commercial Reliability Analysis software package, has been used to model the availability of the system upgrade to the National Aeronautics and Space Administration (NASA) Near Earth Network (NEN) Ground Station at McMurdo Station in the Antarctica. The logistics challenges due to the closure of access to McMurdo Station during the Antarctic winter was modeled using a weighted composite of four Weibull distributions. one of the possible choices for statistical distributions throughout the software program and usually used to account for failure rates of components supplied by different manufacturers. The inaccessibility of the antenna site on a hill outside McMurdo Station throughout one year due to severe weather was modeled with a Weibull distribution for the repair crew availability. The Weibull distribution is based on an analysis of the available weather data for the antenna site for 2007 in combination with the rules for travel restrictions due to severe weather imposed by the administrating agency, the National Science Foundation (NSF). The simulations resulted in an upper bound for the system availability and allowed for identification of components that would improve availability based on a higher on-site spare count than initially planned.
Koprivica, Mladen; Petrić, Majda; Nešković, Nataša; Nešković, Aleksandar
2016-01-01
To determine the level of radiofrequency radiation generated by base stations of Global System for Mobile Communications and Universal Mobile Telecommunication System, extensive electromagnetic field strength measurements were carried out in the vicinity of 664 base station locations. These were classified into three categories: indoor, masts, and locations with installations on buildings. Although microcell base stations with antennas installed indoors typically emit less power than outdoor macrocell base stations, the fact that people can be found close to antennas requires exposure originating from these base stations to be carefully considered. Measurement results showed that maximum recorded value of electric field strength exceeded International Commission on Non-Ionizing Radiation Protection reference levels at 7% of indoor base station locations. At the same time, this percentage was much lower in the case of masts and installations on buildings (0% and 2.5%, respectively). © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.
2016-10-01
A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
The purpose of this requirements document is to develop the foundation for concept development for the Life Sciences Research Facility (LSRF) on the Space Station. These requirements are developed from the perspective of a Space Station laboratory module outfitter. Science and mission requirements including those related to specimens are set forth. System requirements, including those for support, are detailed. Functional and design requirements are covered in the areas of structures, mechanisms, electrical power, thermal systems, data management system, life support, and habitability. Finally, interface requirements for the Command Module and Logistics Module are described.
Modular space station phase B extension preliminary system design. Volume 7: Ancillary studies
NASA Technical Reports Server (NTRS)
Jones, A. L.
1972-01-01
Sortie mission analysis and reduced payloads size impact studies are presented. In the sortie mission analysis, a modular space station oriented experiment program to be flown by the space shuttle during the period prior to space station IOC is discussed. Experiments are grouped into experiment packages. Mission payloads are derived by grouping experiment packages and by adding support subsystems and structure. The operational and subsystems analyses of these payloads are described. Requirements, concepts, and shuttle interfaces are integrated. The sortie module/station module commonality and a sortie laboratory concept are described. In the payloads size analysis, the effect on the modular space station concept of reduced diameter and reduced length of the shuttle cargo bay is discussed. Design concepts are presented for reduced sizes of 12 by 60 ft, 14 by 40 ft, and 12 by 40 ft. Comparisons of these concepts with the modular station (14 by 60 ft) are made to show the impact of payload size changes.
International Space Station Acoustics - A Status Report
NASA Technical Reports Server (NTRS)
Allen, Christopher S.; Denham, Samuel A.
2011-01-01
It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.
Space station needs, attributes and architectural options study. Volume 2: Mission analysis
NASA Technical Reports Server (NTRS)
1983-01-01
Space environment studies, astrophysics, Earth environment, life sciences, and material sciences are discussed. Commercial communication, materials processing, and Earth observation missions are addressed. Technology development, space operations, scenarios of operational capability, mission requirements, and benefits analysis results for space-produced gallium arsenide crystals, direct broadcasting satellite systems, and a high inclination space station are covered.
Williams works with the GASMAP section of the HRF rack in the U.S. Laboratory during Expedition 13
2006-06-17
ISS013-E-38343 (17 June 2006) --- Astronaut Jeffrey N. Williams, Expedition 13 NASA space station science officer and flight engineer, works with the Gas Analysis System for Metabolic Analysis of Physiology (GASMAP) section of the Human Research Facility (HRF) in the Destiny laboratory of the International Space Station.
International Space Station Increment-3 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos
2002-01-01
This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-3 from August to December, 2001.
Nuclear fuel microsphere gamma analyzer
Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.
1977-01-01
A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.
Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2007-01-01
While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.
Space Station Environmental Health System water quality monitoring
NASA Technical Reports Server (NTRS)
Vincze, Johanna E.; Sauer, Richard L.
1990-01-01
One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.
Analysis and Selection of a Remote Docking Simulation Visual Display System
NASA Technical Reports Server (NTRS)
Shields, N., Jr.; Fagg, M. F.
1984-01-01
The development of a remote docking simulation visual display system is examined. Video system and operator performance are discussed as well as operator command and control requirements and a design analysis of the reconfigurable work station.
NASA Technical Reports Server (NTRS)
So, Kenneth T.; Hall, John B., Jr.; Thompson, Clifford D.
1987-01-01
NASA's Langley and Goddard facilities have evaluated the effects of animal science experiments on the Space Station's Environmental Control and Life Support System (ECLSS) by means of computer-aided analysis, assuming an animal colony consisting of 96 rodents and eight squirrel monkeys. Thirteen ECLSS options were established for the reclamation of metabolic oxygen and waste water. Minimum cost and weight impacts on the ECLSS are found to accrue to the system's operation in off-nominal mode, using electrochemical CO2 removal and a static feed electrolyzer for O2 generation.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.
2006-01-01
One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.
Optimization of the Number and Location of Tsunami Stations in a Tsunami Warning System
NASA Astrophysics Data System (ADS)
An, C.; Liu, P. L. F.; Pritchard, M. E.
2014-12-01
Optimizing the number and location of tsunami stations in designing a tsunami warning system is an important and practical problem. It is always desirable to maximize the capability of the data obtained from the stations for constraining the earthquake source parameters, and to minimize the number of stations at the same time. During the 2011 Tohoku tsunami event, 28 coastal gauges and DART buoys in the near-field recorded tsunami waves, providing an opportunity for assessing the effectiveness of those stations in identifying the earthquake source parameters. Assuming a single-plane fault geometry, inversions of tsunami data from combinations of various number (1~28) of stations and locations are conducted and evaluated their effectiveness according to the residues of the inverse method. Results show that the optimized locations of stations depend on the number of stations used. If the stations are optimally located, 2~4 stations are sufficient to constrain the source parameters. Regarding the optimized location, stations must be uniformly spread in all directions, which is not surprising. It is also found that stations within the source region generally give worse constraint of earthquake source than stations farther from source, which is due to the exaggeration of model error in matching large amplitude waves at near-source stations. Quantitative discussions on these findings will be given in the presentation. Applying similar analysis to the Manila Trench based on artificial scenarios of earthquakes and tsunamis, the optimal location of tsunami stations are obtained, which provides guidance of deploying a tsunami warning system in this region.
International Space Station (ISS) Accommodation of a Single US Assured Crew Return Vehicle (ACRV)
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Garn, Michelle A.; Troutman, Patrick A.; Wang, Yuan; Kumar, Renjith; Heck, Michael L.
1997-01-01
The following report was generated to give the International Space Station (ISS) Program some additional insight into the operations and issues associated with accommodating a single U.S. developed Assured Crew Return Vehicle (ACRV). During the generation of this report, changes in both the ISS and ACRV programs were factored into the analysis with the realization that most of the work performed will eventually need to be repeated once the two programs become more integrated. No significant issues associated with the ISS accommodating the ACRV were uncovered. Kinematic analysis of ACRV installation showed that there are viable methods of using Shuttle and Station robotic manipulators. Separation analysis demonstrated that the ACRV departure path clears the Station structure for all likely contingency scenarios. The payload bay packaging analysis identified trades that can be made between payload bay location, Shuttle Remote Manipulator System (SRMS) reach and eventual designs of de-orbit stages and docking adapters.
Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft
NASA Technical Reports Server (NTRS)
Myrabo, L. N.; Dickenson, T.
2005-01-01
A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic thruster (i.e., geomagnetic re-boost) station-keeping system can maintain the orbit altitude. The rate at which the power station s superconducting magnetic energy storage system (SMES) is 'charged' directly relates to the beta angle since the station is operating in the edge-on attitude. The maximum charge rate occurs when the beta angle is at its maximum because time in the sun and projected area of the station are, too, at their maximums For the maximum charge of 2000 G.J with a maximum beta angle of 52 degrees, approximately 3 hours (2 orbital revolutions) are required to reach the full charge, while about 16 hours (10.3 revolutions) are required when the beta angle is 10 degrees. Overall, the LEO station concept appears to be a viable candidate fo1 the formidable power-beaming infrastructure needed to boost MWLC into low earth orbit.
Space Station ECLSS Integration Analysis
NASA Technical Reports Server (NTRS)
1993-01-01
The Space Station Environmental Control and Life Support System (ECLSS) contract with NASA MSFC covered the time frame from 9 May 1985 to 31 Dec. 1992. The contract roughly covered the period of Space Station Freedom (SSF) development from early Phase B through Phase C/D Critical Design Review (CDR). During this time, McDonnell Douglas Aerospace-Huntsville (formerly McDonnell Douglas Space Systems Company) performed an analytical support role to MSFC for the development of analytical math models and engineering trade studies related to the design of the ECLSS for the SSF.
On-Orbit System Identification
NASA Technical Reports Server (NTRS)
Mettler, E.; Milman, M. H.; Bayard, D.; Eldred, D. B.
1987-01-01
Information derived from accelerometer readings benefits important engineering and control functions. Report discusses methodology for detection, identification, and analysis of motions within space station. Techniques of vibration and rotation analyses, control theory, statistics, filter theory, and transform methods integrated to form system for generating models and model parameters that characterize total motion of complicated space station, with respect to both control-induced and random mechanical disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beemer, J.D.; Parsons, R.R.; Rueter, L.L.
1975-02-01
An engineering analysis and development effort has been executed to design a superpressure airship, POBAL-S, capable of station keeping at an altitude of 21 kilometers for a duration of 7 days while supporting a payload weighing 890 Newtons and requiring 500 watts of electrical power. A detailed parametric trade-off between various power sources and other design choices was performed. The computer program used to accomplish this analysis is described and many results are presented. The system concept which resulted was a fuel cell powered, propeller driven airship controlled by an on-board autopilot with basic commands telemetered from a ground controlmore » station. Design of the balloon, power train, gimbaled propeller assembly, and electronic/electrical systems is presented. Flight operations for launch and recovery are discussed.« less
SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO
NASA Astrophysics Data System (ADS)
Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus
2016-03-01
The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.
Space Station Systems Analysis Study. Volume 2: Program review report
NASA Technical Reports Server (NTRS)
1977-01-01
Major growth options for tended and manned space stations in LEO and GEO are examined including increased orbiter augmentation and habitation requirements. Approaches for providing power supplies, construction aids needed to assemble support platforms, transportation system constraints, and the hardware required for various missions categories are defined. Subsystem requirements are analyzed for structure; flight control; power generation and storage; avionic; life support systems; personnel provisions; and environmental control. Tradeoffs are considered.
Forest fire autonomous decision system based on fuzzy logic
NASA Astrophysics Data System (ADS)
Lei, Z.; Lu, Jianhua
2010-11-01
The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.
Division and Brigade Stationing System: Installation Data Book.
1988-04-01
8217Division and Brigade Stationing Study: An Analysis of Environmental and Socioeconomic Effects (ESC, September 1987); Division and Brigade Stationing Study...composed of 0 partly decomposed moss, leaves , and twigs, matted together with many fine rootlets. In permafrost areas, destruction of this mat...maritime effect is seldom interrupted by drier and cooler continental air. Although rainfall averages about 48 inches a year, Y annual variation is large
Analysis of high vacuum systems using SINDA'85
NASA Technical Reports Server (NTRS)
Spivey, R. A.; Clanton, S. E.; Moore, J. D.
1993-01-01
The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.
Liu, Qinghua; Han, Songyan; Arias, Sixto; Turner, J Francis; Lee, Hans; Browning, Robert; Wang, Ko-Pen
2016-01-01
The role of transbronchial needle aspiration (TBNA) in the diagnosis and staging of lung cancer has been well established. Recently, the efficacy of conventional TBNA in the staging of lung cancer has been enhanced by the use of endobronchial ultrasound (EBUS)-TBNA. Our study sought to evaluate the adequacy of TBNA of International Association for the Study of Lung Cancer (IASLC) stations 4R, 4L and 7 using endobronchial landmarks provided by the Wang nodal mapping system in the staging of lung cancer. We retrospectively analyzed all bronchoscopic cases with conventional TBNA punctures positive for malignancy at our institution from 1 January to 31 October 2014. The endobronchial puncture site was guided by the Wang nodal mapping system. The Wang stations were correlated with the IASLC lymph node map. No endobronchial ultrasound or rapid on-site evaluation was used. Pathological analysis included cytological and histological examination. Diagnosis by histological analysis was obtained in 115 (55.3%) out of 208 puncture sites. The metastatic lymph nodes were distributed at IASLC stations 4R (W1, 3, 5) 46.6 %, 7 (W2, 8, 10) 19.7%, 4L (W4, 6) 11.5%, 11R (W7, W9) 11.1% 11L (W11) 9.6%, 2R (high station W3) 0.5%, and the proximal portion of station 8 (station W10 beyond the middle lobe orifice) 1%. No complications were observed. IASLC station 4R (W1, 3, 5), 7 (W2, 8, 10) and 4L (W4, 6) are adequate for the staging of lung cancer.
Verification of Space Station Secondary Power System Stability Using Design of Experiment
NASA Technical Reports Server (NTRS)
Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce
1998-01-01
This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.
Space rescue system definition (system performance analysis and trades)
NASA Astrophysics Data System (ADS)
Housten, Sam; Elsner, Tim; Redler, Ken; Svendsen, Hal; Wenzel, Sheri
This paper addresses key technical issues involved in the system definition of the Assured Crew Return Vehicle (ACRV). The perspective on these issues is that of a prospective ACRV contractor, performing system analysis and trade studies. The objective of these analyses and trade studies is to develop the recovery vehicle system concept and top level requirements. The starting point for this work is the definition of the set of design missions for the ACRV. This set of missions encompasses three classes of contingency/emergency (crew illness/injury, space station catastrophe/failure, transportation element catastrophe/failure). The need is to provide a system to return Space Station crew to Earth quickly (less than 24 hours) in response to randomly occurring contingency events over an extended period of time (30 years of planned Space Station life). The main topics addressed and characterized in this paper include the following: Key Recovery (Rescue) Site Access Considerations; Rescue Site Locations and Distribution; Vehicle Cross Range vs Site Access; On-orbit Loiter Capability and Vehicle Design; and Water vs. Land Recovery.
Harmonic Analysis of Electric Vehicle Loadings on Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yijun A; Xu, Yunshan; Chen, Zimin
2014-12-01
With the increasing number of Electric Vehicles (EV) in this age, the power system is facing huge challenges of the high penetration rates of EVs charging stations. Therefore, a technical study of the impact of EVs charging on the distribution system is required. This paper is applied with PSCAD software and aimed to analyzing the Total Harmonic Distortion (THD) brought by Electric Vehicles charging stations in power systems. The paper starts with choosing IEEE34 node test feeder as the distribution system, building electric vehicle level two charging battery model and other four different testing scenarios: overhead transmission line and undergroundmore » cable, industrial area, transformer and photovoltaic (PV) system. Then the statistic method is used to analyze different characteristics of THD in the plug-in transient, plug-out transient and steady-state charging conditions associated with these four scenarios are taken into the analysis. Finally, the factors influencing the THD in different scenarios are found. The analyzing results lead the conclusion of this paper to have constructive suggestions for both Electric Vehicle charging station construction and customers' charging habits.« less
Asteroid Lightcurve Analysis at CS3-Palmer Divide Station: 2017 April thru June
NASA Astrophysics Data System (ADS)
Warner, Brian D.
2017-10-01
Lightcurves for 16 main-belt asteroids were obtained at the Center for Solar System Studies-Palmer Divide Station (CS3-PDS) from 2017 April thru June. Many of the asteroids were “strays” in the field of planned targets, demonstrating a good reason for data mining images. Analysis shows that the Hungaria asteroid (45878) 2000 WX29 may be binary.
Asteroid Lightcurve Analysis at CS3-Palmer Divide Station: 2016 December thru 2017 March
NASA Astrophysics Data System (ADS)
Warner, Brian D.
2017-07-01
Lightcurves for 18 main-belt asteroids were obtained at the Center for Solar System Studies-Palmer Divide Station (CS3-PDS) from 2016 December thru 2017 March. Many of the asteroids were “strays” in the field of planned targets, demonstrating a good reason for data mining images. Analysis shows that the Hungaria asteroid (45878) 2000 WX29 may be binary.
NASA Technical Reports Server (NTRS)
Jackson, M. E.
1995-01-01
This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.
Sail GTS ground system analysis: Avionics system engineering
NASA Technical Reports Server (NTRS)
Lawton, R. M.
1977-01-01
A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.
Migration strategies for service-enabling ground control stations for unmanned systems
NASA Astrophysics Data System (ADS)
Kroculick, Joseph B.
2011-06-01
Future unmanned systems will be integrated into the Global Information Grid (GIG) and support net-centric data sharing, where information in a domain is exposed to a wide variety of GIG stakeholders that can make use of the information provided. Adopting a Service-Oriented Architecture (SOA) approach to package reusable UAV control station functionality into common control services provides a number of benefits including enabling dynamic plug and play of components depending on changing mission requirements, supporting information sharing to the enterprise, and integrating information from authoritative sources such as mission planners with the UAV control stations data model. It also allows the wider enterprise community to use the services provided by unmanned systems and improve data quality to support more effective decision-making. We explore current challenges in migrating UAV control systems that manage multiple types of vehicles to a Service-Oriented Architecture (SOA). Service-oriented analysis involves reviewing legacy systems and determining which components can be made into a service. Existing UAV control stations provide audio/visual, navigation, and vehicle health and status information that are useful to C4I systems. However, many were designed to be closed systems with proprietary software and hardware implementations, message formats, and specific mission requirements. An architecture analysis can be performed that reviews legacy systems and determines which components can be made into a service. A phased SOA adoption approach can then be developed that improves system interoperability.
Integrated energy balance analysis for Space Station Freedom
NASA Technical Reports Server (NTRS)
Tandler, John
1991-01-01
An integrated simulation model is described which characterizes the dynamic interaction of the energy transport subsystems of Space Station Freedom for given orbital conditions and for a given set of power and thermal loads. Subsystems included in the model are the Electric Power System (EPS), the Internal Thermal Control System (ITCS), the External Thermal Control System (ETCS), and the cabin Temperature and Humidity Control System (THC) (which includes the avionics air cooling, cabin air cooling, and intermodule ventilation systems). Models of the subsystems were developed in a number of system-specific modeling tools and validated. The subsystem models are then combined into integrated models to address a number of integrated performance issues involving the ability of the integrated energy transport system of Space Station Freedom to provide power, controlled cabin temperature and humidity, and equipment thermal control to support operations.
NASA Technical Reports Server (NTRS)
Smagala, Tom; Mcglew, Dave
1988-01-01
The expected pointing performance of an attached payload coupled to the Critical Evaluation Task Force Space Station via a payload pointing system (PPS) is determined. The PPS is a 3-axis gimbal which provides the capability for maintaining inertial pointing of a payload in the presence of disturbances associated with the Space Station environment. A system where the axes of rotation were offset from the payload center of mass (CM) by 10 in. in the Z axis was studied as well as a system having the payload CM offset by only 1 inch. There is a significant improvement in pointing performance when going from the 10 in. to the 1 in. gimbal offset.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergey, M.
1997-12-01
This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or dieselmore » only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.« less
Space station integrated propulsion and fluid systems study
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Shepard, D.; Rossier, R.
1988-01-01
The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems.
Space station systems technology study (add-on task). Volume 2: Trade study and technology selection
NASA Technical Reports Server (NTRS)
1985-01-01
The current Space Station Systems Technology Study add on task was an outgrowth of the Advanced Platform Systems Technology Study (APSTS) that was completed in April 1983 and the subsequent Space Station System Technology Study completed in April 1984. The first APSTS proceeded from the identification of 106 technology topics to the selection of five for detailed trade studies. During the advanced platform study, the technical issues and options were evaluated through detailed trade processes, individual consideration was given to costs and benefits for the technologies identified for advancement, and advancement plans were developed. An approach similar to that was used in the subsequent study, with emphasis on system definition in four specific technology areas to facilitate a more in depth analysis of technology issues.
Applications of living systems theory to life in space
NASA Technical Reports Server (NTRS)
Miller, James Grier
1992-01-01
The conceptual system and methodology of living systems theory appear to be of value to research on life in isolated environments. A space station, which must provide suitable conditions for human life in a stressful environment that meets none of the basic needs of life, is an extreme example of such isolation. A space station would include living systems at levels of individual human beings, groups of people engaged in a variety of activities, and the entire space crew as an organization. It could also carry living systems of other species, such as other animals and plants. Using the subsystem analysis of living systems theory, planners of a station, either in space or on a celestial body, would make sure that all the requirements for survival at all these levels had been considered. Attention would be given not only to the necessary matter and energy, but also the essential information flows that integrate and control living systems. Many variables for each subsystem could be monitored and kept in steady states. Use of living systems process analysis of the five flows of matter energy and information would assure that all members of the crew received what they needed.
NASA Technical Reports Server (NTRS)
Randall, Roger M.
1987-01-01
Orbit Transfer Vehicle (OTV) processing at the space station is divided into two major categories: OTV processing and assembly operations, and support operations. These categories are further subdivided into major functional areas to allow development of detailed OTV processing procedures and timelines. These procedures and timelines are used to derive the specific space station accommodations necessary to support OTV activities. The overall objective is to limit impact on OTV processing requirements on space station operations, involvement of crew, and associated crew training and skill requirements. The operational concept maximizes use of automated and robotic systems to perform all required OTV servicing and maintenance tasks. Only potentially critical activities would require direct crew involvement or supervision. EVA operations are considered to be strictly contingency back-up to failure of the automated and robotic systems, with the exception of the initial assembly of Space-Based OTV accommodations at the space station, which will require manned involvement.
NASA Technical Reports Server (NTRS)
1977-01-01
An analysis of construction operation is presented as well as power system sizing requirements. Mission hardware requirements are reviewed in detail. Space construction base and design configurations are also examined.
Automation of Precise Time Reference Stations (PTRS)
NASA Astrophysics Data System (ADS)
Wheeler, P. J.
1985-04-01
The U.S. Naval Observatory is presently engaged in a program of automating precise time stations (PTS) and precise time reference stations (PTBS) by using a versatile mini-computer controlled data acquisition system (DAS). The data acquisition system is configured to monitor locally available PTTI signals such as LORAN-C, OMEGA, and/or the Global Positioning System. In addition, the DAS performs local standard intercomparison. Computer telephone communications provide automatic data transfer to the Naval Observatory. Subsequently, after analysis of the data, results and information can be sent back to the precise time reference station to provide automatic control of remote station timing. The DAS configuration is designed around state of the art standard industrial high reliability modules. The system integration and software are standardized but allow considerable flexibility to satisfy special local requirements such as stability measurements, performance evaluation and printing of messages and certificates. The DAS operates completely independently and may be queried or controlled at any time with a computer or terminal device (control is protected for use by authorized personnel only). Such DAS equipped PTS are operational in Hawaii, California, Texas and Florida.
Biomedical and Human Factors Requirements for a Manned Earth Orbiting Station
NASA Technical Reports Server (NTRS)
Helvey, W.; Martell, C.; Peters, J.; Rosenthal, G.; Benjamin, F.; Albright, G.
1964-01-01
The primary objective of this study is to determine which biomedical and human factors measurements must be made aboard a space station to assure adequate evaluation of the astronaut's health and performance during prolonged space flights. The study has employed, where possible, a medical and engineering systems analysis to define the pertinent life sciences and space station design parameters and their influence on a measurement program. The major areas requiring evaluation in meeting the study objectives include a definition of the space environment, man's response to the environment, selection of measurement and data management techniques, experimental program, space station design requirements, and a trade-off analysis with final recommendations. The space environment factors that are believed to have a significant effect on man were evaluated. This includes those factors characteristic of the space environment (e. g. weightlessness, radiation) as well as those created within the space station (e. g. toxic contaminants, capsule atmosphere). After establishing the general features of the environment, an appraisal was made of the anticipated response of the astronaut to each of these factors. For thoroughness, the major organ systems and functions of the body were delineated, and a determination was made of their anticipated response to each of the environmental categories. A judgment was then made on the medical significance or importance of each response, which enabled a determination of which physiological and psychological effects should be monitored. Concurrently, an extensive list of measurement techniques and methods of data management was evaluated for applicability to the space station program. The various space station configurations and design parameters were defined in terms of the biomedical and human factors requirements to provide the measurements program. Research design of experimental programs for various station configurations, mission durations, and crew sizes were prepared, and, finally, a trade-off analysis of the critical variables in the station planning was completed with recommendations to enhance the confidence in the measurement program.
Extraction and visualization of the central chest lymph-node stations
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Merritt, Scott A.; Higgins, William E.
2008-03-01
Lung cancer remains the leading cause of cancer death in the United States and is expected to account for nearly 30% of all cancer deaths in 2007. Central to the lung-cancer diagnosis and staging process is the assessment of the central chest lymph nodes. This assessment typically requires two major stages: (1) location of the lymph nodes in a three-dimensional (3D) high-resolution volumetric multi-detector computed-tomography (MDCT) image of the chest; (2) subsequent nodal sampling using transbronchial needle aspiration (TBNA). We describe a computer-based system for automatically locating the central chest lymph-node stations in a 3D MDCT image. Automated analysis methods are first run that extract the airway tree, airway-tree centerlines, aorta, pulmonary artery, lungs, key skeletal structures, and major-airway labels. This information provides geometrical and anatomical cues for localizing the major nodal stations. Our system demarcates these stations, conforming to criteria outlined for the Mountain and Wang standard classification systems. Visualization tools within the system then enable the user to interact with these stations to locate visible lymph nodes. Results derived from a set of human 3D MDCT chest images illustrate the usage and efficacy of the system.
Analysis of selected volatile organic compounds at background level in South Africa.
NASA Astrophysics Data System (ADS)
Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang
2017-04-01
Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator
Real-time processing of interferograms for monitoring protein crystal growth on the Space Station
NASA Technical Reports Server (NTRS)
Choudry, A.; Dupuis, N.
1988-01-01
The possibility of using microscopic interferometric techniques to monitor the growth of protein crystals on the Space Station is studied. Digital image processing techniques are used to develop a system for the real-time analysis of microscopic interferograms of nucleation sites during protein crystal growth. Features of the optical setup and the image processing system are discussed and experimental results are presented.
NASA Technical Reports Server (NTRS)
1977-01-01
A brief description of recommended supporting research and technology items resulting from the space station analysis study is provided. Descriptions include the title; the status with respect to the state of the art; the justification; the technical plan including objectives and technical approach; resource requirements categorized by manpower, specialized facilities, and funding in 1977 dollars; and also the target schedule. The goal is to provide high confidence in the solutions for the various functional system development problems, and to do so within a time period compatible with the overall evolutionary space construction base schedule.
NASA Astrophysics Data System (ADS)
Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.
1989-04-01
A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.
1989-01-01
A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.
Real-Time Communication Systems: Design, Analysis and Implementation
1984-07-31
sively [141-[19). A two-hop configuration involving a ring of repeaters around a station has been analyzed by Gitman [20) ; STATION network capacity...control of the packet-switching broadcast channels," J. Ass. Comput Mach., vol. 24, pp. 375-386, July 1977. [201 I. Gitman , "On the capacity of
Optimization of municipal pressure pumping station layout and sewage pipe network design
NASA Astrophysics Data System (ADS)
Tian, Jiandong; Cheng, Jilin; Gong, Yi
2018-03-01
Accelerated urbanization places extraordinary demands on sewer networks; thus optimization research to improve the design of these systems has practical significance. In this article, a subsystem nonlinear programming model is developed to optimize pumping station layout and sewage pipe network design. The subsystem model is expanded into a large-scale complex nonlinear programming system model to find the minimum total annual cost of the pumping station and network of all pipe segments. A comparative analysis is conducted using the sewage network in Taizhou City, China, as an example. The proposed method demonstrated that significant cost savings could have been realized if the studied system had been optimized using the techniques described in this article. Therefore, the method has practical value for optimizing urban sewage projects and provides a reference for theoretical research on optimization of urban drainage pumping station layouts.
A computer system for the storage and retrieval of gravity data, Kingdom of Saudi Arabia
Godson, Richard H.; Andreasen, Gordon H.
1974-01-01
A computer system has been developed for the systematic storage and retrieval of gravity data. All pertinent facts relating to gravity station measurements and computed Bouguer values may be retrieved either by project name or by geographical coordinates. Features of the system include visual display in the form of printer listings of gravity data and printer plots of station locations. The retrieved data format interfaces with the format of GEOPAC, a system of computer programs designed for the analysis of geophysical data.
Reliability Analysis of the Space Station Freedom Electrical Power System
1989-08-01
Cleveland, Ohio, who assisted in obtaining related research materials and provided feedback on our efforts to produce a dynamic analysis tool useful to...System software that we used to do our analysis of the electrical power system. Thanks are due to Dr. Vira Chankong, my thesis advisor, for his...a frequency duration analysis . Using a transition rate matrix with a model of the photovoltaic and solar dynamic systems, they have one model that
NASA Technical Reports Server (NTRS)
Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan
2006-01-01
The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.
Space station integrated wall design and penetration damage control
NASA Technical Reports Server (NTRS)
Coronado, A. R.; Gibbins, M. N.; Wright, M. A.; Stern, P. H.
1987-01-01
The analysis code BUMPER executes a numerical solution to the problem of calculating the probability of no penetration (PNP) of a spacecraft subject to man-made orbital debris or meteoroid impact. The codes were developed on a DEC VAX 11/780 computer that uses the Virtual Memory System (VMS) operating system, which is written in FORTRAN 77 with no VAX extensions. To help illustrate the steps involved, a single sample analysis is performed. The example used is the space station reference configuration. The finite element model (FEM) of this configuration is relatively complex but demonstrates many BUMPER features. The computer tools and guidelines are described for constructing a FEM for the space station under consideration. The methods used to analyze the sensitivity of PNP to variations in design, are described. Ways are suggested for developing contour plots of the sensitivity study data. Additional BUMPER analysis examples are provided, including FEMs, command inputs, and data outputs. The mathematical theory used as the basis for the code is described, and illustrates the data flow within the analysis.
Space station electrical power system availability study
NASA Technical Reports Server (NTRS)
Turnquist, Scott R.; Twombly, Mark A.
1988-01-01
ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.
NASA Astrophysics Data System (ADS)
Polkowski, Marcin; Grad, Marek
2016-04-01
Passive seismic experiment "13BB Star" is operated since mid 2013 in northern Poland and consists of 13 broadband seismic stations. One of the elements of this experiment is dedicated on-line data acquisition system comprised of both client (station) side and server side modules with web based interface that allows monitoring of network status and provides tools for preliminary data analysis. Station side is controlled by ARM Linux board that is programmed to maintain 3G/EDGE internet connection, receive data from digitizer, send data do central server among with additional auxiliary parameters like temperatures, voltages and electric current measurements. Station side is controlled by set of easy to install PHP scripts. Data is transmitted securely over SSH protocol to central server. Central server is a dedicated Linux based machine. Its duty is receiving and processing all data from all stations including auxiliary parameters. Server side software is written in PHP and Python. Additionally, it allows remote station configuration and provides web based interface for user friendly interaction. All collected data can be displayed for each day and station. It also allows manual creation of event oriented plots with different filtering abilities and provides numerous status and statistic information. Our solution is very flexible and easy to modify. In this presentation we would like to share our solution and experience. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.
Development Status: Automation Advanced Development Space Station Freedom Electric Power System
NASA Technical Reports Server (NTRS)
Dolce, James L.; Kish, James A.; Mellor, Pamela A.
1990-01-01
Electric power system automation for Space Station Freedom is intended to operate in a loop. Data from the power system is used for diagnosis and security analysis to generate Operations Management System (OMS) requests, which are sent to an arbiter, which sends a plan to a commander generator connected to the electric power system. This viewgraph presentation profiles automation software for diagnosis, scheduling, and constraint interfaces, and simulation to support automation development. The automation development process is diagrammed, and the process of creating Ada and ART versions of the automation software is described.
Space station systems analysis study. Part 1, volume 1: Executive study
NASA Technical Reports Server (NTRS)
1976-01-01
Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.
A continuum model for dynamic analysis of the Space Station
NASA Technical Reports Server (NTRS)
Thomas, Segun
1989-01-01
Dynamic analysis of the International Space Station using MSC/NASTRAN had 1312 rod elements, 62 beam elements, 489 nodes and 1473 dynamic degrees of freedom. A realtime, man-in-the-loop simulation of such a model is impractical. This paper discusses the mathematical model for realtime dynamic simulation of the Space Station. Several key questions in structures and structural dynamics are addressed. First, to achieve a significant reduction in the number of dynamic degrees of freedom, a continuum equivalent representation of the Space Station truss structure which accounted for the unsymmetry of the basic configuration and resulted in the coupling of extensional and transverse deformation, is developed. Next, dynamic equations for the continuum equivalent of the Space Station truss structure are formulated using a matrix version of Kane's dynamical equations. Flexibility is accounted for by using a theory that accommodates extension, bending in two principal planes and shear displacement. Finally, constraint equations suitable for dynamic analysis of flexible bodies with closed loop configuration are developed and solution of the resulting system of equations is based on the zero eigenvalue theorem.
NASA Astrophysics Data System (ADS)
Jules, Kenol; Lin, Paul P.
2007-06-01
With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.
Dynamic evolution characteristics of a fractional order hydropower station system
NASA Astrophysics Data System (ADS)
Gao, Xiang; Chen, Diyi; Yan, Donglin; Xu, Beibei; Wang, Xiangyu
2018-01-01
This paper investigates the dynamic evolution characteristics of the hydropower station by introducing the fractional order damping forces. A careful analysis of the dynamic characteristics of the generator shaft system is carried out under different values of fractional order. It turns out the vibration state of the axis coordinates has a certain evolution law with the increase of the fractional order. Significantly, the obtained law exists in the horizontal evolution and vertical evolution of the dynamical behaviors. Meanwhile, some interesting dynamical phenomena were found in this process. The outcomes of this study enrich the nonlinear dynamic theory from the engineering practice of hydropower stations.
A portable telescope based on the ALIBAVA system for test beam studies
NASA Astrophysics Data System (ADS)
Bernabeu, J.; Casse, G.; Garcia, C.; Greenall, A.; Lacasta, C.; Lozano, M.; Marti-Garcia, S.; Pellegrini, G.; Rodriguez, J.; Ullan, M.; Tsurin, I.
2013-12-01
A test beam telescope has been built using the ALIBAVA system to drive its data acquisition. The basic telescope planes consist of four XYT stations. Each station is built from a detector board with two strip sensors, mounted one in each side (strips crossing at 90°). The ensemble is coupled to an ALIBAVA daughter board. These stations act as reference frame and allow a precise track reconstruction. The system is triggered by the coincidence signal of the two scintillators located up and down stream. The telescope can hold several devices under tests. Each ALIBAVA daughter board is linked to its corresponding mother board. The system can hold up to 16 mother boards. A master board synchronizes and controls all the mother boards and collects their data. The off-line analysis software has been developed to study the charge collection, cluster width, tracking efficiency, resolution, etc., of the devices under test. Moreover, the built-in ALIBAVA TDC allows the analysis of the time profile of the device signal. The ALIBAVA telescope has been successfully operated in two test runs at the DESY and CERN-SPS beam lines.
Repair-level analysis for Space Station Freedom
NASA Technical Reports Server (NTRS)
Chadwick, M.; Yaniec, J.
1992-01-01
To assign repair or discard-at-failure designations for orbital replacement units (ORUs) used on Space Station Freedom Electric Power System (SSFEPS), new algorithms and methods were required. Unique parameters, such as upmass costs, extravehicular activity costs and intravehicular activity (IVA) costs specific to Space Station Freedom's maintenance concept were incorporated into the Repair-Level Analysis (RLA). Additional outputs were also required of the SSFEPS RLA that were not required of previous RLAs. These outputs included recommendations for the number of launches that an ORU should be capable of attaining and an economic basis for condemnation rate. These unique parameters were not addressable using existing RLA models: therefore, a new approach was developed. In addition, it was found that preemptive analysis could be performed using spreadsheet-based Boolean expressions to represent the logical condition of the items under analysis.
Space station data system analysis/architecture study. Task 3: Trade studies, DR-5, volume 2
NASA Technical Reports Server (NTRS)
1985-01-01
Results of a Space Station Data System Analysis/Architecture Study for the Goddard Space Flight Center are presented. This study, which emphasized a system engineering design for a complete, end-to-end data system, was divided into six tasks: (1); Functional requirements definition; (2) Options development; (3) Trade studies; (4) System definitions; (5) Program plan; and (6) Study maintenance. The Task inter-relationship and documentation flow are described. Information in volume 2 is devoted to Task 3: trade Studies. Trade Studies have been carried out in the following areas: (1) software development test and integration capability; (2) fault tolerant computing; (3) space qualified computers; (4) distributed data base management system; (5) system integration test and verification; (6) crew workstations; (7) mass storage; (8) command and resource management; and (9) space communications. Results are presented for each task.
NASA Technical Reports Server (NTRS)
Clem, Kirk A.; Nelson, George J.; Mesmer, Bryan L.; Watson, Michael D.; Perry, Jay L.
2016-01-01
When optimizing the performance of complex systems, a logical area for concern is improving the efficiency of useful energy. The energy available for a system to perform work is defined as a system's energy content. Interactions between a system's subsystems and the surrounding environment can be accounted for by understanding various subsystem energy efficiencies. Energy balance of reactants and products, and enthalpies and entropies, can be used to represent a chemical process. Heat transfer energy represents heat loads, and flow energy represents system flows and filters. These elements allow for a system level energy balance. The energy balance equations are developed for the subsystems of the Environmental Control and Life Support (ECLS) system aboard the International Space Station (ISS). The use of these equations with system information would allow for the calculation of the energy efficiency of the system, enabling comparisons of the ISS ECLS system to other systems as well as allows for an integrated systems analysis for system optimization.
A processing centre for the CNES CE-GPS experimentation
NASA Technical Reports Server (NTRS)
Suard, Norbert; Durand, Jean-Claude
1994-01-01
CNES is involved in a GPS (Global Positioning System) geostationary overlay experimentation. The purpose of this experimentation is to test various new techniques in order to select the optimal station synchronization method, as well as the geostationary spacecraft orbitography method. These new techniques are needed to develop the Ranging GPS Integrity Channel services. The CNES experimentation includes three transmitting/receiving ground stations (manufactured by IN-SNEC), one INMARSAT 2 C/L band transponder and a processing center named STE (Station de Traitements de l'Experimentation). Not all the techniques to be tested are implemented, but the experimental system has to include several functions; part of the future system simulation functions, such as a servo-loop function, and in particular a data collection function providing for rapid monitoring of system operation, analysis of existing ground station processes, and several weeks of data coverage for other scientific studies. This paper discusses system architecture and some criteria used in its design, as well as the monitoring function, the approach used to develop a low-cost and short-life processing center in collaboration with a CNES sub-contractor (ATTDATAID), and some results.
NASA Technical Reports Server (NTRS)
Holt, James M.; Clanton, Stephen E.
1999-01-01
Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flowrates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effects resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.
NASA Technical Reports Server (NTRS)
Holt, James M.; Clanton, Stephen E.
2001-01-01
Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flow rates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA85/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effect resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.
A guide to onboard checkout. Volume 4: Propulsion
NASA Technical Reports Server (NTRS)
1971-01-01
The propulsion system for a space station is considered with respect to onboard checkout requirements. Failure analysis, reliability, and maintenance features are presented. Computer analysis techniques are also discussed.
International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned
NASA Technical Reports Server (NTRS)
Iovine, John
2011-01-01
The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.
NASA Technical Reports Server (NTRS)
Nelson, J. M.; Lempriere, B. M.
1987-01-01
A program to develop a methodology is documented for detecting and locating meteoroid and debris impacts and penetrations of a wall configuration currently specified for use on space station. Testing consisted of penetrating and non-penetrating hypervelocity impacts on single and dual plate test configurations, including a prototype 1.22 m x 2.44 m x 3.56 mm (4 ft x 8 ft x 0.140 in) aluminum waffle grid backwall with multilayer insulation and a 0.063-in shield. Acoustic data were gathered with transducers and associated data acquisition systems and stored for later analysis with a multichannel digitizer. Preliminary analysis of test data included sensor evaluation, impact repeatability, first waveform arrival, and Fourier spectral analysis.
Microbial Characterization of Free Floating Condensate Aboard the Mir Space Station
NASA Technical Reports Server (NTRS)
Ott, C. M.; Bruce, R. J.; Pierson, D. L.
2004-01-01
Three samples of humidity condensate that had accumulated behind panels aboard the Russian space station Mir were collected and returned to earth for analysis. As these floating masses of liquid come into contact with the astronauts and the engineering systems, they have the potential to affect both crew health and systems performance. Using a combination of culturing techniques, a wide variety of organisms were isolated included Escherichia coli, Serratia marcescens, and a presumed Legionella species. In addition, microscopic analysis indicated the presence of protozoa, dust mites, and spirochetes. These findings suggest the need for more comprehensive microbial analysis of the environment through the use of new methodologies to allow a more thorough risk assessment of spacecraft. Copyright 2004 Springer-Verlag.
NASA Technical Reports Server (NTRS)
Clancey, William J.; Lee, Pascal; Sierhuis, Maarten; Norvig, Peter (Technical Monitor)
2001-01-01
Living and working on Mars will require model-based computer systems for maintaining and controlling complex life support, communication, transportation, and power systems. This technology must work properly on the first three-year mission, augmenting human autonomy, without adding-yet more complexity to be diagnosed and repaired. One design method is to work with scientists in analog (mars-like) setting to understand how they prefer to work, what constrains will be imposed by the Mars environment, and how to ameliorate difficulties. We describe how we are using empirical requirements analysis to prototype model-based tools at a research station in the High Canadian Arctic.
Antenna Near-Field Probe Station Scanner
NASA Technical Reports Server (NTRS)
Darby, William G. (Inventor); Miranda, Felix A. (Inventor); Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor)
2011-01-01
A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.
A Passive System Reliability Analysis for a Station Blackout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunett, Acacia; Bucknor, Matthew; Grabaskas, David
2015-05-03
The latest iterations of advanced reactor designs have included increased reliance on passive safety systems to maintain plant integrity during unplanned sequences. While these systems are advantageous in reducing the reliance on human intervention and availability of power, the phenomenological foundations on which these systems are built require a novel approach to a reliability assessment. Passive systems possess the unique ability to fail functionally without failing physically, a result of their explicit dependency on existing boundary conditions that drive their operating mode and capacity. Argonne National Laboratory is performing ongoing analyses that demonstrate various methodologies for the characterization of passivemore » system reliability within a probabilistic framework. Two reliability analysis techniques are utilized in this work. The first approach, the Reliability Method for Passive Systems, provides a mechanistic technique employing deterministic models and conventional static event trees. The second approach, a simulation-based technique, utilizes discrete dynamic event trees to treat time- dependent phenomena during scenario evolution. For this demonstration analysis, both reliability assessment techniques are used to analyze an extended station blackout in a pool-type sodium fast reactor (SFR) coupled with a reactor cavity cooling system (RCCS). This work demonstrates the entire process of a passive system reliability analysis, including identification of important parameters and failure metrics, treatment of uncertainties and analysis of results.« less
Demonstration of intercontinental DSN clock synchronization by VLBI
NASA Technical Reports Server (NTRS)
Hurd, W. J.
1973-01-01
The prototype system for Deep Space Network clock synchronization by VLBI has been demonstrated to operate successfully over intercontinental baselines in a series of experiments between Deep Space Stations at Madrid, Spain, and Goldstone, California. As predicted by analysis and short baseline demonstration, the system achieves reliable synchronization between 26m and 64m antenna stations with 17 and 37K nominal system temperatures using under one million bits of data from each station. Semi-real-time operation is feasible since this small amount of data can be transmitted to JPL and processed within minutes. The system resolution is 50 to 400ns, depending on the amount of data processed and the source intensity. The accuracy is believed to be comparable to the resolution, although it could be independently confirmed to only about 5 microseconds using LORAN C.
On the establishment and maintenance of a modern conventional terrestrial reference system
NASA Technical Reports Server (NTRS)
Bock, Y.; Zhu, S. Y.
1982-01-01
The frame of the Conventional Terrestrial Reference System (CTS) is defined by an adopted set of coordinates, at a fundamental epoxh, of a global network of stations which contribute the vertices of a fundamental polyhedron. A method to estimate this set of coordinates using a combination of modern three dimensional geodetic systems is presented. Once established, the function of the CTS is twofold. The first is to monitor the external (or global) motions of the polyhedron with respect to the frame of a Conventional Inertial Reference System, i.e., those motions common to all stations. The second is to monitor the internal motions (or deformations) of the polyhedron, i.e., those motions that are not common to all stations. Two possible estimators for use in earth deformation analysis are given and their statistical and physical properties are described.
Identifying a base network of federally funded streamgaging stations
Ries, Kernell G.; Kolva, J.R.; Stewart, D.W.
2004-01-01
The U.S. Geological Survey (USGS) has completed a preliminary analysis to identify streamgaging stations needed in a base network that would satisfy five primary Federal goals for collecting streamflow information. The five goals are (1) determining streamflow at interstate and international borders and at locations mandated by court decrees, (2) determining the streamflow component of water budgets for the major river basins of the Nation, (3) providing real-time streamflow information to the U.S. National Weather Service to support flood-forecasting activities, (4) providing streamflow information at locations of monitoring stations included in USGS national water-quality networks, and (5) providing streamflow information necessary for regionalization of streamflow characteristics and assessing potential long-term trends in streamflow associated with changes in climate. The analysis was done using a Geographic Information System. USGS headquarters staff made initial selections of stations that satisfied at least one of the five goals, and then staff in each of the 48 USGS district offices reviewed the selections, making suggestions for additions or changes based on detailed local knowledge of the streams in the area. The analysis indicated that 4,242 streamgaging stations are needed in the base network to meet the 5 Federal goals for streamflow information. Of these, 2,692 stations (63.5 percent) are currently operated by the USGS, 277 stations (6.5 percent) are currently operated by other agencies, 865 (20.4 percent) are discontinued USGS stations that need to be reactivated, and 408 (9.6 percent) are locations where new stations are needed. Copyright ASCE 2004.
European questions related to satelite power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassing, D.
1983-01-01
A number of problems which have been identified in recent European studies related to satellite power systems are addressed. Based on energy demand and supply projections for Europe, developed by the International Institute for Applied Systems Analysis, the potential of power satellites in a future energy mix is discussed. A few major constraints are presented which may restrict power transmission to European receiving sites, e.g., orbital limitations, siting problems of the ground station, and economic and institutional issues. Conceptual designs for the structure of ground receiving stations located offshore near the European coastlines are described.
A virtual reality browser for Space Station models
NASA Technical Reports Server (NTRS)
Goldsby, Michael; Pandya, Abhilash; Aldridge, Ann; Maida, James
1993-01-01
The Graphics Analysis Facility at NASA/JSC has created a visualization and learning tool by merging its database of detailed geometric models with a virtual reality system. The system allows an interactive walk-through of models of the Space Station and other structures, providing detailed realistic stereo images. The user can activate audio messages describing the function and connectivity of selected components within his field of view. This paper presents the issues and trade-offs involved in the implementation of the VR system and discusses its suitability for its intended purposes.
Regional Soiling Stations for PV: Soling Loss Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
TamizhMani, G.; King, B.; Venkatesan, A.
The soiling loss factor (SLF) of photovoltaic (PV) modules/system is an interplay between the dust frequency and intensity of the site, rain frequency and intensity of the site, tilt angle and height of the module installation, and wind speed and humidity of the site. The integrated area of the downward peaks of the SLF time series plots for a year provides the annual soiling loss for the system at each tilt angle. Sandia National Laboratories, in collaboration with Arizona State University, installed five regional soiling stations around the country and collected soiling loss data over a year. Four of thesemore » soiling stations are located at the U.S. Department of Energy Regional Test Centers (Florida, Albuquerque, Colorado and Vermont), while the fifth station is located at the Arizona State University Photovoltaic Reliability Lab (Arizona). This paper presents an analysis on the SLF for each test site at ten different tilt angles. Based on the analysis of a yearlong data obtained in 2015, it appears to indicate that the Arizona site experienced the highest annual soiling loss with a significant dependence on the tilt angle while the other four sites experienced a negligibly small annual soiling loss with practically no dependence on the tilt angle.« less
NASA Astrophysics Data System (ADS)
Lishnevskii, A. E.; Benghin, V. V.
2018-03-01
The DB-8 detectors of the ISS radiation monitoring system (RMS) have operated almost continuously onboard the ISS service module since August 2001 till December 2014. The RMS data obtained were used for the daily monitoring of the radiation environment aboard the station. This paper considers the technique of RMS data analysis that allows one to distinguish the contributions of galactic cosmic rays and the Earth's inner radiation belt to the daily dose based on the dosimetry data obtained as a result of the station's passage in areas of the highest geomagnetic latitudes. The paper presents the results of an analysis of the dosimetry data based on this technique for 2005-2011, as well as a comparison with similar results the authors obtained previously using the technique based on an analysis of the dosimetry data obtained during station passages in the area of the South Atlantic Anomaly.
Launch Deployment Assembly Human Engineering Analysis
NASA Technical Reports Server (NTRS)
Loughead, T.
1996-01-01
This report documents the human engineering analysis performed by the Systems Branch in support of the 6A cargo element design. The human engineering analysis is limited to the extra vehicular activities (EVA) which are involved in removal of various cargo items from the LDA and specific activities concerning deployment of the Space Station Remote Manipulator System (SSRMS).
The impact of joint responses of devices in an airport security system.
Nie, Xiaofeng; Batta, Rajan; Drury, Colin G; Lin, Li
2009-02-01
In this article, we consider a model for an airport security system in which the declaration of a threat is based on the joint responses of inspection devices. This is in contrast to the typical system in which each check station independently declares a passenger as having a threat or not having a threat. In our framework the declaration of threat/no-threat is based upon the passenger scores at the check stations he/she goes through. To do this we use concepts from classification theory in the field of multivariate statistics analysis and focus on the main objective of minimizing the expected cost of misclassification. The corresponding correct classification and misclassification probabilities can be obtained by using a simulation-based method. After computing the overall false alarm and false clear probabilities, we compare our joint response system with two other independently operated systems. A model that groups passengers in a manner that minimizes the false alarm probability while maintaining the false clear probability within specifications set by a security authority is considered. We also analyze the staffing needs at each check station for such an inspection scheme. An illustrative example is provided along with sensitivity analysis on key model parameters. A discussion is provided on some implementation issues, on the various assumptions made in the analysis, and on potential drawbacks of the approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gore, Bryan F.; Blackburn, Tyrone R.; Heasler, Patrick G.
2001-01-19
The objective of this report is to compare the benefits and costs of modifications proposed for intake gate closure systems at four hydroelectric stations on the Lower Snake and Upper Columbia Rivers in the Walla Walla District that are unable to meet the COE 10-minute closure rule due to the installation of fish screens. The primary benefit of the proposed modifications is to reduce the risk of damage to the station and environs when emergency intake gate closure is required. Consequently, this report presents the results and methodology of an extensive risk analysis performed to assess the reliability of powerhousemore » systems and the costs and timing of potential damages resulting from events requiring emergency intake gate closure. As part of this analysis, the level of protection provided by the nitrogen emergency closure system was also evaluated. The nitrogen system was the basis for the original recommendation to partially disable the intake gate systems. The risk analysis quantifies this protection level.« less
Station coordinates, baselines, and earth rotation from Lageos laser ranging - 1976-1984
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Schultz, B. E.; Eanes, R. J.
1985-01-01
The orbit of the Lageos satellite is well suited as a reference frame for studying the rotation of the earth and the relative motion of points on the earth's crust. The satellite laser measurements can determine the location of a set of tracking stations in an appropriate terrestrial coordinate system. The motion of the earth's rotation axis relative to this system can be studied on the basis of the established tracking station locations. The present investigation is concerned with an analysis of 7.7 years of Lageos laser ranging data. In the first solution considered, the entire data span was used to adjust a single set of station positions simultaneously with orbit and earth rotation parameters. Attention is given to the accuracy of earth rotation parameters which are determined as an inherent part of the solution process.
A Knowledge-Based Information Management System for Watershed Analysis in the Pacific Northwest U.S.
Keith Reynolds; Patrick Cunningham; Larry Bednar; Michael Saunders; Michael Foster; Richard Olson; Daniel Schmoldt; Donald Latham; Bruce Miller; John Steffenson
1996-01-01
The Pacific Northwest Research Station (USDA Forest Service) is developing a knowledge-based information management system to provide decision support for watershed analysis. The system includes: (1) a GIS interface that allows users to navigate graphically to specific provinces and watersheds and display a variety of themes (vegetation, streams, roads, topography, etc...
NASA Technical Reports Server (NTRS)
1974-01-01
An analysis of the systems involved in the operation and support of the Earth Observatory Satellite (EOS) is presented. Among the systems considered are the following: (1) the data management system, (2) observatory to primary ground station communications links, (3) local user system, (4) techniques for recognizing ground control points, (5) the central data processing-implementation concept, and (6) program effectiveness analysis.
Environmental control and life support system analysis tools for the Space Station era
NASA Technical Reports Server (NTRS)
Blakely, R. L.; Rowell, L. F.
1984-01-01
This paper describes the concept of a developing emulation, simulation, sizing, and technology assessment program (ESSTAP) which can be used effectively for the various functional disciplines (structures, power, ECLSS, etc.) beginning with the initial system selection and conceptual design processes and continuing on through the mission operation and growth phases of the Space Station for the purpose of minimizing overall program costs. It will discuss the basic requirements for these tools, as currently envisioned for the Environmental Control and Life Support System (ECLSS), identifying their intended and potential uses and applications, and present examples and status of several representative tools. The development and applications of a Space Station Atmospheric Revitalization Subsystem (ARS) demonstration model to be used for concent verification will also be discussed.
Space station WP-04 power system. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Hallinan, G. J.
1987-01-01
Results of the phase B study contract for the definition of the space station Electric Power System (EPS) are presented in detail along with backup information and supporting data. Systems analysis and trades, preliminary design, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning are addressed. The station design is a hybrid approach which provides user power of 25 kWe from the photovoltaic subsystem and 50 kWe from the solar dynamic subsystem. The electric power is distributed to users as a utility service; single phase at a frequency of 20 kHz and voltage of 440VAC. The solar array NiH2 batteries of the photovoltaic subsystem are based on commonality to those used on the co-orbiting and solar platforms.
Ichthyoplankton abundance and variance in a large river system concerns for long-term monitoring
Holland-Bartels, Leslie E.; Dewey, Michael R.; Zigler, Steven J.
1995-01-01
System-wide spatial patterns of ichthyoplankton abundance and variability were assessed in the upper Mississippi and lower Illinois rivers to address the experimental design and statistical confidence in density estimates. Ichthyoplankton was sampled from June to August 1989 in primary milieus (vegetated and non-vegated backwaters and impounded areas, main channels and main channel borders) in three navigation pools (8, 13 and 26) of the upper Mississippi River and in a downstream reach of the Illinois River. Ichthyoplankton densities varied among stations of similar aquatic landscapes (milieus) more than among subsamples within a station. An analysis of sampling effort indicated that the collection of single samples at many stations in a given milieu type is statistically and economically preferable to the collection of multiple subsamples at fewer stations. Cluster analyses also revealed that stations only generally grouped by their preassigned milieu types. Pilot studies such as this can define station groupings and sources of variation beyond an a priori habitat classification. Thus the minimum intensity of sampling required to achieve a desired statistical confidence can be identified before implementing monitoring efforts.
Asteroid Lightcurve Analysis at CS3-Palmer Divide Station: 2017 October-December
NASA Astrophysics Data System (ADS)
Warner, Brian D.
2018-04-01
Lightcurves for 18 main-belt asteroids were obtained at the Center for Solar System Studies-Palmer Divide Station (CS3-PDS) from 2017 October-December. All but one of the asteroids were targets of opportunity, i.e., in the field of planned targets, which demonstrates a good reason for data mining images.
Asteroid Lightcurve Analysis at CS3-Palmer Divide Station: 2017 July Through October
NASA Astrophysics Data System (ADS)
Warner, Brian D.
2018-01-01
Lightcurves for 17 main-belt asteroids were obtained at the Center for Solar System Studies-Palmer Divide Station (CS3-PDS) from 2017 July through October. All but two of the asteroids were targets of opportunity, i.e., in the field of planned targets, demonstrating a good reason for data mining images.
Space Station Freedom electrical performance model
NASA Technical Reports Server (NTRS)
Hojnicki, Jeffrey S.; Green, Robert D.; Kerslake, Thomas W.; Mckissock, David B.; Trudell, Jeffrey J.
1993-01-01
The baseline Space Station Freedom electric power system (EPS) employs photovoltaic (PV) arrays and nickel hydrogen (NiH2) batteries to supply power to housekeeping and user electrical loads via a direct current (dc) distribution system. The EPS was originally designed for an operating life of 30 years through orbital replacement of components. As the design and development of the EPS continues, accurate EPS performance predictions are needed to assess design options, operating scenarios, and resource allocations. To meet these needs, NASA Lewis Research Center (LeRC) has, over a 10 year period, developed SPACE (Station Power Analysis for Capability Evaluation), a computer code designed to predict EPS performance. This paper describes SPACE, its functionality, and its capabilities.
AN ASSESSMENT OF CENTRAL-STATION CONGENERATION SYSTEMS FOR INDUSTRIAL COMPLEXES
This report assesses the potential for cogeneration system development based on an analysis of the economic, environmental, energy efficiency and social aspects of such systems. The cogeneration system is an application of the principle of cogeneration in which utility-sized powe...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.
2014-02-01
This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the modelmore » response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)« less
Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Jones, Harry; Kliss, Mark
2005-01-01
This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.
IMS radionuclide monitoring after the announced nuclear test of the DPRK on 3 September 2017
NASA Astrophysics Data System (ADS)
Kusmierczyk-Michulec, J.; Kalinowski, M.; Bourgouin, P.; Boxue, L.; Gheddou, A.; Klingberg, F.; Leppaenen, A. P.; Schoeppner, M.; Werzi, R.; Wang, J.
2017-12-01
The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. The radionuclide network comprises 80 stations, out of which 40 are to be equipped with noble gas systems. The aim of radionuclide stations is a global monitoring of radioactive aerosols, radioactive noble gases and atmospheric transport modelling (ATM). To investigate the transport of radionuclide emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. The air mass trajectory provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. The aim of this study is to demonstrate the RN analysis and the application of ATM to investigate the episodes of elevated levels of radioxenon observed by IMS stations after the sixth nuclear test, announced by the Democratic People's Republic of Korea (DPRK) at the Punggye-ri Nuclear Test Site on 3 September 2017. A comparison to the previous tests will be presented.
An analysis of bi-directional use of frequencies for satellite communications
NASA Technical Reports Server (NTRS)
Whyte, W. A., Jr.; Miller, E. F.; Sullivan, T.; Miller, J. E.
1986-01-01
The bi-directional use of frequencies allocated for space communications has the potential to double the orbit/spectrum capacity available. The technical feasibility of reverse band use (RBU) at C-band (4 GHz uplinks and 6 GHz downlinks) is studied. The analysis identifies the constraints under which both forward and reverse band use satellite systems can share the same frequencies with terrestrial, line of sight transmission systems. The results of the analysis show that RBU satellite systems can be similarly sized to forward band use (FBU) satellite systems. In addition, the orbital separation requirements between RBU and FBU satellite systems are examined. The analysis shows that a carrier to interference ratio of 45 dB can be maintianed between RBU and FBU satellites separated by less than 0.5 deg., and that a carrier to interference ratio of 42 dB can be maintained in the antipodal case. Rain scatter propagation analysis shows that RBU and FBU Earth stations require separation distances fo less than 10 km at a rain rate of 13.5 mm/hr escalating to less than 100 km at a rain rate of 178 mm/hr for Earth station antennas in the 3 to 10 m range.
NASA Technical Reports Server (NTRS)
Momoh, James A.; Wang, Yanchun; Dolce, James L.
1997-01-01
This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.
Logistics Operations Management Center: Maintenance Support Baseline (LOMC-MSB)
NASA Technical Reports Server (NTRS)
Kurrus, R.; Stump, F.
1995-01-01
The Logistics Operations Management Center Maintenance Support Baseline is defined. A historical record of systems, applied to and deleted from, designs in support of future management and/or technical analysis is provided. All Flight elements, Ground Support Equipment, Facility Systems and Equipment and Test Support Equipment for which LOMC has responsibilities at Kennedy Space Center and other locations are listed. International Space Station Alpha Program documentation is supplemented. The responsibility of the Space Station Launch Site Support Office is established.
NASA Technical Reports Server (NTRS)
Perangelo, H. J.; Milordi, F. W.
1976-01-01
Analysis techniques used in the automated telemetry station (ATS) for on line data reduction are encompassed in a broad range of software programs. Concepts that form the basis for the algorithms used are mathematically described. The control the user has in interfacing with various on line programs is discussed. The various programs are applied to an analysis of flight data which includes unimodal and bimodal response signals excited via a swept frequency shaker and/or random aerodynamic forces. A nonlinear response error modeling analysis approach is described. Preliminary results in the analysis of a hard spring nonlinear resonant system are also included.
Fatigue life analysis of cracked gas receiver of emergency cut-off system in gas gathering station
NASA Astrophysics Data System (ADS)
Hu, Junzhi; Zhou, Jiyong; Li, Siyuan
2017-06-01
Small-scale air compressor and gas receiver are used as the driving gas of the emergency cut-off system in gas gathering station. Operation of block valve is ensured by starting and stopping compressor automatically. The frequent start-stop of compressor and the pressure fluctuation pose a threat to the service life of gas receiver, and then affect normal operation of the emergency cut-off system and security of gas gathering station. In this paper, the fatigue life of a pressure vessel with axial semi-elliptical surface crack in the inner wall is analyzed under the varying pressure by means of the theory of fracture mechanics. The influences of the amplitude of pressure fluctuation and the initial crack size on the residual life of gas receiver are discussed. It provides a basis for setting the working parameters of gas receiver of emergency cut-off system and determining the maintenance cycle.
Hercules Single-Stage Reusable Vehicle (HSRV) Operating Base
NASA Technical Reports Server (NTRS)
Moon, Michael J.; McCleskey, Carey M.
2017-01-01
Conceptual design for the layout of lunar-planetary surface support systems remains an important area needing further master planning. This paper explores a structured approach to organize the layout of a Mars-based site equipped for routinely flying a human-scale reusable taxi system. The proposed Hercules Transportation System requires a surface support capability to sustain its routine, affordable, and dependable operation. The approach organizes a conceptual Hercules operating base through functional station sets. The station set approach will allow follow-on work to trade design approaches and consider technologies for more efficient flow of material, energy, and information at future Mars bases and settlements. The station set requirements at a Mars site point to specific capabilities needed. By drawing from specific Hercules design characteristics, the technology requirements for surface-based systems will come into greater focus. This paper begins a comprehensive process for documenting functional needs, architectural design methods, and analysis techniques necessary for follow-on concept studies.
A Sensitivity Analysis of Tsunami Inversions on the Number of Stations
NASA Astrophysics Data System (ADS)
An, Chao; Liu, Philip L.-F.; Meng, Lingsen
2018-05-01
Current finite-fault inversions of tsunami recordings generally adopt as many tsunami stations as possible to better constrain earthquake source parameters. In this study, inversions are evaluated by the waveform residual that measures the difference between model predictions and recordings, and the dependence of the quality of inversions on the number tsunami stations is derived. Results for the 2011 Tohoku event show that, if the tsunami stations are optimally located, the waveform residual decreases significantly with the number of stations when the number is 1 ˜ 4 and remains almost constant when the number is larger than 4, indicating that 2 ˜ 4 stations are able to recover the main characteristics of the earthquake source. The optimal location of tsunami stations is explained in the text. Similar analysis is applied to the Manila Trench in the South China Sea using artificially generated earthquakes and virtual tsunami stations. Results confirm that 2 ˜ 4 stations are necessary and sufficient to constrain the earthquake source parameters, and the optimal sites of stations are recommended in the text. The conclusion is useful for the design of new tsunami warning systems. Current strategies of tsunameter network design mainly focus on the early detection of tsunami waves from potential sources to coastal regions. We therefore recommend that, in addition to the current strategies, the waveform residual could also be taken into consideration so as to minimize the error of tsunami wave prediction for warning purposes.
Nodes packaging option for Space Station application
NASA Technical Reports Server (NTRS)
So, Kenneth T.; Hall, John B., Jr.
1988-01-01
Space Station nodes packaging analyses are presented relative to moving environmental control and life support system (ECLSS) equipment from the habitability (HAB) module to node 4, in order to provide more living space and privacy for the crew, remove inherently noisy equipment from the crew quarter, retain crew waste collection and processing equipment in one location, and keep objectionable odor away from the living quarters. In addition, options for moving external electronic equipment from the Space Station truss to pressurized node 3 were evaluated in order to reduce the crew extravehicular-activity time required to install and maintain the equipment. Node size considered in this analysis is 3.66 m in diameter and 5.38 m long. The analysis shows that significant external electronic equipment could be relocated from the Space Station truss structure to node 3, and nonlife critical ECLSS HAB module equipment could be moved to node 4.
Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
Modal test/analysis correlation of Space Station structures using nonlinear sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
NASA Technical Reports Server (NTRS)
1983-01-01
Mission scenario analysis and architectural concepts, alternative systems concepts, mission operations and architectural development, architectural analysis trades, evolution, configuration, and technology development are assessed.
International Space Station Increment-4/5 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy
2003-01-01
This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.
Alwan, Faris M; Baharum, Adam; Hassan, Geehan S
2013-01-01
The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.
Alwan, Faris M.; Baharum, Adam; Hassan, Geehan S.
2013-01-01
The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter and shape parameters and . Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models. PMID:23936346
A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments
NASA Technical Reports Server (NTRS)
Hancock, Thomas M., III
1994-01-01
This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.
Crew systems and flight station concepts for a 1995 transport aircraft
NASA Technical Reports Server (NTRS)
Sexton, G. A.
1983-01-01
Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.
NASA Technical Reports Server (NTRS)
1976-01-01
Program plans, schedules, and costs are determined for a synchronous orbit-based power generation and relay system. Requirements for the satellite solar power station (SSPS) and the power relay satellite (PRS) are explored. Engineering analysis of large solar arrays, flight mechanics and control, transportation, assembly and maintenance, and microwave transmission are included.
The Integrated Radiation Mapper Assistant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlton, R.E.; Tripp, L.R.
1995-03-01
The Integrated Radiation Mapper Assistant (IRMA) system combines state-of-the-art radiation sensors and microprocessor based analysis techniques to perform radiation surveys. Control of the survey function is from a control station located outside the radiation thus reducing time spent in radiation areas performing radiation surveys. The system consists of a directional radiation sensor, a laser range finder, two area radiation sensors, and a video camera mounted on a pan and tilt platform. THis sensor package is deployable on a remotely operated vehicle. The outputs of the system are radiation intensity maps identifying both radiation source intensities and radiation levels throughout themore » room being surveyed. After completion of the survey, the data can be removed from the control station computer for further analysis or archiving.« less
The Tri-Services Site Characterization Analysis Penetrometer System (SCAPS) was developed by the U.S. Army (U.S. Army Corps of Engineers, Waterways Experiment Station [WES] and the Army Environmental Center [AEC]), Navy (Naval Command, Control and Ocean Surveillance Center), and ...
DOT National Transportation Integrated Search
1999-08-15
The Traffic Survey Unit plans to establish a methodology in which it can assign each Portable Traffic Counter (PTC) station a seasonal group profile through a means of statistical and geographical analysis. An ArcView Geographic Information Systems a...
Antenna systems for base station diversity in urban small and micro cells
NASA Astrophysics Data System (ADS)
Eggers, Patrick C. F.; Toftgard, Jorn; Oprea, Alex M.
1993-09-01
This paper describes cross-correlation properties for compact urban base station antenna configurations, nearly all resulting in very low envelope cross-correlation coefficients of about 0.1 to 0.3. A focus is set on polarization diversity systems for their potential in improving link quality when hand-held terminals are involved. An expression is given for the correlation function of compound space and polarization diversity systems. Dispersion and envelope dynamic statistics are presented for the measured environments. For microcell applications, it is found that systems such as GSM having a bandwidth of 200 MHz or less can use narrowband cross-correlation analysis directly.
Space Station laboratory module power loading analysis
NASA Astrophysics Data System (ADS)
Fu, S. J.
1994-07-01
The electrical power system of Space Station Freedom is an isolated electrical power generation and distribution network designed to meet the demands of a large number of electrical loads. An algorithm is developed to determine the power bus loading status under normal operating conditions to ensure the supply meets demand. The probabilities of power availability for payload operations (experiments) are also derived.
NASA Technical Reports Server (NTRS)
1985-01-01
Appendix A contains data that characterize the system functions in sufficient depth as to determine the requirements for the Space Station Data System (SSDS). This data is in the form of: (1) top down traceability report; (2) bottom up traceability report; (3) requirements data sheets; and (4) cross index of requirements paragraphs of the source documents and the requirements numbers. A data base users guide is included that interested parties can use to access the requirements data base and get up to date information about the functions.
MOLFLUX analysis of the SSF electrical power system contamination
NASA Technical Reports Server (NTRS)
Cognion, Rita L.
1991-01-01
The external induced contamination of Space Station Freedom's electrical power system surfaces is assessed using a molecular flow evaluation code, MOLFLUX. Outgassing rates are compared to available experimental data, and deposition to the midregion of both the solar array and the photovoltaic power module thermal control system radiator is calculated using a constant sticking coefficient. An estimate of annual deposition to the solar array due to outgassing is found to be 10 percent of the Space Station Freedom program requirement for maximum allowable deposition, while annual deposition to the radiator is approximately equal to the requirement.
Manufacturing Competitiveness and Supply Chain Analyses for Hydrogen Refueling Stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayyas, Ahmad T; Garland, Nancy
This slide deck was presented in the monthly FCTO webinar series (May 2017). The goal of this presentation was to share our latest results and remarks on the manufacturing competitiveness analysis of the hydrogen refueling stations (HRS). Manufacturing cost models were developed for major systems in the HRS such as compressors, storage tanks, chillers, heat exchangers, and dispensers. In addition to the cost models, we also discussed important remarks from our analysis for the international trade flows and global supply chain for the hydrogen refueling stations. The last part of the presentation also highlights effect of economies of scale andmore » high production volumes on lowering the cost of the hydrogen at the pump.« less
The Use of Human Modeling of EVA Tasks as a Systems Engineering Tool
NASA Technical Reports Server (NTRS)
Dischinger, H. Charles, Jr.; Schmidt, Henry J.; Kross, Dennis A. (Technical Monitor)
2001-01-01
Computer-generated human models have been used in aerospace design for a decade. They have come to be highly reliable for worksite analysis of certain types of EVA tasks. In many design environments, this analysis comes after the structural design is largely complete. However, the use of these models as a development tool is gaining acceptance within organizations that practice good systems engineering processes. The design of the United States Propulsion Module for the International Space Station provides an example of this application. The Propulsion Module will provide augmentation to the propulsion capability supplied by the Russian Service Module Zvezda. It is a late addition to the set of modules provided by the United States to the ISS Program, and as a result, faces design challenges that result from the level of immaturity of its integration into the Station. Among these are heat dissipation and physical envelopes. Since the rest of the Station was designed to maximize the use of the cooling system, little margin is available for the addition of another module. The Propulsion Module will attach at the forward end of the Station, and will be between the Orbiter and the rest of ISS. Since cargo must be removed from the Payload Bay and transferred to Station by the Canadarm, there is a potential for protrusions from the module, such as thruster booms, to interfere with robotic operations. These and similar engineering issues must be addressed as part of the development. In the implementation of good system design, all design solutions should be analyzed for compatibility with all affected subsystems. Human modeling has been used in this project to provide rapid input to system trades of design concepts. For example, the placement of radiators and avionics components for optimization of heat dissipation had to be examined for feasibility of EVA translation paths and worksite development. Likewise, the location of and mechanism for the retraction of thruster booms was partly driven by available Orbiter, robotic arm, and other module envelopes; worksite analysis was required for early assessment of task success. Since these trade studies included the EVA analysis as part of the decision criteria, the design had a high degree of assurance of EVA supportability from the outset. This approach contributes greatly to mission success.
NASA Technical Reports Server (NTRS)
Mesloh, Nick; Hill, Tim; Kosyk, Kathy
1993-01-01
This paper presents the integrated approach toward failure detection, isolation, and recovery/reconfiguration to be used for the Space Station Freedom External Active Thermal Control System (EATCS). The on-board and on-ground diagnostic capabilities of the EATCS are discussed. Time and safety critical features, as well as noncritical failures, and the detection coverage for each provided by existing capabilities are reviewed. The allocation of responsibility between on-board software and ground-based systems, to be shown during ground testing at the Johnson Space Center, is described. Failure isolation capabilities allocated to the ground include some functionality originally found on orbit but moved to the ground to reduce on-board resource requirements. Complex failures requiring the analysis of multiple external variables, such as environmental conditions, heat loads, or station attitude, are also allocated to ground personnel.
Space Station Freedom environmental database system (FEDS) for MSFC testing
NASA Technical Reports Server (NTRS)
Story, Gail S.; Williams, Wendy; Chiu, Charles
1991-01-01
The Water Recovery Test (WRT) at Marshall Space Flight Center (MSFC) is the first demonstration of integrated water recovery systems for potable and hygiene water reuse as envisioned for Space Station Freedom (SSF). In order to satisfy the safety and health requirements placed on the SSF program and facilitate test data assessment, an extensive laboratory analysis database was established to provide a central archive and data retrieval function. The database is required to store analysis results for physical, chemical, and microbial parameters measured from water, air and surface samples collected at various locations throughout the test facility. The Oracle Relational Database Management System (RDBMS) was utilized to implement a secured on-line information system with the ECLSS WRT program as the foundation for this system. The database is supported on a VAX/VMS 8810 series mainframe and is accessible from the Marshall Information Network System (MINS). This paper summarizes the database requirements, system design, interfaces, and future enhancements.
The flight telerobotic servicer Tinman concept: System design drivers and task analysis
NASA Technical Reports Server (NTRS)
Andary, J. F.; Hewitt, D. R.; Hinkal, S. W.
1989-01-01
A study was conducted to develop a preliminary definition of the Flight Telerobotic Servicer (FTS) that could be used to understand the operational concepts and scenarios for the FTS. Called the Tinman, this design concept was also used to begin the process of establishing resources and interfaces for the FTS on Space Station Freedom, the National Space Transportation System shuttle orbiter, and the Orbital Maneuvering vehicle. Starting with an analysis of the requirements and task capabilities as stated in the Phase B study requirements document, the study identified eight major design drivers for the FTS. Each of these design drivers and their impacts on the Tinman design concept are described. Next, the planning that is currently underway for providing resources for the FTS on Space Station Freedom is discussed, including up to 2000 W of peak power, up to four color video channels, and command and data rates up to 500 kbps between the telerobot and the control station. Finally, an example is presented to show how the Tinman design concept was used to analyze task scenarios and explore the operational capabilities of the FTS. A structured methodology using a standard terminology consistent with the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) was developed for this analysis.
Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.
1990-01-01
The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS.
NASA Technical Reports Server (NTRS)
1993-01-01
Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems.
NASA Astrophysics Data System (ADS)
1993-03-01
Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems.
NASA Astrophysics Data System (ADS)
Počakal, Damir; Štalec, Janez
In the continental part of Croatia, operational hail suppression has been conducted for more than 30 years. The current protected area is 25,177 km 2 and has about 492 hail suppression stations which are managed with eight weather radar centres. This paper present a statistical analysis of parameters connected with hail occurrence on hail suppression stations in the western part of protected area in 1981-2000 period. This analysis compares data of two periods with different intensity of hail suppression activity and is made as a part of a project for assessment of hail suppression efficiency in Croatia. Because of disruption in hail suppression system during the independence war in Croatia (1991-1995), lack of rockets and other objective circumstances, it is considered that in the 1991-2000 period, hail suppression system could not act properly. Because of that, a comparison of hail suppression data for two periods was made. The first period (1981-1990), which is characterised with full application of hail suppression technology is compared with the second period (1991-2000). The protected area is divided into quadrants (9×9 km), such that every quadrant has at least one hail suppression station and intercomparison is more precise. Discriminant analysis was performed for the yearly values of each quadrant. These values included number of cases with solid precipitation, hail damage, heavy hail damage, number of active hail suppression stations, number of days with solid precipitation, solid precipitation damage, heavy solid precipitation damage and the number and duration of air traffic control bans. The discriminant analysis shows that there is a significant difference between the two periods. Average values of observed periods on isolated discriminant function 1 are for the first period (1981-1990) -0.36 and for the second period +0.23 standard deviation of all observations. The analysis for all eight variables shows statistically substantial differences in the number of hail suppression stations (which have a positive correlation) and in the number of cases with air traffic control ban, which have, like all other variables, a negative correlation. Results of statistical analysis for two periods show positive influence of hail suppression system. The discriminant analysis made for three periods shows that these three periods can not be compared because of the short time period, the difference in hail suppression technology, working conditions and possible differences in meteorological conditions. Therefore, neither the effectiveness nor ineffectiveness of hail suppression operations nor their efficiency can be statistically proven. For an exact assessment of hail suppression effectiveness, it is necessary to develop a project, which would take into consideration all the parameters used in such previous projects around the world—a hailpad polygon.
EMTP based stability analysis of space station electric power system in a test bed environment
NASA Technical Reports Server (NTRS)
Dravid, Narayan V.; Kacpura, Thomas J.; Oconnor, Andrew M.
1992-01-01
The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD DC test bed. Wherever possible, data from the test bed is compared with the modeling results.
EMTP based stability analysis of Space Station Electric Power System in a test bed environment
NASA Technical Reports Server (NTRS)
Dravid, Narayan V.; Kacpura, Thomas J.; O'Connor, Andrew M.
1992-01-01
The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD dc test bed. Wherever possible, data from the test bed is compared with the modeling results.
Channel coding in the space station data system network
NASA Technical Reports Server (NTRS)
Healy, T.
1982-01-01
A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.
Real, Kevin; Bardach, Shoshana H; Bardach, David R
2017-12-01
Increasingly, health communication scholars are attending to how hospital built environments shape communication, patient care processes, and patient outcomes. This multimethod study was conducted on two floors of a newly designed urban hospital. Nine focus groups interviews were conducted with 35 health care professionals from 10 provider groups. Seven of the groups were homogeneous by profession or level: nursing (three groups), nurse managers (two groups), and one group each of nurse care technicians ("techs") and physicians. Two mixed groups were comprised of staff from pharmacy, occupational therapy, patient care facilitators, physical therapy, social work, and pastoral care. Systematic qualitative analysis was conducted using a conceptual framework based on systems theory and prior health care design and communication research. Additionally, quantitative modeling was employed to assess walking distances in two different hospital designs. Results indicate nurses walked significantly more in the new hospital environment. Qualitative analysis revealed three insights developed in relationship to system structures, processes, and outcomes. First, decentralized nurse stations changed system interdependencies by reducing nurse-to-nurse interactions and teamwork while heightening nurse interdependencies and teamwork with other health care occupations. Second, many nursing-related processes remained centralized while nurse stations were decentralized, creating systems-based problems for nursing care. Third, nursing communities of practices were adversely affected by the new design. Implications of this study suggest that nurse station design shapes communication, patient care processes, and patient outcomes. Further, it is important to understand how the built environment, often treated as invisible in communication research, is crucial to understanding communication within complex health care systems.
XRP -- SMM XRP Data Analysis & Reduction
NASA Astrophysics Data System (ADS)
McSherry, M.; Lawden, M. D.
This manual describes the various programs that are available for the reduction and analysis of XRP data. These programs have been developed under the VAX operating system. The original programs are resident on a VaxStation 3100 at the Solar Data Analysis Center (NASA/GSFC Greenbelt MD).
NASA Astrophysics Data System (ADS)
Muravyova, E. A.; Bondarev, A. V.; Sharipov, M. I.; Galiaskarova, G. R.; Kubryak, A. I.
2018-03-01
In this article, power consumption of pumping station control systems is discussed. To study the issue, two simulation models of oil level control in the iThink software have been developed, using a frequency converter only and using a frequency converter and a fuzzy controller. A simulation of the oil-level control was carried out in a graphic form, and plots of pumps power consumption were obtained. Based on the initial and obtained data, the efficiency of the considered control systems has been compared, and also the power consumption of the systems was shown graphically using a frequency converter only and using a frequency converter and a fuzzy controller. The models analysis has shown that it is more economical and safe to use a control circuit with a frequency converter and a fuzzy controller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, E.; Tillman, D.
1997-12-01
Cofiring is considered to be the most promising near-term approach to fossil C0{sub 2} emissions mitigation through biomass usage. Consequently FETC and EPRI have entered into a cooperative agreement: `Cofiring Biomass and Waste-Derived fuels in Electric Utility Coal- Fired Boilers.` This agreement supports sixteen (16) EPRI research projects, each contributing to the commercialization of systems to address greenhouse gas emissions. These projects include: (1) cofiring combustion testing at the Seward Generating Station of GPU Genco; (2) fuel preparation testing at the Greenidge Generating Station of NYSEG; (3) precommercial testing of cofiring at the Allen and Colbert Fossil Plants of TVA;more » (4) testing of switchgrass cofiring at the Blount St. Station of Madison Gas & Electric; (5) high percentage biomass cofiring with Southern Company; (6) urban wood waste cofiring at the supercritical cyclone boiler at Michigan City Generating Station of Northern Indiana Public Service Co. (NIPSCO); (7) evaluation of switchgrass cofiring with Nebraska Public Power District at Sandia National Laboratories in Livermore, CA; (8) waste plastics cofiring with Duke Power in a tangentially-fired pulverized coal (PC) boiler; (9) cofiring a mixture of plastics, fiber, and pulp industry wastes with South Carolina Electric and Gas; (10) urban wood waste cofiring evaluation and testing by the University of Pittsburgh in stoker boilers; (11) assessment of toxic emissions from cofiring of wood and coal; (12) development of fuel and power plant models for analysis and interpretation of cofiring results; (13) analysis of C0{sub 2} utilization in algal systems for wastewater treatment; (14) combustion testing and combustor development focusing on high percentage cofiring; (15) analysis of problems and potential solutions to the sale of flyash from coal-fired boilers practicing cofiring; and (16) analysis of C0{sub 2} capture and disposal systems. During the second quarter of this contract, from January 1, 1997 through March 31, 1997, significant progress has been made on these projects. This progress focuses upon analysis of data from the cofiring tests, construction of systems to promote additional cofiring tests, and initiation of tasks evaluating alternatives to cofiring. This report contains a brief description of the progress made during the second quarter of the contract, focusing upon test results from the Seward Generating Station, where parametric testing at a wall-fired PC boiler was used to evaluate cofiring using separate feeding of wood and coal to the energy generation system.« less
Space station advanced automation
NASA Technical Reports Server (NTRS)
Woods, Donald
1990-01-01
In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.
Intelligent control of a planning system for astronaut training.
Ortiz, J; Chen, G
1999-07-01
This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.
Selected tether applications in space: An analysis of five selected concepts
NASA Technical Reports Server (NTRS)
1984-01-01
Ground rules and assumptions; operations; orbit considerations/dynamics; tether system design and dynamics; functional requirements; hardware concepts; and safety factors are examined for five scenarios: tethered effected separation of an Earth bound shuttle from the space station; tether effected orbit boost of a spacecraft (AXAF) into its operational orbit from the shuttle; an operational science/technology platform tether deployed from space station; a tether mediated rendezvous involving an OMV tether deployed from space station to rendezvous with an aerobraked OTV returning to geosynchronous orbit from a payload delivery mission; and an electrodynamic tether used in a dual motor/generator mode to serve as the primary energy storage facility for space station.
Low-flow characteristics for selected streams in Indiana
Fowler, Kathleen K.; Wilson, John T.
2015-01-01
The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.
Preliminary Thermal-Mechanical Sizing of Metallic TPS: Process Development and Sensitivity Studies
NASA Technical Reports Server (NTRS)
Poteet, Carl C.; Abu-Khajeel, Hasan; Hsu, Su-Yuen
2002-01-01
The purpose of this research was to perform sensitivity studies and develop a process to perform thermal and structural analysis and sizing of the latest Metallic Thermal Protection System (TPS) developed at NASA LaRC (Langley Research Center). Metallic TPS is a key technology for reducing the cost of reusable launch vehicles (RLV), offering the combination of increased durability and competitive weights when compared to other systems. Accurate sizing of metallic TPS requires combined thermal and structural analysis. Initial sensitivity studies were conducted using transient one-dimensional finite element thermal analysis to determine the influence of various TPS and analysis parameters on TPS weight. The thermal analysis model was then used in combination with static deflection and failure mode analysis of the sandwich panel outer surface of the TPS to obtain minimum weight TPS configurations at three vehicle stations on the windward centerline of a representative RLV. The coupled nature of the analysis requires an iterative analysis process, which will be described herein. Findings from the sensitivity analysis are reported, along with TPS designs at the three RLV vehicle stations considered.
Telescience testbedding for life science missions on the Space Station
NASA Technical Reports Server (NTRS)
Rasmussen, D.; Mian, A.; Bosley, J.
1988-01-01
'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.
[To the issue on the optimization and regulation of microclimate in the subway trains and stations].
Leksin, A G; Beresneva, T G; Kaptsov, V A; Korotich, L P; Evlampieva, M N; Timoshenkova, E V
2014-01-01
There is presented an overview of currently existing regulatory framework governing the parameters of the microclimate in the salons of subway passenger cars and stations. Analysis of the normative documents indicated that they contain very incomplete, contradictory, often unfounded information about the parameters of microclimate parameters in salons of subway rolling stock. Also, there are no clear cut hygienically-sound requirements for the work of imposed on the rolling stock subway systems provide microclimate, including new systems for air conditioning and disinfection.
NASA Technical Reports Server (NTRS)
Maule, J.; Wainwright, N.; Steele, A.; Gunter, D.; Flores, G.; Effinger, M.; Danibm N,; Wells, M.; Williams, S.; Morris, H.;
2008-01-01
Microorganisms within the space stations Salyut, Mir and the International Space Station (ISS), have traditionally been monitored with culture-based techniques. These techniques involve growing environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies; and return of samples to Earth for ground-based analysis. This approach has provided a wealth of useful data and enhanced our understanding of the microbial ecology within space stations. However, the approach is also limited by the following: i) More than 95% microorganisms in the environment cannot grow on conventional growth media; ii) Significant time lags occur between onboard sampling and colony visualization (3-5 days) and ground-based analysis (as long as several months); iii) Colonies are often difficult to visualize due to condensation within contact slide media plates; and iv) Techniques involve growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and -1, 3-glucan, found in the cell walls of gram-negative bacteria and fungi, respectively. This technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device. This handheld device and sampling system is known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). A poster will be presented that describes a comparative study between LOCAD-PTS analysis and existing culture-based methods onboard the ISS; together with an exploratory survey of surface endotoxin throughout the ISS. It is concluded that while a general correlation between LOCAD-PTS and traditional culture-based methods should not necessarily be expected, a combinatorial approach can be adopted where both sets of data are used together to generate a more complete story of the microbial ecology on the ISS.
2003-01-16
After four decades of contribution to America's space program, George Hopson, manager of the Space Shuttle Main Engine Project at Marshall Space Flight Center, accepted NASA's Distinguished Service Medal. Awarded to those who, by distinguished ability or courage, have made a personal contribution to the NASA mission, NASA's Distinguished Service Medal is the highest honor NASA confers. Hopson's contributions to America's space program include work on the country's first space station, Skylab; the world's first reusable space vehicle, the Space Shuttle; and the International Space Station. Hopson joined NASA's Marshall team as chief of the Fluid and Thermal Systems Branch in the Propulsion Division in 1962, and later served as chief of the Engineering Analysis Division of the Structures and Propulsion Laboratory. In 1979, he was named director of Marshall's Systems Dynamics Laboratory. In 1981, he was chosen to head the Center's Systems Analysis and Integration. Seven years later, in 1988, Hopson was appointed associate director for Space Transportation Systems and one year later became the manager of the Space Station Projects Office at Marshall. In 1994, Hopson was selected as deputy director for Space Systems in the Science and Engineering Directorate at Marshall where he supervised the Chief Engineering Offices of both marned and unmanned space systems. He was named manager of the Space Shuttle Main Engine Project in 1997. In addition to the Distinguished Service Medal, Hopson has also been recognized with the NASA Outstanding Leadership Medal and NASA's Exceptional Service Medal.
Conceptual design study for a teleoperator visual system, phase 2
NASA Technical Reports Server (NTRS)
Grant, C.; Meirick, R.; Polhemus, C.; Spencer, R.; Swain, D.; Twell, R.
1973-01-01
An analysis of the concept for the hybrid stereo-monoscopic television visual system is reported. The visual concept is described along with the following subsystems: illumination, deployment/articulation, telecommunications, visual displays, and the controls and display station.
A Spatial Analysis and Modeling System (SAMS) for environment management
NASA Technical Reports Server (NTRS)
Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert
1993-01-01
This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FEMA's Integrated Emergency Management Information Systems and the Department of Defense's Air land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS (Earth Observing System) timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.
NASA Technical Reports Server (NTRS)
1977-01-01
Topics discussed include: (1) design considerations for a MARS sample return laboratory module for space station investigations; (2) crew productivity as a function of work shift arrangement; (3) preliminary analysis of the local logistics problem on the space construction base; (4) mission hardware construction operational flows and timelines; (5) orbit transfer vehicle concept definition; (6) summary of results and findings of space processing working review; (7) crew and habitability subsystem (option L); (8) habitability subsystem considerations for shuttle tended option L; (9) orbiter utilization in manned sortie missions; (10) considerations in definition of space construction base standard module configuration (option L); (11) guidance, control, and navigation subsystems; and (12) system and design tradeoffs.
NASA Technical Reports Server (NTRS)
Dao, Arik-Quang V.; Martin, Lynne; Mohlenbrink, Christoph; Bienert, Nancy; Wolte, Cynthia; Gomez, Ashley; Claudatos, Lauren; Mercer, Joey
2017-01-01
The purpose of this paper is to report on a human factors evaluation of ground control station design concepts for interacting with an unmanned traffic management system. The data collected for this paper comes from recent field tests for NASA's Unmanned Traffic Management (UTM) project, and covers the following topics; workload, situation awareness, as well as flight crew communication, coordination, and procedures. The goal of this evaluation was to determine if the various software implementations for interacting with the UTM system can be described and classified into design concepts to provide guidance for the development of future UTM interfaces. We begin with a brief description of NASA's UTM project, followed by a description of the test range configuration related to a second development phase. We identified (post hoc) two classes in which the ground control stations could be grouped. This grouping was based on level of display integration. The analysis was exploratory and informal. It was conducted to compare ground stations across those two classes and against the aforementioned topics. Herein, we discuss the results.
NASA Astrophysics Data System (ADS)
Abbasnezhadi, K.; Rasmussen, P. F.; Stadnyk, T.
2014-12-01
To gain a better understanding of the spatiotemporal distribution of rainfall over the Churchill River basin, this study was undertaken. The research incorporates gridded precipitation data from the Canadian Precipitation Analysis (CaPA) system. CaPA has been developed by Environment Canada and provides near real-time precipitation estimates on a 10 km by 10 km grid over North America at a temporal resolution of 6 hours. The spatial fields are generated by combining forecasts from the Global Environmental Multiscale (GEM) model with precipitation observations from the network of synoptic weather stations. CaPA's skill is highly influenced by the number of weather stations in the region of interest as well as by the quality of the observations. In an attempt to evaluate the performance of CaPA as a function of the density of the weather station network, a dual-stage design algorithm to simulate CaPA is proposed which incorporates generated weather fields. More specifically, we are adopting a controlled design algorithm which is generally known as Observing System Simulation Experiment (OSSE). The advantage of using the experiment is that one can define reference precipitation fields assumed to represent the true state of rainfall over the region of interest. In the first stage of the defined OSSE, a coupled stochastic model of precipitation and temperature gridded fields is calibrated and validated. The performance of the generator is then validated by comparing model statistics with observed statistics and by using the generated samples as input to the WATFLOOD™ hydrologic model. In the second stage of the experiment, in order to account for the systematic error of station observations and GEM fields, representative errors are to be added to the reference field using by-products of CaPA's variographic analysis. These by-products explain the variance of station observations and background errors.
NASA Technical Reports Server (NTRS)
Scaffidi, C. A.; Stocklin, F. J.; Feldman, M. B.
1971-01-01
An L-band telemetry system designed to provide the capability of near-real-time processing of calibration data is described. The system also provides the capability of performing computerized spacecraft simulations, with the aircraft as a data source, and evaluating the network response. The salient characteristics of a telemetry analysis and simulation program (TASP) are discussed, together with the results of TASP testing. The results of the L-band system testing have successfully demonstrated the capability of near-real-time processing of telemetry test data, the control of the ground-received signal to within + or - 0.5 db, and the computer generation of test signals.
Solar power satellite system definition study. Volume 2, phase 1: Systems analyses tradeoffs.
NASA Technical Reports Server (NTRS)
1979-01-01
A systems definition study of the solar power satellite system is presented. The satellite solar energy conversion and microwave power transmission systems are discussed. Space construction and support systems are examined including a series construction and equipment characteristics analysis. Space transportation for the satellite and the ground receiving station are assessed.
Kuipers performs Water Sample Analysis
2012-05-15
ISS031-E-084619 (15 May 2012) --- After collecting samples from the Water Recovery System (WRS), European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, processes the samples for chemical and microbial analysis in the Unity node of the International Space Station.
High temperature flow-through device for rapid solubilization and analysis
West, Jason A. A. [Castro Valley, CA; Hukari, Kyle W [San Ramon, CA; Patel, Kamlesh D [Dublin, CA; Peterson, Kenneth A [Albuquerque, NM; Renzi, Ronald F [Tracy, CA
2009-09-22
Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.
High temperature flow-through device for rapid solubilization and analysis
West, Jason A. A.; Hukari, Kyle W.; Patel, Kamlesh D.; Peterson, Kenneth A.; Renzi, Ronald F.
2013-04-23
Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.
NASA Technical Reports Server (NTRS)
Lang, A. L., Jr.
1971-01-01
Data presented in the appendices covers: (1) summary description of baseline power system; (2) revised thermal profile analysis; (3) design analysis of television monitor; (4) bioresearch module ground station support evaluation; (5) variable spin control analysis; and (6) bioresearch modules and work flow.
A Spatial Analysis and Modeling System (SAMS) for environment management
NASA Technical Reports Server (NTRS)
Vermillion, Charles H.; Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert
1992-01-01
This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FE MA's Integrated Emergency Management Information Systems and the Department of Defense's Air Land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.
Application of Spatial Neural Network Model for Optimal Operation of Urban Drainage System
NASA Astrophysics Data System (ADS)
KIM, B. J.; Lee, J. Y.; KIM, H. I.; Son, A. L.; Han, K. Y.
2017-12-01
The significance of real-time operation of drainage pump and warning system for inundation becomes recently increased in order to coping with runoff by high intensity precipitation such as localized heavy rain that frequently and suddenly happen. However existing operation of drainage pump station has been made a decision according to opinion of manager based on stage because of not expecting exact time that peak discharge occur in pump station. Therefore the scale of pump station has been excessively estimated. Although it is necessary to perform quick and accurate inundation in analysis downtown area due to huge property damage from flood and typhoon, previous studies contained risk deducting incorrect result that differs from actual result owing to the diffusion aspect of flow by effect on building and road. The purpose of this study is to develop the data driven model for the real-time operation of drainage pump station and two-dimensional inundation analysis that are improved the problems of the existing hydrology and hydrological model. Neuro-Fuzzy system for real time prediction about stage was developed by estimating the type and number of membership function. Based on forecasting stage, it was decided when pump machine begin to work and how much water scoop up by using penalizing genetic algorithm. It is practicable to forecast stage, optimize pump operation and simulate inundation analysis in real time through the methodologies suggested in this study. This study can greatly contribute to the establishment of disaster information map that prevent and mitigate inundation in urban drainage area. The applicability of the development model for the five drainage pump stations in the Mapo drainage area was verified. It is considered to be able to effectively manage urban drainage facilities in the development of these operating rules. Keywords : Urban flooding; Geo-ANFIS method; Optimal operation; Drainage system; AcknowlegementThis research was supported by a grant (17AWMP-B079625-04) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Technical Reports Server (NTRS)
Fishman, Julianna L.; Mudgett, Paul D.; Packham, Nigel J.; Schultz, John R.; Straub, John E., II
2005-01-01
On August 9, 2003, NASA, with the cooperative support of the Vehicle Office of the International Space Station Program, the Advanced Human Support Technology Program, and the Johnson Space Center Habitability and Environmental Factors Office released a Request for Information, or RFI, to identify next-generation environmental monitoring systems that have demonstrated ability or the potential to meet defined requirements for monitoring air and water quality onboard the International Space Station. This report summarizes the review and analysis of the proposed solutions submitted to meet the water quality monitoring requirements. Proposals were to improve upon the functionality of the existing Space Station Total Organic Carbon Analyzer (TOCA) and monitor additional contaminants in water samples. The TOCA is responsible for in-flight measurement of total organic carbon, total inorganic carbon, total carbon, pH, and conductivity in the Space Station potable water supplies. The current TOCA requires hazardous reagents to accomplish the carbon analyses. NASA is using the request for information process to investigate new technologies that may improve upon existing capabilities, as well as reduce or eliminate the need for hazardous reagents. Ideally, a replacement for the TOCA would be deployed in conjunction with the delivery of the Node 3 water recovery system currently scheduled for November 2007.
Pakhomova, A A; Aksel'-Rubinshteĭn, V Z; Mikos, K N; Nikitin, E I
2009-01-01
Analysis of experimental data about the quantitative and qualitative chemical make-up of air in the orbital station Mir and International space station (ISS) showed a permanent presence of silicon. The main source of silicon contaminants seems to be a variety of polymethyl siloxane liquids and siloxane coating of electronics. The article describes the volatile silicon contaminants detected in space stations air. To control concentrations of silicon, the existing air purification system needs to be augmented with carbons having the micropore entrance larger than diameters of silicon-containing molecules. It is also important to elaborate the technology of polymethyl siloxane liquids synthesis so as to reduce the amount of volatile admixtures emission and to observe rigorously the pre-flight off-gassing requirements with special concern about silicon coatings.
NASA Astrophysics Data System (ADS)
Bose, Sanjay K.; Gordon, J. J.
The modeling and analysis of a system providing integrated voice/data services to mobile terminals over a power-limited satellite channel are discussed. The mobiles use slotted Aloha random access to send requests for channel assignments to a central station. For successful requests, the actual transmission of voice/data within a call is done using the channel assigned for this purpose by the central station. The satellite channel is assumed to be power limited. Taking into account the known burstiness of voice sources (which use a voice-activated switch), the central station overassigns channels so that the average total power is below the power limit of the satellite transponder. The performance of this model is analyzed. Certain simple, static control strategies for improving performance are also proposed.
NASA Technical Reports Server (NTRS)
Hillebrand, J. T.; McDonough, W. F.; Walker, R. J.; Piccoli, P. M.
2004-01-01
We examine the partitioning characteristics of several siderophile elements and HSE in the Eagle Station and Milton pallasites to determine if the D(sup Metal/Silicate) in natural systems are comparable to the range of values determined for synthetic systems. Eagle Station and Milton are particularly appropriate for this type of study because previous studies have shown that bulk samples of these meteorites have much higher abundances of siderophile elements and HSE than bulk samples of main group pallasites or mesosiderites. Thus, the expectation that initiated this study was that the abundances of at least some elements of interest present in the silicate phases may be at levels sufficiently high to be determined via in situ spot analysis using laser ablation ICP-MS.
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 6: Study issues report
NASA Technical Reports Server (NTRS)
1989-01-01
The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload specialists and mission specialists to operate the wide variety of experiments that will be on-board the Freedom Space Station. This simulation Computer System (SCS) study issues report summarizes the analysis and study done as task 1-identify and analyze the CSC study issues- of the SCS study contract.This work was performed over the first three months of the SCS study which began in August of 1988. First issues were identified from all sources. These included the NASA SOW, the TRW proposal, and working groups which focused the experience of NASA and the contractor team performing the study-TRW, Essex, and Grumman. The final list is organized into training related issues, and SCS associated development issues. To begin the analysis of the issues, a list of all the functions for which the SCS could be used was created, i.e., when the computer is turned on, what will it be doing. Analysis was continued by creating an operational functions matrix of SCS users vs. SCS functions to insure all the functions considered were valid, and to aid in identification of users as the analysis progressed. The functions will form the basis for the requirements, which are currently being developed under task 3 of the SCS study.
Regionalized Lunar South Pole Surface Navigation System Analysis
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2008-01-01
Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.
A Model for Dynamic Simulation and Analysis of Tether Momentum Exchange
NASA Technical Reports Server (NTRS)
Canfield, Stephen; Johnson, David; Sorensen, Kirk; Welzyn, Ken; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Momentum-exchange/electrodynamic reboost (MXER) tether systems may enable high-energy missions to the Moon, Mars, and beyond by serving as an 'upper stage in space'. Existing rockets that use an MXER tether station could double their capability to launch communications satellites and help improve US competitiveness. A MXER tether station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a high-thrust rocket. Then, using the same principles that make an electric motor work, it would slowly rebuild its orbital momentum by pushing against the Earth's magnetic field-without using any propellant. One of the significant challenges in developing a momentum-exchange/electrodynamic reboost tether systems is in the analysis and design of the capture mechanism and its effects on the overall dynamics of the system. This paper will present a model for a momentum-exchange tether system that can simulate and evaluate the performance and requirements of such a system.
The advanced software development workstation project
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III; Pitman, Charles L.
1991-01-01
The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.
Photovoltaic central station step and touch potential considerations in grounding system design
NASA Technical Reports Server (NTRS)
Engmann, G.
1983-01-01
The probability of hazardous step and touch potentials is an important consideration in central station grounding system design. Steam turbine generating station grounding system design is based on accepted industry practices and there is extensive in-service experience with these grounding systems. A photovoltaic (PV) central station is a relatively new concept and there is limited experience with PV station grounding systems. The operation and physical configuration of a PV central station is very different from a steam electric station. A PV station bears some similarity to a substation and the PV station step and touch potentials might be addressed as they are in substation design. However, the PV central station is a generating station and it is appropriate to examine the effect that the differences and similarities of the two types of generating stations have on step and touch potential considerations.
NASA Technical Reports Server (NTRS)
1972-01-01
Major study areas treated in this volume are: 1) operations and control and 2) the telecommunication service system. The TDRS orbit selection, orbital deployment, ground station visibility, sequence of events from launch to final orbit position, and TDRS control center functions required for stationkeeping, repositioning, attitude control, and antenna pointing are briefly treated as part of the operations and control section. The last topic of this section concerns the operations required for efficiently providing the TDRSS user telecommunication services. The discussion treats functions of the GSFC control and data processing facility, ground station, and TDRS control center. The second major portion of this volume deals with the Telecommunication Service System (TSS) which consists of the ground station, TDRS communication equipment and the user transceiver. A summary of the requirements and objectives for the telecommunication services and a brief summary of the TSS capabilities is followed by communication system analysis, signal design, and equipment design. Finally, descriptions of the three TSS elements are presented.
Vessel Monitoring Systems Study. Volume I - Technical Analysis.
DOT National Transportation Integrated Search
1980-09-01
In the Port and Tanker Safety Act of 1978 the U.S. Conress directed the Department of Transportation to performa a study on the desirability and feasibility of a shore-station system for monitoring vessels (including fishing vessels)offshore within t...
Analysis of Shadowing Effects on Spacecraft Power Systems
NASA Technical Reports Server (NTRS)
1995-01-01
As part of an ongoing effort within the NASA Lewis Research Center's Power Systems Project Office to assist in the design and characterization of future space-based power systems, analyses have been performed to assess the effects of shadowing on the capabilities of various power systems on the International Space Station and the Russian MIR.
Manned Mars mission accommodation: Sprint mission
NASA Technical Reports Server (NTRS)
Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.
1988-01-01
The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.
Dynamic analysis of Space Shuttle/RMS configuration using continuum approach
NASA Technical Reports Server (NTRS)
Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.
1994-01-01
The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.
Continuous Estimates of Precipitable Water Vapor Within and Around Hurricane Systems
NASA Astrophysics Data System (ADS)
Braun, J. J.; Iwabuchi, T.; van Hove, T.
2008-12-01
This study investigates how estimates of precipitable water vapor (PW) from Global Positioning System (GPS) stations can be used to quantify how atmospheric moisture influences the intensity of tropical storms and hurricanes. The motivation for this study is based on the fact that hurricanes derive their strength through water vapor that is both evaporated from warm ocean surfaces and the existing moisture in the surrounding atmospheric environment. Observationally, there are relatively few instruments that can accurately measure water vapor in the presence of clouds and rain. Retrievals of PW using GPS stations may be the most reliable way to continuously monitor column integrated water vapor. Using storm information from the National Hurricane Center (www.nhc.noaa.gov), we have compared storm intensity to PW estimates for all tropical storms and hurricanes making landfall within 100-km of a GPS station between 2003 and 2008. We find that PW is inversely correlated (r**2 < -0.7) to the drop in surface pressure observed at that station. We have also begun to relate atmospheric PW at a station to the local sea surface temperature (SST). This comparison can be used to measure how strongly atmospheric water vapor and SST are coupled. It can also be used to measure how quickly the atmosphere responds to changes in SST. Finally we have compared the estimated PW to the Global Forecast System (GFS) analysis fields that are used to initialize numerical weather prediction models. This comparison indicates that the GFS analysis fields have significantly larger errors in atmospheric moisture in the Caribbean and Gulf of Mexico when compared to differences over the continental United States. These results illustrate that estimates of PW are an important data set for atmospheric scientists and forecasters attempting to improve the prediction of hurricane intensity.
Kien, Vu Duy; Van Minh, Hoang; Giang, Kim Bao; Ng, Nawi; Nguyen, Viet; Tuan, Le Thanh; Eriksson, Malin
2018-05-31
Primary health care plays an important role in addressing the burden of non-communicable diseases (NCDs) in low- and middle-income countries. In light of the rapid urbanization of Vietnam, this study aims to explore health professionals' views about the responsiveness of primary health care services at commune health stations, particularly regarding the increase of NCDs in urban settings. This qualitative study was conducted in Hanoi from July to August 2015. We implemented 19 in-depth interviews with health staff at four purposely selected commune health stations and conducted a brief inventory of existing NCD activities at these commune health stations. We also interviewed NCD managers at national, provincial, and district levels. The interview guides reflected six components of the WHO health system framework, including service delivery, health workforce, health information systems, access to essential medicines, financing, and leadership/governance. A thematic analysis approach was applied to analyze the interview data in this study. Six themes, related to the six building blocks of the WHO health systems framework, were identified. These themes explored the responsiveness of commune health stations to NCDs in urban Hanoi. Health staff at commune health stations were not aware of the national strategy for NCDs. Health workers noted the lack of NCD informational materials for management and planning. The limited workforce at health commune stations would benefit from more health workers in general and those with NCD-specific training and skills. In addition, the budget for NCDs at commune health stations remains very limited, with large differences in the implementation of national targeted NCD programs. Some commune health stations had no NCD services available, while others had some programming. A lack of NCD treatment drugs was also noted, with a negative impact on the provision of NCD-related services at commune health stations. These themes were also reflected in the inventory of existing NCD related activities. Health professionals view the responsiveness of commune health stations to NCDs in urban Hanoi, Vietnam as weak. Appropriate policies should be implemented to improve the primary health care services on NCDs at commune health stations in urban Hanoi, Vietnam.
Viewport concept for space station modules
NASA Technical Reports Server (NTRS)
Douglas, F., III
1986-01-01
The generic design of a 20-in. diameter viewport for the space station modules is discussed. It should possess the capabilities of meteoroid/debris protection (with no metallic cover), redundancies in its meteoroid/debris protection, and pressure sealing systems. In addition, it should provide ease of change out for maintenance or repair. The design does not take into account the bumper-shield effect of the outermost panes in the meteoroid/debris analysis.
Variable gravity research facility
NASA Technical Reports Server (NTRS)
Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd
1988-01-01
Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.
An Enlisted Personnel Permanent Change of Station (PCS) Policy Analysis Model.
1996-08-15
When the first Patriot system engaged, fired and destroyed the first Scud missile over Riyadh, the effectiveness of the system became legendary - and...simulation to a monorail system. After leaving the location processing, the simulation analyzes the PCS_CODE attribute of the entity. The entity is then
Change and Anomaly Detection in Real-Time GPS Data
NASA Astrophysics Data System (ADS)
Granat, R.; Pierce, M.; Gao, X.; Bock, Y.
2008-12-01
The California Real-Time Network (CRTN) is currently generating real-time GPS position data at a rate of 1-2Hz at over 80 locations. The CRTN data presents the possibility of studying dynamical solid earth processes in a way that complements existing seismic networks. To realize this possibility we have developed a prototype system for detecting changes and anomalies in the real-time data. Through this system, we can can correlate changes in multiple stations in order to detect signals with geographical extent. Our approach involves developing a statistical model for each GPS station in the network, and then using those models to segment the time series into a number of discrete states described by the model. We use a hidden Markov model (HMM) to describe the behavior of each station; fitting the model to the data requires neither labeled training examples nor a priori information about the system. As such, HMMs are well suited to this problem domain, in which the data remains largely uncharacterized. There are two main components to our approach. The first is the model fitting algorithm, regularized deterministic annealing expectation- maximization (RDAEM), which provides robust, high-quality results. The second is a web service infrastructure that connects the data to the statistical modeling analysis and allows us to easily present the results of that analysis through a web portal interface. This web service approach facilitates the automatic updating of station models to keep pace with dynamical changes in the data. Our web portal interface is critical to the process of interpreting the data. A Google Maps interface allows users to visually interpret state changes not only on individual stations but across the entire network. Users can drill down from the map interface to inspect detailed results for individual stations, download the time series data, and inspect fitted models. Alternatively, users can use the web portal look at the evolution of changes on the network by moving backwards and forwards in time.
Large space structures and systems in the space station era: A bibliography with indexes
NASA Technical Reports Server (NTRS)
Ferrainolo, John J. (Compiler); Lawrence, George F. (Compiler)
1991-01-01
Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Large space structures and systems in the space station era: A bibliography with indexes
NASA Technical Reports Server (NTRS)
Ferrainolo, John J. (Editor)
1990-01-01
Bibliographies and abstracts are listed for 1372 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1990 and June 30, 1990. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
NASA Technical Reports Server (NTRS)
1977-01-01
The development of the module concepts are reviewed, and a number of functional elements are listed. Other areas examined include some of the following; (1) mission operations; (2) environmental control and life support subsystems concepts; (3) thermal heat rejection; (4) space radiation effect analysis; and (5) satellite power system test requirements.
Preliminary analysis of an integrated logistics system for OSSA payloads
NASA Technical Reports Server (NTRS)
Palguta, T.; Bradley, W.; Stockton, T.
1988-01-01
The results of studies of the Office of Space Science and Applications' (OSSA) need for an integrated logistics system to support OSSA payloads, whether attached to the Space Station or free-flying are detailed. An executive summary, the integrated logistics support strategy, preparation of planning documents and a supportability analysis of the 1.8 meter centrifuge are discussed.
An Addendum to "A New Tool for Climatic Analysis Using Köppen Climate Classification"
ERIC Educational Resources Information Center
Larson, Paul R.; Lohrengel, C. Frederick, II
2014-01-01
The Köppen climatic classification system in a modified format is the most widely applied system in use today. Mapping and analysis of hundreds of arid and semiarid climate stations has made the use of the additional fourth letter in BW/BS climates essential. The addition of "s," "w," or "f" to the standard…
Atmospheric boundary layer evening transitions over West Texas
USDA-ARS?s Scientific Manuscript database
A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...
Using the adsorption chillers for waste heat utilisation from the CCS installation
NASA Astrophysics Data System (ADS)
Sztekler, Karol; Kalawa, Wojciech; Nowak, Wojciech; Stefański, Sebastian; Krzywański, Jarosław; Grabowska, Karolina
2018-06-01
Worldwide tendencies in the scope of environmental protection demonstrate the requirement for the limited carbon dioxide emission, that influences on the development of greenhouse effect. As a result of coal as a basic fuel used in the professional power industry, this industry sector is the greatest CO2 polluter and it means that works on the reduction of carbon dioxide in such industry are completely justified. In the IPSEpro programming environment, a reference block model for a conventional coal power station was elaborated, including the CO2 separation unit basing on the adsorption methods with the CO2 preparation installation to liquid state. Simulation researches were conducted with means of numeric techniques, that enabled the system analysis for the CO2 separation unit with the CO2 preparation system to the liquid state, as well as analysis was made for the use of chiller systems, basing on the adsorption technology for waste heat use originating from the compression of CO2 in a cascade system, as well as for potential opportunities for further exploitation of the produced chilled water in the CCS cycle. We analysed in these papers the opportunities for chiller systems application, based on the adsorption chillers in the CCS installation used for the reduction of CO2 emission in the coal power station and its influence on the operation of a power station cycle.
The development of the Canadian Mobile Servicing System Kinematic Simulation Facility
NASA Technical Reports Server (NTRS)
Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.
1989-01-01
Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.
NASA Astrophysics Data System (ADS)
Miley, H.; Forrester, J. B.; Greenwood, L. R.; Keillor, M. E.; Eslinger, P. W.; Regmi, R.; Biegalski, S.; Erikson, L. E.
2013-12-01
The aerosol samples taken from the CTBT International Monitoring Systems stations are measured in the field with a minimum detectable concentration (MDC) of ~30 microBq/m3 of Ba-140. This is sufficient to detect far less than 1 kt of aerosol fission products in the atmosphere when the station is in the plume from such an event. Recent thinking about minimizing the potential source region (PSR) from a detection has led to a desire for a multi-station or multi-time period detection. These would be connected through the concept of ';event formation', analogous to event formation in seismic event study. However, to form such events, samples from the nearest neighbors of the detection would require re-analysis with a more sensitive laboratory to gain a substantially lower MDC, and potentially find radionuclide concentrations undetected by the station. The authors will present recent laboratory work with air filters showing various cost effective means for enhancing laboratory sensitivity.
Space construction base support requirements for environmental control and life support systems
NASA Technical Reports Server (NTRS)
Thiele, R. J.; Secord, T. C.; Murphy, G. L.
1977-01-01
A Space Station analysis study is being performed for NASA which identifies cost-effective Space Station options that can provide a space facility capable of performing space construction, space manufacturing, cosmological research, earth services, and other functions. A space construction base concept for the construction of large structures, such as those needed to implement satellite solar power for earth usage, will be used as a basis for discussing requirements that impact the design selection, level of integration, and operation of environmental control and life support systems (ECLSS). The space construction base configuration also provides a basic Space Station facility that can accommodate biological manufacturing modules, ultrapure glasses manufacturing modules, and modules for other services in a building-block fashion. Examples of special problems that could dictate hardware required to augment the basic ECLSS for autonomous modules will be highlighted. Additionally, overall intravehicular (IVA) and extravehicular (EVA) activities and requirements that could impact the basic station ECLSS degree of closure are discussed.
NASA Technical Reports Server (NTRS)
Thesken, John C.; Bowman, Cheryl L.; Arnold, Steven M.
2003-01-01
Successful spaceflight operations require onboard power management systems that reliably achieve mission objectives for a minimal launch weight. Because of their high specific energies and potential for reduced maintenance and logistics, composite flywheels are an attractive alternative to electrochemical batteries. The Rotor Durability Team, which comprises members from the Ohio Aerospace Institute (OAI) and the NASA Glenn Research Center, completed a program of elevated temperature testing at Glenn' s Life Prediction Branch's Fatigue Laboratory. The experiments provided unique design data essential to the safety and durability of flywheel energy storage systems for the International Space Station and other manned spaceflight applications. Analysis of the experimental data (ref. 1) demonstrated that the compressive stress relaxation of composite flywheel rotor material is significantly greater than the commonly available tensile stress relaxation data. Durability analysis of compression preloaded flywheel rotors is required for accurate safe-life predictions for use in the International Space Station.
NASA Technical Reports Server (NTRS)
Congo, Richard T.
1990-01-01
As the Space Station nears reality in funding support from Congress, NASA plans to perform over a hundred different missions in the coming decade. Incrementally deployed, the Space Station will evolve into modules linked to an integral structure. Each module will have characteristic functions, such as logistics, habitation, and materials processing. Because the Space Station is to be user friendly for experimenters, NASA is anticipating that a variety of different chemicals will be taken on-board. Accidental release of these potentially toxic chemicals and their chemical compatibility is the focus of this discourse. The Microgravity Manufacturing Processing Facility (MMPF) will contain the various facilities within the U.S. Laboratory (USL). Each facility will have a characteristic purpose, such as alloy solidification or vapor crystal growth. By examining the proposed experiments for each facility, identifying the chemical constituents, their physical state and/or changes, byproducts and effluents, those payloads can be identified which may contain toxic, explosive, or reactive compounds that require processing or containment in mission peculiar waste management systems. Synergistic reactions from mixed effluent streams is of major concern. Each experiment will have it own data file, complete with schematic, chemical listing, physical data, etc. Chemical compatibility information from various databases will provide assistance in the analysis of alternate disposal techniques (pretreatment, separate storage, etc.). Along with data from the Risk Analysis of the Proposed USL Waste Management System, accidental release of potentially toxic and catastrophic chemicals would be eliminated or reduced.
Space crew radiation exposure analysis system based on a commercial stand-alone CAD system
NASA Technical Reports Server (NTRS)
Appleby, Matthew H.; Golightly, Michael J.; Hardy, Alva C.
1992-01-01
Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.
DOT National Transportation Integrated Search
2017-03-24
The Pikalert System provides high precision road weather guidance. It assesses current weather and road conditions based on observations from connected vehicles, road weather information stations, radar, and weather model analysis fields. It also for...
DOT National Transportation Integrated Search
2015-12-01
This study used the National EMS Information System (NEMSIS) South Dakota data to develop datadriven performance metrics for EMS. Researchers used the data for three tasks: geospatial analysis of EMS events, optimization of station locations, and ser...
Acceleration Environment of the International Space Station
NASA Technical Reports Server (NTRS)
McPherson, Kevin; Kelly, Eric; Keller, Jennifer
2009-01-01
Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.
Toro A, Richard; Campos, Claudia; Molina, Carolina; Morales S, Raul G E; Leiva-Guzmán, Manuel A
2015-09-01
A critical analysis of Chile's National Air Quality Information System (NAQIS) is presented, focusing on particulate matter (PM) measurement. This paper examines the complexity, availability and reliability of monitoring station information, the implementation of control systems, the quality assurance protocols of the monitoring station data and the reliability of the measurement systems in areas highly polluted by particulate matter. From information available on the NAQIS website, it is possible to confirm that the PM2.5 (PM10) data available on the site correspond to 30.8% (69.2%) of the total information available from the monitoring stations. There is a lack of information regarding the measurement systems used to quantify air pollutants, most of the available data registers contain gaps, almost all of the information is categorized as "preliminary information" and neither standard operating procedures (operational and validation) nor assurance audits or quality control of the measurements are reported. In contrast, events that cause saturation of the monitoring detectors located in northern and southern Chile have been observed using beta attenuation monitoring. In these cases, it can only be concluded that the PM content is equal to or greater than the saturation concentration registered by the monitors and that the air quality indexes obtained from these measurements are underestimated. This occurrence has been observed in 12 (20) public and private stations where PM2.5 (PM10) is measured. The shortcomings of the NAQIS data have important repercussions for the conclusions obtained from the data and for how the data are used. However, these issues represent opportunities for improving the system to widen its use, incorporate comparison protocols between equipment, install new stations and standardize the control system and quality assurance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sauer, Vernon B.
2002-01-01
Surface-water computation methods and procedures are described in this report to provide standards from which a completely automated electronic processing system can be developed. To the greatest extent possible, the traditional U. S. Geological Survey (USGS) methodology and standards for streamflow data collection and analysis have been incorporated into these standards. Although USGS methodology and standards are the basis for this report, the report is applicable to other organizations doing similar work. The proposed electronic processing system allows field measurement data, including data stored on automatic field recording devices and data recorded by the field hydrographer (a person who collects streamflow and other surface-water data) in electronic field notebooks, to be input easily and automatically. A user of the electronic processing system easily can monitor the incoming data and verify and edit the data, if necessary. Input of the computational procedures, rating curves, shift requirements, and other special methods are interactive processes between the user and the electronic processing system, with much of this processing being automatic. Special computation procedures are provided for complex stations such as velocity-index, slope, control structures, and unsteady-flow models, such as the Branch-Network Dynamic Flow Model (BRANCH). Navigation paths are designed to lead the user through the computational steps for each type of gaging station (stage-only, stagedischarge, velocity-index, slope, rate-of-change in stage, reservoir, tide, structure, and hydraulic model stations). The proposed electronic processing system emphasizes the use of interactive graphics to provide good visual tools for unit values editing, rating curve and shift analysis, hydrograph comparisons, data-estimation procedures, data review, and other needs. Documentation, review, finalization, and publication of records are provided for with the electronic processing system, as well as archiving, quality assurance, and quality control.
United States data collection activities and requirements, volume 1
NASA Technical Reports Server (NTRS)
Hrin, S.; Mcgregor, D.
1977-01-01
The potential market for a data collection system was investigated to determine whether the user needs would be sufficient to support a satellite relay data collection system design. The activities of 107,407 data collections stations were studied to determine user needs in agriculture, climatology, environmental monitoring, forestry, geology, hydrology, meteorology, and oceanography. Descriptions of 50 distinct data collections networks are described and used to form the user data base. The computer program used to analyze the station data base is discussed, and results of the analysis are presented in maps and graphs. Information format and coding is described in the appendix.
Seismic anisotropy across the east African plateau from shear wave splitting analysis
NASA Astrophysics Data System (ADS)
Bagley, B. C.; Nyblade, A.; Mulibo, G.; Tugume, F.
2011-12-01
Previous studies of the east African plateau reveal complicated patterns of seismic anisotropy that are not easily explained by a single mechanism. The pattern is defined by rift-parallel fast directions for stations within or near Cenozoic rift valleys, and near-null results in Precambrian terrains away from the rift. Data from 65 temporary Africa Array stations deployed between 2007 and 2011 are being used to make new shear wave splitting measurements. The stations span the east African plateau and cover both the eastern and western branches of the east African rift system, as well as unrifted Proterozoic and Archean terrains in Uganda, Kenya, Tanzania, and Zambia. Through analysis of shear wave splitting we will better constrain the distribution of seismic anisotropy, and and from it gain new insight into the tectonic evolution of east Africa.
NASA Technical Reports Server (NTRS)
Perry, J. L.
2016-01-01
As the Space Station Freedom program transitioned to become the International Space Station (ISS), uncertainty existed concerning the performance capabilities for U.S.- and Russian-provided trace contaminant control (TCC) equipment. In preparation for the first dialogue between NASA and Russian Space Agency personnel in Moscow, Russia, in late April 1994, an engineering analysis was conducted to serve as a basis for discussing TCC equipment engineering assumptions as well as relevant assumptions on equipment offgassing and cabin air quality standards. The analysis presented was conducted as part of the efforts to integrate Russia into the ISS program via the early ISS Multilateral Medical Operations Panel's Air Quality Subgroup deliberations. This analysis, served as a basis for technical deliberations that established a framework for TCC system design and operations among the ISS program's international partners that has been instrumental in successfully managing the ISS common cabin environment.
Integrated exhaust gas analysis system for aircraft turbine engine component testing
NASA Technical Reports Server (NTRS)
Summers, R. L.; Anderson, R. C.
1985-01-01
An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.
A comprehensive method for GNSS data quality determination to improve ionospheric data analysis.
Kim, Minchan; Seo, Jiwon; Lee, Jiyun
2014-08-14
Global Navigation Satellite Systems (GNSS) are now recognized as cost-effective tools for ionospheric studies by providing the global coverage through worldwide networks of GNSS stations. While GNSS networks continue to expand to improve the observability of the ionosphere, the amount of poor quality GNSS observation data is also increasing and the use of poor-quality GNSS data degrades the accuracy of ionospheric measurements. This paper develops a comprehensive method to determine the quality of GNSS observations for the purpose of ionospheric studies. The algorithms are designed especially to compute key GNSS data quality parameters which affect the quality of ionospheric product. The quality of data collected from the Continuously Operating Reference Stations (CORS) network in the conterminous United States (CONUS) is analyzed. The resulting quality varies widely, depending on each station and the data quality of individual stations persists for an extended time period. When compared to conventional methods, the quality parameters obtained from the proposed method have a stronger correlation with the quality of ionospheric data. The results suggest that a set of data quality parameters when used in combination can effectively select stations with high-quality GNSS data and improve the performance of ionospheric data analysis.
A Comprehensive Method for GNSS Data Quality Determination to Improve Ionospheric Data Analysis
Kim, Minchan; Seo, Jiwon; Lee, Jiyun
2014-01-01
Global Navigation Satellite Systems (GNSS) are now recognized as cost-effective tools for ionospheric studies by providing the global coverage through worldwide networks of GNSS stations. While GNSS networks continue to expand to improve the observability of the ionosphere, the amount of poor quality GNSS observation data is also increasing and the use of poor-quality GNSS data degrades the accuracy of ionospheric measurements. This paper develops a comprehensive method to determine the quality of GNSS observations for the purpose of ionospheric studies. The algorithms are designed especially to compute key GNSS data quality parameters which affect the quality of ionospheric product. The quality of data collected from the Continuously Operating Reference Stations (CORS) network in the conterminous United States (CONUS) is analyzed. The resulting quality varies widely, depending on each station and the data quality of individual stations persists for an extended time period. When compared to conventional methods, the quality parameters obtained from the proposed method have a stronger correlation with the quality of ionospheric data. The results suggest that a set of data quality parameters when used in combination can effectively select stations with high-quality GNSS data and improve the performance of ionospheric data analysis. PMID:25196005
Airborne Visible Laser Optical Communications (AVLOC) experiment
NASA Technical Reports Server (NTRS)
1974-01-01
A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station were conducted by NASA from summer 1972 through winter 1973. The basic system was an optical tracker and transmitter located in each terminal. The aircraft transceiver consisted of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon was an argon laser operating at 488 nm. A separate pulsed laser radar was used for initial acquisition. The objective of the experiment was to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance was also an experiment objective. The system description, engineering analysis, testing, and flight results are discussed.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1990-01-01
Archival reports on developments in programs managed by the JPL Office of Telecommunications and Data Acquisition (TDA) are provided. Topics covered include: DSN advanced systems (tracking and ground-based navigation; communications, spacecraft-ground; and station control and system technology) and DSN systems implementation (capabilities for existing projects; capabilities for new projects; TDA program management and analysis; and Goldstone solar system radar).
Identifying atmospheric monitoring needs for Space Station Freedom
NASA Technical Reports Server (NTRS)
Casserly, Dennis M.
1989-01-01
The atmospheric monitoring needs for Space Station Freedom were identified by examining the following from an industrial hygiene perspective: the experiences of past missions; ground based tests of proposed life support systems; the unique experimental and manufacturing facilities; the contaminant load model; metabolic production; and a fire. A target list of compounds to be monitored is presented and information is provided relative to the frequency of analysis, concentration ranges, and locations for monitoring probes.
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
A work breakdown structure for the Space Station Life Sciences Research Facility (LSRF) is presented up to level 5. The purpose is to provide the framework for task planning and control and to serve as a basis for budgeting, task assignment, cost collection and report, and contractual performance measurement and tracking of the Full Scale Development Phase tasks.
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.
1999-01-01
The Attitude Control and Energy Storage Experiment is currently under development for the International Space Station; two counter-rotating flywheels will be levitated with magnetic bearings and placed in vacuum housings. The primary objective of the experiment is to store and discharge energy, in combination with existing batteries, into the electrical power system. The secondary objective is to use the flywheels to exert torque on the Station; a simple torque profile has been designed so that the Station's Control Moment Gyroscopes will be assisted in maintaining torque equilibrium attitude. Two energy storage contingencies could result in the inadvertent application of torque by the flywheels to the Station: an emergency shutdown of one flywheel rotor while the other remains spinning, and energy storage with only one rotor instead of the counterrotating pair. Analysis of these two contingencies shows that attitude control and the microgravity environment will not be adversely affected.
Large space antennas: A systems analysis case history
NASA Technical Reports Server (NTRS)
Keafer, Lloyd S. (Compiler); Lovelace, U. M. (Compiler)
1987-01-01
The value of systems analysis and engineering is aptly demonstrated by the work on Large Space Antennas (LSA) by the NASA Langley Spacecraft Analysis Branch. This work was accomplished over the last half-decade by augmenting traditional system engineering, analysis, and design techniques with computer-aided engineering (CAE) techniques using the Langley-developed Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. This report chronicles the research highlights and special systems analyses that focused the LSA work on deployable truss antennas. It notes developmental trends toward greater use of CAE techniques in their design and analysis. A look to the future envisions the application of improved systems analysis capabilities to advanced space systems such as an advanced space station or to lunar and Martian missions and human habitats.
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.
1988-01-01
Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station research missions integration, crew requirements, SOC operations, and configurations are analyzed. Potential research and applications missions and their requirements are described. The capabilities of SOC are compared with user requirements. The SOC/space shuttle and shuttle-derived vehicle flight support operations and SOC orbital operations are described. Module configurations and systems options, SOC/external tank configurations, and configurations for geostationary orbits are described. Crew and systems safety configurations are summarized.
Advanced building energy management system demonstration for Department of Defense buildings.
O'Neill, Zheng; Bailey, Trevor; Dong, Bing; Shashanka, Madhusudana; Luo, Dong
2013-08-01
This paper presents an advanced building energy management system (aBEMS) that employs advanced methods of whole-building performance monitoring combined with statistical methods of learning and data analysis to enable identification of both gradual and discrete performance erosion and faults. This system assimilated data collected from multiple sources, including blueprints, reduced-order models (ROM) and measurements, and employed advanced statistical learning algorithms to identify patterns of anomalies. The results were presented graphically in a manner understandable to facilities managers. A demonstration of aBEMS was conducted in buildings at Naval Station Great Lakes. The facility building management systems were extended to incorporate the energy diagnostics and analysis algorithms, producing systematic identification of more efficient operation strategies. At Naval Station Great Lakes, greater than 20% savings were demonstrated for building energy consumption by improving facility manager decision support to diagnose energy faults and prioritize alternative, energy-efficient operation strategies. The paper concludes with recommendations for widespread aBEMS success. © 2013 New York Academy of Sciences.
NASA Technical Reports Server (NTRS)
Wise, Stephen A.; Holt, James M.
2002-01-01
The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the systems dynamics was created using an Excel Spreadsheet. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.
NASA Technical Reports Server (NTRS)
Wise, Stephen A.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the system dynamics was created using Excel. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.
Customer premise service study for 30/20 GHz satellite system
NASA Technical Reports Server (NTRS)
Milton, R. T.; Ross, D. P.; Harcar, A. R.; Freedenberg, P.; Schoen, D.
1983-01-01
Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band.
TDRSS operations control analysis study
NASA Technical Reports Server (NTRS)
1976-01-01
The use of an operational Tracking and Data Relay Satellite System (TDRSS) and the remaining ground stations for the STDN (GSTDN) was investigated. The operational aspects of TDRSS concepts, GSTDN as a 14-site network, and GSTDN as a 7 site-network were compared and operations control concepts for the configurations developed. Man/machine interface, scheduling system, and hardware/software tradeoff analyses were among the factors considered in the analysis.
Telemetry data storage systems technology for the Space Station Freedom era
NASA Technical Reports Server (NTRS)
Dalton, John T.
1989-01-01
This paper examines the requirements and functions of the telemetry-data recording and storage systems, and the data-storage-system technology projected for the Space Station, with particular attention given to the Space Optical Disk Recorder, an on-board storage subsystem based on 160 gigabit erasable optical disk units each capable of operating at 300 M bits per second. Consideration is also given to storage systems for ground transport recording, which include systems for data capture, buffering, processing, and delivery on the ground. These can be categorized as the first in-first out storage, the fast random-access storage, and the slow access with staging. Based on projected mission manifests and data rates, the worst case requirements were developed for these three storage architecture functions. The results of the analysis are presented.
NASA's Plum Brook Station Water Systems
NASA Technical Reports Server (NTRS)
Puzak, Robert M.; Kimpton, Arthur
2006-01-01
Plum Brook Station's water systems were built in the 1940s to support a World War II ordnance production complex. Because the systems had not been analyzed for current NASA usage, it was unknown if they could meet current requirements and codes or if they were efficient for current use. NASA wanted to determine what improvements would be needed or advisable to support its research projects, so it contracted a hydraulic analysis of the raw and domestic water systems. Burgess and Niple determined current water demands and water flow, developed and calibrated models of the two water systems, and evaluated efficiency improvements and cost-cutting options. They recommended replacing some water mains, installing a new service connection, and removing some high-maintenance items (an underground reservoir, some booster pumps, and a tower).
Perk Station – Percutaneous Surgery Training and Performance Measurement Platform
Vikal, Siddharth; U-Thainual, Paweena; Carrino, John A.; Iordachita, Iulian; Fischer, Gregory S.; Fichtinger, Gabor
2009-01-01
Motivation Image-guided percutaneous (through the skin) needle-based surgery has become part of routine clinical practice in performing procedures such as biopsies, injections and therapeutic implants. A novice physician typically performs needle interventions under the supervision of a senior physician; a slow and inherently subjective training process that lacks objective, quantitative assessment of the surgical skill and performance[S1]. Shortening the learning curve and increasing procedural consistency are important factors in assuring high-quality medical care. Methods This paper describes a laboratory validation system, called Perk Station, for standardized training and performance measurement under different assistance techniques for needle-based surgical guidance systems. The initial goal of the Perk Station is to assess and compare different techniques: 2D image overlay, biplane laser guide, laser protractor and conventional freehand. The main focus of this manuscript is the planning and guidance software system developed on the 3D Slicer platform, a free, open source software package designed for visualization and analysis of medical image data. Results The prototype Perk Station has been successfully developed, the associated needle insertion phantoms were built, and the graphical user interface was fully implemented. The system was inaugurated in undergraduate teaching and a wide array of outreach activities. Initial results, experiences, ongoing activities and future plans are reported. PMID:19539446
Temporal and spatial patterns of suicides in Stockholm's subway stations.
Uittenbogaard, Adriaan; Ceccato, Vania
2015-08-01
This paper investigates the potential temporal and spatial variations of suicides in subway stations in Stockholm, Sweden. The study also assesses whether the variation in suicide rates is related to the station environments by controlling for each station's location and a number of contextual factors using regression models and geographical information systems (GIS). Data on accidents are used as references for the analysis of suicides. Findings show that suicides tend to occur during the day and in the spring. They are concentrated in the main transportation hubs but, interestingly, during off-peak hours. However, the highest rates of suicides per passenger are found in Stockholm's subway stations located in the Southern outskirts. More than half of the variation in suicide rates is associated with stations that have walls between the two sides of the platform but still allow some visibility from passers-by. The surrounding environment and socioeconomic context show little effect on suicide rates, but stations embedded in areas with high drug-related crime rates tend to show higher suicide rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
User needs, benefits and integration of robotic systems in a space station laboratory
NASA Technical Reports Server (NTRS)
Farnell, K. E.; Richard, J. A.; Ploge, E.; Badgley, M. B.; Konkel, C. R.; Dodd, W. R.
1989-01-01
The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zhang, Hongbin; Zou, Ling
2014-10-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less
Computer-aided controllability assessment of generic manned Space Station concepts
NASA Technical Reports Server (NTRS)
Ferebee, M. J.; Deryder, L. J.; Heck, M. L.
1984-01-01
NASA's Concept Development Group assessment methodology for the on-orbit rigid body controllability characteristics of each generic configuration proposed for the manned space station is presented; the preliminary results obtained represent the first step in the analysis of these eight configurations. Analytical computer models of each configuration were developed by means of the Interactive Design Evaluation of Advanced Spacecraft CAD system, which created three-dimensional geometry models of each configuration to establish dimensional requirements for module connectivity, payload accommodation, and Space Shuttle berthing; mass, center-of-gravity, inertia, and aerodynamic drag areas were then derived. Attention was also given to the preferred flight attitude of each station concept.
Space Station Environmental Control/Life Support System engineering
NASA Technical Reports Server (NTRS)
Miller, C. W.; Heppner, D. B.
1985-01-01
The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.
The Crew Earth Observations Experiment: Earth System Science from the ISS
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin
2007-01-01
This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.
NASA Astrophysics Data System (ADS)
Fortin, Vincent; Roy, Guy; Donaldson, Norman; Mahidjiba, Ahmed
2015-12-01
The Canadian Precipitation Analysis (CaPA) is a data analysis system used operationally at the Canadian Meteorological Center (CMC) since April 2011 to produce gridded 6-h and 24-h precipitation accumulations in near real-time on a regular grid covering all of North America. The current resolution of the product is 10-km. Due to the low density of the observational network in most of Canada, the system relies on a background field provided by the Regional Deterministic Prediction System (RDPS) of Environment Canada, which is a short-term weather forecasting system for North America. For this reason, the North American configuration of CaPA is known as the Regional Deterministic Precipitation Analysis (RDPA). Early in the development of the CaPA system, weather radar reflectivity was identified as a very promising additional data source for the precipitation analysis, but necessary quality control procedures and bias-correction algorithms were lacking for the radar data. After three years of development and testing, a new version of CaPA-RDPA system was implemented in November 2014 at CMC. This version is able to assimilate radar quantitative precipitation estimates (QPEs) from all 31 operational Canadian weather radars. The radar QPE is used as an observation source and not as a background field, and is subject to a strict quality control procedure, like any other observation source. The November 2014 upgrade to CaPA-RDPA was implemented at the same time as an upgrade to the RDPS system, which brought minor changes to the skill and bias of CaPA-RDPA. This paper uses the frequency bias indicator (FBI), the equitable threat score (ETS) and the departure from the partial mean (DPM) in order to assess the improvements to CaPA-RDPA brought by the assimilation of radar QPE. Verification focuses on the 6-h accumulations, and is done against a network of 65 synoptic stations (approximately two stations per radar) that were withheld from the station data assimilated by CaPA-RDPA. It is shown that the ETS and the DPM scores are both improved for precipitation events between 0.2 mm and 25 mm per 6-h, and that the FBI is unchanged.
Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-10-18
In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with N t UMTS-based transmit station of L t antenna elements and N r receive stations of L r antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance.
Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-01-01
In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with Nt UMTS-based transmit station of Lt antenna elements and Nr receive stations of Lr antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance. PMID:29057805
Nose, M.; Iyemori, T.; Takeda, M.; Kamei, T.; Milling, D.K.; Orr, D.; Singer, H.J.; Worthington, E.W.; Sumitomo, N.
1998-01-01
Wavelet analysis is suitable for investigating waves, such as Pi 2 pulsations, which are limited in both time and frequency. We have developed an algorithm to detect Pi 2 pulsations by wavelet analysis. We tested the algorithm and found that the results of Pi 2 detection are consistent with those obtained by visual inspection. The algorithm is applied in a project which aims at the nowcasting of substorm onsets. In this project we use real-time geomagnetic field data, with a sampling rate of 1 second, obtained at mid- and low-latitude stations (Mineyama in Japan, the York SAMNET station in the U.K., and Boulder in the U.S.). These stations are each separated by about 120??in longitude, so at least one station is on the nightside at all times. We plan to analyze the real-time data at each station using the Pi 2 detection algorithm, and to exchange the detection results among these stations via the Internet. Therefore we can obtain information about substorm onsets in real-time, even if we are on the dayside. We have constructed a system to detect Pi 2 pulsations automatically at Mineyama observatory. The detection results for the period of February to August 1996 showed that the rate of successful detection of Pi 2 pulsations was 83.4% for the nightside (18-06MLT) and 26.5% for the dayside (06-18MLT). The detection results near local midnight (20-02MLT) give the rate of successful detection of 93.2%.
Analysis of remote operating systems for space-based servicing operations, volume 1
NASA Technical Reports Server (NTRS)
1985-01-01
A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.
NASA Technical Reports Server (NTRS)
Goodman, Allen; Shively, R. Joy (Technical Monitor)
1997-01-01
MIDAS, Man-machine Integration Design and Analysis System, is a unique combination of software tools aimed at reducing design cycle time, supporting quantitative predictions of human-system effectiveness and improving the design of crew stations and their associated operating procedures. This project is supported jointly by the US Army and NASA.
1966-11-29
MR. J. WARFEL, D. TRACEY, T. BROWNE, D. KLAUK, MRS L. McCORMICK, C. BATINOVICH, WORKING IN THE DATA ANALYSIS MANAGEMENT AREA OF THE PIONEER TAPE PROCESSING STATION. Pioneer Off-Line Data Processing System.
NASA Technical Reports Server (NTRS)
1971-01-01
The general, operational, design/construction, and subsystem design requirements are presented for a solar powered modular space station system. While these requirements apply only to the initial station system, the system is readily adaptable to a growth configuration.
Science and applications on the space station: A strategic vision
NASA Technical Reports Server (NTRS)
1988-01-01
The central themes relating to science and applications on the Space Station for fiscal year 1989 are discussed. Materials science research is proposed in a wide variety of subfields including protein crystal growth, metallurgy, and properties of fluids. Also proposed are the U.S. Polar Platform, an Extended Duration Crew Operations Project, and a long-range Space Biology Research Project to investigate plant and animal physiology, gravitational biology, life support systems, and exobiology. The exterior of the Space Station will provide attachment points for payloads to study subjects such as the earth and its environment, the sun, other bodies in the solar system, and cosmic objects. Examples of such attached payloads are given. They include a plasma interaction monitoring system, observation of solar features and properties, studies of particle radiation from the sun, cosmic dust collection and analysis, surveys of various cosmic and solar rays, measurements of rainfall and wind and the study of global changes on earth.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Common View Time Transfer Using Worldwide GPS and DMA Monitor Stations
NASA Technical Reports Server (NTRS)
Reid, Wilson G.; McCaskill, Thomas B.; Oaks, Orville J.; Buisson, James A.; Warren, Hugh E.
1996-01-01
Analysis of the on-orbit Navstar clocks and the Global Positioning System (GPS) monitor station reference clocks is performed by the Naval Research Laboratory using both broadcast and postprocessed precise ephemerides. The precise ephemerides are produced by the Defense Mapping Agency (DMA) for each of the GPS space vehicles from pseudo-range measurements collected at five GPS and at five DMA monitor stations spaced around the world. Recently, DMA established an additional site co-located with the US Naval Observatory precise time site. The time reference for the new DMA site is the DoD Master Clock. Now, for the first time, it is possible to transfer time every 15 minutes via common view from the DoD Master Clock to the 11 GPS and DMA monitor stations. The estimated precision of a single common-view time transfer measurement taken over a 15-minute interval was between 1.4 and 2.7 nanoseconds. Using the measurements from all Navstar space vehicles in common view during the 15-minute interval, typically 3-7 space vehicles, improved the estimate of the precision to between 0.65 and 1.13 nanoseconds. The mean phase error obtained from closure of the time transfer around the world using the 11 monitor stations and the 25 space vehicle clocks over a period of 4 months had a magnitude of 31 picoseconds. Analysis of the low noise time transfer from the DoD Master Clock to each of the monitor stations yields not only the bias in the time of the reference clock, but also focuses attention on structure in the behaviour of the reference clock not previously seen. Furthermore, the time transfer provides a a uniformly sampled database of 15-minute measurements that make possible, for the first time, the direct and exhaustive computation of the frequency stability of the monitor station reference clocks. To lend perspective to the analysis, a summary is given of the discontinuities in phase and frequency that occurred in the reference clock at the Master Control Station during the period covered by the analysis.
Bulgarian Seismological and GPS/GNSS networks-current status and practical implementation
NASA Astrophysics Data System (ADS)
Solakov, Dimcho; Simeonova, Stela; Georgiev, Ivan; Dimitrova, Lilia; Slavcheva, Krasimira; Raykova, Plamena
2016-04-01
The scientific information is the latest and one of the best bedrock on which effective policy to combat and cope with natural disasters have to be built. Understanding, monitoring and information for future natural disasters are the way to assist the government and society. Different types of networks provide reliable information on various natural disasters. For example, one of the main priorities of the networks are directed to study seismicity of the Earth, its physical phenomena and fields - with an emphasis on tectonic movements and related risk processes, global changes, rotation and position of the Earth in space. Therefore seismological network using advanced electronic systems and digital seismographs transmission of signals from seismic stations to the centres and the registration, processing and archiving of information is carried out by a specialized computer system. Thus improve the monitoring and analysis of seismicity in the whole plan. Another type networks as permanent GPS/GNSS networks are associated with processing and data analysis, as well as monitoring of recent movements of the earth crust. In this study we focus on Seismological and GPS/GNSS networks on the territory in Bulgaria. At present NIGGG-BAS runs both Bulgarian seismological and GPS/GNSS networks. The Bulgarian seismological network - NOTSSI (National Operative Telemetric System for Seismological Information) was founded at the end of 1980. The network comprises today 15 permanent seismic stations spanning the entire territory of the country and two local net works that are deployed around the town of Provadia and Kozloduy Nuclear Power Plant in Bulgaria. Since 2005-2006, real-time data exchange between Bulgaria and Greece, Romania, Serbia, Macedonia, Slovakia, Slovenia, Austria and other regional and national seismological data centers was implemented. NIGGG, respectively NOTSSI, is responsible for rapid earthquake determination, public information trough media, and information of responsible governmental authorities if necessary urgent activities to be undertaken. The available infrastructure - permanent GNSS stations, spread all over the country allow performing permanent monitoring of the Earth's crust movements on the basis of the obtained velocities of the permanent stations and the time series with their coordinates. Additional information for the current movements is obtained by the processing and analysis of the regular GNSS measurements of geodynamic network. In the GNSS Analysis Center are acquired, processed and analyzed data from more than 70 permanent stations on Bulgarian territory. In the analysis are included also data from permanent stations on the Balkan Peninsula and from the European Permanent Network. Along with the seismological and geological information, the quantitative assessment of the movements of the Earth's crust is of the substantial importance for monitoring of the active tectonic structures and is the base for the seismic hazard assessment.
NASA Astrophysics Data System (ADS)
Kortström, Jari; Tiira, Timo; Kaisko, Outi
2016-03-01
The Institute of Seismology of University of Helsinki is building a new local seismic network, called OBF network, around planned nuclear power plant in Northern Ostrobothnia, Finland. The network will consist of nine new stations and one existing station. The network should be dense enough to provide azimuthal coverage better than 180° and automatic detection capability down to ML -0.1 within a radius of 25 km from the site.The network construction work began in 2012 and the first four stations started operation at the end of May 2013. We applied an automatic seismic signal detection and event location system to a network of 13 stations consisting of the four new stations and the nearest stations of Finnish and Swedish national seismic networks. Between the end of May and December 2013 the network detected 214 events inside the predefined area of 50 km radius surrounding the planned nuclear power plant site. Of those detections, 120 were identified as spurious events. A total of 74 events were associated with known quarries and mining areas. The average location error, calculated as a difference between the announced location from environment authorities and companies and the automatic location, was 2.9 km. During the same time period eight earthquakes between magnitude range 0.1-1.0 occurred within the area. Of these seven could be automatically detected. The results from the phase 1 stations of the OBF network indicates that the planned network can achieve its goals.
Identifying Aircraft and Personnel Needs to Meet On-station Patrol Requirements
2014-06-17
One option would be to develop a fully stochastic model that explicitly examined unplanned maintenance ( Marlow and Novak 2013; Mattila et al. 2008...stationed at the base and the serviceability rate, respectively (as in Marlow and Novak 2013). Next, if one assumes that, for the number of available AU...of Intelligent & Robotic Systems 70: 347-359. 7. Marlow D and Novak A (2013). Fleet Sizing Analysis Methodologies for the Royal Australian Navy’s
NASA Technical Reports Server (NTRS)
1983-01-01
User alignment plan, physical and life sciences and applications, commercial requirements national security, space operations, user needs, foreign contacts, mission scenario analysis and architectural concepts, alternative systems concepts, mission operations architectural development, architectural analysis trades, evolution, configuration, and technology development are discussed.
Nelms, David L.; Harlow, George E.; Brockman, Allen R.
2001-01-01
Apparent ages of ground water are useful in the analysis of various components of flow systems, and results of this analysis can be incorporated into investigations of potential pathways of contaminant transport. This report presents the results of a study in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Naval Weapons Station Yorktown, Base Civil Engineer, Environmental Directorate, to describe the apparent age of ground water of the shallow aquifer system at the Station. Chlorofluorocarbons (CFCs), tritium (3H), dissolved gases, stable isotopes, and water-quality field properties were measured in samples from 14 wells and 16 springs on the Station in March 1997.Nitrogen-argon recharge temperatures range from 5.9°C to 17.3°C with a median temperature of 10.9°C, which indicates that ground-water recharge predominantly occurs in the cold months of the year. Concentrations of excess air vary depending upon geohydrologic setting (recharge and discharge areas). Apparent ground-water ages using a CFC-based dating technique range from 1 to 48 years with a median age of 10 years. The oldest apparent CFC ages occur in the upper parts of the Yorktown-Eastover aquifer, whereas the youngest apparent ages occur in the Columbia aquifer and the upper parts of the discharge area setting, especially springs. The vertical distribution of apparent CFC ages indicates that groundwater movement between aquifers is somewhat retarded by the leaky confining units, but the elapsed time is relatively short (generally less than 35 years), as evidenced by the presence of CFCs at depth. The identification of binary mixtures by CFC-based dating indicates that convergence of flow lines occurs not only at the actual point of discharge, but also in the subsurface.The CFC-based recharge dates are consistent with expected 3H concentrations measured in the water samples from the Station. The concentration of 3H in ground water ranges from below the USGS laboratory minimum reporting limit of 0.3 to 15.9 tritium units (TU) with a median value of 10.8 TU. Water-quality field properties are highly variable for ground water with apparent CFC ages less than 15 years because of geochemical processes within local flow systems. Ground water with apparent CFC ages greater than 15 years represents more stable conditions in subregional flow systems.The range of apparent CFC ages is slightly greater than the ranges in time of travel of ground water calculated for shallow wells (less than 60- feet deep) from flow-path analysis. Calculated travel times to springs can be up to two orders of magnitude greater than the CFC-based apparent ages. Reasonable assumptions of values for hydraulic parameters can result in substantial overestimates for time of travel to springs.Recharge rates computed from apparent CFC ages range from 0.29 to 0.89 feet per year (ft/ yr) with an average value of 0.54 ft/yr. The analysis of apparent CFC ages in conjunction with geohydrologic data indicates that young water (less than 50 years) is present at depth (nearly 120 feet) and that both local and subregional flow systems occur in the shallow aquifer system at the Station. The addition of the dimension of time to the three-dimensional framework of Brockman and others (1997) will benefit current (2001) and future remediation activities by providing estimates of advective transport rates and how these rates vary depending upon geohydrologic setting and position within the ground-water-flow system. Estimated ground-water apparent ages and recharge rates can be used as calibration criteria in simulations of ground-water flow on the Station to refine and constrain future ground-water-flow models of the shallow aquifer system.
Procurement specification color graphic camera system
NASA Technical Reports Server (NTRS)
Prow, G. E.
1980-01-01
The performance and design requirements for a Color Graphic Camera System are presented. The system is a functional part of the Earth Observation Department Laboratory System (EODLS) and will be interfaced with Image Analysis Stations. It will convert the output of a raster scan computer color terminal into permanent, high resolution photographic prints and transparencies. Images usually displayed will be remotely sensed LANDSAT imager scenes.
BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D
Mandelli, D.; Smith, C.; Riley, T.; ...
2016-01-01
The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Watermore » Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Furthermore, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.« less
A knowledge-based machine vision system for space station automation
NASA Technical Reports Server (NTRS)
Chipman, Laure J.; Ranganath, H. S.
1989-01-01
A simple knowledge-based approach to the recognition of objects in man-made scenes is being developed. Specifically, the system under development is a proposed enhancement to a robot arm for use in the space station laboratory module. The system will take a request from a user to find a specific object, and locate that object by using its camera input and information from a knowledge base describing the scene layout and attributes of the object types included in the scene. In order to use realistic test images in developing the system, researchers are using photographs of actual NASA simulator panels, which provide similar types of scenes to those expected in the space station environment. Figure 1 shows one of these photographs. In traditional approaches to image analysis, the image is transformed step by step into a symbolic representation of the scene. Often the first steps of the transformation are done without any reference to knowledge of the scene or objects. Segmentation of an image into regions generally produces a counterintuitive result in which regions do not correspond to objects in the image. After segmentation, a merging procedure attempts to group regions into meaningful units that will more nearly correspond to objects. Here, researchers avoid segmenting the image as a whole, and instead use a knowledge-directed approach to locate objects in the scene. The knowledge-based approach to scene analysis is described and the categories of knowledge used in the system are discussed.
An Observing System Simulation Experiment Approach to Meteorological Network Assessment
NASA Astrophysics Data System (ADS)
Abbasnezhadi, K.; Rasmussen, P. F.; Stadnyk, T.; Boluwade, A.
2016-12-01
A proper knowledge of the spatiotemporal distribution of rainfall is important in order to conduct a mindful investigation of water movement and storage throughout a catchment. Currently, the most accurate precipitation information available for the remote Boreal ecozones of northern Manitoba is coming from the Canadian Precipitation Analysis (CaPA) data assimilation system. Throughout the Churchill River Basin (CRB), CaPA still does not have the proper skill due to the limited number of weather stations. A new approach to experimental network design was investigated based on the concept of Observing System Simulation Experiment (OSSE). The OSSE-based network assessment procedure which simulates the CaPA system provides a scientific and hydrologically significant tool to assess the sensitivity of CaPA precipitation analysis to observation network density throughout the CRB. To simulate CaPA system, synthetic background and station data were simulated, respectively, by adding spatially uncorrelated and correlated Gaussian noises to an assumingly true daily weather field synthesized by a gridded precipitation generator which simulates CaPA data. Given the true reference field on one hand, and a set of pseudo-CaPA analyses associated with different network realizations on the other hand, a WATFLOOD hydrological model was employed to compare the modeled runoff. The simulations showed that as network density increases, the accuracy of CaPA precipitation products improves up to a certain limit beyond which adding more stations to the network does not result in further accuracy.
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.
Exposure to airborne particulate matter in the subway system.
Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier
2015-04-01
The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-08-01
The objective of this report is to develop a generalized methodology for examining water distribution systems for adjustable speed drive (ASD) applications and to provide an example (the City of Chicago 68th Street Water Pumping Station) using the methodology. The City of Chicago water system was chosen as the candidate for analysis because it has a large service area distribution network with no storage provisions after the distribution pumps. Many industrial motors operate at only one speed or a few speeds. By speeding up or slowing down, ASDs achieve gentle startups and gradual shutdowns thereby providing plant equipment a longermore » life with fewer breakdowns while minimizing the energy requirements. The test program substantiated that ASDs enhance product quality and increase productivity in many industrial operations, including extended equipment life. 35 figs.« less
Positioning performance analysis of the time sum of arrival algorithm with error features
NASA Astrophysics Data System (ADS)
Gong, Feng-xun; Ma, Yan-qiu
2018-03-01
The theoretical positioning accuracy of multilateration (MLAT) with the time difference of arrival (TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival (TSOA) algorithm from the root mean square error ( RMSE) and geometric dilution of precision (GDOP) in additive white Gaussian noise (AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.
Reliability considerations of a fuel cell backup power system for telecom applications
NASA Astrophysics Data System (ADS)
Serincan, Mustafa Fazil
2016-03-01
A commercial fuel cell backup power unit is tested in real life operating conditions at a base station of a Turkish telecom operator. The fuel cell system responds to 256 of 260 electric power outages successfully, providing the required power to the base station. Reliability of the fuel cell backup power unit is found to be 98.5% at the system level. On the other hand, a qualitative reliability analysis at the component level is carried out. Implications of the power management algorithm on reliability is discussed. Moreover, integration of the backup power unit to the base station ecosystem is reviewed in the context of reliability. Impact of inverter design on the stability of the output power is outlined. Significant current harmonics are encountered when a generic inverter is used. However, ripples are attenuated significantly when a custom design inverter is used. Further, fault conditions are considered for real world case studies such as running out of hydrogen, a malfunction in the system, or an unprecedented operating scheme. Some design guidelines are suggested for hybridization of the backup power unit for an uninterrupted operation.
NASA Technical Reports Server (NTRS)
1995-01-01
Analyses have been performed at the NASA Lewis Research Center's Power Systems Project Office to support the design and development of the joint U.S./Russian Solar Dynamic Flight Demonstration Project. The optical analysis of the concentrator and solar flux predictions on target receiver surfaces have an important influence on receiver design and control of the Brayton engine.
1998-08-04
manufacturing Military and commercial applications Large market developing for multiple- satellite constellations Will have a high demand if...identified, and market assessments for five different possible projects are discussed. Lessons learned during the first semester of project work are...24 1.2.6 Market Assessments of Five Concepts 26 1.2.7 Project Selection 28 Chapter 2 Requirements Analysis and Top-Level System Architecture 30
Design and implementation of the flight dynamics system for COMS satellite mission operations
NASA Astrophysics Data System (ADS)
Lee, Byoung-Sun; Hwang, Yoola; Kim, Hae-Yeon; Kim, Jaehoon
2011-04-01
The first Korean multi-mission geostationary Earth orbit satellite, Communications, Ocean, and Meteorological Satellite (COMS) was launched by an Ariane 5 launch vehicle in June 26, 2010. The COMS satellite has three payloads including Ka-band communications, Geostationary Ocean Color Imager, and Meteorological Imager. Although the COMS spacecraft bus is based on the Astrium Eurostar 3000 series, it has only one solar array to the south panel because all of the imaging sensors are located on the north panel. In order to maintain the spacecraft attitude with 5 wheels and 7 thrusters, COMS should perform twice a day wheel off-loading thruster firing operations, which affect on the satellite orbit. COMS flight dynamics system provides the general on-station functions such as orbit determination, orbit prediction, event prediction, station-keeping maneuver planning, station-relocation maneuver planning, and fuel accounting. All orbit related functions in flight dynamics system consider the orbital perturbations due to wheel off-loading operations. There are some specific flight dynamics functions to operate the spacecraft bus such as wheel off-loading management, oscillator updating management, and on-station attitude reacquisition management. In this paper, the design and implementation of the COMS flight dynamics system is presented. An object oriented analysis and design methodology is applied to the flight dynamics system design. Programming language C# within Microsoft .NET framework is used for the implementation of COMS flight dynamics system on Windows based personal computer.
Wireless Orbiter Hang-Angle Inclinometer System
NASA Technical Reports Server (NTRS)
Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman
2011-01-01
A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.
Rutten, Niels; Gonzales, José L.; Elbers, Armin R. W.; Velthuis, Annet G. J.
2012-01-01
Background As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood samples to survey egg layer farms. To support future decision making about AI surveillance economic criteria are important. Therefore a cost analysis is performed on systems that use either blood or eggs as sampled material. Methodology/Principal Findings The effectiveness of surveillance using egg or blood samples was evaluated using scenario tree models. Then an economic model was developed that calculates the total costs for eight surveillance systems that have equal effectiveness. The model considers costs for sampling, sample preparation, sample transport, testing, communication of test results and for the confirmation test on false positive results. The surveillance systems varied in sampled material (eggs or blood), sampling location (farm or packing station) and location of sample preparation (laboratory or packing station). It is shown that a hypothetical system in which eggs are sampled at the packing station and samples prepared in a laboratory had the lowest total costs (i.e. € 273,393) a year. Compared to this a hypothetical system in which eggs are sampled at the farm and samples prepared at a laboratory, and the currently implemented system in which blood is sampled at the farm and samples prepared at a laboratory have 6% and 39% higher costs respectively. Conclusions/Significance This study shows that surveillance for avian influenza on egg yolk samples can be done at lower costs than surveillance based on blood samples. The model can be used in future comparison of surveillance systems for different pathogens and hazards. PMID:22523543
NASA Technical Reports Server (NTRS)
1985-01-01
The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.
A system of automated processing of deep water hydrological information
NASA Technical Reports Server (NTRS)
Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.
1974-01-01
An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.
The Automated Logistics Element Planning System (ALEPS)
NASA Technical Reports Server (NTRS)
Schwaab, Douglas G.
1991-01-01
The design and functions of ALEPS (Automated Logistics Element Planning System) is a computer system that will automate planning and decision support for Space Station Freedom Logistical Elements (LEs) resupply and return operations. ALEPS provides data management, planning, analysis, monitoring, interfacing, and flight certification for support of LE flight load planning activities. The prototype ALEPS algorithm development is described.
Harvesting systems for the northern forest hardwoods
Chris B. LeDoux
2011-01-01
This monograph is a summary of research results and environmental compliance measures for timber harvesting operations. Data are presented from the Northern Research Station's forest inventory and analysis of 20 states in the northern forest hardwoods. Harvesting systems available in the region today are summarized. Equations for estimating harvesting costs are...
The New Southern FIA Data Compilation System
V. Clark Baldwin; Larry Royer
2001-01-01
In general, the major national Forest Inventory and Analysis annual inventory emphasis has been on data-base design and not on data processing and calculation of various new attributes. Two key programming techniques required for efficient data processing are indexing and modularization. The Southern Research Station Compilation System utilizes modular and indexing...
NASA Astrophysics Data System (ADS)
Hu, Xiaojing; Li, Qiang; Zhang, Hao; Guo, Ziming; Zhao, Kun; Li, Xinpeng
2018-06-01
Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.
Comparative energy storage assessment item
NASA Astrophysics Data System (ADS)
Giudici, B.
1984-11-01
This analysis, a Space Station application study, rediscovered Integrated Power and Attitude Control (IPAC) and found the approach to have lower initial and resupply weight and lower initial and resupply cost than either battery/CMG or regenerative fuel cell/CMG systems. Preliminary trade studies were performed comparing (IPAC) with equivalent independent electrochemical power and control moment gyro (CMG) control approaches. Technologies considered to have adequate status for an initial Space Station were: (1) nickel cadmium batteries (NiCd batteries), (2) regenerative fuel cells (RFC), (3) Skylab class CMG's, and (4) state of the art IPAC using metal wheels and ball bearing suspension (SOA-IPAC). An advanced IPAC (ADV-IPAC) employing composite rotor material and magnetic suspension was included in the comparisons to illustrate a possible range of performance and cost of inertial systems. The candidates were compared on the basis of initial weight and cost and on the basis of resupply weight and cost for a 15 year mission. Thus, SOA-IPAC would appear to be an attractive approach for the initial Space Station and possible technology improvements would further the appeal for the initial and/or growth Space Station.
Comparative energy storage assessment item
NASA Technical Reports Server (NTRS)
Giudici, B.
1984-01-01
This analysis, a Space Station application study, rediscovered Integrated Power and Attitude Control (IPAC) and found the approach to have lower initial and resupply weight and lower initial and resupply cost than either battery/CMG or regenerative fuel cell/CMG systems. Preliminary trade studies were performed comparing (IPAC) with equivalent independent electrochemical power and control moment gyro (CMG) control approaches. Technologies considered to have adequate status for an initial Space Station were: (1) nickel cadmium batteries (NiCd batteries), (2) regenerative fuel cells (RFC), (3) Skylab class CMG's, and (4) state of the art IPAC using metal wheels and ball bearing suspension (SOA-IPAC). An advanced IPAC (ADV-IPAC) employing composite rotor material and magnetic suspension was included in the comparisons to illustrate a possible range of performance and cost of inertial systems. The candidates were compared on the basis of initial weight and cost and on the basis of resupply weight and cost for a 15 year mission. Thus, SOA-IPAC would appear to be an attractive approach for the initial Space Station and possible technology improvements would further the appeal for the initial and/or growth Space Station.
NASA Technical Reports Server (NTRS)
Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron
1994-01-01
This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.
Collision management utilizing CCD and remote sensing technology
NASA Technical Reports Server (NTRS)
Mcdaniel, Harvey E., Jr.
1995-01-01
With the threat of damage to aerospace systems (space station, shuttle, hypersonic a/c, solar power satellites, loss of life, etc.) from collision with debris (manmade/artificial), there exists an opportunity for the design of a novel system (collision avoidance) to be incorporated into the overall design. While incorporating techniques from ccd and remote sensing technologies, an integrated system utilized in the infrared/visible spectrum for detection, tracking, localization, and maneuvering from doppler shift measurements is achievable. Other analysis such as impact assessment, station keeping, chemical, and optical tracking/fire control solutions are possible through this system. Utilizing modified field programmable gated arrays (software reconfiguring the hardware) the mission and mission effectiveness can be varied. This paper outlines the theoretical operation of a prototype system as it applies to collision avoidance (to be followed up by research).
Solar power satellite system definition study. Volume 3: Reference system description, phase 1
NASA Technical Reports Server (NTRS)
1979-01-01
An analysis of the solar power satellite system is presented. The satellite solar energy conversion and microwave power transmission systems are discussed including the structure, power distribution, thermal control, and energy storage. Space construction and support systems are described including the work support facilities and construction equipment. An assessment of the space transportation system for the satellite and the ground receiving station is presented.
Accuracy analysis of pointing control system of solar power station
NASA Technical Reports Server (NTRS)
Hung, J. C.; Peebles, P. Z., Jr.
1978-01-01
The first-phase effort concentrated on defining the minimum basic functions that the retrodirective array must perform, identifying circuits that are capable of satisfying the basic functions, and looking at some of the error sources in the system and how they affect accuracy. The initial effort also examined three methods for generating torques for mechanical antenna control, performed a rough analysis of the flexible body characteristics of the solar collector, and defined a control system configuration for mechanical pointing control of the array.
Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.
NASA Technical Reports Server (NTRS)
Ludwig, Kimberly; Mackin, Michael; Wright, Theodore
1991-01-01
The authors describe the Ada language software developed to perform the electrical power system monitoring functions for the NASA Lewis Research Center's Power Management and Distribution (PMAD) DC testbed. The results of the effort to implement this monitor are presented. The PMAD DC testbed is a reduced-scale prototype of the electric power system to be used in Space Station Freedom. The power is controlled by smart switches known as power control components (or switchgear). The power control components are currently coordinated by five Compaq 386/20e computers connected through an 802.4 local area network. The power system monitor algorithm comprises several functions, including periodic data acquisition, data smoothing, system performance analysis, and status reporting. Data are collected from the switchgear sensors every 100 ms, then passed through a 2-Hz digital filter. System performance analysis includes power interruption and overcurrent detection. The system monitor required a hardware timer interrupt to activate the data acquisition function. The execution time of the code was optimized by using an assembly language routine. The routine allows direct vectoring of the processor to Ada language procedures that perform periodic control activities.
Information management system study results. Volume 1: IMS study results
NASA Technical Reports Server (NTRS)
1971-01-01
The information management system (IMS) special emphasis task was performed as an adjunct to the modular space station study, with the objective of providing extended depth of analysis and design in selected key areas of the information management system. Specific objectives included: (1) in-depth studies of IMS requirements and design approaches; (2) design and fabricate breadboard hardware for demonstration and verification of design concepts; (3) provide a technological base to identify potential design problems and influence long range planning (4) develop hardware and techniques to permit long duration, low cost, manned space operations; (5) support SR&T areas where techniques or equipment are considered inadequate; and (6) permit an overall understanding of the IMS as an integrated component of the space station.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.
1991-01-01
Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.
Wireless Instrumentation System and Power Management Scheme Therefore
NASA Technical Reports Server (NTRS)
Perotti, Jose (Inventor); Lucena, Angel (Inventor); Eckhoff, Anthony (Inventor); Mata, Carlos T. (Inventor); Blalock, Norman N. (Inventor); Medelius, Pedro J. (Inventor)
2007-01-01
A wireless instrumentation system enables a plurality of low power wireless transceivers to transmit measurement data from a plurality of remote station sensors to a central data station accurately and reliably. The system employs a relay based communications scheme where remote stations that cannot communicate directly with the central station due to interference, poor signal strength, etc., are instructed to communicate with other of the remote stations that act as relays to the central station. A unique power management scheme is also employed to minimize power usage at each remote station and thereby maximize battery life. Each of the remote stations prefembly employs a modular design to facilitate easy reconfiguration of the stations as required.
NASA Technical Reports Server (NTRS)
1983-01-01
Various parameters of the orbital space station are discussed. The space station environment, data management system, communication and tracking, environmental control, and life support system are considered. Specific topics reviewed include crew work stations, restraint systems, stowage, computer hardware, and expert systems.
Estimating the Geocenter from GNSS Observations
NASA Astrophysics Data System (ADS)
Dach, Rolf; Michael, Meindl; Beutler, Gerhard; Schaer, Stefan; Lutz, Simon; Jäggi, Adrian
2014-05-01
The satellites of the Global Navigation Satellite Systems (GNSS) are orbiting the Earth according to the laws of celestial mechanics. As a consequence, the satellites are sensitive to the coordinates of the center of mass of the Earth. The coordinates of the (ground) tracking stations are referring to the center of figure as the conventional origin of the reference frame. The difference between the center of mass and center of figure is the instantaneous geocenter. Following this definition the global GNSS solutions are sensitive to the geocenter. Several studies demonstrated strong correlations of the GNSS-derived geocenter coordinates with parameters intended to absorb radiation pressure effects acting on the GNSS satellites, and with GNSS satellite clock parameters. One should thus pose the question to what extent these satellite-related parameters absorb (or hide) the geocenter information. A clean simulation study has been performed to answer this question. The simulation environment allows it in particular to introduce user-defined shifts of the geocenter (systematic inconsistencies between the satellite's and station's reference frames). These geocenter shifts may be recovered by the mentioned parameters - provided they were set up in the analysis. If the geocenter coordinates are not estimated, one may find out which other parameters absorb the user-defined shifts of the geocenter and to what extent. Furthermore, the simulation environment also allows it to extract the correlation matrix from the a posteriori covariance matrix to study the correlations between different parameter types of the GNSS analysis system. Our results show high degrees of correlations between geocenter coordinates, orbit-related parameters, and satellite clock parameters. These correlations are of the same order of magnitude as the correlations between station heights, troposphere, and receiver clock parameters in each regional or global GNSS network analysis. If such correlations are accepted in a GNSS analysis when estimating station coordinates, geocenter coordinates must be considered as mathematically estimable in a global GNSS analysis. The geophysical interpretation may of course become difficult, e.g., if insufficient orbit models are used.
Koprivica, Mladen; Slavkovic, Vladimir; Neskovic, Natasa; Neskovic, Aleksandar
2016-03-01
As a result of dense deployment of public mobile base stations, additional electromagnetic (EM) radiation occurs in the modern human environment. At the same time, public concern about the exposure to EM radiation emitted by such sources has increased. In order to determine the level of radio frequency radiation generated by base stations, extensive EM field strength measurements were carried out for 664 base station locations, from which 276 locations refer to the case of base stations with antenna system installed on buildings. Having in mind the large percentage (42 %) of locations with installations on buildings, as well as the inevitable presence of people in their vicinity, a detailed analysis of this location category was performed. Measurement results showed that the maximum recorded value of total electric field strength has exceeded International Commission on Non-Ionizing Radiation Protection general public exposure reference levels at 2.5 % of locations and Serbian national reference levels at 15.6 % of locations. It should be emphasised that the values exceeding the reference levels were observed only outdoor, while in indoor total electric field strength in no case exceeded the defined reference levels. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Space Shuttle program communication and tracking systems interface analysis
NASA Technical Reports Server (NTRS)
Dodds, J. G.; Holmes, J. K.; Huth, G. K.; Iwasaki, R. S.; Nilsen, P. W.; Polydoros, A.; Sampaio, D. R.; Udalov, S.
1984-01-01
The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis.
NASA Technical Reports Server (NTRS)
Kofal, Allen E.
1987-01-01
The mission and system requirements for the concept definition and system analysis of the Orbital Transfer Vehicle (OTV) are established. The requirements set forth constitute the single authority for the selection, evaluation, and optimization of the technical performance and design of the OTV. This requirements document forms the basis for the Ground and Space Based OTV concept definition analyses and establishes the physical, functional, performance and design relationships to STS, Space Station, Orbital Maneuvering Vehicle (OMV), and payloads.
STS-71 Shuttle/Mir mission report
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas J.
1995-01-01
The performance measurements of the space shuttle on-orbit flight control system from the STS-71 mission is presented in this post-flight analysis report. This system is crucial to the stabilization of large space structures and will be needed during the assembly of the International Space Station A mission overview is presented, including the in-orbit flight tests (pre-docking with Mir) and the systems analysis during the docking and undocking operations. Systems errors and lessons learned are discussed, with possible corrective procedures presented for the upcoming Mir flight tests.
NASA Technical Reports Server (NTRS)
Morehouse, Dennis V.
2006-01-01
In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.
Personnel occupied woven envelope robot power
NASA Technical Reports Server (NTRS)
1987-01-01
The Human Occupied Space Teleoperator (HOST) system currently under development utilizes a flexible tunnel/Stewart table structure to provide crew access to a pressurized manned work station or POD on the space station without extravehicular activity (EVA). The HOST structure facilitates moving a work station to multiple space station locations. The system has applications to orbiter docking, space station assembly, satellite servicing, space station maintenance, and logistics support. The conceptual systems design behind HOST is described in detail.
The multiparameter station at Galeras Volcano (Colombia): concept and realization
NASA Astrophysics Data System (ADS)
Seidl, Dieter; Hellweg, Margaret; Calvache, Marta; Gomez, Diego; Ortega, Adriana; Torres, Roberto; Böker, Franz; Buttkus, Burkhard; Faber, Eckhard; Greinwald, Siegfried
2003-07-01
Volcanoes are complex systems, in which the interaction of many different physical and chemical factors and processes contribute to changes in activity. In the past 40 years, our ability to observe and quantify short-term changes in a volcano's activity has improved due to the installation of seismometers and tiltmeters and the continuous records they provide. However, due to instrumental limitations, the observations have mainly been used phenomenologically, to draw inferences about possible changes on the basis of previous experience. Since 1995, the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) and the Instituto de Investigación e Información Geocientífica, Minero-Ambiental y Nuclear (INGEOMINAS) have been working to develop and deploy a multiparameter (MP) station on Galeras Volcano, Colombia. This station is designed to concurrently measure various geophysical and geochemical parameters. It includes three broadband seismometers at the crater rim, as well as a more remotely located, broadband seismic reference. At other locations in the crater or on the rim, electromagnetic probes, an infrasound sensor and a weather station are operating. The data from these sensors are digitized at each site with 24-bit digitizers and transmitted by spread-spectrum radio, via repeater when necessary, to the Observatorio Vulcanológico y Sismológico (OVP) in the city of Pasto. There they are received and displayed on a networked personal computer and recorded continuously. The data flow into the routine analysis procedures of the OVP and the continuous data are archived on CD. In addition to the other sensors, a system of specially developed sensors continuously monitors the chemistry and physics of the gases at fumaroles on the active cone. The data from this system are also transmitted in realtime to OVP and recorded. The continuous recordings of the MP station are supplemented by regular thermographic measurements of the surface temperature in the crater using an infrared camera. Joint analysis and interpretation of the data streams from the many sensors of the MP station will improve our understanding of the physical processes occurring in Galeras Volcano.
Pederson, G. L.; Smith, M.M.
1989-01-01
The U.S Geological Survey (USGS) compiled and analyzed existing hydrologic and water-quality data from over 200 stream and estuary stations of the Abemarle-Pamlico estuarine system (A/P) to identify long-term temporal and spatial trends. The dataset included seven stations of the USGS National Stream Quality Accounting Network, two stations of the National Atmospheric Precipitation Deposition monitoring network, stations of the N.C. Department of Natural Resources and Community Development, and stations from 25 reports by individual investigators. Regression-residuals analysis, the seasonal Kendall's Tau test for trends, and graphical analysis using annual box plots were employed to determine trends. Profound change has occurred in the water quality of the A/P area over the last 30 years. Analysis of water-quality data upstream from the estuaries indicates increases of discharge-adjusted values of specific conductance, alkalinity, phosphorous, hardness, chloride, and dissolved solids. In the estuaries, pH is increasing except in the Pamlico River, where it is decreasing. There is a generalized decrease in suspended inorganic material in the system. Salinities are decreasing for sections of the Pamlico River, and increasing for parts of Albemarle Sound. Nitrogen concentrations are decreasing except in the Pamlico River, where they are increasing. Phosphorus concentrations are increasing in the Pamlico River and decreasing elsewhere. Annual average data show that nitrogen is the limiting nutrient in the Neuse and Pamlico Rivers. Phosphorus is limiting in the rest of the area. Chlorophyll-a levels are increasing in parts of the Neuse and Pamlico Rivers and decreasing in parts of the Chowan River. To evaluate the effect of basin characteristics on water quality, linear correlation was used. Agricultural crop variables produced the most correlations with water-quality data. Fertilizer usage had little detectable relation to water quality in the study area. In the section of the Pamlico River near Aurora, relations between employment, road mileages, and water quality indicated effects of development in the area.
International Space Station ECLSS Technical Task Agreement Summary Report
NASA Technical Reports Server (NTRS)
Ray, C. D. (Compiler); Salyer, B. H. (Compiler)
1999-01-01
This Technical Memorandum provides a summary of current work accomplished under Technical Task Agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). Current activities include ECLSS component design and development, computer model development, subsystem/integrated system testing, life testing, and general test support provided to the ISS program. Under ECLSS design, MSFC was responsible for the six major ECLSS functions, specifications and standard, component design and development, and was the architectural control agent for the ISS ECLSS. MSFC was responsible for ECLSS analytical model development. In-house subsystem and system level analysis and testing were conducted in support of the design process, including testing air revitalization, water reclamation and management hardware, and certain nonregenerative systems. The activities described herein were approved in task agreements between MSFC and NASA Headquarters Space Station Program Management Office and their prime contractor for the ISS, Boeing. These MSFC activities are in line to the designing, development, testing, and flight of ECLSS equipment planned by Boeing. MSFC's unique capabilities for performing integrated systems testing and analyses, and its ability to perform some tasks cheaper and faster to support ISS program needs, are the basis for the TTA activities.
A Simulation Analysis of an Automated Identification Processor for the Tactical Air Control System.
1986-06-01
available at the work station for the M&I operators to identify aircraft. Some data is provided via the console such as the IFF/SIF and the airspace control...factors led to the development of efficient work stations for the functional positions in the air defense mission. Experimental Design Experiments are...techniques that helped keep the thesis work "on track"! The Research Design The research plan or design of this thesis effort is not unique. In fact
System Hazard Analysis of TACOM’s Crew Station/Turret Motion Base Simulator
1992-01-01
Safety devices have been located on the equipment where necessary and are described in the Contraves USA Manual No. IM-27751, "INSTRUCTION MANUAL FOR...OF TACOM’s CREW STATION/TURRET MOTION BASE SIMULATOR" and Contraves USA Manual No. IM-27751, "INSTRUCTION MANUAL FOR TACOM" in an attempt to satisfy... Contraves USA and assembled jointly by Contraves USA and TACOM. All control compensation was performed by TACOM. The CS/TMBS is expected to open doors
International GPS Service for Geodynamics
NASA Technical Reports Server (NTRS)
Zumberge, J. F. (Editor); Urban, M. P. (Editor); Liu, R. (Editor); Neilan, R. E. (Editor)
1996-01-01
This 1995 annual report of the IGS International GPS (Global Positioning System) Service for Geodynamics - describes the second operational year of the service. It provides the many IGS contributing agencies and the rapidly growing user community with essential information on current organizational and technical matters promoting the IGS standards and products (including organizational framework, data processing strategies, and statistics showing the remarkable expansion of the GPS monitoring network, the improvement of IGS performance, and product quality). It also introduces important practical concepts for network densification by integration of regional stations and the combination of station coordinate solutions. There are groups of articles describing general aspects of the IGS, the Associate Analysis Centers (AACs), Data Centers, and IGS stations.
Space station thermal control surfaces. [space radiators
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.
1979-01-01
Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.
NASA Technical Reports Server (NTRS)
Clanton, Stephen E.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
A challenging part of International Space Station (ISS) thermal control design is the ability to incorporate design changes into an integrated system without negatively impacting performance. The challenge presents itself in that the typical ISS Internal Active Thermal Control System (IATCS) consists of an integrated hardware/software system that provides active coolant resources to a variety of users. Software algorithms control the IATCS to specific temperatures, flow rates, and pressure differentials in order to meet the user-defined requirements. What may seem to be small design changes imposed on the system may in fact result in system instability or the temporary inability to meet user requirements. The purpose of this paper is to provide a brief description of the solution process and analyses used to implement one such design change that required the incorporation of an automatic coolant bypass in the ISS Node 2 element.
Bluetooth-based distributed measurement system
NASA Astrophysics Data System (ADS)
Tang, Baoping; Chen, Zhuo; Wei, Yuguo; Qin, Xiaofeng
2007-07-01
A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.
Analysis and Research on the effect of the Operation of Small Hydropower in the Regional Power Grid
NASA Astrophysics Data System (ADS)
Ang, Fu; Guangde, Dong; Xiaojun, Zhu; Ruimiao, Wang; Shengyi, Zhu
2018-03-01
The analysis of reactive power balance and voltage of power network not only affects the system voltage quality, but also affects the economic operation of power grid. In the calculation of reactive power balance and voltage analysis in the past, the problem of low power and low system voltage has been the concern of people. When small hydropower stations in the wet period of low load, the analysis of reactive power surplus and high voltage for the system, if small hydropower unit the capability of running in phase is considered, it can effectively solve the system low operation voltage of the key point on the high side.
47 CFR 95.139 - Adding a small base station or a small control station.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Adding a small base station or a small control... base station or a small control station. (a) Except for a GMRS system licensed to a non-individual, one or more small base stations or a small control station may be added to a GMRS system at any point...
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.
1994-01-01
This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.
Three-Dimensional Displays In The Future Flight Station
NASA Astrophysics Data System (ADS)
Bridges, Alan L.
1984-10-01
This review paper summarizes the development and applications of computer techniques for the representation of three-dimensional data in the future flight station. It covers the development of the Lockheed-NASA Advanced Concepts Flight Station (ACFS) research simulators. These simulators contain: A Pilot's Desk Flight Station (PDFS) with five 13- inch diagonal, color, cathode ray tubes on the main instrument panel; a computer-generated day and night visual system; a six-degree-of-freedom motion base; and a computer complex. This paper reviews current research, development, and evaluation of easily modifiable display systems and software requirements for three-dimensional displays that may be developed for the PDFS. This includes the analysis and development of a 3-D representation of the entire flight profile. This 3-D flight path, or "Highway-in-the-Sky", will utilize motion and perspective cues to tightly couple the human responses of the pilot to the aircraft control systems. The use of custom logic, e.g., graphics engines, may provide the processing power and architecture required for 3-D computer-generated imagery (CGI) or visual scene simulation (VSS). Diffraction or holographic head-up displays (HUDs) will also be integrated into the ACFS simulator to permit research on the requirements and use of these "out-the-window" projection systems. Future research may include the retrieval of high-resolution, perspective view terrain maps which could then be overlaid with current weather information or other selectable cultural features.
NASA Astrophysics Data System (ADS)
Sopaheluwakan, Ardhasena; Fajariana, Yuaning; Satyaningsih, Ratna; Aprilina, Kharisma; Astuti Nuraini, Tri; Ummiyatul Badriyah, Imelda; Lukita Sari, Dyah; Haryoko, Urip
2017-04-01
Inhomogeneities are often found in long records of climate data. These can occur because of various reasons, among others such as relocation of observation site, changes in observation method, and the transition to automated instruments. Changes to these automated systems are inevitable, and it is taking place worldwide in many of the National Meteorological Services. However this shift of observational practice must be done cautiously and a sufficient period of parallel observation of co-located manual and automated systems should take place as suggested by the World Meteorological Organization. With a sufficient parallel observation period, biases between the two systems can be analyzed. In this study we analyze the biases of a yearlong parallel observation of manual and automatic weather stations in 30 locations in Indonesia. The location of the sites spans from east to west of approximately 45 longitudinal degrees covering different climate characteristics and geographical settings. We study measurements taken by both sensors for temperature and rainfall parameters. We found that the biases from both systems vary from place to place and are more dependent to the setting of the instrument rather than to the climatic and geographical factors. For instance, daytime observations of the automatic weather stations are found to be consistently higher than the manual observation, and vice versa night time observations of the automatic weather stations are lower than the manual observation.
Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain.
Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; van Drooge, Barend L; Reche, Cristina; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Centelles, Sonia; Querol, Xavier
2016-01-01
The present work assesses indoor air quality in stations of the Barcelona subway system. PM2.5 concentrations on the platforms of 4 subway stations were measured during two different seasons and the chemical composition was determined. A Positive Matrix Factorization analysis was performed to identify and quantify the contributions of major PM2.5 sources in the subway stations. Mean PM2.5 concentrations varied according to the stations design and seasonal periods. PM2.5 was composed of haematite, carbonaceous aerosol, crustal matter, secondary inorganic compounds, trace elements, insoluble sulphate and halite. Organic compounds such as PAHs, nicotine, levoglucosan and aromatic musk compounds were also identified. Subway PM2.5 source comprised emissions from rails, wheels, catenaries, brake pads and pantographs. The subway source showed different chemical profiles for each station, but was always dominated by Fe. Control actions on the source are important for the achievement of better air quality in the subway environment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Acker, James G.; Shen, Suhung; Leptoukh, Gregory G.; Lee, Zhongping
2012-01-01
Oceanographic time-series stations provide vital data for the monitoring of oceanic processes, particularly those associated with trends over time and interannual variability. There are likely numerous locations where the establishment of a time-series station would be desirable, but for reasons of funding or logistics, such establishment may not be feasible. An alternative to an operational time-series station is monitoring of sites via remote sensing. In this study, the NASA Giovanni data system is employed to simulate the establishment of two time-series stations near the outflow region of California s Eel River, which carries a high sediment load. Previous time-series analysis of this location (Acker et al. 2009) indicated that remotely-sensed chl a exhibits a statistically significant increasing trend during summer (low flow) months, but no apparent trend during winter (high flow) months. Examination of several newly-available ocean data parameters in Giovanni, including 8-day resolution data, demonstrates the differences in ocean parameter trends at the two locations compared to regionally-averaged time-series. The hypothesis that the increased summer chl a values are related to increasing SST is evaluated, and the signature of the Eel River plume is defined with ocean optical parameters.
NASA Astrophysics Data System (ADS)
Blewitt, Geoffrey
2008-12-01
Precise point positioning (PPP) has become popular for Global Positioning System (GPS) geodetic network analysis because for n stations, PPP has O(n) processing time, yet solutions closely approximate those of O(n3) full network analysis. Subsequent carrier phase ambiguity resolution (AR) further improves PPP precision and accuracy; however, full-network bootstrapping AR algorithms are O(n4), limiting single network solutions to n < 100. In this contribution, fixed point theorems of AR are derived and then used to develop "Ambizap," an O(n) algorithm designed to give results that closely approximate full network AR. Ambizap has been tested to n ≈ 2800 and proves to be O(n) in this range, adding only ˜50% to PPP processing time. Tests show that a 98-station network is resolved on a 3-GHz CPU in 7 min, versus 22 h using O(n4) AR methods. Ambizap features a novel network adjustment filter, producing solutions that precisely match O(n4) full network analysis. The resulting coordinates agree to ≪1 mm with current AR methods, much smaller than the ˜3-mm RMS precision of PPP alone. A 2000-station global network can be ambiguity resolved in ˜2.5 h. Together with PPP, Ambizap enables rapid, multiple reanalysis of large networks (e.g., ˜1000-station EarthScope Plate Boundary Observatory) and facilitates the addition of extra stations to an existing network solution without need to reprocess all data. To meet future needs, PPP plus Ambizap is designed to handle ˜10,000 stations per day on a 3-GHz dual-CPU desktop PC.
NASA Astrophysics Data System (ADS)
Singh, Jitendra; Sekharan, Sheeba; Karmakar, Subhankar; Ghosh, Subimal; Zope, P. E.; Eldho, T. I.
2017-04-01
Mumbai, the commercial and financial capital of India, experiences incessant annual rain episodes, mainly attributable to erratic rainfall pattern during monsoons and urban heat-island effect due to escalating urbanization, leading to increasing vulnerability to frequent flooding. After the infamous episode of 2005 Mumbai torrential rains when only two rain gauging stations existed, the governing civic body, the Municipal Corporation of Greater Mumbai (MCGM) came forward with an initiative to install 26 automatic weather stations (AWS) in June 2006 (MCGM 2007), which later increased to 60 AWS. A comprehensive statistical analysis to understand the spatio-temporal pattern of rainfall over Mumbai or any other coastal city in India has never been attempted earlier. In the current study, a thorough analysis of available rainfall data for 2006-2014 from these stations was performed; the 2013-2014 sub-hourly data from 26 AWS was found useful for further analyses due to their consistency and continuity. Correlogram cloud indicated no pattern of significant correlation when we considered the closest to the farthest gauging station from the base station; this impression was also supported by the semivariogram plots. Gini index values, a statistical measure of temporal non-uniformity, were found above 0.8 in visible majority showing an increasing trend in most gauging stations; this sufficiently led us to conclude that inconsistency in daily rainfall was gradually increasing with progress in monsoon. Interestingly, night rainfall was lesser compared to daytime rainfall. The pattern-less high spatio-temporal variation observed in Mumbai rainfall data signifies the futility of independently applying advanced statistical techniques, and thus calls for simultaneous inclusion of physics-centred models such as different meso-scale numerical weather prediction systems, particularly the Weather Research and Forecasting (WRF) model.
NASA Technical Reports Server (NTRS)
Palguta, T.; Bradley, W.; Stockton, T.
1988-01-01
The purpose is to describe the logistics study background and approach to providing estimates of of logistics support requirements for Office of Space Science and Applications' payloads in the Space Station era. A concise summary is given of the study results. Future logistics support analysis tasks are identified.
Resilient Energy Systems | Integrated Energy Solutions | NREL
of microgrids Business model and valuation analysis for resilience Photovoltaic plus storage analysis Framework for Mini-Grids NREL has teamed with the Global Lighting and Energy Access Partnership and the U.S mini-grids. NREL Enhances Energy Resiliency at Marine Corps Air Station Miramar NREL has partnered with
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station missions are analyzed. Telecommunications missions, space science, Earth sensing, and space testing missions, research and applications missions, defense missions, and satellite servicing missions are modeled and mission needs discussed. The satellite servicing missions are analyzed in detail, including construction and servicing equipment requirements, mission needs and benefits, differential drag characteristics of co-orbiting satellites, and satellite servicing transportation requirements.
Towards marine seismological Network: real time small aperture seismic array
NASA Astrophysics Data System (ADS)
Ilinskiy, Dmitry
2017-04-01
Most powerful and dangerous seismic events are generated in underwater subduction zones. Existing seismological networks are based on land seismological stations. Increased demands for accuracy of location, magnitude, rupture process of coming earthquakes and at the same time reduction of data processing time require information from seabed seismic stations located near the earthquake generation area. Marine stations provide important contribution for clarification of the tectonic settings in most active subduction zones of the world. Early warning system for subduction zone area is based on marine seabed array which located near the area of most hazardous seismic zone in the region. Fast track processing for location of the earthquake hypocenter and energy takes place in buoy surface unit. Information about detected and located earthquake reaches the onshore seismological center earlier than the first break waves from the same earthquake will reach the nearest onshore seismological station. Implementation of small aperture array is based on existed and shown a good proven performance and costs effective solutions such as weather moored buoy and self-pop up autonomous seabed seismic nodes. Permanent seabed system for real-time operation has to be installed in deep sea waters far from the coast. Seabed array consists of several self-popup seismological stations which continuously acquire the data, detect the events of certain energy class and send detected event parameters to the surface buoy via acoustic link. Surface buoy unit determine the earthquake location by receiving the event parameters from seabed units and send such information in semi-real time to the onshore seismological center via narrow band satellite link. Upon the request from the cost the system could send wave form of events of certain energy class, bottom seismic station battery status and other environmental parameters. When the battery life of particular seabed unit is close to became empty, the seabed unit is switching into sleep mode and send that information to surface buoy and father to the onshore data center. Then seabed unit can wait for the vessel of opportunity for recovery of seabed unit to sea surface and replacing seabed station to another one with fresh batteries. All collected permanent seismic data by seabed unit could than downloaded for father processing and analysis. In our presentation we will demonstrate the several working prototypes of proposed system such as real time cable broad band seismological station and real time buoy seabed seismological station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.T. McLean
2005-06-01
This research examined the relationship between sediment sample data taken at Potential Release Sites (PRSs) and storm water samples taken at selected sites in and around Los Alamos National Laboratory (LANL). The PRSs had been evaluated for erosion potential and a matrix scoring system implemented. It was assumed that there would be a stronger relationship between the high erosion PRSs and the storm water samples. To establish the relationship, the research was broken into two areas. The first area was raster-based modeling, and the second area was data analysis utilizing the raster based modeling results and the sediment and stormmore » water sample results. Two geodatabases were created utilizing raster modeling functions and the Arc Hydro program. The geodatabase created using only Arc Hydro functions contains very fine catchment drainage areas in association with the geometric network and can be used for future contaminant tracking. The second geodatabase contains sub-watersheds for all storm water stations used in the study along with a geometric network. The second area of the study focused on data analysis. The analytical sediment data table was joined to the PRSs spatial data in ArcMap. All PRSs and PRSs with high erosion potential were joined separately to create two datasets for each of 14 analytes. Only the PRSs above the background value were retained. The storm water station spatial data were joined to the table of analyte values that were either greater than the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP) benchmark value, or the Department of Energy (DOE) Drinking Water Defined Contribution Guideline (DWDCG). Only the storm water stations were retained that had sample values greater than the NPDES MSGP benchmark value or the DOE DWDCG. Separate maps were created for each analyte showing the sub-watersheds, the PRSs over background, and the storm water stations greater than the NPDES MSGP benchmark value or the DOE DWDCG. Tables were then created for each analyte that listed the PRSs average value by storm water station allowing a tabular view of the mapped data. The final table that was created listed the number of high erosion PRSs and regular PRSs over background values that were contained in each watershed. An overall relationship between the high erosion PRSs or the regular PRSs and the storm water stations was not identified through the methods used in this research. However, the Arc Hydro data models created for this analysis were used to track possible sources of contamination found through sampling at the storm water gaging stations. This geometric network tracing was used to identify possible relationships between the storm water stations and the PRSs. The methods outlined for the geometric network tracing could be used to find other relationships between the sites. A cursory statistical analysis was performed which could be expanded and applied to the data sets generated during this research to establish a broader relationship between the PRSs and storm water stations.« less
Multiple channel optical data acquisition system
Fasching, G.E.; Goff, D.R.
1985-02-22
A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.
Space Station flexible dynamics under plume impingement
NASA Technical Reports Server (NTRS)
Williams, Trevor
1993-01-01
Assembly of the Space Station requires numerous construction flights by the Space Shuttle. A particularly challenging problem is that of control of each intermediate station configuration when the shuttle orbiter is approaching it to deliver the next component. The necessary braking maneuvers cause orbiter thruster plumes to impinge on the station, especially its solar arrays. This in turn causes both overall attitude errors and excitation of flexible-body vibration modes. These plume loads are predicted to lead to CMG saturation during the approach of the orbiter to the SC-5 station configuration, necessitating the use of the station RCS jets for desaturation. They are also expected to lead to significant excitation of solar array vibrations. It is therefore of great practical importance to investigate the effects of plume loads on the flexible dynamics of station configuration SC-5 as accurately as possible. However, this system possesses a great many flexible modes (89 below 5 rad/s), making analysis time-consuming and complicated. Model reduction techniques can be used to overcome this problem, reducing the system model to one which retains only the significant dynamics, i.e. those which are strongly excited by the control inputs or plume disturbance forces and which strongly couple with the measured outputs. The particular technique to be used in this study is the subsystem balancing approach which was previously developed by the present investigator. This method is very efficient computationally. Furthermore, it gives accurate results even for the difficult case where the structure has many closed-spaced natural frequencies, when standard modal truncation can give misleading results. Station configuration SC-5 is a good example of such a structure.
Development of the HyStEP Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Terry A.; Ainscough, Christopher; Terlip, Danny
2016-04-05
With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part ofmore » the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device. The HyStEP Device is intended to be a surrogate for FCEVs that can be used to collect data on hydrogen station fueling performance. The device includes three Type IV 70 MPa tanks capable of storing a total of 9 kg H2 that are instrumented with pressure and temperature sensors. The tanks can be used individually or in parallel to simulate small, medium, and large fuel systems. The tanks are connected to a 70 MPa receptacle equipped with pressure and temperature sensor as well as infrared communications integrated with a data acquisition, analysis, and control system. The HyStEP Device is capable of performing tests defined in the test method standard CSA HGV 4.3 and providing the data needed to ensure that hydrogen stations meet the fueling protocol standard SAE J2601-2014. These include IrDA communication tests, fault detection tests, and communication and non-communication fueling.« less
Vitner, D; Paltieli, Y; Haberman, S; Gonen, R; Ville, Y; Nizard, J
2015-11-01
To assess the relationship between fetal head position and head station during labor, as measured using an ultrasound-based system, and the occurrence of occiput posterior (OP) position at delivery. This was an international prospective observational study including women who delivered between January 2009 and September 2013 in four centers: one in Brooklyn, NY, USA; one in Haifa, Israel; and two in Paris, France. We used an ultrasound-based system (LaborPro) to monitor fetal head station and position non-invasively throughout labor. We collected data on demographics, labor parameters and outcome. A total of 595 women were included. In 563 (94.6%) women, fetal head position at delivery was occiput anterior (OA), in 31 (5.2%) it was OP and in one (0.2%) it was occiput transverse. In 89% of pregnancies with intrapartum OP when fetal head station was above -2, the head position turned to OA at delivery; the equivalent figures were 74% and 63% OA at delivery when intrapartum OP was diagnosed at head stations of -2 to < 0, and 0 and below, respectively. Cesarean delivery was performed in 35% of pregnancies with fetal head in OP position at delivery, as opposed to 10% of those with non-OP position at delivery. On retrospective analysis, all deliveries in OP were already in OP at station -2 and below. In this first assessment of fetal head position at delivery according to fetal head position at various station levels, our data show that 100% of OP positions at delivery were already in OP position at station -2 and below. We did not observe rotation from a non-OP to an OP position from station -2 and below. Nearly two-thirds of fetuses in OP at station 0 and below will rotate to an OA position for delivery. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
User Needs, Benefits, and Integration of Robotic Systems in a Space Station Laboratory
NASA Technical Reports Server (NTRS)
Dodd, W. R.; Badgley, M. B.; Konkel, C. R.
1989-01-01
The methodology, results and conclusions of all tasks of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in a Space Station Laboratory are summarized. Study goals included the determination of user requirements for robotics within the Space Station, United States Laboratory. In Task 1, three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. In Task 2, a NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of microgravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz) and Level 2 (less than equal 10-6 G at 0.1 Hz). This task included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in Task 3 in order to determine their ability to perform a range of tasks related to the three microgravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements for an orbital flight demonstration were determined in Task 4. Task 5 assessed the impact of robotics.
Automation of the space station core module power management and distribution system
NASA Technical Reports Server (NTRS)
Weeks, David J.
1988-01-01
Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.
Implementation method of multi-terminal DC control system
NASA Astrophysics Data System (ADS)
Yi, Liu; Hao-Ran, Huang; Jun-Wen, Zhou; Hong-Guang, Guo; Yu-Yong, Zhou
2018-04-01
Currently the multi-terminal DC system (MTDC) has more stations. Each station needs operators to monitor and control the device. It needs much more operation and maintenance, low efficiency and small reliability; for the most important reason, multi-terminal DC system has complex control mode. If one of the stations has some problem, the control of the whole system should have problems. According to research of the characteristics of multi-terminal DC (VSC-MTDC) systems, this paper presents a strong implementation of the multi-terminal DC Supervisory Control and Data Acquisition (SCADA) system. This system is intelligent, can be networking, integration and intelligent. A master control system is added in each station to communication with the other stations to send current and DC voltage value to pole control system for each station. Based on the practical application and information feedback in the China South Power Grid research center VSC-MTDC project, this system is higher efficiency and save the cost on the maintenance of convertor station to improve the intelligent level and comprehensive effect. And because of the master control system, a multi-terminal system hierarchy coordination control strategy is formed, this make the control and protection system more efficiency and reliability.
An Analysis of Our Cable Distribution System: Its Current and Future Capabilities.
ERIC Educational Resources Information Center
Clarke, Tobin de Leon
Three goals have been set for San Joaquin Delta College Learning Resource Center's cable distribution system: it is to be made useable, useful, and flexible. Presently the system consists of a microwave dish installed on one building which points to a relay station with approximately one and one half miles of cable pulled to various locations. A…
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Smith, Barry R.
1993-01-01
The process of designing crew stations for large-scale, complex automated systems is made difficult because of the flexibility of roles that the crew can assume, and by the rapid rate at which system designs become fixed. Modern cockpit automation frequently involves multiple layers of control and display technology in which human operators must exercise equipment in augmented, supervisory, and fully automated control modes. In this context, we maintain that effective human-centered design is dependent on adequate models of human/system performance in which representations of the equipment, the human operator(s), and the mission tasks are available to designers for manipulation and modification. The joint Army-NASA Aircrew/Aircraft Integration (A3I) Program, with its attendant Man-machine Integration Design and Analysis System (MIDAS), was initiated to meet this challenge. MIDAS provides designers with a test bed for analyzing human-system integration in an environment in which both cognitive human function and 'intelligent' machine function are described in similar terms. This distributed object-oriented simulation system, its architecture and assumptions, and our experiences from its application in advanced aviation crew stations are described.
Expanding Bicycle-Sharing Systems: Lessons Learnt from an Analysis of Usage
Zhang, Ying; Thomas, Tom; Brussel, M. J. G.; van Maarseveen, M. F. A. M.
2016-01-01
Bike-sharing programs, with initiatives to increase bike use and improve accessibility of urban transit, have received increasing attention in growing number of cities across the world. The latest generation of bike-sharing systems has employed smart card technology that produces station-based data or trip-level data. This facilitates the studies of the practical use of these systems. However, few studies have paid attention to the changes in users and system usage over the years, as well as the impact of system expansion on its usage. Monitoring the changes of system usage over years enables the identification of system performance and can serve as an input for improving the location-allocation of stations. The objective of this study is to explore the impact of the expansion of a bicycle-sharing system on the usage of the system. This was conducted for a bicycle-sharing system in Zhongshan (China), using operational usage data of different years following system expansion. To this end, we performed statistical and spatial analyses to examine the changes in both users and system usage between before and after the system expansion. The findings show that there is a big variation in users and aggregate usage following the system expansion. However, the trend in spatial distribution of demand shows no substantial difference over the years, i.e. the same high-demand and low-demand areas appear. There are decreases in demand for some old stations over the years, which can be attributed to either the negative performance of the system or the competition of nearby new stations. Expanding the system not only extends the original users’ ability to reach new areas but also attracts new users to use bike-sharing systems. In the conclusions, we present and discuss the findings, and offer recommendations for the further expansion of system. PMID:27977794
Expanding Bicycle-Sharing Systems: Lessons Learnt from an Analysis of Usage.
Zhang, Ying; Thomas, Tom; Brussel, M J G; van Maarseveen, M F A M
2016-01-01
Bike-sharing programs, with initiatives to increase bike use and improve accessibility of urban transit, have received increasing attention in growing number of cities across the world. The latest generation of bike-sharing systems has employed smart card technology that produces station-based data or trip-level data. This facilitates the studies of the practical use of these systems. However, few studies have paid attention to the changes in users and system usage over the years, as well as the impact of system expansion on its usage. Monitoring the changes of system usage over years enables the identification of system performance and can serve as an input for improving the location-allocation of stations. The objective of this study is to explore the impact of the expansion of a bicycle-sharing system on the usage of the system. This was conducted for a bicycle-sharing system in Zhongshan (China), using operational usage data of different years following system expansion. To this end, we performed statistical and spatial analyses to examine the changes in both users and system usage between before and after the system expansion. The findings show that there is a big variation in users and aggregate usage following the system expansion. However, the trend in spatial distribution of demand shows no substantial difference over the years, i.e. the same high-demand and low-demand areas appear. There are decreases in demand for some old stations over the years, which can be attributed to either the negative performance of the system or the competition of nearby new stations. Expanding the system not only extends the original users' ability to reach new areas but also attracts new users to use bike-sharing systems. In the conclusions, we present and discuss the findings, and offer recommendations for the further expansion of system.
Interdisciplinary analysis procedures in the modeling and control of large space-based structures
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Stockwell, Alan E.; Kim, Zeen C.
1987-01-01
The paper describes a computer software system called the Integrated Multidisciplinary Analysis Tool, IMAT, that has been developed at NASA Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven interactive executive program, IMAT links a relational database to commercial structural and controls analysis codes. The paper describes the procedures followed to analyze a complex satellite structure and control system. The codes used to accomplish the analysis are described, and an example is provided of an application of IMAT to the analysis of a reference space station subject to a rectangular pulse loading at its docking port.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.
2002-01-01
This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.
Space Operations Center system analysis study extension. Volume 2: Programmatics and cost
NASA Technical Reports Server (NTRS)
1982-01-01
A summary of Space Operations Center (SOC) orbital space station costs, program options and program recommendations is presented. Program structure, hardware commonality, schedules and program phasing are considered. Program options are analyzed with respect to mission needs, design and technology options, and anticipated funding constraints. Design and system options are discussed.
RadNet Air Data From Honolulu, HI
This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Birmingham, AL
This page presents radiation air monitoring and air filter analysis data for Birmingham, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Dallas, TX
This page presents radiation air monitoring and air filter analysis data for Dallas, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Omaha, NE
This page presents radiation air monitoring and air filter analysis data for Omaha, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Montgomery, AL
This page presents radiation air monitoring and air filter analysis data for Montgomery, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Burlington, VT
This page presents radiation air monitoring and air filter analysis data for Burlington, VT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Washington, DC
This page presents radiation air monitoring and air filter analysis data for Washington, DC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Rochester, NY
This page presents radiation air monitoring and air filter analysis data for Rochester, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Tampa, FL
This page presents radiation air monitoring and air filter analysis data for Tampa, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Cincinnati, OH
This page presents radiation air monitoring and air filter analysis data for Cincinnati, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fairbanks, AK
This page presents radiation air monitoring and air filter analysis data for Fairbanks, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
This page presents radiation air monitoring and air filter analysis data for Yuma, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Kalispell, MT
This page presents radiation air monitoring and air filter analysis data for Kalispell, MT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Kearney, NE
This page presents radiation air monitoring and air filter analysis data for Kearney, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Phoenix, AZ
This page presents radiation air monitoring and air filter analysis data for Phoenix, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Pierre, SD
This page presents radiation air monitoring and air filter analysis data for Pierre, SD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Augusta, GA
This page presents radiation air monitoring and air filter analysis data for Augusta, GA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Syracuse, NY
This page presents radiation air monitoring and air filter analysis data for Syracuse, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Albany, NY
This page presents radiation air monitoring and air filter analysis data for Albany, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Anchorage, AK
This page presents radiation air monitoring and air filter analysis data for Anchorage, AK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Philadelphia, PA
This page presents radiation air monitoring and air filter analysis data for Philadelphia, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Houston, TX
This page presents radiation air monitoring and air filter analysis data for Houston, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Duluth, MN
This page presents radiation air monitoring and air filter analysis data for Duluth, MN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Raleigh, NC
This page presents radiation air monitoring and air filter analysis data for Raleigh, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Louisville, KY
This page presents radiation air monitoring and air filter analysis data for Louisville, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Cleveland, OH
This page presents radiation air monitoring and air filter analysis data for Cleveland, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Carlsbad, NM
This page presents radiation air monitoring and air filter analysis data for Carlsbad, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Corvallis, OR
This page presents radiation air monitoring and air filter analysis data for Corvallis, OR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Orono, ME
This page presents radiation air monitoring and air filter analysis data for Orono, ME from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
This page presents radiation air monitoring and air filter analysis data for Reno, NV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Nashville, TN
This page presents radiation air monitoring and air filter analysis data for Nashville, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Concord, NH
This page presents radiation air monitoring and air filter analysis data for Concord, NH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Paducah, KY
This page presents radiation air monitoring and air filter analysis data for Paducah, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Edison, NJ
This page presents radiation air monitoring and air filter analysis data for Edison, NJ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Wilmington, NC
This page presents radiation air monitoring and air filter analysis data for Wilmington, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Boise, ID
This page presents radiation air monitoring and air filter analysis data for Boise, ID from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Albuquerque, NM
This page presents radiation air monitoring and air filter analysis data for Albuquerque, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fresno, CA
This page presents radiation air monitoring and air filter analysis data for Fresno, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Amarillo, TX
This page presents radiation air monitoring and air filter analysis data for Amarillo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Portland, OR
This page presents radiation air monitoring and air filter analysis data for Portland, OR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Jacksonville, FL
This page presents radiation air monitoring and air filter analysis data for Jacksonville, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Dover, DE
This page presents radiation air monitoring and air filter analysis data for Dover, DE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Baltimore, MD
This page presents radiation air monitoring and air filter analysis data for Baltimore, MD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Miami, FL
This page presents radiation air monitoring and air filter analysis data for Miami, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Billings, MT
This page presents radiation air monitoring and air filter analysis data for Billings, MT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Providence, RI
This page presents radiation air monitoring and air filter analysis data for Providence, RI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Knoxville, TN
This page presents radiation air monitoring and air filter analysis data for Knoxville, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Columbus, OH
This page presents radiation air monitoring and air filter analysis data for Columbus, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bloomsburg, PA
This page presents radiation air monitoring and air filter analysis data for Bloomsburg, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Shreveport, LA
This page presents radiation air monitoring and air filter analysis data for Shreveport, LA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Laredo, TX
This page presents radiation air monitoring and air filter analysis data for Laredo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bakersfield, CA
This page presents radiation air monitoring and air filter analysis data for Bakersfield, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Portland, ME
This page presents radiation air monitoring and air filter analysis data for Portland, ME from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Champaign, IL
This page presents radiation air monitoring and air filter analysis data for Champaign, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Tucson, AZ
This page presents radiation air monitoring and air filter analysis data for Tucson, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Juneau, AK
This page presents radiation air monitoring and air filter analysis data for Juneau, AK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Toledo, OH
This page presents radiation air monitoring and air filter analysis data for Toledo, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Boston, MA
This page presents radiation air monitoring and air filter analysis data for Boston, MA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Indianapolis, IN
This page presents radiation air monitoring and air filter analysis data for Indianapolis, IN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Yaphank, NY
This page presents radiation air monitoring and air filter analysis data for Yaphank, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Anaheim, CA
This page presents radiation air monitoring and air filter analysis data for Anaheim, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
Earth Resources Laboratory research and technology
NASA Technical Reports Server (NTRS)
1983-01-01
The accomplishments of the Earth Resources Laboratory's research and technology program are reported. Sensors and data systems, the AGRISTARS project, applied research and data analysis, joint research projects, test and evaluation studies, and space station support activities are addressed.
RadNet Air Data From Riverside, CA
This page presents radiation air monitoring and air filter analysis data for Riverside, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Detroit, MI
This page presents radiation air monitoring and air filter analysis data for Detroit, MI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Wichita, KS
This page presents radiation air monitoring and air filter analysis data for Wichita, KS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Columbia, SC
This page presents radiation air monitoring and air filter analysis data for Columbia, SC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Milwaukee, WI
This page presents radiation air monitoring and air filter analysis data for Milwaukee, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Richmond, VA
This page presents radiation air monitoring and air filter analysis data for Richmond, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Tulsa, OK
This page presents radiation air monitoring and air filter analysis data for Tulsa, OK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Aurora, IL
This page presents radiation air monitoring and air filter analysis data for Aurora, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Hartford, CT
This page presents radiation air monitoring and air filter analysis data for Hartford. CT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Charleston, WV
This page presents radiation air monitoring and air filter analysis data for Charleston, WV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Shawano, WI
This page presents radiation air monitoring and air filter analysis data for Shawano, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Harlingen, TX
This page presents radiation air monitoring and air filter analysis data for Harlingen, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation
RadNet Air Data From Springfield, MO
This page presents radiation air monitoring and air filter analysis data for Springfield, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Olympia, WA
This page presents radiation air monitoring and air filter analysis data for Olympia, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Memphis, TN
This page presents radiation air monitoring and air filter analysis data for Memphis, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lubbock, TX
This page presents radiation air monitoring and air filter analysis data for Lubbock, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Sacramento, CA
This page presents radiation air monitoring and air filter analysis data for Sacramento, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lockport, NY
This page presents radiation air monitoring and air filter analysis data for Lockport, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Jackson, MS
This page presents radiation air monitoring and air filter analysis data for Jackson, MS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Seattle, WA
This page presents radiation air monitoring and air filter analysis data for Seattle, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Pittsburgh, PA
This page presents radiation air monitoring and air filter analysis data for Pittsburgh, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Madison, WI
This page presents radiation air monitoring and air filter analysis data for Madison, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Ellensburg, WA
This page presents radiation air monitoring and air filter analysis data for Ellensburg, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Harrisonburg, VA
This page presents radiation air monitoring and air filter analysis data for Harrisonburg, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bismarck, ND
This page presents radiation air monitoring and air filter analysis data for Bismarck, ND from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Denver, CO
This page presents radiation air monitoring and air filter analysis data for Denver, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Charlotte, NC
This page presents radiation air monitoring and air filter analysis data for Charlotte, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lexington, KY
This page presents radiation air monitoring and air filter analysis data for Lexington, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Casper, WY
This page presents radiation air monitoring and air filter analysis data for Casper, WY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Eureka, CA
This page presents radiation air monitoring and air filter analysis data for Eureka, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lincoln, NE
This page presents radiation air monitoring and air filter analysis data for Lincoln, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Orlando, FL
This page presents radiation air monitoring and air filter analysis data for Orlando, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Mobile, AL
This page presents radiation air monitoring and air filter analysis data for Mobile, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Spokane, WA
This page presents radiation air monitoring and air filter analysis data for Spokane, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Atlanta, GA
This page presents radiation air monitoring and air filter analysis data for Atlanta, GA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Greensboro, NC
This page presents radiation air monitoring and air filter analysis data for Greensboro, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.