Sample records for statistical analysis functions

  1. [Design and implementation of online statistical analysis function in information system of air pollution and health impact monitoring].

    PubMed

    Lü, Yiran; Hao, Shuxin; Zhang, Guoqing; Liu, Jie; Liu, Yue; Xu, Dongqun

    2018-01-01

    To implement the online statistical analysis function in information system of air pollution and health impact monitoring, and obtain the data analysis information real-time. Using the descriptive statistical method as well as time-series analysis and multivariate regression analysis, SQL language and visual tools to implement online statistical analysis based on database software. Generate basic statistical tables and summary tables of air pollution exposure and health impact data online; Generate tendency charts of each data part online and proceed interaction connecting to database; Generate butting sheets which can lead to R, SAS and SPSS directly online. The information system air pollution and health impact monitoring implements the statistical analysis function online, which can provide real-time analysis result to its users.

  2. [Statistical analysis using freely-available "EZR (Easy R)" software].

    PubMed

    Kanda, Yoshinobu

    2015-10-01

    Clinicians must often perform statistical analyses for purposes such evaluating preexisting evidence and designing or executing clinical studies. R is a free software environment for statistical computing. R supports many statistical analysis functions, but does not incorporate a statistical graphical user interface (GUI). The R commander provides an easy-to-use basic-statistics GUI for R. However, the statistical function of the R commander is limited, especially in the field of biostatistics. Therefore, the author added several important statistical functions to the R commander and named it "EZR (Easy R)", which is now being distributed on the following website: http://www.jichi.ac.jp/saitama-sct/. EZR allows the application of statistical functions that are frequently used in clinical studies, such as survival analyses, including competing risk analyses and the use of time-dependent covariates and so on, by point-and-click access. In addition, by saving the script automatically created by EZR, users can learn R script writing, maintain the traceability of the analysis, and assure that the statistical process is overseen by a supervisor.

  3. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means

    PubMed Central

    2014-01-01

    In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm. PMID:25018878

  4. The Shock and Vibration Digest. Volume 14, Number 8

    DTIC Science & Technology

    1982-08-01

    generating interest in averaged transfer functions. Broadband transfer functions are derived using the methods of statistical energy analysis (SEA...Accelerometer, Endevco Corp., San Juan Capis- trano,CA(1982). 7. Lyon, R.H., Statistical Energy Analysis of Dy- namical Systems, MIT Press, Cambridge, MA...A fairly new technique known as statistical energy analysis , or SEA, [35-44] has been useful for many problems of noise transmission. The difficulty

  5. On the Utility of Content Analysis in Author Attribution: "The Federalist."

    ERIC Educational Resources Information Center

    Martindale, Colin; McKenzie, Dean

    1995-01-01

    Compares the success of lexical statistics, content analysis, and function words in determining the true author of "The Federalist." The function word approach proved most successful in attributing the papers to James Madison. Lexical statistics contributed nothing, while content analytic measures resulted in some success. (MJP)

  6. Statistical considerations in the development of injury risk functions.

    PubMed

    McMurry, Timothy L; Poplin, Gerald S

    2015-01-01

    We address 4 frequently misunderstood and important statistical ideas in the construction of injury risk functions. These include the similarities of survival analysis and logistic regression, the correct scale on which to construct pointwise confidence intervals for injury risk, the ability to discern which form of injury risk function is optimal, and the handling of repeated tests on the same subject. The statistical models are explored through simulation and examination of the underlying mathematics. We provide recommendations for the statistically valid construction and correct interpretation of single-predictor injury risk functions. This article aims to provide useful and understandable statistical guidance to improve the practice in constructing injury risk functions.

  7. The level crossing rates and associated statistical properties of a random frequency response function

    NASA Astrophysics Data System (ADS)

    Langley, Robin S.

    2018-03-01

    This work is concerned with the statistical properties of the frequency response function of the energy of a random system. Earlier studies have considered the statistical distribution of the function at a single frequency, or alternatively the statistics of a band-average of the function. In contrast the present analysis considers the statistical fluctuations over a frequency band, and results are obtained for the mean rate at which the function crosses a specified level (or equivalently, the average number of times the level is crossed within the band). Results are also obtained for the probability of crossing a specified level at least once, the mean rate of occurrence of peaks, and the mean trough-to-peak height. The analysis is based on the assumption that the natural frequencies and mode shapes of the system have statistical properties that are governed by the Gaussian Orthogonal Ensemble (GOE), and the validity of this assumption is demonstrated by comparison with numerical simulations for a random plate. The work has application to the assessment of the performance of dynamic systems that are sensitive to random imperfections.

  8. A quadratically regularized functional canonical correlation analysis for identifying the global structure of pleiotropy with NGS data

    PubMed Central

    Zhu, Yun; Fan, Ruzong; Xiong, Momiao

    2017-01-01

    Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore correlation information of genetic variants, effectively reduce data dimensions, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the ten competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the ten other statistics. PMID:29040274

  9. Compendium of Methods for Applying Measured Data to Vibration and Acoustic Problems

    DTIC Science & Technology

    1985-10-01

    statistical energy analysis , finite element models, transfer function...Procedures for the Modal Analysis Method .............................................. 8-22 8.4 Summary of the Procedures for the Statistical Energy Analysis Method... statistical energy analysis . 8-1 • o + . . i... "_+,A" L + "+..• •+A ’! i, + +.+ +• o.+ -ore -+. • -..- , .%..% ". • 2 -".-2- ;.-.’, . o . It is helpful

  10. Effects of Heterogeniety on Spatial Pattern Analysis of Wild Pistachio Trees in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Rezayan, F.

    2014-10-01

    Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  11. Development of Composite Materials with High Passive Damping Properties

    DTIC Science & Technology

    2006-05-15

    frequency response function analysis. Sound transmission through sandwich panels was studied using the statistical energy analysis (SEA). Modal density...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of...sheets and the core. 2.2.4 Statistical energy analysis method Finite element models are generally only efficient for problems at low and middle frequencies

  12. Differential Item Functioning Analysis Using Rasch Item Information Functions

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Mapuranga, Raymond

    2009-01-01

    Differential item functioning (DIF) analysis is a statistical technique used for ensuring the equity and fairness of educational assessments. This study formulates a new DIF analysis method using the information similarity index (ISI). ISI compares item information functions when data fits the Rasch model. Through simulations and an international…

  13. Evolution of statistical properties for a nonlinearly propagating sinusoid.

    PubMed

    Shepherd, Micah R; Gee, Kent L; Hanford, Amanda D

    2011-07-01

    The nonlinear propagation of a pure sinusoid is considered using time domain statistics. The probability density function, standard deviation, skewness, kurtosis, and crest factor are computed for both the amplitude and amplitude time derivatives as a function of distance. The amplitude statistics vary only in the postshock realm, while the amplitude derivative statistics vary rapidly in the preshock realm. The statistical analysis also suggests that the sawtooth onset distance can be considered to be earlier than previously realized. © 2011 Acoustical Society of America

  14. Probability and Statistics in Sensor Performance Modeling

    DTIC Science & Technology

    2010-12-01

    language software program is called Environmental Awareness for Sensor and Emitter Employment. Some important numerical issues in the implementation...3 Statistical analysis for measuring sensor performance...complementary cumulative distribution function cdf cumulative distribution function DST decision-support tool EASEE Environmental Awareness of

  15. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.

    PubMed

    Sojoudi, Alireza; Goodyear, Bradley G

    2016-12-01

    Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Comparing Visual and Statistical Analysis of Multiple Baseline Design Graphs.

    PubMed

    Wolfe, Katie; Dickenson, Tammiee S; Miller, Bridget; McGrath, Kathleen V

    2018-04-01

    A growing number of statistical analyses are being developed for single-case research. One important factor in evaluating these methods is the extent to which each corresponds to visual analysis. Few studies have compared statistical and visual analysis, and information about more recently developed statistics is scarce. Therefore, our purpose was to evaluate the agreement between visual analysis and four statistical analyses: improvement rate difference (IRD); Tau-U; Hedges, Pustejovsky, Shadish (HPS) effect size; and between-case standardized mean difference (BC-SMD). Results indicate that IRD and BC-SMD had the strongest overall agreement with visual analysis. Although Tau-U had strong agreement with visual analysis on raw values, it had poorer agreement when those values were dichotomized to represent the presence or absence of a functional relation. Overall, visual analysis appeared to be more conservative than statistical analysis, but further research is needed to evaluate the nature of these disagreements.

  17. Noise Reduction in High-Throughput Gene Perturbation Screens

    USDA-ARS?s Scientific Manuscript database

    Motivation: Accurate interpretation of perturbation screens is essential for a successful functional investigation. However, the screened phenotypes are often distorted by noise, and their analysis requires specialized statistical analysis tools. The number and scope of statistical methods available...

  18. An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Carter, M. C.; Madison, M. W.

    1973-01-01

    The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.

  19. Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.

    PubMed

    Fan, Ruzong; Wang, Yifan; Boehnke, Michael; Chen, Wei; Li, Yun; Ren, Haobo; Lobach, Iryna; Xiong, Momiao

    2015-08-01

    Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies. Copyright © 2015 by the Genetics Society of America.

  20. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part III: Application to statistical modal analysis

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Ren, Wei-Xin

    2018-01-01

    This study applies the theoretical findings of circularly-symmetric complex normal ratio distribution Yan and Ren (2016) [1,2] to transmissibility-based modal analysis from a statistical viewpoint. A probabilistic model of transmissibility function in the vicinity of the resonant frequency is formulated in modal domain, while some insightful comments are offered. It theoretically reveals that the statistics of transmissibility function around the resonant frequency is solely dependent on 'noise-to-signal' ratio and mode shapes. As a sequel to the development of the probabilistic model of transmissibility function in modal domain, this study poses the process of modal identification in the context of Bayesian framework by borrowing a novel paradigm. Implementation issues unique to the proposed approach are resolved by Lagrange multiplier approach. Also, this study explores the possibility of applying Bayesian analysis in distinguishing harmonic components and structural ones. The approaches are verified through simulated data and experimentally testing data. The uncertainty behavior due to variation of different factors is also discussed in detail.

  1. Markov model plus k-word distributions: a synergy that produces novel statistical measures for sequence comparison.

    PubMed

    Dai, Qi; Yang, Yanchun; Wang, Tianming

    2008-10-15

    Many proposed statistical measures can efficiently compare biological sequences to further infer their structures, functions and evolutionary information. They are related in spirit because all the ideas for sequence comparison try to use the information on the k-word distributions, Markov model or both. Motivated by adding k-word distributions to Markov model directly, we investigated two novel statistical measures for sequence comparison, called wre.k.r and S2.k.r. The proposed measures were tested by similarity search, evaluation on functionally related regulatory sequences and phylogenetic analysis. This offers the systematic and quantitative experimental assessment of our measures. Moreover, we compared our achievements with these based on alignment or alignment-free. We grouped our experiments into two sets. The first one, performed via ROC (receiver operating curve) analysis, aims at assessing the intrinsic ability of our statistical measures to search for similar sequences from a database and discriminate functionally related regulatory sequences from unrelated sequences. The second one aims at assessing how well our statistical measure is used for phylogenetic analysis. The experimental assessment demonstrates that our similarity measures intending to incorporate k-word distributions into Markov model are more efficient.

  2. Quantitative trait nucleotide analysis using Bayesian model selection.

    PubMed

    Blangero, John; Goring, Harald H H; Kent, Jack W; Williams, Jeff T; Peterson, Charles P; Almasy, Laura; Dyer, Thomas D

    2005-10-01

    Although much attention has been given to statistical genetic methods for the initial localization and fine mapping of quantitative trait loci (QTLs), little methodological work has been done to date on the problem of statistically identifying the most likely functional polymorphisms using sequence data. In this paper we provide a general statistical genetic framework, called Bayesian quantitative trait nucleotide (BQTN) analysis, for assessing the likely functional status of genetic variants. The approach requires the initial enumeration of all genetic variants in a set of resequenced individuals. These polymorphisms are then typed in a large number of individuals (potentially in families), and marker variation is related to quantitative phenotypic variation using Bayesian model selection and averaging. For each sequence variant a posterior probability of effect is obtained and can be used to prioritize additional molecular functional experiments. An example of this quantitative nucleotide analysis is provided using the GAW12 simulated data. The results show that the BQTN method may be useful for choosing the most likely functional variants within a gene (or set of genes). We also include instructions on how to use our computer program, SOLAR, for association analysis and BQTN analysis.

  3. Analysis Code - Data Analysis in 'Leveraging Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications' (LMSMIPNFA) v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John R

    R code that performs the analysis of a data set presented in the paper ‘Leveraging Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications’ by Lewis, J., Zhang, A., Anderson-Cook, C. It provides functions for doing inverse predictions in this setting using several different statistical methods. The data set is a publicly available data set from a historical Plutonium production experiment.

  4. FADTTS: functional analysis of diffusion tensor tract statistics.

    PubMed

    Zhu, Hongtu; Kong, Linglong; Li, Runze; Styner, Martin; Gerig, Guido; Lin, Weili; Gilmore, John H

    2011-06-01

    The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Limitations of Using Microsoft Excel Version 2016 (MS Excel 2016) for Statistical Analysis for Medical Research.

    PubMed

    Tanavalee, Chotetawan; Luksanapruksa, Panya; Singhatanadgige, Weerasak

    2016-06-01

    Microsoft Excel (MS Excel) is a commonly used program for data collection and statistical analysis in biomedical research. However, this program has many limitations, including fewer functions that can be used for analysis and a limited number of total cells compared with dedicated statistical programs. MS Excel cannot complete analyses with blank cells, and cells must be selected manually for analysis. In addition, it requires multiple steps of data transformation and formulas to plot survival analysis graphs, among others. The Megastat add-on program, which will be supported by MS Excel 2016 soon, would eliminate some limitations of using statistic formulas within MS Excel.

  6. Application of modified profile analysis to function testing of the motion/no-motion issue in an aircraft ground-handling simulation. [statistical analysis procedure for man machine systems flight simulation

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Mckissick, B. T.; Steinmetz, G. G.

    1979-01-01

    A recent modification of the methodology of profile analysis, which allows the testing for differences between two functions as a whole with a single test, rather than point by point with multiple tests is discussed. The modification is applied to the examination of the issue of motion/no motion conditions as shown by the lateral deviation curve as a function of engine cut speed of a piloted 737-100 simulator. The results of this application are presented along with those of more conventional statistical test procedures on the same simulator data.

  7. Network Meta-Analysis Using R: A Review of Currently Available Automated Packages

    PubMed Central

    Neupane, Binod; Richer, Danielle; Bonner, Ashley Joel; Kibret, Taddele; Beyene, Joseph

    2014-01-01

    Network meta-analysis (NMA) – a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously – has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i) data input and network plotting, (ii) modeling options, (iii) assumption checking and diagnostic testing, and (iv) inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA. PMID:25541687

  8. Network meta-analysis using R: a review of currently available automated packages.

    PubMed

    Neupane, Binod; Richer, Danielle; Bonner, Ashley Joel; Kibret, Taddele; Beyene, Joseph

    2014-01-01

    Network meta-analysis (NMA)--a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously--has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i) data input and network plotting, (ii) modeling options, (iii) assumption checking and diagnostic testing, and (iv) inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA.

  9. Functional Relationships and Regression Analysis.

    ERIC Educational Resources Information Center

    Preece, Peter F. W.

    1978-01-01

    Using a degenerate multivariate normal model for the distribution of organismic variables, the form of least-squares regression analysis required to estimate a linear functional relationship between variables is derived. It is suggested that the two conventional regression lines may be considered to describe functional, not merely statistical,…

  10. Improved analyses using function datasets and statistical modeling

    Treesearch

    John S. Hogland; Nathaniel M. Anderson

    2014-01-01

    Raster modeling is an integral component of spatial analysis. However, conventional raster modeling techniques can require a substantial amount of processing time and storage space and have limited statistical functionality and machine learning algorithms. To address this issue, we developed a new modeling framework using C# and ArcObjects and integrated that framework...

  11. Student Distractor Choices on the Mathematics Virginia Standards of Learning Middle School Assessments

    ERIC Educational Resources Information Center

    Lewis, Virginia Vimpeny

    2011-01-01

    Number Concepts; Measurement; Geometry; Probability; Statistics; and Patterns, Functions and Algebra. Procedural Errors were further categorized into the following content categories: Computation; Measurement; Statistics; and Patterns, Functions, and Algebra. The results of the analysis showed the main sources of error for 6th, 7th, and 8th…

  12. Bootstrap Methods: A Very Leisurely Look.

    ERIC Educational Resources Information Center

    Hinkle, Dennis E.; Winstead, Wayland H.

    The Bootstrap method, a computer-intensive statistical method of estimation, is illustrated using a simple and efficient Statistical Analysis System (SAS) routine. The utility of the method for generating unknown parameters, including standard errors for simple statistics, regression coefficients, discriminant function coefficients, and factor…

  13. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    PubMed

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Statistical description of non-Gaussian samples in the F2 layer of the ionosphere during heliogeophysical disturbances

    NASA Astrophysics Data System (ADS)

    Sergeenko, N. P.

    2017-11-01

    An adequate statistical method should be developed in order to predict probabilistically the range of ionospheric parameters. This problem is solved in this paper. The time series of the critical frequency of the layer F2- foF2( t) were subjected to statistical processing. For the obtained samples {δ foF2}, statistical distributions and invariants up to the fourth order are calculated. The analysis shows that the distributions differ from the Gaussian law during the disturbances. At levels of sufficiently small probability distributions, there are arbitrarily large deviations from the model of the normal process. Therefore, it is attempted to describe statistical samples {δ foF2} based on the Poisson model. For the studied samples, the exponential characteristic function is selected under the assumption that time series are a superposition of some deterministic and random processes. Using the Fourier transform, the characteristic function is transformed into a nonholomorphic excessive-asymmetric probability-density function. The statistical distributions of the samples {δ foF2} calculated for the disturbed periods are compared with the obtained model distribution function. According to the Kolmogorov's criterion, the probabilities of the coincidence of a posteriori distributions with the theoretical ones are P 0.7-0.9. The conducted analysis makes it possible to draw a conclusion about the applicability of a model based on the Poisson random process for the statistical description and probabilistic variation estimates during heliogeophysical disturbances of the variations {δ foF2}.

  15. FUNSTAT and statistical image representations

    NASA Technical Reports Server (NTRS)

    Parzen, E.

    1983-01-01

    General ideas of functional statistical inference analysis of one sample and two samples, univariate and bivariate are outlined. ONESAM program is applied to analyze the univariate probability distributions of multi-spectral image data.

  16. Improving information retrieval in functional analysis.

    PubMed

    Rodriguez, Juan C; González, Germán A; Fresno, Cristóbal; Llera, Andrea S; Fernández, Elmer A

    2016-12-01

    Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Energy-density field approach for low- and medium-frequency vibroacoustic analysis of complex structures using a statistical computational model

    NASA Astrophysics Data System (ADS)

    Kassem, M.; Soize, C.; Gagliardini, L.

    2009-06-01

    In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.

  18. Lognormal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of α-Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2010-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086

  19. Social and economic sustainability of urban systems: comparative analysis of metropolitan statistical areas in Ohio, USA

    EPA Science Inventory

    This article presents a general and versatile methodology for assessing sustainability with Fisher Information as a function of dynamic changes in urban systems. Using robust statistical methods, six Metropolitan Statistical Areas (MSAs) in Ohio were evaluated to comparatively as...

  20. Statistical analysis of fNIRS data: a comprehensive review.

    PubMed

    Tak, Sungho; Ye, Jong Chul

    2014-01-15

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive method to measure brain activities using the changes of optical absorption in the brain through the intact skull. fNIRS has many advantages over other neuroimaging modalities such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), or magnetoencephalography (MEG), since it can directly measure blood oxygenation level changes related to neural activation with high temporal resolution. However, fNIRS signals are highly corrupted by measurement noises and physiology-based systemic interference. Careful statistical analyses are therefore required to extract neuronal activity-related signals from fNIRS data. In this paper, we provide an extensive review of historical developments of statistical analyses of fNIRS signal, which include motion artifact correction, short source-detector separation correction, principal component analysis (PCA)/independent component analysis (ICA), false discovery rate (FDR), serially-correlated errors, as well as inference techniques such as the standard t-test, F-test, analysis of variance (ANOVA), and statistical parameter mapping (SPM) framework. In addition, to provide a unified view of various existing inference techniques, we explain a linear mixed effect model with restricted maximum likelihood (ReML) variance estimation, and show that most of the existing inference methods for fNIRS analysis can be derived as special cases. Some of the open issues in statistical analysis are also described. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Statistical significance of task related deep brain EEG dynamic changes in the time-frequency domain.

    PubMed

    Chládek, J; Brázdil, M; Halámek, J; Plešinger, F; Jurák, P

    2013-01-01

    We present an off-line analysis procedure for exploring brain activity recorded from intra-cerebral electroencephalographic data (SEEG). The objective is to determine the statistical differences between different types of stimulations in the time-frequency domain. The procedure is based on computing relative signal power change and subsequent statistical analysis. An example of characteristic statistically significant event-related de/synchronization (ERD/ERS) detected across different frequency bands following different oddball stimuli is presented. The method is used for off-line functional classification of different brain areas.

  2. FGWAS: Functional genome wide association analysis.

    PubMed

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Regional Morphology Analysis Package (RMAP): Empirical Orthogonal Function Analysis, Background and Examples

    DTIC Science & Technology

    2007-10-01

    1984. Complex principal component analysis : Theory and examples. Journal of Climate and Applied Meteorology 23: 1660-1673. Hotelling, H. 1933...Sediments 99. ASCE: 2,566-2,581. Von Storch, H., and A. Navarra. 1995. Analysis of climate variability. Applications of statistical techniques. Berlin...ERDC TN-SWWRP-07-9 October 2007 Regional Morphology Empirical Analysis Package (RMAP): Orthogonal Function Analysis , Background and Examples by

  4. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    PubMed Central

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  5. Antithrombotic drug therapy for IgA nephropathy: a meta analysis of randomized controlled trials.

    PubMed

    Liu, Xiu-Juan; Geng, Yan-Qiu; Xin, Shao-Nan; Huang, Guo-Ming; Tu, Xiao-Wen; Ding, Zhong-Ru; Chen, Xiang-Mei

    2011-01-01

    Antithrombotic agents, including antiplatelet agents, anticoagulants and thrombolysis agents, have been widely used in the management of immunoglobulin A (IgA) nephropathy in Chinese and Japanese populations. To systematically evaluate the effects of antithrombotic agents for IgA nephropathy. Data sources consisted of MEDLINE, EMBASE, the Cochrane Library, Chinese Biomedical Literature Database (CBM), Chinese Science and Technology Periodicals Databases (CNKI) and Japana Centra Revuo Medicina (http://www.jamas.gr.jp) up to April 5, 2011. The quality of the studies was evaluated from the intention to treat analysis and allocation concealment, as well as by the Jadad method. Meta-analyses were performed on the outcomes of proteinuria and renal function. Six articles met the predetermined inclusion criteria. Antithrombotic agents showed statistically significant effects on proteinuria (p<0.0001) but not on the protection of renal function (p=0.07). The pooled risk ratio for proteinuria was 0.53, [95% confidence intervals (CI): 0.41-0.68; I(2)=0%] and for renal function it was 0.42 (95% CI 0.17-1.06; I(2)=72%). Subgroup analysis showed that dipyridamole was beneficial for proteinuria (p=0.0003) but had no significant effects on protecting renal function. Urokinase had statistically significant effects both on the reduction of proteinuria (p=0.0005) and protecting renal function (p<0.00001) when compared with the control group. Antithrombotic agents had statistically significant effects on the reduction of proteinuria but not on the protection of renal function in patients with IgAN. Urokinase had statistically significant effects both on the reduction of proteinuria and on protecting renal function. Urokinase was shown to be a promising medication and should be investigated further.

  6. FADTTSter: accelerating hypothesis testing with functional analysis of diffusion tensor tract statistics

    NASA Astrophysics Data System (ADS)

    Noel, Jean; Prieto, Juan C.; Styner, Martin

    2017-03-01

    Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) is a toolbox for analysis of white matter (WM) fiber tracts. It allows associating diffusion properties along major WM bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these WM tract properties. However, to use this toolbox, a user must have an intermediate knowledge in scripting languages (MATLAB). FADTTSter was created to overcome this issue and make the statistical analysis accessible to any non-technical researcher. FADTTSter is actively being used by researchers at the University of North Carolina. FADTTSter guides non-technical users through a series of steps including quality control of subjects and fibers in order to setup the necessary parameters to run FADTTS. Additionally, FADTTSter implements interactive charts for FADTTS' outputs. This interactive chart enhances the researcher experience and facilitates the analysis of the results. FADTTSter's motivation is to improve usability and provide a new analysis tool to the community that complements FADTTS. Ultimately, by enabling FADTTS to a broader audience, FADTTSter seeks to accelerate hypothesis testing in neuroimaging studies involving heterogeneous clinical data and diffusion tensor imaging. This work is submitted to the Biomedical Applications in Molecular, Structural, and Functional Imaging conference. The source code of this application is available in NITRC.

  7. A simulator for evaluating methods for the detection of lesion-deficit associations

    NASA Technical Reports Server (NTRS)

    Megalooikonomou, V.; Davatzikos, C.; Herskovits, E. H.

    2000-01-01

    Although much has been learned about the functional organization of the human brain through lesion-deficit analysis, the variety of statistical and image-processing methods developed for this purpose precludes a closed-form analysis of the statistical power of these systems. Therefore, we developed a lesion-deficit simulator (LDS), which generates artificial subjects, each of which consists of a set of functional deficits, and a brain image with lesions; the deficits and lesions conform to predefined distributions. We used probability distributions to model the number, sizes, and spatial distribution of lesions, to model the structure-function associations, and to model registration error. We used the LDS to evaluate, as examples, the effects of the complexities and strengths of lesion-deficit associations, and of registration error, on the power of lesion-deficit analysis. We measured the numbers of recovered associations from these simulated data, as a function of the number of subjects analyzed, the strengths and number of associations in the statistical model, the number of structures associated with a particular function, and the prior probabilities of structures being abnormal. The number of subjects required to recover the simulated lesion-deficit associations was found to have an inverse relationship to the strength of associations, and to the smallest probability in the structure-function model. The number of structures associated with a particular function (i.e., the complexity of associations) had a much greater effect on the performance of the analysis method than did the total number of associations. We also found that registration error of 5 mm or less reduces the number of associations discovered by approximately 13% compared to perfect registration. The LDS provides a flexible framework for evaluating many aspects of lesion-deficit analysis.

  8. Nonparametric Residue Analysis of Dynamic PET Data With Application to Cerebral FDG Studies in Normals.

    PubMed

    O'Sullivan, Finbarr; Muzi, Mark; Spence, Alexander M; Mankoff, David M; O'Sullivan, Janet N; Fitzgerald, Niall; Newman, George C; Krohn, Kenneth A

    2009-06-01

    Kinetic analysis is used to extract metabolic information from dynamic positron emission tomography (PET) uptake data. The theory of indicator dilutions, developed in the seminal work of Meier and Zierler (1954), provides a probabilistic framework for representation of PET tracer uptake data in terms of a convolution between an arterial input function and a tissue residue. The residue is a scaled survival function associated with tracer residence in the tissue. Nonparametric inference for the residue, a deconvolution problem, provides a novel approach to kinetic analysis-critically one that is not reliant on specific compartmental modeling assumptions. A practical computational technique based on regularized cubic B-spline approximation of the residence time distribution is proposed. Nonparametric residue analysis allows formal statistical evaluation of specific parametric models to be considered. This analysis needs to properly account for the increased flexibility of the nonparametric estimator. The methodology is illustrated using data from a series of cerebral studies with PET and fluorodeoxyglucose (FDG) in normal subjects. Comparisons are made between key functionals of the residue, tracer flux, flow, etc., resulting from a parametric (the standard two-compartment of Phelps et al. 1979) and a nonparametric analysis. Strong statistical evidence against the compartment model is found. Primarily these differences relate to the representation of the early temporal structure of the tracer residence-largely a function of the vascular supply network. There are convincing physiological arguments against the representations implied by the compartmental approach but this is the first time that a rigorous statistical confirmation using PET data has been reported. The compartmental analysis produces suspect values for flow but, notably, the impact on the metabolic flux, though statistically significant, is limited to deviations on the order of 3%-4%. The general advantage of the nonparametric residue analysis is the ability to provide a valid kinetic quantitation in the context of studies where there may be heterogeneity or other uncertainty about the accuracy of a compartmental model approximation of the tissue residue.

  9. BrightStat.com: free statistics online.

    PubMed

    Stricker, Daniel

    2008-10-01

    Powerful software for statistical analysis is expensive. Here I present BrightStat, a statistical software running on the Internet which is free of charge. BrightStat's goals, its main capabilities and functionalities are outlined. Three different sample runs, a Friedman test, a chi-square test, and a step-wise multiple regression are presented. The results obtained by BrightStat are compared with results computed by SPSS, one of the global leader in providing statistical software, and VassarStats, a collection of scripts for data analysis running on the Internet. Elementary statistics is an inherent part of academic education and BrightStat is an alternative to commercial products.

  10. Functional Path Analysis as a Multivariate Technique in Developing a Theory of Participation in Adult Education.

    ERIC Educational Resources Information Center

    Martin, James L.

    This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…

  11. TRAPR: R Package for Statistical Analysis and Visualization of RNA-Seq Data.

    PubMed

    Lim, Jae Hyun; Lee, Soo Youn; Kim, Ju Han

    2017-03-01

    High-throughput transcriptome sequencing, also known as RNA sequencing (RNA-Seq), is a standard technology for measuring gene expression with unprecedented accuracy. Numerous bioconductor packages have been developed for the statistical analysis of RNA-Seq data. However, these tools focus on specific aspects of the data analysis pipeline, and are difficult to appropriately integrate with one another due to their disparate data structures and processing methods. They also lack visualization methods to confirm the integrity of the data and the process. In this paper, we propose an R-based RNA-Seq analysis pipeline called TRAPR, an integrated tool that facilitates the statistical analysis and visualization of RNA-Seq expression data. TRAPR provides various functions for data management, the filtering of low-quality data, normalization, transformation, statistical analysis, data visualization, and result visualization that allow researchers to build customized analysis pipelines.

  12. Understanding spatial organizations of chromosomes via statistical analysis of Hi-C data

    PubMed Central

    Hu, Ming; Deng, Ke; Qin, Zhaohui; Liu, Jun S.

    2015-01-01

    Understanding how chromosomes fold provides insights into the transcription regulation, hence, the functional state of the cell. Using the next generation sequencing technology, the recently developed Hi-C approach enables a global view of spatial chromatin organization in the nucleus, which substantially expands our knowledge about genome organization and function. However, due to multiple layers of biases, noises and uncertainties buried in the protocol of Hi-C experiments, analyzing and interpreting Hi-C data poses great challenges, and requires novel statistical methods to be developed. This article provides an overview of recent Hi-C studies and their impacts on biomedical research, describes major challenges in statistical analysis of Hi-C data, and discusses some perspectives for future research. PMID:26124977

  13. Flexible statistical modelling detects clinical functional magnetic resonance imaging activation in partially compliant subjects.

    PubMed

    Waites, Anthony B; Mannfolk, Peter; Shaw, Marnie E; Olsrud, Johan; Jackson, Graeme D

    2007-02-01

    Clinical functional magnetic resonance imaging (fMRI) occasionally fails to detect significant activation, often due to variability in task performance. The present study seeks to test whether a more flexible statistical analysis can better detect activation, by accounting for variance associated with variable compliance to the task over time. Experimental results and simulated data both confirm that even at 80% compliance to the task, such a flexible model outperforms standard statistical analysis when assessed using the extent of activation (experimental data), goodness of fit (experimental data), and area under the operator characteristic curve (simulated data). Furthermore, retrospective examination of 14 clinical fMRI examinations reveals that in patients where the standard statistical approach yields activation, there is a measurable gain in model performance in adopting the flexible statistical model, with little or no penalty in lost sensitivity. This indicates that a flexible model should be considered, particularly for clinical patients who may have difficulty complying fully with the study task.

  14. An Overview of R in Health Decision Sciences.

    PubMed

    Jalal, Hawre; Pechlivanoglou, Petros; Krijkamp, Eline; Alarid-Escudero, Fernando; Enns, Eva; Hunink, M G Myriam

    2017-10-01

    As the complexity of health decision science applications increases, high-level programming languages are increasingly adopted for statistical analyses and numerical computations. These programming languages facilitate sophisticated modeling, model documentation, and analysis reproducibility. Among the high-level programming languages, the statistical programming framework R is gaining increased recognition. R is freely available, cross-platform compatible, and open source. A large community of users who have generated an extensive collection of well-documented packages and functions supports it. These functions facilitate applications of health decision science methodology as well as the visualization and communication of results. Although R's popularity is increasing among health decision scientists, methodological extensions of R in the field of decision analysis remain isolated. The purpose of this article is to provide an overview of existing R functionality that is applicable to the various stages of decision analysis, including model design, input parameter estimation, and analysis of model outputs.

  15. Best Phd thesis Prize: Statistical analysis of ALFALFA galaxies: insights in galaxy

    NASA Astrophysics Data System (ADS)

    Papastergis, E.

    2013-09-01

    We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity ("velocity width function"), and we characterize their clustering properties ("two-point correlation function"). These statistical distributions are determined by both the properties of dark matter on small scales, as well as by the complex baryonic processes through which galaxies form over cosmic time. We interpret the ALFALFA measurements with the aid of publicly available cosmological N-body simulations and we present some key results related to galaxy formation and small-scale cosmology.

  16. Toward standardized reporting for a cohort study on functioning: The Swiss Spinal Cord Injury Cohort Study.

    PubMed

    Prodinger, Birgit; Ballert, Carolina S; Brach, Mirjam; Brinkhof, Martin W G; Cieza, Alarcos; Hug, Kerstin; Jordan, Xavier; Post, Marcel W M; Scheel-Sailer, Anke; Schubert, Martin; Tennant, Alan; Stucki, Gerold

    2016-02-01

    Functioning is an important outcome to measure in cohort studies. Clear and operational outcomes are needed to judge the quality of a cohort study. This paper outlines guiding principles for reporting functioning in cohort studies and addresses some outstanding issues. Principles of how to standardize reporting of data from a cohort study on functioning, by deriving scores that are most useful for further statistical analysis and reporting, are outlined. The Swiss Spinal Cord Injury Cohort Study Community Survey serves as a case in point to provide a practical application of these principles. Development of reporting scores must be conceptually coherent and metrically sound. The International Classification of Functioning, Disability and Health (ICF) can serve as the frame of reference for this, with its categories serving as reference units for reporting. To derive a score for further statistical analysis and reporting, items measuring a single latent trait must be invariant across groups. The Rasch measurement model is well suited to test these assumptions. Our approach is a valuable guide for researchers and clinicians, as it fosters comparability of data, strengthens the comprehensiveness of scope, and provides invariant, interval-scaled data for further statistical analyses of functioning.

  17. Protein Sectors: Statistical Coupling Analysis versus Conservation

    PubMed Central

    Teşileanu, Tiberiu; Colwell, Lucy J.; Leibler, Stanislas

    2015-01-01

    Statistical coupling analysis (SCA) is a method for analyzing multiple sequence alignments that was used to identify groups of coevolving residues termed “sectors”. The method applies spectral analysis to a matrix obtained by combining correlation information with sequence conservation. It has been asserted that the protein sectors identified by SCA are functionally significant, with different sectors controlling different biochemical properties of the protein. Here we reconsider the available experimental data and note that it involves almost exclusively proteins with a single sector. We show that in this case sequence conservation is the dominating factor in SCA, and can alone be used to make statistically equivalent functional predictions. Therefore, we suggest shifting the experimental focus to proteins for which SCA identifies several sectors. Correlations in protein alignments, which have been shown to be informative in a number of independent studies, would then be less dominated by sequence conservation. PMID:25723535

  18. Accuracy of Presurgical Functional MR Imaging for Language Mapping of Brain Tumors: A Systematic Review and Meta-Analysis.

    PubMed

    Weng, Hsu-Huei; Noll, Kyle R; Johnson, Jason M; Prabhu, Sujit S; Tsai, Yuan-Hsiung; Chang, Sheng-Wei; Huang, Yen-Chu; Lee, Jiann-Der; Yang, Jen-Tsung; Yang, Cheng-Ta; Tsai, Ying-Huang; Yang, Chun-Yuh; Hazle, John D; Schomer, Donald F; Liu, Ho-Ling

    2018-02-01

    Purpose To compare functional magnetic resonance (MR) imaging for language mapping (hereafter, language functional MR imaging) with direct cortical stimulation (DCS) in patients with brain tumors and to assess factors associated with its accuracy. Materials and Methods PubMed/MEDLINE and related databases were searched for research articles published between January 2000 and September 2016. Findings were pooled by using bivariate random-effects and hierarchic summary receiver operating characteristic curve models. Meta-regression and subgroup analyses were performed to evaluate whether publication year, functional MR imaging paradigm, magnetic field strength, statistical threshold, and analysis software affected classification accuracy. Results Ten articles with a total of 214 patients were included in the analysis. On a per-patient basis, the pooled sensitivity and specificity of functional MR imaging was 44% (95% confidence interval [CI]: 14%, 78%) and 80% (95% CI: 54%, 93%), respectively. On a per-tag basis (ie, each DCS stimulation site or "tag" was considered a separate data point across all patients), the pooled sensitivity and specificity were 67% (95% CI: 51%, 80%) and 55% (95% CI: 25%, 82%), respectively. The per-tag analysis showed significantly higher sensitivity for studies with shorter functional MR imaging session times (P = .03) and relaxed statistical threshold (P = .05). Significantly higher specificity was found when expressive language task (P = .02), longer functional MR imaging session times (P < .01), visual presentation of stimuli (P = .04), and stringent statistical threshold (P = .01) were used. Conclusion Results of this study showed moderate accuracy of language functional MR imaging when compared with intraoperative DCS, and the included studies displayed significant methodologic heterogeneity. © RSNA, 2017 Online supplemental material is available for this article.

  19. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research.

    PubMed

    Tang, Qi-Yi; Zhang, Chuan-Xi

    2013-04-01

    A comprehensive but simple-to-use software package called DPS (Data Processing System) has been developed to execute a range of standard numerical analyses and operations used in experimental design, statistics and data mining. This program runs on standard Windows computers. Many of the functions are specific to entomological and other biological research and are not found in standard statistical software. This paper presents applications of DPS to experimental design, statistical analysis and data mining in entomology. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  20. Two-sample statistics for testing the equality of survival functions against improper semi-parametric accelerated failure time alternatives: an application to the analysis of a breast cancer clinical trial.

    PubMed

    Broët, Philippe; Tsodikov, Alexander; De Rycke, Yann; Moreau, Thierry

    2004-06-01

    This paper presents two-sample statistics suited for testing equality of survival functions against improper semi-parametric accelerated failure time alternatives. These tests are designed for comparing either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests can be very easily implemented using widely available software. A breast cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests.

  1. A new feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator

    NASA Astrophysics Data System (ADS)

    Tong, Xiaojun; Cui, Minggen; Wang, Zhu

    2009-07-01

    The design of the new compound two-dimensional chaotic function is presented by exploiting two one-dimensional chaotic functions which switch randomly, and the design is used as a chaotic sequence generator which is proved by Devaney's definition proof of chaos. The properties of compound chaotic functions are also proved rigorously. In order to improve the robustness against difference cryptanalysis and produce avalanche effect, a new feedback image encryption scheme is proposed using the new compound chaos by selecting one of the two one-dimensional chaotic functions randomly and a new image pixels method of permutation and substitution is designed in detail by array row and column random controlling based on the compound chaos. The results from entropy analysis, difference analysis, statistical analysis, sequence randomness analysis, cipher sensitivity analysis depending on key and plaintext have proven that the compound chaotic sequence cipher can resist cryptanalytic, statistical and brute-force attacks, and especially it accelerates encryption speed, and achieves higher level of security. By the dynamical compound chaos and perturbation technology, the paper solves the problem of computer low precision of one-dimensional chaotic function.

  2. A functional U-statistic method for association analysis of sequencing data.

    PubMed

    Jadhav, Sneha; Tong, Xiaoran; Lu, Qing

    2017-11-01

    Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.

  3. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data.

    PubMed

    Tintle, Nathan L; Sitarik, Alexandra; Boerema, Benjamin; Young, Kylie; Best, Aaron A; Dejongh, Matthew

    2012-08-08

    Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  4. Statistical characterization of short wind waves from stereo images of the sea surface

    NASA Astrophysics Data System (ADS)

    Mironov, Alexey; Yurovskaya, Maria; Dulov, Vladimir; Hauser, Danièle; Guérin, Charles-Antoine

    2013-04-01

    We propose a methodology to extract short-scale statistical characteristics of the sea surface topography by means of stereo image reconstruction. The possibilities and limitations of the technique are discussed and tested on a data set acquired from an oceanographic platform at the Black Sea. The analysis shows that reconstruction of the topography based on stereo method is an efficient way to derive non-trivial statistical properties of surface short- and intermediate-waves (say from 1 centimer to 1 meter). Most technical issues pertaining to this type of datasets (limited range of scales, lacunarity of data or irregular sampling) can be partially overcome by appropriate processing of the available points. The proposed technique also allows one to avoid linear interpolation which dramatically corrupts properties of retrieved surfaces. The processing technique imposes that the field of elevation be polynomially detrended, which has the effect of filtering out the large scales. Hence the statistical analysis can only address the small-scale components of the sea surface. The precise cut-off wavelength, which is approximatively half the patch size, can be obtained by applying a high-pass frequency filter on the reference gauge time records. The results obtained for the one- and two-points statistics of small-scale elevations are shown consistent, at least in order of magnitude, with the corresponding gauge measurements as well as other experimental measurements available in the literature. The calculation of the structure functions provides a powerful tool to investigate spectral and statistical properties of the field of elevations. Experimental parametrization of the third-order structure function, the so-called skewness function, is one of the most important and original outcomes of this study. This function is of primary importance in analytical scattering models from the sea surface and was up to now unavailable in field conditions. Due to the lack of precise reference measurements for the small-scale wave field, we could not quantify exactly the accuracy of the retrieval technique. However, it appeared clearly that the obtained accuracy is good enough for the estimation of second-order statistical quantities (such as the correlation function), acceptable for third-order quantities (such as the skwewness function) and insufficient for fourth-order quantities (such as kurtosis). Therefore, the stereo technique in the present stage should not be thought as a self-contained universal tool to characterize the surface statistics. Instead, it should be used in conjunction with other well calibrated but sparse reference measurement (such as wave gauges) for cross-validation and calibration. It then completes the statistical analysis in as much as it provides a snapshot of the three-dimensional field and allows for the evaluation of higher-order spatial statistics.

  5. SSD for R: A Comprehensive Statistical Package to Analyze Single-System Data

    ERIC Educational Resources Information Center

    Auerbach, Charles; Schudrich, Wendy Zeitlin

    2013-01-01

    The need for statistical analysis in single-subject designs presents a challenge, as analytical methods that are applied to group comparison studies are often not appropriate in single-subject research. "SSD for R" is a robust set of statistical functions with wide applicability to single-subject research. It is a comprehensive package…

  6. In vivo evaluation of the effect of stimulus distribution on FIR statistical efficiency in event-related fMRI

    PubMed Central

    Jansma, J Martijn; de Zwart, Jacco A; van Gelderen, Peter; Duyn, Jeff H; Drevets, Wayne C; Furey, Maura L

    2013-01-01

    Technical developments in MRI have improved signal to noise, allowing use of analysis methods such as Finite impulse response (FIR) of rapid event related functional MRI (er-fMRI). FIR is one of the most informative analysis methods as it determines onset and full shape of the hemodynamic response function (HRF) without any a-priori assumptions. FIR is however vulnerable to multicollinearity, which is directly related to the distribution of stimuli over time. Efficiency can be optimized by simplifying a design, and restricting stimuli distribution to specific sequences, while more design flexibility necessarily reduces efficiency. However, the actual effect of efficiency on fMRI results has never been tested in vivo. Thus, it is currently difficult to make an informed choice between protocol flexibility and statistical efficiency. The main goal of this study was to assign concrete fMRI signal to noise values to the abstract scale of FIR statistical efficiency. Ten subjects repeated a perception task with five random and m-sequence based protocol, with varying but, according to literature, acceptable levels of multicollinearity. Results indicated substantial differences in signal standard deviation, while the level was a function of multicollinearity. Experiment protocols varied up to 55.4% in standard deviation. Results confirm that quality of fMRI in an FIR analysis can significantly and substantially vary with statistical efficiency. Our in vivo measurements can be used to aid in making an informed decision between freedom in protocol design and statistical efficiency. PMID:23473798

  7. Development of polytoxicomania in function of defence from psychoticism.

    PubMed

    Nenadović, Milutin M; Sapić, Rosa

    2011-01-01

    Polytoxicomanic proportions in subpopulations of youth have been growing steadily in recent decades, and this trend is pan-continental. Psychoticism is a psychological construct that assumes special basic dimensions of personality disintegration and cognitive functions. Psychoticism may, in general, be the basis of pathological functioning of youth and influence the patterns of thought, feelings and actions that cause dysfunction. The aim of this study was to determine the distribution of basic dimensions of psychoticism for commitment of youth to abuse psychoactive substances (PAS) in order to reduce disturbing intrapsychic experiences or manifestation of psychotic symptoms. For the purpose of this study, two groups of respondents were formed, balanced by age, gender and family structure of origin (at least one parent alive). The study applied a DELTA-9 instrument for assessment of cognitive disintegration in function of establishing psychoticism and its operationalization. The obtained results were statistically analyzed. From the parameters of descriptive statistics, the arithmetic mean was calculated with measures of dispersion. A cross-tabular analysis of variables tested was performed, as well as statistical significance with Pearson's chi2-test, and analysis of variance. Age structure and gender are approximately represented in the group of polytoximaniacs and the control group. Testing did not confirm the statistically significant difference (p > 0.5). Statistical methodology established that they significantly differed in most variables of psychoticism, polytoxicomaniacs compared with a control group of respondents. Testing confirmed a high statistical significance of differences of variables of psychoticism in the group of respondents for p < 0.001 to p < 0.01. A statistically significant representation of the dimension of psychoticism in the polytoxicomaniac group was established. The presence of factors concerning common executive dysfunction was emphasized.

  8. Poster - Thur Eve - 54: A software solution for ongoing DVH quality assurance in radiation therapy.

    PubMed

    Annis, S-L; Zeng, G; Wu, X; Macpherson, M

    2012-07-01

    A program has been developed in MATLAB for use in quality assurance of treatment planning of radiation therapy. It analyzes patient DVH files and compiles dose volume data for review, trending, comparison and analysis. Patient DVH files are exported from the Eclipse treatment planning system and saved according to treatment sites and date. Currently analysis is available for 4 treatment sites; Prostate, Prostate Bed, Lung, and Upper GI, with two functions for data report and analysis: patient-specific and organ-specific. The patient-specific function loads one patient DVH file and reports the user-specified dose volume data of organs and targets. These data can be compiled to an external file for a third party analysis. The organ-specific function extracts a requested dose volume of an organ from the DVH files of a patient group and reports the statistics over this population. A graphical user interface is utilized to select clinical sites, function and structures, and input user's requests. We have implemented this program in planning quality assurance at our center. The program has tracked the dosimetric improvement in GU sites after VMAT was implemented clinically. It has generated dose volume statistics for different groups of patients associated with technique or time range. This program allows reporting and statistical analysis of DVH files. It is an efficient tool for the planning quality control in radiation therapy. © 2012 American Association of Physicists in Medicine.

  9. Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

    PubMed

    Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash

    2018-04-24

    Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.

  10. Evaluating Cellular Polyfunctionality with a Novel Polyfunctionality Index

    PubMed Central

    Larsen, Martin; Sauce, Delphine; Arnaud, Laurent; Fastenackels, Solène; Appay, Victor; Gorochov, Guy

    2012-01-01

    Functional evaluation of naturally occurring or vaccination-induced T cell responses in mice, men and monkeys has in recent years advanced from single-parameter (e.g. IFN-γ-secretion) to much more complex multidimensional measurements. Co-secretion of multiple functional molecules (such as cytokines and chemokines) at the single-cell level is now measurable due primarily to major advances in multiparametric flow cytometry. The very extensive and complex datasets generated by this technology raise the demand for proper analytical tools that enable the analysis of combinatorial functional properties of T cells, hence polyfunctionality. Presently, multidimensional functional measures are analysed either by evaluating all combinations of parameters individually or by summing frequencies of combinations that include the same number of simultaneous functions. Often these evaluations are visualized as pie charts. Whereas pie charts effectively represent and compare average polyfunctionality profiles of particular T cell subsets or patient groups, they do not document the degree or variation of polyfunctionality within a group nor does it allow more sophisticated statistical analysis. Here we propose a novel polyfunctionality index that numerically evaluates the degree and variation of polyfuntionality, and enable comparative and correlative parametric and non-parametric statistical tests. Moreover, it allows the usage of more advanced statistical approaches, such as cluster analysis. We believe that the polyfunctionality index will render polyfunctionality an appropriate end-point measure in future studies of T cell responsiveness. PMID:22860124

  11. GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis.

    PubMed

    Zheng, Qi; Wang, Xiu-Jie

    2008-07-01

    Gene Ontology (GO) analysis has become a commonly used approach for functional studies of large-scale genomic or transcriptomic data. Although there have been a lot of software with GO-related analysis functions, new tools are still needed to meet the requirements for data generated by newly developed technologies or for advanced analysis purpose. Here, we present a Gene Ontology Enrichment Analysis Software Toolkit (GOEAST), an easy-to-use web-based toolkit that identifies statistically overrepresented GO terms within given gene sets. Compared with available GO analysis tools, GOEAST has the following improved features: (i) GOEAST displays enriched GO terms in graphical format according to their relationships in the hierarchical tree of each GO category (biological process, molecular function and cellular component), therefore, provides better understanding of the correlations among enriched GO terms; (ii) GOEAST supports analysis for data from various sources (probe or probe set IDs of Affymetrix, Illumina, Agilent or customized microarrays, as well as different gene identifiers) and multiple species (about 60 prokaryote and eukaryote species); (iii) One unique feature of GOEAST is to allow cross comparison of the GO enrichment status of multiple experiments to identify functional correlations among them. GOEAST also provides rigorous statistical tests to enhance the reliability of analysis results. GOEAST is freely accessible at http://omicslab.genetics.ac.cn/GOEAST/

  12. A Prototype System for Retrieval of Gene Functional Information

    PubMed Central

    Folk, Lillian C.; Patrick, Timothy B.; Pattison, James S.; Wolfinger, Russell D.; Mitchell, Joyce A.

    2003-01-01

    Microarrays allow researchers to gather data about the expression patterns of thousands of genes simultaneously. Statistical analysis can reveal which genes show statistically significant results. Making biological sense of those results requires the retrieval of functional information about the genes thus identified, typically a manual gene-by-gene retrieval of information from various on-line databases. For experiments generating thousands of genes of interest, retrieval of functional information can become a significant bottleneck. To address this issue, we are currently developing a prototype system to automate the process of retrieval of functional information from multiple on-line sources. PMID:14728346

  13. Electrophysiological evidence of heterogeneity in visual statistical learning in young children with ASD.

    PubMed

    Jeste, Shafali S; Kirkham, Natasha; Senturk, Damla; Hasenstab, Kyle; Sugar, Catherine; Kupelian, Chloe; Baker, Elizabeth; Sanders, Andrew J; Shimizu, Christina; Norona, Amanda; Paparella, Tanya; Freeman, Stephanny F N; Johnson, Scott P

    2015-01-01

    Statistical learning is characterized by detection of regularities in one's environment without an awareness or intention to learn, and it may play a critical role in language and social behavior. Accordingly, in this study we investigated the electrophysiological correlates of visual statistical learning in young children with autism spectrum disorder (ASD) using an event-related potential shape learning paradigm, and we examined the relation between visual statistical learning and cognitive function. Compared to typically developing (TD) controls, the ASD group as a whole showed reduced evidence of learning as defined by N1 (early visual discrimination) and P300 (attention to novelty) components. Upon further analysis, in the ASD group there was a positive correlation between N1 amplitude difference and non-verbal IQ, and a positive correlation between P300 amplitude difference and adaptive social function. Children with ASD and a high non-verbal IQ and high adaptive social function demonstrated a distinctive pattern of learning. This is the first study to identify electrophysiological markers of visual statistical learning in children with ASD. Through this work we have demonstrated heterogeneity in statistical learning in ASD that maps onto non-verbal cognition and adaptive social function. © 2014 John Wiley & Sons Ltd.

  14. Two-Sample Statistics for Testing the Equality of Survival Functions Against Improper Semi-parametric Accelerated Failure Time Alternatives: An Application to the Analysis of a Breast Cancer Clinical Trial

    PubMed Central

    BROËT, PHILIPPE; TSODIKOV, ALEXANDER; DE RYCKE, YANN; MOREAU, THIERRY

    2010-01-01

    This paper presents two-sample statistics suited for testing equality of survival functions against improper semi-parametric accelerated failure time alternatives. These tests are designed for comparing either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests can be very easily implemented using widely available software. A breast cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests. PMID:15293627

  15. Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values

    NASA Technical Reports Server (NTRS)

    Purves, L.; Strang, R. F.; Dube, M. P.; Alea, P.; Ferragut, N.; Hershfeld, D.

    1983-01-01

    The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data.

  16. Augmenting Latent Dirichlet Allocation and Rank Threshold Detection with Ontologies

    DTIC Science & Technology

    2010-03-01

    Probabilistic Latent Semantic Indexing (PLSI) is an automated indexing information retrieval model [20]. It is based on a statistical latent class model which is...uses a statistical foundation that is more accurate in finding hidden semantic relationships [20]. The model uses factor analysis of count data, number...principle of statistical infer- ence which asserts that all of the information in a sample is contained in the likelihood function [20]. The statistical

  17. Impact of ontology evolution on functional analyses.

    PubMed

    Groß, Anika; Hartung, Michael; Prüfer, Kay; Kelso, Janet; Rahm, Erhard

    2012-10-15

    Ontologies are used in the annotation and analysis of biological data. As knowledge accumulates, ontologies and annotation undergo constant modifications to reflect this new knowledge. These modifications may influence the results of statistical applications such as functional enrichment analyses that describe experimental data in terms of ontological groupings. Here, we investigate to what degree modifications of the Gene Ontology (GO) impact these statistical analyses for both experimental and simulated data. The analysis is based on new measures for the stability of result sets and considers different ontology and annotation changes. Our results show that past changes in the GO are non-uniformly distributed over different branches of the ontology. Considering the semantic relatedness of significant categories in analysis results allows a more realistic stability assessment for functional enrichment studies. We observe that the results of term-enrichment analyses tend to be surprisingly stable despite changes in ontology and annotation.

  18. Evaluation of statistical distributions to analyze the pollution of Cd and Pb in urban runoff.

    PubMed

    Toranjian, Amin; Marofi, Safar

    2017-05-01

    Heavy metal pollution in urban runoff causes severe environmental damage. Identification of these pollutants and their statistical analysis is necessary to provide management guidelines. In this study, 45 continuous probability distribution functions were selected to fit the Cd and Pb data in the runoff events of an urban area during October 2014-May 2015. The sampling was conducted from the outlet of the city basin during seven precipitation events. For evaluation and ranking of the functions, we used the goodness of fit Kolmogorov-Smirnov and Anderson-Darling tests. The results of Cd analysis showed that Hyperbolic Secant, Wakeby and Log-Pearson 3 are suitable for frequency analysis of the event mean concentration (EMC), the instantaneous concentration series (ICS) and instantaneous concentration of each event (ICEE), respectively. In addition, the LP3, Wakeby and Generalized Extreme Value functions were chosen for the EMC, ICS and ICEE related to Pb contamination.

  19. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    PubMed

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-05-27

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.

  20. [Range of Hip Joint Motion and Weight of Lower Limb Function under 3D Dynamic Marker].

    PubMed

    Xia, Q; Zhang, M; Gao, D; Xia, W T

    2017-12-01

    To explore the range of reasonable weight coefficient of hip joint in lower limb function. When the hip joints of healthy volunteers under normal conditions or fixed at three different positions including functional, flexed and extension positions, the movements of lower limbs were recorded by LUKOtronic motion capture and analysis system. The degree of lower limb function loss was calculated using Fugl-Meyer lower limb function assessment form when the hip joints were fixed at the aforementioned positions. One-way analysis of variance and Tamhane's T2 method were used to proceed statistics analysis and calculate the range of reasonable weight coefficient of hip joint. There were significant differences between the degree of lower limb function loss when the hip joints fixed at flexed and extension positions and at functional position. While the differences between the degree of lower limb function loss when the hip joints fixed at flexed position and extension position had no statistical significance. In 95% confidence interval, the reasonable weight coefficient of hip joint in lower limb function was between 61.05% and 73.34%. Expect confirming the reasonable weight coefficient, the effects of functional and non-functional positions on the degree of lower limb function loss should also be considered for the assessment of hip joint function loss. Copyright© by the Editorial Department of Journal of Forensic Medicine

  1. Changes in parameters of right ventricular function with cardiac resynchronization therapy.

    PubMed

    Sharma, Abhishek; Lavie, Carl J; Vallakati, Ajay; Garg, Akash; Goel, Sunny; Lazar, Jason; Fonarow, Gregg C

    2017-11-01

    Studies have shown that cardiac resynchronization therapy (CRT) significantly improves right ventricle (RV) size and function in patients with heart failure (HF). CRT does not lead to improvement in RV function independent of baseline clinical variables. A systematic search of studies published between 1966 to August 31, 2015 was conducted using Pub Med, CINAHL, Cochrane CENTRAL and the Web of Science databases. Studies reporting tricuspid annular plane systolic excursion (TAPSE) or RV basal strain or RV long axis diameter or RV short axis diameter or RV fractional area change (FAC), before and after CRT, were identified. A meta-analysis was performed using random effects with inverse variance method to determine the pooled mean difference in various parameters of RV function after CRT. Meta-regression analysis was performed to test the relationship between change in various parameters of RV functions after CRT and covariates- age, QRS duration, and left ventricular ejection fraction (LVEF). Thirteen studies (N=1541) were selected for final analysis. CRT therapy led to statistically significant increases in TAPSE [1.21 (95% CI 0.55-1.86; p<0.001)], RV FAC [2.26 (95% CI 0.50-4.01; p<0.001)] and basal strain [2.82 (95% CI 0.59-5.05; p<0.001)] and statistically significant decreases in mean RV long axis diameter [-2.94 (95% CI -5.07- -0.82; p=0.005)] and short axis diameter [-1.39 (95% CI -2.10- -0.67; p=0.876)] after a mean follow up period of 9 months. However, after meta-regression analysis for age, QRS duration, and baseline LVEF as covariates, there was no significant improvement in any of the parameters of RV function after CRT. There was a statistically significant improvement in TAPSE, RV basal strain, RV fractional area, RV long axis and short axis with CRT. However, improvement in these echocardiographic parameters of RV function after CRT was not independent of baseline clinical variables but statistically dependent on age, QRS duration and baseline LVEF. © 2017 Wiley Periodicals, Inc.

  2. Log Normal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of Alpha Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2008-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log normal distribution function (J Nucl Med 47, 6 (2006) 1049-1058) with the aid of an autoradiographic approach. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analyses of these data. Methods The measured distributions of alpha particle tracks per cell were subjected to statistical tests with Poisson (P), log normal (LN), and Poisson – log normal (P – LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL 210Po-citrate. When cells were exposed to 67 kBq/mL, the P – LN distribution function gave a better fit, however, the underlying activity distribution remained log normal. Conclusions The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:16741316

  3. Scaling Laws in Canopy Flows: A Wind-Tunnel Analysis

    NASA Astrophysics Data System (ADS)

    Segalini, Antonio; Fransson, Jens H. M.; Alfredsson, P. Henrik

    2013-08-01

    An analysis of velocity statistics and spectra measured above a wind-tunnel forest model is reported. Several measurement stations downstream of the forest edge have been investigated and it is observed that, while the mean velocity profile adjusts quickly to the new canopy boundary condition, the turbulence lags behind and shows a continuous penetration towards the free stream along the canopy model. The statistical profiles illustrate this growth and do not collapse when plotted as a function of the vertical coordinate. However, when the statistics are plotted as function of the local mean velocity (normalized with a characteristic velocity scale), they do collapse, independently of the streamwise position and freestream velocity. A new scaling for the spectra of all three velocity components is proposed based on the velocity variance and integral time scale. This normalization improves the collapse of the spectra compared to existing scalings adopted in atmospheric measurements, and allows the determination of a universal function that provides the velocity spectrum. Furthermore, a comparison of the proposed scaling laws for two different canopy densities is shown, demonstrating that the vertical velocity variance is the most sensible statistical quantity to the characteristics of the canopy roughness.

  4. The neuronal correlates of intranasal trigeminal function – An ALE meta-analysis of human functional brain imaging data

    PubMed Central

    Albrecht, Jessica; Kopietz, Rainer; Frasnelli, Johannes; Wiesmann, Martin; Hummel, Thomas; Lundström, Johan N.

    2009-01-01

    Almost every odor we encounter in daily life has the capacity to produce a trigeminal sensation. Surprisingly, few functional imaging studies exploring human neuronal correlates of intranasal trigeminal function exist, and results are to some degree inconsistent. We utilized activation likelihood estimation (ALE), a quantitative voxel-based meta-analysis tool, to analyze functional imaging data (fMRI/PET) following intranasal trigeminal stimulation with carbon dioxide (CO2), a stimulus known to exclusively activate the trigeminal system. Meta-analysis tools are able to identify activations common across studies, thereby enabling activation mapping with higher certainty. Activation foci of nine studies utilizing trigeminal stimulation were included in the meta-analysis. We found significant ALE scores, thus indicating consistent activation across studies, in the brainstem, ventrolateral posterior thalamic nucleus, anterior cingulate cortex, insula, precentral gyrus, as well as in primary and secondary somatosensory cortices – a network known for the processing of intranasal nociceptive stimuli. Significant ALE values were also observed in the piriform cortex, insula, and the orbitofrontal cortex, areas known to process chemosensory stimuli, and in association cortices. Additionally, the trigeminal ALE statistics were directly compared with ALE statistics originating from olfactory stimulation, demonstrating considerable overlap in activation. In conclusion, the results of this meta-analysis map the human neuronal correlates of intranasal trigeminal stimulation with high statistical certainty and demonstrate that the cortical areas recruited during the processing of intranasal CO2 stimuli include those outside traditional trigeminal areas. Moreover, through illustrations of the considerable overlap between brain areas that process trigeminal and olfactory information; these results demonstrate the interconnectivity of flavor processing. PMID:19913573

  5. Statistical analysis and modeling of intermittent transport events in the tokamak scrape-off layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Johan, E-mail: anderson.johan@gmail.com; Halpern, Federico D.; Ricci, Paolo

    The turbulence observed in the scrape-off-layer of a tokamak is often characterized by intermittent events of bursty nature, a feature which raises concerns about the prediction of heat loads on the physical boundaries of the device. It appears thus necessary to delve into the statistical properties of turbulent physical fields such as density, electrostatic potential, and temperature, focusing on the mathematical expression of tails of the probability distribution functions. The method followed here is to generate statistical information from time-traces of the plasma density stemming from Braginskii-type fluid simulations and check this against a first-principles theoretical model. The analysis ofmore » the numerical simulations indicates that the probability distribution function of the intermittent process contains strong exponential tails, as predicted by the analytical theory.« less

  6. Statistical Optimality in Multipartite Ranking and Ordinal Regression.

    PubMed

    Uematsu, Kazuki; Lee, Yoonkyung

    2015-05-01

    Statistical optimality in multipartite ranking is investigated as an extension of bipartite ranking. We consider the optimality of ranking algorithms through minimization of the theoretical risk which combines pairwise ranking errors of ordinal categories with differential ranking costs. The extension shows that for a certain class of convex loss functions including exponential loss, the optimal ranking function can be represented as a ratio of weighted conditional probability of upper categories to lower categories, where the weights are given by the misranking costs. This result also bridges traditional ranking methods such as proportional odds model in statistics with various ranking algorithms in machine learning. Further, the analysis of multipartite ranking with different costs provides a new perspective on non-smooth list-wise ranking measures such as the discounted cumulative gain and preference learning. We illustrate our findings with simulation study and real data analysis.

  7. Applications of Ergodic Theory to Coverage Analysis

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.

    2003-01-01

    The study of differential equations, or dynamical systems in general, has two fundamentally different approaches. We are most familiar with the construction of solutions to differential equations. Another approach is to study the statistical behavior of the solutions. Ergodic Theory is one of the most developed methods to study the statistical behavior of the solutions of differential equations. In the theory of satellite orbits, the statistical behavior of the orbits is used to produce 'Coverage Analysis' or how often a spacecraft is in view of a site on the ground. In this paper, we consider the use of Ergodic Theory for Coverage Analysis. This allows us to greatly simplify the computation of quantities such as the total time for which a ground station can see a satellite without ever integrating the trajectory, see Lo 1,2. More over, for any quantity which is an integrable function of the ground track, its average may be computed similarly without the integration of the trajectory. For example, the data rate for a simple telecom system is a function of the distance between the satellite and the ground station. We show that such a function may be averaged using the Ergodic Theorem.

  8. A κ-generalized statistical mechanics approach to income analysis

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2009-02-01

    This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low-middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful.

  9. In vivo evaluation of the effect of stimulus distribution on FIR statistical efficiency in event-related fMRI.

    PubMed

    Jansma, J Martijn; de Zwart, Jacco A; van Gelderen, Peter; Duyn, Jeff H; Drevets, Wayne C; Furey, Maura L

    2013-05-15

    Technical developments in MRI have improved signal to noise, allowing use of analysis methods such as Finite impulse response (FIR) of rapid event related functional MRI (er-fMRI). FIR is one of the most informative analysis methods as it determines onset and full shape of the hemodynamic response function (HRF) without any a priori assumptions. FIR is however vulnerable to multicollinearity, which is directly related to the distribution of stimuli over time. Efficiency can be optimized by simplifying a design, and restricting stimuli distribution to specific sequences, while more design flexibility necessarily reduces efficiency. However, the actual effect of efficiency on fMRI results has never been tested in vivo. Thus, it is currently difficult to make an informed choice between protocol flexibility and statistical efficiency. The main goal of this study was to assign concrete fMRI signal to noise values to the abstract scale of FIR statistical efficiency. Ten subjects repeated a perception task with five random and m-sequence based protocol, with varying but, according to literature, acceptable levels of multicollinearity. Results indicated substantial differences in signal standard deviation, while the level was a function of multicollinearity. Experiment protocols varied up to 55.4% in standard deviation. Results confirm that quality of fMRI in an FIR analysis can significantly and substantially vary with statistical efficiency. Our in vivo measurements can be used to aid in making an informed decision between freedom in protocol design and statistical efficiency. Published by Elsevier B.V.

  10. Validating Coherence Measurements Using Aligned and Unaligned Coherence Functions

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    This paper describes a novel approach based on the use of coherence functions and statistical theory for sensor validation in a harsh environment. By the use of aligned and unaligned coherence functions and statistical theory one can test for sensor degradation, total sensor failure or changes in the signal. This advanced diagnostic approach and the novel data processing methodology discussed provides a single number that conveys this information. This number as calculated with standard statistical procedures for comparing the means of two distributions is compared with results obtained using Yuen's robust statistical method to create confidence intervals. Examination of experimental data from Kulite pressure transducers mounted in a Pratt & Whitney PW4098 combustor using spectrum analysis methods on aligned and unaligned time histories has verified the effectiveness of the proposed method. All the procedures produce good results which demonstrates how robust the technique is.

  11. [The application of the multidimensional statistical methods in the evaluation of the influence of atmospheric pollution on the population's health].

    PubMed

    Surzhikov, V D; Surzhikov, D V

    2014-01-01

    The search and measurement of causal relationships between exposure to air pollution and health state of the population is based on the system analysis and risk assessment to improve the quality of research. With this purpose there is applied the modern statistical analysis with the use of criteria of independence, principal component analysis and discriminate function analysis. As a result of analysis out of all atmospheric pollutants there were separated four main components: for diseases of the circulatory system main principal component is implied with concentrations of suspended solids, nitrogen dioxide, carbon monoxide, hydrogen fluoride, for the respiratory diseases the main c principal component is closely associated with suspended solids, sulfur dioxide and nitrogen dioxide, charcoal black. The discriminant function was shown to be used as a measure of the level of air pollution.

  12. CRAX. Cassandra Exoskeleton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, D.G.; Eubanks, L.

    1998-03-01

    This software assists the engineering designer in characterizing the statistical uncertainty in the performance of complex systems as a result of variations in manufacturing processes, material properties, system geometry or operating environment. The software is composed of a graphical user interface that provides the user with easy access to Cassandra uncertainty analysis routines. Together this interface and the Cassandra routines are referred to as CRAX (CassandRA eXoskeleton). The software is flexible enough, that with minor modification, it is able to interface with large modeling and analysis codes such as heat transfer or finite element analysis software. The current version permitsmore » the user to manually input a performance function, the number of random variables and their associated statistical characteristics: density function, mean, coefficients of variation. Additional uncertainity analysis modules are continuously being added to the Cassandra core.« less

  13. Cassandra Exoskeleton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robiinson, David G.

    1999-02-20

    This software assists the engineering designer in characterizing the statistical uncertainty in the performance of complex systems as a result of variations in manufacturing processes, material properties, system geometry or operating environment. The software is composed of a graphical user interface that provides the user with easy access to Cassandra uncertainty analysis routines. Together this interface and the Cassandra routines are referred to as CRAX (CassandRA eXoskeleton). The software is flexible enough, that with minor modification, it is able to interface with large modeling and analysis codes such as heat transfer or finite element analysis software. The current version permitsmore » the user to manually input a performance function, the number of random variables and their associated statistical characteristics: density function, mean, coefficients of variation. Additional uncertainity analysis modules are continuously being added to the Cassandra core.« less

  14. Wastewater-Based Epidemiology of Stimulant Drugs: Functional Data Analysis Compared to Traditional Statistical Methods.

    PubMed

    Salvatore, Stefania; Bramness, Jørgen Gustav; Reid, Malcolm J; Thomas, Kevin Victor; Harman, Christopher; Røislien, Jo

    2015-01-01

    Wastewater-based epidemiology (WBE) is a new methodology for estimating the drug load in a population. Simple summary statistics and specification tests have typically been used to analyze WBE data, comparing differences between weekday and weekend loads. Such standard statistical methods may, however, overlook important nuanced information in the data. In this study, we apply functional data analysis (FDA) to WBE data and compare the results to those obtained from more traditional summary measures. We analysed temporal WBE data from 42 European cities, using sewage samples collected daily for one week in March 2013. For each city, the main temporal features of two selected drugs were extracted using functional principal component (FPC) analysis, along with simpler measures such as the area under the curve (AUC). The individual cities' scores on each of the temporal FPCs were then used as outcome variables in multiple linear regression analysis with various city and country characteristics as predictors. The results were compared to those of functional analysis of variance (FANOVA). The three first FPCs explained more than 99% of the temporal variation. The first component (FPC1) represented the level of the drug load, while the second and third temporal components represented the level and the timing of a weekend peak. AUC was highly correlated with FPC1, but other temporal characteristic were not captured by the simple summary measures. FANOVA was less flexible than the FPCA-based regression, and even showed concordance results. Geographical location was the main predictor for the general level of the drug load. FDA of WBE data extracts more detailed information about drug load patterns during the week which are not identified by more traditional statistical methods. Results also suggest that regression based on FPC results is a valuable addition to FANOVA for estimating associations between temporal patterns and covariate information.

  15. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  16. Probing the statistical properties of CMB B-mode polarization through Minkowski functionals

    NASA Astrophysics Data System (ADS)

    Santos, Larissa; Wang, Kai; Zhao, Wen

    2016-07-01

    The detection of the magnetic type B-mode polarization is the main goal of future cosmic microwave background (CMB) experiments. In the standard model, the B-mode map is a strong non-gaussian field due to the CMB lensing component. Besides the two-point correlation function, the other statistics are also very important to dig the information of the polarization map. In this paper, we employ the Minkowski functionals to study the morphological properties of the lensed B-mode maps. We find that the deviations from Gaussianity are very significant for both full and partial-sky surveys. As an application of the analysis, we investigate the morphological imprints of the foreground residuals in the B-mode map. We find that even for very tiny foreground residuals, the effects on the map can be detected by the Minkowski functional analysis. Therefore, it provides a complementary way to investigate the foreground contaminations in the CMB studies.

  17. FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies.

    PubMed

    Kim, Jiwoong; Kim, Min Soo; Koh, Andrew Y; Xie, Yang; Zhan, Xiaowei

    2016-10-10

    Given the lack of a complete and comprehensive library of microbial reference genomes, determining the functional profile of diverse microbial communities is challenging. The available functional analysis pipelines lack several key features: (i) an integrated alignment tool, (ii) operon-level analysis, and (iii) the ability to process large datasets. Here we introduce our open-sourced, stand-alone functional analysis pipeline for analyzing whole metagenomic and metatranscriptomic sequencing data, FMAP (Functional Mapping and Analysis Pipeline). FMAP performs alignment, gene family abundance calculations, and statistical analysis (three levels of analyses are provided: differentially-abundant genes, operons and pathways). The resulting output can be easily visualized with heatmaps and functional pathway diagrams. FMAP functional predictions are consistent with currently available functional analysis pipelines. FMAP is a comprehensive tool for providing functional analysis of metagenomic/metatranscriptomic sequencing data. With the added features of integrated alignment, operon-level analysis, and the ability to process large datasets, FMAP will be a valuable addition to the currently available functional analysis toolbox. We believe that this software will be of great value to the wider biology and bioinformatics communities.

  18. Statistical power in parallel group point exposure studies with time-to-event outcomes: an empirical comparison of the performance of randomized controlled trials and the inverse probability of treatment weighting (IPTW) approach.

    PubMed

    Austin, Peter C; Schuster, Tibor; Platt, Robert W

    2015-10-15

    Estimating statistical power is an important component of the design of both randomized controlled trials (RCTs) and observational studies. Methods for estimating statistical power in RCTs have been well described and can be implemented simply. In observational studies, statistical methods must be used to remove the effects of confounding that can occur due to non-random treatment assignment. Inverse probability of treatment weighting (IPTW) using the propensity score is an attractive method for estimating the effects of treatment using observational data. However, sample size and power calculations have not been adequately described for these methods. We used an extensive series of Monte Carlo simulations to compare the statistical power of an IPTW analysis of an observational study with time-to-event outcomes with that of an analysis of a similarly-structured RCT. We examined the impact of four factors on the statistical power function: number of observed events, prevalence of treatment, the marginal hazard ratio, and the strength of the treatment-selection process. We found that, on average, an IPTW analysis had lower statistical power compared to an analysis of a similarly-structured RCT. The difference in statistical power increased as the magnitude of the treatment-selection model increased. The statistical power of an IPTW analysis tended to be lower than the statistical power of a similarly-structured RCT.

  19. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen

    2015-11-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.

  20. MaxEnt, second variation, and generalized statistics

    NASA Astrophysics Data System (ADS)

    Plastino, A.; Rocca, M. C.

    2015-10-01

    There are two kinds of Tsallis-probability distributions: heavy tail ones and compact support distributions. We show here, by appeal to functional analysis' tools, that for lower bound Hamiltonians, the second variation's analysis of the entropic functional guarantees that the heavy tail q-distribution constitutes a maximum of Tsallis' entropy. On the other hand, in the compact support instance, a case by case analysis is necessary in order to tackle the issue.

  1. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Kacprzak, T.; Kirk, D.; Friedrich, O.; Amara, A.; Refregier, A.; Marian, L.; Dietrich, J. P.; Suchyta, E.; Aleksić, J.; Bacon, D.; Becker, M. R.; Bonnett, C.; Bridle, S. L.; Chang, C.; Eifler, T. F.; Hartley, W. G.; Huff, E. M.; Krause, E.; MacCrann, N.; Melchior, P.; Nicola, A.; Samuroff, S.; Sheldon, E.; Troxel, M. A.; Weller, J.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Zhang, Y.; DES Collaboration

    2016-12-01

    Shear peak statistics has gained a lot of attention recently as a practical alternative to the two-point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg2 field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 04 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two-point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data.

  2. Statistical properties of filtered pseudorandom digital sequences formed from the sum of maximum-length sequences

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Weathers, G. D.; Graf, E. R.

    1973-01-01

    The statistics of filtered pseudorandom digital sequences called hybrid-sum sequences, formed from the modulo-two sum of several maximum-length sequences, are analyzed. The results indicate that a relation exists between the statistics of the filtered sequence and the characteristic polynomials of the component maximum length sequences. An analysis procedure is developed for identifying a large group of sequences with good statistical properties for applications requiring the generation of analog pseudorandom noise. By use of the analysis approach, the filtering process is approximated by the convolution of the sequence with a sum of unit step functions. A parameter reflecting the overall statistical properties of filtered pseudorandom sequences is derived. This parameter is called the statistical quality factor. A computer algorithm to calculate the statistical quality factor for the filtered sequences is presented, and the results for two examples of sequence combinations are included. The analysis reveals that the statistics of the signals generated with the hybrid-sum generator are potentially superior to the statistics of signals generated with maximum-length generators. Furthermore, fewer calculations are required to evaluate the statistics of a large group of hybrid-sum generators than are required to evaluate the statistics of the same size group of approximately equivalent maximum-length sequences.

  3. Towards tests of quark-hadron duality with functional analysis and spectral function data

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Caprini, Irinel

    2017-04-01

    The presence of terms that violate quark-hadron duality in the expansion of QCD Green's functions is a generally accepted fact. Recently, a new approach was proposed for the study of duality violations (DVs), which exploits the existence of a rigorous lower bound on the functional distance, measured in a certain norm, between a "true" correlator and its approximant calculated theoretically along a contour in the complex energy plane. In the present paper, we pursue the investigation of functional-analysis-based tests towards their application to real spectral function data. We derive a closed analytic expression for the minimal functional distance based on the general weighted L2 norm and discuss its relation with the distance measured in the L∞ norm. Using fake data sets obtained from a realistic toy model in which we allow for covariances inspired from the publicly available ALEPH spectral functions, we obtain, by Monte Carlo simulations, the statistical distribution of the strength parameter that measures the magnitude of the DV term added to the usual operator product expansion. The results show that, if the region with large errors near the end point of the spectrum in τ decays is excluded, the functional-analysis-based tests using either L2 or L∞ norms are able to detect, in a statistically significant way, the presence of DVs in realistic spectral function pseudodata.

  4. Replicability of time-varying connectivity patterns in large resting state fMRI samples.

    PubMed

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L; Stephen, Julia M; Claus, Eric D; Mayer, Andrew R; Calhoun, Vince D

    2017-12-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain's inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Replicability of time-varying connectivity patterns in large resting state fMRI samples

    PubMed Central

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L.; Stephen, Julia M.; Claus, Eric D.; Mayer, Andrew R.; Calhoun, Vince D.

    2018-01-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain’s inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. PMID:28916181

  6. Machine learning for neuroimaging with scikit-learn.

    PubMed

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  7. Machine learning for neuroimaging with scikit-learn

    PubMed Central

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388

  8. Functional brain networks for learning predictive statistics.

    PubMed

    Giorgio, Joseph; Karlaftis, Vasilis M; Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew; Kourtzi, Zoe

    2017-08-18

    Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. This skill relies on extracting regular patterns in space and time by mere exposure to the environment (i.e., without explicit feedback). Yet, we know little about the functional brain networks that mediate this type of statistical learning. Here, we test whether changes in the processing and connectivity of functional brain networks due to training relate to our ability to learn temporal regularities. By combining behavioral training and functional brain connectivity analysis, we demonstrate that individuals adapt to the environment's statistics as they change over time from simple repetition to probabilistic combinations. Further, we show that individual learning of temporal structures relates to decision strategy. Our fMRI results demonstrate that learning-dependent changes in fMRI activation within and functional connectivity between brain networks relate to individual variability in strategy. In particular, extracting the exact sequence statistics (i.e., matching) relates to changes in brain networks known to be involved in memory and stimulus-response associations, while selecting the most probable outcomes in a given context (i.e., maximizing) relates to changes in frontal and striatal networks. Thus, our findings provide evidence that dissociable brain networks mediate individual ability in learning behaviorally-relevant statistics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Nonlinear dynamics of the cellular-automaton ``game of Life''

    NASA Astrophysics Data System (ADS)

    Garcia, J. B. C.; Gomes, M. A. F.; Jyh, T. I.; Ren, T. I.; Sales, T. R. M.

    1993-11-01

    A statistical analysis of the ``game of Life'' due to Conway [Berlekamp, Conway, and Guy, Winning Ways for Your Mathematical Plays (Academic, New York, 1982), Vol. 2] is reported. The results are based on extensive computer simulations starting with uncorrelated distributions of live sites at t=0. The number n(s,t) of clusters of s live sites at time t, the mean cluster size s¯(t), and the diversity of sizes among other statistical functions are obtained. The dependence of the statistical functions with the initial density of live sites is examined. Several scaling relations as well as static and dynamic critical exponents are found.

  10. SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series

    USGS Publications Warehouse

    Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory

    2018-03-07

    This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogalovskii, M.R.

    This paper presents a review of problems related to statistical database systems, which are wide-spread in various fields of activity. Statistical databases (SDB) are referred to as databases that consist of data and are used for statistical analysis. Topics under consideration are: SDB peculiarities, properties of data models adequate for SDB requirements, metadata functions, null-value problems, SDB compromise protection problems, stored data compression techniques, and statistical data representation means. Also examined is whether the present Database Management Systems (DBMS) satisfy the SDB requirements. Some actual research directions in SDB systems are considered.

  12. Orthogonality catastrophe and fractional exclusion statistics

    NASA Astrophysics Data System (ADS)

    Ares, Filiberto; Gupta, Kumar S.; de Queiroz, Amilcar R.

    2018-02-01

    We show that the N -particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N -body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.

  13. Orthogonality catastrophe and fractional exclusion statistics.

    PubMed

    Ares, Filiberto; Gupta, Kumar S; de Queiroz, Amilcar R

    2018-02-01

    We show that the N-particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N-body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.

  14. RAId_aPS: MS/MS Analysis with Multiple Scoring Functions and Spectrum-Specific Statistics

    PubMed Central

    Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

    2010-01-01

    Statistically meaningful comparison/combination of peptide identification results from various search methods is impeded by the lack of a universal statistical standard. Providing an -value calibration protocol, we demonstrated earlier the feasibility of translating either the score or heuristic -value reported by any method into the textbook-defined -value, which may serve as the universal statistical standard. This protocol, although robust, may lose spectrum-specific statistics and might require a new calibration when changes in experimental setup occur. To mitigate these issues, we developed a new MS/MS search tool, RAId_aPS, that is able to provide spectrum-specific -values for additive scoring functions. Given a selection of scoring functions out of RAId score, K-score, Hyperscore and XCorr, RAId_aPS generates the corresponding score histograms of all possible peptides using dynamic programming. Using these score histograms to assign -values enables a calibration-free protocol for accurate significance assignment for each scoring function. RAId_aPS features four different modes: (i) compute the total number of possible peptides for a given molecular mass range, (ii) generate the score histogram given a MS/MS spectrum and a scoring function, (iii) reassign -values for a list of candidate peptides given a MS/MS spectrum and the scoring functions chosen, and (iv) perform database searches using selected scoring functions. In modes (iii) and (iv), RAId_aPS is also capable of combining results from different scoring functions using spectrum-specific statistics. The web link is http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/raid_aps/index.html. Relevant binaries for Linux, Windows, and Mac OS X are available from the same page. PMID:21103371

  15. First Monte Carlo analysis of fragmentation functions from single-inclusive e + e - annihilation

    DOE PAGES

    Sato, Nobuo; Ethier, J. J.; Melnitchouk, W.; ...

    2016-12-02

    Here, we perform the first iterative Monte Carlo (IMC) analysis of fragmentation functions constrained by all available data from single-inclusive $e^+ e^-$ annihilation into pions and kaons. The IMC method eliminates potential bias in traditional analyses based on single fits introduced by fixing parameters not well contrained by the data, and provides a statistically rigorous determination of uncertainties. Our analysis reveals specific features of fragmentation functions using the new IMC methodology and those obtained from previous analyses, especially for light quarks and for strange quark fragmentation to kaons.

  16. Introduction to bioinformatics.

    PubMed

    Can, Tolga

    2014-01-01

    Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. A bioinformatics solution usually involves the following steps: Collect statistics from biological data. Build a computational model. Solve a computational modeling problem. Test and evaluate a computational algorithm. This chapter gives a brief introduction to bioinformatics by first providing an introduction to biological terminology and then discussing some classical bioinformatics problems organized by the types of data sources. Sequence analysis is the analysis of DNA and protein sequences for clues regarding function and includes subproblems such as identification of homologs, multiple sequence alignment, searching sequence patterns, and evolutionary analyses. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. Gene expression data is usually represented as matrices and analysis of microarray data mostly involves statistics analysis, classification, and clustering approaches. Biological networks such as gene regulatory networks, metabolic pathways, and protein-protein interaction networks are usually modeled as graphs and graph theoretic approaches are used to solve associated problems such as construction and analysis of large-scale networks.

  17. Statistics, Uncertainty, and Transmitted Variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, Joanne Roth

    2014-11-05

    The field of Statistics provides methods for modeling and understanding data and making decisions in the presence of uncertainty. When examining response functions, variation present in the input variables will be transmitted via the response function to the output variables. This phenomenon can potentially have significant impacts on the uncertainty associated with results from subsequent analysis. This presentation will examine the concept of transmitted variation, its impact on designed experiments, and a method for identifying and estimating sources of transmitted variation in certain settings.

  18. Data Analysis Techniques for Physical Scientists

    NASA Astrophysics Data System (ADS)

    Pruneau, Claude A.

    2017-10-01

    Preface; How to read this book; 1. The scientific method; Part I. Foundation in Probability and Statistics: 2. Probability; 3. Probability models; 4. Classical inference I: estimators; 5. Classical inference II: optimization; 6. Classical inference III: confidence intervals and statistical tests; 7. Bayesian inference; Part II. Measurement Techniques: 8. Basic measurements; 9. Event reconstruction; 10. Correlation functions; 11. The multiple facets of correlation functions; 12. Data correction methods; Part III. Simulation Techniques: 13. Monte Carlo methods; 14. Collision and detector modeling; List of references; Index.

  19. The statistical analysis of global climate change studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, J.W.

    1992-01-01

    The focus of this work is to contribute to the enhancement of the relationship between climatologists and statisticians. The analysis of global change data has been underway for many years by atmospheric scientists. Much of this analysis includes a heavy reliance on statistics and statistical inference. Some specific climatological analyses are presented and the dependence on statistics is documented before the analysis is undertaken. The first problem presented involves the fluctuation-dissipation theorem and its application to global climate models. This problem has a sound theoretical niche in the literature of both climate modeling and physics, but a statistical analysis inmore » which the data is obtained from the model to show graphically the relationship has not been undertaken. It is under this motivation that the author presents this problem. A second problem concerning the standard errors in estimating global temperatures is purely statistical in nature although very little materials exists for sampling on such a frame. This problem not only has climatological and statistical ramifications, but political ones as well. It is planned to use these results in a further analysis of global warming using actual data collected on the earth. In order to simplify the analysis of these problems, the development of a computer program, MISHA, is presented. This interactive program contains many of the routines, functions, graphics, and map projections needed by the climatologist in order to effectively enter the arena of data visualization.« less

  20. Advanced functional network analysis in the geosciences: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  1. Symptom Clusters in Advanced Cancer Patients: An Empirical Comparison of Statistical Methods and the Impact on Quality of Life.

    PubMed

    Dong, Skye T; Costa, Daniel S J; Butow, Phyllis N; Lovell, Melanie R; Agar, Meera; Velikova, Galina; Teckle, Paulos; Tong, Allison; Tebbutt, Niall C; Clarke, Stephen J; van der Hoek, Kim; King, Madeleine T; Fayers, Peter M

    2016-01-01

    Symptom clusters in advanced cancer can influence patient outcomes. There is large heterogeneity in the methods used to identify symptom clusters. To investigate the consistency of symptom cluster composition in advanced cancer patients using different statistical methodologies for all patients across five primary cancer sites, and to examine which clusters predict functional status, a global assessment of health and global quality of life. Principal component analysis and exploratory factor analysis (with different rotation and factor selection methods) and hierarchical cluster analysis (with different linkage and similarity measures) were used on a data set of 1562 advanced cancer patients who completed the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire-Core 30. Four clusters consistently formed for many of the methods and cancer sites: tense-worry-irritable-depressed (emotional cluster), fatigue-pain, nausea-vomiting, and concentration-memory (cognitive cluster). The emotional cluster was a stronger predictor of overall quality of life than the other clusters. Fatigue-pain was a stronger predictor of overall health than the other clusters. The cognitive cluster and fatigue-pain predicted physical functioning, role functioning, and social functioning. The four identified symptom clusters were consistent across statistical methods and cancer types, although there were some noteworthy differences. Statistical derivation of symptom clusters is in need of greater methodological guidance. A psychosocial pathway in the management of symptom clusters may improve quality of life. Biological mechanisms underpinning symptom clusters need to be delineated by future research. A framework for evidence-based screening, assessment, treatment, and follow-up of symptom clusters in advanced cancer is essential. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  2. Pathway analysis with next-generation sequencing data.

    PubMed

    Zhao, Jinying; Zhu, Yun; Boerwinkle, Eric; Xiong, Momiao

    2015-04-01

    Although pathway analysis methods have been developed and successfully applied to association studies of common variants, the statistical methods for pathway-based association analysis of rare variants have not been well developed. Many investigators observed highly inflated false-positive rates and low power in pathway-based tests of association of rare variants. The inflated false-positive rates and low true-positive rates of the current methods are mainly due to their lack of ability to account for gametic phase disequilibrium. To overcome these serious limitations, we develop a novel statistic that is based on the smoothed functional principal component analysis (SFPCA) for pathway association tests with next-generation sequencing data. The developed statistic has the ability to capture position-level variant information and account for gametic phase disequilibrium. By intensive simulations, we demonstrate that the SFPCA-based statistic for testing pathway association with either rare or common or both rare and common variants has the correct type 1 error rates. Also the power of the SFPCA-based statistic and 22 additional existing statistics are evaluated. We found that the SFPCA-based statistic has a much higher power than other existing statistics in all the scenarios considered. To further evaluate its performance, the SFPCA-based statistic is applied to pathway analysis of exome sequencing data in the early-onset myocardial infarction (EOMI) project. We identify three pathways significantly associated with EOMI after the Bonferroni correction. In addition, our preliminary results show that the SFPCA-based statistic has much smaller P-values to identify pathway association than other existing methods.

  3. Evidence of nonextensive statistical physics behavior in the watershed distribution in active tectonic areas: examples from Greece

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Kouli, Maria

    2013-08-01

    The Digital Elevation Model (DEM) for the Crete Island with a resolution of approximately 20 meters was used in order to delineate watersheds by computing the flow direction and using it in the Watershed function. The Watershed function uses a raster of flow direction to determine contributing area. The Geographic Information Systems routine procedure was applied and the watersheds as well as the streams network (using a threshold of 2000 cells, i.e. the minimum number of cells that constitute a stream) were extracted from the hydrologically corrected (free of sinks) DEM. A number of a few thousand watersheds were delineated, and their areal extent was calculated. From these watersheds a number of 300 was finally selected for further analysis as the watersheds of extremely small area were excluded in order to avoid possible artifacts. Our analysis approach is based on the basic principles of Complexity theory and Tsallis Entropy introduces in the frame of non-extensive statistical physics. This concept has been successfully used for the analysis of a variety of complex dynamic systems including natural hazards, where fractality and long-range interactions are important. The analysis indicates that the statistical distribution of watersheds can be successfully described with the theoretical estimations of non-extensive statistical physics implying the complexity that characterizes the occurrences of them.

  4. Data analysis of gravitational-wave signals from spinning neutron stars. III. Detection statistics and computational requirements

    NASA Astrophysics Data System (ADS)

    Jaranowski, Piotr; Królak, Andrzej

    2000-03-01

    We develop the analytic and numerical tools for data analysis of the continuous gravitational-wave signals from spinning neutron stars for ground-based laser interferometric detectors. The statistical data analysis method that we investigate is maximum likelihood detection which for the case of Gaussian noise reduces to matched filtering. We study in detail the statistical properties of the optimum functional that needs to be calculated in order to detect the gravitational-wave signal and estimate its parameters. We find it particularly useful to divide the parameter space into elementary cells such that the values of the optimal functional are statistically independent in different cells. We derive formulas for false alarm and detection probabilities both for the optimal and the suboptimal filters. We assess the computational requirements needed to do the signal search. We compare a number of criteria to build sufficiently accurate templates for our data analysis scheme. We verify the validity of our concepts and formulas by means of the Monte Carlo simulations. We present algorithms by which one can estimate the parameters of the continuous signals accurately. We find, confirming earlier work of other authors, that given a 100 Gflops computational power an all-sky search for observation time of 7 days and directed search for observation time of 120 days are possible whereas an all-sky search for 120 days of observation time is computationally prohibitive.

  5. Statistical analysis of the electrocatalytic activity of Pt nanoparticles supported on novel functionalized reduced graphene oxide-chitosan for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ekrami-Kakhki, Mehri-Saddat; Abbasi, Sedigheh; Farzaneh, Nahid

    2018-01-01

    The purpose of this study is to statistically analyze the anodic current density and peak potential of methanol oxidation at Pt nanoparticles supported on functionalized reduced graphene oxide (RGO), using design of experiments methodology. RGO is functionalized with methyl viologen (MV) and chitosan (CH). The novel Pt/MV-RGO-CH catalyst is successfully prepared and characterized with transmission electron microscopy (TEM) image. The electrocatalytic activity of Pt/MV-RGOCH catalyst is experimentally evaluated for methanol oxidation. The effects of methanol concentration and scan rate factors are also investigated experimentally and statistically. The effects of these two main factors and their interactions are investigated, using analysis of variance test, Duncan's multiple range test and response surface method. The results of the analysis of variance show that all the main factors and their interactions have a significant effect on anodic current density and peak potential of methanol oxidation at α = 0.05. The suggested models which encompass significant factors can predict the variation of the anodic current density and peak potential of methanol oxidation. The results of Duncan's multiple range test confirmed that there is a significant difference between the studied levels of the main factors. [Figure not available: see fulltext.

  6. A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.

    PubMed

    Dinov, Ivo D; Boscardin, John W; Mega, Michael S; Sowell, Elizabeth L; Toga, Arthur W

    2005-01-01

    We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural magnetic resonance imaging (MRI) and fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and spatial locations. An anatomical subvolume probabilistic atlas is used to tessellate the structural and functional signals into smaller regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical distributions of the signals on all the regions are computed in a compressed wavelet space. These are modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the Gaussian. We discovered that the Cauchy, Bessel K Forms, and Pareto distributions provide the most accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet space representation. In the second part of our investigation, we will apply this technique to analyze a large fMRI dataset involving repeated presentation of sensory-motor response stimuli in young, elderly, and demented subjects.

  7. Assessing Language Dominance with Functional MRI: The Role of Control Tasks and Statistical Analysis

    ERIC Educational Resources Information Center

    Dodoo-Schittko, Frank; Rosengarth, Katharina; Doenitz, Christian; Greenlee, Mark W.

    2012-01-01

    There is a discrepancy between the brain regions revealed by functional neuroimaging techniques and those brain regions where a loss of function, either by lesion or by electrocortical stimulation, induces language disorders. To differentiate between essential and non-essential language-related processes, we investigated the effects of linguistic…

  8. Statistical process control for residential treated wood

    Treesearch

    Patricia K. Lebow; Timothy M. Young; Stan Lebow

    2017-01-01

    This paper is the first stage of a study that attempts to improve the process of manufacturing treated lumber through the use of statistical process control (SPC). Analysis of industrial and auditing agency data sets revealed there are differences between the industry and agency probability density functions (pdf) for normalized retention data. Resampling of batches of...

  9. Effect of the absolute statistic on gene-sampling gene-set analysis methods.

    PubMed

    Nam, Dougu

    2017-06-01

    Gene-set enrichment analysis and its modified versions have commonly been used for identifying altered functions or pathways in disease from microarray data. In particular, the simple gene-sampling gene-set analysis methods have been heavily used for datasets with only a few sample replicates. The biggest problem with this approach is the highly inflated false-positive rate. In this paper, the effect of absolute gene statistic on gene-sampling gene-set analysis methods is systematically investigated. Thus far, the absolute gene statistic has merely been regarded as a supplementary method for capturing the bidirectional changes in each gene set. Here, it is shown that incorporating the absolute gene statistic in gene-sampling gene-set analysis substantially reduces the false-positive rate and improves the overall discriminatory ability. Its effect was investigated by power, false-positive rate, and receiver operating curve for a number of simulated and real datasets. The performances of gene-set analysis methods in one-tailed (genome-wide association study) and two-tailed (gene expression data) tests were also compared and discussed.

  10. Wavelet analysis of polarization maps of polycrystalline biological fluids networks

    NASA Astrophysics Data System (ADS)

    Ushenko, Y. A.

    2011-12-01

    The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.

  11. Statistical analysis of RHIC beam position monitors performance

    NASA Astrophysics Data System (ADS)

    Calaga, R.; Tomás, R.

    2004-04-01

    A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  12. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data

    DOE PAGES

    Kacprzak, T.; Kirk, D.; Friedrich, O.; ...

    2016-08-19

    Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 degmore » $^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $$0<\\mathcal S / \\mathcal N<4$$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $$\\Omega_{\\rm m}$$ and $$\\sigma_8$$, fixing $w = -1$, $$\\Omega_{\\rm b} = 0.04$$, $h = 0.7$ and $$n_s=1$$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $$\\sigma_{8}(\\Omega_{\\rm m}/0.3)^{0.6}=0.77 \\pm 0.07$$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $$\\mathcal S / \\mathcal N>4$$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. As a result, we discuss prospects for future peak statistics analysis with upcoming DES data.« less

  13. Criteria for a State-of-the-Art Vision Test System

    DTIC Science & Technology

    1985-05-01

    tests are enumerated for possible inclusion in a battery of candidate vision tests to be statistically examined for validity as predictors of aircrew...derived subset thereof) of vision tests may be given to a series of individuals, and statistical tests may be used to determine which visual functions...no target. Statistical analysis of the responses would set a threshold level, which would define the smallest size - (most distant target) or least

  14. A Guided Tour of Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; van Wijk, Kasper

    2015-05-01

    1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical coordinates; 5. Gradient; 6. Divergence of a vector field; 7. Curl of a vector field; 8. Theorem of Gauss; 9. Theorem of Stokes; 10. The Laplacian; 11. Scale analysis; 12. Linear algebra; 13. Dirac delta function; 14. Fourier analysis; 15. Analytic functions; 16. Complex integration; 17. Green's functions: principles; 18. Green's functions: examples; 19. Normal modes; 20. Potential-field theory; 21. Probability and statistics; 22. Inverse problems; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Conservation laws; 26. Cartesian tensors; 27. Variational calculus; 28. Epilogue on power and knowledge.

  15. Quantifying Individual Brain Connectivity with Functional Principal Component Analysis for Networks.

    PubMed

    Petersen, Alexander; Zhao, Jianyang; Carmichael, Owen; Müller, Hans-Georg

    2016-09-01

    In typical functional connectivity studies, connections between voxels or regions in the brain are represented as edges in a network. Networks for different subjects are constructed at a given graph density and are summarized by some network measure such as path length. Examining these summary measures for many density values yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of functional data analysis, most commonly to compare control and disease groups through the average curves in each group. Such group differences, however, neglect the variability in the sample of connectivity curves. In this article, the use of functional principal component analysis (FPCA) is demonstrated to enrich functional connectivity studies by providing increased power and flexibility for statistical inference. Specifically, individual connectivity curves are related to individual characteristics such as age and measures of cognitive function, thus providing a tool to relate brain connectivity with these variables at the individual level. This individual level analysis opens a new perspective that goes beyond previous group level comparisons. Using a large data set of resting-state functional magnetic resonance imaging scans, relationships between connectivity and two measures of cognitive function-episodic memory and executive function-were investigated. The group-based approach was implemented by dichotomizing the continuous cognitive variable and testing for group differences, resulting in no statistically significant findings. To demonstrate the new approach, FPCA was implemented, followed by linear regression models with cognitive scores as responses, identifying significant associations of connectivity in the right middle temporal region with both cognitive scores.

  16. Results of the Verification of the Statistical Distribution Model of Microseismicity Emission Characteristics

    NASA Astrophysics Data System (ADS)

    Cianciara, Aleksander

    2016-09-01

    The paper presents the results of research aimed at verifying the hypothesis that the Weibull distribution is an appropriate statistical distribution model of microseismicity emission characteristics, namely: energy of phenomena and inter-event time. It is understood that the emission under consideration is induced by the natural rock mass fracturing. Because the recorded emission contain noise, therefore, it is subjected to an appropriate filtering. The study has been conducted using the method of statistical verification of null hypothesis that the Weibull distribution fits the empirical cumulative distribution function. As the model describing the cumulative distribution function is given in an analytical form, its verification may be performed using the Kolmogorov-Smirnov goodness-of-fit test. Interpretations by means of probabilistic methods require specifying the correct model describing the statistical distribution of data. Because in these methods measurement data are not used directly, but their statistical distributions, e.g., in the method based on the hazard analysis, or in that that uses maximum value statistics.

  17. EFFECTS OF FUNCTIONAL ELECTRICAL STIMULATION IN REHABILITATION WITH HEMIPARESIS PATIENTS

    PubMed Central

    Tanović, Edina

    2009-01-01

    Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES) in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemi- paresis), a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (p<0,001). In conclusion, we can state that the patients in rehabilitation after a cerebrovascular accident require rehabilitation longer than 4 weeks. Walking rehabilitation after stroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities. PMID:19284395

  18. SimHap GUI: an intuitive graphical user interface for genetic association analysis.

    PubMed

    Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J

    2008-12-25

    Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.

  19. Deciphering the Landauer-Büttiker Transmission Function from Single Molecule Break Junction Experiments

    NASA Astrophysics Data System (ADS)

    Reuter, Matthew; Tschudi, Stephen

    When investigating the electrical response properties of molecules, experiments often measure conductance whereas computation predicts transmission probabilities. Although the Landauer-Büttiker theory relates the two in the limit of coherent scattering through the molecule, a direct comparison between experiment and computation can still be difficult. Experimental data (specifically that from break junctions) is statistical and computational results are deterministic. Many studies compare the most probable experimental conductance with computation, but such an analysis discards almost all of the experimental statistics. In this work we develop tools to decipher the Landauer-Büttiker transmission function directly from experimental statistics and then apply them to enable a fairer comparison between experimental and computational results.

  20. SPA- STATISTICAL PACKAGE FOR TIME AND FREQUENCY DOMAIN ANALYSIS

    NASA Technical Reports Server (NTRS)

    Brownlow, J. D.

    1994-01-01

    The need for statistical analysis often arises when data is in the form of a time series. This type of data is usually a collection of numerical observations made at specified time intervals. Two kinds of analysis may be performed on the data. First, the time series may be treated as a set of independent observations using a time domain analysis to derive the usual statistical properties including the mean, variance, and distribution form. Secondly, the order and time intervals of the observations may be used in a frequency domain analysis to examine the time series for periodicities. In almost all practical applications, the collected data is actually a mixture of the desired signal and a noise signal which is collected over a finite time period with a finite precision. Therefore, any statistical calculations and analyses are actually estimates. The Spectrum Analysis (SPA) program was developed to perform a wide range of statistical estimation functions. SPA can provide the data analyst with a rigorous tool for performing time and frequency domain studies. In a time domain statistical analysis the SPA program will compute the mean variance, standard deviation, mean square, and root mean square. It also lists the data maximum, data minimum, and the number of observations included in the sample. In addition, a histogram of the time domain data is generated, a normal curve is fit to the histogram, and a goodness-of-fit test is performed. These time domain calculations may be performed on both raw and filtered data. For a frequency domain statistical analysis the SPA program computes the power spectrum, cross spectrum, coherence, phase angle, amplitude ratio, and transfer function. The estimates of the frequency domain parameters may be smoothed with the use of Hann-Tukey, Hamming, Barlett, or moving average windows. Various digital filters are available to isolate data frequency components. Frequency components with periods longer than the data collection interval are removed by least-squares detrending. As many as ten channels of data may be analyzed at one time. Both tabular and plotted output may be generated by the SPA program. This program is written in FORTRAN IV and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 142K (octal) of 60 bit words. This core requirement can be reduced by segmentation of the program. The SPA program was developed in 1978.

  1. The relationship between procrastination, learning strategies and statistics anxiety among Iranian college students: a canonical correlation analysis.

    PubMed

    Vahedi, Shahrum; Farrokhi, Farahman; Gahramani, Farahnaz; Issazadegan, Ali

    2012-01-01

    Approximately 66-80%of graduate students experience statistics anxiety and some researchers propose that many students identify statistics courses as the most anxiety-inducing courses in their academic curriculums. As such, it is likely that statistics anxiety is, in part, responsible for many students delaying enrollment in these courses for as long as possible. This paper proposes a canonical model by treating academic procrastination (AP), learning strategies (LS) as predictor variables and statistics anxiety (SA) as explained variables. A questionnaire survey was used for data collection and 246-college female student participated in this study. To examine the mutually independent relations between procrastination, learning strategies and statistics anxiety variables, a canonical correlation analysis was computed. Findings show that two canonical functions were statistically significant. The set of variables (metacognitive self-regulation, source management, preparing homework, preparing for test and preparing term papers) helped predict changes of statistics anxiety with respect to fearful behavior, Attitude towards math and class, Performance, but not Anxiety. These findings could be used in educational and psychological interventions in the context of statistics anxiety reduction.

  2. Single-case research design in pediatric psychology: considerations regarding data analysis.

    PubMed

    Cohen, Lindsey L; Feinstein, Amanda; Masuda, Akihiko; Vowles, Kevin E

    2014-03-01

    Single-case research allows for an examination of behavior and can demonstrate the functional relation between intervention and outcome in pediatric psychology. This review highlights key assumptions, methodological and design considerations, and options for data analysis. Single-case methodology and guidelines are reviewed with an in-depth focus on visual and statistical analyses. Guidelines allow for the careful evaluation of design quality and visual analysis. A number of statistical techniques have been introduced to supplement visual analysis, but to date, there is no consensus on their recommended use in single-case research design. Single-case methodology is invaluable for advancing pediatric psychology science and practice, and guidelines have been introduced to enhance the consistency, validity, and reliability of these studies. Experts generally agree that visual inspection is the optimal method of analysis in single-case design; however, statistical approaches are becoming increasingly evaluated and used to augment data interpretation.

  3. Functional data analysis on ground reaction force of military load carriage increment

    NASA Astrophysics Data System (ADS)

    Din, Wan Rozita Wan; Rambely, Azmin Sham

    2014-06-01

    Analysis of ground reaction force on military load carriage is done through functional data analysis (FDA) statistical technique. The main objective of the research is to investigate the effect of 10% load increment and to find the maximum suitable load for the Malaysian military. Ten military soldiers age 31 ± 6.2 years, weigh 71.6 ± 10.4 kg and height of 166.3 ± 5.9 cm carrying different military load range from 0% body weight (BW) up to 40% BW participated in an experiment to gather the GRF and kinematic data using Vicon Motion Analysis System, Kirstler force plates and thirty nine body markers. The analysis is conducted in sagittal, medial lateral and anterior posterior planes. The results show that 10% BW load increment has an effect when heel strike and toe-off for all the three planes analyzed with P-value less than 0.001 at 0.05 significant levels. FDA proves to be one of the best statistical techniques in analyzing the functional data. It has the ability to handle filtering, smoothing and curve aligning according to curve features and points of interest.

  4. Application of a data-mining method based on Bayesian networks to lesion-deficit analysis

    NASA Technical Reports Server (NTRS)

    Herskovits, Edward H.; Gerring, Joan P.

    2003-01-01

    Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.

  5. Examining the effectiveness of discriminant function analysis and cluster analysis in species identification of male field crickets based on their calling songs.

    PubMed

    Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini

    2013-01-01

    Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.

  6. Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers

    USDA-ARS?s Scientific Manuscript database

    The rumen has a central role in the efficiency of digestion in ruminants. To identify potential differences in rumen function that lead to differences in feed efficiency, rumen fluid metabolomic analysis by LC-MS and multivariate/univariate statistical analysis were used to identify differences in r...

  7. Advanced statistical methods for improved data analysis of NASA astrophysics missions

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1992-01-01

    The investigators under this grant studied ways to improve the statistical analysis of astronomical data. They looked at existing techniques, the development of new techniques, and the production and distribution of specialized software to the astronomical community. Abstracts of nine papers that were produced are included, as well as brief descriptions of four software packages. The articles that are abstracted discuss analytical and Monte Carlo comparisons of six different linear least squares fits, a (second) paper on linear regression in astronomy, two reviews of public domain software for the astronomer, subsample and half-sample methods for estimating sampling distributions, a nonparametric estimation of survival functions under dependent competing risks, censoring in astronomical data due to nondetections, an astronomy survival analysis computer package called ASURV, and improving the statistical methodology of astronomical data analysis.

  8. New Statistics for Testing Differential Expression of Pathways from Microarray Data

    NASA Astrophysics Data System (ADS)

    Siu, Hoicheong; Dong, Hua; Jin, Li; Xiong, Momiao

    Exploring biological meaning from microarray data is very important but remains a great challenge. Here, we developed three new statistics: linear combination test, quadratic test and de-correlation test to identify differentially expressed pathways from gene expression profile. We apply our statistics to two rheumatoid arthritis datasets. Notably, our results reveal three significant pathways and 275 genes in common in two datasets. The pathways we found are meaningful to uncover the disease mechanisms of rheumatoid arthritis, which implies that our statistics are a powerful tool in functional analysis of gene expression data.

  9. Large-scale gene function analysis with the PANTHER classification system.

    PubMed

    Mi, Huaiyu; Muruganujan, Anushya; Casagrande, John T; Thomas, Paul D

    2013-08-01

    The PANTHER (protein annotation through evolutionary relationship) classification system (http://www.pantherdb.org/) is a comprehensive system that combines gene function, ontology, pathways and statistical analysis tools that enable biologists to analyze large-scale, genome-wide data from sequencing, proteomics or gene expression experiments. The system is built with 82 complete genomes organized into gene families and subfamilies, and their evolutionary relationships are captured in phylogenetic trees, multiple sequence alignments and statistical models (hidden Markov models or HMMs). Genes are classified according to their function in several different ways: families and subfamilies are annotated with ontology terms (Gene Ontology (GO) and PANTHER protein class), and sequences are assigned to PANTHER pathways. The PANTHER website includes a suite of tools that enable users to browse and query gene functions, and to analyze large-scale experimental data with a number of statistical tests. It is widely used by bench scientists, bioinformaticians, computer scientists and systems biologists. In the 2013 release of PANTHER (v.8.0), in addition to an update of the data content, we redesigned the website interface to improve both user experience and the system's analytical capability. This protocol provides a detailed description of how to analyze genome-wide experimental data with the PANTHER classification system.

  10. [Medication rule for treatment of functional dyspepsia: an analysis of traditional Chinese medicine literature based on China National Knowledge Internet].

    PubMed

    Xiao, Hong-ling; Wu, Yuan-jie; Wang, Xiang; Li, Yi-fang; Fang, Zheng-qing

    2015-10-01

    By retrieving the clinical research literature of treatment functional dyspepsia by traditional Chinese medicine (TCM) from January 2004 to December 2014 based on China National Knowledge Internet (CNKI), we would establish a TCM decoction database for treating functional dyspepsia in this study. One hundred and sixty-four literature were included, involving 159 prescriptions, 377 medicines, in a total of 1 990 herbs. These herbs can be divided into 18 categories according to the effectiveness; and qi-regulating herbs, blood circulation herbs, and antipyretic herbs ranked top three ones according to the frequency of usage of the herbs, whose medicine usage frequency accounted for 51.81%. Usage frequency of 16 herbs was over 30, and Atractylodes, Radix, Poriaranked top three according to the usage frequency. Medicinal properties were divided into 9 kinds according to the frequency statistics, and the top three were warm, flat, and cold. Taste frequency statistics were classifiedinto 9 kinds, and the top three were acrid, sweet, and bitter. In frequency statistics of the meridian tropism of herbs, it was classifiedinto 11 kinds, and the top three were spleen, stomach, lung. The analysis can provide a reference for treatment and study of TCM of functional dyspepsia.

  11. [The principal components analysis--method to classify the statistical variables with applications in medicine].

    PubMed

    Dascălu, Cristina Gena; Antohe, Magda Ecaterina

    2009-01-01

    Based on the eigenvalues and the eigenvectors analysis, the principal component analysis has the purpose to identify the subspace of the main components from a set of parameters, which are enough to characterize the whole set of parameters. Interpreting the data for analysis as a cloud of points, we find through geometrical transformations the directions where the cloud's dispersion is maximal--the lines that pass through the cloud's center of weight and have a maximal density of points around them (by defining an appropriate criteria function and its minimization. This method can be successfully used in order to simplify the statistical analysis on questionnaires--because it helps us to select from a set of items only the most relevant ones, which cover the variations of the whole set of data. For instance, in the presented sample we started from a questionnaire with 28 items and, applying the principal component analysis we identified 7 principal components--or main items--fact that simplifies significantly the further data statistical analysis.

  12. Workshop on Functional and Structural Relationships and Factor Analysis (1983). Summary of Research Interests of Participants.

    DTIC Science & Technology

    1983-01-01

    J. Amer. Statist. Assoc. 75, 687-692. Dahm, P. F., Helton, B. and Fuller, W. A. (1983), Generalized least squares estimation of the genotypic ...with applications to -"insect development times". Austral. J. Statist. 23, 204-213. [2] Angus , J.F., R. Morton and C. Schafer. (1981). "Phasic

  13. Nonlinear Statistical Estimation with Numerical Maximum Likelihood

    DTIC Science & Technology

    1974-10-01

    probably most directly attributable to the speed, precision and compactness of the linear programming algorithm exercised ; the mutual primal-dual...discriminant analysis is to classify the individual as a member of T# or IT, 1 2 according to the relative...Introduction to the Dissertation 1 Introduction to Statistical Estimation Theory 3 Choice of Estimator.. .Density Functions 12 Choice of Estimator

  14. Spatio-temporal analysis of aftershock sequences in terms of Non Extensive Statistical Physics.

    NASA Astrophysics Data System (ADS)

    Chochlaki, Kalliopi; Vallianatos, Filippos

    2017-04-01

    Earth's seismicity is considered as an extremely complicated process where long-range interactions and fracturing exist (Vallianatos et al., 2016). For this reason, in order to analyze it, we use an innovative methodological approach, introduced by Tsallis (Tsallis, 1988; 2009), named Non Extensive Statistical Physics. This approach introduce a generalization of the Boltzmann-Gibbs statistical mechanics and it is based on the definition of Tsallis entropy Sq, which maximized leads the the so-called q-exponential function that expresses the probability distribution function that maximizes the Sq. In the present work, we utilize the concept of Non Extensive Statistical Physics in order to analyze the spatiotemporal properties of several aftershock series. Marekova (Marekova, 2014) suggested that the probability densities of the inter-event distances between successive aftershocks follow a beta distribution. Using the same data set we analyze the inter-event distance distribution of several aftershocks sequences in different geographic regions by calculating non extensive parameters that determine the behavior of the system and by fitting the q-exponential function, which expresses the degree of non-extentivity of the investigated system. Furthermore, the inter-event times distribution of the aftershocks as well as the frequency-magnitude distribution has been analyzed. The results supports the applicability of Non Extensive Statistical Physics ideas in aftershock sequences where a strong correlation exists along with memory effects. References C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988) 479-487. doi:10.1007/BF01016429 C. Tsallis, Introduction to nonextensive statistical mechanics: Approaching a complex world, 2009. doi:10.1007/978-0-387-85359-8. E. Marekova, Analysis of the spatial distribution between successive earthquakes in aftershocks series, Annals of Geophysics, 57, 5, doi:10.4401/ag-6556, 2014 F. Vallianatos, G. Papadakis, G. Michas, Generalized statistical mechanics approaches to earthquakes and tectonics. Proc. R. Soc. A, 472, 20160497, 2016.

  15. A complementation assay for in vivo protein structure/function analysis in Physcomitrella patens (Funariaceae)

    DOE PAGES

    Scavuzzo-Duggan, Tess R.; Chaves, Arielle M.; Roberts, Alison W.

    2015-07-14

    Here, a method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Westernmore » blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. In conclusion, compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investigating protein structure/function relationships in plants.« less

  16. Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.

    PubMed

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei

    2016-02-01

    Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.

  17. Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions

    PubMed Central

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei

    2015-01-01

    Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979

  18. Small sample estimation of the reliability function for technical products

    NASA Astrophysics Data System (ADS)

    Lyamets, L. L.; Yakimenko, I. V.; Kanishchev, O. A.; Bliznyuk, O. A.

    2017-12-01

    It is demonstrated that, in the absence of big statistic samples obtained as a result of testing complex technical products for failure, statistic estimation of the reliability function of initial elements can be made by the moments method. A formal description of the moments method is given and its advantages in the analysis of small censored samples are discussed. A modified algorithm is proposed for the implementation of the moments method with the use of only the moments at which the failures of initial elements occur.

  19. Statistical Tolerance and Clearance Analysis for Assembly

    NASA Technical Reports Server (NTRS)

    Lee, S.; Yi, C.

    1996-01-01

    Tolerance is inevitable because manufacturing exactly equal parts is known to be impossible. Furthermore, the specification of tolerances is an integral part of product design since tolerances directly affect the assemblability, functionality, manufacturability, and cost effectiveness of a product. In this paper, we present statistical tolerance and clearance analysis for the assembly. Our proposed work is expected to make the following contributions: (i) to help the designers to evaluate products for assemblability, (ii) to provide a new perspective to tolerance problems, and (iii) to provide a tolerance analysis tool which can be incorporated into a CAD or solid modeling system.

  20. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis

    PubMed Central

    Fan, Yannan; Siklenka, Keith; Arora, Simran K.; Ribeiro, Paula; Kimmins, Sarah; Xia, Jianguo

    2016-01-01

    MicroRNAs (miRNAs) can regulate nearly all biological processes and their dysregulation is implicated in various complex diseases and pathological conditions. Recent years have seen a growing number of functional studies of miRNAs using high-throughput experimental technologies, which have produced a large amount of high-quality data regarding miRNA target genes and their interactions with small molecules, long non-coding RNAs, epigenetic modifiers, disease associations, etc. These rich sets of information have enabled the creation of comprehensive networks linking miRNAs with various biologically important entities to shed light on their collective functions and regulatory mechanisms. Here, we introduce miRNet, an easy-to-use web-based tool that offers statistical, visual and network-based approaches to help researchers understand miRNAs functions and regulatory mechanisms. The key features of miRNet include: (i) a comprehensive knowledge base integrating high-quality miRNA-target interaction data from 11 databases; (ii) support for differential expression analysis of data from microarray, RNA-seq and quantitative PCR; (iii) implementation of a flexible interface for data filtering, refinement and customization during network creation; (iv) a powerful fully featured network visualization system coupled with enrichment analysis. miRNet offers a comprehensive tool suite to enable statistical analysis and functional interpretation of various data generated from current miRNA studies. miRNet is freely available at http://www.mirnet.ca. PMID:27105848

  1. Binary Logistic Regression Analysis for Detecting Differential Item Functioning: Effectiveness of R[superscript 2] and Delta Log Odds Ratio Effect Size Measures

    ERIC Educational Resources Information Center

    Hidalgo, Mª Dolores; Gómez-Benito, Juana; Zumbo, Bruno D.

    2014-01-01

    The authors analyze the effectiveness of the R[superscript 2] and delta log odds ratio effect size measures when using logistic regression analysis to detect differential item functioning (DIF) in dichotomous items. A simulation study was carried out, and the Type I error rate and power estimates under conditions in which only statistical testing…

  2. Nonparametric functional data estimation applied to ozone data: prediction and extreme value analysis.

    PubMed

    Quintela-del-Río, Alejandro; Francisco-Fernández, Mario

    2011-02-01

    The study of extreme values and prediction of ozone data is an important topic of research when dealing with environmental problems. Classical extreme value theory is usually used in air-pollution studies. It consists in fitting a parametric generalised extreme value (GEV) distribution to a data set of extreme values, and using the estimated distribution to compute return levels and other quantities of interest. Here, we propose to estimate these values using nonparametric functional data methods. Functional data analysis is a relatively new statistical methodology that generally deals with data consisting of curves or multi-dimensional variables. In this paper, we use this technique, jointly with nonparametric curve estimation, to provide alternatives to the usual parametric statistical tools. The nonparametric estimators are applied to real samples of maximum ozone values obtained from several monitoring stations belonging to the Automatic Urban and Rural Network (AURN) in the UK. The results show that nonparametric estimators work satisfactorily, outperforming the behaviour of classical parametric estimators. Functional data analysis is also used to predict stratospheric ozone concentrations. We show an application, using the data set of mean monthly ozone concentrations in Arosa, Switzerland, and the results are compared with those obtained by classical time series (ARIMA) analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Representation of Probability Density Functions from Orbit Determination using the Particle Filter

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda K.; Garrison, James; Carpenter, J. Russell

    2012-01-01

    Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty. In order to obtain an accurate representation of the probability density function (PDF) that incorporates higher order statistical information, we propose the use of nonlinear estimation methods such as the Particle Filter. The Particle Filter (PF) is capable of providing a PDF representation of the state estimates whose accuracy is dependent on the number of particles or samples used. For this method to be applicable to real case scenarios, we need a way of accurately representing the PDF in a compressed manner with little information loss. Hence we propose using the Independent Component Analysis (ICA) as a non-Gaussian dimensional reduction method that is capable of maintaining higher order statistical information obtained using the PF. Methods such as the Principal Component Analysis (PCA) are based on utilizing up to second order statistics, hence will not suffice in maintaining maximum information content. Both the PCA and the ICA are applied to two scenarios that involve a highly eccentric orbit with a lower apriori uncertainty covariance and a less eccentric orbit with a higher a priori uncertainty covariance, to illustrate the capability of the ICA in relation to the PCA.

  4. An Empirical Bayes Approach to Mantel-Haenszel DIF Analysis.

    ERIC Educational Resources Information Center

    Zwick, Rebecca; Thayer, Dorothy T.; Lewis, Charles

    1999-01-01

    Developed an empirical Bayes enhancement to Mantel-Haenszel (MH) analysis of differential item functioning (DIF) in which it is assumed that the MH statistics are normally distributed and that the prior distribution of underlying DIF parameters is also normal. (Author/SLD)

  5. Functional network-based statistics in depression: Theory of mind subnetwork and importance of parietal region.

    PubMed

    Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming

    2017-08-01

    The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.

  6. Applications of statistical physics and information theory to the analysis of DNA sequences

    NASA Astrophysics Data System (ADS)

    Grosse, Ivo

    2000-10-01

    DNA carries the genetic information of most living organisms, and the of genome projects is to uncover that genetic information. One basic task in the analysis of DNA sequences is the recognition of protein coding genes. Powerful computer programs for gene recognition have been developed, but most of them are based on statistical patterns that vary from species to species. In this thesis I address the question if there exist universal statistical patterns that are different in coding and noncoding DNA of all living species, regardless of their phylogenetic origin. In search for such species-independent patterns I study the mutual information function of genomic DNA sequences, and find that it shows persistent period-three oscillations. To understand the biological origin of the observed period-three oscillations, I compare the mutual information function of genomic DNA sequences to the mutual information function of stochastic model sequences. I find that the pseudo-exon model is able to reproduce the mutual information function of genomic DNA sequences. Moreover, I find that a generalization of the pseudo-exon model can connect the existence and the functional form of long-range correlations to the presence and the length distributions of coding and noncoding regions. Based on these theoretical studies I am able to find an information-theoretical quantity, the average mutual information (AMI), whose probability distributions are significantly different in coding and noncoding DNA, while they are almost identical in all studied species. These findings show that there exist universal statistical patterns that are different in coding and noncoding DNA of all studied species, and they suggest that the AMI may be used to identify genes in different living species, irrespective of their taxonomic origin.

  7. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    DOE PAGES

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less

  8. Effect of the image resolution on the statistical descriptors of heterogeneous media.

    PubMed

    Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime

    2018-02-01

    The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.

  9. Effect of the image resolution on the statistical descriptors of heterogeneous media

    NASA Astrophysics Data System (ADS)

    Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime

    2018-02-01

    The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.

  10. Oral cancer associated with chronic mechanical irritation of the oral mucosa.

    PubMed

    Piemonte, E; Lazos, J; Belardinelli, P; Secchi, D; Brunotto, M; Lanfranchi-Tizeira, H

    2018-03-01

    Most of the studies dealing with Chronic Mechanical Irritation (CMI) and Oral Cancer (OC) only considered prosthetic and dental variables separately, and CMI functional factors are not registered. Thus, the aim of this study was to assess OC risk in individuals with dental, prosthetic and functional CMI. Also, we examined CMI presence in relation to tumor size. A case-control study was carried out from 2009 to 2013. Study group were squamous cell carcinoma cases; control group was patients seeking dental treatment in the same institution. 153 patients were studied (Study group n=53, Control group n=100). CMI reproducibility displayed a correlation coefficient of 1 (p<0.0001). Bivariate analysis showed statistically significant associations for all variables (age, gender, tobacco and alcohol consumption and CMI). Multivariate analysis exhibited statistical significance for age, alcohol, and CMI, but not for gender or tobacco. Relationship of CMI with tumor size showed no statistically significant differences. CMI could be regarded as a risk factor for oral cancer. In individuals with other OC risk factors, proper treatment of the mechanical injuring factors (dental, prosthetic and functional) could be an important measure to reduce the risk of oral cancer.

  11. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.

  12. Superstatistics analysis of the ion current distribution function: Met3PbCl influence study.

    PubMed

    Miśkiewicz, Janusz; Trela, Zenon; Przestalski, Stanisław; Karcz, Waldemar

    2010-09-01

    A novel analysis of ion current time series is proposed. It is shown that higher (second, third and fourth) statistical moments of the ion current probability distribution function (PDF) can yield new information about ion channel properties. The method is illustrated on a two-state model where the PDF of the compound states are given by normal distributions. The proposed method was applied to the analysis of the SV cation channels of vacuolar membrane of Beta vulgaris and the influence of trimethyllead chloride (Met(3)PbCl) on the ion current probability distribution. Ion currents were measured by patch-clamp technique. It was shown that Met(3)PbCl influences the variance of the open-state ion current but does not alter the PDF of the closed-state ion current. Incorporation of higher statistical moments into the standard investigation of ion channel properties is proposed.

  13. Order statistics applied to the most massive and most distant galaxy clusters

    NASA Astrophysics Data System (ADS)

    Waizmann, J.-C.; Ettori, S.; Bartelmann, M.

    2013-06-01

    In this work, we present an analytic framework for calculating the individual and joint distributions of the nth most massive or nth highest redshift galaxy cluster for a given survey characteristic allowing us to formulate Λ cold dark matter (ΛCDM) exclusion criteria. We show that the cumulative distribution functions steepen with increasing order, giving them a higher constraining power with respect to the extreme value statistics. Additionally, we find that the order statistics in mass (being dominated by clusters at lower redshifts) is sensitive to the matter density and the normalization of the matter fluctuations, whereas the order statistics in redshift is particularly sensitive to the geometric evolution of the Universe. For a fixed cosmology, both order statistics are efficient probes of the functional shape of the mass function at the high-mass end. To allow a quick assessment of both order statistics, we provide fits as a function of the survey area that allow percentile estimation with an accuracy better than 2 per cent. Furthermore, we discuss the joint distributions in the two-dimensional case and find that for the combination of the largest and the second largest observation, it is most likely to find them to be realized with similar values with a broadly peaked distribution. When combining the largest observation with higher orders, it is more likely to find a larger gap between the observations and when combining higher orders in general, the joint probability density function peaks more strongly. Having introduced the theory, we apply the order statistical analysis to the Southpole Telescope (SPT) massive cluster sample and metacatalogue of X-ray detected clusters of galaxies catalogue and find that the 10 most massive clusters in the sample are consistent with ΛCDM and the Tinker mass function. For the order statistics in redshift, we find a discrepancy between the data and the theoretical distributions, which could in principle indicate a deviation from the standard cosmology. However, we attribute this deviation to the uncertainty in the modelling of the SPT survey selection function. In turn, by assuming the ΛCDM reference cosmology, order statistics can also be utilized for consistency checks of the completeness of the observed sample and of the modelling of the survey selection function.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kacprzak, T.; Kirk, D.; Friedrich, O.

    Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 degmore » $^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $$0<\\mathcal S / \\mathcal N<4$$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $$\\Omega_{\\rm m}$$ and $$\\sigma_8$$, fixing $w = -1$, $$\\Omega_{\\rm b} = 0.04$$, $h = 0.7$ and $$n_s=1$$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $$\\sigma_{8}(\\Omega_{\\rm m}/0.3)^{0.6}=0.77 \\pm 0.07$$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $$\\mathcal S / \\mathcal N>4$$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. As a result, we discuss prospects for future peak statistics analysis with upcoming DES data.« less

  15. A Survey of Popular R Packages for Cluster Analysis

    ERIC Educational Resources Information Center

    Flynt, Abby; Dean, Nema

    2016-01-01

    Cluster analysis is a set of statistical methods for discovering new group/class structure when exploring data sets. This article reviews the following popular libraries/commands in the R software language for applying different types of cluster analysis: from the stats library, the kmeans, and hclust functions; the mclust library; the poLCA…

  16. Analysis methodology and development of a statistical tool for biodistribution data from internal contamination with actinides.

    PubMed

    Lamart, Stephanie; Griffiths, Nina M; Tchitchek, Nicolas; Angulo, Jaime F; Van der Meeren, Anne

    2017-03-01

    The aim of this work was to develop a computational tool that integrates several statistical analysis features for biodistribution data from internal contamination experiments. These data represent actinide levels in biological compartments as a function of time and are derived from activity measurements in tissues and excreta. These experiments aim at assessing the influence of different contamination conditions (e.g. intake route or radioelement) on the biological behavior of the contaminant. The ever increasing number of datasets and diversity of experimental conditions make the handling and analysis of biodistribution data difficult. This work sought to facilitate the statistical analysis of a large number of datasets and the comparison of results from diverse experimental conditions. Functional modules were developed using the open-source programming language R to facilitate specific operations: descriptive statistics, visual comparison, curve fitting, and implementation of biokinetic models. In addition, the structure of the datasets was harmonized using the same table format. Analysis outputs can be written in text files and updated data can be written in the consistent table format. Hence, a data repository is built progressively, which is essential for the optimal use of animal data. Graphical representations can be automatically generated and saved as image files. The resulting computational tool was applied using data derived from wound contamination experiments conducted under different conditions. In facilitating biodistribution data handling and statistical analyses, this computational tool ensures faster analyses and a better reproducibility compared with the use of multiple office software applications. Furthermore, re-analysis of archival data and comparison of data from different sources is made much easier. Hence this tool will help to understand better the influence of contamination characteristics on actinide biokinetics. Our approach can aid the optimization of treatment protocols and therefore contribute to the improvement of the medical response after internal contamination with actinides.

  17. [Treatment of proximal humeral fractures by reverse shoulder arthroplasty: mid-term evaluation of functional results and Notching].

    PubMed

    Hernández-Elena, J; de la Red-Gallego, M Á; Garcés-Zarzalejo, C; Pascual-Carra, M A; Pérez-Aguilar, M D; Rodríguez-López, T; Alfonso-Fernández, A; Pérez-Núñez, M I

    2015-01-01

    An analysis was made on relationship between Notching and functional and radiographic parameters after treatment of acute proximal humeral fractures with reverse total shoulder arthroplasty. A retrospective evaluation was performed on 37 patients with acute proximal humeral fracture treated by reversed shoulder arthroplasty. The mean follow-up was 24 months. Range of motion, intraoperative and postoperative complications were recorded. Nerot's classification was used to evaluate Notching. Patient satisfaction was evaluated with the Constant Score (CS). Statistical analysis was performed to evaluate the relationship between Notching and glenosphere position, or functional outcomes. Mean range of elevation, abduction, external and internal rotation were 106.22°, 104.46°, 46.08° and 40.27°, respectively. Mean CS was 63. Notching was present at 12 months in 29% of patients. Statistical analysis showed significance differences between age and CS, age and notching development, and tilt with notching. No statistical significance differences were found between elevation, abduction, internal and external rotation and CS either with scapular or glenosphere-neck angle. Reverse shoulder arthroplasty is a valuable option for acute humeral fractures in patients with osteoporosis and cuff-tear arthropathy. It leads to early pain relief and shoulder motion. Nevertheless, it is not exempt from complications, and long-term studies are needed to determine the importance of notching. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  18. A statistical approach to deriving subsystem specifications. [for spacecraft shock and vibrational environment tests

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1974-01-01

    In order to produce cost effective environmental test programs, the test specifications must be realistic and to be useful, they must be available early in the life of a program. This paper describes a method for achieving such specifications for subsystems by utilizing the results of a statistical analysis of data acquired at subsystem mounting locations during system level environmental tests. The paper describes the details of this statistical analysis. The resultant recommended levels are a function of the subsystems' mounting location in the spacecraft. Methods of determining this mounting 'zone' are described. Recommendations are then made as to which of the various problem areas encountered should be pursued further.

  19. Statistical analysis of field data for aircraft warranties

    NASA Astrophysics Data System (ADS)

    Lakey, Mary J.

    Air Force and Navy maintenance data collection systems were researched to determine their scientific applicability to the warranty process. New and unique algorithms were developed to extract failure distributions which were then used to characterize how selected families of equipment typically fails. Families of similar equipment were identified in terms of function, technology and failure patterns. Statistical analyses and applications such as goodness-of-fit test, maximum likelihood estimation and derivation of confidence intervals for the probability density function parameters were applied to characterize the distributions and their failure patterns. Statistical and reliability theory, with relevance to equipment design and operational failures were also determining factors in characterizing the failure patterns of the equipment families. Inferences about the families with relevance to warranty needs were then made.

  20. INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS.

    PubMed

    Shi, Ran; Guo, Ying

    2016-12-01

    Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).

  1. Active Nonlinear Feedback Control for Aerospace Systems. Processor

    DTIC Science & Technology

    1990-12-01

    relating to the role of nonlinearities in feedback control. These area include Lyapunov function theory, chaotic controllers, statistical energy analysis , phase robustness, and optimal nonlinear control theory.

  2. Verbal Neuropsychological Functions in Aphasia: An Integrative Model

    ERIC Educational Resources Information Center

    Vigliecca, Nora Silvana; Báez, Sandra

    2015-01-01

    A theoretical framework which considers the verbal functions of the brain under a multivariate and comprehensive cognitive model was statistically analyzed. A confirmatory factor analysis was performed to verify whether some recognized aphasia constructs can be hierarchically integrated as latent factors from a homogenously verbal test. The Brief…

  3. DIFAS: Differential Item Functioning Analysis System. Computer Program Exchange

    ERIC Educational Resources Information Center

    Penfield, Randall D.

    2005-01-01

    Differential item functioning (DIF) is an important consideration in assessing the validity of test scores (Camilli & Shepard, 1994). A variety of statistical procedures have been developed to assess DIF in tests of dichotomous (Hills, 1989; Millsap & Everson, 1993) and polytomous (Penfield & Lam, 2000; Potenza & Dorans, 1995) items. Some of these…

  4. Bayesian analysis of spatially-dependent functional responses with spatially-dependent multi-dimensional functional predictors

    USDA-ARS?s Scientific Manuscript database

    Recent advances in technology have led to the collection of high-dimensional data not previously encountered in many scientific environments. As a result, scientists are often faced with the challenging task of including these high-dimensional data into statistical models. For example, data from sen...

  5. Chronic auditory hallucinations in schizophrenic patients: MR analysis of the coincidence between functional and morphologic abnormalities.

    PubMed

    Martí-Bonmatí, Luis; Lull, Juan José; García-Martí, Gracián; Aguilar, Eduardo J; Moratal-Pérez, David; Poyatos, Cecilio; Robles, Montserrat; Sanjuán, Julio

    2007-08-01

    To prospectively evaluate if functional magnetic resonance (MR) imaging abnormalities associated with auditory emotional stimuli coexist with focal brain reductions in schizophrenic patients with chronic auditory hallucinations. Institutional review board approval was obtained and all participants gave written informed consent. Twenty-one right-handed male patients with schizophrenia and persistent hallucinations (started to hear hallucinations at a mean age of 23 years +/- 10, with 15 years +/- 8 of mean illness duration) and 10 healthy paired participants (same ethnic group [white], age, and education level [secondary school]) were studied. Functional echo-planar T2*-weighted (after both emotional and neutral auditory stimulation) and morphometric three-dimensional gradient-recalled echo T1-weighted MR images were analyzed using Statistical Parametric Mapping (SPM2) software. Brain activation images were extracted by subtracting those with emotional from nonemotional words. Anatomic differences were explored by optimized voxel-based morphometry. The functional and morphometric MR images were overlaid to depict voxels statistically reported by both techniques. A coincidence map was generated by multiplying the emotional subtracted functional MR and volume decrement morphometric maps. Statistical analysis used the general linear model, Student t tests, random effects analyses, and analysis of covariance with a correction for multiple comparisons following the false discovery rate method. Large coinciding brain clusters (P < .005) were found in the left and right middle temporal and superior temporal gyri. Smaller coinciding clusters were found in the left posterior and right anterior cingular gyri, left inferior frontal gyrus, and middle occipital gyrus. The middle and superior temporal and the cingular gyri are closely related to the abnormal neural network involved in the auditory emotional dysfunction seen in schizophrenic patients.

  6. Introducing linear functions: an alternative statistical approach

    NASA Astrophysics Data System (ADS)

    Nolan, Caroline; Herbert, Sandra

    2015-12-01

    The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be `threshold concepts'. There is recognition that linear functions can be taught in context through the exploration of linear modelling examples, but this has its limitations. Currently, statistical data is easily attainable, and graphics or computer algebra system (CAS) calculators are common in many classrooms. The use of this technology provides ease of access to different representations of linear functions as well as the ability to fit a least-squares line for real-life data. This means these calculators could support a possible alternative approach to the introduction of linear functions. This study compares the results of an end-of-topic test for two classes of Australian middle secondary students at a regional school to determine if such an alternative approach is feasible. In this study, test questions were grouped by concept and subjected to concept by concept analysis of the means of test results of the two classes. This analysis revealed that the students following the alternative approach demonstrated greater competence with non-standard questions.

  7. Application of Turchin's method of statistical regularization

    NASA Astrophysics Data System (ADS)

    Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey

    2018-04-01

    During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.

  8. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen

    2016-04-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].

  9. Mapping the Structure-Function Relationship in Glaucoma and Healthy Patients Measured with Spectralis OCT and Humphrey Perimetry

    PubMed Central

    Muñoz–Negrete, Francisco J.; Oblanca, Noelia; Rebolleda, Gema

    2018-01-01

    Purpose To study the structure-function relationship in glaucoma and healthy patients assessed with Spectralis OCT and Humphrey perimetry using new statistical approaches. Materials and Methods Eighty-five eyes were prospectively selected and divided into 2 groups: glaucoma (44) and healthy patients (41). Three different statistical approaches were carried out: (1) factor analysis of the threshold sensitivities (dB) (automated perimetry) and the macular thickness (μm) (Spectralis OCT), subsequently applying Pearson's correlation to the obtained regions, (2) nonparametric regression analysis relating the values in each pair of regions that showed significant correlation, and (3) nonparametric spatial regressions using three models designed for the purpose of this study. Results In the glaucoma group, a map that relates structural and functional damage was drawn. The strongest correlation with visual fields was observed in the peripheral nasal region of both superior and inferior hemigrids (r = 0.602 and r = 0.458, resp.). The estimated functions obtained with the nonparametric regressions provided the mean sensitivity that corresponds to each given macular thickness. These functions allowed for accurate characterization of the structure-function relationship. Conclusions Both maps and point-to-point functions obtained linking structure and function damage contribute to a better understanding of this relationship and may help in the future to improve glaucoma diagnosis. PMID:29850196

  10. SimHap GUI: An intuitive graphical user interface for genetic association analysis

    PubMed Central

    Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J

    2008-01-01

    Background Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. Results We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. Conclusion SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis. PMID:19109877

  11. SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.

    PubMed

    Chu, Annie; Cui, Jenny; Dinov, Ivo D

    2009-03-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.

  12. A Review of ETS Differential Item Functioning Assessment Procedures: Flagging Rules, Minimum Sample Size Requirements, and Criterion Refinement. Research Report. ETS RR-12-08

    ERIC Educational Resources Information Center

    Zwick, Rebecca

    2012-01-01

    Differential item functioning (DIF) analysis is a key component in the evaluation of the fairness and validity of educational tests. The goal of this project was to review the status of ETS DIF analysis procedures, focusing on three aspects: (a) the nature and stringency of the statistical rules used to flag items, (b) the minimum sample size…

  13. Functional status predicts acute care readmission in the traumatic spinal cord injury population.

    PubMed

    Huang, Donna; Slocum, Chloe; Silver, Julie K; Morgan, James W; Goldstein, Richard; Zafonte, Ross; Schneider, Jeffrey C

    2018-03-29

    Context/objective Acute care readmission has been identified as an important marker of healthcare quality. Most previous models assessing risk prediction of readmission incorporate variables for medical comorbidity. We hypothesized that functional status is a more robust predictor of readmission in the spinal cord injury population than medical comorbidities. Design Retrospective cross-sectional analysis. Setting Inpatient rehabilitation facilities, Uniform Data System for Medical Rehabilitation data from 2002 to 2012 Participants traumatic spinal cord injury patients. Outcome measures A logistic regression model for predicting acute care readmission based on demographic variables and functional status (Functional Model) was compared with models incorporating demographics, functional status, and medical comorbidities (Functional-Plus) or models including demographics and medical comorbidities (Demographic-Comorbidity). The primary outcomes were 3- and 30-day readmission, and the primary measure of model performance was the c-statistic. Results There were a total of 68,395 patients with 1,469 (2.15%) readmitted at 3 days and 7,081 (10.35%) readmitted at 30 days. The c-statistics for the Functional Model were 0.703 and 0.654 for 3 and 30 days. The Functional Model outperformed Demographic-Comorbidity models at 3 days (c-statistic difference: 0.066-0.096) and outperformed two of the three Demographic-Comorbidity models at 30 days (c-statistic difference: 0.029-0.056). The Functional-Plus models exhibited negligible improvements (0.002-0.010) in model performance compared to the Functional models. Conclusion Readmissions are used as a marker of hospital performance. Function-based readmission models in the spinal cord injury population outperform models incorporating medical comorbidities. Readmission risk models for this population would benefit from the inclusion of functional status.

  14. The Relationship Between Procrastination, Learning Strategies and Statistics Anxiety Among Iranian College Students: A Canonical Correlation Analysis

    PubMed Central

    Vahedi, Shahrum; Farrokhi, Farahman; Gahramani, Farahnaz; Issazadegan, Ali

    2012-01-01

    Objective: Approximately 66-80%of graduate students experience statistics anxiety and some researchers propose that many students identify statistics courses as the most anxiety-inducing courses in their academic curriculums. As such, it is likely that statistics anxiety is, in part, responsible for many students delaying enrollment in these courses for as long as possible. This paper proposes a canonical model by treating academic procrastination (AP), learning strategies (LS) as predictor variables and statistics anxiety (SA) as explained variables. Methods: A questionnaire survey was used for data collection and 246-college female student participated in this study. To examine the mutually independent relations between procrastination, learning strategies and statistics anxiety variables, a canonical correlation analysis was computed. Results: Findings show that two canonical functions were statistically significant. The set of variables (metacognitive self-regulation, source management, preparing homework, preparing for test and preparing term papers) helped predict changes of statistics anxiety with respect to fearful behavior, Attitude towards math and class, Performance, but not Anxiety. Conclusion: These findings could be used in educational and psychological interventions in the context of statistics anxiety reduction. PMID:24644468

  15. The contribution of executive functions to emergent mathematic skills in preschool children.

    PubMed

    Espy, Kimberly Andrews; McDiarmid, Melanie M; Cwik, Mary F; Stalets, Melissa Meade; Hamby, Arlena; Senn, Theresa E

    2004-01-01

    Mathematical ability is related to both activation of the prefrontal cortex in neuroimaging studies of adults and to executive functions in school-age children. The purpose of this study was to determine whether executive functions were related to emergent mathematical proficiency in preschool children. Preschool children (N = 96) were administered an executive function battery that was reduced empirically to working memory (WM), inhibitory control (IC), and shifting abilities by calculating composite scores derived from principal component analysis. Both WM and IC predicted early arithmetic competency, with the observed relations robust after controlling statistically for child age, maternal education, and child vocabulary. Only IC accounted for unique variance in mathematical skills, after the contribution of other executive functions were controlled statistically as well. Specific executive functions are related to emergent mathematical proficiency in this age range. Longitudinal studies using structural equation modeling are necessary to better characterize these ontogenetic relations.

  16. Identifying biologically relevant differences between metagenomic communities.

    PubMed

    Parks, Donovan H; Beiko, Robert G

    2010-03-15

    Metagenomics is the study of genetic material recovered directly from environmental samples. Taxonomic and functional differences between metagenomic samples can highlight the influence of ecological factors on patterns of microbial life in a wide range of habitats. Statistical hypothesis tests can help us distinguish ecological influences from sampling artifacts, but knowledge of only the P-value from a statistical hypothesis test is insufficient to make inferences about biological relevance. Current reporting practices for pairwise comparative metagenomics are inadequate, and better tools are needed for comparative metagenomic analysis. We have developed a new software package, STAMP, for comparative metagenomics that supports best practices in analysis and reporting. Examination of a pair of iron mine metagenomes demonstrates that deeper biological insights can be gained using statistical techniques available in our software. An analysis of the functional potential of 'Candidatus Accumulibacter phosphatis' in two enhanced biological phosphorus removal metagenomes identified several subsystems that differ between the A.phosphatis stains in these related communities, including phosphate metabolism, secretion and metal transport. Python source code and binaries are freely available from our website at http://kiwi.cs.dal.ca/Software/STAMP CONTACT: beiko@cs.dal.ca Supplementary data are available at Bioinformatics online.

  17. Fuzzy interval Finite Element/Statistical Energy Analysis for mid-frequency analysis of built-up systems with mixed fuzzy and interval parameters

    NASA Astrophysics Data System (ADS)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2016-10-01

    This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.

  18. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures

    PubMed Central

    Rock, Adam J.; Coventry, William L.; Morgan, Methuen I.; Loi, Natasha M.

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology. PMID:27014147

  19. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures.

    PubMed

    Rock, Adam J; Coventry, William L; Morgan, Methuen I; Loi, Natasha M

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology.

  20. DAnTE: a statistical tool for quantitative analysis of –omics data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polpitiya, Ashoka D.; Qian, Weijun; Jaitly, Navdeep

    2008-05-03

    DAnTE (Data Analysis Tool Extension) is a statistical tool designed to address challenges unique to quantitative bottom-up, shotgun proteomics data. This tool has also been demonstrated for microarray data and can easily be extended to other high-throughput data types. DAnTE features selected normalization methods, missing value imputation algorithms, peptide to protein rollup methods, an extensive array of plotting functions, and a comprehensive ANOVA scheme that can handle unbalanced data and random effects. The Graphical User Interface (GUI) is designed to be very intuitive and user friendly.

  1. Functional Status Outperforms Comorbidities as a Predictor of 30-Day Acute Care Readmissions in the Inpatient Rehabilitation Population.

    PubMed

    Shih, Shirley L; Zafonte, Ross; Bates, David W; Gerrard, Paul; Goldstein, Richard; Mix, Jacqueline; Niewczyk, Paulette; Greysen, S Ryan; Kazis, Lewis; Ryan, Colleen M; Schneider, Jeffrey C

    2016-10-01

    Functional status is associated with patient outcomes, but is rarely included in hospital readmission risk models. The objective of this study was to determine whether functional status is a better predictor of 30-day acute care readmission than traditionally investigated variables including demographics and comorbidities. Retrospective database analysis between 2002 and 2011. 1158 US inpatient rehabilitation facilities. 4,199,002 inpatient rehabilitation facility admissions comprising patients from 16 impairment groups within the Uniform Data System for Medical Rehabilitation database. Logistic regression models predicting 30-day readmission were developed based on age, gender, comorbidities (Elixhauser comorbidity index, Deyo-Charlson comorbidity index, and Medicare comorbidity tier system), and functional status [Functional Independence Measure (FIM)]. We hypothesized that (1) function-based models would outperform demographic- and comorbidity-based models and (2) the addition of demographic and comorbidity data would not significantly enhance function-based models. For each impairment group, Function Only Models were compared against Demographic-Comorbidity Models and Function Plus Models (Function-Demographic-Comorbidity Models). The primary outcome was 30-day readmission, and the primary measure of model performance was the c-statistic. All-cause 30-day readmission rate from inpatient rehabilitation facilities to acute care hospitals was 9.87%. C-statistics for the Function Only Models were 0.64 to 0.70. For all 16 impairment groups, the Function Only Model demonstrated better c-statistics than the Demographic-Comorbidity Models (c-statistic difference: 0.03-0.12). The best-performing Function Plus Models exhibited negligible improvements in model performance compared to Function Only Models, with c-statistic improvements of only 0.01 to 0.05. Readmissions are currently used as a marker of hospital performance, with recent financial penalties to hospitals for excessive readmissions. Function-based readmission models outperform models based only on demographics and comorbidities. Readmission risk models would benefit from the inclusion of functional status as a primary predictor. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  2. New software for statistical analysis of Cambridge Structural Database data

    PubMed Central

    Sykes, Richard A.; McCabe, Patrick; Allen, Frank H.; Battle, Gary M.; Bruno, Ian J.; Wood, Peter A.

    2011-01-01

    A collection of new software tools is presented for the analysis of geometrical, chemical and crystallographic data from the Cambridge Structural Database (CSD). This software supersedes the program Vista. The new functionality is integrated into the program Mercury in order to provide statistical, charting and plotting options alongside three-dimensional structural visualization and analysis. The integration also permits immediate access to other information about specific CSD entries through the Mercury framework, a common requirement in CSD data analyses. In addition, the new software includes a range of more advanced features focused towards structural analysis such as principal components analysis, cone-angle correction in hydrogen-bond analyses and the ability to deal with topological symmetry that may be exhibited in molecular search fragments. PMID:22477784

  3. Micro-heterogeneity versus clustering in binary mixtures of ethanol with water or alkanes.

    PubMed

    Požar, Martina; Lovrinčević, Bernarda; Zoranić, Larisa; Primorać, Tomislav; Sokolić, Franjo; Perera, Aurélien

    2016-08-24

    Ethanol is a hydrogen bonding liquid. When mixed in small concentrations with water or alkanes, it forms aggregate structures reminiscent of, respectively, the direct and inverse micellar aggregates found in emulsions, albeit at much smaller sizes. At higher concentrations, micro-heterogeneous mixing with segregated domains is found. We examine how different statistical methods, namely correlation function analysis, structure factor analysis and cluster distribution analysis, can describe efficiently these morphological changes in these mixtures. In particular, we explain how the neat alcohol pre-peak of the structure factor evolves into the domain pre-peak under mixing conditions, and how this evolution differs whether the co-solvent is water or alkane. This study clearly establishes the heuristic superiority of the correlation function/structure factor analysis to study the micro-heterogeneity, since cluster distribution analysis is insensitive to domain segregation. Correlation functions detect the domains, with a clear structure factor pre-peak signature, while the cluster techniques detect the cluster hierarchy within domains. The main conclusion is that, in micro-segregated mixtures, the domain structure is a more fundamental statistical entity than the underlying cluster structures. These findings could help better understand comparatively the radiation scattering experiments, which are sensitive to domains, versus the spectroscopy-NMR experiments, which are sensitive to clusters.

  4. Statistics of baryon correlation functions in lattice QCD

    NASA Astrophysics Data System (ADS)

    Wagman, Michael L.; Savage, Martin J.; Nplqcd Collaboration

    2017-12-01

    A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in these correlation functions is shown, as long suspected, to result from a sign problem. The log-magnitude and complex phase are found to be approximately described by normal and wrapped normal distributions respectively. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and "Lévy flights," are found to play a central role in their time evolution. A new method of analyzing correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant, rather than exponentially degrading, with increasing source-sink separation time. This new method includes an additional systematic uncertainty that can be removed by performing an extrapolation, and the signal-to-noise problem reemerges in the statistics of this extrapolation. It is demonstrated that this new method allows accurate results for the nucleon mass to be extracted from the large-time noise region inaccessible to standard methods. The observations presented here are expected to apply to quantum Monte Carlo calculations more generally. Similar methods to those introduced here may lead to practical improvements in analysis of noisier systems.

  5. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder.

    PubMed

    Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang

    2012-12-05

    Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (P<0.05). Correlation analysis between feature importance and the statistical significance of metrics was investigated, and the results revealed a strong positive correlation between them. Overall, the current study demonstrated that major depressive disorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.

  6. European consumer attitudes on the associated health benefits of neutraceutical-containing processed meats using Co-enzyme Q10 as a sample functional ingredient.

    PubMed

    Tobin, Brian D; O'Sullivan, Maurice G; Hamill, Ruth; Kerry, Joseph P

    2014-06-01

    This study accumulated European consumer attitudes towards processed meats and their use as a functional food. A survey was set up using an online web-application to gather information on consumer perception of processed meats as well as neutraceutical-containing processed meats. 548 responses were obtained and statistical analysis was carried out using a statistical software package. Data was summarized as frequencies for each question and statistical differences analyzed using the Chi-Square statistical test with a significance level of 5% (P<0.05). The majority of consumer attitudes towards processed meat indicate that they are unhealthy products. Most believe that processed meats contain large quantities of harmful chemicals, fat and salt. Consumers were found to be very pro-bioactive compounds in yogurt style products but unsure of their feelings in meat based products, which is likely due to the lack of familiarity to these products. Many of the respondents were willing to consume meat based functional foods but were not willing to pay more for them. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. SMAR Sessions

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Robert

    2011-01-01

    This slide presentation is a series of educational presentations that are on the statistical function of analysis of variance (ANOVA). Analysis of Variance (ANOVA) examines variability between groups, relative to within groups, to determine whether there's evidence that the groups are not from the same population. One other presentation reviews hypothesis testing.

  8. Uncertainty Analysis of Inertial Model Attitude Sensor Calibration and Application with a Recommended New Calibration Method

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.

  9. Development of a funding, cost, and spending model for satellite projects

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse P.

    1989-01-01

    The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.

  10. Kidney function changes with aging in adults: comparison between cross-sectional and longitudinal data analyses in renal function assessment.

    PubMed

    Chung, Sang M; Lee, David J; Hand, Austin; Young, Philip; Vaidyanathan, Jayabharathi; Sahajwalla, Chandrahas

    2015-12-01

    The study evaluated whether the renal function decline rate per year with age in adults varies based on two primary statistical analyses: cross-section (CS), using one observation per subject, and longitudinal (LT), using multiple observations per subject over time. A total of 16628 records (3946 subjects; age range 30-92 years) of creatinine clearance and relevant demographic data were used. On average, four samples per subject were collected for up to 2364 days (mean: 793 days). A simple linear regression and random coefficient models were selected for CS and LT analyses, respectively. The renal function decline rates per year were 1.33 and 0.95 ml/min/year for CS and LT analyses, respectively, and were slower when the repeated individual measurements were considered. The study confirms that rates are different based on statistical analyses, and that a statistically robust longitudinal model with a proper sampling design provides reliable individual as well as population estimates of the renal function decline rates per year with age in adults. In conclusion, our findings indicated that one should be cautious in interpreting the renal function decline rate with aging information because its estimation was highly dependent on the statistical analyses. From our analyses, a population longitudinal analysis (e.g. random coefficient model) is recommended if individualization is critical, such as a dose adjustment based on renal function during a chronic therapy. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Near-exact distributions for the block equicorrelation and equivariance likelihood ratio test statistic

    NASA Astrophysics Data System (ADS)

    Coelho, Carlos A.; Marques, Filipe J.

    2013-09-01

    In this paper the authors combine the equicorrelation and equivariance test introduced by Wilks [13] with the likelihood ratio test (l.r.t.) for independence of groups of variables to obtain the l.r.t. of block equicorrelation and equivariance. This test or its single block version may find applications in many areas as in psychology, education, medicine, genetics and they are important "in many tests of multivariate analysis, e.g. in MANOVA, Profile Analysis, Growth Curve analysis, etc" [12, 9]. By decomposing the overall hypothesis into the hypotheses of independence of groups of variables and the hypothesis of equicorrelation and equivariance we are able to obtain the expressions for the overall l.r.t. statistic and its moments. From these we obtain a suitable factorization of the characteristic function (c.f.) of the logarithm of the l.r.t. statistic, which enables us to develop highly manageable and precise near-exact distributions for the test statistic.

  12. Large-angle correlations in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Efstathiou, George; Ma, Yin-Zhe; Hanson, Duncan

    2010-10-01

    It has been argued recently by Copi et al. 2009 that the lack of large angular correlations of the CMB temperature field provides strong evidence against the standard, statistically isotropic, inflationary Lambda cold dark matter (ΛCDM) cosmology. We compare various estimators of the temperature correlation function showing how they depend on assumptions of statistical isotropy and how they perform on the Wilkinson Microwave Anisotropy Probe (WMAP) 5-yr Internal Linear Combination (ILC) maps with and without a sky cut. We show that the low multipole harmonics that determine the large-scale features of the temperature correlation function can be reconstructed accurately from the data that lie outside the sky cuts. The reconstructions are only weakly dependent on the assumed statistical properties of the temperature field. The temperature correlation functions computed from these reconstructions are in good agreement with those computed from the ILC map over the whole sky. We conclude that the large-scale angular correlation function for our realization of the sky is well determined. A Bayesian analysis of the large-scale correlations is presented, which shows that the data cannot exclude the standard ΛCDM model. We discuss the differences between our results and those of Copi et al. Either there exists a violation of statistical isotropy as claimed by Copi et al., or these authors have overestimated the significance of the discrepancy because of a posteriori choices of estimator, statistic and sky cut.

  13. Statistical correlation analysis for comparing vibration data from test and analysis

    NASA Technical Reports Server (NTRS)

    Butler, T. G.; Strang, R. F.; Purves, L. R.; Hershfeld, D. J.

    1986-01-01

    A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures.

  14. Characteristics of genomic signatures derived using univariate methods and mechanistically anchored functional descriptors for predicting drug- and xenobiotic-induced nephrotoxicity.

    PubMed

    Shi, Weiwei; Bugrim, Andrej; Nikolsky, Yuri; Nikolskya, Tatiana; Brennan, Richard J

    2008-01-01

    ABSTRACT The ideal toxicity biomarker is composed of the properties of prediction (is detected prior to traditional pathological signs of injury), accuracy (high sensitivity and specificity), and mechanistic relationships to the endpoint measured (biological relevance). Gene expression-based toxicity biomarkers ("signatures") have shown good predictive power and accuracy, but are difficult to interpret biologically. We have compared different statistical methods of feature selection with knowledge-based approaches, using GeneGo's database of canonical pathway maps, to generate gene sets for the classification of renal tubule toxicity. The gene set selection algorithms include four univariate analyses: t-statistics, fold-change, B-statistics, and RankProd, and their combination and overlap for the identification of differentially expressed probes. Enrichment analysis following the results of the four univariate analyses, Hotelling T-square test, and, finally out-of-bag selection, a variant of cross-validation, were used to identify canonical pathway maps-sets of genes coordinately involved in key biological processes-with classification power. Differentially expressed genes identified by the different statistical univariate analyses all generated reasonably performing classifiers of tubule toxicity. Maps identified by enrichment analysis or Hotelling T-square had lower classification power, but highlighted perturbed lipid homeostasis as a common discriminator of nephrotoxic treatments. The out-of-bag method yielded the best functionally integrated classifier. The map "ephrins signaling" performed comparably to a classifier derived using sparse linear programming, a machine learning algorithm, and represents a signaling network specifically involved in renal tubule development and integrity. Such functional descriptors of toxicity promise to better integrate predictive toxicogenomics with mechanistic analysis, facilitating the interpretation and risk assessment of predictive genomic investigations.

  15. Variability in source sediment contributions by applying different statistic test for a Pyrenean catchment.

    PubMed

    Palazón, L; Navas, A

    2017-06-01

    Information on sediment contribution and transport dynamics from the contributing catchments is needed to develop management plans to tackle environmental problems related with effects of fine sediment as reservoir siltation. In this respect, the fingerprinting technique is an indirect technique known to be valuable and effective for sediment source identification in river catchments. Large variability in sediment delivery was found in previous studies in the Barasona catchment (1509 km 2 , Central Spanish Pyrenees). Simulation results with SWAT and fingerprinting approaches identified badlands and agricultural uses as the main contributors to sediment supply in the reservoir. In this study the <63 μm sediment fraction from the surface reservoir sediments (2 cm) are investigated following the fingerprinting procedure to assess how the use of different statistical procedures affects the amounts of source contributions. Three optimum composite fingerprints were selected to discriminate between source contributions based in land uses/land covers from the same dataset by the application of (1) discriminant function analysis; and its combination (as second step) with (2) Kruskal-Wallis H-test and (3) principal components analysis. Source contribution results were different between assessed options with the greatest differences observed for option using #3, including the two step process: principal components analysis and discriminant function analysis. The characteristics of the solutions by the applied mixing model and the conceptual understanding of the catchment showed that the most reliable solution was achieved using #2, the two step process of Kruskal-Wallis H-test and discriminant function analysis. The assessment showed the importance of the statistical procedure used to define the optimum composite fingerprint for sediment fingerprinting applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Neural network approach in multichannel auditory event-related potential analysis.

    PubMed

    Wu, F Y; Slater, J D; Ramsay, R E

    1994-04-01

    Even though there are presently no clearly defined criteria for the assessment of P300 event-related potential (ERP) abnormality, it is strongly indicated through statistical analysis that such criteria exist for classifying control subjects and patients with diseases resulting in neuropsychological impairment such as multiple sclerosis (MS). We have demonstrated the feasibility of artificial neural network (ANN) methods in classifying ERP waveforms measured at a single channel (Cz) from control subjects and MS patients. In this paper, we report the results of multichannel ERP analysis and a modified network analysis methodology to enhance automation of the classification rule extraction process. The proposed methodology significantly reduces the work of statistical analysis. It also helps to standardize the criteria of P300 ERP assessment and facilitate the computer-aided analysis on neuropsychological functions.

  17. Hypothesis testing in functional linear regression models with Neyman's truncation and wavelet thresholding for longitudinal data.

    PubMed

    Yang, Xiaowei; Nie, Kun

    2008-03-15

    Longitudinal data sets in biomedical research often consist of large numbers of repeated measures. In many cases, the trajectories do not look globally linear or polynomial, making it difficult to summarize the data or test hypotheses using standard longitudinal data analysis based on various linear models. An alternative approach is to apply the approaches of functional data analysis, which directly target the continuous nonlinear curves underlying discretely sampled repeated measures. For the purposes of data exploration, many functional data analysis strategies have been developed based on various schemes of smoothing, but fewer options are available for making causal inferences regarding predictor-outcome relationships, a common task seen in hypothesis-driven medical studies. To compare groups of curves, two testing strategies with good power have been proposed for high-dimensional analysis of variance: the Fourier-based adaptive Neyman test and the wavelet-based thresholding test. Using a smoking cessation clinical trial data set, this paper demonstrates how to extend the strategies for hypothesis testing into the framework of functional linear regression models (FLRMs) with continuous functional responses and categorical or continuous scalar predictors. The analysis procedure consists of three steps: first, apply the Fourier or wavelet transform to the original repeated measures; then fit a multivariate linear model in the transformed domain; and finally, test the regression coefficients using either adaptive Neyman or thresholding statistics. Since a FLRM can be viewed as a natural extension of the traditional multiple linear regression model, the development of this model and computational tools should enhance the capacity of medical statistics for longitudinal data.

  18. Deconstructing multivariate decoding for the study of brain function.

    PubMed

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  19. Statistical analysis of Geopotential Height (GH) timeseries based on Tsallis non-extensive statistical mechanics

    NASA Astrophysics Data System (ADS)

    Karakatsanis, L. P.; Iliopoulos, A. C.; Pavlos, E. G.; Pavlos, G. P.

    2018-02-01

    In this paper, we perform statistical analysis of time series deriving from Earth's climate. The time series are concerned with Geopotential Height (GH) and correspond to temporal and spatial components of the global distribution of month average values, during the period (1948-2012). The analysis is based on Tsallis non-extensive statistical mechanics and in particular on the estimation of Tsallis' q-triplet, namely {qstat, qsens, qrel}, the reconstructed phase space and the estimation of correlation dimension and the Hurst exponent of rescaled range analysis (R/S). The deviation of Tsallis q-triplet from unity indicates non-Gaussian (Tsallis q-Gaussian) non-extensive character with heavy tails probability density functions (PDFs), multifractal behavior and long range dependences for all timeseries considered. Also noticeable differences of the q-triplet estimation found in the timeseries at distinct local or temporal regions. Moreover, in the reconstructive phase space revealed a lower-dimensional fractal set in the GH dynamical phase space (strong self-organization) and the estimation of Hurst exponent indicated multifractality, non-Gaussianity and persistence. The analysis is giving significant information identifying and characterizing the dynamical characteristics of the earth's climate.

  20. Demographic Accounting and Model-Building. Education and Development Technical Reports.

    ERIC Educational Resources Information Center

    Stone, Richard

    This report describes and develops a model for coordinating a variety of demographic and social statistics within a single framework. The framework proposed, together with its associated methods of analysis, serves both general and specific functions. The general aim of these functions is to give numerical definition to the pattern of society and…

  1. The Impact of Missing Data on the Detection of Nonuniform Differential Item Functioning

    ERIC Educational Resources Information Center

    Finch, W. Holmes

    2011-01-01

    Missing information is a ubiquitous aspect of data analysis, including responses to items on cognitive and affective instruments. Although the broader statistical literature describes missing data methods, relatively little work has focused on this issue in the context of differential item functioning (DIF) detection. Such prior research has…

  2. Executive Functions: Formative versus Reflective Measurement

    ERIC Educational Resources Information Center

    Willoughby, Michael; Holochwost, Steven J.; Blanton, Zane E.; Blair, Clancy B.

    2014-01-01

    The primary objective of this article was to critically evaluate the routine use of confirmatory factor analysis (CFA) for representing an individual's performance across a battery of executive function tasks. A conceptual review and statistical reanalysis of N = 10 studies that used CFA methods of EF tasks was undertaken. Despite evidence of…

  3. A discrimlnant function approach to ecological site classification in northern New England

    Treesearch

    James M. Fincher; Marie-Louise Smith

    1994-01-01

    Describes one approach to ecologically based classification of upland forest community types of the White and Green Mountain physiographic regions. The classification approach is based on an intensive statistical analysis of the relationship between the communities and soil-site factors. Discriminant functions useful in distinguishing between types based on soil-site...

  4. Robustness of Type I Error and Power in Set Correlation Analysis of Contingency Tables.

    ERIC Educational Resources Information Center

    Cohen, Jacob; Nee, John C. M.

    1990-01-01

    The analysis of contingency tables via set correlation allows the assessment of subhypotheses involving contrast functions of the categories of the nominal scales. The robustness of such methods with regard to Type I error and statistical power was studied via a Monte Carlo experiment. (TJH)

  5. Improved dynamical scaling analysis using the kernel method for nonequilibrium relaxation.

    PubMed

    Echinaka, Yuki; Ozeki, Yukiyasu

    2016-10-01

    The dynamical scaling analysis for the Kosterlitz-Thouless transition in the nonequilibrium relaxation method is improved by the use of Bayesian statistics and the kernel method. This allows data to be fitted to a scaling function without using any parametric model function, which makes the results more reliable and reproducible and enables automatic and faster parameter estimation. Applying this method, the bootstrap method is introduced and a numerical discrimination for the transition type is proposed.

  6. Development of Welding Fumes Health Index (WFHI) for Welding Workplace's Safety and Health Assessment.

    PubMed

    Hariri, Azian; Paiman, Nuur Azreen; Leman, Abdul Mutalib; Md Yusof, Mohammad Zainal

    2014-08-01

    This study aimed to develop an index that can rank welding workplace that associate well with possible health risk of welders. Welding Fumes Health Index (WFHI) were developed based on data from case studies conducted in Plant 1 and Plant 2. Personal sampling of welding fumes to assess the concentration of metal constituents along with series of lung function tests was conducted. Fifteen metal constituents were investigated in each case study. Index values were derived from aggregation analysis of metal constituent concentration while significant lung functions were recognized through statistical analysis in each plant. The results showed none of the metal constituent concentration was exceeding the permissible exposure limit (PEL) for all plants. However, statistical analysis showed significant mean differences of lung functions between welders and non-welders. The index was then applied to one of the welding industry (Plant 3) for verification purpose. The developed index showed its promising ability to rank welding workplace, according to the multiple constituent concentrations of welding fumes that associates well with lung functions of the investigated welders. There was possibility that some of the metal constituents were below the detection limit leading to '0' value of sub index, thus the multiplicative form of aggregation model was not suitable for analysis. On the other hand, maximum or minimum operator forms suffer from compensation issues and were not considered in this study.

  7. Cancerouspdomains: comprehensive analysis of cancer type-specific recurrent somatic mutations in proteins and domains.

    PubMed

    Hashemi, Seirana; Nowzari Dalini, Abbas; Jalali, Adrin; Banaei-Moghaddam, Ali Mohammad; Razaghi-Moghadam, Zahra

    2017-08-16

    Discriminating driver mutations from the ones that play no role in cancer is a severe bottleneck in elucidating molecular mechanisms underlying cancer development. Since protein domains are representatives of functional regions within proteins, mutations on them may disturb the protein functionality. Therefore, studying mutations at domain level may point researchers to more accurate assessment of the functional impact of the mutations. This article presents a comprehensive study to map mutations from 29 cancer types to both sequence- and structure-based domains. Statistical analysis was performed to identify candidate domains in which mutations occur with high statistical significance. For each cancer type, the corresponding type-specific domains were distinguished among all candidate domains. Subsequently, cancer type-specific domains facilitated the identification of specific proteins for each cancer type. Besides, performing interactome analysis on specific proteins of each cancer type showed high levels of interconnectivity among them, which implies their functional relationship. To evaluate the role of mitochondrial genes, stem cell-specific genes and DNA repair genes in cancer development, their mutation frequency was determined via further analysis. This study has provided researchers with a publicly available data repository for studying both CATH and Pfam domain regions on protein-coding genes. Moreover, the associations between different groups of genes/domains and various cancer types have been clarified. The work is available at http://www.cancerouspdomains.ir .

  8. A statistical physics perspective on alignment-independent protein sequence comparison.

    PubMed

    Chattopadhyay, Amit K; Nasiev, Diar; Flower, Darren R

    2015-08-01

    Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from 'first passage probability distribution' to summarize statistics of ensemble averaged amino acid propensity values. In this article, we introduce and elaborate this approach. © The Author 2015. Published by Oxford University Press.

  9. A Random Variable Approach to Nuclear Targeting and Survivability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Undem, Halvor A.

    We demonstrate a common mathematical formalism for analyzing problems in nuclear survivability and targeting. This formalism, beginning with a random variable approach, can be used to interpret past efforts in nuclear-effects analysis, including targeting analysis. It can also be used to analyze new problems brought about by the post Cold War Era, such as the potential effects of yield degradation in a permanently untested nuclear stockpile. In particular, we illustrate the formalism through four natural case studies or illustrative problems, linking these to actual past data, modeling, and simulation, and suggesting future uses. In the first problem, we illustrate themore » case of a deterministically modeled weapon used against a deterministically responding target. Classic "Cookie Cutter" damage functions result. In the second problem, we illustrate, with actual target test data, the case of a deterministically modeled weapon used against a statistically responding target. This case matches many of the results of current nuclear targeting modeling and simulation tools, including the result of distance damage functions as complementary cumulative lognormal functions in the range variable. In the third problem, we illustrate the case of a statistically behaving weapon used against a deterministically responding target. In particular, we show the dependence of target damage on weapon yield for an untested nuclear stockpile experiencing yield degradation. Finally, and using actual unclassified weapon test data, we illustrate in the fourth problem the case of a statistically behaving weapon used against a statistically responding target.« less

  10. System Analysis for the Huntsville Operation Support Center, Distributed Computer System

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Massey, D.

    1985-01-01

    HOSC as a distributed computing system, is responsible for data acquisition and analysis during Space Shuttle operations. HOSC also provides computing services for Marshall Space Flight Center's nonmission activities. As mission and nonmission activities change, so do the support functions of HOSC change, demonstrating the need for some method of simulating activity at HOSC in various configurations. The simulation developed in this work primarily models the HYPERchannel network. The model simulates the activity of a steady state network, reporting statistics such as, transmitted bits, collision statistics, frame sequences transmitted, and average message delay. These statistics are used to evaluate such performance indicators as throughout, utilization, and delay. Thus the overall performance of the network is evaluated, as well as predicting possible overload conditions.

  11. Tests of Mediation: Paradoxical Decline in Statistical Power as a Function of Mediator Collinearity

    PubMed Central

    Beasley, T. Mark

    2013-01-01

    Increasing the correlation between the independent variable and the mediator (a coefficient) increases the effect size (ab) for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation due to increases in a at some point outweighs the increase of the effect size (ab) and results in a loss of statistical power. This phenomenon also occurs with nonparametric bootstrapping approaches because the variance of the bootstrap distribution of ab approximates the variance expected from normal theory. Both variances increase dramatically when a exceeds the b coefficient, thus explaining the power decline with increases in a. Implications for statistical analysis and applied researchers are discussed. PMID:24954952

  12. A Revelation: Quantum-Statistics and Classical-Statistics are Analytic-Geometry Conic-Sections and Numbers/Functions: Euler, Riemann, Bernoulli Generating-Functions: Conics to Numbers/Functions Deep Subtle Connections

    NASA Astrophysics Data System (ADS)

    Descartes, R.; Rota, G.-C.; Euler, L.; Bernoulli, J. D.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Quantum-statistics Dichotomy: Fermi-Dirac(FDQS) Versus Bose-Einstein(BEQS), respectively with contact-repulsion/non-condensation(FDCR) versus attraction/ condensationBEC are manifestly-demonstrated by Taylor-expansion ONLY of their denominator exponential, identified BOTH as Descartes analytic-geometry conic-sections, FDQS as Elllipse (homotopy to rectangle FDQS distribution-function), VIA Maxwell-Boltzmann classical-statistics(MBCS) to Parabola MORPHISM, VS. BEQS to Hyperbola, Archimedes' HYPERBOLICITY INEVITABILITY, and as well generating-functions[Abramowitz-Stegun, Handbook Math.-Functions--p. 804!!!], respectively of Euler-numbers/functions, (via Riemann zeta-function(domination of quantum-statistics: [Pathria, Statistical-Mechanics; Huang, Statistical-Mechanics]) VS. Bernoulli-numbers/ functions. Much can be learned about statistical-physics from Euler-numbers/functions via Riemann zeta-function(s) VS. Bernoulli-numbers/functions [Conway-Guy, Book of Numbers] and about Euler-numbers/functions, via Riemann zeta-function(s) MORPHISM, VS. Bernoulli-numbers/ functions, visa versa!!! Ex.: Riemann-hypothesis PHYSICS proof PARTLY as BEQS BEC/BEA!!!

  13. Dental Composite Restorations and Neuropsychological Development in Children: Treatment Level Analysis from a Randomized Clinical Trial

    PubMed Central

    Maserejian, Nancy N.; Trachtenberg, Felicia L.; Hauser, Russ; McKinlay, Sonja; Shrader, Peter; Bellinger, David C.

    2012-01-01

    Background Resin-based dental restorations may intra-orally release their components and bisphenol A. Gestational bisphenol A exposure has been associated with poorer executive functioning in children. Objectives To examine whether exposure to resin-based composite restorations is associated with neuropsychological development in children. Methods Secondary analysis of treatment level data from the New England Children’s Amalgam Trial, a 2-group randomized safety trial conducted from 1997–2006. Children (N=534) aged 6–10 y with >2 posterior tooth caries were randomized to treatment with amalgam or resin-based composites (bisphenol-A-diglycidyl-dimethacrylate-composite for permanent teeth; urethane dimethacrylate-based polyacid-modified compomer for primary teeth). Neuropsychological function at 4- and 5-year follow-up (N=444) was measured by a battery of tests of executive function, intelligence, memory, visual-spatial skills, verbal fluency, and problem-solving. Multivariable generalized linear regression models were used to examine the association between composite exposure levels and changes in neuropsychological test scores from baseline to follow-up. For comparison, data on children randomized to amalgam treatment were similarly analyzed. Results With greater exposure to either dental composite material, results were generally consistent in the direction of slightly poorer changes in tests of intelligence, achievement or memory, but there were no statistically significant associations. For the four primary measures of executive function, scores were slightly worse with greater total composite exposure, but statistically significant only for the test of Letter Fluency (10-surface-years β= −0.8, SE=0.4, P=0.035), and the subtest of color naming (β= −1.5, SE=0.5, P=0.004) in the Stroop Color-Word Interference Test. Multivariate analysis of variance confirmed that the negative associations between composite level and executive function were not statistically significant (MANOVA P=0.18). Results for greater amalgam exposure were mostly nonsignificant in the opposite direction of slightly improved scores over follow-up. Conclusions Dental composite restorations had statistically insignificant associations of small magnitude with impairments in neuropsychological test change scores over 4- or 5-years of follow-up in this trial. PMID:22906860

  14. Principle of maximum entropy for reliability analysis in the design of machine components

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin

    2018-03-01

    We studied the reliability of machine components with parameters that follow an arbitrary statistical distribution using the principle of maximum entropy (PME). We used PME to select the statistical distribution that best fits the available information. We also established a probability density function (PDF) and a failure probability model for the parameters of mechanical components using the concept of entropy and the PME. We obtained the first four moments of the state function for reliability analysis and design. Furthermore, we attained an estimate of the PDF with the fewest human bias factors using the PME. This function was used to calculate the reliability of the machine components, including a connecting rod, a vehicle half-shaft, a front axle, a rear axle housing, and a leaf spring, which have parameters that typically follow a non-normal distribution. Simulations were conducted for comparison. This study provides a design methodology for the reliability of mechanical components for practical engineering projects.

  15. Statistical approach to partial equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yougui; Stanley, H. E.

    2009-04-01

    A statistical approach to market equilibrium and efficiency analysis is proposed in this paper. One factor that governs the exchange decisions of traders in a market, named willingness price, is highlighted and constitutes the whole theory. The supply and demand functions are formulated as the distributions of corresponding willing exchange over the willingness price. The laws of supply and demand can be derived directly from these distributions. The characteristics of excess demand function are analyzed and the necessary conditions for the existence and uniqueness of equilibrium point of the market are specified. The rationing rates of buyers and sellers are introduced to describe the ratio of realized exchange to willing exchange, and their dependence on the market price is studied in the cases of shortage and surplus. The realized market surplus, which is the criterion of market efficiency, can be written as a function of the distributions of willing exchange and the rationing rates. With this approach we can strictly prove that a market is efficient in the state of equilibrium.

  16. An advanced probabilistic structural analysis method for implicit performance functions

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.

    1989-01-01

    In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.

  17. Identifying Dynamic Functional Connectivity Changes in Dementia with Lewy Bodies Based on Product Hidden Markov Models.

    PubMed

    Sourty, Marion; Thoraval, Laurent; Roquet, Daniel; Armspach, Jean-Paul; Foucher, Jack; Blanc, Frédéric

    2016-01-01

    Exploring time-varying connectivity networks in neurodegenerative disorders is a recent field of research in functional MRI. Dementia with Lewy bodies (DLB) represents 20% of the neurodegenerative forms of dementia. Fluctuations of cognition and vigilance are the key symptoms of DLB. To date, no dynamic functional connectivity (DFC) investigations of this disorder have been performed. In this paper, we refer to the concept of connectivity state as a piecewise stationary configuration of functional connectivity between brain networks. From this concept, we propose a new method for group-level as well as for subject-level studies to compare and characterize connectivity state changes between a set of resting-state networks (RSNs). Dynamic Bayesian networks, statistical and graph theory-based models, enable one to learn dependencies between interacting state-based processes. Product hidden Markov models (PHMM), an instance of dynamic Bayesian networks, are introduced here to capture both statistical and temporal aspects of DFC of a set of RSNs. This analysis was based on sliding-window cross-correlations between seven RSNs extracted from a group independent component analysis performed on 20 healthy elderly subjects and 16 patients with DLB. Statistical models of DFC differed in patients compared to healthy subjects for the occipito-parieto-frontal network, the medial occipital network and the right fronto-parietal network. In addition, pairwise comparisons of DFC of RSNs revealed a decrease of dependency between these two visual networks (occipito-parieto-frontal and medial occipital networks) and the right fronto-parietal control network. The analysis of DFC state changes thus pointed out networks related to the cognitive functions that are known to be impaired in DLB: visual processing as well as attentional and executive functions. Besides this context, product HMM applied to RSNs cross-correlations offers a promising new approach to investigate structural and temporal aspects of brain DFC.

  18. Factors that Affected Functional Outcome After a Delayed Excision and Split-Thickness Skin Graft on the Dorsal Side of Burned Hands.

    PubMed

    Shichinohe, Ryuji; Yamamoto, Yuhei; Kawashima, Kunihiro; Kimura, Chu; Ono, Kentaro; Horiuchi, Katsumi; Yoshida, Tetsunori; Murao, Naoki; Hayashi, Toshihiko; Funayama, Emi; Oyama, Akihiko; Furukawa, Hiroshi

    Early excision and skin grafting is the principle treatment for a burned hand although there are occasions when it cannot be done such as severe general condition, delayed consultation, and the lack of a definitive assessment of burn depth. This study analyzes the factors that affected function after a delayed excision and skin graft for hands with a deep dermal burn. This study retrospectively evaluated 43 burned hands that required a delayed excision and split-thickness skin graft on the dorsal side. Cases were required to only have split-thickness skin grafting from the dorsum of the hand and fingers distally to at least the proximal interphalangeal joint at least 8 days after the injury. The hands were divided into two functional categories: Functional category A, normal or nearly normal joint movements, and functional category B, abnormal joint movements. Demographic data were assessed statistically by a univariate analysis following a multiple regression analysis by a stepwise selection. A significant difference was observed between the groups in the number of days from grafting to complete wound healing of the graft site and with or without an escharotomy in the analysis. These parameters were statistically significant predictors of functional category B. The functional outcome of a burned hand after a delayed excision and split-thickness skin graft on the dorsal side became degraded depending on the number of days from grafting to complete wound healing. Cases that underwent an escharotomy also showed deterioration in function.

  19. Combining statistical inference and decisions in ecology

    USGS Publications Warehouse

    Williams, Perry J.; Hooten, Mevin B.

    2016-01-01

    Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation, and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem.

  20. Development of a Multidimensional Functional Health Scale for Older Adults in China.

    PubMed

    Mao, Fanzhen; Han, Yaofeng; Chen, Junze; Chen, Wei; Yuan, Manqiong; Alicia Hong, Y; Fang, Ya

    2016-05-01

    A first step to achieve successful aging is assessing functional wellbeing of older adults. This study reports the development of a culturally appropriate brief scale (the Multidimensional Functional Health Scale for Chinese Elderly, MFHSCE) to assess the functional health of Chinese elderly. Through systematic literature review, Delphi method, cultural adaptation, synthetic statistical item selection, Cronbach's alpha and confirmatory factor analysis, we conducted development of item pool, two rounds of item selection, and psychometric evaluation. Synthetic statistical item selection and psychometric evaluation was processed among 539 and 2032 older adults, separately. The MFHSCE consists of 30 items, covering activities of daily living, social relationships, physical health, mental health, cognitive function, and economic resources. The Cronbach's alpha was 0.92, and the comparative fit index was 0.917. The MFHSCE has good internal consistency and construct validity; it is also concise and easy to use in general practice, especially in communities in China.

  1. Simulation and analysis of scalable non-Gaussian statistically anisotropic random functions

    NASA Astrophysics Data System (ADS)

    Riva, Monica; Panzeri, Marco; Guadagnini, Alberto; Neuman, Shlomo P.

    2015-12-01

    Many earth and environmental (as well as other) variables, Y, and their spatial or temporal increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture some key aspects of such scaling by treating Y or ΔY as standard sub-Gaussian random functions. We were however unable to reconcile two seemingly contradictory observations, namely that whereas sample frequency distributions of Y (or its logarithm) exhibit relatively mild non-Gaussian peaks and tails, those of ΔY display peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we overcame this difficulty by developing a new generalized sub-Gaussian model which captures both behaviors in a unified and consistent manner, exploring it on synthetically generated random functions in one dimension (Riva et al., 2015). Here we extend our generalized sub-Gaussian model to multiple dimensions, present an algorithm to generate corresponding random realizations of statistically isotropic or anisotropic sub-Gaussian functions and illustrate it in two dimensions. We demonstrate the accuracy of our algorithm by comparing ensemble statistics of Y and ΔY (such as, mean, variance, variogram and probability density function) with those of Monte Carlo generated realizations. We end by exploring the feasibility of estimating all relevant parameters of our model by analyzing jointly spatial moments of Y and ΔY obtained from a single realization of Y.

  2. Statistical scaling of pore-scale Lagrangian velocities in natural porous media.

    PubMed

    Siena, M; Guadagnini, A; Riva, M; Bijeljic, B; Pereira Nunes, J P; Blunt, M J

    2014-08-01

    We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample structure functions associated with the limestone block display two diverse power-law regimes, which we infer to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for sample structure functions of Lagrangian velocity, porosity, and specific surface area.

  3. A Systematic Review of Clinical Functional Outcomes After Medial Stabilized Versus Non-Medial Stabilized Total Knee Joint Replacement

    PubMed Central

    Young, Tony; Dowsey, Michelle M.; Pandy, Marcus; Choong, Peter F.

    2018-01-01

    Background Medial stabilized total knee joint replacement (TKJR) construct is designed to closely replicate the kinematics of the knee. Little is known regarding comparison of clinical functional outcomes of patients utilising validated patient reported outcome measures (PROM) after medial stabilized TKJR and other construct designs. Purpose To perform a systematic review of the available literature related to the assessment of clinical functional outcomes following a TKJR employing a medial stabilized construct design. Methods The review was performed with a Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) algorithm. The literature search was performed using variouscombinations of keywords. The statistical analysis was completed using Review Manager (RevMan), Version 5.3. Results In the nineteen unique studies identified, there were 2,448 medial stabilized TKJRs implanted in 2,195 participants, there were 1,777 TKJRs with non-medial stabilized design constructs implanted in 1,734 subjects. The final mean Knee Society Score (KSS) value in the medial stabilized group was 89.92 compared to 90.76 in the non-medial stabilized group, with the final KSS mean value difference between the two groups was statistically significant and favored the non-medial stabilized group (SMD 0.21; 95% CI: 0.01 to 0.41; p = 004). The mean difference in the final WOMAC values between the two groups was also statistically significant and favored the medial stabilized group (SMD: −0.27; 95% CI: −0.47 to −0.07; p = 0.009). Moderate to high values (I2) of heterogeneity were observed during the statistical comparison of these functional outcomes. Conclusion Based on the small number of studies with appropriate statistical analysis, we are unable to reach a clear conclusion in the clinical performance of medial stabilized knee replacement construct. Level of Evidence Level II PMID:29696144

  4. A Systematic Review of Clinical Functional Outcomes After Medial Stabilized Versus Non-Medial Stabilized Total Knee Joint Replacement.

    PubMed

    Young, Tony; Dowsey, Michelle M; Pandy, Marcus; Choong, Peter F

    2018-01-01

    Medial stabilized total knee joint replacement (TKJR) construct is designed to closely replicate the kinematics of the knee. Little is known regarding comparison of clinical functional outcomes of patients utilising validated patient reported outcome measures (PROM) after medial stabilized TKJR and other construct designs. To perform a systematic review of the available literature related to the assessment of clinical functional outcomes following a TKJR employing a medial stabilized construct design. The review was performed with a Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) algorithm. The literature search was performed using variouscombinations of keywords. The statistical analysis was completed using Review Manager (RevMan), Version 5.3. In the nineteen unique studies identified, there were 2,448 medial stabilized TKJRs implanted in 2,195 participants, there were 1,777 TKJRs with non-medial stabilized design constructs implanted in 1,734 subjects. The final mean Knee Society Score (KSS) value in the medial stabilized group was 89.92 compared to 90.76 in the non-medial stabilized group, with the final KSS mean value difference between the two groups was statistically significant and favored the non-medial stabilized group (SMD 0.21; 95% CI: 0.01 to 0.41; p = 004). The mean difference in the final WOMAC values between the two groups was also statistically significant and favored the medial stabilized group (SMD: -0.27; 95% CI: -0.47 to -0.07; p = 0.009). Moderate to high values ( I 2 ) of heterogeneity were observed during the statistical comparison of these functional outcomes. Based on the small number of studies with appropriate statistical analysis, we are unable to reach a clear conclusion in the clinical performance of medial stabilized knee replacement construct. Level II.

  5. fMRI paradigm designing and post-processing tools

    PubMed Central

    James, Jija S; Rajesh, PG; Chandran, Anuvitha VS; Kesavadas, Chandrasekharan

    2014-01-01

    In this article, we first review some aspects of functional magnetic resonance imaging (fMRI) paradigm designing for major cognitive functions by using stimulus delivery systems like Cogent, E-Prime, Presentation, etc., along with their technical aspects. We also review the stimulus presentation possibilities (block, event-related) for visual or auditory paradigms and their advantage in both clinical and research setting. The second part mainly focus on various fMRI data post-processing tools such as Statistical Parametric Mapping (SPM) and Brain Voyager, and discuss the particulars of various preprocessing steps involved (realignment, co-registration, normalization, smoothing) in these software and also the statistical analysis principles of General Linear Modeling for final interpretation of a functional activation result. PMID:24851001

  6. Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data.

    PubMed

    Li, Zitong; Sillanpää, Mikko J

    2015-12-01

    Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Pelvic floor muscle strength of women consulting at the gynecology outpatient clinics and its correlation with sexual dysfunction: A cross-sectional study.

    PubMed

    Ozdemir, Filiz Ciledag; Pehlivan, Erkan; Melekoglu, Rauf

    2017-01-01

    To investigate the pelvic floor muscle strength of the women andevaluateits possible correlation with sexual dysfunction. In this cross-sectional type study, stratified clusters were used for the sampling method. Index of Female Sexual Function (IFSF) worksheetwere used for questions on sexual function. The pelvic floor muscle strength of subjects was assessed byperineometer. The chi-squared test, logistic regression and Pearson's correlation analysis were used for the statistical analysis. Four hundred thirty primiparous women, mean age 38.5 participated in this study. The average pelvic floor muscle strength value was found 31.4±9.6 cm H 2 O and the average Index of Female Sexual Function (IFSF) score was found 26.5±6.9. Parity (odds ratio OR=5.546) and age 40 or higher (OR=3.484) were found correlated with pelvic floor muscle weakness (p<0.05). The factors directly correlated with sexual dysfunction were found being overweight (OR=2.105) and age 40 or higher (OR=2.451) (p<0.05). Pearson's correlation analysis showed that there was a statistically significantlinear correlation between the muscular strength of the pelvic floor and sexual function (p=0.001). The results suggested subjects with decreased pelvic floor muscle strength value had higher frequency of sexual dysfunction.

  8. Examining the Effectiveness of Discriminant Function Analysis and Cluster Analysis in Species Identification of Male Field Crickets Based on Their Calling Songs

    PubMed Central

    Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini

    2013-01-01

    Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6–7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification. PMID:24086666

  9. Statistical models for the analysis and design of digital polymerase chain (dPCR) experiments

    USGS Publications Warehouse

    Dorazio, Robert; Hunter, Margaret

    2015-01-01

    Statistical methods for the analysis and design of experiments using digital PCR (dPCR) have received only limited attention and have been misused in many instances. To address this issue and to provide a more general approach to the analysis of dPCR data, we describe a class of statistical models for the analysis and design of experiments that require quantification of nucleic acids. These models are mathematically equivalent to generalized linear models of binomial responses that include a complementary, log–log link function and an offset that is dependent on the dPCR partition volume. These models are both versatile and easy to fit using conventional statistical software. Covariates can be used to specify different sources of variation in nucleic acid concentration, and a model’s parameters can be used to quantify the effects of these covariates. For purposes of illustration, we analyzed dPCR data from different types of experiments, including serial dilution, evaluation of copy number variation, and quantification of gene expression. We also showed how these models can be used to help design dPCR experiments, as in selection of sample sizes needed to achieve desired levels of precision in estimates of nucleic acid concentration or to detect differences in concentration among treatments with prescribed levels of statistical power.

  10. Statistical Models for the Analysis and Design of Digital Polymerase Chain Reaction (dPCR) Experiments.

    PubMed

    Dorazio, Robert M; Hunter, Margaret E

    2015-11-03

    Statistical methods for the analysis and design of experiments using digital PCR (dPCR) have received only limited attention and have been misused in many instances. To address this issue and to provide a more general approach to the analysis of dPCR data, we describe a class of statistical models for the analysis and design of experiments that require quantification of nucleic acids. These models are mathematically equivalent to generalized linear models of binomial responses that include a complementary, log-log link function and an offset that is dependent on the dPCR partition volume. These models are both versatile and easy to fit using conventional statistical software. Covariates can be used to specify different sources of variation in nucleic acid concentration, and a model's parameters can be used to quantify the effects of these covariates. For purposes of illustration, we analyzed dPCR data from different types of experiments, including serial dilution, evaluation of copy number variation, and quantification of gene expression. We also showed how these models can be used to help design dPCR experiments, as in selection of sample sizes needed to achieve desired levels of precision in estimates of nucleic acid concentration or to detect differences in concentration among treatments with prescribed levels of statistical power.

  11. Non-parametric model selection for subject-specific topological organization of resting-state functional connectivity.

    PubMed

    Ferrarini, Luca; Veer, Ilya M; van Lew, Baldur; Oei, Nicole Y L; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, J

    2011-06-01

    In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. WebArray: an online platform for microarray data analysis

    PubMed Central

    Xia, Xiaoqin; McClelland, Michael; Wang, Yipeng

    2005-01-01

    Background Many cutting-edge microarray analysis tools and algorithms, including commonly used limma and affy packages in Bioconductor, need sophisticated knowledge of mathematics, statistics and computer skills for implementation. Commercially available software can provide a user-friendly interface at considerable cost. To facilitate the use of these tools for microarray data analysis on an open platform we developed an online microarray data analysis platform, WebArray, for bench biologists to utilize these tools to explore data from single/dual color microarray experiments. Results The currently implemented functions were based on limma and affy package from Bioconductor, the spacings LOESS histogram (SPLOSH) method, PCA-assisted normalization method and genome mapping method. WebArray incorporates these packages and provides a user-friendly interface for accessing a wide range of key functions of limma and others, such as spot quality weight, background correction, graphical plotting, normalization, linear modeling, empirical bayes statistical analysis, false discovery rate (FDR) estimation, chromosomal mapping for genome comparison. Conclusion WebArray offers a convenient platform for bench biologists to access several cutting-edge microarray data analysis tools. The website is freely available at . It runs on a Linux server with Apache and MySQL. PMID:16371165

  13. Data preparation for functional data analysis of PM10 in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Shaadan, Norshahida; Jemain, Abdul Aziz; Deni, Sayang Mohd

    2014-07-01

    The use of curves or functional data in the study analysis is increasingly gaining momentum in the various fields of research. The statistical method to analyze such data is known as functional data analysis (FDA). The first step in FDA is to convert the observed data points which are repeatedly recorded over a period of time or space into either a rough (raw) or smooth curve. In the case of the smooth curve, basis functions expansion is one of the methods used for the data conversion. The data can be converted into a smooth curve either by using the regression smoothing or roughness penalty smoothing approach. By using the regression smoothing approach, the degree of curve's smoothness is very dependent on k number of basis functions; meanwhile for the roughness penalty approach, the smoothness is dependent on a roughness coefficient given by parameter λ Based on previous studies, researchers often used the rather time-consuming trial and error or cross validation method to estimate the appropriate number of basis functions. Thus, this paper proposes a statistical procedure to construct functional data or curves for the hourly and daily recorded data. The Bayesian Information Criteria is used to determine the number of basis functions while the Generalized Cross Validation criteria is used to identify the parameter λ The proposed procedure is then applied on a ten year (2001-2010) period of PM10 data from 30 air quality monitoring stations that are located in Peninsular Malaysia. It was found that the number of basis functions required for the construction of the PM10 daily curve in Peninsular Malaysia was in the interval of between 14 and 20 with an average value of 17; the first percentile is 15 and the third percentile is 19. Meanwhile the initial value of the roughness coefficient was in the interval of between 10-5 and 10-7 and the mode was 10-6. An example of the functional descriptive analysis is also shown.

  14. Meta-analysis of the effects of prokinetic agents in patients with functional dyspepsia.

    PubMed

    Hiyama, Toru; Yoshihara, Masaharu; Matsuo, Keitaro; Kusunoki, Hiroaki; Kamada, Tomoari; Ito, Masanori; Tanaka, Shinji; Nishi, Nobuo; Chayama, Kazuaki; Haruma, Ken

    2007-03-01

    Functional dyspepsia (FD) is often treated with prokinetic agents; however, the efficacy of prokinetic agents in patients with FD has been questioned recently. The aim of this study was to perform a meta-analysis of the effects of prokinetic agents in patients with FD. Prokinetic agents, including metoclopramide, domperidone, trimebutine, cisapride, itopride and mosapride, used for treatment of FD between 1951 and 2005 were identified. Twenty-seven studies were selected. Difference in the probability of response between the interventional drug and placebo was used as a summary statistic for the treatment effect. Meta-regression analysis was used to detect sources of heterogeneity. In total, 1844 subjects were assigned to an experimental arm, and 1591 subjects were assigned to a placebo arm. Publication bias was ruled out by funnel plot and statistical testing (P = 0.975). In the overall analysis, the summary statistic was 0.295 (95% confidence interval: 0.208-0.382, P < 0.001), indicating that the interventional drug has 30% excess probability of producing a response compared with placebo. The most significant source of heterogeneity was the year of publication (P < 0.001). The data clearly indicate that prokinetic agents are significantly more effective than placebo in the treatment of FD. Although FD is a chronic condition, efficacy was assessed over short periods. Long-term randomized controlled trials are needed to confirm the effect.

  15. Statistical testing and power analysis for brain-wide association study.

    PubMed

    Gong, Weikang; Wan, Lin; Lu, Wenlian; Ma, Liang; Cheng, Fan; Cheng, Wei; Grünewald, Stefan; Feng, Jianfeng

    2018-04-05

    The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Alignment of RNA molecules: Binding energy and statistical properties of random sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valba, O. V., E-mail: valbaolga@gmail.com; Nechaev, S. K., E-mail: sergei.nechaev@gmail.com; Tamm, M. V., E-mail: thumm.m@gmail.com

    2012-02-15

    A new statistical approach to the problem of pairwise alignment of RNA sequences is proposed. The problem is analyzed for a pair of interacting polymers forming an RNA-like hierarchical cloverleaf structures. An alignment is characterized by the numbers of matches, mismatches, and gaps. A weight function is assigned to each alignment; this function is interpreted as a free energy taking into account both direct monomer-monomer interactions and a combinatorial contribution due to formation of various cloverleaf secondary structures. The binding free energy is determined for a pair of RNA molecules. Statistical properties are discussed, including fluctuations of the binding energymore » between a pair of RNA molecules and loop length distribution in a complex. Based on an analysis of the free energy per nucleotide pair complexes of random RNAs as a function of the number of nucleotide types c, a hypothesis is put forward about the exclusivity of the alphabet c = 4 used by nature.« less

  17. Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Buzzicotti, M.; Linkmann, M.; Aluie, H.; Biferale, L.; Brasseur, J.; Meneveau, C.

    2018-02-01

    The effects of different filtering strategies on the statistical properties of the resolved-to-subfilter scale (SFS) energy transfer are analysed in forced homogeneous and isotropic turbulence. We carry out a-priori analyses of the statistical characteristics of SFS energy transfer by filtering data obtained from direct numerical simulations with up to 20483 grid points as a function of the filter cutoff scale. In order to quantify the dependence of extreme events and anomalous scaling on the filter, we compare a sharp Fourier Galerkin projector, a Gaussian filter and a novel class of Galerkin projectors with non-sharp spectral filter profiles. Of interest is the importance of Galilean invariance and we confirm that local SFS energy transfer displays intermittency scaling in both skewness and flatness as a function of the cutoff scale. Furthermore, we quantify the robustness of scaling as a function of the filtering type.

  18. Modelling short time series in metabolomics: a functional data analysis approach.

    PubMed

    Montana, Giovanni; Berk, Maurice; Ebbels, Tim

    2011-01-01

    Metabolomics is the study of the complement of small molecule metabolites in cells, biofluids and tissues. Many metabolomic experiments are designed to compare changes observed over time under two or more experimental conditions (e.g. a control and drug-treated group), thus producing time course data. Models from traditional time series analysis are often unsuitable because, by design, only very few time points are available and there are a high number of missing values. We propose a functional data analysis approach for modelling short time series arising in metabolomic studies which overcomes these obstacles. Our model assumes that each observed time series is a smooth random curve, and we propose a statistical approach for inferring this curve from repeated measurements taken on the experimental units. A test statistic for detecting differences between temporal profiles associated with two experimental conditions is then presented. The methodology has been applied to NMR spectroscopy data collected in a pre-clinical toxicology study.

  19. HydroApps: An R package for statistical simulation to use in regional analysis

    NASA Astrophysics Data System (ADS)

    Ganora, D.

    2013-12-01

    The HydroApps package is a newborn R extension initially developed to support the use of a recent model for flood frequency estimation developed for applications in Northwestern Italy; it also contains some general tools for regional analyses and can be easily extended to include other statistical models. The package is currently at an experimental level of development. The HydroApps is a corollary of the SSEM project for regional flood frequency analysis, although it was developed independently to support various instances of regional analyses. Its aim is to provide a basis for interplay between statistical simulation and practical operational use. In particular, the main module of the package deals with the building of the confidence bands of flood frequency curves expressed by means of their L-moments. Other functions include pre-processing and visualization of hydrologic time series, analysis of the optimal design-flood under uncertainty, but also tools useful in water resources management for the estimation of flow duration curves and their sensitivity to water withdrawals. Particular attention is devoted to the code granularity, i.e. the level of detail and aggregation of the code: a greater detail means more low-level functions, which entails more flexibility but reduces the ease of use for practical use. A balance between detail and simplicity is necessary and can be resolved with appropriate wrapping functions and specific help pages for each working block. From a more general viewpoint, the package has not really and user-friendly interface, but runs on multiple operating systems and it's easy to update, as many other open-source projects., The HydroApps functions and their features are reported in order to share ideas and materials to improve the ';technological' and information transfer between scientist communities and final users like policy makers.

  20. Parent Ratings of ADHD Symptoms: Generalized Partial Credit Model Analysis of Differential Item Functioning across Gender

    ERIC Educational Resources Information Center

    Gomez, Rapson

    2012-01-01

    Objective: Generalized partial credit model, which is based on item response theory (IRT), was used to test differential item functioning (DIF) for the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.), inattention (IA), and hyperactivity/impulsivity (HI) symptoms across boys and girls. Method: To accomplish this, parents completed…

  1. Statistical analysis of experimental data for mathematical modeling of physical processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Karpushin, P. A.; Popov, Yu B.; Popova, A. I.; Popova, K. Yu; Krasnenko, N. P.; Lavrinenko, A. V.

    2017-11-01

    In this paper, the probabilities of faultless operation of aerologic stations are analyzed, the hypothesis of normality of the empirical data required for using the Kalman filter algorithms is tested, and the spatial correlation functions of distributions of meteorological parameters are determined. The results of a statistical analysis of two-term (0, 12 GMT) radiosonde observations of the temperature and wind velocity components at some preset altitude ranges in the troposphere in 2001-2016 are presented. These data can be used in mathematical modeling of physical processes in the atmosphere.

  2. Statistical Analysis of Human Body Movement and Group Interactions in Response to Music

    NASA Astrophysics Data System (ADS)

    Desmet, Frank; Leman, Marc; Lesaffre, Micheline; de Bruyn, Leen

    Quantification of time series that relate to physiological data is challenging for empirical music research. Up to now, most studies have focused on time-dependent responses of individual subjects in controlled environments. However, little is known about time-dependent responses of between-subject interactions in an ecological context. This paper provides new findings on the statistical analysis of group synchronicity in response to musical stimuli. Different statistical techniques were applied to time-dependent data obtained from an experiment on embodied listening in individual and group settings. Analysis of inter group synchronicity are described. Dynamic Time Warping (DTW) and Cross Correlation Function (CCF) were found to be valid methods to estimate group coherence of the resulting movements. It was found that synchronicity of movements between individuals (human-human interactions) increases significantly in the social context. Moreover, Analysis of Variance (ANOVA) revealed that the type of music is the predominant factor in both the individual and the social context.

  3. A survey of visual function in an Austrian population of school-age children with reading and writing difficulties.

    PubMed

    Dusek, Wolfgang; Pierscionek, Barbara K; McClelland, Julie F

    2010-05-25

    To describe and compare visual function measures of two groups of school age children (6-14 years of age) attending a specialist eyecare practice in Austria; one group referred to the practice from educational assessment centres diagnosed with reading and writing difficulties and the other, a clinical age-matched control group. Retrospective clinical data from one group of subjects with reading difficulties (n = 825) and a clinical control group of subjects (n = 328) were examined.Statistical analysis was performed to determine whether any differences existed between visual function measures from each group (refractive error, visual acuity, binocular status, accommodative function and reading speed and accuracy). Statistical analysis using one way ANOVA demonstrated no differences between the two groups in terms of refractive error and the size or direction of heterophoria at distance (p > 0.05). Using predominately one way ANOVA and chi-square analyses, those subjects in the referred group were statistically more likely to have poorer distance visual acuity, an exophoric deviation at near, a lower amplitude of accommodation, reduced accommodative facility, reduced vergence facility, a reduced near point of convergence, a lower AC/A ratio and a slower reading speed than those in the clinical control group (p < 0.05). This study highlights the high proportions of visual function anomalies in a group of children with reading difficulties in an Austrian population. It confirms the importance of a full assessment of binocular visual status in order to detect and remedy these deficits in order to prevent the visual problems continuing to impact upon educational development.

  4. Rasch Model Based Analysis of the Force Concept Inventory

    ERIC Educational Resources Information Center

    Planinic, Maja; Ivanjek, Lana; Susac, Ana

    2010-01-01

    The Force Concept Inventory (FCI) is an important diagnostic instrument which is widely used in the field of physics education research. It is therefore very important to evaluate and monitor its functioning using different tools for statistical analysis. One of such tools is the stochastic Rasch model, which enables construction of linear…

  5. Multivariate geomorphic analysis of forest streams: Implications for assessment of land use impacts on channel condition

    Treesearch

    Richard. D. Wood-Smith; John M. Buffington

    1996-01-01

    Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...

  6. Interactive visual analysis promotes exploration of long-term ecological data

    Treesearch

    T.N. Pham; J.A. Jones; R. Metoyer; F.J. Swanson; R.J. Pabst

    2013-01-01

    Long-term ecological data are crucial in helping ecologists understand ecosystem function and environmental change. Nevertheless, these kinds of data sets are difficult to analyze because they are usually large, multivariate, and spatiotemporal. Although existing analysis tools such as statistical methods and spreadsheet software permit rigorous tests of pre-conceived...

  7. MEG/EEG Source Reconstruction, Statistical Evaluation, and Visualization with NUTMEG

    PubMed Central

    Dalal, Sarang S.; Zumer, Johanna M.; Guggisberg, Adrian G.; Trumpis, Michael; Wong, Daniel D. E.; Sekihara, Kensuke; Nagarajan, Srikantan S.

    2011-01-01

    NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions. PMID:21437174

  8. MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG.

    PubMed

    Dalal, Sarang S; Zumer, Johanna M; Guggisberg, Adrian G; Trumpis, Michael; Wong, Daniel D E; Sekihara, Kensuke; Nagarajan, Srikantan S

    2011-01-01

    NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions.

  9. Kurtosis Approach Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.

  10. Low energy peripheral scaling in nucleon-nucleon scattering and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Amaro, J. E.; Ruiz Arriola, E.; Navarro Pérez, R.

    2018-03-01

    We analyze the peripheral structure of the nucleon-nucleon interaction for LAB energies below 350 MeV. To this end we transform the scattering matrix into the impact parameter representation by analyzing the scaled phase shifts (L + 1/2) δ JLS (p) and the scaled mixing parameters (L + 1/2)ɛ JLS (p) in terms of the impact parameter b = (L + 1/2)/p. According to the eikonal approximation, at large angular momentum L these functions should become an universal function of b, independent on L. This allows to discuss in a rather transparent way the role of statistical and systematic uncertainties in the different long range components of the two-body potential. Implications for peripheral waves obtained in chiral perturbation theory interactions to fifth order (N5LO) or from the large body of NN data considered in the SAID partial wave analysis are also drawn from comparing them with other phenomenological high-quality interactions, constructed to fit scattering data as well. We find that both N5LO and SAID peripheral waves disagree more than 5σ with the Granada-2013 statistical analysis, more than 2σ with the 6 statistically equivalent potentials fitting the Granada-2013 database and about 1σ with the historical set of 13 high-quality potentials developed since the 1993 Nijmegen analysis.

  11. Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids

    PubMed Central

    Ali, S. M.; Mehmood, C. A; Khan, B.; Jawad, M.; Farid, U; Jadoon, J. K.; Ali, M.; Tareen, N. K.; Usman, S.; Majid, M.; Anwar, S. M.

    2016-01-01

    In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion. PMID:27314229

  12. Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids.

    PubMed

    Ali, S M; Mehmood, C A; Khan, B; Jawad, M; Farid, U; Jadoon, J K; Ali, M; Tareen, N K; Usman, S; Majid, M; Anwar, S M

    2016-01-01

    In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion.

  13. Care needs of children with disabilities - Use of the Pediatric Evaluation of Disability Inventory

    PubMed Central

    Teles, Fernanda Moreira; Resegue, Rosa; Puccini, Rosana Fiorini

    2016-01-01

    Abstract Objective: To describe the care needs reported by caregivers of children with disabilities going through the school inclusion process using the Pediatric Evaluation of Disability Inventory. Methods: Cross-sectional study with 181 children aged 7-10 years with physical or mental disabilities, undergoing the inclusion process in elementary school in 2007. Location: 31 schools of the Regional Education Board-District of Penha, East Side the city of São Paulo. The children's care needs according to the caregivers were assessed in three areas-self-care, mobility and social function, using the Pediatric Evaluation of Disability Inventory, according to the following score: 5, Independent; 4, Supervision; 3, Minimum Assistance; 2, Moderate Assistance; 1, Maximum Assistance and 0, Total Assistance. For statistical analysis, we used Student's t-test and analysis of variance (ANOVA), with p<0.05 being statistically significant. Results: The lower means, with statistically significant differences, were observed for the items related to social function (55.8-72.0), followed by self-care functions (56.0-96.5); for all types of disabilities, except for children with physical disabilities, who had lower means for self-care (56.0) and mobility (63.8). Conclusions: Social function was the area referred to as the one that needed a higher degree of assistance from the caregiver and the Pediatric Evaluation of Disability Inventory is a tool that can help identify these needs and develop a more targeted intervention. PMID:27080218

  14. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    NASA Astrophysics Data System (ADS)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  15. An empirical analysis of the distribution of the duration of overshoots in a stationary gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Parrish, R. S.; Carter, M. C.

    1974-01-01

    This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.

  16. [The informational support of statistical observation related to children disability].

    PubMed

    Son, I M; Polikarpov, A V; Ogrizko, E V; Golubeva, T Yu

    2016-01-01

    Within the framework of the Convention on rights of the disabled the revision is specified concerning criteria of identification of disability of children and reformation of system of medical social expertise according international standards of indices of health and indices related to health. In connection with it, it is important to consider the relationship between alterations in forms of the Federal statistical monitoring in the part of registration of disabled children in the Russian Federation and classification of health indices and indices related to health applied at identification of disability. The article presents analysis of relationship between alterations in forms of the Federal statistical monitoring in the part of registration of disabled children in the Russian Federation and applied classifications used at identification of disability (International classification of impairments, disabilities and handicap (ICDH), international classification of functioning, disability and health (ICF), international classification of functioning, disability and health, version for children and youth (ICF-CY). The intersectorial interaction is considered within the framework of statistics of children disability.

  17. Statistical physics of the symmetric group.

    PubMed

    Williams, Mobolaji

    2017-04-01

    Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.

  18. Statistical physics of the symmetric group

    NASA Astrophysics Data System (ADS)

    Williams, Mobolaji

    2017-04-01

    Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.

  19. Space-time models based on random fields with local interactions

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios T.; Tsantili, Ivi C.

    2016-08-01

    The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. In this paper, we propose deriving space-time covariance functions by solving “effective equations of motion”, which can be used as statistical representations of systems with diffusive behavior. In particular, we propose to formulate space-time covariance functions based on an equilibrium effective Hamiltonian using the linear response theory. The effective space-time dynamics is then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.

  20. The use of copula functions for predictive analysis of correlations between extreme storm tides

    NASA Astrophysics Data System (ADS)

    Domino, Krzysztof; Błachowicz, Tomasz; Ciupak, Maurycy

    2014-11-01

    In this paper we present a method used in quantitative description of weakly predictable hydrological, extreme events at inland sea. Investigations for correlations between variations of individual measuring points, employing combined statistical methods, were carried out. As a main tool for this analysis we used a two-dimensional copula function sensitive for correlated extreme effects. Additionally, a new proposed methodology, based on Detrended Fluctuations Analysis (DFA) and Anomalous Diffusion (AD), was used for the prediction of negative and positive auto-correlations and associated optimum choice of copula functions. As a practical example we analysed maximum storm tides data recorded at five spatially separated places at the Baltic Sea. For the analysis we used Gumbel, Clayton, and Frank copula functions and introduced the reversed Clayton copula. The application of our research model is associated with modelling the risk of high storm tides and possible storm flooding.

  1. Fisher statistics for analysis of diffusion tensor directional information.

    PubMed

    Hutchinson, Elizabeth B; Rutecki, Paul A; Alexander, Andrew L; Sutula, Thomas P

    2012-04-30

    A statistical approach is presented for the quantitative analysis of diffusion tensor imaging (DTI) directional information using Fisher statistics, which were originally developed for the analysis of vectors in the field of paleomagnetism. In this framework, descriptive and inferential statistics have been formulated based on the Fisher probability density function, a spherical analogue of the normal distribution. The Fisher approach was evaluated for investigation of rat brain DTI maps to characterize tissue orientation in the corpus callosum, fornix, and hilus of the dorsal hippocampal dentate gyrus, and to compare directional properties in these regions following status epilepticus (SE) or traumatic brain injury (TBI) with values in healthy brains. Direction vectors were determined for each region of interest (ROI) for each brain sample and Fisher statistics were applied to calculate the mean direction vector and variance parameters in the corpus callosum, fornix, and dentate gyrus of normal rats and rats that experienced TBI or SE. Hypothesis testing was performed by calculation of Watson's F-statistic and associated p-value giving the likelihood that grouped observations were from the same directional distribution. In the fornix and midline corpus callosum, no directional differences were detected between groups, however in the hilus, significant (p<0.0005) differences were found that robustly confirmed observations that were suggested by visual inspection of directionally encoded color DTI maps. The Fisher approach is a potentially useful analysis tool that may extend the current capabilities of DTI investigation by providing a means of statistical comparison of tissue structural orientation. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Statistical Time Series Models of Pilot Control with Applications to Instrument Discrimination

    NASA Technical Reports Server (NTRS)

    Altschul, R. E.; Nagel, P. M.; Oliver, F.

    1984-01-01

    A general description of the methodology used in obtaining the transfer function models and verification of model fidelity, frequency domain plots of the modeled transfer functions, numerical results obtained from an analysis of poles and zeroes obtained from z plane to s-plane conversions of the transfer functions, and the results of a study on the sequential introduction of other variables, both exogenous and endogenous into the loop are contained.

  3. SWATH2stats: An R/Bioconductor Package to Process and Convert Quantitative SWATH-MS Proteomics Data for Downstream Analysis Tools.

    PubMed

    Blattmann, Peter; Heusel, Moritz; Aebersold, Ruedi

    2016-01-01

    SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.

  4. Random heteropolymers preserve protein function in foreign environments

    NASA Astrophysics Data System (ADS)

    Panganiban, Brian; Qiao, Baofu; Jiang, Tao; DelRe, Christopher; Obadia, Mona M.; Nguyen, Trung Dac; Smith, Anton A. A.; Hall, Aaron; Sit, Izaac; Crosby, Marquise G.; Dennis, Patrick B.; Drockenmuller, Eric; Olvera de la Cruz, Monica; Xu, Ting

    2018-03-01

    The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.

  5. Analysis of design attributes and crashes on the Oregon highway system : final report.

    DOT National Transportation Integrated Search

    2001-08-01

    This report has investigated the statistical relationship between crash activity and roadway design attributes on the Oregon state : highway system. Crash models were estimated from highway segments distinguished by functional classification (freeway...

  6. Development of Welding Fumes Health Index (WFHI) for Welding Workplace’s Safety and Health Assessment

    PubMed Central

    HARIRI, Azian; PAIMAN, Nuur Azreen; LEMAN, Abdul Mutalib; MD. YUSOF, Mohammad Zainal

    2014-01-01

    Abstract Background This study aimed to develop an index that can rank welding workplace that associate well with possible health risk of welders. Methods Welding Fumes Health Index (WFHI) were developed based on data from case studies conducted in Plant 1 and Plant 2. Personal sampling of welding fumes to assess the concentration of metal constituents along with series of lung function tests was conducted. Fifteen metal constituents were investigated in each case study. Index values were derived from aggregation analysis of metal constituent concentration while significant lung functions were recognized through statistical analysis in each plant. Results The results showed none of the metal constituent concentration was exceeding the permissible exposure limit (PEL) for all plants. However, statistical analysis showed significant mean differences of lung functions between welders and non-welders. The index was then applied to one of the welding industry (Plant 3) for verification purpose. The developed index showed its promising ability to rank welding workplace, according to the multiple constituent concentrations of welding fumes that associates well with lung functions of the investigated welders. Conclusion There was possibility that some of the metal constituents were below the detection limit leading to ‘0’ value of sub index, thus the multiplicative form of aggregation model was not suitable for analysis. On the other hand, maximum or minimum operator forms suffer from compensation issues and were not considered in this study. PMID:25927034

  7. UFO (UnFold Operator) user guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissel, L.; Biggs, F.; Marking, T.R.

    UFO is a collection of interactive utility programs for estimating unknown functions of one variable using a wide-ranging class of information as input, for miscellaneous data-analysis applications, for performing feasibility studies, and for supplementing our other software. Inverse problems, which include spectral unfolds, inverse heat-transfer problems, time-domain deconvolution, and unusual or difficult curve-fit problems, are classes of applications for which UFO is well suited. Extensive use of B-splines and (X,Y)-datasets is made to represent functions. The (X,Y)-dataset representation is unique in that it is not restricted to equally-spaced data. This feature is used, for example, in a table-generating algorithm thatmore » evaluates a function to a user-specified interpolation accuracy while minimizing the number of points stored in the corresponding dataset. UFO offers a variety of miscellaneous data-analysis options such as plotting, comparing, transforming, scaling, integrating; and adding, subtracting, multiplying, and dividing functions together. These options are often needed as intermediate steps in analyzing and solving difficult inverse problems, but they also find frequent use in other applications. Statistical options are available to calculate goodness-of-fit to measurements, specify error bands on solutions, give confidence limits on calculated quantities, and to point out the statistical consequences of operations such as smoothing. UFO is designed to do feasibility studies on a variety of engineering measurements. It is also tailored to supplement our Test Analysis and Design codes, SRAD Test-Data Archive software, and Digital Signal Analysis routines.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, A; Veeraraghavan, H; Oh, J

    Purpose: To present an open source and free platform to facilitate radiomics research — The “Radiomics toolbox” in CERR. Method: There is scarcity of open source tools that support end-to-end modeling of image features to predict patient outcomes. The “Radiomics toolbox” strives to fill the need for such a software platform. The platform supports (1) import of various kinds of image modalities like CT, PET, MR, SPECT, US. (2) Contouring tools to delineate structures of interest. (3) Extraction and storage of image based features like 1st order statistics, gray-scale co-occurrence and zonesize matrix based texture features and shape features andmore » (4) Statistical Analysis. Statistical analysis of the extracted features is supported with basic functionality that includes univariate correlations, Kaplan-Meir curves and advanced functionality that includes feature reduction and multivariate modeling. The graphical user interface and the data management are performed with Matlab for the ease of development and readability of code and features for wide audience. Open-source software developed with other programming languages is integrated to enhance various components of this toolbox. For example: Java-based DCM4CHE for import of DICOM, R for statistical analysis. Results: The Radiomics toolbox will be distributed as an open source, GNU copyrighted software. The toolbox was prototyped for modeling Oropharyngeal PET dataset at MSKCC. The analysis will be presented in a separate paper. Conclusion: The Radiomics Toolbox provides an extensible platform for extracting and modeling image features. To emphasize new uses of CERR for radiomics and image-based research, we have changed the name from the “Computational Environment for Radiotherapy Research” to the “Computational Environment for Radiological Research”.« less

  9. Molecular dynamics simulations and statistical coupling analysis reveal functional coevolution network of oncogenic mutations in the CDKN2A-CDK6 complex.

    PubMed

    Wang, Jingwen; Zhao, Yuqi; Wang, Yanjie; Huang, Jingfei

    2013-01-16

    Coevolution between proteins is crucial for understanding protein-protein interaction. Simultaneous changes allow a protein complex to maintain its overall structural-functional integrity. In this study, we combined statistical coupling analysis (SCA) and molecular dynamics simulations on the CDK6-CDKN2A protein complex to evaluate coevolution between proteins. We reconstructed an inter-protein residue coevolution network, consisting of 37 residues and 37 interactions. It shows that most of the coevolved residue pairs are spatially proximal. When the mutations happened, the stable local structures were broken up and thus the protein interaction was decreased or inhibited, with a following increased risk of melanoma. The identification of inter-protein coevolved residues in the CDK6-CDKN2A complex can be helpful for designing protein engineering experiments. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Hydrotherapy after total knee arthroplasty. A follow-up study.

    PubMed

    Giaquinto, S; Ciotola, E; Dall'Armi, V; Margutti, F

    2010-01-01

    The study evaluated the subjective functional outcome following total knee arthroplasty (TKA) in participants who underwent hydrotherapy (HT) six months after discharge from a rehabilitation unit. A total of 70 subjects, 12 of which were lost at follow-up, were randomly assigned to either a conventional gym treatment (N=30) or HT (N=28). A prospective design was performed. Participants were interviewed with Western-Ontario McMasters Universities Osteoarthritis Index (WOMAC) at admission, at discharge and six months later. Kruskal-Wallis and Wilcoxon tests were applied for statistical analysis. Both groups improved. The WOMAC subscales, namely pain, stiffness and function, were all positively affected. Statistical analysis indicates that scores on all subscales were significantly lower for the HT group. The benefits gained by the time of discharge were still found after six months. HT is recommended after TKA in a geriatric population. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  11. Hydrotherapy after total hip arthroplasty: a follow-up study.

    PubMed

    Giaquinto, S; Ciotola, E; Dall'armi, V; Margutti, F

    2010-01-01

    The aim of the study was to evaluate the subjective functional outcome of total hip arthroplasty (THA) in patients who underwent hydrotherapy (HT) 6 months after discharge. A prospective randomized study was performed on 70 elderly inpatients with recent THA, who completed a rehabilitation program. After randomization, 33 of them were treated in conventional gyms (no-hydrotherapy group=NHTG) and 31 received HT (hydrotherapy group=HTG). Interviews with the Western-Ontario MacMasters Universities Osteoarthritis Index (WOMAC) were performed at admission, at discharge and 6 months later. Kruskal-Wallis, Mann-Whitney and Wilcoxon tests were applied for statistical analysis. Both groups improved. Pain, stiffness and function were all positively affected. Statistical analysis indicated that WOMAC sub-scales were significantly lower for all patients treated with HT. The benefits at discharge still remained after 6 months. We conclude that HT is recommended after THA in a geriatric population.

  12. Cluster size statistic and cluster mass statistic: two novel methods for identifying changes in functional connectivity between groups or conditions.

    PubMed

    Ing, Alex; Schwarzbauer, Christian

    2014-01-01

    Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods--the cluster size statistic (CSS) and cluster mass statistic (CMS)--are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity.

  13. Cluster Size Statistic and Cluster Mass Statistic: Two Novel Methods for Identifying Changes in Functional Connectivity Between Groups or Conditions

    PubMed Central

    Ing, Alex; Schwarzbauer, Christian

    2014-01-01

    Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods – the cluster size statistic (CSS) and cluster mass statistic (CMS) – are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity. PMID:24906136

  14. Rapid functional analysis of computationally complex rare human IRF6 gene variants using a novel zebrafish model.

    PubMed

    Li, Edward B; Truong, Dawn; Hallett, Shawn A; Mukherjee, Kusumika; Schutte, Brian C; Liao, Eric C

    2017-09-01

    Large-scale sequencing efforts have captured a rapidly growing catalogue of genetic variations. However, the accurate establishment of gene variant pathogenicity remains a central challenge in translating personal genomics information to clinical decisions. Interferon Regulatory Factor 6 (IRF6) gene variants are significant genetic contributors to orofacial clefts. Although approximately three hundred IRF6 gene variants have been documented, their effects on protein functions remain difficult to interpret. Here, we demonstrate the protein functions of human IRF6 missense gene variants could be rapidly assessed in detail by their abilities to rescue the irf6 -/- phenotype in zebrafish through variant mRNA microinjections at the one-cell stage. The results revealed many missense variants previously predicted by traditional statistical and computational tools to be loss-of-function and pathogenic retained partial or full protein function and rescued the zebrafish irf6 -/- periderm rupture phenotype. Through mRNA dosage titration and analysis of the Exome Aggregation Consortium (ExAC) database, IRF6 missense variants were grouped by their abilities to rescue at various dosages into three functional categories: wild type function, reduced function, and complete loss-of-function. This sensitive and specific biological assay was able to address the nuanced functional significances of IRF6 missense gene variants and overcome many limitations faced by current statistical and computational tools in assigning variant protein function and pathogenicity. Furthermore, it unlocked the possibility for characterizing yet undiscovered human IRF6 missense gene variants from orofacial cleft patients, and illustrated a generalizable functional genomics paradigm in personalized medicine.

  15. Robustness of Multiple Objective Decision Analysis Preference Functions

    DTIC Science & Technology

    2002-06-01

    p p′ : The probability of some event. ,i ip q : The probability of event . i Π : An aggregation of proportional data used in calculating a test ...statistical tests of the significance of the term and also is conducted in a multivariate framework rather than the ROSA univariate approach. A...residual error is ˆ−e = y y (45) The coefficient provides a ready indicator of the contribution for the associated variable and statistical tests

  16. Creation of a virtual cutaneous tissue bank

    NASA Astrophysics Data System (ADS)

    LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.

    2000-04-01

    Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.

  17. Finding differentially expressed genes in high dimensional data: Rank based test statistic via a distance measure.

    PubMed

    Mathur, Sunil; Sadana, Ajit

    2015-12-01

    We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set. © The Author(s) 2011.

  18. SOCR Analyses – an Instructional Java Web-based Statistical Analysis Toolkit

    PubMed Central

    Chu, Annie; Cui, Jenny; Dinov, Ivo D.

    2011-01-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test. The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website. In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models. PMID:21546994

  19. Combining statistical inference and decisions in ecology.

    PubMed

    Williams, Perry J; Hooten, Mevin B

    2016-09-01

    Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods, including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem. © 2016 by the Ecological Society of America.

  20. A spatial scan statistic for survival data based on Weibull distribution.

    PubMed

    Bhatt, Vijaya; Tiwari, Neeraj

    2014-05-20

    The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Lung Cancer Risk Prediction Model Incorporating Lung Function: Development and Validation in the UK Biobank Prospective Cohort Study.

    PubMed

    Muller, David C; Johansson, Mattias; Brennan, Paul

    2017-03-10

    Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.

  2. A Review of PROC IRT in SAS

    ERIC Educational Resources Information Center

    Choi, Jinnie

    2017-01-01

    This article reviews PROC IRT, which was added to Statistical Analysis Software in 2014. We provide an introductory overview of a free version of SAS, describe what PROC IRT offers for item response theory (IRT) analysis and how one can use PROC IRT, and discuss how other SAS macros and procedures may compensate the IRT functionalities of PROC IRT.

  3. Global, Local, and Graphical Person-Fit Analysis Using Person-Response Functions

    ERIC Educational Resources Information Center

    Emons, Wilco H. M.; Sijtsma, Klaas; Meijer, Rob R.

    2005-01-01

    Person-fit statistics test whether the likelihood of a respondent's complete vector of item scores on a test is low given the hypothesized item response theory model. This binary information may be insufficient for diagnosing the cause of a misfitting item-score vector. The authors propose a comprehensive methodology for person-fit analysis in the…

  4. Patient-reported outcomes before and after treatment of major depressive disorder

    PubMed Central

    IsHak, Waguih William; Mirocha, James; Pi, Sarah; Tobia, Gabriel; Becker, Bret; Peselow, Eric D.; Cohen, Robert M.

    2014-01-01

    Patient reported outcomes (PROs) of quality of life (QoL), functioning, and depressive symptom severity are important in assessing the burden of illness of major depressive disorder (MDD) and to evaluate the impact of treatment. We sought to provide a detailed analysis of PROs before and after treatment of MDD from the large Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. This analysis examines PROs before and after treatment in the second level of STAR*D. The complete data on QoL, functioning, and depressive symptom severity, were analyzed for each STAR*D level 2 treatment. PROs of QoL, functioning, and depressive symptom severity showed substantial impairments after failing a selective serotonin reuptake inhibitor trial using citalopram (level 1). The seven therapeutic options in level 2 had positive statistically (P values) and clinically (Cohen's standardized differences [Cohen's d]) significant impact on QoL, functioning, depressive symptom severity, and reduction in calculated burden of illness. There were no statistically significant differences between the interventions. However, a substantial proportion of patients still suffered from patient-reported QoL and functioning impairment after treatment, an effect that was more pronounced in nonremitters. PROs are crucial in understanding the impact of MDD and in examining the effects of treatment interventions, both in research and clinical settings. PMID:25152656

  5. Pitfalls in chronobiology: a suggested analysis using intrathecal bupivacaine analgesia as an example.

    PubMed

    Shafer, Steven L; Lemmer, Bjoern; Boselli, Emmanuel; Boiste, Fabienne; Bouvet, Lionel; Allaouchiche, Bernard; Chassard, Dominique

    2010-10-01

    The duration of analgesia from epidural administration of local anesthetics to parturients has been shown to follow a rhythmic pattern according to the time of drug administration. We studied whether there was a similar pattern after intrathecal administration of bupivacaine in parturients. In the course of the analysis, we came to believe that some data points coincident with provider shift changes were influenced by nonbiological, health care system factors, thus incorrectly suggesting a periodic signal in duration of labor analgesia. We developed graphical and analytical tools to help assess the influence of individual points on the chronobiological analysis. Women with singleton term pregnancies in vertex presentation, cervical dilation 3 to 5 cm, pain score >50 mm (of 100 mm), and requesting labor analgesia were enrolled in this study. Patients received 2.5 mg of intrathecal bupivacaine in 2 mL using a combined spinal-epidural technique. Analgesia duration was the time from intrathecal injection until the first request for additional analgesia. The duration of analgesia was analyzed by visual inspection of the data, application of smoothing functions (Supersmoother; LOWESS and LOESS [locally weighted scatterplot smoothing functions]), analysis of variance, Cosinor (Chronos-Fit), Excel, and NONMEM (nonlinear mixed effect modeling). Confidence intervals (CIs) were determined by bootstrap analysis (1000 replications with replacement) using PLT Tools. Eighty-two women were included in the study. Examination of the raw data using 3 smoothing functions revealed a bimodal pattern, with a peak at approximately 0630 and a subsequent peak in the afternoon or evening, depending on the smoother. Analysis of variance did not identify any statistically significant difference between the duration of analgesia when intrathecal injection was given from midnight to 0600 compared with the duration of analgesia after intrathecal injection at other times. Chronos-Fit, Excel, and NONMEM produced identical results, with a mean duration of analgesia of 38.4 minutes (95% CI: 35.4-41.6 minutes), an 8-hour periodic waveform with an amplitude of 5.8 minutes (95% CI: 2.1-10.7 minutes), and a phase offset of 6.5 hours (95% CI: 5.4-8.0 hours) relative to midnight. The 8-hour periodic model did not reach statistical significance in 40% of bootstrap analyses, implying that statistical significance of the 8-hour periodic model was dependent on a subset of the data. Two data points before the change of shift at 0700 contributed most strongly to the statistical significance of the periodic waveform. Without these data points, there was no evidence of an 8-hour periodic waveform for intrathecal bupivacaine analgesia. Chronobiology includes the influence of external daily rhythms in the environment (e.g., nursing shifts) as well as human biological rhythms. We were able to distinguish the influence of an external rhythm by combining several novel analyses: (1) graphical presentation superimposing the raw data, external rhythms (e.g., nursing and anesthesia provider shifts), and smoothing functions; (2) graphical display of the contribution of each data point to the statistical significance; and (3) bootstrap analysis to identify whether the statistical significance was highly dependent on a data subset. These approaches suggested that 2 data points were likely artifacts of the change in nursing and anesthesia shifts. When these points were removed, there was no suggestion of biological rhythm in the duration of intrathecal bupivacaine analgesia.

  6. High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2.

    PubMed

    Abécassis, V; Pompon, D; Truan, G

    2000-10-15

    The design of a family shuffling strategy (CLERY: Combinatorial Libraries Enhanced by Recombination in Yeast) associating PCR-based and in vivo recombination and expression in yeast is described. This strategy was tested using human cytochrome P450 CYP1A1 and CYP1A2 as templates, which share 74% nucleotide sequence identity. Construction of highly shuffled libraries of mosaic structures and reduction of parental gene contamination were two major goals. Library characterization involved multiprobe hybridization on DNA macro-arrays. The statistical analysis of randomly selected clones revealed a high proportion of chimeric genes (86%) and a homogeneous representation of the parental contribution among the sequences (55.8 +/- 2.5% for parental sequence 1A2). A microtiter plate screening system was designed to achieve colorimetric detection of polycyclic hydrocarbon hydroxylation by transformed yeast cells. Full sequences of five randomly picked and five functionally selected clones were analyzed. Results confirmed the shuffling efficiency and allowed calculation of the average length of sequence exchange and mutation rates. The efficient and statistically representative generation of mosaic structures by this type of family shuffling in a yeast expression system constitutes a novel and promising tool for structure-function studies and tuning enzymatic activities of multicomponent eucaryote complexes involving non-soluble enzymes.

  7. Uncertainty quantification for nuclear density functional theory and information content of new measurements.

    PubMed

    McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

    2015-03-27

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  8. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models

    PubMed Central

    Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong

    2017-01-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696

  9. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models.

    PubMed

    Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong

    2017-02-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.

  10. Siblings of children with a chronic illness: a meta-analysis.

    PubMed

    Sharpe, Donald; Rossiter, Lucille

    2002-12-01

    To review the literature pertaining to the siblings of children with a chronic illness. Fifty-one published studies and 103 effect sizes were identified and examined through meta-analysis. We found (1) a modest, negative effect size statistic existed for siblings of children with a chronic illness relative to comparison participants or normative data; (2) heterogeneity existed for those effect sizes; (3) parent reports were more negative than child self-reports; (4) psychological functioning (i.e., depression, anxiety), peer activities, and cognitive development scores were lower for siblings of children with a chronic illness compared to controls; and (5) a cluster of chronic illnesses with daily treatment regimes was associated with negative effect statistics compared to chronic illnesses that did not affect daily functioning. More methodologically sound studies investigating the psychological functioning of siblings of children with a chronic illness are needed. Clinicians need to know that siblings of children with a chronic illness are at risk for negative psychological effects. Intervention programs for the siblings and families of children with a chronic illness should be developed.

  11. Predictor of increase in caregiver burden for disabled elderly at home.

    PubMed

    Okamoto, Kazushi; Harasawa, Yuko

    2009-01-01

    In order to classify the caregivers at high risk of increase in their burden early, linear discriminant analysis was performed to obtain an effective discriminant model for differentiation of the presence or absence of increase in caregiver burden. The data obtained by self-administered questionnaire from 193 caregivers of frail elderly from January to February of 2005 were used. The discriminant analysis yielded a statistically significant function explaining 35.0% (Rc=0.59; d.f.=6; p=0.0001). The configuration indicated that the psychological predictors of change in caregiver burden with much perceived stress (1.47), high caregiver burden at baseline (1.28), emotional control (0.75), effort to achieve (-0.28), symptomatic depression (0.20) and "ikigai" (purpose in life) (0.18) made statistically significant contributions to the differentiation between no increase and increase in caregiver burden. The discriminant function showed a sensitivity of 86% and specificity of 81%, and successfully classified 83% of the caregivers. The function at baseline is a simple and useful method for screening of an increase in caregiver burden among caregivers for the frail elderly at home.

  12. Depth resolved grazing incidence neutron scattering experiments from semi-infinite interfaces: a statistical analysis of the scattering contributions

    NASA Astrophysics Data System (ADS)

    Adlmann, Franz A.; Herbel, Jörg; Korolkovas, Airidas; Bliersbach, Andreas; Toperverg, Boris; Van Herck, Walter; Pálsson, Gunnar K.; Kitchen, Brian; Wolff, Max

    2018-04-01

    Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.g. synchrotron radiation. In this article we use probability density functions to calculate the contribution of scattering at different distances from an interface to the intensities registered on the detector. Our method has the particular advantage that the depth sensitivity is directly extracted from the scattering pattern itself. Hence for perfectly known samples exact resolution functions can be calculated and visa versa. We show that any tails in the resolution function, e.g. Gaussian shaped, hinders depth resolved experiments. More importantly we provide means for a descriptive statistical analysis of detector images with respect to the scattering contributions and show that even for perfect resolution near surface scattering is hardly accessible.

  13. Conducting Simulation Studies in the R Programming Environment.

    PubMed

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  14. MWASTools: an R/bioconductor package for metabolome-wide association studies.

    PubMed

    Rodriguez-Martinez, Andrea; Posma, Joram M; Ayala, Rafael; Neves, Ana L; Anwar, Maryam; Petretto, Enrico; Emanueli, Costanza; Gauguier, Dominique; Nicholson, Jeremy K; Dumas, Marc-Emmanuel

    2018-03-01

    MWASTools is an R package designed to provide an integrated pipeline to analyse metabonomic data in large-scale epidemiological studies. Key functionalities of our package include: quality control analysis; metabolome-wide association analysis using various models (partial correlations, generalized linear models); visualization of statistical outcomes; metabolite assignment using statistical total correlation spectroscopy (STOCSY); and biological interpretation of metabolome-wide association studies results. The MWASTools R package is implemented in R (version  > =3.4) and is available from Bioconductor: https://bioconductor.org/packages/MWASTools/. m.dumas@imperial.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  15. From random microstructures to representative volume elements

    NASA Astrophysics Data System (ADS)

    Zeman, J.; Šejnoha, M.

    2007-06-01

    A unified treatment of random microstructures proposed in this contribution opens the way to efficient solutions of large-scale real world problems. The paper introduces a notion of statistically equivalent periodic unit cell (SEPUC) that replaces in a computational step the actual complex geometries on an arbitrary scale. A SEPUC is constructed such that its morphology conforms with images of real microstructures. Here, the appreciated two-point probability function and the lineal path function are employed to classify, from the statistical point of view, the geometrical arrangement of various material systems. Examples of statistically equivalent unit cells constructed for a unidirectional fibre tow, a plain weave textile composite and an irregular-coursed masonry wall are given. A specific result promoting the applicability of the SEPUC as a tool for the derivation of homogenized effective properties that are subsequently used in an independent macroscopic analysis is also presented.

  16. A Statistical Framework for the Functional Analysis of Metagenomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon, Itai; Pati, Amrita; Markowitz, Victor

    2008-10-01

    Metagenomic studies consider the genetic makeup of microbial communities as a whole, rather than their individual member organisms. The functional and metabolic potential of microbial communities can be analyzed by comparing the relative abundance of gene families in their collective genomic sequences (metagenome) under different conditions. Such comparisons require accurate estimation of gene family frequencies. They present a statistical framework for assessing these frequencies based on the Lander-Waterman theory developed originally for Whole Genome Shotgun (WGS) sequencing projects. They also provide a novel method for assessing the reliability of the estimations which can be used for removing seemingly unreliable measurements.more » They tested their method on a wide range of datasets, including simulated genomes and real WGS data from sequencing projects of whole genomes. Results suggest that their framework corrects inherent biases in accepted methods and provides a good approximation to the true statistics of gene families in WGS projects.« less

  17. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  18. Spectral Discrete Probability Density Function of Measured Wind Turbine Noise in the Far Field

    PubMed Central

    Ashtiani, Payam; Denison, Adelaide

    2015-01-01

    Of interest is the spectral character of wind turbine noise at typical residential set-back distances. In this paper, a spectral statistical analysis has been applied to immission measurements conducted at three locations. This method provides discrete probability density functions for the Turbine ONLY component of the measured noise. This analysis is completed for one-third octave sound levels, at integer wind speeds, and is compared to existing metrics for measuring acoustic comfort as well as previous discussions on low-frequency noise sources. PMID:25905097

  19. Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ford, T.; Sacco, E.; Black, J.; Kelley, T.; Goodacre, R.; Berkeley, R. C.; Mitchell, R.

    1991-01-01

    Exopolymers from a diverse collection of marine and freshwater bacteria were characterized by pyrolysis-mass spectrometry (Py-MS). Py-MS provides spectra of pyrolysis fragments that are characteristic of the original material. Analysis of the spectra by multivariate statistical techniques (principal component and canonical variate analysis) separated these exopolymers into distinct groups. Py-MS clearly distinguished characteristic fragments, which may be derived from components responsible for functional differences between polymers. The importance of these distinctions and the relevance of pyrolysis information to exopolysaccharide function in aquatic bacteria is discussed.

  20. Ozone data and mission sampling analysis

    NASA Technical Reports Server (NTRS)

    Robbins, J. L.

    1980-01-01

    A methodology was developed to analyze discrete data obtained from the global distribution of ozone. Statistical analysis techniques were applied to describe the distribution of data variance in terms of empirical orthogonal functions and components of spherical harmonic models. The effects of uneven data distribution and missing data were considered. Data fill based on the autocorrelation structure of the data is described. Computer coding of the analysis techniques is included.

  1. On Nonlinear Functionals of Random Spherical Eigenfunctions

    NASA Astrophysics Data System (ADS)

    Marinucci, Domenico; Wigman, Igor

    2014-05-01

    We prove central limit theorems and Stein-like bounds for the asymptotic behaviour of nonlinear functionals of spherical Gaussian eigenfunctions. Our investigation combines asymptotic analysis of higher order moments for Legendre polynomials and, in addition, recent results on Malliavin calculus and total variation bounds for Gaussian subordinated fields. We discuss applications to geometric functionals like the defect and invariant statistics, e.g., polyspectra of isotropic spherical random fields. Both of these have relevance for applications, especially in an astrophysical environment.

  2. Patient satisfaction in Caucasian and Mediterranean open rhinoplasty using the tongue-in-groove technique: prospective statistical analysis of change in subjective body image in relation to nasal appearance following aesthetic rhinoplasty.

    PubMed

    Lohuis, Peter J F M; Datema, Frank R

    2015-04-01

    Tongue-in-groove (TIG) is a conservative but powerful surgical suture technique to control shape, rotation, and projection of the nasal tip. In this study, statistical analyses were performed to determine the aesthetical and functional effectiveness of TIG rhinoplasty. Prospective cohort study including 110 Caucasian or Mediterranean aesthetic rhinoplasty patients treated by one surgeon between 2007 and 2012, with a 1-year follow-up. Data were collected using the Utrecht Questionnaire, a validated instrument routinely offered to our patients before and 1 year after surgery. Aesthetic results were reflected by change in subjective body image in relation to nasal appearance, scored on five aesthetic questions and a 10-cm visual analog scale (VAS). Functional results were determined by change in subjective nasal airway patency, scored on a 10-cm VAS for both sides. The mean aesthetic sum score (5, low burden-25, high burden) significantly improved from 14.01 to 6.54 (P <.01). The mean aesthetic VAS score (0, very ugly-10, very nice) significantly improved from 3.35 to 7.78 (P < .01). The mean functional VAS score (0, very bad-10, very good) showed a small but significant improvement on both sides (left, 6.83-7.96; right, 6.88-7.80; P <.01). Statistical analysis of quantified subjective data on nasal aesthetics and function show that TIG is a reliable technique that can help to deliver consistently good results in Caucasian and Mediterranean patients seeking aesthetic rhinoplasty. A small additional functional improvement can be expected. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  3. A framework for joint image-and-shape analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain

    2014-03-01

    Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.

  4. A statistical mechanical approach to restricted integer partition functions

    NASA Astrophysics Data System (ADS)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  5. GSuite HyperBrowser: integrative analysis of dataset collections across the genome and epigenome.

    PubMed

    Simovski, Boris; Vodák, Daniel; Gundersen, Sveinung; Domanska, Diana; Azab, Abdulrahman; Holden, Lars; Holden, Marit; Grytten, Ivar; Rand, Knut; Drabløs, Finn; Johansen, Morten; Mora, Antonio; Lund-Andersen, Christin; Fromm, Bastian; Eskeland, Ragnhild; Gabrielsen, Odd Stokke; Ferkingstad, Egil; Nakken, Sigve; Bengtsen, Mads; Nederbragt, Alexander Johan; Thorarensen, Hildur Sif; Akse, Johannes Andreas; Glad, Ingrid; Hovig, Eivind; Sandve, Geir Kjetil

    2017-07-01

    Recent large-scale undertakings such as ENCODE and Roadmap Epigenomics have generated experimental data mapped to the human reference genome (as genomic tracks) representing a variety of functional elements across a large number of cell types. Despite the high potential value of these publicly available data for a broad variety of investigations, little attention has been given to the analytical methodology necessary for their widespread utilisation. We here present a first principled treatment of the analysis of collections of genomic tracks. We have developed novel computational and statistical methodology to permit comparative and confirmatory analyses across multiple and disparate data sources. We delineate a set of generic questions that are useful across a broad range of investigations and discuss the implications of choosing different statistical measures and null models. Examples include contrasting analyses across different tissues or diseases. The methodology has been implemented in a comprehensive open-source software system, the GSuite HyperBrowser. To make the functionality accessible to biologists, and to facilitate reproducible analysis, we have also developed a web-based interface providing an expertly guided and customizable way of utilizing the methodology. With this system, many novel biological questions can flexibly be posed and rapidly answered. Through a combination of streamlined data acquisition, interoperable representation of dataset collections, and customizable statistical analysis with guided setup and interpretation, the GSuite HyperBrowser represents a first comprehensive solution for integrative analysis of track collections across the genome and epigenome. The software is available at: https://hyperbrowser.uio.no. © The Author 2017. Published by Oxford University Press.

  6. Improving esthetic results in benign parotid surgery: statistical evaluation of facelift approach, sternocleidomastoid flap, and superficial musculoaponeurotic system flap application.

    PubMed

    Bianchi, Bernardo; Ferri, Andrea; Ferrari, Silvano; Copelli, Chiara; Sesenna, Enrico

    2011-04-01

    The purpose of this article was to analyze the efficacy of facelift incision, sternocleidomastoid muscle flap, and superficial musculoaponeurotic system flap for improving the esthetic results in patients undergoing partial parotidectomy for benign parotid tumor resection. The usefulness of partial parotidectomy is discussed, and a statistical evaluation of the esthetic results was performed. From January 1, 1996, to January 1, 2007, 274 patients treated for benign parotid tumors were studied. Of these, 172 underwent partial parotidectomy. The 172 patients were divided into 4 groups: partial parotidectomy with classic or modified Blair incision without reconstruction (group 1), partial parotidectomy with facelift incision and without reconstruction (group 2), partial parotidectomy with facelift incision associated with sternocleidomastoid muscle flap (group 3), and partial parotidectomy with facelift incision associated with superficial musculoaponeurotic system flap (group 4). Patients were considered, after a follow-up of at least 18 months, for functional and esthetic evaluation. The functional outcome was assessed considering the facial nerve function, Frey syndrome, and recurrence. The esthetic evaluation was performed by inviting the patients and a blind panel of 1 surgeon and 2 secretaries of the department to give a score of 1 to 10 to assess the final cosmetic outcome. The statistical analysis was finally performed using the Mann-Whitney U test for nonparametric data to compare the different group results. P less than .05 was considered significant. No recurrence developed in any of the 4 groups or in any of the 274 patients during the follow-up period. The statistical analysis, comparing group 1 and the other groups, revealed a highly significant statistical difference (P < .0001) for all groups. Also, when group 2 was compared with groups 3 and 4, the difference was highly significantly different statistically (P = .0018 for group 3 and P = .0005 for group 4). Finally, when groups 3 and 4 were compared, the difference was not statistically significant (P = .3467). Partial parotidectomy is the real key point for improving esthetic results in benign parotid surgery. The evaluation of functional complications and the recurrence rate in this series of patients has confirmed that this technique can be safely used for parotid benign tumor resection. The use of a facelift incision alone led to a high statistically significant improvement in the esthetic outcome. When the facelift incision was used with reconstructive techniques, such as the sternocleidomastoid muscle flap or the superficial musculoaponeurotic system flap, the esthetic results improved further. Finally, no statistically significant difference resulted comparing the use of the superficial musculoaponeurotic system and the sternocleidomastoid muscle flap. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Functional Interaction Network Construction and Analysis for Disease Discovery.

    PubMed

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  8. Network analysis reveals disrupted functional brain circuitry in drug-naive social anxiety disorder.

    PubMed

    Yang, Xun; Liu, Jin; Meng, Yajing; Xia, Mingrui; Cui, Zaixu; Wu, Xi; Hu, Xinyu; Zhang, Wei; Gong, Gaolang; Gong, Qiyong; Sweeney, John A; He, Yong

    2017-12-07

    Social anxiety disorder (SAD) is a common and disabling condition characterized by excessive fear and avoidance of public scrutiny. Psychoradiology studies have suggested that the emotional and behavior deficits in SAD are associated with abnormalities in regional brain function and functional connectivity. However, little is known about whether intrinsic functional brain networks in patients with SAD are topologically disrupted. Here, we collected resting-state fMRI data from 33 drug-naive patients with SAD and 32 healthy controls (HC), constructed functional networks with 34 predefined regions based on previous meta-analytic research with task-based fMRI in SAD, and performed network-based statistic and graph-theory analyses. The network-based statistic analysis revealed a single connected abnormal circuitry including the frontolimbic circuit (termed the "fear circuit", including the dorsolateral prefrontal cortex, ventral medial prefrontal cortex and insula) and posterior cingulate/occipital areas supporting perceptual processing. In this single altered network, patients with SAD had higher functional connectivity than HC. At the global level, graph-theory analysis revealed that the patients exhibited a lower normalized characteristic path length than HC, which suggests a disorder-related shift of network topology toward randomized configurations. SAD-related deficits in nodal degree, efficiency and participation coefficient were detected in the parahippocampal gyrus, posterior cingulate cortex, dorsolateral prefrontal cortex, insula and the calcarine sulcus. Aspects of abnormal connectivity were associated with anxiety symptoms. These findings highlight the aberrant topological organization of functional brain network organization in SAD, which provides insights into the neural mechanisms underlying excessive fear and avoidance of social interactions in patients with debilitating social anxiety. Copyright © 2017. Published by Elsevier Inc.

  9. Statistical Surrogate Modeling of Atmospheric Dispersion Events Using Bayesian Adaptive Splines

    NASA Astrophysics Data System (ADS)

    Francom, D.; Sansó, B.; Bulaevskaya, V.; Lucas, D. D.

    2016-12-01

    Uncertainty in the inputs of complex computer models, including atmospheric dispersion and transport codes, is often assessed via statistical surrogate models. Surrogate models are computationally efficient statistical approximations of expensive computer models that enable uncertainty analysis. We introduce Bayesian adaptive spline methods for producing surrogate models that capture the major spatiotemporal patterns of the parent model, while satisfying all the necessities of flexibility, accuracy and computational feasibility. We present novel methodological and computational approaches motivated by a controlled atmospheric tracer release experiment conducted at the Diablo Canyon nuclear power plant in California. Traditional methods for building statistical surrogate models often do not scale well to experiments with large amounts of data. Our approach is well suited to experiments involving large numbers of model inputs, large numbers of simulations, and functional output for each simulation. Our approach allows us to perform global sensitivity analysis with ease. We also present an approach to calibration of simulators using field data.

  10. P-MartCancer–Interactive Online Software to Enable Analysis of Shotgun Cancer Proteomic Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.; Bramer, Lisa M.; Jensen, Jeffrey L.

    P-MartCancer is a new interactive web-based software environment that enables biomedical and biological scientists to perform in-depth analyses of global proteomics data without requiring direct interaction with the data or with statistical software. P-MartCancer offers a series of statistical modules associated with quality assessment, peptide and protein statistics, protein quantification and exploratory data analyses driven by the user via customized workflows and interactive visualization. Currently, P-MartCancer offers access to multiple cancer proteomic datasets generated through the Clinical Proteomics Tumor Analysis Consortium (CPTAC) at the peptide, gene and protein levels. P-MartCancer is deployed using Azure technologies (http://pmart.labworks.org/cptac.html), the web-service is alternativelymore » available via Docker Hub (https://hub.docker.com/r/pnnl/pmart-web/) and many statistical functions can be utilized directly from an R package available on GitHub (https://github.com/pmartR).« less

  11. Planck 2015 results. XVI. Isotropy and statistics of the CMB

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Akrami, Y.; Aluri, P. K.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casaponsa, B.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Fergusson, J.; Fernandez-Cobos, R.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Liu, H.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Pant, N.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Souradeep, T.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.

    2016-09-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold Spot" is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date.

  12. Planck 2015 results: XVI. Isotropy and statistics of the CMB

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Akrami, Y.; ...

    2016-09-20

    In this paper, we test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect ourmore » studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Finally, where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date.« less

  13. Psychometric Validation of the Malaysian Chinese Version of the EORTC QLQ-C30 in Colorectal Cancer Patients.

    PubMed

    Magaji, Bello Arkilla; Moy, Foong Ming; Roslani, April Camilla; Law, Chee Wei; Sagap, Ismail

    2015-01-01

    Colorectal cancer is the second most frequent cancer in Malaysia. We aimed to assess the validity and reliability of the Malaysian Chinese version of European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire core (QLQ-C30) in patients with colorectal cancer. Translated versions of the QLQ-C30 were obtained from the EORTC. A cross sectional study design was used to obtain data from patients receiving treatment at two teaching hospitals in Kuala Lumpur, Malaysia. The Malaysian Chinese version of QLQ-C30 was self-administered in 96 patients while the Karnofsky Performance Scales (KPS) was generated by attending surgeons. Statistical analysis included reliability, convergent, discriminate validity, and known-groups comparisons. Statistical significance was based on p value ≤0.05. The internal consistencies of the Malaysian Chinese version were acceptable [Cronbach's alpha (α≥ 0.70)] in the global health status/overall quality of life (GHS/QOL), functioning scales except cognitive scale (α≤0.32) in all levels of analysis, and social/family functioning scale (α=0.63) in patients without a stoma. All questionnaire items fulfilled the criteria for convergent and discriminant validity except question number 5, with correlation with role (r = 0.62) and social/family (r = 0.41) functioning higher than with physical functioning scales (r = 0.34). The test-retest coefficients in the GHS/QOL, functioning scales and in most of the symptoms scales were moderate to high (r = 0.58 to 1.00). Patients with a stoma reported statistically significant lower physical functioning (p=0.015), social/family functioning (p=0.013), and higher constipation (p=0.010) and financial difficulty (p=0.037) compared to patients without stoma. There was no significant difference between patients with high and low KPS scores. Malaysian Chinese version of the QLQ-C30 is a valid and reliable measure of HRQOL in patients with colorectal cancer.

  14. Statistical Inference for Quality-Adjusted Survival Time

    DTIC Science & Technology

    2003-08-01

    survival functions of QAL. If an influence function for a test statistic exists for complete data case, denoted as ’i, then a test statistic for...the survival function for the censoring variable. Zhao and Tsiatis (2001) proposed a test statistic where O is the influence function of the general...to 1 everywhere until a subject’s death. We have considered other forms of test statistics. One option is to use an influence function 0i that is

  15. Analysis of Climatic and Environmental Changes Using CLEARS Web-GIS Information-Computational System: Siberia Case Study

    NASA Astrophysics Data System (ADS)

    Titov, A. G.; Gordov, E. P.; Okladnikov, I.; Shulgina, T. M.

    2011-12-01

    Analysis of recent climatic and environmental changes in Siberia performed on the basis of the CLEARS (CLimate and Environment Analysis and Research System) information-computational system is presented. The system was developed using the specialized software framework for rapid development of thematic information-computational systems based on Web-GIS technologies. It comprises structured environmental datasets, computational kernel, specialized web portal implementing web mapping application logic, and graphical user interface. Functional capabilities of the system include a number of procedures for mathematical and statistical analysis, data processing and visualization. At present a number of georeferenced datasets is available for processing including two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 and ERA Interim Reanalysis, meteorological observation data for the territory of the former USSR, and others. Firstly, using functionality of the computational kernel employing approved statistical methods it was shown that the most reliable spatio-temporal characteristics of surface temperature and precipitation in Siberia in the second half of 20th and beginning of 21st centuries are provided by ERA-40/ERA Interim Reanalysis and APHRODITE JMA Reanalysis, respectively. Namely those Reanalyses are statistically consistent with reliable in situ meteorological observations. Analysis of surface temperature and precipitation dynamics for the territory of Siberia performed on the base of the developed information-computational system reveals fine spatial and temporal details in heterogeneous patterns obtained for the region earlier. Dynamics of bioclimatic indices determining climate change impact on structure and functioning of regional vegetation cover was investigated as well. Analysis shows significant positive trends of growing season length accompanied by statistically significant increase of sum of growing degree days and total annual precipitation over the south of Western Siberia. In particular, we conclude that analysis of trends of growing season length, sum of growing degree-days and total precipitation during the growing season reveals a tendency to an increase of vegetation ecosystems productivity across the south of Western Siberia (55°-60°N, 59°-84°E) in the past several decades. The developed system functionality providing instruments for comparison of modeling and observational data and for reliable climatological analysis allowed us to obtain new results characterizing regional manifestations of global change. It should be added that each analysis performed using the system leads also to generation of the archive of spatio-temporal data fields ready for subsequent usage by other specialists. In particular, the archive of bioclimatic indices obtained will allow performing further detailed studies of interrelations between local climate and vegetation cover changes, including changes of carbon uptake related to variations of types and amount of vegetation and spatial shift of vegetation zones. This work is partially supported by RFBR grants #10-07-00547 and #11-05-01190-a, SB RAS Basic Program Projects 4.31.1.5 and 4.31.2.7.

  16. Data on the application of Functional Data Analysis in food fermentations.

    PubMed

    Ruiz-Bellido, M A; Romero-Gil, V; García-García, P; Rodríguez-Gómez, F; Arroyo-López, F N; Garrido-Fernández, A

    2016-12-01

    This article refers to the paper "Assessment of table olive fermentation by functional data analysis" (Ruiz-Bellido et al., 2016) [1]. The dataset include pH, titratable acidity, yeast count and area values obtained during fermentation process (380 days) of Aloreña de Málaga olives subjected to five different fermentation systems: i) control of acidified cured olives, ii) highly acidified cured olives, iii) intermediate acidified cured olives, iv) control of traditional cracked olives, and v) traditional olives cracked after 72 h of exposure to air. Many of the Tables and Figures shown in this paper were deduced after application of Functional Data Analysis to raw data using a routine executed under R software for comparison among treatments by the transformation of raw data into smooth curves and the application of a new battery of statistical tools (functional pointwise estimation of the averages and standard deviations, maximum, minimum, first and second derivatives, functional regression, and functional F and t-tests).

  17. The Direct Impact of Team Cohesiveness and Athletes' Perception of Coaching Leadership Functions on Team Success in NCAA Division I Women's Basketball

    ERIC Educational Resources Information Center

    Palmer, Mary E.

    2013-01-01

    This study investigated the direct impact of team cohesiveness and student-athletes' perceptions of coaching behavior/leadership functions on the success of NCAA Division I Women's basketball, based on the teams' win/loss records. The research collection was quantitative in nature. Statistical design and analysis provided justification for the use…

  18. Inflammatory Cytokines as Preclinical Markers of Adverse Responses to Chemical Stressors

    EPA Science Inventory

    Abstract: The in vivo cytokine response to chemical stressors is a promising mainstream tool used to assess potential systemic inflammation and immune function changes. Notably, new instrumentation and statistical analysis provide the selectivity and sensitivity to rapidly diff...

  19. Quantifying the Energy Landscape Statistics in Proteins - a Relaxation Mode Analysis

    NASA Astrophysics Data System (ADS)

    Cai, Zhikun; Zhang, Yang

    Energy landscape, the hypersurface in the configurational space, has been a useful concept in describing complex processes that occur over a very long time scale, such as the multistep slow relaxations of supercooled liquids and folding of polypeptide chains into structured proteins. Despite extensive simulation studies, its experimental characterization still remains a challenge. To address this challenge, we developed a relaxation mode analysis (RMA) for liquids under a framework analogous to the normal mode analysis for solids. Using RMA, important statistics of the activation barriers of the energy landscape becomes accessible from experimentally measurable two-point correlation functions, e.g. using quasi-elastic and inelastic scattering experiments. We observed a prominent coarsening effect of the energy landscape. The results were further confirmed by direct sampling of the energy landscape using a metadynamics-like adaptive autonomous basin climbing computation. We first demonstrate RMA in a supercooled liquid when dynamical cooperativity emerges in the landscape-influenced regime. Then we show this framework reveals encouraging energy landscape statistics when applied to proteins.

  20. Atmospheric Tracer Inverse Modeling Using Markov Chain Monte Carlo (MCMC)

    NASA Astrophysics Data System (ADS)

    Kasibhatla, P.

    2004-12-01

    In recent years, there has been an increasing emphasis on the use of Bayesian statistical estimation techniques to characterize the temporal and spatial variability of atmospheric trace gas sources and sinks. The applications have been varied in terms of the particular species of interest, as well as in terms of the spatial and temporal resolution of the estimated fluxes. However, one common characteristic has been the use of relatively simple statistical models for describing the measurement and chemical transport model error statistics and prior source statistics. For example, multivariate normal probability distribution functions (pdfs) are commonly used to model these quantities and inverse source estimates are derived for fixed values of pdf paramaters. While the advantage of this approach is that closed form analytical solutions for the a posteriori pdfs of interest are available, it is worth exploring Bayesian analysis approaches which allow for a more general treatment of error and prior source statistics. Here, we present an application of the Markov Chain Monte Carlo (MCMC) methodology to an atmospheric tracer inversion problem to demonstrate how more gereral statistical models for errors can be incorporated into the analysis in a relatively straightforward manner. The MCMC approach to Bayesian analysis, which has found wide application in a variety of fields, is a statistical simulation approach that involves computing moments of interest of the a posteriori pdf by efficiently sampling this pdf. The specific inverse problem that we focus on is the annual mean CO2 source/sink estimation problem considered by the TransCom3 project. TransCom3 was a collaborative effort involving various modeling groups and followed a common modeling and analysis protocoal. As such, this problem provides a convenient case study to demonstrate the applicability of the MCMC methodology to atmospheric tracer source/sink estimation problems.

  1. Analysis of scattering statistics and governing distribution functions in optical coherence tomography.

    PubMed

    Sugita, Mitsuro; Weatherbee, Andrew; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex

    2016-07-01

    The probability density function (PDF) of light scattering intensity can be used to characterize the scattering medium. We have recently shown that in optical coherence tomography (OCT), a PDF formalism can be sensitive to the number of scatterers in the probed scattering volume and can be represented by the K-distribution, a functional descriptor for non-Gaussian scattering statistics. Expanding on this initial finding, here we examine polystyrene microsphere phantoms with different sphere sizes and concentrations, and also human skin and fingernail in vivo. It is demonstrated that the K-distribution offers an accurate representation for the measured OCT PDFs. The behavior of the shape parameter of K-distribution that best fits the OCT scattering results is investigated in detail, and the applicability of this methodology for biological tissue characterization is demonstrated and discussed.

  2. A Statistical Analysis of Brain Morphology Using Wild Bootstrapping

    PubMed Central

    Ibrahim, Joseph G.; Tang, Niansheng; Rowe, Daniel B.; Hao, Xuejun; Bansal, Ravi; Peterson, Bradley S.

    2008-01-01

    Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects. PMID:17649909

  3. From Biophysics to Evolutionary Genetics: Statistical Aspects of Gene Regulation

    NASA Astrophysics Data System (ADS)

    Lässig, Michael

    Genomic functions often cannot be understood at the level of single genes but require the study of gene networks. This systems biology credo is nearly commonplace by now. Evidence comes from the comparative analysis of entire genomes: current estimates put, for example, the number of human genes at around 22,000, hardly more than the 14,000 of the fruit fly, and not even an order of magnitude higher than the 6,000 of baker's yeast. The complexity and diversity of higher animals, therefore, cannot be explained in terms of their gene numbers. If, however, a biological function requires the concerted action of several genes, and conversely, a gene takes part in several functional contexts, an organism may be defined less by its individual genes but by their interactions. The emerging picture of the genome as a strongly interacting system with many degrees of freedom brings new challenges for experiment and theory, many of which are of a statistical nature. And indeed, this picture continues to make the subject attractive to a growing number of statistical physicists.

  4. RipleyGUI: software for analyzing spatial patterns in 3D cell distributions

    PubMed Central

    Hansson, Kristin; Jafari-Mamaghani, Mehrdad; Krieger, Patrik

    2013-01-01

    The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a MATLAB-based software that can be used to detect patterns in the 3D distribution of cells. RipleyGUI uses Ripley's K-function to analyze spatial distributions. In addition the software contains statistical tools to determine quantitative statistical differences, and tools for spatial transformations that are useful for analyzing non-stationary point patterns. The software has a graphical user interface making it easy to use without programming experience, and an extensive user manual explaining the basic concepts underlying the different statistical tools used to analyze spatial point patterns. The described analysis tool can be used for determining the spatial organization of neurons that is important for a detailed study of structure-function relationships. For example, neocortex that can be subdivided into six layers based on cell density and cell types can also be analyzed in terms of organizational principles distinguishing the layers. PMID:23658544

  5. Qualitative and quantitative evaluation of some vocal function parameters following fitting of a prosthesis.

    PubMed

    Cavalot, A L; Palonta, F; Preti, G; Nazionale, G; Ricci, E; Vione, N; Albera, R; Cortesina, G

    2001-12-01

    The insertion of a prosthesis and restoration with pectoralis major myocutaneous flaps for patients subjected to total pharyngolaryngectomy is a technique now universally accepted; however the literature on the subject is lacking. Our study considers 10 patients subjected to total pharyngolaryngectomy and restoration with pectoralis major myocutaneous flaps who were fitted with vocal function prostheses and a control group of 50 subjects treated with a total laryngectomy without pectoralis major myocutaneous flaps and who were fitted with vocal function prostheses. Specific qualitative and quantitative parameters were compared. The quantitative measurement of the levels of voice intensity and the evaluation of the harmonics-to-noise ratio were not statistically significant (p > 0.05) between the two study groups at either high- or low-volume speech. On the contrary, statistically significant differences were found (p < 0.05) for the basic frequency of both the low and the high volume voice. For the qualitative analysis seven parameters were established for evaluation by trained and untrained listeners: on the basis of these parameters the control group had statistically better voices.

  6. Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform.

    PubMed

    Huang, Yongxiang; Biferale, Luca; Calzavarini, Enrico; Sun, Chao; Toschi, Federico

    2013-04-01

    The Hilbert-Huang transform is applied to analyze single-particle Lagrangian velocity data from numerical simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode functions C(i)(t) and of their instantaneous frequency ω(i)(t). On the basis of this decomposition we define the ω-conditioned statistical moments of the C(i) modes, named q-order Hilbert spectra (HS). We show that such quantities have enhanced scaling properties as compared to traditional Fourier transform- or correlation-based (structure functions) statistical indicators, thus providing better insights into the turbulent energy transfer process. We present clear empirical evidence that the energylike quantity, i.e., the second-order HS, displays a linear scaling in time in the inertial range, as expected from a dimensional analysis. We also measure high-order moment scaling exponents in a direct way, without resorting to the extended self-similarity procedure. This leads to an estimate of the Lagrangian structure function exponents which are consistent with the multifractal prediction in the Lagrangian frame as proposed by Biferale et al. [Phys. Rev. Lett. 93, 064502 (2004)].

  7. Correlative weighted stacking for seismic data in the wavelet domain

    USGS Publications Warehouse

    Zhang, S.; Xu, Y.; Xia, J.; ,

    2004-01-01

    Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.

  8. Laplace-Beltrami Eigenvalues and Topological Features of Eigenfunctions for Statistical Shape Analysis

    PubMed Central

    Reuter, Martin; Wolter, Franz-Erich; Shenton, Martha; Niethammer, Marc

    2009-01-01

    This paper proposes the use of the surface based Laplace-Beltrami and the volumetric Laplace eigenvalues and -functions as shape descriptors for the comparison and analysis of shapes. These spectral measures are isometry invariant and therefore allow for shape comparisons with minimal shape pre-processing. In particular, no registration, mapping, or remeshing is necessary. The discriminatory power of the 2D surface and 3D solid methods is demonstrated on a population of female caudate nuclei (a subcortical gray matter structure of the brain, involved in memory function, emotion processing, and learning) of normal control subjects and of subjects with schizotypal personality disorder. The behavior and properties of the Laplace-Beltrami eigenvalues and -functions are discussed extensively for both the Dirichlet and Neumann boundary condition showing advantages of the Neumann vs. the Dirichlet spectra in 3D. Furthermore, topological analyses employing the Morse-Smale complex (on the surfaces) and the Reeb graph (in the solids) are performed on selected eigenfunctions, yielding shape descriptors, that are capable of localizing geometric properties and detecting shape differences by indirectly registering topological features such as critical points, level sets and integral lines of the gradient field across subjects. The use of these topological features of the Laplace-Beltrami eigenfunctions in 2D and 3D for statistical shape analysis is novel. PMID:20161035

  9. Statistical tools for analysis and modeling of cosmic populations and astronomical time series: CUDAHM and TSE

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas; Budavari, Tamas; Scargle, Jeffrey D.

    2018-01-01

    This presentation provides an overview of open-source software packages addressing two challenging classes of astrostatistics problems. (1) CUDAHM is a C++ framework for hierarchical Bayesian modeling of cosmic populations, leveraging graphics processing units (GPUs) to enable applying this computationally challenging paradigm to large datasets. CUDAHM is motivated by measurement error problems in astronomy, where density estimation and linear and nonlinear regression must be addressed for populations of thousands to millions of objects whose features are measured with possibly complex uncertainties, potentially including selection effects. An example calculation demonstrates accurate GPU-accelerated luminosity function estimation for simulated populations of $10^6$ objects in about two hours using a single NVIDIA Tesla K40c GPU. (2) Time Series Explorer (TSE) is a collection of software in Python and MATLAB for exploratory analysis and statistical modeling of astronomical time series. It comprises a library of stand-alone functions and classes, as well as an application environment for interactive exploration of times series data. The presentation will summarize key capabilities of this emerging project, including new algorithms for analysis of irregularly-sampled time series.

  10. Investigation of continuous effect modifiers in a meta-analysis on higher versus lower PEEP in patients requiring mechanical ventilation--protocol of the ICEM study.

    PubMed

    Kasenda, Benjamin; Sauerbrei, Willi; Royston, Patrick; Briel, Matthias

    2014-05-20

    Categorizing an inherently continuous predictor in prognostic analyses raises several critical methodological issues: dependence of the statistical significance on the number and position of the chosen cut-point(s), loss of statistical power, and faulty interpretation of the results if a non-linear association is incorrectly assumed to be linear. This also applies to a therapeutic context where investigators of randomized clinical trials (RCTs) are interested in interactions between treatment assignment and one or more continuous predictors. Our goal is to apply the multivariable fractional polynomial interaction (MFPI) approach to investigate interactions between continuous patient baseline variables and the allocated treatment in an individual patient data meta-analysis of three RCTs (N = 2,299) from the intensive care field. For each study, MFPI will provide a continuous treatment effect function. Functions from each of the three studies will be averaged by a novel meta-analysis approach for functions. We will plot treatment effect functions separately for each study and also the averaged function. The averaged function with a related confidence interval will provide a suitable basis to assess whether a continuous patient characteristic modifies the treatment comparison and may be relevant for clinical decision-making. The compared interventions will be a higher or lower positive end-expiratory pressure (PEEP) ventilation strategy in patients requiring mechanical ventilation. The continuous baseline variables body mass index, PaO2/FiO2, respiratory compliance, and oxygenation index will be the investigated potential effect modifiers. Clinical outcomes for this analysis will be in-hospital mortality, time to death, time to unassisted breathing, and pneumothorax. This project will be the first meta-analysis to combine continuous treatment effect functions derived by the MFPI procedure separately in each of several RCTs. Such an approach requires individual patient data (IPD). They are available from an earlier IPD meta-analysis using different methods for analysis. This new analysis strategy allows assessing whether treatment effects interact with continuous baseline patient characteristics and avoids categorization-based subgroup analyses. These interaction analyses of the present study will be exploratory in nature. However, they may help to foster future research using the MFPI approach to improve interaction analyses of continuous predictors in RCTs and IPD meta-analyses. This study is registered in PROSPERO (CRD42012003129).

  11. Behavior analytic approaches to problem behavior in intellectual disabilities.

    PubMed

    Hagopian, Louis P; Gregory, Meagan K

    2016-03-01

    The purpose of the current review is to summarize recent behavior analytic research on problem behavior in individuals with intellectual disabilities. We have focused our review on studies published from 2013 to 2015, but also included earlier studies that were relevant. Behavior analytic research on problem behavior continues to focus on the use and refinement of functional behavioral assessment procedures and function-based interventions. During the review period, a number of studies reported on procedures aimed at making functional analysis procedures more time efficient. Behavioral interventions continue to evolve, and there were several larger scale clinical studies reporting on multiple individuals. There was increased attention on the part of behavioral researchers to develop statistical methods for analysis of within subject data and continued efforts to aggregate findings across studies through evaluative reviews and meta-analyses. Findings support continued utility of functional analysis for guiding individualized interventions and for classifying problem behavior. Modifications designed to make functional analysis more efficient relative to the standard method of functional analysis were reported; however, these require further validation. Larger scale studies on behavioral assessment and treatment procedures provided additional empirical support for effectiveness of these approaches and their sustainability outside controlled clinical settings.

  12. Optimized Design and Analysis of Sparse-Sampling fMRI Experiments

    PubMed Central

    Perrachione, Tyler K.; Ghosh, Satrajit S.

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power. PMID:23616742

  13. Optimized design and analysis of sparse-sampling FMRI experiments.

    PubMed

    Perrachione, Tyler K; Ghosh, Satrajit S

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power.

  14. Diagnosis of digestive functional disease by the statistics of continuous monitoring of esophageal acidity

    NASA Astrophysics Data System (ADS)

    Rivera Landa, Rogelio; Cardenas Cardenas, Eduardo; Fossion, Ruben; Pérez Zepeda, Mario Ulises

    2014-11-01

    Technological advances in the last few decennia allow the monitoring of many physiological observables in a continuous way, which in physics is called a "time series". The best studied physiological time series is that of the heart rhythm, which can be derived from an electrocardiogram (ECG). Studies have shown that a healthy heart is characterized by a complex time series and high heart rate variability (HRV). In adverse conditions, the cardiac time series degenerates towards randomness (as seen in, e.g., fibrillation) or rigidity (as seen in, e.g., ageing), both corresponding to a loss of HRV as described by, e.g., Golberger et. al [1]. Cardiac and digestive rhythms are regulated by the autonomous nervous system (ANS), that consists of two antagonistic branches, the orthosympathetic branch (ONS) that accelerates the cardiac rhythm but decelerates the digestive system, and the parasympathetic brand (PNS) that works in the opposite way. Because of this reason, one might expect that the statistics of gastro-esophageal time series, as described by Gardner et. al. [2,3], reflects the health state of the digestive system in a similar way as HRV in the cardiac case, described by Minocha et. al. In the present project, we apply statistical methods derived from HRV analysis to time series of esophageal acidity (24h pHmetry). The study is realized on data from a large patient population from the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Our focus is on patients with functional disease (symptoms but no anatomical damage). We find that traditional statistical approaches (e.g. Fourier spectral analysis) are unable to distinguish between different degenerations of the digestive system, such as gastric esophageal reflux disease (GERD) or functional gastrointestinal disorder (FGID).

  15. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools.

    PubMed

    Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr

    2012-05-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.

  16. Statistical and systematic errors in the measurement of weak-lensing Minkowski functionals: Application to the Canada-France-Hawaii Lensing Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirasaki, Masato; Yoshida, Naoki, E-mail: masato.shirasaki@utap.phys.s.u-tokyo.ac.jp

    2014-05-01

    The measurement of cosmic shear using weak gravitational lensing is a challenging task that involves a number of complicated procedures. We study in detail the systematic errors in the measurement of weak-lensing Minkowski Functionals (MFs). Specifically, we focus on systematics associated with galaxy shape measurements, photometric redshift errors, and shear calibration correction. We first generate mock weak-lensing catalogs that directly incorporate the actual observational characteristics of the Canada-France-Hawaii Lensing Survey (CFHTLenS). We then perform a Fisher analysis using the large set of mock catalogs for various cosmological models. We find that the statistical error associated with the observational effects degradesmore » the cosmological parameter constraints by a factor of a few. The Subaru Hyper Suprime-Cam (HSC) survey with a sky coverage of ∼1400 deg{sup 2} will constrain the dark energy equation of the state parameter with an error of Δw {sub 0} ∼ 0.25 by the lensing MFs alone, but biases induced by the systematics can be comparable to the 1σ error. We conclude that the lensing MFs are powerful statistics beyond the two-point statistics only if well-calibrated measurement of both the redshifts and the shapes of source galaxies is performed. Finally, we analyze the CFHTLenS data to explore the ability of the MFs to break degeneracies between a few cosmological parameters. Using a combined analysis of the MFs and the shear correlation function, we derive the matter density Ω{sub m0}=0.256±{sub 0.046}{sup 0.054}.« less

  17. Truncated Linear Statistics Associated with the Eigenvalues of Random Matrices II. Partial Sums over Proper Time Delays for Chaotic Quantum Dots

    NASA Astrophysics Data System (ADS)

    Grabsch, Aurélien; Majumdar, Satya N.; Texier, Christophe

    2017-06-01

    Invariant ensembles of random matrices are characterized by the distribution of their eigenvalues \\{λ _1,\\ldots ,λ _N\\}. We study the distribution of truncated linear statistics of the form \\tilde{L}=\\sum _{i=1}^p f(λ _i) with p

  18. Statistical indicators of collective behavior and functional clusters in gene networks of yeast

    NASA Astrophysics Data System (ADS)

    Živković, J.; Tadić, B.; Wick, N.; Thurner, S.

    2006-03-01

    We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.

  19. Variation in reaction norms: Statistical considerations and biological interpretation.

    PubMed

    Morrissey, Michael B; Liefting, Maartje

    2016-09-01

    Analysis of reaction norms, the functions by which the phenotype produced by a given genotype depends on the environment, is critical to studying many aspects of phenotypic evolution. Different techniques are available for quantifying different aspects of reaction norm variation. We examine what biological inferences can be drawn from some of the more readily applicable analyses for studying reaction norms. We adopt a strongly biologically motivated view, but draw on statistical theory to highlight strengths and drawbacks of different techniques. In particular, consideration of some formal statistical theory leads to revision of some recently, and forcefully, advocated opinions on reaction norm analysis. We clarify what simple analysis of the slope between mean phenotype in two environments can tell us about reaction norms, explore the conditions under which polynomial regression can provide robust inferences about reaction norm shape, and explore how different existing approaches may be used to draw inferences about variation in reaction norm shape. We show how mixed model-based approaches can provide more robust inferences than more commonly used multistep statistical approaches, and derive new metrics of the relative importance of variation in reaction norm intercepts, slopes, and curvatures. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  20. Physique and Performance of Young Wheelchair Basketball Players in Relation with Classification

    PubMed Central

    Zancanaro, Carlo

    2015-01-01

    The relationships among physical characteristics, performance, and functional ability classification of younger wheelchair basketball players have been barely investigated to date. The purpose of this work was to assess anthropometry, body composition, and performance in sport-specific field tests in a national sample of Italian younger wheelchair basketball players as well as to evaluate the association of these variables with the players’ functional ability classification and game-related statistics. Several anthropometric measurements were obtained for 52 out of 91 eligible players nationwide. Performance was assessed in seven sport-specific field tests (5m sprint, 20m sprint with ball, suicide, maximal pass, pass for accuracy, spot shot and lay-ups) and game-related statistics (free-throw points scored per match, two- and three-point field-goals scored per match, and their sum). Association between variables, and predictivity was assessed by correlation and regression analysis, respectively. Players were grouped into four Classes of increasing functional ability (A-D). One-way ANOVA with Bonferroni’s correction for multiple comparisons was used to assess differences between Classes. Sitting height and functional ability Class especially correlated with performance outcomes, but wheelchair basketball experience and skinfolds did not. Game-related statistics and sport-specific field-test scores all showed significant correlation with each other. Upper arm circumference and/or maximal pass and lay-ups test scores were able to explain 42 to 59% of variance in game-related statistics (P<0.001). A clear difference in performance was only found for functional ability Class A and D. Conclusion: In younger wheelchair basketball players, sitting height positively contributes to performance. The maximal pass and lay-ups test should be carefully considered in younger wheelchair basketball training plans. Functional ability Class reflects to a limited extent the actual differences in performance. PMID:26606681

  1. Journal of Naval Science. Volume 2, Number 1

    DTIC Science & Technology

    1976-01-01

    has defined a probability distribution function which fits this type of data and forms the basis for statistical analysis of test results (see...Conditions to Assess the Performance of Fire-Resistant Fluids’. Wear, 28 (1974) 29. J.N.S., Vol. 2, No. 1 APPENDIX A Analysis of Fatigue Test Data...used to produce the impulse response and the equipment required for the analysis is relatively simple. The methods that must be used to produce

  2. 18 CFR 367.9160 - Account 916, Miscellaneous sales expenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... work not assigned to specific functions. (2) Special analysis of customer accounts and other statistical work for sales purposes not a part of the regular customer accounting and billing routine. (3... those chargeable to account 913, Advertising expenses (§ 367.9130). ...

  3. The Influence Function of Principal Component Analysis by Self-Organizing Rule.

    PubMed

    Higuchi; Eguchi

    1998-07-28

    This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.

  4. Analysis of counting data: Development of the SATLAS Python package

    NASA Astrophysics Data System (ADS)

    Gins, W.; de Groote, R. P.; Bissell, M. L.; Granados Buitrago, C.; Ferrer, R.; Lynch, K. M.; Neyens, G.; Sels, S.

    2018-01-01

    For the analysis of low-statistics counting experiments, a traditional nonlinear least squares minimization routine may not always provide correct parameter and uncertainty estimates due to the assumptions inherent in the algorithm(s). In response to this, a user-friendly Python package (SATLAS) was written to provide an easy interface between the data and a variety of minimization algorithms which are suited for analyzinglow, as well as high, statistics data. The advantage of this package is that it allows the user to define their own model function and then compare different minimization routines to determine the optimal parameter values and their respective (correlated) errors. Experimental validation of the different approaches in the package is done through analysis of hyperfine structure data of 203Fr gathered by the CRIS experiment at ISOLDE, CERN.

  5. Recent advances in statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Heron, K. H.

    1992-01-01

    Statistical Energy Analysis (SEA) has traditionally been developed using modal summation and averaging approach, and has led to the need for many restrictive SEA assumptions. The assumption of 'weak coupling' is particularly unacceptable when attempts are made to apply SEA to structural coupling. It is now believed that this assumption is more a function of the modal formulation rather than a necessary formulation of SEA. The present analysis ignores this restriction and describes a wave approach to the calculation of plate-plate coupling loss factors. Predictions based on this method are compared with results obtained from experiments using point excitation on one side of an irregular six-sided box structure. Conclusions show that the use and calculation of infinite transmission coefficients is the way forward for the development of a purely predictive SEA code.

  6. Gender-, age-, and race/ethnicity-based differential item functioning analysis of the movement disorder society-sponsored revision of the Unified Parkinson's disease rating scale.

    PubMed

    Goetz, Christopher G; Liu, Yuanyuan; Stebbins, Glenn T; Wang, Lu; Tilley, Barbara C; Teresi, Jeanne A; Merkitch, Douglas; Luo, Sheng

    2016-12-01

    Assess MDS-UPDRS items for gender-, age-, and race/ethnicity-based differential item functioning. Assessing differential item functioning is a core rating scale validation step. For the MDS-UPDRS, differential item functioning occurs if item-score probability among people with similar levels of parkinsonism differ according to selected covariates (gender, age, race/ethnicity). If the magnitude of differential item functioning is clinically relevant, item-score interpretation must consider influences by these covariates. Differential item functioning can be nonuniform (covariate variably influences an item-score across different levels of parkinsonism) or uniform (covariate influences an item-score consistently over all levels of parkinsonism). Using the MDS-UPDRS translation database of more than 5,000 PD patients from 14 languages, we tested gender-, age-, and race/ethnicity-based differential item functioning. To designate an item as having clinically relevant differential item functioning, we required statistical confirmation by 2 independent methods, along with a McFadden pseudo-R 2 magnitude statistic greater than "negligible." Most items showed no gender-, age- or race/ethnicity-based differential item functioning. When differential item functioning was identified, the magnitude statistic was always in the "negligible" range, and the scale-level impact was minimal. The absence of clinically relevant differential item functioning across all items and all parts of the MDS-UPDRS is strong evidence that the scale can be used confidently. As studies of Parkinson's disease increasingly involve multinational efforts and the MDS-UPDRS has several validated non-English translations, the findings support the scale's broad applicability in populations with varying gender, age, and race/ethnicity distributions. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  7. Analysis/forecast experiments with a flow-dependent correlation function using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Carus, H.; Nestler, M. S.

    1986-01-01

    The use of a flow-dependent correlation function to improve the accuracy of an optimum interpolation (OI) scheme is examined. The development of the correlation function for the OI analysis scheme used for numerical weather prediction is described. The scheme uses a multivariate surface analysis over the oceans to model the pressure-wind error cross-correlation and it has the ability to use an error correlation function that is flow- and geographically-dependent. A series of four-day data assimilation experiments, conducted from January 5-9, 1979, were used to investigate the effect of the different features of the OI scheme (error correlation) on forecast skill for the barotropic lows and highs. The skill of the OI was compared with that of a successive correlation method (SCM) of analysis. It is observed that the largest difference in the correlation statistics occurred in barotropic and baroclinic lows and highs. The comparison reveals that the OI forecasts were more accurate than the SCM forecasts.

  8. Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients.

    PubMed

    Li, Lianshuo; Wang, Zicheng; He, Peng; Ma, Shining; Du, Jie; Jiang, Rui

    2016-10-01

    Although networks of microbial species have been widely used in the analysis of 16S rRNA sequencing data of a microbiome, the construction and analysis of a complete microbial gene network are in general problematic because of the large number of microbial genes in metagenomics studies. To overcome this limitation, we propose to map microbial genes to functional units, including KEGG orthologous groups and the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) orthologous groups, to enable the construction and analysis of a microbial functional network. We devised two statistical methods to infer pairwise relationships between microbial functional units based on a deep sequencing dataset of gut microbiome from type 2 diabetes (T2D) patients as well as healthy controls. Networks containing such functional units and their significant interactions were constructed subsequently. We conducted a variety of analyses of global properties, local properties, and functional modules in the resulting functional networks. Our data indicate that besides the observations consistent with the current knowledge, this study provides novel biological insights into the gut microbiome associated with T2D. Copyright © 2016. Production and hosting by Elsevier Ltd.

  9. High-Density Signal Interface Electromagnetic Radiation Prediction for Electromagnetic Compatibility Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew

    Radiated power calculation approaches for practical scenarios of incomplete high- density interface characterization information and incomplete incident power information are presented. The suggested approaches build upon a method that characterizes power losses through the definition of power loss constant matrices. Potential radiated power estimates include using total power loss information, partial radiated power loss information, worst case analysis, and statistical bounding analysis. A method is also proposed to calculate radiated power when incident power information is not fully known for non-periodic signals at the interface. Incident data signals are modeled from a two-state Markov chain where bit state probabilities aremore » derived. The total spectrum for windowed signals is postulated as the superposition of spectra from individual pulses in a data sequence. Statistical bounding methods are proposed as a basis for the radiated power calculation due to the statistical calculation complexity to find a radiated power probability density function.« less

  10. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Czeisler, C. A.

    1992-01-01

    Accurate estimation of the phases and amplitude of the endogenous circadian pacemaker from constant-routine core-temperature series is crucial for making inferences about the properties of the human biological clock from data collected under this protocol. This paper presents a set of statistical methods based on a harmonic-regression-plus-correlated-noise model for estimating the phases and the amplitude of the endogenous circadian pacemaker from constant-routine core-temperature data. The methods include a Bayesian Monte Carlo procedure for computing the uncertainty in these circadian functions. We illustrate the techniques with a detailed study of a single subject's core-temperature series and describe their relationship to other statistical methods for circadian data analysis. In our laboratory, these methods have been successfully used to analyze more than 300 constant routines and provide a highly reliable means of extracting phase and amplitude information from core-temperature data.

  11. Gain optimization with non-linear controls

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Kandadai, R. D.

    1984-01-01

    An algorithm has been developed for the analysis and design of controls for non-linear systems. The technical approach is to use statistical linearization to model the non-linear dynamics of a system by a quasi-Gaussian model. A covariance analysis is performed to determine the behavior of the dynamical system and a quadratic cost function. Expressions for the cost function and its derivatives are determined so that numerical optimization techniques can be applied to determine optimal feedback laws. The primary application for this paper is centered about the design of controls for nominally linear systems but where the controls are saturated or limited by fixed constraints. The analysis is general, however, and numerical computation requires only that the specific non-linearity be considered in the analysis.

  12. Analysis of Nonequivalent Assessments across Different Linguistic Groups Using a Mixed Methods Approach: Understanding the Causes of Differential Item Functioning by Cognitive Interviewing

    ERIC Educational Resources Information Center

    Benítez, Isabel; Padilla, José-Luis

    2014-01-01

    Differential item functioning (DIF) can undermine the validity of cross-lingual comparisons. While a lot of efficient statistics for detecting DIF are available, few general findings have been found to explain DIF results. The objective of the article was to study DIF sources by using a mixed method design. The design involves a quantitative phase…

  13. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment

    PubMed Central

    Pasaniuc, Bogdan; Zaitlen, Noah; Shi, Huwenbo; Bhatia, Gaurav; Gusev, Alexander; Pickrell, Joseph; Hirschhorn, Joel; Strachan, David P.; Patterson, Nick; Price, Alkes L.

    2014-01-01

    Motivation: Imputation using external reference panels (e.g. 1000 Genomes) is a widely used approach for increasing power in genome-wide association studies and meta-analysis. Existing hidden Markov models (HMM)-based imputation approaches require individual-level genotypes. Here, we develop a new method for Gaussian imputation from summary association statistics, a type of data that is becoming widely available. Results: In simulations using 1000 Genomes (1000G) data, this method recovers 84% (54%) of the effective sample size for common (>5%) and low-frequency (1–5%) variants [increasing to 87% (60%) when summary linkage disequilibrium information is available from target samples] versus the gold standard of 89% (67%) for HMM-based imputation, which cannot be applied to summary statistics. Our approach accounts for the limited sample size of the reference panel, a crucial step to eliminate false-positive associations, and it is computationally very fast. As an empirical demonstration, we apply our method to seven case–control phenotypes from the Wellcome Trust Case Control Consortium (WTCCC) data and a study of height in the British 1958 birth cohort (1958BC). Gaussian imputation from summary statistics recovers 95% (105%) of the effective sample size (as quantified by the ratio of χ2 association statistics) compared with HMM-based imputation from individual-level genotypes at the 227 (176) published single nucleotide polymorphisms (SNPs) in the WTCCC (1958BC height) data. In addition, for publicly available summary statistics from large meta-analyses of four lipid traits, we publicly release imputed summary statistics at 1000G SNPs, which could not have been obtained using previously published methods, and demonstrate their accuracy by masking subsets of the data. We show that 1000G imputation using our approach increases the magnitude and statistical evidence of enrichment at genic versus non-genic loci for these traits, as compared with an analysis without 1000G imputation. Thus, imputation of summary statistics will be a valuable tool in future functional enrichment analyses. Availability and implementation: Publicly available software package available at http://bogdan.bioinformatics.ucla.edu/software/. Contact: bpasaniuc@mednet.ucla.edu or aprice@hsph.harvard.edu Supplementary information: Supplementary materials are available at Bioinformatics online. PMID:24990607

  14. Thin-plate spline analysis of mandibular shape changes induced by functional appliances in Class II malocclusion : A long-term evaluation.

    PubMed

    Franchi, Lorenzo; Pavoni, Chiara; Faltin, Kurt; Bigliazzi, Renato; Gazzani, Francesca; Cozza, Paola

    2016-09-01

    The purpose of this work was to evaluate the long-term morphological mandibular changes induced by functional treatment of Class II malocclusion with mandibular retrusion. Forty patients (20 females, 20 males) with Class II malocclusion consecutively treated with either a Bionator or an Activator followed by fixed appliances were compared with a control group of 40 subjects (19 females, 21 males) with untreated Class II malocclusion. Lateral cephalograms were available at the start of treatment (T1, mean age 9.9 years), at the end of treatment with functional appliances (T2, mean age 12.2 years), and for long-term follow-up (T3, mean age 18.3 years). Mandibular shape changes were analyzed on lateral cephalograms of the subjects in both groups via thin-plate spline (TPS) analysis. Shape differences were statistically analyzed by conducting permutation tests on Goodall F statistics. In the long term, both the treated and control groups exhibited significant longitudinal mandibular shape changes characterized by upward and forward dislocation of point Co associated with a vertical extension in the gonial region and backward dislocation of point B. Functional appliances induced mandible's significant posterior morphogenetic rotation over the short term. The treated and control groups demonstrated similar mandibular shape over the long term.

  15. Recovery of calf muscle strength following acute achilles tendon rupture treatment: a comparison between minimally invasive surgery and conservative treatment.

    PubMed

    Metz, Roderik; van der Heijden, Geert J M G; Verleisdonk, Egbert-Jan M M; Tamminga, Rob; van der Werken, Christiaan

    2009-10-01

    The aim of this study was to measure the effect of treatment of acute Achilles tendon ruptures on calf muscle strength recovery. Eighty-three patients with acute Achilles tendon rupture were randomly allocated to either minimally invasive surgery with functional after-treatment or conservative treatment by functional bracing. Calf muscle strength using isokinetic testing was evaluated at 3 months and after 6 or more months posttreatment. To exclusively investigate the effect of treatment on outcome, the authors excluded patients with major complications from the analysis. In 31 of 39 patients in the surgical treatment group and 25 of 34 patients in the conservative treatment group, isokinetic strength tests were performed. In the analysis of differences in mean peak torque, no statistically significant differences were found between surgery and conservative treatment, except for plantar flexion strength at 90 degrees per second at the second measurement, favoring conservative treatment. After 8 to 10 months follow- up, loss of plantar flexion strength was still present in the injured leg in both treatment groups. In conclusion, isokinetic muscle strength testing did not detect a statistically significant difference between minimally invasive surgical treatment with functional after-treatment and conservative treatment by functional bracing of acute Achilles tendon ruptures.

  16. Report on 3 and 4-point correlation statistics in the COBE DMR anisotrophy maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary (Principal Investigator); Gorski, Krzystof M.; Banday, Anthony J.; Bennett, Charles L.

    1996-01-01

    As part of the work performed under NASA contract # NAS5-32648, we have computed the 3-point and 4-point correlation functions of the COBE-DNIR 2-year and 4-year anisotropy maps. The motivation for this study was to search for evidence of non-Gaussian statistical fluctuations in the temperature maps: skewness or asymmetry in the case of the 3-point function, kurtosis in the case of the 4-point function. Such behavior would have very significant implications for our understanding of the processes of galaxy formation, because our current models of galaxy formation predict that non-Gaussian features should not be present in the DMR maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data. Our computation and analysis of 3-point correlations in the 2-year DMR maps was published in the Astrophysical Journal Letters, volume 446, page L67, 1995. Our computation and analysis of 3-point correlations in the 4-year DMR maps will be published, together with some additional tests, in the June 10, 1996 issue of the Astrophysical Journal Letters. Copies of both of these papers are attached as an appendix to this report.

  17. Two-dimensional random surface model for asperity-contact in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Sidik, S. M.

    1979-01-01

    Relations for the asperity-contact time function during elastohydrodynamic lubrication of a ball bearing are presented. The analysis is based on a two-dimensional random surface model, and actual profile traces of the bearing surfaces are used as statistical sample records. The results of the analysis show that transition from 90 percent contact to 1 percent contact occurs within a dimensionless film thickness range of approximately four to five. This thickness ratio is several times large than reported in the literature where one-dimensional random surface models were used. It is shown that low pass filtering of the statistical records will bring agreement between the present results and those in the literature.

  18. Spatial Point Pattern Analysis of Neurons Using Ripley's K-Function in 3D

    PubMed Central

    Jafari-Mamaghani, Mehrdad; Andersson, Mikael; Krieger, Patrik

    2010-01-01

    The aim of this paper is to apply a non-parametric statistical tool, Ripley's K-function, to analyze the 3-dimensional distribution of pyramidal neurons. Ripley's K-function is a widely used tool in spatial point pattern analysis. There are several approaches in 2D domains in which this function is executed and analyzed. Drawing consistent inferences on the underlying 3D point pattern distributions in various applications is of great importance as the acquisition of 3D biological data now poses lesser of a challenge due to technological progress. As of now, most of the applications of Ripley's K-function in 3D domains do not focus on the phenomenon of edge correction, which is discussed thoroughly in this paper. The main goal is to extend the theoretical and practical utilization of Ripley's K-function and corresponding tests based on bootstrap resampling from 2D to 3D domains. PMID:20577588

  19. Statistical Methods for Proteomic Biomarker Discovery based on Feature Extraction or Functional Modeling Approaches.

    PubMed

    Morris, Jeffrey S

    2012-01-01

    In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational aspects of comparative proteomic studies, and summarizes contributions I along with numerous collaborators have made. First, there is an overview of comparative proteomics technologies, followed by a discussion of important experimental design and preprocessing issues that must be considered before statistical analysis can be done. Next, the two key approaches to analyzing proteomics data, feature extraction and functional modeling, are described. Feature extraction involves detection and quantification of discrete features like peaks or spots that theoretically correspond to different proteins in the sample. After an overview of the feature extraction approach, specific methods for mass spectrometry ( Cromwell ) and 2D gel electrophoresis ( Pinnacle ) are described. The functional modeling approach involves modeling the proteomic data in their entirety as functions or images. A general discussion of the approach is followed by the presentation of a specific method that can be applied, wavelet-based functional mixed models, and its extensions. All methods are illustrated by application to two example proteomic data sets, one from mass spectrometry and one from 2D gel electrophoresis. While the specific methods presented are applied to two specific proteomic technologies, MALDI-TOF and 2D gel electrophoresis, these methods and the other principles discussed in the paper apply much more broadly to other expression proteomics technologies.

  20. The role of ensemble-based statistics in variational assimilation of cloud-affected observations from infrared imagers

    NASA Astrophysics Data System (ADS)

    Hacker, Joshua; Vandenberghe, Francois; Jung, Byoung-Jo; Snyder, Chris

    2017-04-01

    Effective assimilation of cloud-affected radiance observations from space-borne imagers, with the aim of improving cloud analysis and forecasting, has proven to be difficult. Large observation biases, nonlinear observation operators, and non-Gaussian innovation statistics present many challenges. Ensemble-variational data assimilation (EnVar) systems offer the benefits of flow-dependent background error statistics from an ensemble, and the ability of variational minimization to handle nonlinearity. The specific benefits of ensemble statistics, relative to static background errors more commonly used in variational systems, have not been quantified for the problem of assimilating cloudy radiances. A simple experiment framework is constructed with a regional NWP model and operational variational data assimilation system, to provide the basis understanding the importance of ensemble statistics in cloudy radiance assimilation. Restricting the observations to those corresponding to clouds in the background forecast leads to innovations that are more Gaussian. The number of large innovations is reduced compared to the more general case of all observations, but not eliminated. The Huber norm is investigated to handle the fat tails of the distributions, and allow more observations to be assimilated without the need for strict background checks that eliminate them. Comparing assimilation using only ensemble background error statistics with assimilation using only static background error statistics elucidates the importance of the ensemble statistics. Although the cost functions in both experiments converge to similar values after sufficient outer-loop iterations, the resulting cloud water, ice, and snow content are greater in the ensemble-based analysis. The subsequent forecasts from the ensemble-based analysis also retain more condensed water species, indicating that the local environment is more supportive of clouds. In this presentation we provide details that explain the apparent benefit from using ensembles for cloudy radiance assimilation in an EnVar context.

  1. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE PAGES

    McDonnell, J. D.; Schunck, N.; Higdon, D.; ...

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  2. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, J. D.; Schunck, N.; Higdon, D.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  3. A method of using cluster analysis to study statistical dependence in multivariate data

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Card, D. H.; Lyle, G. C.

    1975-01-01

    A technique is presented that uses both cluster analysis and a Monte Carlo significance test of clusters to discover associations between variables in multidimensional data. The method is applied to an example of a noisy function in three-dimensional space, to a sample from a mixture of three bivariate normal distributions, and to the well-known Fisher's Iris data.

  4. THE STATISTICAL ANALYSIS OF DISCRETE AND CONTINUOUS OUTCOMES USING DESIRABILITY FUNCTIONS.

    EPA Science Inventory

    Multiple types of outcomes are sometimes measured on each animal in toxicology dose-response experiments. In this paper we introduce a method of deriving a composite score for a dose-response experiment that combines information from discrete and continuous outcomes through the ...

  5. 76 FR 52533 - Personnel Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... financial impact on agencies. Another commenter stated that the OPM's Enterprise Human Resource Integration..., statistical analysis, and raw data used to justify the rule and the human capital cost increase to implement... activities that are properly considered functions of agency human resources offices and thus ensure that an...

  6. Quantitative descriptions of generalized arousal, an elementary function of the vertebrate brain

    PubMed Central

    Quinkert, Amy Wells; Vimal, Vivek; Weil, Zachary M.; Reeke, George N.; Schiff, Nicholas D.; Banavar, Jayanth R.; Pfaff, Donald W.

    2011-01-01

    We review a concept of the most primitive, fundamental function of the vertebrate CNS, generalized arousal (GA). Three independent lines of evidence indicate the existence of GA: statistical, genetic, and mechanistic. Here we ask, is this concept amenable to quantitative analysis? Answering in the affirmative, four quantitative approaches have proven useful: (i) factor analysis, (ii) information theory, (iii) deterministic chaos, and (iv) application of a Gaussian equation. It strikes us that, to date, not just one but at least four different quantitative approaches seem necessary for describing different aspects of scientific work on GA. PMID:21555568

  7. Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.

    PubMed

    Venturi, D; Karniadakis, G E

    2014-06-08

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima-Zwanzig-Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection-reaction problems.

  8. Statistical analysis of the surface figure of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John

    2012-09-01

    The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.

  9. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. I. Distributions, moments, and correlation functions of a free particle.

    PubMed

    Craven, Galen T; Nitzan, Abraham

    2018-01-28

    Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.

  10. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. I. Distributions, moments, and correlation functions of a free particle

    NASA Astrophysics Data System (ADS)

    Craven, Galen T.; Nitzan, Abraham

    2018-01-01

    Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.

  11. Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems

    PubMed Central

    Venturi, D.; Karniadakis, G. E.

    2014-01-01

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima–Zwanzig–Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection–reaction problems. PMID:24910519

  12. Diffusion-Tensor Imaging Findings and Cognitive Function Following Hospitalized Mixed-Mechanism Mild Traumatic Brain Injury: A Systematic Review and Meta-Analysis.

    PubMed

    Oehr, Lucy; Anderson, Jacqueline

    2017-11-01

    To undertake a systematic review and meta-analysis of the relationship between microstructural damage and cognitive function after hospitalized mixed-mechanism (HMM) mild traumatic brain injury (mTBI). PsycInfo, EMBASE, and MEDLINE were used to find relevant empirical articles published between January 2002 and January 2016. Studies that examined the specific relationship between diffusion tensor imaging (DTI) and cognitive test performance were included. The final sample comprised previously medically and psychiatrically healthy adults with HMM mTBI. Specific data were extracted including mTBI definitional criteria, descriptive statistics, outcome measures, and specific results of associations between DTI metrics and cognitive test performance. Of the 248 original articles retrieved and reviewed, 8 studies met all inclusion criteria and were included in the meta-analysis. The meta-analysis revealed statistically significant associations between reduced white matter integrity and poor performance on measures of attention (fractional anisotropy [FA]: d=.413, P<.001; mean diffusivity [MD]: d=-.407, P=.001), memory (FA: d=.347, P<.001; MD: d=-.568, P<.001), and executive function (FA: d=.246, P<.05), which persisted beyond 1 month postinjury. The findings from the meta-analysis provide clear support for an association between in vivo markers of underlying neuropathology and cognitive function after mTBI. Furthermore, these results demonstrate clearly for the first time that in vivo markers of structural neuropathology are associated with cognitive dysfunction within the domains of attention, memory, and executive function. These findings provide an avenue for future research to examine the causal relationship between mTBI-related neuropathology and cognitive dysfunction. Furthermore, they have important implications for clinical management of patients with mTBI because they provide a more comprehensive understanding of factors that are associated with cognitive dysfunction after mTBI. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Statistical against dynamical PLF fission as seen by the IMF-IMF correlation functions and comparisons with CoMD model

    NASA Astrophysics Data System (ADS)

    Pagano, E. V.; Acosta, L.; Auditore, L.; Cap, T.; Cardella, G.; Colonna, M.; De Filippo, E.; Geraci, E.; Gnoffo, B.; Lanzalone, G.; Maiolino, C.; Martorana, N.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifiro’, A.; Trimarchi, M.; Siwek-Wilczynska, K.

    2018-05-01

    In nuclear reactions at Fermi energies two and multi particles intensity interferometry correlation methods are powerful tools in order to pin down the characteristic time scale of the emission processes. In this paper we summarize an improved application of the fragment-fragment correlation function in the specific physics case of heavy projectile-like (PLF) binary massive splitting in two fragments of intermediate mass(IMF). Results are shown for the reverse kinematics reaction 124 Sn+64 Ni at 35 AMeV that has been investigated by using the forward part of CHIMERA multi-detector. The analysis was performed as a function of the charge asymmetry of the observed couples of IMF. We show a coexistence of dynamical and statistical components as a function of the charge asymmetry. Transport CoMD simulations are compared with the data in order to pin down the timescale of the fragments production and the relevant ingredients of the in medium effective interaction used in the transport calculations.

  14. An Introduction to Macro- Level Spatial Nonstationarity: a Geographically Weighted Regression Analysis of Diabetes and Poverty

    PubMed Central

    Siordia, Carlos; Saenz, Joseph; Tom, Sarah E.

    2014-01-01

    Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity—variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes PMID:25414731

  15. An Introduction to Macro- Level Spatial Nonstationarity: a Geographically Weighted Regression Analysis of Diabetes and Poverty.

    PubMed

    Siordia, Carlos; Saenz, Joseph; Tom, Sarah E

    2012-01-01

    Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity-variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes.

  16. Empirical estimation of a distribution function with truncated and doubly interval-censored data and its application to AIDS studies.

    PubMed

    Sun, J

    1995-09-01

    In this paper we discuss the non-parametric estimation of a distribution function based on incomplete data for which the measurement origin of a survival time or the date of enrollment in a study is known only to belong to an interval. Also the survival time of interest itself is observed from a truncated distribution and is known only to lie in an interval. To estimate the distribution function, a simple self-consistency algorithm, a generalization of Turnbull's (1976, Journal of the Royal Statistical Association, Series B 38, 290-295) self-consistency algorithm, is proposed. This method is then used to analyze two AIDS cohort studies, for which direct use of the EM algorithm (Dempster, Laird and Rubin, 1976, Journal of the Royal Statistical Association, Series B 39, 1-38), which is computationally complicated, has previously been the usual method of the analysis.

  17. Integrative pathway analysis of a genome-wide association study of V̇o2max response to exercise training

    PubMed Central

    Vivar, Juan C.; Sarzynski, Mark A.; Sung, Yun Ju; Timmons, James A.; Bouchard, Claude; Rankinen, Tuomo

    2013-01-01

    We previously reported the findings from a genome-wide association study of the response of maximal oxygen uptake (V̇o2max) to an exercise program. Here we follow up on these results to generate hypotheses on genes, pathways, and systems involved in the ability to respond to exercise training. A systems biology approach can help us better establish a comprehensive physiological description of what underlies V̇o2maxtrainability. The primary material for this exploration was the individual single-nucleotide polymorphism (SNP), SNP-gene mapping, and statistical significance levels. We aimed to generate novel hypotheses through analyses that go beyond statistical association of single-locus markers. This was accomplished through three complementary approaches: 1) building de novo evidence of gene candidacy through informatics-driven literature mining; 2) aggregating evidence from statistical associations to link variant enrichment in biological pathways to V̇o2max trainability; and 3) predicting possible consequences of variants residing in the pathways of interest. We started with candidate gene prioritization followed by pathway analysis focused on overrepresentation analysis and gene set enrichment analysis. Subsequently, leads were followed using in silico analysis of predicted SNP functions. Pathways related to cellular energetics (pantothenate and CoA biosynthesis; PPAR signaling) and immune functions (complement and coagulation cascades) had the highest levels of SNP burden. In particular, long-chain fatty acid transport and fatty acid oxidation genes and sequence variants were found to influence differences in V̇o2max trainability. Together, these methods allow for the hypothesis-driven ranking and prioritization of genes and pathways for future experimental testing and validation. PMID:23990238

  18. Statistical quantifiers of memory for an analysis of human brain and neuro-system diseases

    NASA Astrophysics Data System (ADS)

    Demin, S. A.; Yulmetyev, R. M.; Panischev, O. Yu.; Hänggi, Peter

    2008-03-01

    On the basis of a memory function formalism for correlation functions of time series we investigate statistical memory effects by the use of appropriate spectral and relaxation parameters of measured stochastic data for neuro-system diseases. In particular, we study the dynamics of the walk of a patient who suffers from Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and compare against the data of healthy people (CO - control group). We employ an analytical method which is able to characterize the stochastic properties of stride-to-stride variations of gait cycle timing. Our results allow us to estimate quantitatively a few human locomotion function abnormalities occurring in the human brain and in the central nervous system (CNS). Particularly, the patient's gait dynamics are characterized by an increased memory behavior together with sizable fluctuations as compared with the locomotion dynamics of healthy patients. Moreover, we complement our findings with peculiar features as detected in phase-space portraits and spectral characteristics for the different data sets (PD, HD, ALS and healthy people). The evaluation of statistical quantifiers of the memory function is shown to provide a useful toolkit which can be put to work to identify various abnormalities of locomotion dynamics. Moreover, it allows one to diagnose qualitatively and quantitatively serious brain and central nervous system diseases.

  19. Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.

  20. Statistical detection of patterns in unidimensional distributions by continuous wavelet transforms

    NASA Astrophysics Data System (ADS)

    Baluev, R. V.

    2018-04-01

    Objective detection of specific patterns in statistical distributions, like groupings or gaps or abrupt transitions between different subsets, is a task with a rich range of applications in astronomy: Milky Way stellar population analysis, investigations of the exoplanets diversity, Solar System minor bodies statistics, extragalactic studies, etc. We adapt the powerful technique of the wavelet transforms to this generalized task, making a strong emphasis on the assessment of the patterns detection significance. Among other things, our method also involves optimal minimum-noise wavelets and minimum-noise reconstruction of the distribution density function. Based on this development, we construct a self-closed algorithmic pipeline aimed to process statistical samples. It is currently applicable to single-dimensional distributions only, but it is flexible enough to undergo further generalizations and development.

  1. Forecasting daily source air quality using multivariate statistical analysis and radial basis function networks.

    PubMed

    Sun, Gang; Hoff, Steven J; Zelle, Brian C; Nelson, Minda A

    2008-12-01

    It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.

  2. ReSeqTools: an integrated toolkit for large-scale next-generation sequencing based resequencing analysis.

    PubMed

    He, W; Zhao, S; Liu, X; Dong, S; Lv, J; Liu, D; Wang, J; Meng, Z

    2013-12-04

    Large-scale next-generation sequencing (NGS)-based resequencing detects sequence variations, constructs evolutionary histories, and identifies phenotype-related genotypes. However, NGS-based resequencing studies generate extraordinarily large amounts of data, making computations difficult. Effective use and analysis of these data for NGS-based resequencing studies remains a difficult task for individual researchers. Here, we introduce ReSeqTools, a full-featured toolkit for NGS (Illumina sequencing)-based resequencing analysis, which processes raw data, interprets mapping results, and identifies and annotates sequence variations. ReSeqTools provides abundant scalable functions for routine resequencing analysis in different modules to facilitate customization of the analysis pipeline. ReSeqTools is designed to use compressed data files as input or output to save storage space and facilitates faster and more computationally efficient large-scale resequencing studies in a user-friendly manner. It offers abundant practical functions and generates useful statistics during the analysis pipeline, which significantly simplifies resequencing analysis. Its integrated algorithms and abundant sub-functions provide a solid foundation for special demands in resequencing projects. Users can combine these functions to construct their own pipelines for other purposes.

  3. Stationary statistical theory of two-surface multipactor regarding all impacts for efficient threshold analysis

    NASA Astrophysics Data System (ADS)

    Lin, Shu; Wang, Rui; Xia, Ning; Li, Yongdong; Liu, Chunliang

    2018-01-01

    Statistical multipactor theories are critical prediction approaches for multipactor breakdown determination. However, these approaches still require a negotiation between the calculation efficiency and accuracy. This paper presents an improved stationary statistical theory for efficient threshold analysis of two-surface multipactor. A general integral equation over the distribution function of the electron emission phase with both the single-sided and double-sided impacts considered is formulated. The modeling results indicate that the improved stationary statistical theory can not only obtain equally good accuracy of multipactor threshold calculation as the nonstationary statistical theory, but also achieve high calculation efficiency concurrently. By using this improved stationary statistical theory, the total time consumption in calculating full multipactor susceptibility zones of parallel plates can be decreased by as much as a factor of four relative to the nonstationary statistical theory. It also shows that the effect of single-sided impacts is indispensable for accurate multipactor prediction of coaxial lines and also more significant for the high order multipactor. Finally, the influence of secondary emission yield (SEY) properties on the multipactor threshold is further investigated. It is observed that the first cross energy and the energy range between the first cross and the SEY maximum both play a significant role in determining the multipactor threshold, which agrees with the numerical simulation results in the literature.

  4. Four points function fitted and first derivative procedure for determining the end points in potentiometric titration curves: statistical analysis and method comparison.

    PubMed

    Kholeif, S A

    2001-06-01

    A new method that belongs to the differential category for determining the end points from potentiometric titration curves is presented. It uses a preprocess to find first derivative values by fitting four data points in and around the region of inflection to a non-linear function, and then locate the end point, usually as a maximum or minimum, using an inverse parabolic interpolation procedure that has an analytical solution. The behavior and accuracy of the sigmoid and cumulative non-linear functions used are investigated against three factors. A statistical evaluation of the new method using linear least-squares method validation and multifactor data analysis are covered. The new method is generally applied to symmetrical and unsymmetrical potentiometric titration curves, and the end point is calculated using numerical procedures only. It outperforms the "parent" regular differential method in almost all factors levels and gives accurate results comparable to the true or estimated true end points. Calculated end points from selected experimental titration curves compatible with the equivalence point category of methods, such as Gran or Fortuin, are also compared with the new method.

  5. Large‐scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions

    PubMed Central

    Saiki, Akiko; Fujiwara‐Tsukamoto, Yoko; Sakai, Yutaka; Isomura, Yoshikazu

    2016-01-01

    Key points There have been few systematic population‐wide analyses of relationships between spike synchrony within a period of several milliseconds and behavioural functions.In this study, we obtained a large amount of spike data from > 23,000 neuron pairs by multiple single‐unit recording from deep layer neurons in motor cortical areas in rats performing a forelimb movement task.The temporal changes of spike synchrony in the whole neuron pairs were statistically independent of behavioural changes during the task performance, although some neuron pairs exhibited correlated changes in spike synchrony.Mutual information analyses revealed that spike synchrony made a smaller contribution than spike rate to behavioural functions.The strength of spike synchrony between two neurons was statistically independent of the spike rate‐based preferences of the pair for behavioural functions. Abstract Spike synchrony within a period of several milliseconds in presynaptic neurons enables effective integration of functional information in the postsynaptic neuron. However, few studies have systematically analysed the population‐wide relationships between spike synchrony and behavioural functions. Here we obtained a sufficiently large amount of spike data among regular‐spiking (putatively excitatory) and fast‐spiking (putatively inhibitory) neuron subtypes (> 23,000 pairs) by multiple single‐unit recording from deep layers in motor cortical areas (caudal forelimb area, rostral forelimb area) in rats performing a forelimb movement task. After holding a lever, rats pulled the lever either in response to a cue tone (external‐trigger trials) or spontaneously without any cue (internal‐trigger trials). Many neurons exhibited functional spike activity in association with forelimb movements, and the preference of regular‐spiking neurons in the rostral forelimb area was more biased toward externally triggered movement than that in the caudal forelimb area. We found that a population of neuron pairs with spike synchrony does exist, and that some neuron pairs exhibit a dependence on movement phase during task performance. However, the population‐wide analysis revealed that spike synchrony was statistically independent of the movement phase and the spike rate‐based preferences of the pair for behavioural functions, whereas spike rates were clearly dependent on the movement phase. In fact, mutual information analyses revealed that the contribution of spike synchrony to the behavioural functions was small relative to the contribution of spike rate. Our large‐scale analysis revealed that cortical spike rate, rather than spike synchrony, contributes to population coding for movement. PMID:27488936

  6. Large-scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions.

    PubMed

    Kimura, Rie; Saiki, Akiko; Fujiwara-Tsukamoto, Yoko; Sakai, Yutaka; Isomura, Yoshikazu

    2017-01-01

    There have been few systematic population-wide analyses of relationships between spike synchrony within a period of several milliseconds and behavioural functions. In this study, we obtained a large amount of spike data from > 23,000 neuron pairs by multiple single-unit recording from deep layer neurons in motor cortical areas in rats performing a forelimb movement task. The temporal changes of spike synchrony in the whole neuron pairs were statistically independent of behavioural changes during the task performance, although some neuron pairs exhibited correlated changes in spike synchrony. Mutual information analyses revealed that spike synchrony made a smaller contribution than spike rate to behavioural functions. The strength of spike synchrony between two neurons was statistically independent of the spike rate-based preferences of the pair for behavioural functions. Spike synchrony within a period of several milliseconds in presynaptic neurons enables effective integration of functional information in the postsynaptic neuron. However, few studies have systematically analysed the population-wide relationships between spike synchrony and behavioural functions. Here we obtained a sufficiently large amount of spike data among regular-spiking (putatively excitatory) and fast-spiking (putatively inhibitory) neuron subtypes (> 23,000 pairs) by multiple single-unit recording from deep layers in motor cortical areas (caudal forelimb area, rostral forelimb area) in rats performing a forelimb movement task. After holding a lever, rats pulled the lever either in response to a cue tone (external-trigger trials) or spontaneously without any cue (internal-trigger trials). Many neurons exhibited functional spike activity in association with forelimb movements, and the preference of regular-spiking neurons in the rostral forelimb area was more biased toward externally triggered movement than that in the caudal forelimb area. We found that a population of neuron pairs with spike synchrony does exist, and that some neuron pairs exhibit a dependence on movement phase during task performance. However, the population-wide analysis revealed that spike synchrony was statistically independent of the movement phase and the spike rate-based preferences of the pair for behavioural functions, whereas spike rates were clearly dependent on the movement phase. In fact, mutual information analyses revealed that the contribution of spike synchrony to the behavioural functions was small relative to the contribution of spike rate. Our large-scale analysis revealed that cortical spike rate, rather than spike synchrony, contributes to population coding for movement. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. The discrimination of sea ice types using SAR backscatter statistics

    NASA Technical Reports Server (NTRS)

    Shuchman, Robert A.; Wackerman, Christopher C.; Maffett, Andrew L.; Onstott, Robert G.; Sutherland, Laura L.

    1989-01-01

    X-band (HH) synthetic aperture radar (SAR) data of sea ice collected during the Marginal Ice Zone Experiment in March and April of 1987 was statistically analyzed with respect to discriminating open water, first-year ice, multiyear ice, and Odden. Odden are large expanses of nilas ice that rapidly form in the Greenland Sea and transform into pancake ice. A first-order statistical analysis indicated that mean versus variance can segment out open water and first-year ice, and skewness versus modified skewness can segment the Odden and multilayer categories. In additions to first-order statistics, a model has been generated for the distribution function of the SAR ice data. Segmentation of ice types was also attempted using textural measurements. In this case, the general co-occurency matrix was evaluated. The textural method did not generate better results than the first-order statistical approach.

  8. Comparable Analysis of the Distribution Functions of Runup Heights of the 1896, 1933 and 2011 Japanese Tsunamis in the Sanriku Area

    NASA Astrophysics Data System (ADS)

    Choi, B. H.; Min, B. I.; Yoshinobu, T.; Kim, K. O.; Pelinovsky, E.

    2012-04-01

    Data from a field survey of the 2011 tsunami in the Sanriku area of Japan is presented and used to plot the distribution function of runup heights along the coast. It is shown that the distribution function can be approximated using a theoretical log-normal curve [Choi et al, 2002]. The characteristics of the distribution functions derived from the runup-heights data obtained during the 2011 event are compared with data from two previous gigantic tsunamis (1896 and 1933) that occurred in almost the same region. The number of observations during the last tsunami is very large (more than 5,247), which provides an opportunity to revise the conception of the distribution of tsunami wave heights and the relationship between statistical characteristics and number of observations suggested by Kajiura [1983]. The distribution function of the 2011 event demonstrates the sensitivity to the number of observation points (many of them cannot be considered independent measurements) and can be used to determine the characteristic scale of the coast, which corresponds to the statistical independence of observed wave heights.

  9. Unconscious analyses of visual scenes based on feature conjunctions.

    PubMed

    Tachibana, Ryosuke; Noguchi, Yasuki

    2015-06-01

    To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).

  10. On the distribution of career longevity and the evolution of home-run prowess in professional baseball

    NASA Astrophysics Data System (ADS)

    Petersen, Alexander M.; Jung, Woo-Sung; Stanley, H. Eugene

    2008-09-01

    Statistical analysis is a major aspect of baseball, from player averages to historical benchmarks and records. Much of baseball fanfare is based around players exceeding the norm, some in a single game and others over a long career. Career statistics serve as a metric for classifying players and establishing their historical legacy. However, the concept of records and benchmarks assumes that the level of competition in baseball is stationary in time. Here we show that power law probability density functions, a hallmark of many complex systems that are driven by competition, govern career longevity in baseball. We also find similar power laws in the density functions of all major performance metrics for pitchers and batters. The use of performance-enhancing drugs has a dark history, emerging as a problem for both amateur and professional sports. We find statistical evidence consistent with performance-enhancing drugs in the analysis of home runs hit by players in the last 25 years. This is corroborated by the findings of the Mitchell Report (2007), a two-year investigation into the use of illegal steroids in Major League Baseball, which recently revealed that over 5 percent of Major League Baseball players tested positive for performance-enhancing drugs in an anonymous 2003 survey.

  11. Statistical analysis and data mining of digital reconstructions of dendritic morphologies.

    PubMed

    Polavaram, Sridevi; Gillette, Todd A; Parekh, Ruchi; Ascoli, Giorgio A

    2014-01-01

    Neuronal morphology is diverse among animal species, developmental stages, brain regions, and cell types. The geometry of individual neurons also varies substantially even within the same cell class. Moreover, specific histological, imaging, and reconstruction methodologies can differentially affect morphometric measures. The quantitative characterization of neuronal arbors is necessary for in-depth understanding of the structure-function relationship in nervous systems. The large collection of community-contributed digitally reconstructed neurons available at NeuroMorpho.Org constitutes a "big data" research opportunity for neuroscience discovery beyond the approaches typically pursued in single laboratories. To illustrate these potential and related challenges, we present a database-wide statistical analysis of dendritic arbors enabling the quantification of major morphological similarities and differences across broadly adopted metadata categories. Furthermore, we adopt a complementary unsupervised approach based on clustering and dimensionality reduction to identify the main morphological parameters leading to the most statistically informative structural classification. We find that specific combinations of measures related to branching density, overall size, tortuosity, bifurcation angles, arbor flatness, and topological asymmetry can capture anatomically and functionally relevant features of dendritic trees. The reported results only represent a small fraction of the relationships available for data exploration and hypothesis testing enabled by sharing of digital morphological reconstructions.

  12. Statistical Physics on the Eve of the 21st Century: in Honour of J B McGuire on the Occasion of His 65th Birthday

    NASA Astrophysics Data System (ADS)

    Batchelor, Murray T.; Wille, Luc T.

    The Table of Contents for the book is as follows: * Preface * Modelling the Immune System - An Example of the Simulation of Complex Biological Systems * Brief Overview of Quantum Computation * Quantal Information in Statistical Physics * Modeling Economic Randomness: Statistical Mechanics of Market Phenomena * Essentially Singular Solutions of Feigenbaum- Type Functional Equations * Spatiotemporal Chaotic Dynamics in Coupled Map Lattices * Approach to Equilibrium of Chaotic Systems * From Level to Level in Brain and Behavior * Linear and Entropic Transformations of the Hydrophobic Free Energy Sequence Help Characterize a Novel Brain Polyprotein: CART's Protein * Dynamical Systems Response to Pulsed High-Frequency Fields * Bose-Einstein Condensates in the Light of Nonlinear Physics * Markov Superposition Expansion for the Entropy and Correlation Functions in Two and Three Dimensions * Calculation of Wave Center Deflection and Multifractal Analysis of Directed Waves Through the Study of su(1,1)Ferromagnets * Spectral Properties and Phases in Hierarchical Master Equations * Universality of the Distribution Functions of Random Matrix Theory * The Universal Chiral Partition Function for Exclusion Statistics * Continuous Space-Time Symmetries in a Lattice Field Theory * Quelques Cas Limites du Problème à N Corps Unidimensionnel * Integrable Models of Correlated Electrons * On the Riemann Surface of the Three-State Chiral Potts Model * Two Exactly Soluble Lattice Models in Three Dimensions * Competition of Ferromagnetic and Antiferromagnetic Order in the Spin-l/2 XXZ Chain at Finite Temperature * Extended Vertex Operator Algebras and Monomial Bases * Parity and Charge Conjugation Symmetries and S Matrix of the XXZ Chain * An Exactly Solvable Constrained XXZ Chain * Integrable Mixed Vertex Models Ftom the Braid-Monoid Algebra * From Yang-Baxter Equations to Dynamical Zeta Functions for Birational Tlansformations * Hexagonal Lattice Directed Site Animals * Direction in the Star-Triangle Relations * A Self-Avoiding Walk Through Exactly Solved Lattice Models in Statistical Mechanics

  13. Local image statistics: maximum-entropy constructions and perceptual salience

    PubMed Central

    Victor, Jonathan D.; Conte, Mary M.

    2012-01-01

    The space of visual signals is high-dimensional and natural visual images have a highly complex statistical structure. While many studies suggest that only a limited number of image statistics are used for perceptual judgments, a full understanding of visual function requires analysis not only of the impact of individual image statistics, but also, how they interact. In natural images, these statistical elements (luminance distributions, correlations of low and high order, edges, occlusions, etc.) are intermixed, and their effects are difficult to disentangle. Thus, there is a need for construction of stimuli in which one or more statistical elements are introduced in a controlled fashion, so that their individual and joint contributions can be analyzed. With this as motivation, we present algorithms to construct synthetic images in which local image statistics—including luminance distributions, pair-wise correlations, and higher-order correlations—are explicitly specified and all other statistics are determined implicitly by maximum-entropy. We then apply this approach to measure the sensitivity of the human visual system to local image statistics and to sample their interactions. PMID:22751397

  14. Statistical representation of a spray as a point process

    NASA Astrophysics Data System (ADS)

    Subramaniam, S.

    2000-10-01

    The statistical representation of a spray as a finite point process is investigated. One objective is to develop a better understanding of how single-point statistical information contained in descriptions such as the droplet distribution function (ddf), relates to the probability density functions (pdfs) associated with the droplets themselves. Single-point statistical information contained in the droplet distribution function (ddf) is shown to be related to a sequence of single surrogate-droplet pdfs, which are in general different from the physical single-droplet pdfs. It is shown that the ddf contains less information than the fundamental single-point statistical representation of the spray, which is also described. The analysis shows which events associated with the ensemble of spray droplets can be characterized by the ddf, and which cannot. The implications of these findings for the ddf approach to spray modeling are discussed. The results of this study also have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single-point statistics such as the droplet number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets. Implications of these findings for large eddy simulations of multiphase flows are also discussed.

  15. Modeling of Dissipation Element Statistics in Turbulent Non-Premixed Jet Flames

    NASA Astrophysics Data System (ADS)

    Denker, Dominik; Attili, Antonio; Boschung, Jonas; Hennig, Fabian; Pitsch, Heinz

    2017-11-01

    The dissipation element (DE) analysis is a method for analyzing and compartmentalizing turbulent scalar fields. DEs can be described by two parameters, namely the Euclidean distance l between their extremal points and the scalar difference in the respective points Δϕ . The joint probability density function (jPDF) of these two parameters P(Δϕ , l) is expected to suffice for a statistical reconstruction of the scalar field. In addition, reacting scalars show a strong correlation with these DE parameters in both premixed and non-premixed flames. Normalized DE statistics show a remarkable invariance towards changes in Reynolds numbers. This feature of DE statistics was exploited in a Boltzmann-type evolution equation based model for the probability density function (PDF) of the distance between the extremal points P(l) in isotropic turbulence. Later, this model was extended for the jPDF P(Δϕ , l) and then adapted for the use in free shear flows. The effect of heat release on the scalar scales and DE statistics is investigated and an extended model for non-premixed jet flames is introduced, which accounts for the presence of chemical reactions. This new model is validated against a series of DNS of temporally evolving jet flames. European Research Council Project ``Milestone''.

  16. Statistical assessment of crosstalk enrichment between gene groups in biological networks.

    PubMed

    McCormack, Theodore; Frings, Oliver; Alexeyenko, Andrey; Sonnhammer, Erik L L

    2013-01-01

    Analyzing groups of functionally coupled genes or proteins in the context of global interaction networks has become an important aspect of bioinformatic investigations. Assessing the statistical significance of crosstalk enrichment between or within groups of genes can be a valuable tool for functional annotation of experimental gene sets. Here we present CrossTalkZ, a statistical method and software to assess the significance of crosstalk enrichment between pairs of gene or protein groups in large biological networks. We demonstrate that the standard z-score is generally an appropriate and unbiased statistic. We further evaluate the ability of four different methods to reliably recover crosstalk within known biological pathways. We conclude that the methods preserving the second-order topological network properties perform best. Finally, we show how CrossTalkZ can be used to annotate experimental gene sets using known pathway annotations and that its performance at this task is superior to gene enrichment analysis (GEA). CrossTalkZ (available at http://sonnhammer.sbc.su.se/download/software/CrossTalkZ/) is implemented in C++, easy to use, fast, accepts various input file formats, and produces a number of statistics. These include z-score, p-value, false discovery rate, and a test of normality for the null distributions.

  17. Competing risk models in reliability systems, an exponential distribution model with Bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, I.

    2018-03-01

    The exponential distribution is the most widely used reliability analysis. This distribution is very suitable for representing the lengths of life of many cases and is available in a simple statistical form. The characteristic of this distribution is a constant hazard rate. The exponential distribution is the lower rank of the Weibull distributions. In this paper our effort is to introduce the basic notions that constitute an exponential competing risks model in reliability analysis using Bayesian analysis approach and presenting their analytic methods. The cases are limited to the models with independent causes of failure. A non-informative prior distribution is used in our analysis. This model describes the likelihood function and follows with the description of the posterior function and the estimations of the point, interval, hazard function, and reliability. The net probability of failure if only one specific risk is present, crude probability of failure due to a specific risk in the presence of other causes, and partial crude probabilities are also included.

  18. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  19. Topological signatures of interstellar magnetic fields - I. Betti numbers and persistence diagrams

    NASA Astrophysics Data System (ADS)

    Makarenko, Irina; Shukurov, Anvar; Henderson, Robin; Rodrigues, Luiz F. S.; Bushby, Paul; Fletcher, Andrew

    2018-04-01

    The interstellar medium (ISM) is a magnetized system in which transonic or supersonic turbulence is driven by supernova explosions. This leads to the production of intermittent, filamentary structures in the ISM gas density, whilst the associated dynamo action also produces intermittent magnetic fields. The traditional theory of random functions, restricted to second-order statistical moments (or power spectra), does not adequately describe such systems. We apply topological data analysis (TDA), sensitive to all statistical moments and independent of the assumption of Gaussian statistics, to the gas density fluctuations in a magnetohydrodynamic simulation of the multiphase ISM. This simulation admits dynamo action, so produces physically realistic magnetic fields. The topology of the gas distribution, with and without magnetic fields, is quantified in terms of Betti numbers and persistence diagrams. Like the more standard correlation analysis, TDA shows that the ISM gas density is sensitive to the presence of magnetic fields. However, TDA gives us important additional information that cannot be obtained from correlation functions. In particular, the Betti numbers per correlation cell are shown to be physically informative. Magnetic fields make the ISM more homogeneous, reducing the abundance of both isolated gas clouds and cavities, with a stronger effect on the cavities. Remarkably, the modification of the gas distribution by magnetic fields is captured by the Betti numbers even in regions more than 300 pc from the mid-plane, where the magnetic field is weaker and correlation analysis fails to detect any signatures of magnetic effects.

  20. Physical and genetic-interaction density reveals functional organization and informs significance cutoffs in genome-wide screens

    PubMed Central

    Dittmar, John C.; Pierce, Steven; Rothstein, Rodney; Reid, Robert J. D.

    2013-01-01

    Genome-wide experiments often measure quantitative differences between treated and untreated cells to identify affected strains. For these studies, statistical models are typically used to determine significance cutoffs. We developed a method termed “CLIK” (Cutoff Linked to Interaction Knowledge) that overlays biological knowledge from the interactome on screen results to derive a cutoff. The method takes advantage of the fact that groups of functionally related interacting genes often respond similarly to experimental conditions and, thus, cluster in a ranked list of screen results. We applied CLIK analysis to five screens of the yeast gene disruption library and found that it defined a significance cutoff that differed from traditional statistics. Importantly, verification experiments revealed that the CLIK cutoff correlated with the position in the rank order where the rate of true positives drops off significantly. In addition, the gene sets defined by CLIK analysis often provide further biological perspectives. For example, applying CLIK analysis retrospectively to a screen for cisplatin sensitivity allowed us to identify the importance of the Hrq1 helicase in DNA crosslink repair. Furthermore, we demonstrate the utility of CLIK to determine optimal treatment conditions by analyzing genome-wide screens at multiple rapamycin concentrations. We show that CLIK is an extremely useful tool for evaluating screen quality, determining screen cutoffs, and comparing results between screens. Furthermore, because CLIK uses previously annotated interaction data to determine biologically informed cutoffs, it provides additional insights into screen results, which supplement traditional statistical approaches. PMID:23589890

  1. Using Genome-Wide Expression Profiling to Define Gene Networks Relevant to the Study of Complex Traits: From RNA Integrity to Network Topology

    PubMed Central

    O'Brien, M.A.; Costin, B.N.; Miles, M.F.

    2014-01-01

    Postgenomic studies of the function of genes and their role in disease have now become an area of intense study since efforts to define the raw sequence material of the genome have largely been completed. The use of whole-genome approaches such as microarray expression profiling and, more recently, RNA-sequence analysis of transcript abundance has allowed an unprecedented look at the workings of the genome. However, the accurate derivation of such high-throughput data and their analysis in terms of biological function has been critical to truly leveraging the postgenomic revolution. This chapter will describe an approach that focuses on the use of gene networks to both organize and interpret genomic expression data. Such networks, derived from statistical analysis of large genomic datasets and the application of multiple bioinformatics data resources, poten-tially allow the identification of key control elements for networks associated with human disease, and thus may lead to derivation of novel therapeutic approaches. However, as discussed in this chapter, the leveraging of such networks cannot occur without a thorough understanding of the technical and statistical factors influencing the derivation of genomic expression data. Thus, while the catch phrase may be “it's the network … stupid,” the understanding of factors extending from RNA isolation to genomic profiling technique, multivariate statistics, and bioinformatics are all critical to defining fully useful gene networks for study of complex biology. PMID:23195313

  2. Spatial variation in the bacterial and denitrifying bacterial community in a biofilter treating subsurface agricultural drainage.

    PubMed

    Andrus, J Malia; Porter, Matthew D; Rodríguez, Luis F; Kuehlhorn, Timothy; Cooke, Richard A C; Zhang, Yuanhui; Kent, Angela D; Zilles, Julie L

    2014-02-01

    Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples.In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria.Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect,while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics.Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically in undated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.

  3. Are well functioning civil registration and vital statistics systems associated with better health outcomes?

    PubMed

    Phillips, David E; AbouZahr, Carla; Lopez, Alan D; Mikkelsen, Lene; de Savigny, Don; Lozano, Rafael; Wilmoth, John; Setel, Philip W

    2015-10-03

    In this Series paper, we examine whether well functioning civil registration and vital statistics (CRVS) systems are associated with improved population health outcomes. We present a conceptual model connecting CRVS to wellbeing, and describe an ecological association between CRVS and health outcomes. The conceptual model posits that the legal identity that civil registration provides to individuals is key to access entitlements and services. Vital statistics produced by CRVS systems provide essential information for public health policy and prevention. These outcomes benefit individuals and societies, including improved health. We use marginal linear models and lag-lead analysis to measure ecological associations between a composite metric of CRVS performance and three health outcomes. Results are consistent with the conceptual model: improved CRVS performance coincides with improved health outcomes worldwide in a temporally consistent manner. Investment to strengthen CRVS systems is not only an important goal for individuals and societies, but also a development imperative that is good for health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Topological Cacti: Visualizing Contour-based Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2011-05-26

    Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introducemore » a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Akrami, Y.

    In this paper, we test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect ourmore » studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Finally, where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date.« less

  6. Statistical comparison of pooled nitrogen washout data of various altitude decompression response groups

    NASA Technical Reports Server (NTRS)

    Edwards, B. F.; Waligora, J. M.; Horrigan, D. J., Jr.

    1985-01-01

    This analysis was done to determine whether various decompression response groups could be characterized by the pooled nitrogen (N2) washout profiles of the group members, pooling individual washout profiles provided a smooth time dependent function of means representative of the decompression response group. No statistically significant differences were detected. The statistical comparisons of the profiles were performed by means of univariate weighted t-test at each 5 minute profile point, and with levels of significance of 5 and 10 percent. The estimated powers of the tests (i.e., probabilities) to detect the observed differences in the pooled profiles were of the order of 8 to 30 percent.

  7. Emergent Irreversibility and Entanglement Spectrum Statistics

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo R.

    2014-06-01

    We study the problem of irreversibility when the dynamical evolution of a many-body system is described by a stochastic quantum circuit. Such evolution is more general than a Hamiltonian one, and since energy levels are not well defined, the well-established connection between the statistical fluctuations of the energy spectrum and irreversibility cannot be made. We show that the entanglement spectrum provides a more general connection. Irreversibility is marked by a failure of a disentangling algorithm and is preceded by the appearance of Wigner-Dyson statistical fluctuations in the entanglement spectrum. This analysis can be done at the wave-function level and offers an alternative route to study quantum chaos and quantum integrability.

  8. A brief introduction to probability.

    PubMed

    Di Paola, Gioacchino; Bertani, Alessandro; De Monte, Lavinia; Tuzzolino, Fabio

    2018-02-01

    The theory of probability has been debated for centuries: back in 1600, French mathematics used the rules of probability to place and win bets. Subsequently, the knowledge of probability has significantly evolved and is now an essential tool for statistics. In this paper, the basic theoretical principles of probability will be reviewed, with the aim of facilitating the comprehension of statistical inference. After a brief general introduction on probability, we will review the concept of the "probability distribution" that is a function providing the probabilities of occurrence of different possible outcomes of a categorical or continuous variable. Specific attention will be focused on normal distribution that is the most relevant distribution applied to statistical analysis.

  9. Identifying functional reorganization of spelling networks: an individual peak probability comparison approach

    PubMed Central

    Purcell, Jeremy J.; Rapp, Brenda

    2013-01-01

    Previous research has shown that damage to the neural substrates of orthographic processing can lead to functional reorganization during reading (Tsapkini et al., 2011); in this research we ask if the same is true for spelling. To examine the functional reorganization of spelling networks we present a novel three-stage Individual Peak Probability Comparison (IPPC) analysis approach for comparing the activation patterns obtained during fMRI of spelling in a single brain-damaged individual with dysgraphia to those obtained in a set of non-impaired control participants. The first analysis stage characterizes the convergence in activations across non-impaired control participants by applying a technique typically used for characterizing activations across studies: Activation Likelihood Estimate (ALE) (Turkeltaub et al., 2002). This method was used to identify locations that have a high likelihood of yielding activation peaks in the non-impaired participants. The second stage provides a characterization of the degree to which the brain-damaged individual's activations correspond to the group pattern identified in Stage 1. This involves performing a Mahalanobis distance statistics analysis (Tsapkini et al., 2011) that compares each of a control group's peak activation locations to the nearest peak generated by the brain-damaged individual. The third stage evaluates the extent to which the brain-damaged individual's peaks are atypical relative to the range of individual variation among the control participants. This IPPC analysis allows for a quantifiable, statistically sound method for comparing an individual's activation pattern to the patterns observed in a control group and, thus, provides a valuable tool for identifying functional reorganization in a brain-damaged individual with impaired spelling. Furthermore, this approach can be applied more generally to compare any individual's activation pattern with that of a set of other individuals. PMID:24399981

  10. Chordee and Penile Shortening Rather Than Voiding Function Are Associated With Patient Dissatisfaction After Urethroplasty.

    PubMed

    Maciejewski, Conrad C; Haines, Trevor; Rourke, Keith F

    2017-05-01

    To identify factors that predict patient satisfaction after urethroplasty by prospectively examining patient-reported quality of life scores using 3 validated instruments. A 3-part prospective survey consisting of the International Prostate Symptom Score (IPSS), the International Index of Erectile Function (IIEF) score, and a urethroplasty quality of life survey was completed by patients who underwent urethroplasty preoperatively and at 6 months postoperatively. The quality of life score included questions on genitourinary pain, urinary tract infection (UTI), postvoid dribbling, chordee, shortening, overall satisfaction, and overall health. Data were analyzed using descriptive statistics, paired t test, univariate and multivariate logistic regression analyses, and Wilcoxon signed-rank analysis. Patients were enrolled in the study from February 2011 to December 2014, and a total of 94 patients who underwent a total of 102 urethroplasties completed the study. Patients reported statistically significant improvements in IPSS (P < .001). Ordinal linear regression analysis revealed no association between age, IPSS, or IIEF score and patient satisfaction. Wilcoxon signed-rank analysis revealed significant improvements in pain scores (P = .02), UTI (P < .001), perceived overall health (P = .01), and satisfaction (P < .001). Univariate logistic regression identified a length >4 cm and the absence of UTI, pain, shortening, and chordee as predictors of patient satisfaction. Multivariate analysis of quality of life domain scores identified absence of shortening and absence of chordee as independent predictors of patient satisfaction following urethroplasty (P < .01). Patient voiding function and quality of life improve significantly following urethroplasty, but improvement in voiding function is not associated with patient satisfaction. Chordee status and perceived penile shortening impact patient satisfaction, and should be included in patient-reported outcome measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Revealing time bunching effect in single-molecule enzyme conformational dynamics.

    PubMed

    Lu, H Peter

    2011-04-21

    In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a cross correlation analysis can be applied for each specific segment to obtain a detailed fluctuation dynamics analysis.

  12. Computerized system for assessing heart rate variability.

    PubMed

    Frigy, A; Incze, A; Brânzaniuc, E; Cotoi, S

    1996-01-01

    The principal theoretical, methodological and clinical aspects of heart rate variability (HRV) analysis are reviewed. This method has been developed over the last 10 years as a useful noninvasive method of measuring the activity of the autonomic nervous system. The main components and the functioning of the computerized rhythm-analyzer system developed by our team are presented. The system is able to perform short-term (maximum 20 minutes) time domain HRV analysis and statistical analysis of the ventricular rate in any rhythm, particularly in atrial fibrillation. The performances of our system are demonstrated by using the graphics (RR histograms, delta RR histograms, RR scattergrams) and the statistical parameters resulted from the processing of three ECG recordings. These recordings are obtained from a normal subject, from a patient with advanced heart failure, and from a patient with atrial fibrillation.

  13. Outcomes assessment following treatment of spasmodic dysphonia with botulinum toxin.

    PubMed

    Courey, M S; Garrett, C G; Billante, C R; Stone, R E; Portell, M D; Smith, T L; Netterville, J L

    2000-09-01

    Spasmodic dysphonia (SD), a disabling focal dystonia involving the laryngeal musculature, is most commonly treated by the intramuscular injection of botulinum toxin (BTX). Although the treatment is well tolerated and generally produces clinical voice improvement, it has never been statistically shown to alter the patient's perception of voice quality or general health. Declining resources for medical care mandate that treatment outcomes be documented. A prospective analysis of the effects of BTX on the patient's perception of voice and general health was undertaken. The Voice Handicap Index (VHI) and Short Form 36 (SF-36) surveys were administered to patients before treatment and 1 month after. Pretreatment and posttreatment scores were analyzed with a Student's t-test. On the VHI, improvements in the patients' perception of their functional, physical, and emotional voice handicap reached statistical significance (p < or = .0005). On the SF-36, patients had statistically significant improvements in mental health (p < or = .03) and social functioning (p < or = .04). Treatment of SD with BTX significantly lessened the patients' perception of dysphonia. In addition, it improved their social functioning and their perception of their mental health. These outcome measures justify the continued treatment of SD with BTX.

  14. Recurrence interval analysis of trading volumes

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Zhou, Wei-Xing

    2010-06-01

    We study the statistical properties of the recurrence intervals τ between successive trading volumes exceeding a certain threshold q . The recurrence interval analysis is carried out for the 20 liquid Chinese stocks covering a period from January 2000 to May 2009, and two Chinese indices from January 2003 to April 2009. Similar to the recurrence interval distribution of the price returns, the tail of the recurrence interval distribution of the trading volumes follows a power-law scaling, and the results are verified by the goodness-of-fit tests using the Kolmogorov-Smirnov (KS) statistic, the weighted KS statistic and the Cramér-von Mises criterion. The measurements of the conditional probability distribution and the detrended fluctuation function show that both short-term and long-term memory effects exist in the recurrence intervals between trading volumes. We further study the relationship between trading volumes and price returns based on the recurrence interval analysis method. It is found that large trading volumes are more likely to occur following large price returns, and the comovement between trading volumes and price returns is more pronounced for large trading volumes.

  15. Recurrence interval analysis of trading volumes.

    PubMed

    Ren, Fei; Zhou, Wei-Xing

    2010-06-01

    We study the statistical properties of the recurrence intervals τ between successive trading volumes exceeding a certain threshold q. The recurrence interval analysis is carried out for the 20 liquid Chinese stocks covering a period from January 2000 to May 2009, and two Chinese indices from January 2003 to April 2009. Similar to the recurrence interval distribution of the price returns, the tail of the recurrence interval distribution of the trading volumes follows a power-law scaling, and the results are verified by the goodness-of-fit tests using the Kolmogorov-Smirnov (KS) statistic, the weighted KS statistic and the Cramér-von Mises criterion. The measurements of the conditional probability distribution and the detrended fluctuation function show that both short-term and long-term memory effects exist in the recurrence intervals between trading volumes. We further study the relationship between trading volumes and price returns based on the recurrence interval analysis method. It is found that large trading volumes are more likely to occur following large price returns, and the comovement between trading volumes and price returns is more pronounced for large trading volumes.

  16. First-passage problems: A probabilistic dynamic analysis for degraded structures

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1990-01-01

    Structures subjected to random excitations with uncertain system parameters degraded by surrounding environments (a random time history) are studied. Methods are developed to determine the statistics of dynamic responses, such as the time-varying mean, the standard deviation, the autocorrelation functions, and the joint probability density function of any response and its derivative. Moreover, the first-passage problems with deterministic and stationary/evolutionary random barriers are evaluated. The time-varying (joint) mean crossing rate and the probability density function of the first-passage time for various random barriers are derived.

  17. WE-AB-202-04: Statistical Evaluation of Lung Function Using 4DCT Ventilation Imaging: Proton Therapy VS IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Q; Zhang, M; Chen, T

    Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Protonmore » and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.« less

  18. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.

    PubMed

    Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs

    2011-01-01

    This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages.

  19. Comparative analysis of profitability of honey production using traditional and box hives.

    PubMed

    Al-Ghamdi, Ahmed A; Adgaba, Nuru; Herab, Ahmed H; Ansari, Mohammad J

    2017-07-01

    Information on the profitability and productivity of box hives is important to encourage beekeepers to adopt the technology. However, comparative analysis of profitability and productivity of box and traditional hives is not adequately available. The study was carried out on 182 beekeepers using cross sectional survey and employing a random sampling technique. The data were analyzed using descriptive statistics, analysis of variance (ANOVA), the Cobb-Douglas (CD) production function and partial budgeting. The CD production function revealed that supplementary bee feeds, labor and medication were statistically significant for both box and traditional hives. Generally, labor for bee management, supplementary feeding, and medication led to productivity differences of approximately 42.83%, 7.52%, and 5.34%, respectively, between box and traditional hives. The study indicated that productivity of box hives were 72% higher than traditional hives. The average net incomes of beekeepers using box and traditional hives were 33,699.7 SR/annum and 16,461.4 SR/annum respectively. The incremental net benefit of box hives over traditional hives was nearly double. Our study results clearly showed the importance of adoption of box hives for better productivity of the beekeeping subsector.

  20. Using the gene ontology for microarray data mining: a comparison of methods and application to age effects in human prefrontal cortex.

    PubMed

    Pavlidis, Paul; Qin, Jie; Arango, Victoria; Mann, John J; Sibille, Etienne

    2004-06-01

    One of the challenges in the analysis of gene expression data is placing the results in the context of other data available about genes and their relationships to each other. Here, we approach this problem in the study of gene expression changes associated with age in two areas of the human prefrontal cortex, comparing two computational methods. The first method, "overrepresentation analysis" (ORA), is based on statistically evaluating the fraction of genes in a particular gene ontology class found among the set of genes showing age-related changes in expression. The second method, "functional class scoring" (FCS), examines the statistical distribution of individual gene scores among all genes in the gene ontology class and does not involve an initial gene selection step. We find that FCS yields more consistent results than ORA, and the results of ORA depended strongly on the gene selection threshold. Our findings highlight the utility of functional class scoring for the analysis of complex expression data sets and emphasize the advantage of considering all available genomic information rather than sets of genes that pass a predetermined "threshold of significance."

  1. Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors

    PubMed Central

    Wong, Oi Lei; Lo, Gladys G.; Chan, Helen H. L.; Wong, Ting Ting; Cheung, Polly S. Y.

    2016-01-01

    Background The purpose of this study is to statistically assess whether bi-exponential intravoxel incoherent motion (IVIM) model better characterizes diffusion weighted imaging (DWI) signal of malignant breast tumor than mono-exponential Gaussian diffusion model. Methods 3 T DWI data of 29 malignant breast tumors were retrospectively included. Linear least-square mono-exponential fitting and segmented least-square bi-exponential fitting were used for apparent diffusion coefficient (ADC) and IVIM parameter quantification, respectively. F-test and Akaike Information Criterion (AIC) were used to statistically assess the preference of mono-exponential and bi-exponential model using region-of-interests (ROI)-averaged and voxel-wise analysis. Results For ROI-averaged analysis, 15 tumors were significantly better fitted by bi-exponential function and 14 tumors exhibited mono-exponential behavior. The calculated ADC, D (true diffusion coefficient) and f (pseudo-diffusion fraction) showed no significant differences between mono-exponential and bi-exponential preferable tumors. Voxel-wise analysis revealed that 27 tumors contained more voxels exhibiting mono-exponential DWI decay while only 2 tumors presented more bi-exponential decay voxels. ADC was consistently and significantly larger than D for both ROI-averaged and voxel-wise analysis. Conclusions Although the presence of IVIM effect in malignant breast tumors could be suggested, statistical assessment shows that bi-exponential fitting does not necessarily better represent the DWI signal decay in breast cancer under clinically typical acquisition protocol and signal-to-noise ratio (SNR). Our study indicates the importance to statistically examine the breast cancer DWI signal characteristics in practice. PMID:27709078

  2. 78 FR 255 - Resumption of the Population Estimates Challenge Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... governmental unit. In those instances where a non-functioning county-level government or statistical equivalent...) A non-functioning county or statistical equivalent means a sub- state entity that does not function... represents a non-functioning county or statistical equivalent, the governor will serve as the chief executive...

  3. Multivariate analysis, mass balance techniques, and statistical tests as tools in igneous petrology: application to the Sierra de las Cruces volcanic range (Mexican Volcanic Belt).

    PubMed

    Velasco-Tapia, Fernando

    2014-01-01

    Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures).

  4. The statistical kinematical theory of X-ray diffraction as applied to reciprocal-space mapping

    PubMed

    Nesterets; Punegov

    2000-11-01

    The statistical kinematical X-ray diffraction theory is developed to describe reciprocal-space maps (RSMs) from deformed crystals with defects of the structure. The general solutions for coherent and diffuse components of the scattered intensity in reciprocal space are derived. As an example, the explicit expressions for intensity distributions in the case of spherical defects and of a mosaic crystal were obtained. The theory takes into account the instrumental function of the triple-crystal diffractometer and can therefore be used for experimental data analysis.

  5. 7 CFR 601.1 - Functions assigned.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) National Resources Inventory (NRI) that is a statistically-based survey designed and implemented using... both the provisions of the Food Security Act and Section 404 of the Clean Water Act. (ii) Soil surveys.... Soil surveys are based on scientific analysis and classification of the soils and are used to determine...

  6. 7 CFR 601.1 - Functions assigned.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) National Resources Inventory (NRI) that is a statistically-based survey designed and implemented using... both the provisions of the Food Security Act and Section 404 of the Clean Water Act. (ii) Soil surveys.... Soil surveys are based on scientific analysis and classification of the soils and are used to determine...

  7. 7 CFR 601.1 - Functions assigned.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) National Resources Inventory (NRI) that is a statistically-based survey designed and implemented using... both the provisions of the Food Security Act and Section 404 of the Clean Water Act. (ii) Soil surveys.... Soil surveys are based on scientific analysis and classification of the soils and are used to determine...

  8. 7 CFR 601.1 - Functions assigned.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) National Resources Inventory (NRI) that is a statistically-based survey designed and implemented using... both the provisions of the Food Security Act and Section 404 of the Clean Water Act. (ii) Soil surveys.... Soil surveys are based on scientific analysis and classification of the soils and are used to determine...

  9. 7 CFR 601.1 - Functions assigned.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) National Resources Inventory (NRI) that is a statistically-based survey designed and implemented using... both the provisions of the Food Security Act and Section 404 of the Clean Water Act. (ii) Soil surveys.... Soil surveys are based on scientific analysis and classification of the soils and are used to determine...

  10. The Spreadsheet in an Educational Setting. Microcomputing Working Paper Series F 84-4.

    ERIC Educational Resources Information Center

    Wozny, Lucy

    This overview of a specific spreadsheet, Microsoft's Multiplan for the Apple Macintosh microcomputer, emphasizes specific features that are important to the academic community, including the mathematical functions of algebra, trigonometry, and statistical analysis. Additional features are summarized, including data formats for both numerical and…

  11. Quantifying Narrative Ability in Autism Spectrum Disorder: A Computational Linguistic Analysis of Narrative Coherence

    ERIC Educational Resources Information Center

    Losh, Molly; Gordon, Peter C.

    2014-01-01

    Autism is a neurodevelopmental disorder characterized by serious difficulties with the social use of language, along with impaired social functioning and ritualistic/repetitive behaviors (American Psychiatric Association in "Diagnostic and statistical manual of mental disorders: DSM-5," 5th edn. American Psychiatric Association,…

  12. Equity and Entrepreneurialism: The Impact of Tax Increment Financing on School Finance.

    ERIC Educational Resources Information Center

    Weber, Rachel

    2003-01-01

    Describes tax increment financing (TIF), an entrepreneurial strategy with significant fiscal implications for overlapping taxing jurisdictions that provide these functions. Statistical analysis of TIF's impact on the finances of one Illinois county's school districts indicates that municipal use of TIF depletes the property tax revenues of schools…

  13. Experimental Analysis of Cell Function Using Cytoplasmic Streaming

    ERIC Educational Resources Information Center

    Janssens, Peter; Waldhuber, Megan

    2012-01-01

    This laboratory exercise investigates the phenomenon of cytoplasmic streaming in the fresh water alga "Nitella". Students use the fungal toxin cytochalasin D, an inhibitor of actin polymerization, to investigate the mechanism of streaming. Students use simple statistical methods to analyze their data. Typical student data are provided. (Contains 3…

  14. Averaging Models: Parameters Estimation with the R-Average Procedure

    ERIC Educational Resources Information Center

    Vidotto, G.; Massidda, D.; Noventa, S.

    2010-01-01

    The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982), can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto &…

  15. Tests of Mediation: Paradoxical Decline in Statistical Power as a Function of Mediator Collinearity

    ERIC Educational Resources Information Center

    Beasley, T. Mark

    2014-01-01

    Increasing the correlation between the independent variable and the mediator ("a" coefficient) increases the effect size ("ab") for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation caused by…

  16. Neuroimaging with functional near infrared spectroscopy: From formation to interpretation

    NASA Astrophysics Data System (ADS)

    Herrera-Vega, Javier; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-09-01

    Functional Near Infrared Spectroscopy (fNIRS) is gaining momentum as a functional neuroimaging modality to investigate the cerebral hemodynamics subsequent to neural metabolism. As other neuroimaging modalities, it is neuroscience's tool to understand brain systems functions at behaviour and cognitive levels. To extract useful knowledge from functional neuroimages it is critical to understand the series of transformations applied during the process of the information retrieval and how they bound the interpretation. This process starts with the irradiation of the head tissues with infrared light to obtain the raw neuroimage and proceeds with computational and statistical analysis revealing hidden associations between pixels intensities and neural activity encoded to end up with the explanation of some particular aspect regarding brain function.To comprehend the overall process involved in fNIRS there is extensive literature addressing each individual step separately. This paper overviews the complete transformation sequence through image formation, reconstruction and analysis to provide an insight of the final functional interpretation.

  17. Relating crash frequency and severity: evaluating the effectiveness of shoulder rumble strips on reducing fatal and major injury crashes.

    PubMed

    Wu, Kun-Feng; Donnell, Eric T; Aguero-Valverde, Jonathan

    2014-06-01

    To approach the goal of "Toward Zero Deaths," there is a need to develop an analysis paradigm to better understand the effects of a countermeasure on reducing the number of severe crashes. One of the goals in traffic safety research is to search for an effective treatment to reduce fatal and major injury crashes, referred to as severe crashes. To achieve this goal, the selection of promising countermeasures is of utmost importance, and relies on the effectiveness of candidate countermeasures in reducing severe crashes. Although it is important to precisely evaluate the effectiveness of candidate countermeasures in reducing the number of severe crashes at a site, the current state-of-the-practice often leads to biased estimates. While there have been a few advanced statistical models developed to mitigate the problem in practice, these models are computationally difficult to estimate because severe crashes are dispersed spatially and temporally, and cannot be integrated into the Highway Safety Manual framework, which develops a series of safety performance functions and crash modification factors to predict the number of crashes. Crash severity outcomes are generally integrated into the Highway Safety Manual using deterministic distributions rather than statistical models. Accounting for the variability in crash severity as a function geometric design, traffic flow, and other roadway and roadside features is afforded by estimating statistical models. Therefore, there is a need to develop a new analysis paradigm to resolve the limitations in the current Highway Safety Manual methods. We propose an approach which decomposes the severe crash frequency into a function of the change in the total number of crashes and the probability of a crash becoming a severe crash before and after a countermeasure is implemented. We tested this approach by evaluating the effectiveness of shoulder rumble strips on reducing the number of severe crashes. A total of 310 segments that have had shoulder rumble strips installed during 2002-2009 are included in the analysis. It was found that shoulder rumble strips reduce the total number of crashes, but have no statistically significant effect on reducing the probability of a severe crash outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Monitoring of bread cooling by statistical analysis of laser speckle patterns

    NASA Astrophysics Data System (ADS)

    Lyubenova, Tanya; Stoykova, Elena; Nacheva, Elena; Ivanov, Branimir; Panchev, Ivan; Sainov, Ventseslav

    2013-03-01

    The phenomenon of laser speckle can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of speckle dynamics. The paper presents the results of non-destructive monitoring of bread cooling by co-occurrence matrix and temporal structure function analysis of speckle patterns which have been recorded continuously within a few days. In total, 72960 and 39680 images were recorded and processed for two similar bread samples respectively. The experiments proved the expected steep decrease of activity related to the processes in the bread samples during the first several hours and revealed its oscillating character within the next few days. Characterization of activity over the bread sample surface was also obtained.

  19. Coagulation-fragmentation for a finite number of particles and application to telomere clustering in the yeast nucleus

    NASA Astrophysics Data System (ADS)

    Hozé, Nathanaël; Holcman, David

    2012-01-01

    We develop a coagulation-fragmentation model to study a system composed of a small number of stochastic objects moving in a confined domain, that can aggregate upon binding to form local clusters of arbitrary sizes. A cluster can also dissociate into two subclusters with a uniform probability. To study the statistics of clusters, we combine a Markov chain analysis with a partition number approach. Interestingly, we obtain explicit formulas for the size and the number of clusters in terms of hypergeometric functions. Finally, we apply our analysis to study the statistical physics of telomeres (ends of chromosomes) clustering in the yeast nucleus and show that the diffusion-coagulation-fragmentation process can predict the organization of telomeres.

  20. Structural study, NCA, FT-IR, FT-Raman spectral investigations, NBO analysis, thermodynamic functions of N-acetyl-l-phenylalanine.

    PubMed

    Raja, B; Balachandran, V; Revathi, B

    2015-03-05

    The FT-IR and FT-Raman spectra of N-acetyl-l-phenylalanine were recorded and analyzed. Natural bond orbital analysis has been carried out for various intramolecular interactions that are responsible for the stabilization of the molecule. HOMO-LUMO energy gap has been computed with the help of density functional theory. The statistical thermodynamic functions (heat capacity, entropy, vibrational partition function and Gibbs energy) were obtained for the range of temperature 100-1000K. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the experimental and theoretical spectra values provides important information about the ability of the computational method to describe the vibrational modes. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Automatically visualise and analyse data on pathways using PathVisioRPC from any programming environment.

    PubMed

    Bohler, Anwesha; Eijssen, Lars M T; van Iersel, Martijn P; Leemans, Christ; Willighagen, Egon L; Kutmon, Martina; Jaillard, Magali; Evelo, Chris T

    2015-08-23

    Biological pathways are descriptive diagrams of biological processes widely used for functional analysis of differentially expressed genes or proteins. Primary data analysis, such as quality control, normalisation, and statistical analysis, is often performed in scripting languages like R, Perl, and Python. Subsequent pathway analysis is usually performed using dedicated external applications. Workflows involving manual use of multiple environments are time consuming and error prone. Therefore, tools are needed that enable pathway analysis directly within the same scripting languages used for primary data analyses. Existing tools have limited capability in terms of available pathway content, pathway editing and visualisation options, and export file formats. Consequently, making the full-fledged pathway analysis tool PathVisio available from various scripting languages will benefit researchers. We developed PathVisioRPC, an XMLRPC interface for the pathway analysis software PathVisio. PathVisioRPC enables creating and editing biological pathways, visualising data on pathways, performing pathway statistics, and exporting results in several image formats in multiple programming environments. We demonstrate PathVisioRPC functionalities using examples in Python. Subsequently, we analyse a publicly available NCBI GEO gene expression dataset studying tumour bearing mice treated with cyclophosphamide in R. The R scripts demonstrate how calls to existing R packages for data processing and calls to PathVisioRPC can directly work together. To further support R users, we have created RPathVisio simplifying the use of PathVisioRPC in this environment. We have also created a pathway module for the microarray data analysis portal ArrayAnalysis.org that calls the PathVisioRPC interface to perform pathway analysis. This module allows users to use PathVisio functionality online without having to download and install the software and exemplifies how the PathVisioRPC interface can be used by data analysis pipelines for functional analysis of processed genomics data. PathVisioRPC enables data visualisation and pathway analysis directly from within various analytical environments used for preliminary analyses. It supports the use of existing pathways from WikiPathways or pathways created using the RPC itself. It also enables automation of tasks performed using PathVisio, making it useful to PathVisio users performing repeated visualisation and analysis tasks. PathVisioRPC is freely available for academic and commercial use at http://projects.bigcat.unimaas.nl/pathvisiorpc.

  2. Probability density function formalism for optical coherence tomography signal analysis: a controlled phantom study.

    PubMed

    Weatherbee, Andrew; Sugita, Mitsuro; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex

    2016-06-15

    The distribution of backscattered intensities as described by the probability density function (PDF) of tissue-scattered light contains information that may be useful for tissue assessment and diagnosis, including characterization of its pathology. In this Letter, we examine the PDF description of the light scattering statistics in a well characterized tissue-like particulate medium using optical coherence tomography (OCT). It is shown that for low scatterer density, the governing statistics depart considerably from a Gaussian description and follow the K distribution for both OCT amplitude and intensity. The PDF formalism is shown to be independent of the scatterer flow conditions; this is expected from theory, and suggests robustness and motion independence of the OCT amplitude (and OCT intensity) PDF metrics in the context of potential biomedical applications.

  3. EvolQG - An R package for evolutionary quantitative genetics

    PubMed Central

    Melo, Diogo; Garcia, Guilherme; Hubbe, Alex; Assis, Ana Paula; Marroig, Gabriel

    2016-01-01

    We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the \\textbf{EvolQG} package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification. PMID:27785352

  4. Effects of a finite outer scale on the measurement of atmospheric-turbulence statistics with a Hartmann wave-front sensor.

    PubMed

    Feng, Shen; Wenhan, Jiang

    2002-06-10

    Phase-structure and aperture-averaged slope-correlated functions with a finite outer scale are derived based on the Taylor hypothesis and a generalized spectrum, such as the von Kármán modal. The effects of the finite outer scale on measuring and determining the character of atmospheric-turbulence statistics are shown especially for an approximately 4-m class telescope and subaperture. The phase structure function and atmospheric coherent length based on the Kolmogorov model are approximations of the formalism we have derived. The analysis shows that it cannot be determined whether the deviation from the power-law parameter of Kolmogorov turbulence is caused by real variations of the spectrum or by the effect of the finite outer scale.

  5. Cognitive predictors of balance in Parkinson's disease.

    PubMed

    Fernandes, Ângela; Mendes, Andreia; Rocha, Nuno; Tavares, João Manuel R S

    2016-06-01

    Postural instability is one of the most incapacitating symptoms of Parkinson's disease (PD) and appears to be related to cognitive deficits. This study aims to determine the cognitive factors that can predict deficits in static and dynamic balance in individuals with PD. A sociodemographic questionnaire characterized 52 individuals with PD for this work. The Trail Making Test, Rule Shift Cards Test, and Digit Span Test assessed the executive functions. The static balance was assessed using a plantar pressure platform, and dynamic balance was based on the Timed Up and Go Test. The results were statistically analysed using SPSS Statistics software through linear regression analysis. The results show that a statistically significant model based on cognitive outcomes was able to explain the variance of motor variables. Also, the explanatory value of the model tended to increase with the addition of individual and clinical variables, although the resulting model was not statistically significant The model explained 25-29% of the variability of the Timed Up and Go Test, while for the anteroposterior displacement it was 23-34%, and for the mediolateral displacement it was 24-39%. From the findings, we conclude that the cognitive performance, especially the executive functions, is a predictor of balance deficit in individuals with PD.

  6. Experiments with a three-dimensional statistical objective analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, Wayman E.; Bloom, Stephen C.; Woollen, John S.; Nestler, Mark S.; Brin, Eugenia

    1987-01-01

    A three-dimensional (3D), multivariate, statistical objective analysis scheme (referred to as optimum interpolation or OI) has been developed for use in numerical weather prediction studies with the FGGE data. Some novel aspects of the present scheme include: (1) a multivariate surface analysis over the oceans, which employs an Ekman balance instead of the usual geostrophic relationship, to model the pressure-wind error cross correlations, and (2) the capability to use an error correlation function which is geographically dependent. A series of 4-day data assimilation experiments are conducted to examine the importance of some of the key features of the OI in terms of their effects on forecast skill, as well as to compare the forecast skill using the OI with that utilizing a successive correction method (SCM) of analysis developed earlier. For the three cases examined, the forecast skill is found to be rather insensitive to varying the error correlation function geographically. However, significant differences are noted between forecasts from a two-dimensional (2D) version of the OI and those from the 3D OI, with the 3D OI forecasts exhibiting better forecast skill. The 3D OI forecasts are also more accurate than those from the SCM initial conditions. The 3D OI with the multivariate oceanic surface analysis was found to produce forecasts which were slightly more accurate, on the average, than a univariate version.

  7. Evaluation of sexual functions of the pregnant women.

    PubMed

    Tosun Güleroğlu, Funda; Gördeles Beşer, Nalan

    2014-01-01

    Pregnant women may avoid sexual intercourse or may unavoidably undergo problems in their sexual lives because of various complaints they suffer from. The study aims to evaluate sexual functions of the pregnant women and to determine the factors that negatively affect their sexual health. This is a descriptive research study conducted to evaluate sexual functions of pregnant women. Three hundred six pregnant women admitted to the Women Birth Polyclinics within the Women Birth and Children's Hospital between October 1, 2010 and March 31, 2011 were included in the study. The data were gathered using a personal information form and the Female Sexual Function Index (FSFI). Kruskall-Wallis variance analysis and Mann-Whitney U-tests were used for the statistical analysis. The main outcome is an assessment of the FSFI domains in pregnancy and relationships between pregnancy complaints and sexual functions. The results indicated that the mean age of the pregnant women was 25.6 ± 5.4 and their length of marriage was 5.93 ± 5.4 years. The study revealed that 88.9% of the pregnant women had sexual desire disorders, 86.9% had sexual arousal disorder, 42.8% had lubrication disorders, 69.6% had orgasm disorders, and 48% had sexual satisfaction disorders. Statistically significant differences were found in correlations between FSFI medians and the characteristics of the pregnant women in terms of age, educational level, length and type of marriage, and gestational week. There were also statistically significant differences in correlations between the pregnancy characteristics in terms of backache, constipation, respiratory difficulty, leg ache, and cramp problems (P < 0.05). It was determined that the sexual lives of the pregnant women were negatively affected not only by factors such as old age, low educational status, arranged marriages lasting for more than 10 years, undesired pregnancy, and gestational week but also by health problems such as backache, constipation, respiratory difficulty, leg ache, and cramp problems. © 2013 International Society for Sexual Medicine.

  8. Feature-Based Statistical Analysis of Combustion Simulation Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J; Krishnamoorthy, V; Liu, S

    2011-11-18

    We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing andmore » reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains.« less

  9. An automated multi-scale network-based scheme for detection and location of seismic sources

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  10. A user-friendly workflow for analysis of Illumina gene expression bead array data available at the arrayanalysis.org portal.

    PubMed

    Eijssen, Lars M T; Goelela, Varshna S; Kelder, Thomas; Adriaens, Michiel E; Evelo, Chris T; Radonjic, Marijana

    2015-06-30

    Illumina whole-genome expression bead arrays are a widely used platform for transcriptomics. Most of the tools available for the analysis of the resulting data are not easily applicable by less experienced users. ArrayAnalysis.org provides researchers with an easy-to-use and comprehensive interface to the functionality of R and Bioconductor packages for microarray data analysis. As a modular open source project, it allows developers to contribute modules that provide support for additional types of data or extend workflows. To enable data analysis of Illumina bead arrays for a broad user community, we have developed a module for ArrayAnalysis.org that provides a free and user-friendly web interface for quality control and pre-processing for these arrays. This module can be used together with existing modules for statistical and pathway analysis to provide a full workflow for Illumina gene expression data analysis. The module accepts data exported from Illumina's GenomeStudio, and provides the user with quality control plots and normalized data. The outputs are directly linked to the existing statistics module of ArrayAnalysis.org, but can also be downloaded for further downstream analysis in third-party tools. The Illumina bead arrays analysis module is available at http://www.arrayanalysis.org . A user guide, a tutorial demonstrating the analysis of an example dataset, and R scripts are available. The module can be used as a starting point for statistical evaluation and pathway analysis provided on the website or to generate processed input data for a broad range of applications in life sciences research.

  11. A wavelet-based estimator of the degrees of freedom in denoised fMRI time series for probabilistic testing of functional connectivity and brain graphs.

    PubMed

    Patel, Ameera X; Bullmore, Edward T

    2016-11-15

    Connectome mapping using techniques such as functional magnetic resonance imaging (fMRI) has become a focus of systems neuroscience. There remain many statistical challenges in analysis of functional connectivity and network architecture from BOLD fMRI multivariate time series. One key statistic for any time series is its (effective) degrees of freedom, df, which will generally be less than the number of time points (or nominal degrees of freedom, N). If we know the df, then probabilistic inference on other fMRI statistics, such as the correlation between two voxel or regional time series, is feasible. However, we currently lack good estimators of df in fMRI time series, especially after the degrees of freedom of the "raw" data have been modified substantially by denoising algorithms for head movement. Here, we used a wavelet-based method both to denoise fMRI data and to estimate the (effective) df of the denoised process. We show that seed voxel correlations corrected for locally variable df could be tested for false positive connectivity with better control over Type I error and greater specificity of anatomical mapping than probabilistic connectivity maps using the nominal degrees of freedom. We also show that wavelet despiked statistics can be used to estimate all pairwise correlations between a set of regional nodes, assign a P value to each edge, and then iteratively add edges to the graph in order of increasing P. These probabilistically thresholded graphs are likely more robust to regional variation in head movement effects than comparable graphs constructed by thresholding correlations. Finally, we show that time-windowed estimates of df can be used for probabilistic connectivity testing or dynamic network analysis so that apparent changes in the functional connectome are appropriately corrected for the effects of transient noise bursts. Wavelet despiking is both an algorithm for fMRI time series denoising and an estimator of the (effective) df of denoised fMRI time series. Accurate estimation of df offers many potential advantages for probabilistically thresholding functional connectivity and network statistics tested in the context of spatially variant and non-stationary noise. Code for wavelet despiking, seed correlational testing and probabilistic graph construction is freely available to download as part of the BrainWavelet Toolbox at www.brainwavelet.org. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. New robust statistical procedures for the polytomous logistic regression models.

    PubMed

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  13. Influence of nonlinear effects on statistical properties of the radiation from SASE FEL

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1998-02-01

    The paper presents analysis of statistical properties of the radiation from self-amplified spontaneous emission (SASE) free-electron laser operating in nonlinear mode. The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. It has been observed that the statistics of the instantaneous radiation power from SASE FEL operating in the nonlinear regime changes significantly with respect to the linear regime. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility under construction at DESY.

  14. Zebra: a web server for bioinformatic analysis of diverse protein families.

    PubMed

    Suplatov, Dmitry; Kirilin, Evgeny; Takhaveev, Vakil; Svedas, Vytas

    2014-01-01

    During evolution of proteins from a common ancestor, one functional property can be preserved while others can vary leading to functional diversity. A systematic study of the corresponding adaptive mutations provides a key to one of the most challenging problems of modern structural biology - understanding the impact of amino acid substitutions on protein function. The subfamily-specific positions (SSPs) are conserved within functional subfamilies but are different between them and, therefore, seem to be responsible for functional diversity in protein superfamilies. Consequently, a corresponding method to perform the bioinformatic analysis of sequence and structural data has to be implemented in the common laboratory practice to study the structure-function relationship in proteins and develop novel protein engineering strategies. This paper describes Zebra web server - a powerful remote platform that implements a novel bioinformatic analysis algorithm to study diverse protein families. It is the first application that provides specificity determinants at different levels of functional classification, therefore addressing complex functional diversity of large superfamilies. Statistical analysis is implemented to automatically select a set of highly significant SSPs to be used as hotspots for directed evolution or rational design experiments and analyzed studying the structure-function relationship. Zebra results are provided in two ways - (1) as a single all-in-one parsable text file and (2) as PyMol sessions with structural representation of SSPs. Zebra web server is available at http://biokinet.belozersky.msu.ru/zebra .

  15. Reversibility of trapped air on chest computed tomography in cystic fibrosis patients.

    PubMed

    Loeve, Martine; Rosenow, Tim; Gorbunova, Vladlena; Hop, Wim C J; Tiddens, Harm A W M; de Bruijne, Marleen

    2015-06-01

    To investigate changes in trapped air volume and distribution over time and compare computed tomography (CT) with pulmonary function tests for determining trapped air. Thirty children contributed two CTs and pulmonary function tests over 2 years. Localized changes in trapped air on CT were assessed using image analysis software, by deforming the CT at timepoint 2 to match timepoint 1, and measuring the volume of stable (TAstable), disappeared (TAdisappeared) and new (TAnew) trapped air as a proportion of total lung volume. We used the difference between total lung capacity measured by plethysmography and helium dilution, residual volume to total lung capacity ratio, forced expiratory flow at 75% of vital capacity, and maximum mid-expiratory flow as pulmonary function test markers of trapped air. Statistical analysis included Wilcoxon's signed rank test and Spearman correlation coefficients. Median (range) age at baseline was 11.9 (5-17) years. Median (range) of trapped air was 9.5 (2-33)% at timepoint 1 and 9.0 (0-25)% at timepoint 2 (p=0.49). Median (range) TAstable, TAdisappeared and TAnew were respectively 3.0 (0-12)%, 5.0 (1-22)% and 7.0 (0-20)%. Trapped air on CT correlated statistically significantly with all pulmonary function measures (p<0.01), other than residual volume to total lung capacity ratio (p=0.37). Trapped air on CT did not significantly progress over 2 years, may have a substantial stable component, and is significantly correlated with pulmonary function markers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. A Latent Class Analysis of Pathological-Gambling Criteria Among High School Students: Associations With Gambling, Risk and Health/Functioning Characteristics

    PubMed Central

    Kong, Grace; Tsai, Jack; Krishnan-Sarin, Suchitra; Cavallo, Dana A.; Hoff, Rani A.; Steinberg, Marvin A.; Rugle, Loreen; Potenza, Marc N.

    2015-01-01

    Objectives To identify subtypes of adolescent gamblers based on the 10 Diagnostic and Statistical Manual of Mental Disorders, fourth edition criteria for pathological gambling and the 9 Diagnostic and Statistical Manual of Mental Disorders, fifth edition criteria for gambling disorder and to examine associations between identified subtypes with gambling, other risk behaviors, and health/functioning characteristics. Methods Using cross-sectional survey data from 10 high schools in Connecticut (N = 3901), we conducted latent class analysis to classify adolescents who reported past-year gambling into gambling groups on the basis of items from the Massachusetts Gambling Screen. Adolescents also completed questions assessing demographic information, substance use (cigarette, marijuana, alcohol, and other drugs), gambling behaviors (relating to gambling formats, locations, motivations, and urges), and health/functioning characteristics (eg, extracurricular activities, mood, aggression, and body mass index). Results The optimal solution consisted of 4 classes that we termed low-risk gambling (86.4%), at-risk chasing gambling (7.6%), at-risk negative consequences gambling (3.7%), and problem gambling (PrG) (2.3%). At-risk and PrG classes were associated with greater negative functioning and more gambling behaviors. Different patterns of associations between at-risk and PrG classes were also identified. Conclusions Adolescent gambling classifies into 4 classes, which are differentially associated with demographic, gambling patterns, risk behaviors, and health/functioning characteristics. Early identification and interventions for adolescent gamblers should be sensitive to the heterogeneity of gambling subtypes. PMID:25275877

  17. Pulse gas chromatographic study of adsorption of substituted aromatics and heterocyclic molecules on MIL-47 at zero coverage.

    PubMed

    Duerinck, Tim; Couck, Sarah; Vermoortele, Frederik; De Vos, Dirk E; Baron, Gino V; Denayer, Joeri F M

    2012-10-02

    The low coverage adsorptive properties of the MIL-47 metal organic framework toward aromatic and heterocyclic molecules are reported in this paper. The effect of molecular functionality and size on Henry adsorption constants and adsorption enthalpies of alkyl and heteroatom functionalized benzene derivates and heterocyclic molecules was studied using pulse gas chromatography. By means of statistical analysis, experimental data was analyzed and modeled using principal component analysis and partial least-squares regression. Structure-property relationships were established, revealing and confirming several trends. Among the molecular properties governing the adsorption process, vapor pressure, mean polarizability, and dipole moment play a determining role.

  18. Higher Order Analysis of Turbulent Changes Found in the ELF Range Electric Field Plasma Before Major Earthquakes

    NASA Astrophysics Data System (ADS)

    Kosciesza, M.; Blecki, J. S.; Parrot, M.

    2014-12-01

    We report the structure function analysis of changes found in electric field in the ELF range plasma turbulence registered in the ionosphere over epicenter region of major earthquakes with depth less than 40 km that took place during 6.5 years of the scientific mission of the DEMETER satellite. We compare the data for the earthquakes for which we found turbulence with events without any turbulent changes. The structure functions were calculated also for the Polar CUSP region and equatorial spread F region. Basic studies of the turbulent processes were conducted with use of higher order spectra and higher order statistics. The structure function analysis was performed to locate and check if there are intermittent behaviors in the ionospheres plasma over epicenter region of the earthquakes. These registrations are correlated with the plasma parameters measured onboard DEMETER satellite and with geomagnetic indices.

  19. Tract-based Spatial Statistics and fMRI Analysis in Patients with Small Cell Lung Cancer before Prophylactic Cranial Irradiation

    NASA Astrophysics Data System (ADS)

    Benezi, S.; Bromis, K.; Karavasilis, E.; Karanasiou, I. S.; Koutsoupidou, M.; Matsopoulos, G.; Ventouras, E.; Uzunoglu, N.; Kouloulias, V.; Papathanasiou, M.; Foteineas, A.; Efstathopoulos, E.; Kelekis, N.; Kelekis, D.

    2015-09-01

    Prophylactic cranial irradiation (PCI) is known to increase life expectancy to a significant degree in Small Cell Lung Cancer (SCLC) patients. The overall scope of this research is to investigate changes in structural and functional connectivity between SCLC patients and controls before and after PCI treatment. In the current study specifically we use diffusion tensor imaging (DTI) and functional Magnetic Resonance (fMRI) to identify potential alterations in white matter structure and brain function respectively, in SCLC patients before PCI compared to healthy participants. The results in DTI analysis have showed lower fractional anisotropy (FA) and higher eigenvalues in white matter regions in the patient group. Similarly, in fMRI analysis a lower level of activation in the primary somatosensory cortex was reported. The results presented herein are subject to further investigation with larger patient and control groups.

  20. DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI.

    PubMed

    Chao-Gan, Yan; Yu-Feng, Zang

    2010-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has attracted more and more attention because of its effectiveness, simplicity and non-invasiveness in exploration of the intrinsic functional architecture of the human brain. However, user-friendly toolbox for "pipeline" data analysis of resting-state fMRI is still lacking. Based on some functions in Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST), we have developed a MATLAB toolbox called Data Processing Assistant for Resting-State fMRI (DPARSF) for "pipeline" data analysis of resting-state fMRI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), and fractional ALFF. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest.

  1. Proof of Concept Study to Assess Fetal Gene Expression in Amniotic Fluid by NanoArray PCR

    PubMed Central

    Massingham, Lauren J.; Johnson, Kirby L.; Bianchi, Diana W.; Pei, Shermin; Peter, Inga; Cowan, Janet M.; Tantravahi, Umadevi; Morrison, Tom B.

    2011-01-01

    Microarray analysis of cell-free RNA in amniotic fluid (AF) supernatant has revealed differential fetal gene expression as a function of gestational age and karyotype. Once informative genes are identified, research moves to a more focused platform such as quantitative reverse transcriptase-PCR. Standardized NanoArray PCR (SNAP) is a recently developed gene profiling technology that enables the measurement of transcripts from samples containing reduced quantities or degraded nucleic acids. We used a previously developed SNAP gene panel as proof of concept to determine whether fetal functional gene expression could be ascertained from AF supernatant. RNA was extracted and converted to cDNA from 19 AF supernatant samples of euploid fetuses between 15 to 20 weeks of gestation, and transcript abundance of 21 genes was measured. Statistically significant differences in expression, as a function of advancing gestational age, were observed for 5 of 21 genes. ANXA5, GUSB, and PPIA showed decreasing gene expression over time, whereas CASC3 and ZNF264 showed increasing gene expression over time. Statistically significantly increased expression of MTOR and STAT2 was seen in female compared with male fetuses. This study demonstrates the feasibility of focused fetal gene expression analysis using SNAP technology. In the future, this technique could be optimized to examine specific genes instrumental in fetal organ system function, which could be a useful addition to prenatal care. PMID:21827969

  2. [Greater level of physical activity associated with better cognitive function in hemodialysis in end stage renal disease].

    PubMed

    Stringuetta-Belik, Fernanda; Shiraishi, Flávio Gobbis; Oliveira e Silva, Viviana Rugolo; Barretti, Pasqual; Caramori, Jacqueline Costa Teixeira; Bôas, Paulo José Fortes Villas; Martin, Luis Cuadrado; Franco, Roberto Jorge da Silva

    2012-01-01

    Patients with chronic kidney disease (CKD) have a lower exercise tolerance and poor functional capacity, carry on a sedentary lifestyle. Another important change found in patients with CKD is cognitive dysfunction. Physical inactivity has been associated with cognitive dysfunction in the general population, but few studies have evaluated this association in CKD. To assess the association between physical activity and cognitive function in patients with CKD on hemodialysis (HD). We evaluated 102 patients undergoing HD. The participants completed the International Physical Activity Questionnaire, which assesses the level of physical activity and the Mini Mental State Examination, used for cognitive screening. Patients were divided into three groups according to their level of physical activity (GI: active/GII: irregularly active/GIII: sedentary). It was applied logistic regression analysis and adopted as outcome variable the presence of cognitive impairment and preserving as independent variables those with a probability of statistical difference between groups of less than 0.1. It was considered statistically significant when p less than 0.05. The groups were similar in age, duration of HD, and smoking. Statistically significant difference regarding race, body mass index, diabetes mellitus, underlying disease and degree of cognitive impairment. Regarding laboratory data, the groups differed in terms of creatinine, glucose, hemoglobin and hematocrit. There was significant association with better physical activity and cognitive function, even adjusting for confounding variables. the highest level of physical activity was associated with better cognitive function in CKD patients undergoing HD.

  3. [Vulnerability to atmospheric and geomagnetic factors of the body functions in healthy male dwellers of the Russian North].

    PubMed

    Markov, A L; Zenchenko, T A; Solonin, Iu G; Boĭko, E R

    2013-01-01

    In April 2009 through to November 2011, a Mars-500 satellite study of Russian Northerners (Syktyvkar citizens) was performed using the standard ECOSAN-2007 procedure evaluating the atmospheric and geomagnetic susceptibility of the main body functional parameters. Seventeen essentially healthy men at the age of 25 to 46 years were investigated. Statistical data treatment included correlation and single-factor analysis of variance. Comparison of the number of statistical correlations of the sum of all functional parameters for participants showed that most often they were sensitive to atmospheric pressure, temperature, relative humidity and oxygen partial pressure (29-35 %), and geomagnetic activity (28 %). Dependence of the functional parameters on the rate of temperature and pressure change was weak and comparable with random coincidence (11 %). Among the hemodynamic parameters, systolic pressure was particularly sensitive to space and terrestrial weather variations (29 %); sensitivity of heart rate and diastolic pressure were determined in 25 % and 21 % of participants, respectively. Among the heart rate variability parameters (HRV) the largest number of statistically reliable correlations was determined for the centralization index (32 %) and high-frequency HRV spectrum (31 %); index of the regulatory systems activity was least dependable (19 %). Life index, maximal breath-holding and Ckibinskaya's cardiorespiratory index are also susceptible. Individual responses of the functional parameters to terrestrial and space weather changes varied with partidpants which points to the necessity of individual approach to evaluation of person's reactions to environmental changes.

  4. In silico identification and comparative analysis of differentially expressed genes in human and mouse tissues

    PubMed Central

    Pao, Sheng-Ying; Lin, Win-Li; Hwang, Ming-Jing

    2006-01-01

    Background Screening for differentially expressed genes on the genomic scale and comparative analysis of the expression profiles of orthologous genes between species to study gene function and regulation are becoming increasingly feasible. Expressed sequence tags (ESTs) are an excellent source of data for such studies using bioinformatic approaches because of the rich libraries and tremendous amount of data now available in the public domain. However, any large-scale EST-based bioinformatics analysis must deal with the heterogeneous, and often ambiguous, tissue and organ terms used to describe EST libraries. Results To deal with the issue of tissue source, in this work, we carefully screened and organized more than 8 million human and mouse ESTs into 157 human and 108 mouse tissue/organ categories, to which we applied an established statistic test using different thresholds of the p value to identify genes differentially expressed in different tissues. Further analysis of the tissue distribution and level of expression of human and mouse orthologous genes showed that tissue-specific orthologs tended to have more similar expression patterns than those lacking significant tissue specificity. On the other hand, a number of orthologs were found to have significant disparity in their expression profiles, hinting at novel functions, divergent regulation, or new ortholog relationships. Conclusion Comprehensive statistics on the tissue-specific expression of human and mouse genes were obtained in this very large-scale, EST-based analysis. These statistical results have been organized into a database, freely accessible at our website , for easy searching of human and mouse tissue-specific genes and for investigating gene expression profiles in the context of comparative genomics. Comparative analysis showed that, although highly tissue-specific genes tend to exhibit similar expression profiles in human and mouse, there are significant exceptions, indicating that orthologous genes, while sharing basic genomic properties, could result in distinct phenotypes. PMID:16626500

  5. Statistical methods to estimate treatment effects from multichannel electroencephalography (EEG) data in clinical trials.

    PubMed

    Ma, Junshui; Wang, Shubing; Raubertas, Richard; Svetnik, Vladimir

    2010-07-15

    With the increasing popularity of using electroencephalography (EEG) to reveal the treatment effect in drug development clinical trials, the vast volume and complex nature of EEG data compose an intriguing, but challenging, topic. In this paper the statistical analysis methods recommended by the EEG community, along with methods frequently used in the published literature, are first reviewed. A straightforward adjustment of the existing methods to handle multichannel EEG data is then introduced. In addition, based on the spatial smoothness property of EEG data, a new category of statistical methods is proposed. The new methods use a linear combination of low-degree spherical harmonic (SPHARM) basis functions to represent a spatially smoothed version of the EEG data on the scalp, which is close to a sphere in shape. In total, seven statistical methods, including both the existing and the newly proposed methods, are applied to two clinical datasets to compare their power to detect a drug effect. Contrary to the EEG community's recommendation, our results suggest that (1) the nonparametric method does not outperform its parametric counterpart; and (2) including baseline data in the analysis does not always improve the statistical power. In addition, our results recommend that (3) simple paired statistical tests should be avoided due to their poor power; and (4) the proposed spatially smoothed methods perform better than their unsmoothed versions. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Application of Maxent Multivariate Analysis to Define Climate-Change Effects on Species Distributions and Changes

    DTIC Science & Technology

    2014-09-01

    approaches. Ecological Modelling Volume 200, Issues 1–2, 10, pp 1–19. Buhlmann, Kurt A ., Thomas S.B. Akre , John B. Iverson, Deno Karapatakis, Russell A ...statistical multivariate analysis to define the current and projected future range probability for species of interest to Army land managers. A software...15 Figure 4. RCW omission rate and predicted area as a function of the cumulative threshold

  7. Sensitivity analysis of navy aviation readiness based sparing model

    DTIC Science & Technology

    2017-09-01

    variability. (See Figure 4.) Figure 4. Research design flowchart 18 Figure 4 lays out the four steps of the methodology , starting in the upper left-hand...as a function of changes in key inputs. We develop NAVARM Experimental Designs (NED), a computational tool created by applying a state-of-the-art...experimental design to the NAVARM model. Statistical analysis of the resulting data identifies the most influential cost factors. Those are, in order of

  8. A polynomial-chaos-expansion-based building block approach for stochastic analysis of photonic circuits

    NASA Astrophysics Data System (ADS)

    Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Grassi, Flavia; Melloni, Andrea

    2018-02-01

    The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic circuit example with multiple uncertain variables.

  9. Failure Mode Identification Through Clustering Analysis

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.

  10. Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristopher; Brown, Jesse A.; ...

    2016-05-09

    Here, we present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams, and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parametersmore » gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. In order to demonstrate the utility of our tool, we also present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval« less

  11. Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugesan, Sugeerth; Bouchard, Kristopher; Brown, Jesse A.

    Here, we present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams, and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parametersmore » gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. In order to demonstrate the utility of our tool, we also present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval« less

  12. Evaluation of orthognathic surgery on articular disc position and temporomandibular joint symptoms in skeletal class II patients: A Magnetic Resonance Imaging study.

    PubMed

    Firoozei, Gholamreza; Shahnaseri, Shirin; Momeni, Hasan; Soltani, Parisa

    2017-08-01

    The purpose of orthognathic surgery is to correct facial deformity and dental malocclusion and to obtain normal orofacial function. However, there are controversies of whether orthognathic surgery might have any negative influence on temporomandibular (TM) joint. The purpose of this study was to evaluate the influence of orthognathic surgery on articular disc position and temporomandibular joint symptoms of skeletal CI II patients by means of magnetic resonance imaging. For this purpose, fifteen patients with skeletal CI II malocclusion, aged 19-32 years (mean 23 years), 10 women and 5 men, from the Isfahan Department of Oral and Maxillofacial Surgery were studied. All received LeFort I and bilateral sagittal split osteotomy (BSSO) osteotomies and all patients received pre- and post-surgical orthodontic treatment. Magnetic resonance imaging was performed 1 day preoperatively and 3 month postoperatively. Descriptive statistics and Wilcoxon and Mc-Nemar tests were used for statistical analysis. P <0.05 was considered significant. Disc position ranged between 4.25 and 8.09 prior to surgery (mean=5.74±1.21). After surgery disc position range was 4.36 to 7.40 (mean=5.65±1.06). Statistical analysis proved that although TM disc tended to move anteriorly after BSSO surgery, this difference was not statistically significant ( p value<0.05). The findings of the present study revealed that orthognathic surgery does not alter the disc and condyle relationship. Therefore, it has minimal effects on intact and functional TM joint. Key words: Orthognathic surgery, skeletal class 2, magnetic resonance imaging, temporomandibular disc.

  13. Effects of measurement errors on psychometric measurements in ergonomics studies: Implications for correlations, ANOVA, linear regression, factor analysis, and linear discriminant analysis.

    PubMed

    Liu, Yan; Salvendy, Gavriel

    2009-05-01

    This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.

  14. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers.

    PubMed

    D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco

    2015-09-01

    The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.

  15. Solution identification and quantitative analysis of fiber-capacitive drop analyzer based on multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua

    2017-03-01

    A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.

  16. A PDF-based classification of gait cadence patterns in patients with amyotrophic lateral sclerosis.

    PubMed

    Wu, Yunfeng; Ng, Sin Chun

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) is a type of neurological disease due to the degeneration of motor neurons. During the course of such a progressive disease, it would be difficult for ALS patients to regulate normal locomotion, so that the gait stability becomes perturbed. This paper presents a pilot statistical study on the gait cadence (or stride interval) in ALS, based on the statistical analysis method. The probability density functions (PDFs) of stride interval were first estimated with the nonparametric Parzen-window method. We computed the mean of the left-foot stride interval and the modified Kullback-Leibler divergence (MKLD) from the PDFs estimated. The analysis results suggested that both of these two statistical parameters were significantly altered in ALS, and the least-squares support vector machine (LS-SVM) may effectively distinguish the stride patterns between the ALS patients and healthy controls, with an accurate rate of 82.8% and an area of 0.87 under the receiver operating characteristic curve.

  17. Statistical functions and relevant correlation coefficients of clearness index

    NASA Astrophysics Data System (ADS)

    Pavanello, Diego; Zaaiman, Willem; Colli, Alessandra; Heiser, John; Smith, Scott

    2015-08-01

    This article presents a statistical analysis of the sky conditions, during years from 2010 to 2012, for three different locations: the Joint Research Centre site in Ispra (Italy, European Solar Test Installation - ESTI laboratories), the site of National Renewable Energy Laboratory in Golden (Colorado, USA) and the site of Brookhaven National Laboratories in Upton (New York, USA). The key parameter is the clearness index kT, a dimensionless expression of the global irradiance impinging upon a horizontal surface at a given instant of time. In the first part, the sky conditions are characterized using daily averages, giving a general overview of the three sites. In the second part the analysis is performed using data sets with a short-term resolution of 1 sample per minute, demonstrating remarkable properties of the statistical distributions of the clearness index, reinforced by a proof using fuzzy logic methods. Successively some time-dependent correlations between different meteorological variables are presented in terms of Pearson and Spearman correlation coefficients, and introducing a new one.

  18. Peculiarities of the statistics of spectrally selected fluorescence radiation in laser-pumped dye-doped random media

    NASA Astrophysics Data System (ADS)

    Yuvchenko, S. A.; Ushakova, E. V.; Pavlova, M. V.; Alonova, M. V.; Zimnyakov, D. A.

    2018-04-01

    We consider the practical realization of a new optical probe method of the random media which is defined as the reference-free path length interferometry with the intensity moments analysis. A peculiarity in the statistics of the spectrally selected fluorescence radiation in laser-pumped dye-doped random medium is discussed. Previously established correlations between the second- and the third-order moments of the intensity fluctuations in the random interference patterns, the coherence function of the probe radiation, and the path difference probability density for the interfering partial waves in the medium are confirmed. The correlations were verified using the statistical analysis of the spectrally selected fluorescence radiation emitted by a laser-pumped dye-doped random medium. Water solution of Rhodamine 6G was applied as the doping fluorescent agent for the ensembles of the densely packed silica grains, which were pumped by the 532 nm radiation of a solid state laser. The spectrum of the mean path length for a random medium was reconstructed.

  19. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment.

    PubMed

    Pasaniuc, Bogdan; Zaitlen, Noah; Shi, Huwenbo; Bhatia, Gaurav; Gusev, Alexander; Pickrell, Joseph; Hirschhorn, Joel; Strachan, David P; Patterson, Nick; Price, Alkes L

    2014-10-15

    Imputation using external reference panels (e.g. 1000 Genomes) is a widely used approach for increasing power in genome-wide association studies and meta-analysis. Existing hidden Markov models (HMM)-based imputation approaches require individual-level genotypes. Here, we develop a new method for Gaussian imputation from summary association statistics, a type of data that is becoming widely available. In simulations using 1000 Genomes (1000G) data, this method recovers 84% (54%) of the effective sample size for common (>5%) and low-frequency (1-5%) variants [increasing to 87% (60%) when summary linkage disequilibrium information is available from target samples] versus the gold standard of 89% (67%) for HMM-based imputation, which cannot be applied to summary statistics. Our approach accounts for the limited sample size of the reference panel, a crucial step to eliminate false-positive associations, and it is computationally very fast. As an empirical demonstration, we apply our method to seven case-control phenotypes from the Wellcome Trust Case Control Consortium (WTCCC) data and a study of height in the British 1958 birth cohort (1958BC). Gaussian imputation from summary statistics recovers 95% (105%) of the effective sample size (as quantified by the ratio of [Formula: see text] association statistics) compared with HMM-based imputation from individual-level genotypes at the 227 (176) published single nucleotide polymorphisms (SNPs) in the WTCCC (1958BC height) data. In addition, for publicly available summary statistics from large meta-analyses of four lipid traits, we publicly release imputed summary statistics at 1000G SNPs, which could not have been obtained using previously published methods, and demonstrate their accuracy by masking subsets of the data. We show that 1000G imputation using our approach increases the magnitude and statistical evidence of enrichment at genic versus non-genic loci for these traits, as compared with an analysis without 1000G imputation. Thus, imputation of summary statistics will be a valuable tool in future functional enrichment analyses. Publicly available software package available at http://bogdan.bioinformatics.ucla.edu/software/. bpasaniuc@mednet.ucla.edu or aprice@hsph.harvard.edu Supplementary materials are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Assessment of protein set coherence using functional annotations

    PubMed Central

    Chagoyen, Monica; Carazo, Jose M; Pascual-Montano, Alberto

    2008-01-01

    Background Analysis of large-scale experimental datasets frequently produces one or more sets of proteins that are subsequently mined for functional interpretation and validation. To this end, a number of computational methods have been devised that rely on the analysis of functional annotations. Although current methods provide valuable information (e.g. significantly enriched annotations, pairwise functional similarities), they do not specifically measure the degree of homogeneity of a protein set. Results In this work we present a method that scores the degree of functional homogeneity, or coherence, of a set of proteins on the basis of the global similarity of their functional annotations. The method uses statistical hypothesis testing to assess the significance of the set in the context of the functional space of a reference set. As such, it can be used as a first step in the validation of sets expected to be homogeneous prior to further functional interpretation. Conclusion We evaluate our method by analysing known biologically relevant sets as well as random ones. The known relevant sets comprise macromolecular complexes, cellular components and pathways described for Saccharomyces cerevisiae, which are mostly significantly coherent. Finally, we illustrate the usefulness of our approach for validating 'functional modules' obtained from computational analysis of protein-protein interaction networks. Matlab code and supplementary data are available at PMID:18937846

Top