A Handbook of Sound and Vibration Parameters
1978-09-18
fixed in space. (Reference 1.) no motion atay node Static Divergence: (See Divergence.) Statistical Energy Analysis (SEA): Statistical energy analysis is...parameters of the circuits come from statistics of the vibrational characteristics of the structure. Statistical energy analysis is uniquely successful
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2011-01-01
Comet Enflow is a commercially available, high frequency vibroacoustic analysis software founded on Energy Finite Element Analysis (EFEA) and Energy Boundary Element Analysis (EBEA). Energy Finite Element Analysis (EFEA) was validated on a floor-equipped composite cylinder by comparing EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) and experimental results. Statistical Energy Analysis (SEA) predictions were made using the commercial software program VA One 2009 from ESI Group. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 100 Hz to 4000 Hz.
APPLICATION OF STATISTICAL ENERGY ANALYSIS TO VIBRATIONS OF MULTI-PANEL STRUCTURES.
cylindrical shell are compared with predictions obtained from statistical energy analysis . Generally good agreement is observed. The flow of mechanical...the coefficients of proportionality between power flow and average modal energy difference, which one must know in order to apply statistical energy analysis . No
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 1
1988-10-01
Partial contents: The Quest for Omega = sq root(K/M) -- Notes on the development of vibration analysis; An overview of Statistical Energy analysis ; Its...and inplane vibration transmission in statistical energy analysis ; Vibroacoustic response using the finite element method and statistical energy analysis ; Helium
The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics
1974-08-01
VIKING LANDER DYNAMICS 41 Mr. Joseph C. Pohlen, Martin Marietta Aerospace, Denver, Colorado Structural Dynamics PERFORMANCE OF STATISTICAL ENERGY ANALYSIS 47...aerospace structures. Analytical prediction of these environments is beyond the current scope of classical modal techniques. Statistical energy analysis methods...have been developed that circumvent the difficulties of high-frequency nodal analysis. These statistical energy analysis methods are evaluated
The Shock and Vibration Digest, Volume 17, Number 8
1985-08-01
ate, transmit, and radiate audible sound. dures are based on acoustic power flow, statistical energy analysis (SEA), and modal methods [22-283. A...modified partition area. features of the acoustic field. I.--1 85-1642 Statistical Energy Analysis , Structural Reso- nances, and Beam Networks BUILDING...energy methods, Structural resonance L.J. Lee Heriot-Watt Univ., Chambers St., Edinburgh The statistical energy analysis method is EHI 1HX, Scotland
Experimental Quiet Sprocket Design and Noise Reduction in Tracked Vehicles
1981-04-01
Track and Suspension Noise Reduction Statistical Energy Analysis Mechanical Impedance Measurement Finite Element Modal Analysis\\Noise Sources 2...shape and idler attachment are different. These differen- ces were investigated using the concepts of statistical energy analysis for hull generated noise...element r,’calculated from Statistical Energy Analysis . Such an approach will be valid within reasonable limits for frequencies of about 200 Hz and
Compendium of Methods for Applying Measured Data to Vibration and Acoustic Problems
1985-10-01
statistical energy analysis , finite element models, transfer function...Procedures for the Modal Analysis Method .............................................. 8-22 8.4 Summary of the Procedures for the Statistical Energy Analysis Method... statistical energy analysis . 8-1 • o + . . i... "_+,A" L + "+..• •+A ’! i, + +.+ +• o.+ -ore -+. • -..- , .%..% ". • 2 -".-2- ;.-.’, . o . It is helpful
Vibration Transmission through Rolling Element Bearings in Geared Rotor Systems
1990-11-01
147 4.8 Concluding Remarks ........................................................... 153 V STATISTICAL ENERGY ANALYSIS ............................................ 155...and dynamic finite element techniques are used to develop the discrete vibration models while statistical energy analysis method is used for the broad...bearing system studies, geared rotor system studies, and statistical energy analysis . Each chapter is self sufficient since it is written in a
2009-02-01
range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always
Development of Composite Materials with High Passive Damping Properties
2006-05-15
frequency response function analysis. Sound transmission through sandwich panels was studied using the statistical energy analysis (SEA). Modal density...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of...sheets and the core. 2.2.4 Statistical energy analysis method Finite element models are generally only efficient for problems at low and middle frequencies
The Shock and Vibration Digest. Volume 14, Number 12
1982-12-01
to evaluate the uses of statistical energy analysis for determining sound transmission performance. Coupling loss factors were mea- sured and compared...measurements for the artificial (Also see No. 2623) cracks in mild-steel test pieces. 82-2676 Ihprovement of the Method of Statistical Energy Analysis for...eters, using a large number of free-response time histories In the application of the statistical energy analysis theory simultaneously in one analysis
The Shock and Vibration Digest. Volume 16, Number 1
1984-01-01
investigation of the measure- ment of frequency band average loss factors of structural components for use in the statistical energy analysis method of...stiffness. Matrix methods Key Words: Finite element technique. Statistical energy analysis . Experimental techniques. Framed structures, Com- puter...programs In order to further understand the practical application of the statistical energy analysis , a two section plate-like frame structure is
1987-08-01
HVAC duct hanger system over an extensive frequency range. The finite element, component mode synthesis, and statistical energy analysis methods are...800-5,000 Hz) analysis was conducted with Statistical Energy Analysis (SEA) coupled with a closed-form harmonic beam analysis program. These...resonances may be obtained by using a finer frequency increment. Statistical Energy Analysis The basic assumption used in SEA analysis is that within each band
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 3
1988-10-01
N. F. Rieger Statistical Energy Analysis : An Overview of Its Development and Engineering Applications J. E. Manning DATA BASES DOE/DOD Environmental...Vibroacoustic Response Using the Finite Element Method and Statistical Energy Analysis F. L. Gloyna Study of Helium Effect on Spacecraft Random Vibration...Analysis S. A. Wilkerson vi DYNAMIC ANALYSIS Modeling of Vibration Transmission in a Damped Beam Structure Using Statistical Energy Analysis S. S
2000-04-10
interest. These include Statistical Energy Analysis (SEA), fuzzy structure theory, and approaches combining modal analysis and SEA. Non-determinism...34 arising with increasing frequency. This has led to Statistical Energy Analysis , in which a system is modelled as a collection of coupled subsystems...22. IUTAM Symposium on Statistical Energy Analysis . 1999 Ed. F.J. Fahy and W.G. Price. Kluwer Academic Publishing. • 23. R.S. Langley and P
The Shock and Vibration Digest. Volume 16, Number 3
1984-03-01
Fluid-induced Statistical Energy Analysis Method excitation, Wind tunnel testing V.R. Miller and L.L. Faulkner Flight Dynamics Lab., Air Force...84475 wall by the statistical energy analysis (SEA) method. The fuselage structure is represented as a series of curved, iso- Probabilistic Fracture...heavy are demonstrated in three-dimensional form. floor, a statistical energy analysis (SEA) model is presented. Only structural systems (i.e., no
1990-03-01
equation of the statistical energy analysis (SEA) using the procedure indicated in equation (13) [8, 9]. Similarly, one may state the quantities (. (X-)) and...CONGRESS ON ACOUSTICS, July 24-31 1986, Toronto, Canada, Paper D6-1. 5. CUSCHIERI, J.M., Power flow as a compliment to statistical energy analysis and...34Random response of identical one-dimensional subsystems", Journal of Sound and Vibration, 1980, Vol. 70, p. 343-353. 8. LYON, R.H., Statistical Energy Analysis of
Little Green Lies: Dissecting the Hype of Renewables
2011-05-11
Sources: 2009 BP Statistical Energy Analysis , US Energy Information Administration Per Capita Energy Use (Kg Oil Equivalent) World 1,819 USA 7,766...Equivalent BUILDING STRONG® Energy Trends Sources: 2006 BP Statistical Energy Analysis Oil 37% Nuclear 6o/o Coal 25% Gas 23o/o Biomass 4% Hydro 3% Wind
The Shock and Vibration Digest. Volume 15. Number 1
1983-01-01
acoustics The books are arranged to engineer is statistical energy analysis (SEA). This show the wealth of information that exists and the concept is...is also used for vibrating systems in pie nonlinear elements. However, for systems with a which statistical energy analysis and power flow continuous... statistical energy analysis to analyze the random nonlinear algebraic equations can be difficult. response of two identical subsystems coupled at an end
Research of Extension of the Life Cycle of Helicopter Rotor Blade in Hungary
2003-02-01
Radiography (DXR), and (iii) Vibration Diagnostics (VD) with Statistical Energy Analysis (SEA) were semi- simultaneously applied [1]. The used three...2.2. Vibration Diagnostics (VD)) Parallel to the NDT measurements the Statistical Energy Analysis (SEA) as a vibration diagnostical tool were...noises were analysed with a dual-channel real time frequency analyser (BK2035). In addition to the Statistical Energy Analysis measurement a small
The Shock and Vibration Digest, Volume 14, Number 2, February 1982
1982-02-01
figurations. 75 4J DUCTS 82-424 (Also see No. 346) Coupling Lou Factors for Statistical Energy Analysis of Sound Transnission at Rectangular...waves, Sound waves, Wave props- tures by means of statistical energy analysis (SEA) coupling gation loss factors for the structure-borne sound...multilayered panels are discussed. Statistical energy analysis (SEA) has proved to be a promising Experimental results of stiffened panels, damping tape
Optimal Regulation of Structural Systems with Uncertain Parameters.
1981-02-02
been addressed, in part, by Statistical Energy Analysis . Moti- vated by a concern with high frequency vibration and acoustical- structural...Parameter Systems," AFOSR-TR-79-0753 (May, 1979). 25. R. H. Lyon, Statistical Energy Analysis of Dynamical Systems: Theory and Applications, (M.I.T...Press, Cambridge, Mass., 1975). 26. E. E. Ungar, " Statistical Energy Analysis of Vibrating Systems," Trans. ASME, J. Eng. Ind. 89, 626 (1967). 139 27
The Shock and Vibration Digest. Volume 14, Number 8
1982-08-01
generating interest in averaged transfer functions. Broadband transfer functions are derived using the methods of statistical energy analysis (SEA...Accelerometer, Endevco Corp., San Juan Capis- trano,CA(1982). 7. Lyon, R.H., Statistical Energy Analysis of Dy- namical Systems, MIT Press, Cambridge, MA...A fairly new technique known as statistical energy analysis , or SEA, [35-44] has been useful for many problems of noise transmission. The difficulty
A Survey of Probabilistic Methods for Dynamical Systems with Uncertain Parameters.
1986-05-01
J., "An Approach to the Theoretical Background of Statistical Energy Analysis Applied to Structural Vibration," Journ. Acoust. Soc. Amer., Vol. 69...1973, Sect. 8.3. 80. Lyon, R.H., " Statistical Energy Analysis of Dynamical Systems," M.I.T. Press, 1975. e) Late References added in Proofreading !! 81...Dowell, E.H., and Kubota, Y., "Asymptotic Modal Analysis and ’~ y C-" -165- Statistical Energy Analysis of Dynamical Systems," Journ. Appi. - Mech
1989-03-01
statistical energy analysis , the finite clement method, and the power flow method. Experimental solutions are the most common in the literature. The authors of...to the added weights and inertias of the transducers attached to an experimental structure. Statistical energy analysis (SEA) is a computational method...Analysis and Diagnosis," Journal of Sound and Vibration, Vol. 115, No. 3, pp. 405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Systems
Experimental and Computational Analysis of Modes in a Partially Constrained Plate
2004-03-01
way to quantify a structure. One technique utilizing an energy method is the Statistical Energy Analysis (SEA). The SEA process involves regarding...B.R. Mace. “ Statistical Energy Analysis of Two Edge- Coupled Rectangular Plates: Ensemble Averages,” Journal of Sound and Vibration, 193(4): 793-822
1975-07-01
Statistical Energy Analysis MAJOR ASSUMPTIONS AND LIMITATIONS . Simply supported panel it contidarad to ba vibrating freely in a mode consisting of e...Shells: Statistical Energy Analysis . Modal Coupling and Nonresonant Transmission. Univ Houston, Dept Mech Eng Tech Report 21 (Aug 1970); also J...Oscillators. J. Acoust. Soc. Am., Vol. 34, No. 5 (May 1962). 14. Ungar, E.E., Fundamentals of Statistical Energy Analysis of Vibrating Systems, Tech
A Mechanical Power Flow Capability for the Finite Element Code NASTRAN
1989-07-01
perimental methods. statistical energy analysis , the finite element method, and a finite element analog-,y using heat conduction equations. Experimental...weights and inertias of the transducers attached to an experimental structure may produce accuracy problems. Statistical energy analysis (SEA) is a...405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Sistems, The M.I.T. Press, (1975). 9. Mickol, J.D., and R.J. Bernhard, "An
The Shock and Vibration Digest. Volume 13, Number 12
1981-12-01
Resulting Unsteady Forces and Flow Phenomenon. Part III 26 BOOK REVIEWS STATISTICAL ENERGY ANALYSIS Chapter IV considers the problems of estimating J OF...stress, acceleration, modes. Statistical energy analysis (SEA), which is and pressure; estimations of the average system expressed in terms of random...by F.C. Nelson, SVD, 13 (8), pp 30-31 (Aug 1981) Lyons, R.H., Statistical Energy Analysis of Dynamic Systems, MIT Press, Cambridge, MA; Revieed by H
NAUSEA and the Principle of Supplementarity of Damping and Isolation in Noise Control.
1980-02-01
New approaches and uses of the statistical energy analysis (NAUSEA) have been considered and developed in recent months. The advances were made...possible in that the requirement, in the olde statistical energy analysis , that the dynamic systems be highly reverberant and the couplings between the...analytical consideration in terms of the statistical energy analysis (SEA). A brief discussion and simple examples that relate to these recent advances
The Shock and Vibration Digest. Volume 15, Number 7
1983-07-01
systems noise -- for tant analytical tool, the statistical energy analysis example, from a specific metal, chain driven, con- method, has been the subject...34Experimental Determination of Vibration Parameters Re- ~~~quired in the Statistical Energy Analysis Meth- .,i. 31. Dubowsky, S. and Morris, T.L., "An...34Coupling Loss Factors for 55. Upton, R., "Sound Intensity -. A Powerful New Statistical Energy Analysis of Sound Trans- Measurement Tool," S/V, Sound
Numerical Analysis of Stochastic Dynamical Systems in the Medium-Frequency Range
2003-02-01
frequency vibration analysis such as the statistical energy analysis (SEA), the traditional modal analysis (well-suited for high and low: frequency...that the first few structural normal modes primarily constitute the total response. In the higher frequency range, the statistical energy analysis (SEA
Robust Fixed-Structure Control
1994-10-30
Deterministic Foundation for Statistical Energy Analysis ," J. Sound Vibr., to appear. 1.96 D. S. Bernstein and S. P. Bhat, "Lyapunov Stability, Semistability...S. Bernstein, "Power Flow, Energy Balance, and Statistical Energy Analysis for Large Scale, Interconnected Systems," Proc. Amer. Contr. Conf., pp
Statistical energy analysis computer program, user's guide
NASA Technical Reports Server (NTRS)
Trudell, R. W.; Yano, L. I.
1981-01-01
A high frequency random vibration analysis, (statistical energy analysis (SEA) method) is examined. The SEA method accomplishes high frequency prediction of arbitrary structural configurations. A general SEA computer program is described. A summary of SEA theory, example problems of SEA program application, and complete program listing are presented.
IUTAM Symposium on Statistical Energy Analysis, 8-11 July 1997, Programme
1997-01-01
distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum200 words) This was the first international scientific gathering devoted...energy flow, continuum dynamics, vibrational energy, statistical energy analysis (SEA) 15. NUMBER OF PAGES 16. PRICE CODE INSECURITY... correlation v=V(ɘ ’• • determination of the correlation n^, =11^, (<?). When harmonic motion and time-average are considered, the following I
Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.
2008-01-01
Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.
Advanced statistical energy analysis
NASA Astrophysics Data System (ADS)
Heron, K. H.
1994-09-01
A high-frequency theory (advanced statistical energy analysis (ASEA)) is developed which takes account of the mechanism of tunnelling and uses a ray theory approach to track the power flowing around a plate or a beam network and then uses statistical energy analysis (SEA) to take care of any residual power. ASEA divides the energy of each sub-system into energy that is freely available for transfer to other sub-systems and energy that is fixed within the sub-systems that are physically separate and can be interpreted as a series of mathematical models, the first of which is identical to standard SEA and subsequent higher order models are convergent on an accurate prediction. Using a structural assembly of six rods as an example, ASEA is shown to converge onto the exact results while SEA is shown to overpredict by up to 60 dB.
Determination of apparent coupling factors for adhesive bonded acrylic plates using SEAL approach
NASA Astrophysics Data System (ADS)
Pankaj, Achuthan. C.; Shivaprasad, M. V.; Murigendrappa, S. M.
2018-04-01
Apparent coupling loss factors (CLF) and velocity responses has been computed for two lap joined adhesive bonded plates using finite element and experimental statistical energy analysis like approach. A finite element model of the plates has been created using ANSYS software. The statistical energy parameters have been computed using the velocity responses obtained from a harmonic forced excitation analysis. Experiments have been carried out for two different cases of adhesive bonded joints and the results have been compared with the apparent coupling factors and velocity responses obtained from finite element analysis. The results obtained from the studies signify the importance of modeling of adhesive bonded joints in computation of the apparent coupling factors and its further use in computation of energies and velocity responses using statistical energy analysis like approach.
The Shock and Vibration Digest. Volume 13. Number 7
1981-07-01
Richards, ISVR, University of Southampton Presidential Address "A Structural Dynamicist Looks at Statistical Energy Analysis " Professor B.L...excitation and for random and sine sweep mechanical excitation. Test data were used to assess prediction methods, in particular a statistical energy analysis method
2005-04-01
the radiography gauging. In addition to the Statistical Energy Analysis (SEA) measurement a small exciter table (BK4810) and impedance head (BK 8000... Statistical Energy Analysis ; 7th Conf. on Vehicle System Dynamics, Identification and Anomalies (VSDIA2000), 6-8 Nov. 2000 Budapest, Proc. pp. 491-493... Energy Analysis (SEA) and Ultrasound Test. (UT) were concurrently applied. These methods collect accessory information on the objects under inspection
NASA Astrophysics Data System (ADS)
Black, Joshua A.; Knowles, Peter J.
2018-06-01
The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.
Active Structural Acoustic Control as an Approach to Acoustic Optimization of Lightweight Structures
2001-06-01
appropriate approach based on Statistical Energy Analysis (SEA) would facilitate investigations of the structural behavior at a high modal density. On the way...higher frequency investigations an approach based on the Statistical Energy Analysis (SEA) is recommended to describe the structural dynamic behavior
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 4
1988-12-01
program to support TOPEX spacecraft design, Statistical energy analysis modeling of nonstructural mass on lightweight equipment panels using VAPEPS...and Stress estimation and statistical energy analysis of the Magellan spacecraft solar array using VAPEPS; Dynamic measurement -- An automated
Impulse Response Operators for Structural Complexes
1990-05-12
systems of the complex. The statistical energy analysis (SEA) is one such a device [ 13, 14]. The rendering of SEA from equation (21) and/or (25) lies...Propagation.] 13. L. Cremer, M. Heckl, and E.E. Ungar 1973 Structure-Borne Sound (Springer Verlag). 14. R. H. Lyon 1975 Statistical Energy Analysis of
Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu
2009-08-28
The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.
Chernyakhovskiy is member of the Markets & Policy Analysis Group in the Strategic Energy Analysis Center . Areas of Expertise Energy policy and market analysis Data analysis and statistical modeling Research
Quantifying the Energy Landscape Statistics in Proteins - a Relaxation Mode Analysis
NASA Astrophysics Data System (ADS)
Cai, Zhikun; Zhang, Yang
Energy landscape, the hypersurface in the configurational space, has been a useful concept in describing complex processes that occur over a very long time scale, such as the multistep slow relaxations of supercooled liquids and folding of polypeptide chains into structured proteins. Despite extensive simulation studies, its experimental characterization still remains a challenge. To address this challenge, we developed a relaxation mode analysis (RMA) for liquids under a framework analogous to the normal mode analysis for solids. Using RMA, important statistics of the activation barriers of the energy landscape becomes accessible from experimentally measurable two-point correlation functions, e.g. using quasi-elastic and inelastic scattering experiments. We observed a prominent coarsening effect of the energy landscape. The results were further confirmed by direct sampling of the energy landscape using a metadynamics-like adaptive autonomous basin climbing computation. We first demonstrate RMA in a supercooled liquid when dynamical cooperativity emerges in the landscape-influenced regime. Then we show this framework reveals encouraging energy landscape statistics when applied to proteins.
1987-07-01
of vibrational power flow had been considered by experiments in the area of statistical energy analysis (SEA)8, 9 using other measurement ipproaches...Constants in Statistical Energy Analysis of Structure," J. Acoust. Soc. Am. Vol. 52, No. 2, pp. 516-524 (1973) 9. Fahy, F. and R. Pierri, "Application of
NASA Astrophysics Data System (ADS)
Golik, V. V.; Zemenkova, M. Yu; Seroshtanov, I. V.; Begalko, Z. V.
2018-05-01
The paper presents the results of the analysis of statistical indicators of energy and resource consumption in oil and gas transportation by the example of one of the regions of Russia. The article analyzes engineering characteristics of compressor station drives. Official statistical bulletins on the fuel and energy resources of the region in the pipeline oil and gas transportation system were used as the initial data.
NASA Astrophysics Data System (ADS)
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
Entropy in statistical energy analysis.
Le Bot, Alain
2009-03-01
In this paper, the second principle of thermodynamics is discussed in the framework of statistical energy analysis (SEA). It is shown that the "vibrational entropy" and the "vibrational temperature" of sub-systems only depend on the vibrational energy and the number of resonant modes. A SEA system can be described as a thermodynamic system slightly out of equilibrium. In steady-state condition, the entropy exchanged with exterior by sources and dissipation exactly balances the production of entropy by irreversible processes at interface between SEA sub-systems.
A scaling procedure for the response of an isolated system with high modal overlap factor
NASA Astrophysics Data System (ADS)
De Rosa, S.; Franco, F.
2008-10-01
The paper deals with a numerical approach that reduces some physical sizes of the solution domain to compute the dynamic response of an isolated system: it has been named Asymptotical Scaled Modal Analysis (ASMA). The proposed numerical procedure alters the input data needed to obtain the classic modal responses to increase the frequency band of validity of the discrete or continuous coordinates model through the definition of a proper scaling coefficient. It is demonstrated that the computational cost remains acceptable while the frequency range of analysis increases. Moreover, with reference to the flexural vibrations of a rectangular plate, the paper discusses the ASMA vs. the statistical energy analysis and the energy distribution approach. Some insights are also given about the limits of the scaling coefficient. Finally it is shown that the linear dynamic response, predicted with the scaling procedure, has the same quality and characteristics of the statistical energy analysis, but it can be useful when the system cannot be solved appropriately by the standard Statistical Energy Analysis (SEA).
An Analysis Methodology for the Gamma-ray Large Area Space Telescope
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Cohen-Tanugi, Johann
2004-01-01
The Large Area Telescope (LAT) instrument on the Gamma Ray Large Area Space Telescope (GLAST) has been designed to detect high-energy gamma rays and determine their direction of incidence and energy. We propose a reconstruction algorithm based on recent advances in statistical methodology. This method, alternative to the standard event analysis inherited from high energy collider physics experiments, incorporates more accurately the physical processes occurring in the detector, and makes full use of the statistical information available. It could thus provide a better estimate of the direction and energy of the primary photon.
NASA Astrophysics Data System (ADS)
Kassem, M.; Soize, C.; Gagliardini, L.
2009-06-01
In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.
Statistical Analysis For Nucleus/Nucleus Collisions
NASA Technical Reports Server (NTRS)
Mcguire, Stephen C.
1989-01-01
Report describes use of several statistical techniques to charactertize angular distributions of secondary particles emitted in collisions of atomic nuclei in energy range of 24 to 61 GeV per nucleon. Purpose of statistical analysis to determine correlations between intensities of emitted particles and angles comfirming existence of quark/gluon plasma.
Vibroacoustic optimization using a statistical energy analysis model
NASA Astrophysics Data System (ADS)
Culla, Antonio; D`Ambrogio, Walter; Fregolent, Annalisa; Milana, Silvia
2016-08-01
In this paper, an optimization technique for medium-high frequency dynamic problems based on Statistical Energy Analysis (SEA) method is presented. Using a SEA model, the subsystem energies are controlled by internal loss factors (ILF) and coupling loss factors (CLF), which in turn depend on the physical parameters of the subsystems. A preliminary sensitivity analysis of subsystem energy to CLF's is performed to select CLF's that are most effective on subsystem energies. Since the injected power depends not only on the external loads but on the physical parameters of the subsystems as well, it must be taken into account under certain conditions. This is accomplished in the optimization procedure, where approximate relationships between CLF's, injected power and physical parameters are derived. The approach is applied on a typical aeronautical structure: the cabin of a helicopter.
Power flow as a complement to statistical energy analysis and finite element analysis
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
NASA Astrophysics Data System (ADS)
Yin, Shengwen; Yu, Dejie; Yin, Hui; Lü, Hui; Xia, Baizhan
2017-09-01
Considering the epistemic uncertainties within the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model when it is used for the response analysis of built-up systems in the mid-frequency range, the hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis (ETFE/SEA) model is established by introducing the evidence theory. Based on the hybrid ETFE/SEA model and the sub-interval perturbation technique, the hybrid Sub-interval Perturbation and Evidence Theory-based Finite Element/Statistical Energy Analysis (SIP-ETFE/SEA) approach is proposed. In the hybrid ETFE/SEA model, the uncertainty in the SEA subsystem is modeled by a non-parametric ensemble, while the uncertainty in the FE subsystem is described by the focal element and basic probability assignment (BPA), and dealt with evidence theory. Within the hybrid SIP-ETFE/SEA approach, the mid-frequency response of interest, such as the ensemble average of the energy response and the cross-spectrum response, is calculated analytically by using the conventional hybrid FE/SEA method. Inspired by the probability theory, the intervals of the mean value, variance and cumulative distribution are used to describe the distribution characteristics of mid-frequency responses of built-up systems with epistemic uncertainties. In order to alleviate the computational burdens for the extreme value analysis, the sub-interval perturbation technique based on the first-order Taylor series expansion is used in ETFE/SEA model to acquire the lower and upper bounds of the mid-frequency responses over each focal element. Three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method.
Coupling strength assumption in statistical energy analysis
Lafont, T.; Totaro, N.
2017-01-01
This paper is a discussion of the hypothesis of weak coupling in statistical energy analysis (SEA). The examples of coupled oscillators and statistical ensembles of coupled plates excited by broadband random forces are discussed. In each case, a reference calculation is compared with the SEA calculation. First, it is shown that the main SEA relation, the coupling power proportionality, is always valid for two oscillators irrespective of the coupling strength. But the case of three subsystems, consisting of oscillators or ensembles of plates, indicates that the coupling power proportionality fails when the coupling is strong. Strong coupling leads to non-zero indirect coupling loss factors and, sometimes, even to a reversal of the energy flow direction from low to high vibrational temperature. PMID:28484335
Rigorous Statistical Bounds in Uncertainty Quantification for One-Layer Turbulent Geophysical Flows
NASA Astrophysics Data System (ADS)
Qi, Di; Majda, Andrew J.
2018-04-01
Statistical bounds controlling the total fluctuations in mean and variance about a basic steady-state solution are developed for the truncated barotropic flow over topography. Statistical ensemble prediction is an important topic in weather and climate research. Here, the evolution of an ensemble of trajectories is considered using statistical instability analysis and is compared and contrasted with the classical deterministic instability for the growth of perturbations in one pointwise trajectory. The maximum growth of the total statistics in fluctuations is derived relying on the statistical conservation principle of the pseudo-energy. The saturation bound of the statistical mean fluctuation and variance in the unstable regimes with non-positive-definite pseudo-energy is achieved by linking with a class of stable reference states and minimizing the stable statistical energy. Two cases with dependence on initial statistical uncertainty and on external forcing and dissipation are compared and unified under a consistent statistical stability framework. The flow structures and statistical stability bounds are illustrated and verified by numerical simulations among a wide range of dynamical regimes, where subtle transient statistical instability exists in general with positive short-time exponential growth in the covariance even when the pseudo-energy is positive-definite. Among the various scenarios in this paper, there exist strong forward and backward energy exchanges between different scales which are estimated by the rigorous statistical bounds.
DOT National Transportation Integrated Search
2013-04-01
We analyzed the use of energy by Alaskas transportation sectors to assess the impact of sudden fuel prices changes. : We conducted three types of analysis: 1) Development of broad energy use statistics for each transportation sector, : including t...
NASA Astrophysics Data System (ADS)
Aragonès, Àngels; Maxit, Laurent; Guasch, Oriol
2015-08-01
Statistical modal energy distribution analysis (SmEdA) extends classical statistical energy analysis (SEA) to the mid frequency range by establishing power balance equations between modes in different subsystems. This circumvents the SEA requirement of modal energy equipartition and enables applying SmEdA to the cases of low modal overlap, locally excited subsystems and to deal with complex heterogeneous subsystems as well. Yet, widening the range of application of SEA is done at a price with large models because the number of modes per subsystem can become considerable when the frequency increases. Therefore, it would be worthwhile to have at one's disposal tools for a quick identification and ranking of the resonant and non-resonant paths involved in modal energy transmission between subsystems. It will be shown that previously developed graph theory algorithms for transmission path analysis (TPA) in SEA can be adapted to SmEdA and prove useful for that purpose. The case of airborne transmission between two cavities separated apart by homogeneous and ribbed plates will be first addressed to illustrate the potential of the graph approach. A more complex case representing transmission between non-contiguous cavities in a shipbuilding structure will be also presented.
Adhesive properties and adhesive joints strength of graphite/epoxy composites
NASA Astrophysics Data System (ADS)
Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr
2017-05-01
The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.
Transportation energy data book
DOT National Transportation Integrated Search
2008-01-01
The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and R...
Transportation energy data book
DOT National Transportation Integrated Search
2006-01-01
The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and R...
NASA Astrophysics Data System (ADS)
Slaski, G.; Ohde, B.
2016-09-01
The article presents the results of a statistical dispersion analysis of an energy and power demand for tractive purposes of a battery electric vehicle. The authors compare data distribution for different values of an average speed in two approaches, namely a short and long period of observation. The short period of observation (generally around several hundred meters) results from a previously proposed macroscopic energy consumption model based on an average speed per road section. This approach yielded high values of standard deviation and coefficient of variation (the ratio between standard deviation and the mean) around 0.7-1.2. The long period of observation (about several kilometers long) is similar in length to standardized speed cycles used in testing a vehicle energy consumption and available range. The data were analysed to determine the impact of observation length on the energy and power demand variation. The analysis was based on a simulation of electric power and energy consumption performed with speed profiles data recorded in Poznan agglomeration.
Mathematics and statistics research progress report, period ending June 30, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beauchamp, J. J.; Denson, M. V.; Heath, M. T.
1983-08-01
This report is the twenty-sixth in the series of progress reports of Mathematics and Statistics Research of the Computer Sciences organization, Union Carbide Corporation Nuclear Division. Part A records research progress in analysis of large data sets, applied analysis, biometrics research, computational statistics, materials science applications, numerical linear algebra, and risk analysis. Collaboration and consulting with others throughout the Oak Ridge Department of Energy complex are recorded in Part B. Included are sections on biological sciences, energy, engineering, environmental sciences, health and safety, and safeguards. Part C summarizes the various educational activities in which the staff was engaged. Part Dmore » lists the presentations of research results, and Part E records the staff's other professional activities during the report period.« less
ERIC Educational Resources Information Center
Dega, Bekele Gashe; Govender, Nadaraj
2016-01-01
This study compares the scientific and alternative conceptions of energy and momentum of university first-year science students in Ethiopia and the US. Written data were collected using the Energy and Momentum Conceptual Survey developed by Singh and Rosengrant. The Concentration Analysis statistical method was used for analysing the Ethiopian…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, W L; Harris, J L
1976-03-01
The First ERDA Statistical Symposium was organized to provide a means for communication among ERDA statisticians, and the sixteen papers presented at the meeting are given. Topics include techniques of numerical analysis used for accelerators, nuclear reactors, skewness and kurtosis statistics, radiochemical spectral analysis, quality control, and other statistics problems. Nine of the papers were previously announced in Nuclear Science Abstracts (NSA), while the remaining seven were abstracted for ERDA Energy Research Abstracts (ERA) and INIS Atomindex. (PMA)
Guo, Shaoyin; Hihath, Joshua; Díez-Pérez, Ismael; Tao, Nongjian
2011-11-30
We report on the measurement and statistical study of thousands of current-voltage characteristics and transition voltage spectra (TVS) of single-molecule junctions with different contact geometries that are rapidly acquired using a new break junction method at room temperature. This capability allows one to obtain current-voltage, conductance voltage, and transition voltage histograms, thus adding a new dimension to the previous conductance histogram analysis at a fixed low-bias voltage for single molecules. This method confirms the low-bias conductance values of alkanedithiols and biphenyldithiol reported in literature. However, at high biases the current shows large nonlinearity and asymmetry, and TVS allows for the determination of a critically important parameter, the tunneling barrier height or energy level alignment between the molecule and the electrodes of single-molecule junctions. The energy level alignment is found to depend on the molecule and also on the contact geometry, revealing the role of contact geometry in both the contact resistance and energy level alignment of a molecular junction. Detailed statistical analysis further reveals that, despite the dependence of the energy level alignment on contact geometry, the variation in single-molecule conductance is primarily due to contact resistance rather than variations in the energy level alignment.
NASA Technical Reports Server (NTRS)
1973-01-01
A statistical analysis of the availability of fossil fuels for energy and non-energy production is presented. The cumulative requirements for petroleum, natural gas, and coal are discussed. Alternate forms of energy are described and the advantages and limitations are analyzed. Emphasis is placed on solar energy availability and methods for conversion. The Federal energy research and development funding for energy sources is tabulated.
Sarkodie, Samuel Asumadu; Strezov, Vladimir
2018-10-15
Energy production remains the major emitter of atmospheric emissions, thus, in accordance with Australia's Emissions Projections by 2030, this study analyzed the impact of Australia's energy portfolio on environmental degradation and CO 2 emissions using locally compiled data on disaggregate energy production, energy imports and exports spanning from 1974 to 2013. This study employed the fully modified ordinary least squares, dynamic ordinary least squares, and canonical cointegrating regression estimators; statistically inspired modification of partial least squares regression analysis with a subsequent sustainability sensitivity analysis. The validity of the environmental Kuznets curve hypothesis proposes a paradigm shift from energy-intensive and carbon-intensive industries to less-energy-intensive and green energy industries and its related services, leading to a structural change in the economy. Thus, decoupling energy services provide better interpretation of the role of the energy sector portfolio in environmental degradation and CO 2 emissions assessment. The sensitivity analysis revealed that nonrenewable energy production above 10% and energy imports above 5% will dampen the goals for the 2030 emission reduction target. Increasing the share of renewable energy penetration in the energy portfolio decreases the level of CO 2 emissions, while increasing the share of non-renewable energy sources in the energy mix increases the level of atmospheric emissions, thus increasing climate change and their impacts. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishida, Shigeki; Mori, Atsuo; Shinji, Masato
The main method to reduce the blasting charge noise which occurs in a tunnel under construction is to install the sound insulation door in the tunnel. However, the numerical analysis technique to predict the accurate effect of the transmission loss in the sound insulation door is not established. In this study, we measured the blasting charge noise and the vibration of the sound insulation door in the tunnel with the blasting charge, and performed analysis and modified acoustic feature. In addition, we reproduced the noise reduction effect of the sound insulation door by statistical energy analysis method and confirmed that numerical simulation is possible by this procedure.
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
Effects of Energy Needs and Expenditures on U.S. Public Schools. Statistical Analysis Report.
ERIC Educational Resources Information Center
Smith, Timothy; Porch, Rebecca; Farris, Elizabeth; Fowler, William
This report provides national estimates on energy needs and expenditures of U.S. public school districts. The survey provides estimates of Fiscal Year (FY) 2000 energy expenditures, FY 2001 energy budgets and expenditures, and FY 2002 energy budgets; methods used to cover energy budget shortfalls in FY 2001; and possible reasons for those…
RooStatsCms: A tool for analysis modelling, combination and statistical studies
NASA Astrophysics Data System (ADS)
Piparo, D.; Schott, G.; Quast, G.
2010-04-01
RooStatsCms is an object oriented statistical framework based on the RooFit technology. Its scope is to allow the modelling, statistical analysis and combination of multiple search channels for new phenomena in High Energy Physics. It provides a variety of methods described in literature implemented as classes, whose design is oriented to the execution of multiple CPU intensive jobs on batch systems or on the Grid.
Building Energy Monitoring and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Feng, Wei; Lu, Alison
This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyzemore » good building energy data to provide valuable and actionable information for key stakeholders.« less
A statistical physics viewpoint on the dynamics of the bouncing ball
NASA Astrophysics Data System (ADS)
Chastaing, Jean-Yonnel; Géminard, Jean-Christophe; Bertin, Eric
2016-06-01
We compute, in a statistical physics perspective, the dynamics of a bouncing ball maintained in a chaotic regime thanks to collisions with a plate experiencing an aperiodic vibration. We analyze in details the energy exchanges between the bead and the vibrating plate, and show that the coupling between the bead and the plate can be modeled in terms of both a dissipative process and an injection mechanism by an energy reservoir. An analysis of the injection statistics in terms of fluctuation relation is also provided.
Prediction of transmission loss through an aircraft sidewall using statistical energy analysis
NASA Astrophysics Data System (ADS)
Ming, Ruisen; Sun, Jincai
1989-06-01
The transmission loss of randomly incident sound through an aircraft sidewall is investigated using statistical energy analysis. Formulas are also obtained for the simple calculation of sound transmission loss through single- and double-leaf panels. Both resonant and nonresonant sound transmissions can be easily calculated using the formulas. The formulas are used to predict sound transmission losses through a Y-7 propeller airplane panel. The panel measures 2.56 m x 1.38 m and has two windows. The agreement between predicted and measured values through most of the frequency ranges tested is quite good.
Symposium Issue on the Energy Information Administration.
ERIC Educational Resources Information Center
Kent, Calvin A.; And Others
1993-01-01
Describes the Energy Information Administration (EIA), a statistical agency which provides credible, timely, and useful energy information for decision makers in all sectors of society. The 10 articles included in the volume cover survey design, data collection, data integration, data analysis, modeling and forecasting, confidentiality, and…
Energy Savings Analysis for Energy Monitoring and Control Systems
1995-01-01
for evaluating design and construction a:-0 quality, and for studying the effectiveness of air - tightening AC retrofits. No simple relationship...Energy These models of residential infiltration are based on statistical "Resource Center (1983) include information on air tightening in fits of
O'Neill, Edward F; Radmacher, Paula G; Sparks, Blake; Adamkin, David H
2013-05-01
Human milk (HM) is the preferred feeding for human infants but may be inadequate to support the rapid growth of the very-low-birth-weight infant. The creamatocrit (CMCT) has been widely used to guide health care professionals as they analyze HM fortification; however, the CMCT method is based on an equation using assumptions for protein and carbohydrate with fat as the only measured variable. The aim of the present study was to test the hypothesis that a human milk analyzer (HMA) would provide more accurate data for fat and energy content than analysis by CMCT. Fifty-one well-mixed samples of previously frozen expressed HM were obtained after thawing. Previously assayed "control" milk samples were thawed and also run with unknowns. All milk samples were prewarmed at 40°C and then analyzed by both CMCT and HMA. CMCT fat results were substituted in the CMCT equation to reach a value for energy (kcal/oz). Fat results from HMA were entered into a computer model to reach a value for energy (kcal/oz). Fat and energy results were compared by paired t test with statistical significance set at P < 0.05. An additional 10 samples were analyzed locally by both methods and then sent to a certified laboratory for quantitative analysis. Results for fat and energy were analyzed by 1-way analysis of variance with statistical significance set at P < 0.05. Mean fat content by CMCT (5.8 ± 1.9 g/dL) was significantly higher than by HMA (3.2 ± 1.1 g/dL, P < 0.001). Mean energy by CMCT (21.8 ± 3.4 kcal/oz) was also significantly higher than by HMA (17.1 ± 2.9, P < 0.001). Comparison of biochemical analysis with HMA of the subset of milk samples showed no statistical difference for fat and energy, whereas CMCT was significantly higher than for both fat (P < 0.001) and energy (P = 0.002). The CMCT method appears to overestimate fat and energy content of HM samples when compared with HMA and biochemical methods.
Advanced building energy management system demonstration for Department of Defense buildings.
O'Neill, Zheng; Bailey, Trevor; Dong, Bing; Shashanka, Madhusudana; Luo, Dong
2013-08-01
This paper presents an advanced building energy management system (aBEMS) that employs advanced methods of whole-building performance monitoring combined with statistical methods of learning and data analysis to enable identification of both gradual and discrete performance erosion and faults. This system assimilated data collected from multiple sources, including blueprints, reduced-order models (ROM) and measurements, and employed advanced statistical learning algorithms to identify patterns of anomalies. The results were presented graphically in a manner understandable to facilities managers. A demonstration of aBEMS was conducted in buildings at Naval Station Great Lakes. The facility building management systems were extended to incorporate the energy diagnostics and analysis algorithms, producing systematic identification of more efficient operation strategies. At Naval Station Great Lakes, greater than 20% savings were demonstrated for building energy consumption by improving facility manager decision support to diagnose energy faults and prioritize alternative, energy-efficient operation strategies. The paper concludes with recommendations for widespread aBEMS success. © 2013 New York Academy of Sciences.
Craven, Galen T; Nitzan, Abraham
2018-01-28
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
NASA Astrophysics Data System (ADS)
Craven, Galen T.; Nitzan, Abraham
2018-01-01
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
Asymptotic modal analysis and statistical energy analysis
NASA Technical Reports Server (NTRS)
Dowell, Earl H.
1992-01-01
Asymptotic Modal Analysis (AMA) is a method which is used to model linear dynamical systems with many participating modes. The AMA method was originally developed to show the relationship between statistical energy analysis (SEA) and classical modal analysis (CMA). In the limit of a large number of modes of a vibrating system, the classical modal analysis result can be shown to be equivalent to the statistical energy analysis result. As the CMA result evolves into the SEA result, a number of systematic assumptions are made. Most of these assumptions are based upon the supposition that the number of modes approaches infinity. It is for this reason that the term 'asymptotic' is used. AMA is the asymptotic result of taking the limit of CMA as the number of modes approaches infinity. AMA refers to any of the intermediate results between CMA and SEA, as well as the SEA result which is derived from CMA. The main advantage of the AMA method is that individual modal characteristics are not required in the model or computations. By contrast, CMA requires that each modal parameter be evaluated at each frequency. In the latter, contributions from each mode are computed and the final answer is obtained by summing over all the modes in the particular band of interest. AMA evaluates modal parameters only at their center frequency and does not sum the individual contributions from each mode in order to obtain a final result. The method is similar to SEA in this respect. However, SEA is only capable of obtaining spatial averages or means, as it is a statistical method. Since AMA is systematically derived from CMA, it can obtain local spatial information as well.
Parametric distribution approach for flow availability in small hydro potential analysis
NASA Astrophysics Data System (ADS)
Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel
2016-10-01
Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.
Statistical analysis of excitation energies in actinide and rare-earth nuclei
NASA Astrophysics Data System (ADS)
Levon, A. I.; Magner, A. G.; Radionov, S. V.
2018-04-01
Statistical analysis of distributions of the collective states in actinide and rare-earth nuclei is performed in terms of the nearest-neighbor spacing distribution (NNSD). Several approximations, such as the linear approach to the level repulsion density and that suggested by Brody to the NNSDs were applied for the analysis. We found an intermediate character of the experimental spectra between the order and the chaos for a number of rare-earth and actinide nuclei. The spectra are closer to the Wigner distribution for energies limited by 3 MeV, and to the Poisson distribution for data including higher excitation energies and higher spins. The latter result is in agreement with the theoretical calculations. These features are confirmed by the cumulative distributions, where the Wigner contribution dominates at smaller spacings while the Poisson one is more important at larger spacings, and our linear approach improves the comparison with experimental data at all desired spacings.
STATISTICAL ANALYSIS OF SNAP 10A THERMOELECTRIC CONVERTER ELEMENT PROCESS DEVELOPMENT VARIABLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitch, S.H.; Morris, J.W.
1962-12-15
Statistical analysis, primarily analysis of variance, was applied to evaluate several factors involved in the development of suitable fabrication and processing techniques for the production of lead telluride thermoelectric elements for the SNAP 10A energy conversion system. The analysis methods are described as to their application for determining the effects of various processing steps, estabIishing the value of individual operations, and evaluating the significance of test results. The elimination of unnecessary or detrimental processing steps was accomplished and the number of required tests was substantially reduced by application of these statistical methods to the SNAP 10A production development effort. (auth)
Statistical hadronization with exclusive channels in e +e - annihilation
Ferroni, L.; Becattini, F.
2012-01-01
We present a systematic analysis of exclusive hadronic channels in e +e - collisions at centre-of-mass energies between 2.1 and 2.6 GeV within the statistical hadronization model. Because of the low multiplicities involved, calculations have been carried out in the full microcanonical ensemble, including conservation of energy-momentum, angular momentum, parity, isospin, and all relevant charges. We show that the data is in an overall good agreement with the model for an energy density of about 0.5 GeV/fm 3 and an extra strangeness suppression parameter γ S 0:7, essentially the same values found with fits to inclusive multiplicities at higher energy.
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1983-01-01
The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.
ERIC Educational Resources Information Center
Petratos, Panagiotis; Damaskou, Evangelia
2015-01-01
Purpose: The purpose of this paper is to describe and analyze the effects of campus sustainability planning to annual campus energy inflows and outflows in California higher education. The paper also offers a preliminary statistical analysis for the evaluation of impact factors on energy outflows and a link between energy outflows and building…
Automated Analysis of Renewable Energy Datasets ('EE/RE Data Mining')
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian; Elmore, Ryan; Getman, Dan
This poster illustrates methods to substantially improve the understanding of renewable energy data sets and the depth and efficiency of their analysis through the application of statistical learning methods ('data mining') in the intelligent processing of these often large and messy information sources. The six examples apply methods for anomaly detection, data cleansing, and pattern mining to time-series data (measurements from metering points in buildings) and spatiotemporal data (renewable energy resource datasets).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, E.; Miranda, A.L.
1990-08-01
The market survey covers the renewable energy resources market in the Philippines. Sub-sectors covered include biomass, solar energy, photovoltaic cells, windmills, and mini-hydro systems. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Philippine consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information.
NASA Astrophysics Data System (ADS)
Hilliard, Antony
Energy Monitoring and Targeting is a well-established business process that develops information about utility energy consumption in a business or institution. While M&T has persisted as a worthwhile energy conservation support activity, it has not been widely adopted. This dissertation explains M&T challenges in terms of diagnosing and controlling energy consumption, informed by a naturalistic field study of M&T work. A Cognitive Work Analysis of M&T identifies structures that diagnosis can search, information flows un-supported in canonical support tools, and opportunities to extend the most popular tool for MM&T: Cumulative Sum of Residuals (CUSUM) charts. A design application outlines how CUSUM charts were augmented with a more contemporary statistical change detection strategy, Recursive Parameter Estimates, modified to better suit the M&T task using Representation Aiding principles. The design was experimentally evaluated in a controlled M&T synthetic task, and was shown to significantly improve diagnosis performance.
Yan, Jianjun; Shen, Xiaojing; Wang, Yiqin; Li, Fufeng; Xia, Chunming; Guo, Rui; Chen, Chunfeng; Shen, Qingwei
2010-01-01
This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.
Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer
NASA Astrophysics Data System (ADS)
Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles
2012-11-01
For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
Commercial Building Tenant Energy Usage Data Aggregation and Privacy: Technical Appendix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.
2014-11-12
This technical appendix accompanies report PNNL–23786 “Commercial Building Tenant Energy Usage Data Aggregation and Privacy”. The objective is to provide background information on the methods utilized in the statistical analysis of the aggregation thresholds.
Identification of the isomers using principal component analysis (PCA) method
NASA Astrophysics Data System (ADS)
Kepceoǧlu, Abdullah; Gündoǧdu, Yasemin; Ledingham, Kenneth William David; Kilic, Hamdi Sukur
2016-03-01
In this work, we have carried out a detailed statistical analysis for experimental data of mass spectra from xylene isomers. Principle Component Analysis (PCA) was used to identify the isomers which cannot be distinguished using conventional statistical methods for interpretation of their mass spectra. Experiments have been carried out using a linear TOF-MS coupled to a femtosecond laser system as an energy source for the ionisation processes. We have performed experiments and collected data which has been analysed and interpreted using PCA as a multivariate analysis of these spectra. This demonstrates the strength of the method to get an insight for distinguishing the isomers which cannot be identified using conventional mass analysis obtained through dissociative ionisation processes on these molecules. The PCA results dependending on the laser pulse energy and the background pressure in the spectrometers have been presented in this work.
Computation of statistical secondary structure of nucleic acids.
Yamamoto, K; Kitamura, Y; Yoshikura, H
1984-01-01
This paper presents a computer analysis of statistical secondary structure of nucleic acids. For a given single stranded nucleic acid, we generated "structure map" which included all the annealing structures in the sequence. The map was transformed into "energy map" by rough approximation; here, the energy level of every pairing structure consisting of more than 2 successive nucleic acid pairs was calculated. By using the "energy map", the probability of occurrence of each annealed structure was computed, i.e., the structure was computed statistically. The basis of computation was the 8-queen problem in the chess game. The validity of our computer programme was checked by computing tRNA structure which has been well established. Successful application of this programme to small nuclear RNAs of various origins is demonstrated. PMID:6198622
Analysis of carpooling in Missouri and an evaluation of Missouri's carpool services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, D.R.
1984-12-10
The evaluation is both a statistical profile of carpooling in Missouri as well as an experimental use of utilizing secondary data analysis in combination with clientele surveys to measure the impact of the Division of Energy's carpooling programs. Kansas City, mid-Missouri and St. Louis are examined. Secondary data analysis seems to indicate that during the period from 1980 to 1983 carpooling increased but vehicle occupancy counts decreased simultaneously with increasing gasoline prices. The evaluation theorizes that the Civilian Labor Force masked carpool statistics - growing at a faster rate than the carpooling growth rate. In conjunction with clientele surveys, themore » secondary data analysis measures the Division of Energy's impact on carpooling at 2.6% of all carpoolers in Kansas City and 1.0% of all carpoolers in St. Louis during 1983.« less
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data
Araújo, Alex Maurício
2017-01-01
This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.
Espindola, Rafael Luz; Araújo, Alex Maurício
2017-01-01
This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.
LaRiccia, Patrick J; Farrar, John T; Sammel, Mary D; Gallo, Joseph J
2008-07-01
To determine the efficacy of the food supplement OPC Factor to increase energy levels in healthy adults aged 45 to 65. Randomized, placebo-controlled, triple-blind crossover study. Twenty-five (25) healthy adults recruited from the University of Pennsylvania Health System. OPC Factor,trade mark (AlivenLabs, Lebanon, TN) a food supplement that contains oligomeric proanthocyanidins from grape seeds and pine bark along with other nutrient supplements including vitamins and minerals, was in the form of an effervescent powder. The placebo was similar in appearance and taste. Five outcome measurements were performed: (1) Energy subscale scores of the Activation-Deactivation Adjective Check List (AD ACL); (2) One (1) global question of percent energy change (Global Energy Percent Change); (3) One (1) global question of energy change measured on a Likert scale (Global Energy Scale Change); 4. One (1) global question of percent overall status change (Global Overall Status Percent Change); and (5) One (1) global question of overall status change measured on a Likert scale (Global Overall Status Scale Change). There were no carryover/period effects in the groups randomized to Placebo/Active Product sequence versus Active Product/Placebo sequence. Examination of the AD ACL Energy subscale scores for the Active Product versus Placebo comparison revealed no significant difference in the intention-to-treat (IT) analysis and the treatment received (TR) analysis. However, Global Energy Percent Change (p = 0.06) and Global Energy Scale Change (p = 0.09) both closely approached conventional levels of statistical significance for the active product in the IT analysis. Global Energy Percent Change (p = 0.05) and Global Energy Scale Change (p = 0.04) reached statistical significance in the TR analysis. A cumulative percent responders analysis graph indicated greater response rates for the active product. OPC Factor may increase energy levels in healthy adults aged 45-65 years. A larger study is recommended. Clinical Trials.gov identifier: NCT03318019.
Analysis of surface sputtering on a quantum statistical basis
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.
1975-01-01
Surface sputtering is explained theoretically by means of a 3-body sputtering mechanism involving the ion and two surface atoms of the solid. By means of quantum-statistical mechanics, a formula for the sputtering ratio S(E) is derived from first principles. The theoretical sputtering rate S(E) was found experimentally to be proportional to the square of the difference between incident ion energy and the threshold energy for sputtering of surface atoms at low ion energies. Extrapolation of the theoretical sputtering formula to larger ion energies indicates that S(E) reaches a saturation value and finally decreases at high ion energies. The theoretical sputtering ratios S(E) for wolfram, tantalum, and molybdenum are compared with the corresponding experimental sputtering curves in the low energy region from threshold sputtering energy to 120 eV above the respective threshold energy. Theory and experiment are shown to be in good agreement.
Statistical analysis of global horizontal solar irradiation GHI in Fez city, Morocco
NASA Astrophysics Data System (ADS)
Bounoua, Z.; Mechaqrane, A.
2018-05-01
An accurate knowledge of the solar energy reaching the ground is necessary for sizing and optimizing the performances of solar installations. This paper describes a statistical analysis of the global horizontal solar irradiation (GHI) at Fez city, Morocco. For better reliability, we have first applied a set of check procedures to test the quality of hourly GHI measurements. We then eliminate the erroneous values which are generally due to measurement or the cosine effect errors. Statistical analysis show that the annual mean daily values of GHI is of approximately 5 kWh/m²/day. Daily monthly mean values and other parameter are also calculated.
Energy Cascade Analysis: from Subscale Eddies to Mean Flow
NASA Astrophysics Data System (ADS)
Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James
2017-11-01
Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
Multivariate statistical analysis of low-voltage EDS spectrum images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, I.M.
1998-03-01
Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.
Recent advances in statistical energy analysis
NASA Technical Reports Server (NTRS)
Heron, K. H.
1992-01-01
Statistical Energy Analysis (SEA) has traditionally been developed using modal summation and averaging approach, and has led to the need for many restrictive SEA assumptions. The assumption of 'weak coupling' is particularly unacceptable when attempts are made to apply SEA to structural coupling. It is now believed that this assumption is more a function of the modal formulation rather than a necessary formulation of SEA. The present analysis ignores this restriction and describes a wave approach to the calculation of plate-plate coupling loss factors. Predictions based on this method are compared with results obtained from experiments using point excitation on one side of an irregular six-sided box structure. Conclusions show that the use and calculation of infinite transmission coefficients is the way forward for the development of a purely predictive SEA code.
NASA Astrophysics Data System (ADS)
Kovalevsky, Louis; Langley, Robin S.; Caro, Stephane
2016-05-01
Due to the high cost of experimental EMI measurements significant attention has been focused on numerical simulation. Classical methods such as Method of Moment or Finite Difference Time Domain are not well suited for this type of problem, as they require a fine discretisation of space and failed to take into account uncertainties. In this paper, the authors show that the Statistical Energy Analysis is well suited for this type of application. The SEA is a statistical approach employed to solve high frequency problems of electromagnetically reverberant cavities at a reduced computational cost. The key aspects of this approach are (i) to consider an ensemble of system that share the same gross parameter, and (ii) to avoid solving Maxwell's equations inside the cavity, using the power balance principle. The output is an estimate of the field magnitude distribution in each cavity. The method is applied on a typical aircraft structure.
Sound transmission loss of composite sandwich panels
NASA Astrophysics Data System (ADS)
Zhou, Ran
Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the statistical energy analysis model.
Entropy in sound and vibration: towards a new paradigm.
Le Bot, A
2017-01-01
This paper describes a discussion on the method and the status of a statistical theory of sound and vibration, called statistical energy analysis (SEA). SEA is a simple theory of sound and vibration in elastic structures that applies when the vibrational energy is diffusely distributed. We show that SEA is a thermodynamical theory of sound and vibration, based on a law of exchange of energy analogous to the Clausius principle. We further investigate the notion of entropy in this context and discuss its meaning. We show that entropy is a measure of information lost in the passage from the classical theory of sound and vibration and SEA, its thermodynamical counterpart.
Sources of Error and the Statistical Formulation of M S: m b Seismic Event Screening Analysis
NASA Astrophysics Data System (ADS)
Anderson, D. N.; Patton, H. J.; Taylor, S. R.; Bonner, J. L.; Selby, N. D.
2014-03-01
The Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global ban on nuclear explosions, is currently in a ratification phase. Under the CTBT, an International Monitoring System (IMS) of seismic, hydroacoustic, infrasonic and radionuclide sensors is operational, and the data from the IMS is analysed by the International Data Centre (IDC). The IDC provides CTBT signatories basic seismic event parameters and a screening analysis indicating whether an event exhibits explosion characteristics (for example, shallow depth). An important component of the screening analysis is a statistical test of the null hypothesis H 0: explosion characteristics using empirical measurements of seismic energy (magnitudes). The established magnitude used for event size is the body-wave magnitude (denoted m b) computed from the initial segment of a seismic waveform. IDC screening analysis is applied to events with m b greater than 3.5. The Rayleigh wave magnitude (denoted M S) is a measure of later arriving surface wave energy. Magnitudes are measurements of seismic energy that include adjustments (physical correction model) for path and distance effects between event and station. Relative to m b, earthquakes generally have a larger M S magnitude than explosions. This article proposes a hypothesis test (screening analysis) using M S and m b that expressly accounts for physical correction model inadequacy in the standard error of the test statistic. With this hypothesis test formulation, the 2009 Democratic Peoples Republic of Korea announced nuclear weapon test fails to reject the null hypothesis H 0: explosion characteristics.
Higher order statistical moment application for solar PV potential analysis
NASA Astrophysics Data System (ADS)
Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan
2016-10-01
Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.
2016-01-01
Taiwan has very limited domestic energy resources and must rely on oil and coal imports to satisfy the majority of its energy demand. According to Taiwanese official statistics, oil, coal, and natural gas made up 48%, 29%, and 13% of Taiwan’s total primary energy consumption in 2015, respectively, while the remainder was mostly nuclear (7%) and smaller amounts of various renewable energy sources. Total energy import dependence was about 98%, according to the Taiwanese government.
Application of the Statistical ICA Technique in the DANCE Data Analysis
NASA Astrophysics Data System (ADS)
Baramsai, Bayarbadrakh; Jandel, M.; Bredeweg, T. A.; Rusev, G.; Walker, C. L.; Couture, A.; Mosby, S.; Ullmann, J. L.; Dance Collaboration
2015-10-01
The Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center is used to improve our understanding of the neutron capture reaction. DANCE is a highly efficient 4 π γ-ray detector array consisting of 160 BaF2 crystals which make it an ideal tool for neutron capture experiments. The (n, γ) reaction Q-value equals to the sum energy of all γ-rays emitted in the de-excitation cascades from the excited capture state to the ground state. The total γ-ray energy is used to identify reactions on different isotopes as well as the background. However, it's challenging to identify contribution in the Esum spectra from different isotopes with the similar Q-values. Recently we have tested the applicability of modern statistical methods such as Independent Component Analysis (ICA) to identify and separate different (n, γ) reaction yields on different isotopes that are present in the target material. ICA is a recently developed computational tool for separating multidimensional data into statistically independent additive subcomponents. In this conference talk, we present some results of the application of ICA algorithms and its modification for the DANCE experimental data analysis. This research is supported by the U. S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.
Statistics of Data Fitting: Flaws and Fixes of Polynomial Analysis of Channeled Spectra
NASA Astrophysics Data System (ADS)
Karstens, William; Smith, David
2013-03-01
Starting from general statistical principles, we have critically examined Baumeister's procedure* for determining the refractive index of thin films from channeled spectra. Briefly, the method assumes that the index and interference fringe order may be approximated by polynomials quadratic and cubic in photon energy, respectively. The coefficients of the polynomials are related by differentiation, which is equivalent to comparing energy differences between fringes. However, we find that when the fringe order is calculated from the published IR index for silicon* and then analyzed with Baumeister's procedure, the results do not reproduce the original index. This problem has been traced to 1. Use of unphysical powers in the polynomials (e.g., time-reversal invariance requires that the index is an even function of photon energy), and 2. Use of insufficient terms of the correct parity. Exclusion of unphysical terms and addition of quartic and quintic terms to the index and order polynomials yields significantly better fits with fewer parameters. This represents a specific example of using statistics to determine if the assumed fitting model adequately captures the physics contained in experimental data. The use of analysis of variance (ANOVA) and the Durbin-Watson statistic to test criteria for the validity of least-squares fitting will be discussed. *D.F. Edwards and E. Ochoa, Appl. Opt. 19, 4130 (1980). Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.
Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data
NASA Astrophysics Data System (ADS)
Kacprzak, T.; Kirk, D.; Friedrich, O.; Amara, A.; Refregier, A.; Marian, L.; Dietrich, J. P.; Suchyta, E.; Aleksić, J.; Bacon, D.; Becker, M. R.; Bonnett, C.; Bridle, S. L.; Chang, C.; Eifler, T. F.; Hartley, W. G.; Huff, E. M.; Krause, E.; MacCrann, N.; Melchior, P.; Nicola, A.; Samuroff, S.; Sheldon, E.; Troxel, M. A.; Weller, J.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Zhang, Y.; DES Collaboration
2016-12-01
Shear peak statistics has gained a lot of attention recently as a practical alternative to the two-point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg2 field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 04 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two-point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data.
Statistical analysis of CSP plants by simulating extensive meteorological series
NASA Astrophysics Data System (ADS)
Pavón, Manuel; Fernández, Carlos M.; Silva, Manuel; Moreno, Sara; Guisado, María V.; Bernardos, Ana
2017-06-01
The feasibility analysis of any power plant project needs the estimation of the amount of energy it will be able to deliver to the grid during its lifetime. To achieve this, its feasibility study requires a precise knowledge of the solar resource over a long term period. In Concentrating Solar Power projects (CSP), financing institutions typically requires several statistical probability of exceedance scenarios of the expected electric energy output. Currently, the industry assumes a correlation between probabilities of exceedance of annual Direct Normal Irradiance (DNI) and energy yield. In this work, this assumption is tested by the simulation of the energy yield of CSP plants using as input a 34-year series of measured meteorological parameters and solar irradiance. The results of this work show that, even if some correspondence between the probabilities of exceedance of annual DNI values and energy yields is found, the intra-annual distribution of DNI may significantly affect this correlation. This result highlights the need of standardized procedures for the elaboration of representative DNI time series representative of a given probability of exceedance of annual DNI.
Dark Matter interpretation of low energy IceCube MESE excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chianese, M.; Miele, G.; Morisi, S., E-mail: chianese@na.infn.it, E-mail: miele@na.infn.it, E-mail: stefano.morisi@na.infn.it
2017-01-01
The 2-years MESE IceCube events show a slightly excess in the energy range 10–100 TeV with a maximum local statistical significance of 2.3σ, once a hard astrophysical power-law is assumed. A spectral index smaller than 2.2 is indeed suggested by multi-messenger studies related to p - p sources and by the recent IceCube analysis regarding 6-years up-going muon neutrinos. In the present paper, we propose a two-components scenario where the extraterrestrial neutrinos are explained in terms of an astrophysical power-law and a Dark Matter signal. We consider both decaying and annihilating Dark Matter candidates with different final states (quarks andmore » leptons) and different halo density profiles. We perform a likelihood-ratio analysis that provides a statistical significance up to 3.9σ for a Dark Matter interpretation of the IceCube low energy excess.« less
NASA Astrophysics Data System (ADS)
Liang, Jing; Yu, Jian-xing; Yu, Yang; Lam, W.; Zhao, Yi-yu; Duan, Jing-hui
2016-06-01
Energy transfer ratio is the basic-factor affecting the level of pipe damage during the impact between dropped object and submarine pipe. For the purpose of studying energy transfer and damage mechanism of submarine pipe impacted by dropped objects, series of experiments are designed and carried out. The effective yield strength is deduced to make the quasi-static analysis more reliable, and the normal distribution of energy transfer ratio caused by lateral impact on pipes is presented by statistic analysis of experimental results based on the effective yield strength, which provides experimental and theoretical basis for the risk analysis of submarine pipe system impacted by dropped objects. Failure strains of pipe material are confirmed by comparing experimental results with finite element simulation. In addition, impact contact area and impact time are proved to be the major influence factors of energy transfer by sensitivity analysis of the finite element simulation.
Emergent Irreversibility and Entanglement Spectrum Statistics
NASA Astrophysics Data System (ADS)
Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo R.
2014-06-01
We study the problem of irreversibility when the dynamical evolution of a many-body system is described by a stochastic quantum circuit. Such evolution is more general than a Hamiltonian one, and since energy levels are not well defined, the well-established connection between the statistical fluctuations of the energy spectrum and irreversibility cannot be made. We show that the entanglement spectrum provides a more general connection. Irreversibility is marked by a failure of a disentangling algorithm and is preceded by the appearance of Wigner-Dyson statistical fluctuations in the entanglement spectrum. This analysis can be done at the wave-function level and offers an alternative route to study quantum chaos and quantum integrability.
Alignment of RNA molecules: Binding energy and statistical properties of random sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valba, O. V., E-mail: valbaolga@gmail.com; Nechaev, S. K., E-mail: sergei.nechaev@gmail.com; Tamm, M. V., E-mail: thumm.m@gmail.com
2012-02-15
A new statistical approach to the problem of pairwise alignment of RNA sequences is proposed. The problem is analyzed for a pair of interacting polymers forming an RNA-like hierarchical cloverleaf structures. An alignment is characterized by the numbers of matches, mismatches, and gaps. A weight function is assigned to each alignment; this function is interpreted as a free energy taking into account both direct monomer-monomer interactions and a combinatorial contribution due to formation of various cloverleaf secondary structures. The binding free energy is determined for a pair of RNA molecules. Statistical properties are discussed, including fluctuations of the binding energymore » between a pair of RNA molecules and loop length distribution in a complex. Based on an analysis of the free energy per nucleotide pair complexes of random RNAs as a function of the number of nucleotide types c, a hypothesis is put forward about the exclusivity of the alphabet c = 4 used by nature.« less
NASA Astrophysics Data System (ADS)
Buzzicotti, M.; Linkmann, M.; Aluie, H.; Biferale, L.; Brasseur, J.; Meneveau, C.
2018-02-01
The effects of different filtering strategies on the statistical properties of the resolved-to-subfilter scale (SFS) energy transfer are analysed in forced homogeneous and isotropic turbulence. We carry out a-priori analyses of the statistical characteristics of SFS energy transfer by filtering data obtained from direct numerical simulations with up to 20483 grid points as a function of the filter cutoff scale. In order to quantify the dependence of extreme events and anomalous scaling on the filter, we compare a sharp Fourier Galerkin projector, a Gaussian filter and a novel class of Galerkin projectors with non-sharp spectral filter profiles. Of interest is the importance of Galilean invariance and we confirm that local SFS energy transfer displays intermittency scaling in both skewness and flatness as a function of the cutoff scale. Furthermore, we quantify the robustness of scaling as a function of the filtering type.
NASA Astrophysics Data System (ADS)
Lin, Shu; Wang, Rui; Xia, Ning; Li, Yongdong; Liu, Chunliang
2018-01-01
Statistical multipactor theories are critical prediction approaches for multipactor breakdown determination. However, these approaches still require a negotiation between the calculation efficiency and accuracy. This paper presents an improved stationary statistical theory for efficient threshold analysis of two-surface multipactor. A general integral equation over the distribution function of the electron emission phase with both the single-sided and double-sided impacts considered is formulated. The modeling results indicate that the improved stationary statistical theory can not only obtain equally good accuracy of multipactor threshold calculation as the nonstationary statistical theory, but also achieve high calculation efficiency concurrently. By using this improved stationary statistical theory, the total time consumption in calculating full multipactor susceptibility zones of parallel plates can be decreased by as much as a factor of four relative to the nonstationary statistical theory. It also shows that the effect of single-sided impacts is indispensable for accurate multipactor prediction of coaxial lines and also more significant for the high order multipactor. Finally, the influence of secondary emission yield (SEY) properties on the multipactor threshold is further investigated. It is observed that the first cross energy and the energy range between the first cross and the SEY maximum both play a significant role in determining the multipactor threshold, which agrees with the numerical simulation results in the literature.
[Study of beta-turns in globular proteins].
Amirova, S R; Milchevskiĭ, Iu V; Filatov, I V; Esipova, N G; Tumanian, V G
2005-01-01
The formation of beta-turns in globular proteins has been studied by the method of molecular mechanics. Statistical method of discriminant analysis was applied to calculate energy components and sequences of oligopeptide segments, and after this prediction of I type beta-turns has been drawn. The accuracy of true positive prediction is 65%. Components of conformational energy considerably affecting beta-turn formation were delineated. There are torsional energy, energy of hydrogen bonds, and van der Waals energy.
Germany Country Analysis Brief
2016-01-01
Germany was the largest energy consumer in Europe and the seventh-largest energy consumer in the world in 2015, according to BP Statistical Review of World Energy. It was also the fourth-largest economy in the world by nominal gross domestic product (GDP) after the United States, China, and Japan in 2015. Its size and location give it considerable influence over the European Union’s energy sector. However, Germany must rely on imports to meet the majority of its energy demand.
Generalized Majority Logic Criterion to Analyze the Statistical Strength of S-Boxes
NASA Astrophysics Data System (ADS)
Hussain, Iqtadar; Shah, Tariq; Gondal, Muhammad Asif; Mahmood, Hasan
2012-05-01
The majority logic criterion is applicable in the evaluation process of substitution boxes used in the advanced encryption standard (AES). The performance of modified or advanced substitution boxes is predicted by processing the results of statistical analysis by the majority logic criteria. In this paper, we use the majority logic criteria to analyze some popular and prevailing substitution boxes used in encryption processes. In particular, the majority logic criterion is applied to AES, affine power affine (APA), Gray, Lui J, residue prime, S8 AES, Skipjack, and Xyi substitution boxes. The majority logic criterion is further extended into a generalized majority logic criterion which has a broader spectrum of analyzing the effectiveness of substitution boxes in image encryption applications. The integral components of the statistical analyses used for the generalized majority logic criterion are derived from results of entropy analysis, contrast analysis, correlation analysis, homogeneity analysis, energy analysis, and mean of absolute deviation (MAD) analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Matthew; Simpkins, Travis; Cutler, Dylan
There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less
A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Matthew; Simpkins, Travis; Cutler, Dylan
There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less
Treated cabin acoustic prediction using statistical energy analysis
NASA Technical Reports Server (NTRS)
Yoerkie, Charles A.; Ingraham, Steven T.; Moore, James A.
1987-01-01
The application of statistical energy analysis (SEA) to the modeling and design of helicopter cabin interior noise control treatment is demonstrated. The information presented here is obtained from work sponsored at NASA Langley for the development of analytic modeling techniques and the basic understanding of cabin noise. Utility and executive interior models are developed directly from existing S-76 aircraft designs. The relative importance of panel transmission loss (TL), acoustic leakage, and absorption to the control of cabin noise is shown using the SEA modeling parameters. It is shown that the major cabin noise improvement below 1000 Hz comes from increased panel TL, while above 1000 Hz it comes from reduced acoustic leakage and increased absorption in the cabin and overhead cavities.
Quantitative and statistical analysis Power grid topology of the Western Interconnection Energy storage for grid applications Research Interests Understanding the implications of high penetrations of renewable
Influence of nonlinear effects on statistical properties of the radiation from SASE FEL
NASA Astrophysics Data System (ADS)
Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
1998-02-01
The paper presents analysis of statistical properties of the radiation from self-amplified spontaneous emission (SASE) free-electron laser operating in nonlinear mode. The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. It has been observed that the statistics of the instantaneous radiation power from SASE FEL operating in the nonlinear regime changes significantly with respect to the linear regime. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility under construction at DESY.
Entropy in sound and vibration: towards a new paradigm
2017-01-01
This paper describes a discussion on the method and the status of a statistical theory of sound and vibration, called statistical energy analysis (SEA). SEA is a simple theory of sound and vibration in elastic structures that applies when the vibrational energy is diffusely distributed. We show that SEA is a thermodynamical theory of sound and vibration, based on a law of exchange of energy analogous to the Clausius principle. We further investigate the notion of entropy in this context and discuss its meaning. We show that entropy is a measure of information lost in the passage from the classical theory of sound and vibration and SEA, its thermodynamical counterpart. PMID:28265190
Using Bayes' theorem for free energy calculations
NASA Astrophysics Data System (ADS)
Rogers, David M.
Statistical mechanics is fundamentally based on calculating the probabilities of molecular-scale events. Although Bayes' theorem has generally been recognized as providing key guiding principals for setup and analysis of statistical experiments [83], classical frequentist models still predominate in the world of computational experimentation. As a starting point for widespread application of Bayesian methods in statistical mechanics, we investigate the central quantity of free energies from this perspective. This dissertation thus reviews the basics of Bayes' view of probability theory, and the maximum entropy formulation of statistical mechanics before providing examples of its application to several advanced research areas. We first apply Bayes' theorem to a multinomial counting problem in order to determine inner shell and hard sphere solvation free energy components of Quasi-Chemical Theory [140]. We proceed to consider the general problem of free energy calculations from samples of interaction energy distributions. From there, we turn to spline-based estimation of the potential of mean force [142], and empirical modeling of observed dynamics using integrator matching. The results of this research are expected to advance the state of the art in coarse-graining methods, as they allow a systematic connection from high-resolution (atomic) to low-resolution (coarse) structure and dynamics. In total, our work on these problems constitutes a critical starting point for further application of Bayes' theorem in all areas of statistical mechanics. It is hoped that the understanding so gained will allow for improvements in comparisons between theory and experiment.
Demonstration of Wavelet Techniques in the Spectral Analysis of Bypass Transition Data
NASA Technical Reports Server (NTRS)
Lewalle, Jacques; Ashpis, David E.; Sohn, Ki-Hyeon
1997-01-01
A number of wavelet-based techniques for the analysis of experimental data are developed and illustrated. A multiscale analysis based on the Mexican hat wavelet is demonstrated as a tool for acquiring physical and quantitative information not obtainable by standard signal analysis methods. Experimental data for the analysis came from simultaneous hot-wire velocity traces in a bypass transition of the boundary layer on a heated flat plate. A pair of traces (two components of velocity) at one location was excerpted. A number of ensemble and conditional statistics related to dominant time scales for energy and momentum transport were calculated. The analysis revealed a lack of energy-dominant time scales inside turbulent spots but identified transport-dominant scales inside spots that account for the largest part of the Reynolds stress. Momentum transport was much more intermittent than were energetic fluctuations. This work is the first step in a continuing study of the spatial evolution of these scale-related statistics, the goal being to apply the multiscale analysis results to improve the modeling of transitional and turbulent industrial flows.
Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data
Kacprzak, T.; Kirk, D.; Friedrich, O.; ...
2016-08-19
Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 degmore » $^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $$0<\\mathcal S / \\mathcal N<4$$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $$\\Omega_{\\rm m}$$ and $$\\sigma_8$$, fixing $w = -1$, $$\\Omega_{\\rm b} = 0.04$$, $h = 0.7$ and $$n_s=1$$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $$\\sigma_{8}(\\Omega_{\\rm m}/0.3)^{0.6}=0.77 \\pm 0.07$$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $$\\mathcal S / \\mathcal N>4$$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. As a result, we discuss prospects for future peak statistics analysis with upcoming DES data.« less
Impact resistance of fiber composites - Energy-absorbing mechanisms and environmental effects
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1985-01-01
Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.
Impact resistance of fiber composites: Energy absorbing mechanisms and environmental effects
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1983-01-01
Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.
Wave Propagation Measurements on Two-Dimensional Lattice.
1985-09-15
of boundaries, lattice member connectivities, and structural defects on these parameters. Perhaps, statistical energy analysis or pattern recognition techniques would also be of benefit in such efforts.
Cascades of energy and helicity in axisymmetric turbulence
NASA Astrophysics Data System (ADS)
Qu, Bo; Naso, Aurore; Bos, Wouter J. T.
2018-01-01
A spectral analysis of strictly axisymmetric turbulence is performed. Both freely decaying and statistically steady flows are considered. In helical flows we identify a dual cascade, where energy is transferred towards the large scales and helicity to the smallest ones. It is shown that even in the absence of net helicity, a dual cascade persists, transferring energy backward and positively and negatively polarized helicity fluctuations forward.
2015-01-01
In 2014, Brazil was the eighth-largest energy consumer in the world and the third-largest in the Americas, behind the United States and Canada, according to BP statistics. Total primary energy consumption in Brazil has nearly doubled in the past decade1 because of sustained economic growth. The largest share of Brazil's total energy consumption is oil and other liquid fuels, followed by hydroelectricity and natural gas
Pyrotechnic Shock Analysis Using Statistical Energy Analysis
2015-10-23
SEA subsystems. A couple of validation examples are provided to demonstrate the new approach. KEY WORDS : Peak Ratio, phase perturbation...Ballistic Shock Prediction Models and Techniques for Use in the Crusader Combat Vehicle Program,” 11th Annual US Army Ground Vehicle Survivability
Hoffmann, L; Schiemann, R; Jentsch, W
1979-02-01
The test series for the investigation of the energy consumption of growing pigs of the breeds large white and improved land race pig as well as cross breeds of the two breeds in a total of 369 metabolism periods (as described in the first two pieces of information of this publication series -- Hoffmann and others, 1977 and Jentsch and Hoffmann, 1977) were statistically analysed for the purpose of the derivation of the energy requirement for maintenance and the partial energy requirement for growth in order to test the possibilities of the factorial analysis for the derivation of energy requirement values of growing pigs. The dependence of the maintenance requirement of growing pigs (investigations in the live weight range of 10 to 40 kg -- see 1st information--were made with boars those in the live weight range of 30 to 120 kg were made with gelded boars, 2nd information) on the live weight can best be characterised by applying a power exponent of 0,61 or 0,62 for the live weight. A definition is offered to be discussed for the energetic maintenance requirement of productive live stock and laboratory animals as a conventional value. The energy requirement values derived from the doubly-factorial statistical analysis show a satisfactory adaptation to the measured values as such concerning energy intake and observed growth performance of the test animals. The conclusion is drawn that the factorial analysis of the energy requirement (maintenance plus partial performances) results in a better estimate of the requirement of growing animals than the assessment according only to live weight and live weight increase without characterising the energy requirement for partial performances. This is important for the further working on and more exact definition of requirement norms.
Active Nonlinear Feedback Control for Aerospace Systems. Processor
1990-12-01
relating to the role of nonlinearities in feedback control. These area include Lyapunov function theory, chaotic controllers, statistical energy analysis , phase robustness, and optimal nonlinear control theory.
The Analysis of Renewable Energy Researches in Turkey
NASA Astrophysics Data System (ADS)
Tan, S. O.; Toku, T.; Türker, İ.
2016-11-01
The rapid consumption of limited conventional energy resources mobilizes many countries in the world against global energy crisis. As well as the energy crisis, the environmental pollution caused by existing energy sources also encourages the researchers to study in new energy technologies and also renewable energy resources. From this point of view, it is important for each country to identify its wind, solar, geothermal, biomass, hydro and other renewable energy potentials. Considering this urgent energy requirement, the researches and especially the academic studies have been increased on renewable energy resources to meet the energy demand by means of indigenous resources in each country. Consequently, the main purpose of this study is to analyze the academic studies in Turkey to find out the increment rate of researches, their publication years and the more focusing branch on renewable energy by illustrating the statistical distribution of these data. Automated Data Retrieval Methods have been employed to achieve data from Web of Science database and statistical analyses have been made by SQL server management studio program. The academic studies in all variety of renewable energy areas have a tendency to increase which indicates the importance ratio of renewable energy in Turkey.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Sil; Kim, Jae-Seung; Lee, Seong-Hyun; Seo, Yun-Ho
2014-12-01
Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.
NASA Astrophysics Data System (ADS)
Taverniers, Søren; Tartakovsky, Daniel M.
2017-11-01
Predictions of the total energy deposited into a brain tumor through X-ray irradiation are notoriously error-prone. We investigate how this predictive uncertainty is affected by uncertainty in both the location of the region occupied by a dose-enhancing iodinated contrast agent and the agent's concentration. This is done within the probabilistic framework in which these uncertain parameters are modeled as random variables. We employ the stochastic collocation (SC) method to estimate statistical moments of the deposited energy in terms of statistical moments of the random inputs, and the global sensitivity analysis (GSA) to quantify the relative importance of uncertainty in these parameters on the overall predictive uncertainty. A nonlinear radiation-diffusion equation dramatically magnifies the coefficient of variation of the uncertain parameters, yielding a large coefficient of variation for the predicted energy deposition. This demonstrates that accurate prediction of the energy deposition requires a proper treatment of even small parametric uncertainty. Our analysis also reveals that SC outperforms standard Monte Carlo, but its relative efficiency decreases as the number of uncertain parameters increases from one to three. A robust GSA ameliorates this problem by reducing this number.
NASA Astrophysics Data System (ADS)
Jokhio, Gul A.; Syed Mohsin, Sharifah M.; Gul, Yasmeen
2018-04-01
It has been established that Adobe provides, in addition to being sustainable and economic, a better indoor air quality without spending extensive amounts of energy as opposed to the modern synthetic materials. The material, however, suffers from weak structural behaviour when subjected to adverse loading conditions. A wide range of mechanical properties has been reported in literature owing to lack of research and standardization. The present paper presents the statistical analysis of the results that were obtained through compressive and flexural tests on Adobe samples. Adobe specimens with and without wire mesh reinforcement were tested and the results were reported. The statistical analysis of these results presents an interesting read. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. This increase is statistically significant. The flexural response of Adobe has also shown improvement with the addition of wire mesh reinforcement, however, the statistical significance of the same cannot be established.
Equilibrium statistical-thermal models in high-energy physics
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser
2014-05-01
We review some recent highlights from the applications of statistical-thermal models to different experimental measurements and lattice QCD thermodynamics that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948, an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it, the simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analyzed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-particle systems can be studied with the help of statistical-thermal methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence for the chemical equilibrium in the final state. The strange particles might be an exception, as they are suppressed at lower beam energies. However, their relative yields fulfill statistical equilibrium, as well. We review the equilibrium statistical-thermal models for particle production, fluctuations and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions have been suggested to describe the universal behavior of the chemical freeze-out parameters. The higher order moments of multiplicity have been discussed. They offer deep insights about particle production and to critical fluctuations. Therefore, we use them to describe the freeze-out parameters and suggest the location of the QCD critical endpoint. Various extensions have been proposed in order to take into consideration the possible deviations of the ideal hadron gas. We highlight various types of interactions, dissipative properties and location-dependences (spatial rapidity). Furthermore, we review three models combining hadronic with partonic phases; quasi-particle model, linear sigma model with Polyakov potentials and compressible bag model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, D.; Mosey, G.; Plympton, P.
2007-07-01
Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest Nationalmore » Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.« less
2016 Distributed Wind Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, Alice C.; Foster, Nikolas F.; Morris, Scott L.
The U.S. Department of Energy's (DOE's) annual Distributed Wind Market Report provides stakeholders with statistics and analysis of the distributed wind market, along with insight into its trends and characteristics.
Statistical properties of kinetic and total energy densities in reverberant spaces.
Jacobsen, Finn; Molares, Alfonso Rodríguez
2010-04-01
Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high modal overlap, and this analysis has never been published. Moreover, until fairly recently, measurement of the total sound energy density required an elaborate experimental arrangement based on finite-difference approximations using at least four amplitude and phase matched pressure microphones. With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically, experimentally, and numerically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bo; Evans, Meredydd; Yu, Sha
Readily available and reliable energy data is fundamental to effective analysis and policymaking for the energy sector. Energy statistics of high quality, systematically compiled and effectively disseminated, not only support governments to ensure national security and evaluate energy policies, but they also guide investment decisions in both the private and public sectors. Because of energy’s close link to greenhouse gas emissions, energy data has a particularly important role in assessing emissions and strategies to reduce emissions. In this study, energy data management in four countries – Canada, Germany, the United Kingdom and the United States – are examined from bothmore » organizational and operational perspectives. With insights from these best practices, we present a framework for the evaluation of national energy data management systems. It can be used by national statistics compilers to assess their chosen model and to identify areas for improvement. We then use India as a test case for this framework. Its government is working to enhance India’s energy data management to improve sustainable growth planning.« less
Energy drinks in the Gulf Cooperation Council states: A review.
Alhyas, Layla; El Kashef, Ahmed; AlGhaferi, Hamad
2016-01-01
Energy drinks have become a popular beverage worldwide. This review was carried out to have an overview among adolescents and emerging adults in the Gulf Co-operation Council states about energy drinks consumption rates and other related issues such as starting age and patterns of energy drink consumption. The Medline and Embase databases were searched separately using different terms such as energy drinks, energy beverages, and caffeinated drinks. Data related to the rates of energy drinks use were entered in STATA for statistical analysis. Then, these data were used to conduct meta-analysis to estimate the rate of energy drink consumption. Overall, meta-analysis results showed that the estimated rates of energy drinks consumption is 46.9% (95% CIs, 33.2 -66.1; nine studies) with I-square 3.7%. Findings indicated that individuals start to consume energy drinks at approximately 16 years old, and males were found to consume energy drinks more frequently than females. Results from this review carry several recommendations for policy and enforcement, public education and research that can help policy and decision makers to achieve the goal of safer use of energy drinks.
Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop
NASA Astrophysics Data System (ADS)
McNally, Frank
Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work represents an early attempt at understanding the anisotropy through the study of the spectrum and composition. The high-statistics data set reveals more details on the properties of the anisotropy, potentially able to shed light on the various physical processes responsible for the complex angular structure and energy evolution.
NASA Technical Reports Server (NTRS)
Takahashi, Kazue; Anderson, Brian J.
1992-01-01
Magnetic field measurements made with the AMPTE CCE spacecraft are used to investigate the distribution of ULF energy in the inner magnetosphere. The data base is employed to examine the spatial distribution of ULF energy. The spatial distribution of wave power and spectral structures are used to identify several pulsation types, including multiharmonic toroidal oscillations; equatorial compressional Pc 3 oscillations; second harmonic poloidal oscillations; and nightside compressional oscillations. The frequencies of the toroidal oscillations are applied to determine the statistical radial profile of the plasma mass density and Alfven velocity. A clear signature of the plasma pause in the profiles of these average parameters is found.
NASA Astrophysics Data System (ADS)
Auvinen, Jussi; Bernhard, Jonah E.; Bass, Steffen A.; Karpenko, Iurii
2018-04-01
We determine the probability distributions of the shear viscosity over the entropy density ratio η /s in the quark-gluon plasma formed in Au + Au collisions at √{sN N}=19.6 ,39 , and 62.4 GeV , using Bayesian inference and Gaussian process emulators for a model-to-data statistical analysis that probes the full input parameter space of a transport + viscous hydrodynamics hybrid model. We find the most likely value of η /s to be larger at smaller √{sN N}, although the uncertainties still allow for a constant value between 0.10 and 0.15 for the investigated collision energy range.
Building a database for statistical characterization of ELMs on DIII-D
NASA Astrophysics Data System (ADS)
Fritch, B. J.; Marinoni, A.; Bortolon, A.
2017-10-01
Edge localized modes (ELMs) are bursty instabilities which occur in the edge region of H-mode plasmas and have the potential to damage in-vessel components of future fusion machines by exposing the divertor region to large energy and particle fluxes during each ELM event. While most ELM studies focus on average quantities (e.g. energy loss per ELM), this work investigates the statistical distributions of ELM characteristics, as a function of plasma parameters. A semi-automatic algorithm is being used to create a database documenting trigger times of the tens of thousands of ELMs for DIII-D discharges in scenarios relevant to ITER, thus allowing statistically significant analysis. Probability distributions of inter-ELM periods and energy losses will be determined and related to relevant plasma parameters such as density, stored energy, and current in order to constrain models and improve estimates of the expected inter-ELM periods and sizes, both of which must be controlled in future reactors. Work supported in part by US DoE under the Science Undergraduate Laboratory Internships (SULI) program, DE-FC02-04ER54698 and DE-FG02- 94ER54235.
Identification of curriculum content for a renewable energy graduate degree program
NASA Astrophysics Data System (ADS)
Haughery, John R.
There currently exists a disconnect between renewable energy industry workforce needs and academic program proficiencies. This is evidenced by an absence of clear curriculum content on renewable energy graduate program websites. The purpose of this study was to identify a set of curriculum content for graduate degrees in renewable energy. At the conclusion, a clear list of 42 content items was identified and statistically ranked. The content items identified were based on a review of literature from government initiatives, professional society's body of knowledge, and related research studies. Leaders and experts in the field of renewable energy and sustainability were surveyed, using a five-point Likert-Scale model. This allowed each item's importance level to be analyzed and prioritized based on non-parametric statistical analysis methods. The study found seven competency items to be very important , 30 to be important, and five to be somewhat important. The results were also appropriate for use as a framework in developing or improving renewable energy graduate programs.
Guidelines for the analysis of free energy calculations
Klimovich, Pavel V.; Shirts, Michael R.; Mobley, David L.
2015-01-01
Free energy calculations based on molecular dynamics (MD) simulations show considerable promise for applications ranging from drug discovery to prediction of physical properties and structure-function studies. But these calculations are still difficult and tedious to analyze, and best practices for analysis are not well defined or propagated. Essentially, each group analyzing these calculations needs to decide how to conduct the analysis and, usually, develop its own analysis tools. Here, we review and recommend best practices for analysis yielding reliable free energies from molecular simulations. Additionally, we provide a Python tool, alchemical–analysis.py, freely available on GitHub at https://github.com/choderalab/pymbar–examples, that implements the analysis practices reviewed here for several reference simulation packages, which can be adapted to handle data from other packages. Both this review and the tool covers analysis of alchemical calculations generally, including free energy estimates via both thermodynamic integration and free energy perturbation-based estimators. Our Python tool also handles output from multiple types of free energy calculations, including expanded ensemble and Hamiltonian replica exchange, as well as standard fixed ensemble calculations. We also survey a range of statistical and graphical ways of assessing the quality of the data and free energy estimates, and provide prototypes of these in our tool. We hope these tools and discussion will serve as a foundation for more standardization of and agreement on best practices for analysis of free energy calculations. PMID:25808134
NASA Astrophysics Data System (ADS)
Fennelly, Alphonsus J.; Fry, Edward L.; Zukic, Muamer; Wilson, Michele M.; Janik, Tadeusz J.; Torr, Douglas G.
1994-11-01
In six companion papers we discuss a capability for x-ray tomographic spectrophotometry at three energy ranges to observe foreign objects in various systems using a novel x-ray optical and photometric approach. We describe new types of thin-film x-ray reflecting filters to provide energy-specific optical trains, inserted into existing x-ray interrogation systems. That is complemented by performing topographic imaging at a few, to several, energies in each case. That provides a full topographic and spectrophotometric analysis. Foreign objects can then be detected, localized, discriminated, and classified, so that they may be dealt with by excision, and replacement with benign system elements. We analyze statistical and operational concerns leading to the design of three systems: The first operates at x-ray energies of 1 - 10 keV; it deals with defects in microelectronic integrated circuits. The second operates at x-ray energies of 10 - 30 keV; it deals with the defects in human tissue. The chemical specificity and image resolution of the system will allow identification, localization, and mensuration of tumors without the need of biopsy. The system which we concentrate this discussion on, the third, operates at x- ray energies of 30 - 70 keV; it deals with the presence in transportation systems of explosive devices, and contraband materials and objects in luggage and cargo. We present the analysis of the statistical features of the detection problem in these types of systems, discussing the operational constraints which limits system performance. After considering the multivariate, multisignature, approach to the problem, we discuss the tomographic and spectrophotometric approach to the problem which yields a better solution to the detection problem within the operational constraints.
NASA Astrophysics Data System (ADS)
Bugała, Artur; Bednarek, Karol; Kasprzyk, Leszek; Tomczewski, Andrzej
2017-10-01
The paper presents the most representative - from the three-year measurement time period - characteristics of daily and monthly electricity production from a photovoltaic conversion using modules installed in a fixed and 2-axis tracking construction. Results are presented for selected summer, autumn, spring and winter days. Analyzed measuring stand is located on the roof of the Faculty of Electrical Engineering Poznan University of Technology building. The basic parameters of the statistical analysis like mean value, standard deviation, skewness, kurtosis, median, range, or coefficient of variation were used. It was found that the asymmetry factor can be useful in the analysis of the daily electricity production from a photovoltaic conversion. In order to determine the repeatability of monthly electricity production, occurring between the summer, and summer and winter months, a non-parametric Mann-Whitney U test was used as a statistical solution. In order to analyze the repeatability of daily peak hours, describing the largest value of the hourly electricity production, a non-parametric Kruskal-Wallis test was applied as an extension of the Mann-Whitney U test. Based on the analysis of the electric energy distribution from a prepared monitoring system it was found that traditional forecasting methods of the electricity production from a photovoltaic conversion, like multiple regression models, should not be the preferred methods of the analysis.
NASA Technical Reports Server (NTRS)
Margutti, R.; Zaninoni, E.; Bernardini, M. G.; Chincarini, G.; Pasotti, F.; Guidorzi, C.; Angelini, Lorella; Burrows, D. N.; Capalbi, M.; Evans, P. A.;
2012-01-01
We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma- Ray Bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the rest-frame X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30 keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: i) Does the X-ray emission retain any kind of "memory" of the prompt ?-ray phase? ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt ?-ray parameters in long GRBs; short GRBs are outliers of the majority of these 2-parameter relations. However and more importantly, we report on the existence of a universal 3-parameter scaling that links the X-ray and the ?-ray energy to the prompt spectral peak energy of both long and short GRBs: E(sub X,iso)? E(sup 1.00+/-0.06)(sub ?,iso) /E(sup 0.60+/-0.10)(sub pk).
NASA Astrophysics Data System (ADS)
Margutti, R.; Zaninoni, E.; Bernardini, M. G.; Chincarini, G.; Pasotti, F.; Guidorzi, C.; Angelini, L.; Burrows, D. N.; Capalbi, M.; Evans, P. A.; Gehrels, N.; Kennea, J.; Mangano, V.; Moretti, A.; Nousek, J.; Osborne, J. P.; Page, K. L.; Perri, M.; Racusin, J.; Romano, P.; Sbarufatti, B.; Stafford, S.; Stamatikos, M.
2013-01-01
We present a comprehensive statistical analysis of Swift X-ray light curves of gamma-ray bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the rest-frame X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time-scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30 keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: (i) Does the X-ray emission retain any kind of `memory' of the prompt γ-ray phase? (ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt γ-ray parameters in long GRBs; short GRBs are outliers of the majority of these two-parameter relations. However and more importantly, we report on the existence of a universal three-parameter scaling that links the X-ray and the γ-ray energy to the prompt spectral peak energy of both long and short GRBs: EX, iso∝E1.00 ± 0.06γ, iso/E0.60 ± 0.10pk.
Shock transmission in coupled beams and rib stiffened structures
NASA Technical Reports Server (NTRS)
Pope, L. D.; Manning, J. E.; Scharton, T. D.
1971-01-01
Shock transmission in a simple coupled beam structure and in a ring-stringer stiffened cylinder is investigated experimentally and analytically using wave transmission and statistical energy analysis concepts. The use of the response spectrum to characterize the excitation provided to a simple beam by a force pulse is studied. Analysis of the transmission of a dilatation wave in a periodically stiffened plate indicates that the stiffeners are fairly transparent to the wave, but some of the dilatational energy is scattered into bending at each support.
1985-02-01
Energy Analysis , a branch of dynamic modal analysis developed for analyzing acoustic vibration problems, its present stage of development embodies a...Maximum Entropy Stochastic Modelling and Reduced-Order Design Synthesis is a rigorous new approach to this class of problems. Inspired by Statistical
The Evaluation of Feasibility of Thermal Energy Storage System at Riga TPP-2
NASA Astrophysics Data System (ADS)
Ivanova, P.; Linkevics, O.; Cers, A.
2015-12-01
The installation of thermal energy storage system (TES) provides the optimisation of energy source, energy security supply, power plant operation and energy production flexibility. The aim of the present research is to evaluate the feasibility of thermal energy system installation at Riga TPP-2. The six modes were investigated: four for non-heating periods and two for heating periods. Different research methods were used: data statistic processing, data analysis, analogy, forecasting, financial method and correlation and regression method. In the end, the best mode was chosen - the increase of cogeneration unit efficiency during the summer.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
1990-01-01
The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.
Binny, Diana; Mezzenga, Emilio; Lancaster, Craig M; Trapp, Jamie V; Kairn, Tanya; Crowe, Scott B
2017-06-01
The aims of this study were to investigate machine beam parameters using the TomoTherapy quality assurance (TQA) tool, establish a correlation to patient delivery quality assurance results and to evaluate the relationship between energy variations detected using different TQA modules. TQA daily measurement results from two treatment machines for periods of up to 4years were acquired. Analyses of beam quality, helical and static output variations were made. Variations from planned dose were also analysed using Statistical Process Control (SPC) technique and their relationship to output trends were studied. Energy variations appeared to be one of the contributing factors to delivery output dose seen in the analysis. Ion chamber measurements were reliable indicators of energy and output variations and were linear with patient dose verifications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochicchio, Davide; Panizon, Emanuele; Ferrando, Riccardo
2015-10-14
We compare the performance of two well-established computational algorithms for the calculation of free-energy landscapes of biomolecular systems, umbrella sampling and metadynamics. We look at benchmark systems composed of polyethylene and polypropylene oligomers interacting with lipid (phosphatidylcholine) membranes, aiming at the calculation of the oligomer water-membrane free energy of transfer. We model our test systems at two different levels of description, united-atom and coarse-grained. We provide optimized parameters for the two methods at both resolutions. We devote special attention to the analysis of statistical errors in the two different methods and propose a general procedure for the error estimation inmore » metadynamics simulations. Metadynamics and umbrella sampling yield the same estimates for the water-membrane free energy profile, but metadynamics can be more efficient, providing lower statistical uncertainties within the same simulation time.« less
NASA Astrophysics Data System (ADS)
Zhao, H.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Blum, L. W.; Schiller, Q. A.; Leonard, T. W.; Elkington, S. R.
2017-12-01
The electron energy spectra, as an important characteristic of radiation belt electrons, provide valuable information on the physical mechanisms affecting different electron populations. Based on the measurements of 30 keV - 10 MeV electrons from MagEIS and REPT instruments on the Van Allen Probes, case studies and statistical analysis of the radiation belt electron energy spectra characterization and evolution have been performed. Generally the radiation belt electron energy spectra can be represented by one of the three types of distributions: exponential, power law, and bump-on-tail. Statistical analysis shows that the exponential spectra are usually dominant in the outer radiation belt; as the geomagnetic storms occur, energy spectra in the outer belt soften at first due to injection of lower-energy electrons and loss of higher-energy electrons, and gradually get harder due to loss of lower-energy electrons and delayed enhancement of higher energy electron fluxes. Power law spectra generally dominate the inner belt and higher L region (L>6) during injections. Bump-on-tail spectra commonly exist inside the plasmasphere following the geomagnetic storms and/or the compression of plasmasphere, while the energy of flux maxima is usually 1.8 MeV as the bump-on-tail spectra form and gradually moves to higher energies as the spectra evolve, with the ratio of flux maxima to minima up to >10. Detailed event study indicates that the appearance of bump-on-tail spectra are mainly due to energy-dependent losses caused by the plasmaspheric hiss wave scattering, while the disappearance of these spectra can be attributed to fast flux enhancements of lower-energy electrons during storms.
NASA Astrophysics Data System (ADS)
Bouhaj, M.; von Estorff, O.; Peiffer, A.
2017-09-01
In the application of Statistical Energy Analysis "SEA" to complex assembled structures, a purely predictive model often exhibits errors. These errors are mainly due to a lack of accurate modelling of the power transmission mechanism described through the Coupling Loss Factors (CLF). Experimental SEA (ESEA) is practically used by the automotive and aerospace industry to verify and update the model or to derive the CLFs for use in an SEA predictive model when analytical estimates cannot be made. This work is particularly motivated by the lack of procedures that allow an estimate to be made of the variance and confidence intervals of the statistical quantities when using the ESEA technique. The aim of this paper is to introduce procedures enabling a statistical description of measured power input, vibration energies and the derived SEA parameters. Particular emphasis is placed on the identification of structural CLFs of complex built-up structures comparing different methods. By adopting a Stochastic Energy Model (SEM), the ensemble average in ESEA is also addressed. For this purpose, expressions are obtained to randomly perturb the energy matrix elements and generate individual samples for the Monte Carlo (MC) technique applied to derive the ensemble averaged CLF. From results of ESEA tests conducted on an aircraft fuselage section, the SEM approach provides a better performance of estimated CLFs compared to classical matrix inversion methods. The expected range of CLF values and the synthesized energy are used as quality criteria of the matrix inversion, allowing to assess critical SEA subsystems, which might require a more refined statistical description of the excitation and the response fields. Moreover, the impact of the variance of the normalized vibration energy on uncertainty of the derived CLFs is outlined.
Comparison of dark energy models: A perspective from the latest observational data
NASA Astrophysics Data System (ADS)
Li, Miao; Li, Xiaodong; Zhang, Xin
2010-09-01
We compare some popular dark energy models under the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations and the determination of H 0 from the Hubble Space Telescope. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For other dynamical dark energy models, we find that some of them, such as the α dark energy, constant w, generalized Chaplygin gas, Chevalliear-Polarski-Linder parametrization, and holographic dark energy models, can provide good fits to the current data, and three of them, namely, the Ricci dark energy, agegraphic dark energy, and Dvali-Gabadadze-Porrati models, are clearly disfavored by the data.
Chae, K-H; Biggs, A D; Blandford, R D; Browne, I W A; De Bruyn, A G; Fassnacht, C D; Helbig, P; Jackson, N J; King, L J; Koopmans, L V E; Mao, S; Marlow, D R; McKean, J P; Myers, S T; Norbury, M; Pearson, T J; Phillips, P M; Readhead, A C S; Rusin, D; Sykes, C M; Wilkinson, P N; Xanthopoulos, E; York, T
2002-10-07
We derive constraints on cosmological parameters and the properties of the lensing galaxies from gravitational lens statistics based on the final Cosmic Lens All Sky Survey data. For a flat universe with a classical cosmological constant, we find that the present matter fraction of the critical density is Omega(m)=0.31(+0.27)(-0.14) (68%)+0.12-0.10 (syst). For a flat universe with a constant equation of state for dark energy w=p(x)(pressure)/rho(x)(energy density), we find w<-0.55(+0.18)(-0.11) (68%).
Energy drinks in the Gulf Cooperation Council states: A review
El Kashef, Ahmed; AlGhaferi, Hamad
2015-01-01
Energy drinks have become a popular beverage worldwide. This review was carried out to have an overview among adolescents and emerging adults in the Gulf Co-operation Council states about energy drinks consumption rates and other related issues such as starting age and patterns of energy drink consumption. The Medline and Embase databases were searched separately using different terms such as energy drinks, energy beverages, and caffeinated drinks. Data related to the rates of energy drinks use were entered in STATA for statistical analysis. Then, these data were used to conduct meta-analysis to estimate the rate of energy drink consumption. Overall, meta-analysis results showed that the estimated rates of energy drinks consumption is 46.9% (95% CIs, 33.2 −66.1; nine studies) with I-square 3.7%. Findings indicated that individuals start to consume energy drinks at approximately 16 years old, and males were found to consume energy drinks more frequently than females. Results from this review carry several recommendations for policy and enforcement, public education and research that can help policy and decision makers to achieve the goal of safer use of energy drinks. PMID:26770815
Uzbekistan Country Analysis Brief
2016-01-01
Total primary energy consumption in Uzbekistan was about 2.05 quadrillion British thermal units (Btu) in 2015, according to BP's 2016 Statistical Review. Natural gas accounted for the majority of consumption (88%), while consumption of petroleum products (5%), coal (2%), and hydroelectricity (5%) accounted for the remainder. Uzbekistan holds sizeable hydrocarbon reserves of natural gas, and its economy is highly dependent on the country’s energy resources.
NASA Astrophysics Data System (ADS)
Taştan, Özgecan; Yalçınkaya, Eylem; Boz, Yezdan
2008-10-01
The aim of this study is to compare the effectiveness of conceptual change text instruction (CCT) in the context of energy in chemical reactions. The subjects of the study were 60, 10th grade students at a high school, who were in two different classes and taught by the same teacher. One of the classes was randomly selected as the experimental group in which CCT instruction was applied, and the other as the control group in which traditional teaching method was used. The data were obtained through the use of Energy Concept Test (ECT), the Attitude Scale towards Chemistry (ASC) and Science Process Skill Test (SPST). In order to find out the effect of the conceptual change text on students' learning of energy concept, independent sample t-tests, ANCOVA (analysis of covariance) and ANOVA (analysis of variance) were used. Results revealed that there was a statistically significant mean difference between the experimental and control group in terms of students' ECT total mean scores; however, there was no statistically significant difference between the experimental and control group in terms of students' attitude towards chemistry. These findings suggest that conceptual change text instruction enhances the understanding and achievement.
Statistical properties of Fermi GBM GRBs' spectra
NASA Astrophysics Data System (ADS)
Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt
2018-03-01
Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.
The Effects of Energy Drinks on Cognitive Ability
NASA Astrophysics Data System (ADS)
Lucas, Marlon R.
Fatigue problems have been widespread in the air traffic control industry; in past years a common practice among air traffic controllers has been to consume highly caffeinated beverages to maintain awareness and thwart sleep deprivation. This study sought to examine what impact the consumption of an energy drink had on Air Traffic Control Collegiate Training Initiative students at Middle Tennessee State University to solve Air Traffic Selection and Training Battery Applied Math type test problems. Participants consumed a Red Bull energy drink or a placebo and then were asked to complete speed, time, distance, and rate of climb and descent rates questions in addition to answering questions regarding their perception of energy drinks. An appropriate statistical analysis was applied to compare scores of participants. The experimental group which received the energy drink averaged slightly lower (M=77.27, SD=19.79) than the control group, which consumed the placebo beverage (M=81.5, SD=19.01), but this difference was not statistically significant.
Majid, Kamran; Crowder, Terence; Baker, Erin; Baker, Kevin; Koueiter, Denise; Shields, Edward; Herkowitz, Harry N
2011-12-01
One hundred eighteen patients retrieved 316L stainless steel thoracolumbar plates, of 3 different designs, used for fusion in 60 patients were examined for evidence of corrosion. A medical record review and statistical analysis were also carried out. This study aims to identify types of corrosion and examine preferential metal ion release and the possibility of statistical correlation to clinical effects. Earlier studies have found that stainless steel spine devices showed evidence of mild-to-severe corrosion; fretting and crevice corrosion were the most commonly reported types. Studies have also shown the toxicity of metal ions released from stainless steel corrosion and how the ions may adversely affect bone formation and/or induce granulomatous foreign body responses. The retrieved plates were visually inspected and graded based on the degree of corrosion. The plates were then analyzed with optical microscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy. A retrospective medical record review was performed and statistical analysis was carried out to determine any correlations between experimental findings and patient data. More than 70% of the plates exhibited some degree of corrosion. Both fretting and crevice corrosion mechanisms were observed, primarily at the screw plate interface. Energy dispersive x-ray spectroscopy analysis indicated reductions in nickel content in corroded areas, suggestive of nickel ion release to the surrounding biological environment. The incidence and severity of corrosion was significantly correlated with the design of the implant. Stainless steel thoracolumbar plates show a high incidence of corrosion, with statistical dependence on device design.
On the Helicity in 3D-Periodic Navier-Stokes Equations II: The Statistical Case
NASA Astrophysics Data System (ADS)
Foias, Ciprian; Hoang, Luan; Nicolaenko, Basil
2009-09-01
We study the asymptotic behavior of the statistical solutions to the Navier-Stokes equations using the normalization map [9]. It is then applied to the study of mean energy, mean dissipation rate of energy, and mean helicity of the spatial periodic flows driven by potential body forces. The statistical distribution of the asymptotic Beltrami flows are also investigated. We connect our mathematical analysis with the empirical theory of decaying turbulence. With appropriate mathematically defined ensemble averages, the Kolmogorov universal features are shown to be transient in time. We provide an estimate for the time interval in which those features may still be present. Our collaborator and friend Basil Nicolaenko passed away in September of 2007, after this work was completed. Honoring his contribution and friendship, we dedicate this article to him.
Guidelines for the analysis of free energy calculations.
Klimovich, Pavel V; Shirts, Michael R; Mobley, David L
2015-05-01
Free energy calculations based on molecular dynamics simulations show considerable promise for applications ranging from drug discovery to prediction of physical properties and structure-function studies. But these calculations are still difficult and tedious to analyze, and best practices for analysis are not well defined or propagated. Essentially, each group analyzing these calculations needs to decide how to conduct the analysis and, usually, develop its own analysis tools. Here, we review and recommend best practices for analysis yielding reliable free energies from molecular simulations. Additionally, we provide a Python tool, alchemical-analysis.py, freely available on GitHub as part of the pymbar package (located at http://github.com/choderalab/pymbar), that implements the analysis practices reviewed here for several reference simulation packages, which can be adapted to handle data from other packages. Both this review and the tool covers analysis of alchemical calculations generally, including free energy estimates via both thermodynamic integration and free energy perturbation-based estimators. Our Python tool also handles output from multiple types of free energy calculations, including expanded ensemble and Hamiltonian replica exchange, as well as standard fixed ensemble calculations. We also survey a range of statistical and graphical ways of assessing the quality of the data and free energy estimates, and provide prototypes of these in our tool. We hope this tool and discussion will serve as a foundation for more standardization of and agreement on best practices for analysis of free energy calculations.
NASA Astrophysics Data System (ADS)
Shirota, Yukari; Hashimoto, Takako; Fitri Sari, Riri
2018-03-01
It has been very significant to visualize time series big data. In the paper we shall discuss a new analysis method called “statistical shape analysis” or “geometry driven statistics” on time series statistical data in economics. In the paper, we analyse the agriculture, value added and industry, value added (percentage of GDP) changes from 2000 to 2010 in Asia. We handle the data as a set of landmarks on a two-dimensional image to see the deformation using the principal components. The point of the analysis method is the principal components of the given formation which are eigenvectors of its bending energy matrix. The local deformation can be expressed as the set of non-Affine transformations. The transformations give us information about the local differences between in 2000 and in 2010. Because the non-Affine transformation can be decomposed into a set of partial warps, we present the partial warps visually. The statistical shape analysis is widely used in biology but, in economics, no application can be found. In the paper, we investigate its potential to analyse the economic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stallmann, F.W.
1984-08-01
A statistical analysis of Charpy test results of the two-year Pressure Vessel Simulation metallurgical irradiation experiment was performed. Determination of transition temperature and upper shelf energy derived from computer fits compare well with eyeball fits. Uncertainties for all results can be obtained with computer fits. The results were compared with predictions in Regulatory Guide 1.99 and other irradiation damage models.
NASA Astrophysics Data System (ADS)
Reynders, Edwin P. B.; Langley, Robin S.
2018-08-01
The hybrid deterministic-statistical energy analysis method has proven to be a versatile framework for modeling built-up vibro-acoustic systems. The stiff system components are modeled deterministically, e.g., using the finite element method, while the wave fields in the flexible components are modeled as diffuse. In the present paper, the hybrid method is extended such that not only the ensemble mean and variance of the harmonic system response can be computed, but also of the band-averaged system response. This variance represents the uncertainty that is due to the assumption of a diffuse field in the flexible components of the hybrid system. The developments start with a cross-frequency generalization of the reciprocity relationship between the total energy in a diffuse field and the cross spectrum of the blocked reverberant loading at the boundaries of that field. By making extensive use of this generalization in a first-order perturbation analysis, explicit expressions are derived for the cross-frequency and band-averaged variance of the vibrational energies in the diffuse components and for the cross-frequency and band-averaged variance of the cross spectrum of the vibro-acoustic field response of the deterministic components. These expressions are extensively validated against detailed Monte Carlo analyses of coupled plate systems in which diffuse fields are simulated by randomly distributing small point masses across the flexible components, and good agreement is found.
Effects of the water level on the flow topology over the Bolund island
NASA Astrophysics Data System (ADS)
Cuerva-Tejero, A.; Yeow, T. S.; Gallego-Castillo, C.; Lopez-Garcia, O.
2014-06-01
We have analyzed the influence of the actual height of Bolund island above water level on different full-scale statistics of the velocity field over the peninsula. Our analysis is focused on the database of 10-minute statistics provided by Risø-DTU for the Bolund Blind Experiment. We have considered 10-minut.e periods with near-neutral atmospheric conditions, mean wind speed values in the interval [5,20] m/s, and westerly wind directions. As expected, statistics such as speed-up, normalized increase of turbulent kinetic energy and probability of recirculating flow show a large dependence on the emerged height of the island for the locations close to the escarpment. For the published ensemble mean values of speed-up and normalized increase of turbulent kinetic energy in these locations, we propose that some ammount of uncertainty could be explained as a deterministic dependence of the flow field statistics upon the actual height of the Bolund island above the sea level.
Diagnosing alternative conceptions of Fermi energy among undergraduate students
NASA Astrophysics Data System (ADS)
Sharma, Sapna; Ahluwalia, Pardeep Kumar
2012-07-01
Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher expects them to learn. In a classroom, as a teacher, it is desirable that one tries to bridge this gap at least on the key concepts of a particular field which is being taught. One such key concept which crops up in statistical physics/solid-state physics courses, and around which the behaviour of materials is described, is Fermi energy (εF). In this paper, we present the results which emerged about misconceptions on Fermi energy in the process of administering a diagnostic tool called the Statistical Physics Concept Survey developed by the authors. It deals with eight themes of basic importance in learning undergraduate solid-state physics and statistical physics. The question items of the tool were put through well-established sequential processes: definition of themes, Delphi study, interview with students, drafting questions, administration, validity and reliability of the tool. The tool was administered to a group of undergraduate students and postgraduate students, in a pre-test and post-test design. In this paper, we have taken one of the themes i.e. Fermi energy of the diagnostic tool for our analysis and discussion. Students’ responses and reasoning comments given during interview were analysed. This analysis helped us to identify prevailing misconceptions/learning gaps among students on this topic. How spreadsheets can be effectively used to remove the identified misconceptions and help appreciate the finer nuances while visualizing the behaviour of the system around Fermi energy, normally sidestepped both by the teachers and learners, is also presented in this paper.
Rethinking the measurement of energy poverty in Europe: A critical analysis of indicators and data
Bouzarovski, Stefan; Snell, Carolyn
2017-01-01
Energy poverty – which has also been recognised via terms such as ‘fuel poverty’ and ‘energy vulnerability’ – occurs when a household experiences inadequate levels of energy services in the home. Measuring energy poverty is challenging, as it is a culturally sensitive and private condition, which is temporally and spatially dynamic. This is compounded by the limited availability of appropriate data and indicators, and lack of consensus on how energy poverty should be conceptualised and measured. Statistical indicators of energy poverty are an important and necessary part of the research and policy landscape. They carry great political weight, and are often used to guide the targeting of energy poverty measures – due to their perceived objectivity – with important consequences for both the indoor and built environment of housing. Focussing on the European Union specifically, this paper critically assesses the available statistical options for monitoring energy poverty, whilst also presenting options for improving existing data. This is examined through the lens of vulnerability thinking, by considering the ways in which policies and institutions, the built fabric and everyday practices shape energy use, alongside the manner in which energy poor households experience and address the issue on a day-to-day basis. PMID:28919837
NASA Astrophysics Data System (ADS)
Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie
2016-06-01
High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show that the trend of the simulated 1/3 octave band sound pressure spectrum agrees well with that of the on-site-measured one. The deviation between the simulated and measured overall sound pressure level (SPL) is 2.6 dB(A) and well controlled below the engineering tolerance limit, which has validated the SAEF model in the full-spectrum analysis of the high speed train interior noise.
NASA Astrophysics Data System (ADS)
Jiao, Yi; Duan, Zhe
2017-01-01
In a diffraction-limited storage ring, half integer resonances can have strong effects on the beam dynamics, associated with the large detuning terms from the strong focusing and strong sextupoles as required for an ultralow emittance. In this study, the limitation of half integer resonances on the available momentum acceptance (MA) was statistically analyzed based on one design of the High Energy Photon Source (HEPS). It was found that the probability of MA reduction due to crossing of half integer resonances is closely correlated with the level of beta beats at the nominal tunes, but independent of the error sources. The analysis indicated that for the presented HEPS lattice design, the rms amplitude of beta beats should be kept below 1.5% horizontally and 2.5% vertically to reach a small MA reduction probability of about 1%.
Low energy peripheral scaling in nucleon-nucleon scattering and uncertainty quantification
NASA Astrophysics Data System (ADS)
Ruiz Simo, I.; Amaro, J. E.; Ruiz Arriola, E.; Navarro Pérez, R.
2018-03-01
We analyze the peripheral structure of the nucleon-nucleon interaction for LAB energies below 350 MeV. To this end we transform the scattering matrix into the impact parameter representation by analyzing the scaled phase shifts (L + 1/2) δ JLS (p) and the scaled mixing parameters (L + 1/2)ɛ JLS (p) in terms of the impact parameter b = (L + 1/2)/p. According to the eikonal approximation, at large angular momentum L these functions should become an universal function of b, independent on L. This allows to discuss in a rather transparent way the role of statistical and systematic uncertainties in the different long range components of the two-body potential. Implications for peripheral waves obtained in chiral perturbation theory interactions to fifth order (N5LO) or from the large body of NN data considered in the SAID partial wave analysis are also drawn from comparing them with other phenomenological high-quality interactions, constructed to fit scattering data as well. We find that both N5LO and SAID peripheral waves disagree more than 5σ with the Granada-2013 statistical analysis, more than 2σ with the 6 statistically equivalent potentials fitting the Granada-2013 database and about 1σ with the historical set of 13 high-quality potentials developed since the 1993 Nijmegen analysis.
Transportation Energy Data Book: Edition 27
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary
2008-06-01
The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latestmore » editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.« less
NASA Astrophysics Data System (ADS)
Goff, H. C.
1980-05-01
A market analysis task included personal interviews by GE personnel and supplemental mail surveys to acquire statistical data and to identify and measure attitudes, reactions and intentions of prospective small solar thermal power systems (SPS) users. Over 500 firms were contacted, including three ownership classes of electric utilities, industrial firms in the top SIC codes for energy consumption, and design engineering firms. A market demand model was developed which utilizes the data base developed by personal interviews and surveys, and projected energy price and consumption data to perform sensitivity analyses and estimate potential markets for SPS.
Studies in Non-Equilibrium Statistical Mechanics.
1982-09-01
in the formalism, and this is used to simulate the effects of rotational states and collisions. At each stochastic step the energy changes in the...uses of this method. 10. A Scaling Theoretical Analysis of Vibrational Relaxation Experiments: Rotational Effects and Long-Range Collisions 0...in- elude rotational effects through the rotational energy gaps and the rotational distributions. The variables in this theory are a fundamental set
Statistical Model Analysis of (n,p) Cross Sections and Average Energy For Fission Neutron Spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odsuren, M.; Khuukhenkhuu, G.
2011-06-28
Investigation of charged particle emission reaction cross sections for fast neutrons is important to both nuclear reactor technology and the understanding of nuclear reaction mechanisms. In particular, the study of (n,p) cross sections is necessary to estimate radiation damage due to hydrogen production, nuclear heating and transmutations in the structural materials of fission and fusion reactors. On the other hand, it is often necessary in practice to evaluate the neutron cross sections of the nuclides for which no experimental data are available.Because of this, we carried out the systematical analysis of known experimental (n,p) and (n,a) cross sections for fastmore » neutrons and observed a systematical regularity in the wide energy interval of 6-20 MeV and for broad mass range of target nuclei. To explain this effect using the compound, pre-equilibrium and direct reaction mechanisms some formulae were deduced. In this paper, in the framework of the statistical model known experimental (n,p) cross sections averaged over the thermal fission neutron spectrum of U-235 are analyzed. It was shown that the experimental data are satisfactorily described by the statistical model. Also, in the case of (n,p) cross sections the effective average neutron energy for fission spectrum of U-235 was found to be around 3 MeV.« less
NASA Astrophysics Data System (ADS)
Marchesan, Melissa A.; Geurisoli, Danilo M. Z.; Brugnera, Aldo, Jr.; Barbin, Eduardo L.; Pecora, Jesus D.
2002-06-01
The present study examined root canal cleaning, using the optic microscope, after rotary instrumentation with ProFile.04 with or without laser application with different output energies. Cleaning and shaping can be accomplished manually, with ultra-sonic and sub-sonic devices, with rotary instruments and recently, increasing development in laser radiation has shown promising results for disinfection and smear layer removal. In this study, 30 palatal maxillary molar roots were examined using an optic microscope after rotary instrumentation with ProFile .04 with or without Er:YAG laser application (KaVo KeyLaser II, Germany) with different output energies (2940 nm, 15 Hz, 300 pulses, 500 milli-sec duration, 42 J, 140 mJ showed on the display- input, 61 mJ at fiberoptic tip-output and 140 mJ showed on the display-input and 51 mJ at fiberoptic tip-output). Statistical analysis showed no statistical differences between the tested treatments (ANOVA, p>0.05). ANOVA also showed a statistically significant difference (p<0.01) between the root canal thirds, indicating that the middle third had less debris than the apical third. We conclude that: 1) none of the tested treatments led to totally cleaned root canals; 2) all treatments removed debris similarly, 3) the middle third had less debris than the apical third; 4) variation in output energy did not increase cleaning.
Asymptotic modal analysis and statistical energy analysis
NASA Technical Reports Server (NTRS)
Dowell, Earl H.
1988-01-01
Statistical Energy Analysis (SEA) is defined by considering the asymptotic limit of Classical Modal Analysis, an approach called Asymptotic Modal Analysis (AMA). The general approach is described for both structural and acoustical systems. The theoretical foundation is presented for structural systems, and experimental verification is presented for a structural plate responding to a random force. Work accomplished subsequent to the grant initiation focusses on the acoustic response of an interior cavity (i.e., an aircraft or spacecraft fuselage) with a portion of the wall vibrating in a large number of structural modes. First results were presented at the ASME Winter Annual Meeting in December, 1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and Reliability in Design. It is shown that asymptotically as the number of acoustic modes excited becomes large, the pressure level in the cavity becomes uniform except at the cavity boundaries. However, the mean square pressure at the cavity corner, edge and wall is, respectively, 8, 4, and 2 times the value in the cavity interior. Also it is shown that when the portion of the wall which is vibrating is near a cavity corner or edge, the response is significantly higher.
Investigation of energy management strategies for photovoltaic systems - An analysis technique
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1982-01-01
Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.
Investigation of energy management strategies for photovoltaic systems - An analysis technique
NASA Astrophysics Data System (ADS)
Cull, R. C.; Eltimsahy, A. H.
Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.
Automated spectral and timing analysis of AGNs
NASA Astrophysics Data System (ADS)
Munz, F.; Karas, V.; Guainazzi, M.
2006-12-01
% We have developed an autonomous script that helps the user to automate the XMM-Newton data analysis for the purposes of extensive statistical investigations. We test this approach by examining X-ray spectra of bright AGNs pre-selected from the public database. The event lists extracted in this process were studied further by constructing their energy-resolved Fourier power-spectrum density. This analysis combines energy distributions, light-curves, and their power-spectra and it proves useful to assess the variability patterns present is the data. As another example, an automated search was based on the XSPEC package to reveal the emission features in 2-8 keV range.
Development of an automated energy audit protocol for office buildings
NASA Astrophysics Data System (ADS)
Deb, Chirag
This study aims to enhance the building energy audit process, and bring about reduction in time and cost requirements in the conduction of a full physical audit. For this, a total of 5 Energy Service Companies in Singapore have collaborated and provided energy audit reports for 62 office buildings. Several statistical techniques are adopted to analyse these reports. These techniques comprise cluster analysis and development of prediction models to predict energy savings for buildings. The cluster analysis shows that there are 3 clusters of buildings experiencing different levels of energy savings. To understand the effect of building variables on the change in EUI, a robust iterative process for selecting the appropriate variables is developed. The results show that the 4 variables of GFA, non-air-conditioning energy consumption, average chiller plant efficiency and installed capacity of chillers should be taken for clustering. This analysis is extended to the development of prediction models using linear regression and artificial neural networks (ANN). An exhaustive variable selection algorithm is developed to select the input variables for the two energy saving prediction models. The results show that the ANN prediction model can predict the energy saving potential of a given building with an accuracy of +/-14.8%.
Emergent irreversibility and entanglement spectrum statistics
NASA Astrophysics Data System (ADS)
Mucciolo, Eduardo; Chamon, Claudio; Hamma, Alioscia
2014-03-01
We study the problem of irreversibility when the dynamical evolution of a many-body system is described by a stochastic quantum circuit. Such evolution is more general than Hamitonian, and since energy levels are not well defined, the well-established connection between the statistical fluctuations of the energy spectrum and irreversibility cannot be made. We show that the entanglement spectrum provides a more general connection. Irreversibility is marked by a failure of a disentangling algorithm and is preceded by the appearance of Wigner-Dyson statistical fluctuations in the entanglement spectrum. This analysis can be done at the wavefunction level and offers a new route to study quantum chaos and quantum integrability. We acknowledge financial support from the U.S. National Science Foundation through grants CCF 1116590 and CCF 1117241, from the National Basic Research Program of China through grants 2011CBA00300 and 2011CBA00301, and from the National Natural Science Fo.
Global Statistics of Bolides in the Terrestrial Atmosphere
NASA Astrophysics Data System (ADS)
Chernogor, L. F.; Shevelyov, M. B.
2017-06-01
Purpose: Evaluation and analysis of distribution of the number of meteoroid (mini asteroid) falls as a function of glow energy, velocity, the region of maximum glow altitude, and geographic coordinates. Design/methodology/approach: The satellite database on the glow of 693 mini asteroids, which were decelerated in the terrestrial atmosphere, has been used for evaluating basic meteoroid statistics. Findings: A rapid decrease in the number of asteroids with increasing of their glow energy is confirmed. The average speed of the celestial bodies is equal to about 17.9 km/s. The altitude of maximum glow most often equals to 30-40 km. The distribution law for a number of meteoroids entering the terrestrial atmosphere in longitude and latitude (after excluding the component in latitudinal dependence due to the geometry) is approximately uniform. Conclusions: Using a large enough database of measurements, the meteoroid (mini asteroid) statistics has been evaluated.
Streamwise evolution of statistical events and the triple correlation in a model wind turbine array
NASA Astrophysics Data System (ADS)
Viestenz, Kyle; Cal, Raúl Bayoán
2013-11-01
Hot-wire anemometry data, obtained from a wind tunnel experiment containing a 3 × 3 wind turbine array, are used to conditionally average the Reynolds stresses. Nine profiles at the centerline behind the array are analyzed to characterize the turbulent velocity statistics of the wake flow. Quadrant analysis yields statistical events occurring in the wake of the wind farm, where quadrants 2 and 4 produce ejections and sweeps, respectively. A balance between these quadrants is expressed via the ΔSo parameter, which attains a maximum value at the bottom tip and changes sign near the top tip of the rotor. These are then associated to the triple correlation term present in the turbulent kinetic energy equation of the fluctuations. The development of these various quantities is assessed in light of wake remediation, energy transport and possess significance in closure models. National Science Foundation: ECCS-1032647.
Diffusion-model analysis of pPb and PbPb collisions at LHC energies
NASA Astrophysics Data System (ADS)
Schulz, P.; Wolschin, G.
2018-06-01
We present an analysis of centrality-dependent pseudorapidity distributions of produced charged hadrons in pPb and PbPb collisions at the Large Hadron Collider (LHC) energy of s NN = 5.02 TeV, and of minimum-bias pPb collisions at 8.16 TeV within the non-equilibrium-statistical relativistic diffusion model (RDM). In a three-source approach, the role of the fragmentation sources is emphasized. Together with the Jacobian transformation from rapidity to pseudorapidity and the limiting fragmentation conjecture, these are essential for modeling the centrality dependence. For central PbPb collisions, a prediction at the projected FCC energy of s NN = 39 TeV is made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilhelm, M.S.
1982-01-01
The research was conducted as a secondary analysis of data collected during the evaluation of a statewide household energy audit conducted at Michigan State University. Energy-consumption data from utility and oil companies served as the measure of direct conservation. Indirect conservation was investigated through the analysis of self-reported participation in a variety of behaviors collectively defined as voluntary simplicity. The household was the unit of analysis served as the primary statistical procedure for testing the hypotheses. A 1.8 percentage reduction in direct household energy consumption was found between the years 1977-78 and 1979-80. Nearly three-fourths of the households were foundmore » to have practiced at least some voluntary simplicity behaviors. Relative cost of fuel used by the household was the only significant motivator for direct conservation (p = .016). Availability of human resources did not influence direct conservation. Neither did direct conservation contribute to a sense of personal control over energy problems.« less
NASA Astrophysics Data System (ADS)
Langley, Robin S.
2018-03-01
This work is concerned with the statistical properties of the frequency response function of the energy of a random system. Earlier studies have considered the statistical distribution of the function at a single frequency, or alternatively the statistics of a band-average of the function. In contrast the present analysis considers the statistical fluctuations over a frequency band, and results are obtained for the mean rate at which the function crosses a specified level (or equivalently, the average number of times the level is crossed within the band). Results are also obtained for the probability of crossing a specified level at least once, the mean rate of occurrence of peaks, and the mean trough-to-peak height. The analysis is based on the assumption that the natural frequencies and mode shapes of the system have statistical properties that are governed by the Gaussian Orthogonal Ensemble (GOE), and the validity of this assumption is demonstrated by comparison with numerical simulations for a random plate. The work has application to the assessment of the performance of dynamic systems that are sensitive to random imperfections.
A regression-based approach to estimating retrofit savings using the Building Performance Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Travis; Sohn, Michael D.
Retrofitting building systems is known to provide cost-effective energy savings. This article addresses how the Building Performance Database is used to help identify potential savings. Currently, prioritizing retrofits and computing their expected energy savings and cost/benefits can be a complicated, costly, and an uncertain effort. Prioritizing retrofits for a portfolio of buildings can be even more difficult if the owner must determine different investment strategies for each of the buildings. Meanwhile, we are seeing greater availability of data on building energy use, characteristics, and equipment. These data provide opportunities for the development of algorithms that link building characteristics and retrofitsmore » empirically. In this paper we explore the potential of using such data for predicting the expected energy savings from equipment retrofits for a large number of buildings. We show that building data with statistical algorithms can provide savings estimates when detailed energy audits and physics-based simulations are not cost- or time-feasible. We develop a multivariate linear regression model with numerical predictors (e.g., operating hours, occupant density) and categorical indicator variables (e.g., climate zone, heating system type) to predict energy use intensity. The model quantifies the contribution of building characteristics and systems to energy use, and we use it to infer the expected savings when modifying particular equipment. We verify the model using residual analysis and cross-validation. We demonstrate the retrofit analysis by providing a probabilistic estimate of energy savings for several hypothetical building retrofits. We discuss the ways understanding the risk associated with retrofit investments can inform decision making. The contributions of this work are the development of a statistical model for estimating energy savings, its application to a large empirical building dataset, and a discussion of its use in informing building retrofit decisions.« less
Innovative Approach for Developing Spacecraft Interior Acoustic Requirement Allocation
NASA Technical Reports Server (NTRS)
Chu, S. Reynold; Dandaroy, Indranil; Allen, Christopher S.
2016-01-01
The Orion Multi-Purpose Crew Vehicle (MPCV) is an American spacecraft for carrying four astronauts during deep space missions. This paper describes an innovative application of Power Injection Method (PIM) for allocating Orion cabin continuous noise Sound Pressure Level (SPL) limits to the sound power level (PWL) limits of major noise sources in the Environmental Control and Life Support System (ECLSS) during all mission phases. PIM is simulated using both Statistical Energy Analysis (SEA) and Hybrid Statistical Energy Analysis-Finite Element (SEA-FE) models of the Orion MPCV to obtain the transfer matrix from the PWL of the noise sources to the acoustic energies of the receivers, i.e., the cavities associated with the cabin habitable volume. The goal of the allocation strategy is to control the total energy of cabin habitable volume for maintaining the required SPL limits. Simulations are used to demonstrate that applying the allocated PWLs to the noise sources in the models indeed reproduces the SPL limits in the habitable volume. The effects of Noise Control Treatment (NCT) on allocated noise source PWLs are investigated. The measurement of source PWLs of involved fan and pump development units are also discussed as it is related to some case-specific details of the allocation strategy discussed here.
Statistical properties of the radiation from SASE FEL operating in the linear regime
NASA Astrophysics Data System (ADS)
Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
1998-02-01
The paper presents comprehensive analysis of statistical properties of the radiation from self amplified spontaneous emission (SASE) free electron laser operating in linear mode. The investigation has been performed in a one-dimensional approximation, assuming the electron pulse length to be much larger than a coherence length of the radiation. The following statistical properties of the SASE FEL radiation have been studied: field correlations, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and photoelectric counting statistics of SASE FEL radiation. It is shown that the radiation from SASE FEL operating in linear regime possesses all the features corresponding to completely chaotic polarized radiation.
Zhu, H.; Braun, W.
1999-01-01
A statistical analysis of a representative data set of 169 known protein structures was used to analyze the specificity of residue interactions between spatial neighboring strands in beta-sheets. Pairwise potentials were derived from the frequency of residue pairs in nearest contact, second nearest and third nearest contacts across neighboring beta-strands compared to the expected frequency of residue pairs in a random model. A pseudo-energy function based on these statistical pairwise potentials recognized native beta-sheets among possible alternative pairings. The native pairing was found within the three lowest energies in 73% of the cases in the training data set and in 63% of beta-sheets in a test data set of 67 proteins, which were not part of the training set. The energy function was also used to detect tripeptides, which occur frequently in beta-sheets of native proteins. The majority of native partners of tripeptides were distributed in a low energy range. Self-correcting distance geometry (SECODG) calculations using distance constraints sets derived from possible low energy pairing of beta-strands uniquely identified the native pairing of the beta-sheet in pancreatic trypsin inhibitor (BPTI). These results will be useful for predicting the structure of proteins from their amino acid sequence as well as for the design of proteins containing beta-sheets. PMID:10048326
THE HIGH-ENERGY, ARCMINUTE-SCALE GALACTIC CENTER GAMMA-RAY SOURCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernyakova, M.; Malyshev, D.; Aharonian, F. A.
2011-01-10
Employing data collected during the first 25 months of observations by the Fermi-LAT, we describe and subsequently seek to model the very high energy (>300 MeV) emission from the central few parsecs of our Galaxy. We analyze the morphological, spectral, and temporal characteristics of the central source, 1FGL J1745.6-2900. The data show a clear, statistically significant signal at energies above 10 GeV, where the Fermi-LAT has angular resolution comparable to that of HESS at TeV energies. This makes a meaningful joint analysis of the data possible. Our analysis of the Fermi data (alone) does not uncover any statistically significant variabilitymore » of 1FGL J1745.6-2900 at GeV energies on the month timescale. Using the combination of Fermi data on 1FGL J1745.6-2900 and HESS data on the coincident, TeV source HESS J1745-290, we show that the spectrum of the central gamma-ray source is inflected with a relatively steep spectral region matching between the flatter spectrum found at both low and high energies. We model the gamma-ray production in the inner 10 pc of the Galaxy and examine cosmic ray (CR) proton propagation scenarios that reproduce the observed spectrum of the central source. We show that a model that instantiates a transition from diffusive propagation of the CR protons at low energy to almost rectilinear propagation at high energies can explain well the spectral phenomenology. We find considerable degeneracy between different parameter choices which will only be broken with the addition of morphological information that gamma-ray telescopes cannot deliver given current angular resolution limits. We argue that a future analysis performed in combination with higher-resolution radio continuum data holds out the promise of breaking this degeneracy.« less
Feasibility study of new energy projects on three-level indicator system
NASA Astrophysics Data System (ADS)
Zhan, Zhigang
2018-06-01
With the rapid development of new energy industry, many new energy development projects are being carried out all over the world. To analyze the feasibility of the project. we build feasibility of new energy projects assessment model, based on the gathered abundant data about progress in new energy projects.12 indicators are selected by principal component analysis(PCA). Then we construct a new three-level indicator system, where the first level has 1 indicator, the second level has 5 indicators and the third level has 12 indicators to evaluate. Moreover, we use the entropy weight method (EWM) to get weight vector of the indicators in the third level and the multivariate statistical analysis(MVA)to get the weight vector of indicators in the second-class. We use this evaluation model to evaluate the feasibility of the new energy project and make a reference for the subsequent new energy investment. This could be a contribution to the world's low-carbon and green development by investing in sustainable new energy projects. We will introduce new variables and improve the weight model in the future. We also conduct a sensitivity analysis of the model and illustrate the strengths and weaknesses.
NASA Astrophysics Data System (ADS)
Svirina, Anna; Shindor, Olga; Tatmyshevsky, Konstantin
2014-12-01
The paper deals with the main problems of Russian energy system development that proves necessary to provide educational programs in the field of renewable and alternative energy. In the paper the process of curricula development and defining teaching techniques on the basis of expert opinion evaluation is defined, and the competence model for renewable and alternative energy processing master students is suggested. On the basis of a distributed questionnaire and in-depth interviews, the data for statistical analysis was obtained. On the basis of this data, an optimization of curricula structure was performed, and three models of a structure for optimizing teaching techniques were developed. The suggested educational program structure which was adopted by employers is presented in the paper. The findings include quantitatively estimated importance of systemic thinking and professional skills and knowledge as basic competences of a masters' program graduate; statistically estimated necessity of practice-based learning approach; and optimization models for structuring curricula in renewable and alternative energy processing. These findings allow the establishment of a platform for the development of educational programs.
Scaling similarities of multiple fracturing of solid materials
NASA Astrophysics Data System (ADS)
Kapiris, P. G.; Balasis, G. T.; Kopanas, J. A.; Antonopoulos, G. N.; Peratzakis, A. S.; Eftaxias, K. A.
2004-02-01
It has recently reported that electromagnetic flashes of low-energy gamma-rays emitted during multi-fracturing on a neutron star, and electromagnetic pulses emitted in the laboratory by a disordered material subjected to an increasing external load, share distinctive statistical properties with earthquakes, such as power-law energy distributions (Cheng et al., 1996; Kossobokov et al., 2000; Rabinovitch et al., 2001; Sornette and Helmstetter, 2002). The neutron starquakes may release strain energies up to 1046 erg, while, the fractures in laboratory samples release strain energies approximately a fraction of an erg. An earthquake fault region can build up strain energy up to approximately 1026 erg for the strongest earthquakes. Clear sequences of kilohertz-megahertz electromagnetic avalanches have been detected from a few days up to a few hours prior to recent destructive earthquakes in Greece. A question that arises effortlessly is if the pre-seismic electromagnetic fluctuations also share the same statistical properties. Our study justifies a positive answer. Our analysis also reveals "symptoms" of a transition to the main rupture common with earthquake sequences and acoustic emission pulses observed during laboratory experiments (Maes et al., 1998).
Gorobets, Yu I; Gorobets, O Yu
2015-01-01
The statistical model is proposed in this paper for description of orientation of trajectories of unicellular diamagnetic organisms in a magnetic field. The statistical parameter such as the effective energy is calculated on basis of this model. The resulting effective energy is the statistical characteristics of trajectories of diamagnetic microorganisms in a magnetic field connected with their metabolism. The statistical model is applicable for the case when the energy of the thermal motion of bacteria is negligible in comparison with their energy in a magnetic field and the bacteria manifest the significant "active random movement", i.e. there is the randomizing motion of the bacteria of non thermal nature, for example, movement of bacteria by means of flagellum. The energy of the randomizing active self-motion of bacteria is characterized by the new statistical parameter for biological objects. The parameter replaces the energy of the randomizing thermal motion in calculation of the statistical distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy
Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.
2015-01-01
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615
Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.
Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S
2015-05-15
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.
Aftershock identification problem via the nearest-neighbor analysis for marked point processes
NASA Astrophysics Data System (ADS)
Gabrielov, A.; Zaliapin, I.; Wong, H.; Keilis-Borok, V.
2007-12-01
The centennial observations on the world seismicity have revealed a wide variety of clustering phenomena that unfold in the space-time-energy domain and provide most reliable information about the earthquake dynamics. However, there is neither a unifying theory nor a convenient statistical apparatus that would naturally account for the different types of seismic clustering. In this talk we present a theoretical framework for nearest-neighbor analysis of marked processes and obtain new results on hierarchical approach to studying seismic clustering introduced by Baiesi and Paczuski (2004). Recall that under this approach one defines an asymmetric distance D in space-time-energy domain such that the nearest-neighbor spanning graph with respect to D becomes a time- oriented tree. We demonstrate how this approach can be used to detect earthquake clustering. We apply our analysis to the observed seismicity of California and synthetic catalogs from ETAS model and show that the earthquake clustering part is statistically different from the homogeneous part. This finding may serve as a basis for an objective aftershock identification procedure.
Valuing Residential Energy Efficiency in Two Alaska Real Estate Markets: A Hedonic Approach
NASA Astrophysics Data System (ADS)
Pride, Dominique J.
Alaska households have high home energy consumption and expenditures. Improving the energy efficiency of the housing stock can reduce home energy consumption, thereby reducing home energy expenditures and CO2 emissions. Improving the energy efficiency of a home may also increase its transaction price if the energy efficiency improvements are capitalized into the value of the home. The relationship between energy efficiency and transaction prices in the Fairbanks and Anchorage, Alaska residential real estate markets is examined. Using a hedonic pricing framework and difference-in-differences analysis, the impact of the Alaska Home Energy Rebate program on the transaction prices of single-family homes in the Fairbanks and Anchorage housing markets from 2008 through 2015 is examined. The results indicate that compared to homes that did not complete the program, homes that completed the program sell for a statistically significant price premium between 15.1% and 15.5% in the Fairbanks market and between 5% and 11% in the Anchorage market. A hedonic pricing framework is used to relate energy efficiency ratings and transaction prices of homes in the Fairbanks and Anchorage residential real estate markets from 2008 through 2015. The results indicate that homes with above-average energy efficiency ratings sell for a statistically significant price premium between 6.9% and 17.5% in the Fairbanks market and between 1.8% and 6.0% in the Anchorage market.
Linking energy behaviour, attitude and habits with environmental predisposition and knowledge
NASA Astrophysics Data System (ADS)
Pothitou, Mary; Varga, Liz; Kolios, Athanasios J.; Gu, Sai
2017-04-01
The purpose of this paper is to present and discuss the findings of an empirical study that compares individuals' environmental predisposition and knowledge with their energy behaviour, attitude and habits. Additionally, the study attempts to correlate education level and household income with the above variables. The statistical analysis reveals significant correlations between environmental predisposition and knowledge and elements of individuals' energy attitudes, habits and behaviour. An unanticipated outcome from the principal component analysis was that household income, and to a lesser extent gender, is associated with energy-saving habits and behaviours. On further investigation, household income was found to be correlated with knowledge of greenhouse gas emissions and the number of laptops and electric showers owned per household. The study sample comprises 68 employees of an educational institution, which was selected as the first phase of research aiming to compare energy-saving behaviour at home and in the workplace.
Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V
2014-10-28
Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of La(x)Ca(1-x)MnO(3) films grown on etched (001) SrTiO(3) substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.
Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W
2013-02-01
Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.
Statistics of SU(5) D-brane models on a type II orientifold
NASA Astrophysics Data System (ADS)
Gmeiner, Florian; Stein, Maren
2006-06-01
We perform a statistical analysis of models with SU(5) and flipped SU(5) gauge group in a type II orientifold setup. We investigate the distribution and correlation of properties of these models, including the number of generations and the hidden sector gauge group. Compared to the recent analysis [F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lüst, and T. Weigand, J. High Energy Phys.JHEPFG1029-8479 01 (2006) 004; F. Gmeiner, Fortschr. Phys.FPYKA60015-8208 54, 391 (2006).10.1088/1126-6708/2006/01/004] of models with a standard model-like gauge group, we find very similar results.
Missert, Nancy; Kotula, Paul G.; Rye, Michael; ...
2017-02-15
We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.
SPS market analysis. [small solar thermal power systems
NASA Technical Reports Server (NTRS)
Goff, H. C.
1980-01-01
A market analysis task included personal interviews by GE personnel and supplemental mail surveys to acquire statistical data and to identify and measure attitudes, reactions and intentions of prospective small solar thermal power systems (SPS) users. Over 500 firms were contacted, including three ownership classes of electric utilities, industrial firms in the top SIC codes for energy consumption, and design engineering firms. A market demand model was developed which utilizes the data base developed by personal interviews and surveys, and projected energy price and consumption data to perform sensitivity analyses and estimate potential markets for SPS.
EEG analysis using wavelet-based information tools.
Rosso, O A; Martin, M T; Figliola, A; Keller, K; Plastino, A
2006-06-15
Wavelet-based informational tools for quantitative electroencephalogram (EEG) record analysis are reviewed. Relative wavelet energies, wavelet entropies and wavelet statistical complexities are used in the characterization of scalp EEG records corresponding to secondary generalized tonic-clonic epileptic seizures. In particular, we show that the epileptic recruitment rhythm observed during seizure development is well described in terms of the relative wavelet energies. In addition, during the concomitant time-period the entropy diminishes while complexity grows. This is construed as evidence supporting the conjecture that an epileptic focus, for this kind of seizures, triggers a self-organized brain state characterized by both order and maximal complexity.
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.
1974-01-01
An analysis of the sputtering of metal surfaces and grids by ions of medium energies is given and it is shown that an exact, nonlinear, hyperbolic wave equation for the temperature field describes the transient transport of heat in metals. Quantum statistical and perturbation theoretical analysis of surface sputtering by low energy ions are used to develop the same expression for the sputtering rate. A transport model is formulated for the deposition of sputtered atoms on system components. Theoretical efforts in determining the potential distribution and the particle velocity distributions in low pressure discharges are briefly discussed.
NASA Astrophysics Data System (ADS)
Grabsch, Aurélien; Majumdar, Satya N.; Texier, Christophe
2017-06-01
Invariant ensembles of random matrices are characterized by the distribution of their eigenvalues \\{λ _1,\\ldots ,λ _N\\}. We study the distribution of truncated linear statistics of the form \\tilde{L}=\\sum _{i=1}^p f(λ _i) with p
Statistical analysis of tiny SXR flares observed by SphinX
NASA Astrophysics Data System (ADS)
Gryciuk, Magdalena; Siarkowski, Marek; Sylwester, Janusz; Kepa, Anna; Gburek, Szymon; Mrozek, Tomasz; Podgórski, Piotr
2015-08-01
The Solar Photometer in X-rays (SphinX) was designed to observe soft X-ray solar emission in the energy range between ~1 keV and 15 keV with the resolution better than 0.5 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of exceptionally low minimum of solar activity. Here we use SphinX data for analysis of micro-flares and brightenings. Despite a very low activity more than a thousand small X-ray events have been recognized by semi-automatic inspection of SphinX light curves. A catalogue of temporal and physical characteristics of these events is shown and discussed and results of the statistical analysis of the catalogue data are presented.
Comparative analysis on the selection of number of clusters in community detection
NASA Astrophysics Data System (ADS)
Kawamoto, Tatsuro; Kabashima, Yoshiyuki
2018-02-01
We conduct a comparative analysis on various estimates of the number of clusters in community detection. An exhaustive comparison requires testing of all possible combinations of frameworks, algorithms, and assessment criteria. In this paper we focus on the framework based on a stochastic block model, and investigate the performance of greedy algorithms, statistical inference, and spectral methods. For the assessment criteria, we consider modularity, map equation, Bethe free energy, prediction errors, and isolated eigenvalues. From the analysis, the tendency of overfit and underfit that the assessment criteria and algorithms have becomes apparent. In addition, we propose that the alluvial diagram is a suitable tool to visualize statistical inference results and can be useful to determine the number of clusters.
Cheng, Wenchi; Zhang, Hailin
2017-01-01
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509
Gao, Ya; Cheng, Wenchi; Zhang, Hailin
2017-08-23
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.
Experimental study on Statistical Damage Detection of RC Structures based on Wavelet Packet Analysis
NASA Astrophysics Data System (ADS)
Zhu, X. Q.; Law, S. S.; Jayawardhan, M.
2011-07-01
A novel damage indicator based on wavelet packet transform is developed in this study for structural health monitoring. The response signal of a structure under an impact load is normalized and then decomposed into wavelet packet components. Energies of these wavelet packet components are then calculated to obtain the energy distribution. A statistical indicator is developed to describe the damage extent of the structure. This approach is applied to the test results from simply supported reinforced concrete beams in the laboratory. Cases with single damage are created from static loading, and accelerations of the structure from under impact loads are analyzed. Results show that the method can be used for the damage monitoring and assessment of the structure.
Inelastic Single Pion Signal Study in T2K νe Appearance using Modified Decay Electron Cut
NASA Astrophysics Data System (ADS)
Iwamoto, Konosuke; T2K Collaboration
2015-04-01
The T2K long-baseline neutrino experiment uses sophisticated selection criteria to identify the neutrino oscillation signals among the events reconstructed in the Super-Kamiokande (SK) detector for νe and νμ appearance and disappearance analyses. In current analyses, charged-current quasi-elastic (CCQE) events are used as the signal reaction in the SK detector because the energy can be precisely reconstructed. This talk presents an approach to increase the statistics of the oscillation analysis by including non-CCQE events with one Michel electron and reconstruct them as the inelastic single pion productions. The increase in statistics, backgrounds to this new process and energy reconstruction implications will be presented with this increased event sample.
Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V
2017-03-30
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.
NASA Astrophysics Data System (ADS)
Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan
2016-04-01
Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.
NASA Astrophysics Data System (ADS)
Magazù, Salvatore; Mezei, Ferenc; Migliardo, Federica
2018-05-01
In a variety of applications of inelastic neutron scattering spectroscopy the goal is to single out the elastic scattering contribution from the total scattered spectrum as a function of momentum transfer and sample environment parameters. The elastic part of the spectrum is defined in such a case by the energy resolution of the spectrometer. Variable elastic energy resolution offers a way to distinguish between elastic and quasi-elastic intensities. Correlation spectroscopy lends itself as an efficient, high intensity approach for accomplishing this both at continuous and pulsed neutron sources. On the one hand, in beam modulation methods the Liouville theorem coupling between intensity and resolution is relaxed and time-of-flight velocity analysis of the neutron velocity distribution can be performed with 50 % duty factor exposure for all available resolutions. On the other hand, the (quasi)elastic part of the spectrum generally contains the major part of the integrated intensity at a given detector, and thus correlation spectroscopy can be applied with most favorable signal to statistical noise ratio. The novel spectrometer CORELLI at SNS is an example for this type of application of the correlation technique at a pulsed source. On a continuous neutron source a statistical chopper can be used for quasi-random time dependent beam modulation and the total time-of-flight of the neutron from the statistical chopper to detection is determined by the analysis of the correlation between the temporal fluctuation of the neutron detection rate and the statistical chopper beam modulation pattern. The correlation analysis can either be used for the determination of the incoming neutron velocity or for the scattered neutron velocity, depending of the position of the statistical chopper along the neutron trajectory. These two options are considered together with an evaluation of spectrometer performance compared to conventional spectroscopy, in particular for variable resolution elastic neutron scattering (RENS) studies of relaxation processes and the evolution of mean square displacements. A particular focus of our analysis is the unique feature of correlation spectroscopy of delivering high and resolution independent beam intensity, thus the same statistical chopper scan contains both high intensity and high resolution information at the same time, and can be evaluated both ways. This flexibility for variable resolution data handling represents an additional asset for correlation spectroscopy in variable resolution work. Changing the beam width for the same statistical chopper allows us to additionally trade resolution for intensity in two different experimental runs, similarly for conventional single slit chopper spectroscopy. The combination of these two approaches is a capability of particular value in neutron spectroscopy studies requiring variable energy resolution, such as the systematic study of quasi-elastic scattering and mean square displacement. Furthermore the statistical chopper approach is particularly advantageous for studying samples with low scattering intensity in the presence of a high, sample independent background.
Building Energy Monitoring and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Feng, Wei; Lu, Alison
U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performancemore » of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.« less
Electric load shape benchmarking for small- and medium-sized commercial buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xuan; Hong, Tianzhen; Chen, Yixing
Small- and medium-sized commercial buildings owners and utility managers often look for opportunities for energy cost savings through energy efficiency and energy waste minimization. However, they currently lack easy access to low-cost tools that help interpret the massive amount of data needed to improve understanding of their energy use behaviors. Benchmarking is one of the techniques used in energy audits to identify which buildings are priorities for an energy analysis. Traditional energy performance indicators, such as the energy use intensity (annual energy per unit of floor area), consider only the total annual energy consumption, lacking consideration of the fluctuation ofmore » energy use behavior over time, which reveals the time of use information and represents distinct energy use behaviors during different time spans. To fill the gap, this study developed a general statistical method using 24-hour electric load shape benchmarking to compare a building or business/tenant space against peers. Specifically, the study developed new forms of benchmarking metrics and data analysis methods to infer the energy performance of a building based on its load shape. We first performed a data experiment with collected smart meter data using over 2,000 small- and medium-sized businesses in California. We then conducted a cluster analysis of the source data, and determined and interpreted the load shape features and parameters with peer group analysis. Finally, we implemented the load shape benchmarking feature in an open-access web-based toolkit (the Commercial Building Energy Saver) to provide straightforward and practical recommendations to users. The analysis techniques were generic and flexible for future datasets of other building types and in other utility territories.« less
Electric load shape benchmarking for small- and medium-sized commercial buildings
Luo, Xuan; Hong, Tianzhen; Chen, Yixing; ...
2017-07-28
Small- and medium-sized commercial buildings owners and utility managers often look for opportunities for energy cost savings through energy efficiency and energy waste minimization. However, they currently lack easy access to low-cost tools that help interpret the massive amount of data needed to improve understanding of their energy use behaviors. Benchmarking is one of the techniques used in energy audits to identify which buildings are priorities for an energy analysis. Traditional energy performance indicators, such as the energy use intensity (annual energy per unit of floor area), consider only the total annual energy consumption, lacking consideration of the fluctuation ofmore » energy use behavior over time, which reveals the time of use information and represents distinct energy use behaviors during different time spans. To fill the gap, this study developed a general statistical method using 24-hour electric load shape benchmarking to compare a building or business/tenant space against peers. Specifically, the study developed new forms of benchmarking metrics and data analysis methods to infer the energy performance of a building based on its load shape. We first performed a data experiment with collected smart meter data using over 2,000 small- and medium-sized businesses in California. We then conducted a cluster analysis of the source data, and determined and interpreted the load shape features and parameters with peer group analysis. Finally, we implemented the load shape benchmarking feature in an open-access web-based toolkit (the Commercial Building Energy Saver) to provide straightforward and practical recommendations to users. The analysis techniques were generic and flexible for future datasets of other building types and in other utility territories.« less
Study on ion energy distribution in low-frequency oscillation time scale of Hall thrusters
NASA Astrophysics Data System (ADS)
Wei, Liqiu; Li, Wenbo; Ding, Yongjie; Han, Liang; Yu, Daren; Cao, Yong
2017-11-01
This paper reports on the dynamic characteristics of the distribution of ion energy during Hall thruster discharge in the low-frequency oscillation time scale through experimental studies, and a statistical analysis of the time-varying peak and width of ion energy and the ratio of high-energy ions during the low-frequency oscillation. The results show that the ion energy distribution exhibits a periodic change during the low-frequency oscillation. Moreover, the variation in the ion energy peak is opposite to that of the discharge current, and the variations in width of the ion energy distribution and the ratio of high-energy ions are consistent with that of the discharge current. The variation characteristics of the ion density and discharge potential were simulated by one-dimensional hybrid-direct kinetic simulations; the simulation results and analysis indicate that the periodic change in the distribution of ion energy during the low-frequency oscillation depends on the relationship between the ionization source term and discharge potential distribution during ionization in the discharge channel.
The statistical analysis of energy release in small-scale coronal structures
NASA Astrophysics Data System (ADS)
Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey
We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.
VizieR Online Data Catalog: GRB Swift X-ray light curves analysis (Margutti+, 2013)
NASA Astrophysics Data System (ADS)
Margutti, R.; Zaninoni, E.; Bernardini, M. G.; Chincarini, G.; Pasotti, F.; Guidorzi, C.; Angelini, L.; Burrows, D. N.; Capalbi, M.; Evans, P. A.; Gehrels, N.; Kennea, J.; Mangano, V.; Moretti, A.; Nousek, J.; Osborne, J. P.; Page, K. L.; Perri, M.; Racusin, J.; Romano, P.; Sbarufatti, B.; Stafford, S.; Stamatikos, M.
2013-11-01
We present a comprehensive statistical analysis of Swift X-ray light curves of gamma-ray bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the rest-frame X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time-scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: (i) Does the X-ray emission retain any kind of 'memory' of the prompt γ-ray phase? (ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt γ-ray parameters in long GRBs; short GRBs are outliers of the majority of these two-parameter relations. However and more importantly, we report on the existence of a universal three-parameter scaling that links the X-ray and the γ-ray energy to the prompt spectral peak energy of both long and short GRBs: EX,iso{prop.to}E1.00+/-0.06γ,iso/E0.60+/-0.10pk. (3 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Eric J
The ResStock analysis tool is helping states, municipalities, utilities, and manufacturers identify which home upgrades save the most energy and money. Across the country there's a vast diversity in the age, size, construction practices, installed equipment, appliances, and resident behavior of the housing stock, not to mention the range of climates. These variations have hindered the accuracy of predicting savings for existing homes. Researchers at the National Renewable Energy Laboratory (NREL) developed ResStock. It's a versatile tool that takes a new approach to large-scale residential energy analysis by combining: large public and private data sources, statistical sampling, detailed subhourly buildingmore » simulations, high-performance computing. This combination achieves unprecedented granularity and most importantly - accuracy - in modeling the diversity of the single-family housing stock.« less
Statistical Analysis of Acoustic Signal Propagating Through the South China Sea Basin
2016-03-01
internal tidal constituents are observed in both spectra, and the diurnal (D) and semidiurnal (SD) internal waves ’ energy are strong. The spectrum is...bandwidths were utilized during the frequency smoothing process to ensure the reliability of the spectra in the meso-, tidal and internal wave scale...mooring temperature sensors capture the internal waves ’ energy, and six high amplitude peaks are observed in the spectra in the internal tidal band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye, Jayant A.
2000-04-01
Integrated assessment (IA) modeling of climate policy is increasingly global in nature, with models incorporating regional disaggregation. The existing empirical basis for IA modeling, however, largely arises from research on industrialized economies. Given the growing importance of developing countries in determining long-term global energy and carbon emissions trends, filling this gap with improved statistical information on developing countries' energy and carbon-emissions characteristics is an important priority for enhancing IA modeling. Earlier research at LBNL on this topic has focused on assembling and analyzing statistical data on productivity trends and technological change in the energy-intensive manufacturing sectors of five developing countries,more » India, Brazil, Mexico, Indonesia, and South Korea. The proposed work will extend this analysis to the agriculture and electric power sectors in India, South Korea, and two other developing countries. They will also examine the impact of alternative model specifications on estimates of productivity growth and technological change for each of the three sectors, and estimate the contribution of various capital inputs--imported vs. indigenous, rigid vs. malleable-- in contributing to productivity growth and technological change. The project has already produced a data resource on the manufacturing sector which is being shared with IA modelers. This will be extended to the agriculture and electric power sectors, which would also be made accessible to IA modeling groups seeking to enhance the empirical descriptions of developing country characteristics. The project will entail basic statistical and econometric analysis of productivity and energy trends in these developing country sectors, with parameter estimates also made available to modeling groups. The parameter estimates will be developed using alternative model specifications that could be directly utilized by the existing IAMs for the manufacturing, agriculture, and electric power sectors.« less
Mathematics and Statistics Research Department progress report, period ending June 30, 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denson, M.V.; Funderlic, R.E.; Gosslee, D.G.
1982-08-01
This report is the twenty-fifth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation Nuclear Division (UCC-ND). Part A records research progress in analysis of large data sets, biometrics research, computational statistics, materials science applications, moving boundary problems, numerical linear algebra, and risk analysis. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology, chemistry, energy, engineering, environmental sciences, health and safety, materials science, safeguards, surveys, and the waste storage program. Part C summarizes the various educational activities inmore » which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period.« less
Meyer, J. E.; Schulz, G. E.
1997-01-01
The crystal structure of the maltodextrin-specific porin from Salmonella typhimurium ligated with a maltotrioside at the pore eyelet is known at 2.4 A resolution. The three glucose units assume a conformation close to the natural amylose helix. The pore eyelet fits exactly the cross-section of a maltooligosaccharide chain and thus functions as a constraining orifice. The oligomer permeates the membrane by screwing along the amylose helix through this orifice. Because each glucose glides along the given helix, its interactions can be sampled at any point along the pathway. The interactions are mostly hydrogen bonds, but also contacts to aromatic rings at one side of the pore. We have derived the energy profile of a gliding maltooligosaccharide by following formation and breakage of hydrogen bonds and by assessing the saccharide-aromatics interactions from a statistical analysis of saccharide binding sites in proteins. The resulting profile indicates smooth permeation despite extensive hydrogen bonding at the orifice. PMID:9144780
Statistical analysis of the pulse-coupled synchronization strategy for wireless sensor networks
Wang, Yongqiang; Núñez, Felipe; Doyle, Francis J.
2013-01-01
Pulse-coupled synchronization is attracting increased attention in the sensor network community. Yet its properties have not been fully investigated. Using statistical analysis, we prove analytically that by controlling the number of connections at each node, synchronization can be guaranteed for generally pulse-coupled oscillators even in the presence of a refractory period. The approach does not require the initial phases to reside in half an oscillation cycle, which improves existing results. We also find that a refractory period can be strategically included to reduce idle listening at nearly no sacrifice to the synchronization probability. Given that reduced idle listening leads to higher energy efficiency in the synchronization process, the strategically added refractory period makes the synchronization scheme appealing to cheap sensor nodes, where energy is a precious system resource. We also analyzed the pulse-coupled synchronization in the presence of unreliable communication links and obtained similar results. QualNet experimental results are given to confirm the effectiveness of the theoretical predictions. PMID:24324322
Vibroacoustic Response of the NASA ACTS Spacecraft Antenna to Launch Acoustic Excitation
NASA Technical Reports Server (NTRS)
Larko, Jeffrey M.; Cotoni, Vincent
2008-01-01
The Advanced Communications Technology Satellite was an experimental NASA satellite launched from the Space Shuttle Discovery. As part of the ground test program, the satellite s large, parabolic reflector antennas were exposed to a reverberant acoustic loading to simulate the launch acoustics in the Shuttle payload bay. This paper describes the modelling and analysis of the dynamic response of these large, composite spacecraft antenna structure subjected to a diffuse acoustic field excitation. Due to the broad frequency range of the excitation, different models were created to make predictions in the various frequency regimes of interest: a statistical energy analysis (SEA) model to capture the high frequency response and a hybrid finite element-statistical energy (hybrid FE-SEA) model for the low to mid-frequency responses. The strengths and limitations of each of the analytical techniques are discussed. The predictions are then compared to the measured acoustic test data and to a boundary element (BEM) model to evaluate the performance of the hybrid techniques.
NASA Astrophysics Data System (ADS)
Ghosh, Dipak; Sarkar, Sharmila; Sen, Sanjib; Roy, Jaya
1995-06-01
In this paper the behavior of factorial moments with rapidity window size, which is usually explained in terms of ``intermittency,'' has been interpreted by simple quantum statistical properties of the emitting system using the concept of ``modified two-source model'' as recently proposed by Ghosh and Sarkar [Phys. Lett. B 278, 465 (1992)]. The analysis has been performed using our own data of 16Ag/Br and 24Ag/Br interactions at a few tens of GeV energy regime.
Meta-analysis inside and outside particle physics: two traditions that should converge?
Baker, Rose D; Jackson, Dan
2013-06-01
The use of meta-analysis in medicine and epidemiology really took off in the 1970s. However, in high-energy physics, the Particle Data Group has been carrying out meta-analyses of measurements of particle masses and other properties since 1957. Curiously, there has been virtually no interaction between those working inside and outside particle physics. In this paper, we use statistical models to study two major differences in practice. The first is the usefulness of systematic errors, which physicists are now beginning to quote in addition to statistical errors. The second is whether it is better to treat heterogeneity by scaling up errors as do the Particle Data Group or by adding a random effect as does the rest of the community. Besides fitting models, we derive and use an exact test of the error-scaling hypothesis. We also discuss the other methodological differences between the two streams of meta-analysis. Our conclusion is that systematic errors are not currently very useful and that the conventional random effects model, as routinely used in meta-analysis, has a useful role to play in particle physics. The moral we draw for statisticians is that we should be more willing to explore 'grassroots' areas of statistical application, so that good statistical practice can flow both from and back to the statistical mainstream. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.
Time tracking and interaction of energy-eddies at different scales
NASA Astrophysics Data System (ADS)
Cardesa, Jose I.; Vela-Martin, Alberto; Jimenez, Javier
2016-11-01
We study the energy cascade through coherent structures obtained in time-resolved simulations of incompressible, statistically steady isotropic turbulence. The structures are defined as geometrically connected regions of the flow with high kinetic energy. We compute the latter by band-pass filtering the velocity field around a scale r. We analyse the dynamics of structures extracted with different r, which are a proxy for eddies containing energy at those r. We find that the size of these "energy-eddies" scales with r, while their lifetime scales with the local eddy-turnover r 2 / 3ɛ - 1 / 3 , where ɛ is the energy dissipation averaged over all space and time. Furthermore, a statistical analysis over the lives of the eddies shows a slight predominance of the splitting over the merging process. When we isolate the eddies which do not interact with other eddies of the same scale, we observe a parent-child dependence by which, on average, structures are born at scale r during the decaying part of the life of a structure at scale r' > r . The energy-eddy at r' lives in the same region of space as that at r. Finally, we investigate how interactions between eddies at the same scale are echoed across other scales. Funded by the ERC project Coturb.
Cellular Analysis of Boltzmann Most Probable Ideal Gas Statistics
NASA Astrophysics Data System (ADS)
Cahill, Michael E.
2018-04-01
Exact treatment of Boltzmann's Most Probable Statistics for an Ideal Gas of Identical Mass Particles having Translational Kinetic Energy gives a Distribution Law for Velocity Phase Space Cell j which relates the Particle Energy and the Particle Population according toB e(j) = A - Ψ(n(j) + 1)where A & B are the Lagrange Multipliers and Ψ is the Digamma Function defined byΨ(x + 1) = d/dx ln(x!)A useful sufficiently accurate approximation for Ψ is given byΨ(x +1) ≈ ln(e-γ + x)where γ is the Euler constant (≈.5772156649) & so the above distribution equation is approximatelyB e(j) = A - ln(e-γ + n(j))which can be inverted to solve for n(j) givingn(j) = (eB (eH - e(j)) - 1) e-γwhere B eH = A + γ& where B eH is a unitless particle energy which replaces the parameter A. The 2 approximate distribution equations imply that eH is the highest particle energy and the highest particle population isnH = (eB eH - 1) e-γwhich is due to the facts that population becomes negative if e(j) > eH and kinetic energy becomes negative if n(j) > nH.An explicit construction of Cells in Velocity Space which are equal in volume and homogeneous for almost all cells is shown to be useful in the analysis.Plots for sample distribution properties using e(j) as the independent variable are presented.
Urban pavement surface temperature. Comparison of numerical and statistical approach
NASA Astrophysics Data System (ADS)
Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia
2015-04-01
The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.
Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays
NASA Astrophysics Data System (ADS)
Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.
2014-01-01
We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Wenning, Thomas J.; Guo, Wei
In the United States, manufacturing facilities account for about 32% of total domestic energy consumption in 2014. Robust energy tracking methodologies are critical to understanding energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the classic energy intensity method (i.e. the ratio of total energy use over total production) is the most widely adopted. However, the classic energy intensity method does not take into account the variation of other relevant parameters (i.e. product type, feed stock type, weather, etc.). Furthermore, the energy intensity method assumes that the facilities’ base energy consumption (energy use at zero production) is zero,more » which rarely holds true. Therefore, it is commonly recommended to utilize regression models rather than the energy intensity approach for tracking improvements at the facility level. Unfortunately, many energy managers have difficulties understanding why regression models are statistically better than utilizing the classic energy intensity method. While anecdotes and qualitative information may convince some, many have major reservations about the accuracy of regression models and whether it is worth the time and effort to gather data and build quality regression models. This paper will explain why regression models are theoretically and quantitatively more accurate for tracking energy performance improvements. Based on the analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative results on the importance of utilizing regression models over the energy intensity methodology. This paper will also document scenarios where regression models do not have significant relevance over the energy intensity method.« less
Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu
2015-09-01
Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radiative neutron capture on 242Pu in the resonance region at the CERN n_TOF-EAR1 facility
NASA Astrophysics Data System (ADS)
Lerendegui-Marco, J.; Guerrero, C.; Mendoza, E.; Quesada, J. M.; Eberhardt, K.; Junghans, A. R.; Krtička, M.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; García, A. R.; Gawlik, A.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.; n TOF Collaboration
2018-02-01
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of 242Pu there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluated with JEFF-3.1 indicate an overestimation of 14% in the capture cross section in the fast neutron energy region. In this context, the Nuclear Energy Agency (NEA) requested an accuracy of 8% in this cross section in the energy region between 500 meV and 500 keV. This paper presents a new time-of-flight capture measurement on 242Pu carried out at n_TOF-EAR1 (CERN), focusing on the analysis and statistical properties of the resonance region, below 4 keV. The 242Pu(n ,γ ) reaction on a sample containing 95(4) mg enriched to 99.959% was measured with an array of four C6D6 detectors and applying the total energy detection technique. The high neutron energy resolution of n_TOF-EAR1 and the good statistics accumulated have allowed us to extend the resonance analysis up to 4 keV, obtaining new individual and average resonance parameters from a capture cross section featuring a systematic uncertainty of 5%, fulfilling the request of the NEA.
Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii
NASA Astrophysics Data System (ADS)
Carl, Caroline
As carbon based fossil fuels become increasingly scarce, renewable energy sources are coming to the forefront of policy discussions around the globe. As a result, the State of Hawaii has implemented aggressive goals to achieve energy independence by 2030. Renewable electricity generation using solar photovoltaic technologies plays an important role in these efforts. This study utilizes geographic information systems (GIS) and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how much solar photovoltaic potential exists for residential rooftops in the town of Kailua Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential rooftops within the study area. Three main areas were addressed in the execution of this research: (1) modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential from incoming solar radiation. High resolution LiDAR data and Esri's solar modeling tools and were utilized to calculate incoming solar radiation on a sample set of digitized rooftops. Photovoltaic potential for the sample set was then calculated with the equations developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical model to identify the correlation between rooftop area and lot size. Least squares multiple linear regression analysis was performed to identify the influence of slope, elevation, rooftop area, and lot size on the modeled PV potential values. The equations built from these statistical analyses of the sample set were applied to the entire study region to calculate total rooftop area and PV potential. The total study area statistical analysis findings estimate photovoltaic electric energy generation potential for rooftops is approximately 190,000,000 kWh annually. This is approximately 17 percent of the total electricity the utility provided to the entire island in 2012. Based on these findings, full rooftop PV installations on the 4,460 study area homes could provide enough energy to power over 31,000 homes annually. The methods developed here suggest a means to calculate rooftop area and PV potential in a region with limited available data. The use of LiDAR point data offers a major opportunity for future research in both automating rooftop inventories and calculating incoming solar radiation and PV potential for homeowners.
Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele
2016-01-01
To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes.
Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele
2016-01-01
AIM To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. METHODS Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. RESULTS The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). CONCLUSION The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes. PMID:27366694
1992-01-01
entropy , energy. variance, skewness, and object. It can also be applied to an image of a phenomenon. It kurtosis. These parameters are then used as...statistic. The co-occurrence matrix method is used in this study to derive texture values of entropy . Limogeneity. energy (similar to the GLDV angular...from working with the co-occurrence matrix method. Seven convolution sizes were chosen to derive the texture values of entropy , local homogeneity, and
α -induced reactions on 115In: Cross section measurements and statistical model analysis
NASA Astrophysics Data System (ADS)
Kiss, G. G.; Szücs, T.; Mohr, P.; Török, Zs.; Huszánk, R.; Gyürky, Gy.; Fülöp, Zs.
2018-05-01
Background: α -nucleus optical potentials are basic ingredients of statistical model calculations used in nucleosynthesis simulations. While the nucleon+nucleus optical potential is fairly well known, for the α +nucleus optical potential several different parameter sets exist and large deviations, reaching sometimes even an order of magnitude, are found between the cross section predictions calculated using different parameter sets. Purpose: A measurement of the radiative α -capture and the α -induced reaction cross sections on the nucleus 115In at low energies allows a stringent test of statistical model predictions. Since experimental data are scarce in this mass region, this measurement can be an important input to test the global applicability of α +nucleus optical model potentials and further ingredients of the statistical model. Methods: The reaction cross sections were measured by means of the activation method. The produced activities were determined by off-line detection of the γ rays and characteristic x rays emitted during the electron capture decay of the produced Sb isotopes. The 115In(α ,γ )119Sb and 115In(α ,n )Sb118m reaction cross sections were measured between Ec .m .=8.83 and 15.58 MeV, and the 115In(α ,n )Sb118g reaction was studied between Ec .m .=11.10 and 15.58 MeV. The theoretical analysis was performed within the statistical model. Results: The simultaneous measurement of the (α ,γ ) and (α ,n ) cross sections allowed us to determine a best-fit combination of all parameters for the statistical model. The α +nucleus optical potential is identified as the most important input for the statistical model. The best fit is obtained for the new Atomki-V1 potential, and good reproduction of the experimental data is also achieved for the first version of the Demetriou potentials and the simple McFadden-Satchler potential. The nucleon optical potential, the γ -ray strength function, and the level density parametrization are also constrained by the data although there is no unique best-fit combination. Conclusions: The best-fit calculations allow us to extrapolate the low-energy (α ,γ ) cross section of 115In to the astrophysical Gamow window with reasonable uncertainties. However, still further improvements of the α -nucleus potential are required for a global description of elastic (α ,α ) scattering and α -induced reactions in a wide range of masses and energies.
Ichikawa, Kota; Tanino, Ryuzaburo; Wakaki, Moriaki
2006-12-20
Although various lasers are available, few of them are applicable in liposculpture. Laser interaction with fat tissue has not also been well documented. The aim of our study was to gather basic data on laser absorption in fat tissue and to analyze the relationship between laser energy and lipolysis for development of a more effective laser system. The transmittance rate in human fat specimens was measured by a spectrophotometer to determine the optimum wavelength. The absorption coefficient was used to evaluate laser absorption at a wavelength of 1064 nm. Areas of heat degeneration and evaporation were measured by scanning electron microscopy. The relation between laser energy and the areas was analyzed statistically among low-power and high-power groups and controls. Energy dispersion at the fiber tip was investigated and analyzed statistically using the far field pattern. A graph of the absorption rate at wavelengths from 400 to 2400 nm showed a peak near 1700 nm and increases at wavelengths over 2000 nm. The formula gave as an absorption coefficient of 0.4 cm(-1), and involvement of the photo-acoustic effect and non-linear effect with short-pulse and high-peak energy was suggested. Findings of tissue evaporation, destruction, heat coagulation, and rupture of cell membrane were more frequently seen in irradiated specimens than in controls in scanning electron microscopy. The destroyed area in the low-power irradiated groups was significantly larger than that of controls in the statistical analysis. The affected area in the high-power irradiated groups was significantly larger than that of low-power specimens. Energy was concentrated at the tip with laser coherency. Energy at the oblique-cut tip was statistically lower than that at the normal tip, revealing that durability and maintenance of the fiber tip is essential to maintain energy levels in clinical practice. This study is the first to demonstrate the histologic and photonic relationship of energy absorption and lipolysis using a pulsed Nd:YAG laser. The results will be useful for research and development of a more effective laser system for liposculpture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z; Kennedy, A; Larsen, E
2015-06-15
Purpose: The aim of this study was to investigate the dosimetric impact of the combination of photon energy and treatment technique on radiotherapy of localized prostate cancer when knowledge based planning was used. Methods: A total of 16 patients with localized prostate cancer were retrospectively retrieved from database and used for this study. For each patient, four types of treatment plans with different combinations of photon energy (6X and 10X) and treatment techniques (7-field IMRT and 2-arc VMAT) were created using a prostate DVH estimation model in RapidPlan™ and Eclipse treatment planning system (Varian Medical System). For any beam arrangement,more » DVH objectives and weighting priorities were generated based on the geometric relationship between the OAR and PTV. Photon optimization algorithm was used for plan optimization and AAA algorithm was used for final dose calculation. Plans were evaluated in terms of the pre-defined dosimetric endpoints for PTV, rectum, bladder, penile bulb, and femur heads. A Student’s paired t-test was used for statistical analysis and p > 0.05 was considered statistically significant. Results: For PTV, V95 was statistically similar among all four types of plans, though the mean dose of 10X plans was higher than that of 6X plans. VMAT plans showed higher heterogeneity index than IMRT plans. No statistically significant difference in dosimetry metrics was observed for rectum, bladder, and penile bulb among plan types. For left and right femur, VMAT plans had a higher mean dose than IMRT plans regardless of photon energy, whereas the maximum dose was similar. Conclusion: Overall, the dosimetric endpoints were similar regardless of photon energy and treatment techniques when knowledge based auto planning was used. Given the similarity in dosimetry metrics of rectum, bladder, and penile bulb, the genitourinary and gastrointestinal toxicities should be comparable among the selections of photon energy and treatment techniques.« less
China Energy Databook. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinton, J. E.; Fridley, D. G.; Levine, M. D.
1996-09-01
The Energy Analysis Program at LBL first became involved in Chinese energy issues through a joint China-US symposium on markets and energy demand held in Nanjing Nov. 1988. EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. It was decided to compile, assess, and organize Chinese energy data. Primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system; thus the primary criterion was to relate the data to the structure of energy supply and demand in the past and to indicate probablemore » developments (eg, as indicated by patterns of investment). Caveats are included in forewords to both the 1992 and 1996 editions. A chapter on energy prices is included in the 1996 edition. 1993 energy consumption data are not included since there was a major disruption in energy statistical collection in China that year.« less
Wang, Yue-Qiao; Zhang, Yun-Quan; Zhang, Fei; Zhang, Yi-Wen; Li, Rui; Chen, Guo-Xun
2016-06-17
Body weight is regulated by energy intake which occurs several times a day in humans. In this meta-analysis, we evaluated whether eating frequency (EF) is associated with obesity risk and energy intake in adults without any dietary restriction. Experimental and observational studies published before July 2015 were selected through English-language literature searches in several databases. These studies reported the association between EF and obesity risk (odd ratios, ORs) in adults who were not in dietary restriction. R software was used to perform statistical analyses. Ten cross-sectional studies, consisting of 65,742 participants, were included in this analysis. ORs were considered as effect size for the analysis about the effect of EF on obesity risk. Results showed that the increase of EF was associated with 0.83 time lower odds of obesity (i.e., OR = 0.83, 95% confidence intervals (CI) 0.70-0.99, p = 0.040). Analysis about the effect of EF on differences in participants' energy intake revealed that increased EF was associated with higher energy intake (β = 125.36, 95% CI 21.76-228.97, p = 0.017). We conclude that increased EF may lead to lower obesity risk but higher energy intake. Clinical trials are warranted to confirm these results and to assess the clinical practice applicability.
NASA Astrophysics Data System (ADS)
Ogawa, T.; Sato, T.; Hashimoto, S.; Niita, K.
2013-09-01
The fragmentation cross-sections of relativistic energy nucleus-nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus-nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections.
Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks
NASA Astrophysics Data System (ADS)
Frahm, Klaus M.; Shepelyansky, Dima L.
2014-04-01
We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and three networks of Wikipedia editions in English, French and German. We argue that due to absence of level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law implies that the nearby PageRank probabilities fluctuate as random independent variables.
NASA Astrophysics Data System (ADS)
Baró, Jordi; Planes, Antoni; Salje, Ekhard K. H.; Vives, Eduard
2016-12-01
Local fracture events (or labquakes) during compression of shale rocks have been studied by acoustic emission. They are assumed to simulate quakes induced by hydraulic fracturing (fracking) or other water injection activities. Results are compared with those obtained during compression of porous Vycor glass, which are known to display statistical features very similar to those characterising natural earthquakes. Our acoustic emission results show that labquake energies are power law distributed, which is consistent with recent statistical analysis of fracking-/water injection-induced quakes. The data confirm a Gutenberg-Richter behaviour with exponents larger than the exponents characterising the energy distribution of natural earthquakes. In contrast to natural earthquakes, labquakes in shales do not show time correlations, which indicates that the probability of aftershocks is smaller than in the natural scenario (e.g. during Californian earthquakes).
Scalings of intermittent structures in magnetohydrodynamic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdankin, Vladimir, E-mail: zhdankin@jila.colorado.edu; Boldyrev, Stanislav; Space Science Institute, Boulder, Colorado 80301
Turbulence is ubiquitous in plasmas, leading to rich dynamics characterized by irregularity, irreversibility, energy fluctuations across many scales, and energy transfer across many scales. Another fundamental and generic feature of turbulence, although sometimes overlooked, is the inhomogeneous dissipation of energy in space and in time. This is a consequence of intermittency, the scale-dependent inhomogeneity of dynamics caused by fluctuations in the turbulent cascade. Intermittency causes turbulent plasmas to self-organize into coherent dissipative structures, which may govern heating, diffusion, particle acceleration, and radiation emissions. In this paper, we present recent progress on understanding intermittency in incompressible magnetohydrodynamic turbulence with a strongmore » guide field. We focus on the statistical analysis of intermittent dissipative structures, which occupy a small fraction of the volume but arguably account for the majority of energy dissipation. We show that, in our numerical simulations, intermittent structures in the current density, vorticity, and Elsässer vorticities all have nearly identical statistical properties. We propose phenomenological explanations for the scalings based on general considerations of Elsässer vorticity structures. Finally, we examine the broader implications of intermittency for astrophysical systems.« less
NASA Technical Reports Server (NTRS)
Semler, T. T.
1973-01-01
The method of pseudo-resonance cross sections is used to analyze published temperature-dependent neutron transmission and self-indication measurements on tantalum in the unresolved region. In the energy region analyzed, 1825.0 to 2017.0 eV, a direct application of the pseudo-resonance approach using a customary average strength function will not provide effective cross sections which fit the measured cross section behavior. Rather a local value of the strength function is required, and a set of resonances which model the measured behavior of the effective cross sections is derived. This derived set of resonance parameters adequately represents the observed resonance hehavior in this local energy region. Similar analyses for the measurements in other unresolved energy regions are necessary to obtain local resonance parameters for improved reactor calculations. This study suggests that Doppler coefficients calculated by sampling from grand average statistical distributions over the entire unresolved resonance region can be in error, since significant local variations in the statistical distributions are not taken into consideration.
Preliminary constraints on variable w dark energy cosmologies from the SNLS
NASA Astrophysics Data System (ADS)
Carlberg, R. G.; Conley, A.; Howell, D. A.; Neill, J. D.; Perrett, K.; Pritchet, C. J.; Sullivan, M.
2005-12-01
The first 71 confirmed Ia supernovae from the Supernova Legacy Survey being conducted with CFHT imaging and Gemini, VLT and Keck spectroscopy set limits on variable dark energy cosmological models. For a generalized Chaplygin gas, in which the dark energy content is (1-Ω M)/ρ a, we find that a is statistically consistent with zero, with a best fit a=-0.2±-0.3 (68 systematic errors requires a further refinement of the photometric calibration and the potential model biases. A variable dark energy equation of state with w=w0+w_1 z shows the expected degeneracy between increasingly positive w0 and negative w1. The existing data rule out the parameters of the Weller & Linder (2002) Super-gravity inspired model cosmology (w0,w_1)=(-0.81,0.31). The full 700 Ia of the completed survey will provide a statistical error limit of w1 of about 0.2 and significant constraints on variable w models. The Canadian NSERC provided funding for the scientific analysis. These results are based on observations obtained at the CFHT, Gemini, VLT and Keck observatories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Y.
This report describes the research work performed under the support of the DOE research grant E-FG02-97ER4108. The work is composed of three parts: (1) Visual analysis and quality control of the Micro Vertex Detector (MVD) of the PHENIX experiments carried out of Brookhaven National Laboratory. (2) Continuation of the data analysis of the EMU05/09/16 experiments for the study of the inclusive particle production spectra and multi-particle correlation. (3) Exploration of a new statistical means to study very high-multiplicity of nuclear-particle ensembles and its perspectives to apply to the higher energy experiments.
Adriani, O; Akaike, Y; Asano, K; Asaoka, Y; Bagliesi, M G; Bigongiari, G; Binns, W R; Bonechi, S; Bongi, M; Brogi, P; Buckley, J H; Cannady, N; Castellini, G; Checchia, C; Cherry, M L; Collazuol, G; Di Felice, V; Ebisawa, K; Fuke, H; Guzik, T G; Hams, T; Hareyama, M; Hasebe, N; Hibino, K; Ichimura, M; Ioka, K; Ishizaki, W; Israel, M H; Javaid, A; Kasahara, K; Kataoka, J; Kataoka, R; Katayose, Y; Kato, C; Kawanaka, N; Kawakubo, Y; Krawczynski, H S; Krizmanic, J F; Kuramata, S; Lomtadze, T; Maestro, P; Marrocchesi, P S; Messineo, A M; Mitchell, J W; Miyake, S; Mizutani, K; Moiseev, A A; Mori, K; Mori, M; Mori, N; Motz, H M; Munakata, K; Murakami, H; Nakahira, S; Nishimura, J; de Nolfo, G A; Okuno, S; Ormes, J F; Ozawa, S; Pacini, L; Palma, F; Papini, P; Penacchioni, A V; Rauch, B F; Ricciarini, S B; Sakai, K; Sakamoto, T; Sasaki, M; Shimizu, Y; Shiomi, A; Sparvoli, R; Spillantini, P; Stolzi, F; Takahashi, I; Takayanagi, M; Takita, M; Tamura, T; Tateyama, N; Terasawa, T; Tomida, H; Torii, S; Tsunesada, Y; Uchihori, Y; Ueno, S; Vannuccini, E; Wefel, J P; Yamaoka, K; Yanagita, S; Yoshida, A; Yoshida, K; Yuda, T
2017-11-03
First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X_{0} and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152±0.016 (stat+syst). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.
NASA Astrophysics Data System (ADS)
Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Brogi, P.; Buckley, J. H.; Cannady, N.; Castellini, G.; Checchia, C.; Cherry, M. L.; Collazuol, G.; di Felice, V.; Ebisawa, K.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Ishizaki, W.; Israel, M. H.; Javaid, A.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kato, C.; Kawanaka, N.; Kawakubo, Y.; Krawczynski, H. S.; Krizmanic, J. F.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Messineo, A. M.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakahira, S.; Nishimura, J.; de Nolfo, G. A.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Pacini, L.; Palma, F.; Papini, P.; Penacchioni, A. V.; Rauch, B. F.; Ricciarini, S. B.; Sakai, K.; Sakamoto, T.; Sasaki, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Stolzi, F.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Torii, S.; Tsunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.; Calet Collaboration
2017-11-01
First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X0 and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152 ±0.016 (stat+syst ). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.
Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions
Carlsson, Boris; Forssen, Christian; Fahlin Strömberg, D.; ...
2016-02-24
Chiral effective field theory ( ΧEFT) provides a systematic approach to describe low-energy nuclear forces. Moreover, EFT is able to provide well-founded estimates of statistical and systematic uncertainties | although this unique advantage has not yet been fully exploited. We ll this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. Our optimization protocol corresponds to a simultaneous t to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, thereby utilizing the full model capabilities of EFT. Finally, we study the effect on other observables by demonstrating forward-error-propagation methodsmore » that can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain e cient and machine-precise first- and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-counting arguments to estimate the systematic uncertainty that is inherent to EFT and we construct chiral interactions at different orders with quantified uncertainties. Statistical error propagation is compared with Monte Carlo sampling showing that statistical errors are in general small compared to systematic ones. In conclusion, we find that a simultaneous t to different sets of data is critical to (i) identify the optimal set of LECs, (ii) capture all relevant correlations, (iii) reduce the statistical uncertainty, and (iv) attain order-by-order convergence in EFT. Furthermore, certain systematic uncertainties in the few-nucleon sector are shown to get substantially magnified in the many-body sector; in particlar when varying the cutoff in the chiral potentials. The methodology and results presented in this Paper open a new frontier for uncertainty quantification in ab initio nuclear theory.« less
Gamma-ray blazar spectra with H.E.S.S. II mono analysis: The case of PKS 2155-304 and PG 1553+113
NASA Astrophysics Data System (ADS)
H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; LAT Collaboration; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Bellazzini, R.; Blandford, R. D.; Bonino, R.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desiante, R.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Donaggio, B.; Favuzzi, C.; Focke, W. B.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Guillemot, L.; Guiriec, S.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei, S.; Kocevski, D.; Larsson, S.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Negro, M.; Nuss, E.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Principe, G.; Rainò, S.; Razzano, M.; Simone, D.; Siskind, E. J.; Spada, F.; Spinelli, P.; Thayer, J. B.; Torres, D. F.; Torresi, E.; Troja, E.; Vianello, G.; Wood, K. S.
2017-04-01
Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivityto lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift ≥0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553+113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims: The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553+113 near their SED peaks at energies ≈100 GeV. Methods: Multiple observational campaigns of PKS 2155-304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results: Using the data from CT5, the energy spectra of PKS 2155-304 and PG 1553+113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155-304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0σ statistical preference for non-zero curvature for PKS 2155-304 and 4.5σ for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E ≈ 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155-304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.
Statistical plant set estimation using Schroeder-phased multisinusoidal input design
NASA Technical Reports Server (NTRS)
Bayard, D. S.
1992-01-01
A frequency domain method is developed for plant set estimation. The estimation of a plant 'set' rather than a point estimate is required to support many methods of modern robust control design. The approach here is based on using a Schroeder-phased multisinusoid input design which has the special property of placing input energy only at the discrete frequency points used in the computation. A detailed analysis of the statistical properties of the frequency domain estimator is given, leading to exact expressions for the probability distribution of the estimation error, and many important properties. It is shown that, for any nominal parametric plant estimate, one can use these results to construct an overbound on the additive uncertainty to any prescribed statistical confidence. The 'soft' bound thus obtained can be used to replace 'hard' bounds presently used in many robust control analysis and synthesis methods.
Statistical analysis of secondary particle distributions in relativistic nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Mcguire, Stephen C.
1987-01-01
The use is described of several statistical techniques to characterize structure in the angular distributions of secondary particles from nucleus-nucleus collisions in the energy range 24 to 61 GeV/nucleon. The objective of this work was to determine whether there are correlations between emitted particle intensity and angle that may be used to support the existence of the quark gluon plasma. The techniques include chi-square null hypothesis tests, the method of discrete Fourier transform analysis, and fluctuation analysis. We have also used the method of composite unit vectors to test for azimuthal asymmetry in a data set of 63 JACEE-3 events. Each method is presented in a manner that provides the reader with some practical detail regarding its application. Of those events with relatively high statistics, Fe approaches 0 at 55 GeV/nucleon was found to possess an azimuthal distribution with a highly non-random structure. No evidence of non-statistical fluctuations was found in the pseudo-rapidity distributions of the events studied. It is seen that the most effective application of these methods relies upon the availability of many events or single events that possess very high multiplicities.
NASA Technical Reports Server (NTRS)
Gyekenyesi, John P.; Nemeth, Noel N.
1987-01-01
The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.
White, John R; Padowski, Jeannie M; Zhong, Yili; Chen, Gang; Luo, Shaman; Lazarus, Philip; Layton, Matthew E; McPherson, Sterling
2016-01-01
There is a paucity of data describing the impact of type of beverage (coffee versus energy drink), different rates of consumption and different temperature of beverages on the pharmacokinetic disposition of caffeine. Additionally, there is concern that inordinately high levels of caffeine may result from the rapid consumption of cold energy drinks. The objective of this study was to compare the pharmacokinetics of caffeine under various drink temperature, rate of consumption and vehicle (coffee versus energy drink) conditions. Five caffeine (dose = 160 mg) conditions were evaluated in an open-label, group-randomized, crossover fashion. After the administration of each caffeine dose, 10 serial plasma samples were harvested. Caffeine concentration was measured via liquid chromatography-mass spectrometry (LC-MS), and those concentrations were assessed by non-compartmental pharmacokinetic analysis. The calculated mean pharmacokinetic parameters were analyzed statistically by one-way repeated measures analysis of variance (RM ANOVA). If differences were found, each group was compared to the other by all pair-wise multiple comparison. Twenty-four healthy subjects ranging in age from 18 to 30 completed the study. The mean caffeine concentration time profiles were similar with overlapping SDs at all measured time points. The ANOVA revealed significant differences in mean Cmax and Vd ss/F, but no pair-wise comparisons reached statistical significance. No other differences in pharmacokinetic parameters were found. The results of this study are consistent with previous caffeine pharmacokinetic studies and suggest that while rate of consumption, temperature of beverage and vehicle (coffee versus energy drink) may be associated with slightly different pharmacokinetic parameters, the overall impact of these variables is small. This study suggests that caffeine absorption and exposure from coffee and energy drink is similar irrespective of beverage temperature or rate of consumption.
White, John R.; Padowski, Jeannie M.; Zhong, Yili; Chen, Gang; Luo, Shaman; Lazarus, Philip; Layton, Matthew E.; McPherson, Sterling
2016-01-01
Abstract Context: There is a paucity of data describing the impact of type of beverage (coffee versus energy drink), different rates of consumption and different temperature of beverages on the pharmacokinetic disposition of caffeine. Additionally, there is concern that inordinately high levels of caffeine may result from the rapid consumption of cold energy drinks. Objective: The objective of this study was to compare the pharmacokinetics of caffeine under various drink temperature, rate of consumption and vehicle (coffee versus energy drink) conditions. Materials: Five caffeine (dose = 160 mg) conditions were evaluated in an open-label, group-randomized, crossover fashion. After the administration of each caffeine dose, 10 serial plasma samples were harvested. Caffeine concentration was measured via liquid chromatography–mass spectrometry (LC–MS), and those concentrations were assessed by non-compartmental pharmacokinetic analysis. The calculated mean pharmacokinetic parameters were analyzed statistically by one-way repeated measures analysis of variance (RM ANOVA). If differences were found, each group was compared to the other by all pair-wise multiple comparison. Results: Twenty-four healthy subjects ranging in age from 18 to 30 completed the study. The mean caffeine concentration time profiles were similar with overlapping SDs at all measured time points. The ANOVA revealed significant differences in mean C max and V d ss/F, but no pair-wise comparisons reached statistical significance. No other differences in pharmacokinetic parameters were found. Discussion: The results of this study are consistent with previous caffeine pharmacokinetic studies and suggest that while rate of consumption, temperature of beverage and vehicle (coffee versus energy drink) may be associated with slightly different pharmacokinetic parameters, the overall impact of these variables is small. Conclusion: This study suggests that caffeine absorption and exposure from coffee and energy drink is similar irrespective of beverage temperature or rate of consumption. PMID:27100333
Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.
2017-03-16
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less
End-use energy consumption estimates for US commercial buildings, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, D.B.; Wrench, L.E.; Marsh, T.L.
An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs within the Department of Energy, by utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1989 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment.more » Billing data for electricity and natural gas were first decomposed into weather and nonweather dependent loads. Subsequently, Statistical Adjusted Engineering (SAE) models were estimated by building type with annual data. The SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption. End-use consumption by fuel was estimated for each of the 5,876 buildings in the 1989 CBECS. The report displays the summary results for eleven separate building types as well as for the total US commercial building stock.« less
Optoelectronic scanning system upgrade by energy center localization methods
NASA Astrophysics Data System (ADS)
Flores-Fuentes, W.; Sergiyenko, O.; Rodriguez-Quiñonez, J. C.; Rivas-López, M.; Hernández-Balbuena, D.; Básaca-Preciado, L. C.; Lindner, L.; González-Navarro, F. F.
2016-11-01
A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.
Evaluation of the "Lose Your Excuse" public service advertising campaign for tweens to save energy.
Bertrand, Jane T; Goldman, Patty; Zhivan, Natalia; Agyeman, Yaw; Barber, Erin
2011-10-01
This study evaluates the 2008-2009 "Lose your Excuse" public service advertising (PSA) campaign on energy efficiency targeting 8- to 12-year-olds, intended to increase knowledge, foster proactive attitudes, and change energy usage behaviors. Baseline and two follow-up surveys were conducted with online samples representative of the national population of households with kids with online access. Almost half (47%) of the tweens recognized at least one ad from the campaign. Ad recognition was positively associated with knowledge, proactive attitudes, and energy-saving behavior. Propensity score analysis confirmed a small but measurable and statistically significant effect on energy-saving behavior. The discussion section compares these results to public health campaigns in terms of ghost awareness, reach, and effect size.
Statistical properties of radiation from VUV and X-ray free electron laser
NASA Astrophysics Data System (ADS)
Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
1998-03-01
The paper presents a comprehensive analysis of the statistical properties of the radiation from a self-amplified spontaneous emission (SASE) free electron laser operating in linear and nonlinear mode. The investigation has been performed in a one-dimensional approximation assuming the electron pulse length to be much larger than a coherence length of the radiation. The following statistical properties of the SASE FEL radiation have been studied in detail: time and spectral field correlations, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after the monochromator installed at the FEL amplifier exit and radiation spectrum. The linear high gain limit is studied analytically. It is shown that the radiation from a SASE FEL operating in the linear regime possesses all the features corresponding to completely chaotic polarized radiation. A detailed study of statistical properties of the radiation from a SASE FEL operating in linear and nonlinear regime has been performed by means of time-dependent simulation codes. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY.
A Multi-Variate Fit to the Chemical Composition of the Cosmic-Ray Spectrum
NASA Astrophysics Data System (ADS)
Eisch, Jonathan
Since the discovery of cosmic rays over a century ago, evidence of their origins has remained elusive. Deflected by galactic magnetic fields, the only direct evidence of their origin and propagation remain encoded in their energy distribution and chemical composition. Current models of galactic cosmic rays predict variations of the energy distribution of individual elements in an energy region around 3x1015 eV known as the knee. This work presents a method to measure the energy distribution of individual elemental groups in the knee region and its application to a year of data from the IceCube detector. The method uses cosmic rays detected by both IceTop, the surface-array component, and the deep-ice component of IceCube during the 2009-2010 operation of the IC-59 detector. IceTop is used to measure the energy and the relative likelihood of the mass composition using the signal from the cosmic-ray induced extensive air shower reaching the surface. IceCube, 1.5 km below the surface, measures the energy of the high-energy bundle of muons created in the very first interactions after the cosmic ray enters the atmosphere. These event distributions are fit by a constrained model derived from detailed simulations of cosmic rays representing five chemical elements. The results of this analysis are evaluated in terms of the theoretical uncertainties in cosmic-ray interactions and seasonal variations in the atmosphere. The improvements in high-energy cosmic ray hadronic-interaction models informed by this analysis, combined with increased data from subsequent operation of the IceCube detector, could provide crucial limits on the origin of cosmic rays and their propagation through the galaxy. In the course of developing this method, a number of analysis and statistical techniques were developed to deal with the difficulties inherent in this type of measurement. These include a composition-sensitive air shower reconstruction technique, a method to model simulated event distributions with limited statistics, and a method to optimize and estimate the error on a regularized fit.
Analysis tools for discovering strong parity violation at hadron colliders
NASA Astrophysics Data System (ADS)
Backović, Mihailo; Ralston, John P.
2011-07-01
Several arguments suggest parity violation may be observable in high energy strong interactions. We introduce new analysis tools to describe the azimuthal dependence of multiparticle distributions, or “azimuthal flow.” Analysis uses the representations of the orthogonal group O(2) and dihedral groups DN necessary to define parity completely in two dimensions. Classification finds that collective angles used in event-by-event statistics represent inequivalent tensor observables that cannot generally be represented by a single “reaction plane.” Many new parity-violating observables exist that have never been measured, while many parity-conserving observables formerly lumped together are now distinguished. We use the concept of “event-shape sorting” to suggest separating right- and left-handed events, and we discuss the effects of transverse and longitudinal spin. The analysis tools are statistically robust, and can be applied equally to low or high multiplicity events at the Tevatron, RHIC or RHIC Spin, and the LHC.
Mechanics, Waves and Thermodynamics
NASA Astrophysics Data System (ADS)
Ranjan Jain, Sudhir
2016-05-01
Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.
The Assessment of Climatological Impacts on Agricultural Production and Residential Energy Demand
NASA Astrophysics Data System (ADS)
Cooter, Ellen Jean
The assessment of climatological impacts on selected economic activities is presented as a multi-step, inter -disciplinary problem. The assessment process which is addressed explicitly in this report focuses on (1) user identification, (2) direct impact model selection, (3) methodological development, (4) product development and (5) product communication. Two user groups of major economic importance were selected for study; agriculture and gas utilities. The broad agricultural sector is further defined as U.S.A. corn production. The general category of utilities is narrowed to Oklahoma residential gas heating demand. The CERES physiological growth model was selected as the process model for corn production. The statistical analysis for corn production suggests that (1) although this is a statistically complex model, it can yield useful impact information, (2) as a result of output distributional biases, traditional statistical techniques are not adequate analytical tools, (3) the model yield distribution as a whole is probably non-Gausian, particularly in the tails and (4) there appears to be identifiable weekly patterns of forecasted yields throughout the growing season. Agricultural quantities developed include point yield impact estimates and distributional characteristics, geographic corn weather distributions, return period estimates, decision making criteria (confidence limits) and time series of indices. These products were communicated in economic terms through the use of a Bayesian decision example and an econometric model. The NBSLD energy load model was selected to represent residential gas heating consumption. A cursory statistical analysis suggests relationships among weather variables across the Oklahoma study sites. No linear trend in "technology -free" modeled energy demand or input weather variables which would correspond to that contained in observed state -level residential energy use was detected. It is suggested that this trend is largely the result of non-weather factors such as population and home usage patterns rather than regional climate change. Year-to-year changes in modeled residential heating demand on the order of 10('6) Btu's per household were determined and later related to state -level components of the Oklahoma economy. Products developed include the definition of regional forecast areas, likelihood estimates of extreme seasonal conditions and an energy/climate index. This information is communicated in economic terms through an input/output model which is used to estimate changes in Gross State Product and Household income attributable to weather variability.
NASA Technical Reports Server (NTRS)
Christon, S. P.; Williams, D. J.; Mitchell, D. G.; Frank, L. A.; Huang, C. Y.
1989-01-01
The spectral characteristics of plasma-sheet ion and electron populations during periods of low geomagnetic activity were determined from the analysis of 127 one-hour average samples of central plasma sheet ions and electrons. Particle data from the ISEE-1 low-energy proton and electron differential energy analyzer and medium-energy particle instrument were combined to obtain differential energy spectra in the plasma sheet at geocentric radial distances above 12 earth radii. The relationships between the ion and electron spectral shapes and between the spectral shapes and the geomagnetic activity index were statistically investigated. It was found that the presence of interplanetary particle fluxes does not affect the plasma sheet particle spectral shape.
Semistochastic approach to many electron systems
NASA Astrophysics Data System (ADS)
Grossjean, M. K.; Grossjean, M. F.; Schulten, K.; Tavan, P.
1992-08-01
A Pariser-Parr-Pople (PPP) Hamiltonian of an 8π electron system of the molecule octatetraene, represented in a configuration-interaction basis (CI basis), is analyzed with respect to the statistical properties of its matrix elements. Based on this analysis we develop an effective Hamiltonian, which represents virtual excitations by a Gaussian orthogonal ensemble (GOE). We also examine numerical approaches which replace the original Hamiltonian by a semistochastically generated CI matrix. In that CI matrix, the matrix elements of high energy excitations are choosen randomly according to distributions reflecting the statistics of the original CI matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, D.; Sarkar, S.; Sen, S.
1995-06-01
In this paper the behavior of factorial moments with rapidity window size, which is usually explained in terms of ``intermittency,`` has been interpreted by simple quantum statistical properties of the emitting system using the concept of ``modified two-source model`` as recently proposed by Ghosh and Sarkar [Phys. Lett. B 278, 465 (1992)]. The analysis has been performed using our own data of {sup 16}O-Ag/Br and {sup 24}Mg-Ag/Br interactions at a few tens of GeV energy regime.
Simulation on a car interior aerodynamic noise control based on statistical energy analysis
NASA Astrophysics Data System (ADS)
Chen, Xin; Wang, Dengfeng; Ma, Zhengdong
2012-09-01
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
Constraining the dark energy models with H (z ) data: An approach independent of H0
NASA Astrophysics Data System (ADS)
Anagnostopoulos, Fotios K.; Basilakos, Spyros
2018-03-01
We study the performance of the latest H (z ) data in constraining the cosmological parameters of different cosmological models, including that of Chevalier-Polarski-Linder w0w1 parametrization. First, we introduce a statistical procedure in which the chi-square estimator is not affected by the value of the Hubble constant. As a result, we find that the H (z ) data do not rule out the possibility of either nonflat models or dynamical dark energy cosmological models. However, we verify that the time varying equation-of-state parameter w (z ) is not constrained by the current expansion data. Combining the H (z ) and the Type Ia supernova data, we find that the H (z )/SNIa overall statistical analysis provides a substantial improvement of the cosmological constraints with respect to those of the H (z ) analysis. Moreover, the w0-w1 parameter space provided by the H (z )/SNIa joint analysis is in very good agreement with that of Planck 2015, which confirms that the present analysis with the H (z ) and supernova type Ia (SNIa) probes correctly reveals the expansion of the Universe as found by the team of Planck. Finally, we generate sets of Monte Carlo realizations in order to quantify the ability of the H (z ) data to provide strong constraints on the dark energy model parameters. The Monte Carlo approach shows significant improvement of the constraints, when increasing the sample to 100 H (z ) measurements. Such a goal can be achieved in the future, especially in the light of the next generation of surveys.
Zhang, X; Patel, L A; Beckwith, O; Schneider, R; Weeden, C J; Kindt, J T
2017-11-14
Micelle cluster distributions from molecular dynamics simulations of a solvent-free coarse-grained model of sodium octyl sulfate (SOS) were analyzed using an improved method to extract equilibrium association constants from small-system simulations containing one or two micelle clusters at equilibrium with free surfactants and counterions. The statistical-thermodynamic and mathematical foundations of this partition-enabled analysis of cluster histograms (PEACH) approach are presented. A dramatic reduction in computational time for analysis was achieved through a strategy similar to the selector variable method to circumvent the need for exhaustive enumeration of the possible partitions of surfactants and counterions into clusters. Using statistics from a set of small-system (up to 60 SOS molecules) simulations as input, equilibrium association constants for micelle clusters were obtained as a function of both number of surfactants and number of associated counterions through a global fitting procedure. The resulting free energies were able to accurately predict micelle size and charge distributions in a large (560 molecule) system. The evolution of micelle size and charge with SOS concentration as predicted by the PEACH-derived free energies and by a phenomenological four-parameter model fit, along with the sensitivity of these predictions to variations in cluster definitions, are analyzed and discussed.
Surface free energy analysis of oil palm empty fruit bunches fiber reinforced biocomposites
NASA Astrophysics Data System (ADS)
Suryadi, G. S.; Nikmatin, S.; Sudaryanto; Irmansyah; Sukaryo, S. G.
2017-05-01
Study of the size effect of natural fiber from oil palm empty fruit bunches (OPEFB) as filler, onto the contact angle and surface free energy of fiber reinforced biocomposites has been done. The OPEFB fibers were prepared by mechanical milling and sieving to obtain various sizes of fiber (long-fiber, medium-fiber, short-fiber, and microparticle). The biocomposites has been produced by extrusion using single-screw extruder with EFB fiber as filler, recycled Acrylonitrile Butadiene Styrene (ABS) polymer as matrix, and primary antioxidant, acid scavanger, and coupling agent as additives. The obtained biocomposites in form of granular, were made into test piece by injection molding method. Contact angles of water, methanol, and hexane on the surface of biocomposites at room temperature were measured using Phoenix 300 Contact Angle Analyzer. The surface free energy (SFE) and their components were calculated using three previous known methods (Girifalco-Good-Fowkes-Young (GGFY), Owens-Wendt, and van Oss-Chaudhury-Good (vOCG)). The results showed that total SFE of Recycled ABS as control was about 24.38 mJ/m2, and SFE of biocomposites was lower than control, decreased with decreasing of EFB fiber size as biocomposites filler. The statistical analysis proved that there are no statistically significant differences in the value of the SFE calculated with the three different methods.
Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, E.; et al.
We present the methodology for and detail the implementation of the Dark Energy Survey (DES) 3x2pt DES Year 1 (Y1) analysis, which combines configuration-space two-point statistics from three different cosmological probes: cosmic shear, galaxy-galaxy lensing, and galaxy clustering, using data from the first year of DES observations. We have developed two independent modeling pipelines and describe the code validation process. We derive expressions for analytical real-space multi-probe covariances, and describe their validation with numerical simulations. We stress-test the inference pipelines in simulated likelihood analyses that vary 6-7 cosmology parameters plus 20 nuisance parameters and precisely resemble the analysis to be presented in the DES 3x2pt analysis paper, using a variety of simulated input data vectors with varying assumptions. We find that any disagreement between pipelines leads to changes in assigned likelihoodmore » $$\\Delta \\chi^2 \\le 0.045$$ with respect to the statistical error of the DES Y1 data vector. We also find that angular binning and survey mask do not impact our analytic covariance at a significant level. We determine lower bounds on scales used for analysis of galaxy clustering (8 Mpc$$~h^{-1}$$) and galaxy-galaxy lensing (12 Mpc$$~h^{-1}$$) such that the impact of modeling uncertainties in the non-linear regime is well below statistical errors, and show that our analysis choices are robust against a variety of systematics. These tests demonstrate that we have a robust analysis pipeline that yields unbiased cosmological parameter inferences for the flagship 3x2pt DES Y1 analysis. We emphasize that the level of independent code development and subsequent code comparison as demonstrated in this paper is necessary to produce credible constraints from increasingly complex multi-probe analyses of current data.« less
Midgley, Stewart; Schleich, Nanette
2015-05-01
A novel method for dual-energy X-ray analysis (DEXA) is tested using measurements of the X-ray linear attenuation coefficient μ. The key is a mathematical model that describes elemental cross sections using a polynomial in atomic number. The model is combined with the mixture rule to describe μ for materials, using the same polynomial coefficients. Materials are characterized by their electron density Ne and statistical moments Rk describing their distribution of elements, analogous to the concept of effective atomic number. In an experiment with materials of known density and composition, measurements of μ are written as a system of linear simultaneous equations, which is solved for the polynomial coefficients. DEXA itself involves computed tomography (CT) scans at two energies to provide a system of non-linear simultaneous equations that are solved for Ne and the fourth statistical moment R4. Results are presented for phantoms containing dilute salt solutions and for a biological specimen. The experiment identifies 1% systematic errors in the CT measurements, arising from third-harmonic radiation, and 20-30% noise, which is reduced to 3-5% by pre-processing with the median filter and careful choice of reconstruction parameters. DEXA accuracy is quantified for the phantom as the mean absolute differences for Ne and R4: 0.8% and 1.0% for soft tissue and 1.2% and 0.8% for bone-like samples, respectively. The DEXA results for the biological specimen are combined with model coefficients obtained from the tabulations to predict μ and the mass energy absorption coefficient at energies of 10 keV to 20 MeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
This 13th edition presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1994; thus, this report is well-suited to long-term trend analyses. It covers all major energy activities, including consumption, production, trade, stocks, and prices for all major energy commodities, including fossil fuels and electricity. Statistics on renewable energy sources are also included: this year, for the first time, usage of renewables by other consumers as well as by electric utilities is included. Also new is a two-part, comprehensive presentation of data on petroleum products supplied by sector formore » 1949 through 1994. Data from electric utilities and nonutilities are integrated as ``electric power industry`` data; nonutility power gross generation are presented for the first time. One section presents international statistics (for more detail see EIA`s International Energy Annual).« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Metropolitan Statistical Areas/Consolidated Metropolitan Statistical Areas With 1980 Populations of 250,000 or more A Appendix A to Subpart A of Part 490 Energy..., Subpt. A, App. A Appendix A to Subpart A of Part 490—Metropolitan Statistical Areas/Consolidated...
Popko, Janusz; Karpiński, Michał; Chojnowska, Sylwia; Maresz, Katarzyna; Milewski, Robert; Badmaev, Vladimir; Schurgers, Leon J
2018-06-06
In the past decades, an increased interest in the roles of vitamin D and K has become evident, in particular in relation to bone health and prevention of bone fractures. The aim of the current study was to evaluate vitamin D and K status in children with low-energy fractures and in children without fractures. The study group of 20 children (14 boys, 6 girls) aged 5 to 15 years old, with radiologically confirmed low-energy fractures was compared with the control group of 19 healthy children (9 boys, 10 girls), aged 7 to 17 years old, without fractures. Total vitamin D (25(OH)D3 plus 25(OH)D2), calcium, BALP (bone alkaline phosphatase), NTx (N-terminal telopeptide), and uncarboxylated (ucOC) and carboxylated osteocalcin (cOC) serum concentrations were evaluated. Ratio of serum uncarboxylated osteocalcin to serum carboxylated osteocalcin ucOC:cOC (UCR) was used as an indicator of bone vitamin K status. Logistic regression models were created to establish UCR influence for odds ratio of low-energy fractures in both groups. There were no statistically significant differences in the serum calcium, NTx, BALP, or total vitamin D levels between the two groups. There was, however, a statistically significant difference in the UCR ratio. The median UCR in the fracture group was 0.471 compared with the control group value of 0.245 ( p < 0.0001). In the logistic regression analysis, odds ratio of low-energy fractures for UCR was calculated, with an increased risk of fractures by some 78.3 times. In this pilot study, better vitamin K status expressed as the ratio of ucOC:cOC-UCR—is positively and statistically significantly correlated with lower rate of low-energy fracture incidence.
The hoard of Beçin—non-destructive analysis of the silver coins
NASA Astrophysics Data System (ADS)
Rodrigues, M.; Schreiner, M.; Mäder, M.; Melcher, M.; Guerra, M.; Salomon, J.; Radtke, M.; Alram, M.; Schindel, N.
2010-05-01
We report the results of an analytical investigation on 416 silver-copper coins stemming from the Ottoman Empire (end of 16th and beginning of 17th centuries), using synchrotron micro X-ray fluorescence analysis (SRXRF). In the past, analyses had already been conducted with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM/EDX) and proton induced X-ray emission spectroscopy (PIXE). With this combination of techniques it was possible to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. For the interpretation of the data statistical analysis (principal component analysis—PCA) has been performed. A definite local assignment was explored and significant clustering was obtained regarding the minor and trace elements composing the coin alloys.
Pairwise contact energy statistical potentials can help to find probability of point mutations.
Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S
2017-01-01
To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Self-powered monitoring of repeated head impacts using time-dilation energy measurement circuit.
Feng, Tao; Aono, Kenji; Covassin, Tracey; Chakrabartty, Shantanu
2015-04-01
Due to the current epidemic levels of sport-related concussions (SRC) in the U.S., there is a pressing need for technologies that can facilitate long-term and continuous monitoring of head impacts. Existing helmet-sensor technology is inconsistent, inaccurate, and is not economically or logistically practical for large-scale human studies. In this paper, we present the design of a miniature, battery-less, self-powered sensor that can be embedded inside sport helmets and can continuously monitor and store different spatial and temporal statistics of the helmet impacts. At the core of the proposed sensor is a novel time-dilation circuit that allows measurement of a wide-range of impact energies. In this paper an array of linear piezo-floating-gate (PFG) injectors has been used for self-powered sensing and storage of linear and rotational head-impact statistics. The stored statistics are then retrieved using a plug-and-play reader and has been used for offline data analysis. We report simulation and measurement results validating the functionality of the time-dilation circuit for different levels of impact energies. Also, using prototypes of linear PFG integrated circuits fabricated in a 0.5 μm CMOS process, we demonstrate the functionality of the proposed helmet-sensors using controlled drop tests.
The Desire to Acquire: Forecasting the Evolution of Household Energy Services
NASA Astrophysics Data System (ADS)
Groves, Steven
People are constantly inventing and adopting new energy-using devices to make their lives more comfortable, convenient, connected, and entertaining. This study aggregates 134 energy-using household devices, not including major appliances, into categories based on the energy service they provide. By 2006, there were 43 energy-using devices in the average U.S. household that used over 4,700 kWh of electricity, natural gas, and gasoline. A fixed effects panel model was used to examine the relationship of demand for energy-using devices to energy price, household income, and the cost of these devices. This analysis finds that the elasticity of demand for these devices with respect to energy price is -0.52 with a 90% confidence interval of -1.04 to -0.01. The elasticity of demand to income is 0.52 (a 90% confidence interval of [-0.42, 1.46]. The cost of these devices was also statistically significant.
NASA Astrophysics Data System (ADS)
Borets-Pervak, I. Yu; Vorob'ev, V. S.
1990-08-01
An analysis is made of the influence of the statistical scatter of the size of thermally insulated microdefects and of their number in the focusing spot on the threshold energies of plasma formation by microsecond laser pulses interacting with metal surfaces. The coordinates of the laser pulse intensity and the surface density of the laser energy are used in constructing plasma formation regions corresponding to different numbers of microdefects within the focusing spot area; the same coordinates are used to represent laser pulses. Various threshold and nonthreshold plasma formation mechanisms are discussed. The sizes of microdefects and their statistical characteristics deduced from limited experimental data provide a consistent description of the characteristics of plasma formation near polished and nonpolished surfaces.
Statistical analysis of experimental multifragmentation events in 64Zn+112Sn at 40 MeV/nucleon
NASA Astrophysics Data System (ADS)
Lin, W.; Zheng, H.; Ren, P.; Liu, X.; Huang, M.; Wada, R.; Chen, Z.; Wang, J.; Xiao, G. Q.; Qu, G.
2018-04-01
A statistical multifragmentation model (SMM) is applied to the experimentally observed multifragmentation events in an intermediate heavy-ion reaction. Using the temperature and symmetry energy extracted from the isobaric yield ratio (IYR) method based on the modified Fisher model (MFM), SMM is applied to the reaction 64Zn+112Sn at 40 MeV/nucleon. The experimental isotope distribution and mass distribution of the primary reconstructed fragments are compared without afterburner and they are well reproduced. The extracted temperature T and symmetry energy coefficient asym from SMM simulated events, using the IYR method, are also consistent with those from the experiment. These results strongly suggest that in the multifragmentation process there is a freezeout volume, in which the thermal and chemical equilibrium is established before or at the time of the intermediate-mass fragments emission.
Damping Proceedings Held in Las Vegas, Nevada on 5-7 March 1986. Volume 2
1986-05-01
than in metalZio materials. The main sources of internal damping in a composite material arise from microplastic or viscoelastic phenomena associated...introduction of damping treatment. The analysis of coupled structures have, to some extent, already been done using Statistical Energy Analysis ( SEA ) methods1...However SEA methods are only useful in those frequency regions with high modal density for all of the substructures. Thus for low to medium
Periods of High Intensity Solar Proton Flux
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.
2012-01-01
Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.
FY 1999 Laboratory Directed Research and Development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
PJ Hughes
2000-06-13
A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.
Statistical errors in molecular dynamics averages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.; Wallace, D.C.
1985-11-15
A molecular dynamics calculation produces a time-dependent fluctuating signal whose average is a thermodynamic quantity of interest. The average of the kinetic energy, for example, is proportional to the temperature. A procedure is described for determining when the molecular dynamics system is in equilibrium with respect to a given variable, according to the condition that the mean and the bandwidth of the signal should be sensibly constant in time. Confidence limits for the mean are obtained from an analysis of a finite length of the equilibrium signal. The role of serial correlation in this analysis is discussed. The occurence ofmore » unstable behavior in molecular dynamics data is noted, and a statistical test for a level shift is described.« less
NASA Astrophysics Data System (ADS)
Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.
2018-04-01
We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.
Energy Efficiency Potential in the U.S. Single-Family Housing Stock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Eric J.; Christensen, Craig B.; Horowitz, Scott G.
Typical approaches for assessing energy efficiency potential in buildings use a limited number of prototypes, and therefore suffer from inadequate resolution when pass-fail cost-effectiveness tests are applied, which can significantly underestimate or overestimate the economic potential of energy efficiency technologies. This analysis applies a new approach to large-scale residential energy analysis, combining the use of large public and private data sources, statistical sampling, detailed building simulations, and high-performance computing to achieve unprecedented granularity - and therefore accuracy - in modeling the diversity of the single-family housing stock. The result is a comprehensive set of maps, tables, and figures showing themore » technical and economic potential of 50 plus residential energy efficiency upgrades and packages for each state. Policymakers, program designers, and manufacturers can use these results to identify upgrades with the highest potential for cost-effective savings in a particular state or region, as well as help identify customer segments for targeted marketing and deployment. The primary finding of this analysis is that there is significant technical and economic potential to save electricity and on-site fuel use in the single-family housing stock. However, the economic potential is very sensitive to the cost-effectiveness criteria used for analysis. Additionally, the savings of particular energy efficiency upgrades is situation-specific within the housing stock (depending on climate, building vintage, heating fuel type, building physical characteristics, etc.).« less
76 FR 9696 - Equipment Price Forecasting in Energy Conservation Standards Analysis
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... for particular efficiency design options, an empirical experience curve fit to the available data may be used to forecast future costs of such design option technologies. If a statistical evaluation indicates a low level of confidence in estimates of the design option cost trend, this method should not be...
Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace.
Zhang, Cheng; Lai, Chun-Liang; Pettitt, B Montgomery
The weighted histogram analysis method (WHAM) for free energy calculations is a valuable tool to produce free energy differences with the minimal errors. Given multiple simulations, WHAM obtains from the distribution overlaps the optimal statistical estimator of the density of states, from which the free energy differences can be computed. The WHAM equations are often solved by an iterative procedure. In this work, we use a well-known linear algebra algorithm which allows for more rapid convergence to the solution. We find that the computational complexity of the iterative solution to WHAM and the closely-related multiple Bennett acceptance ratio (MBAR) method can be improved by using the method of direct inversion in the iterative subspace. We give examples from a lattice model, a simple liquid and an aqueous protein solution.
NASA Astrophysics Data System (ADS)
Cianciara, Aleksander
2016-09-01
The paper presents the results of research aimed at verifying the hypothesis that the Weibull distribution is an appropriate statistical distribution model of microseismicity emission characteristics, namely: energy of phenomena and inter-event time. It is understood that the emission under consideration is induced by the natural rock mass fracturing. Because the recorded emission contain noise, therefore, it is subjected to an appropriate filtering. The study has been conducted using the method of statistical verification of null hypothesis that the Weibull distribution fits the empirical cumulative distribution function. As the model describing the cumulative distribution function is given in an analytical form, its verification may be performed using the Kolmogorov-Smirnov goodness-of-fit test. Interpretations by means of probabilistic methods require specifying the correct model describing the statistical distribution of data. Because in these methods measurement data are not used directly, but their statistical distributions, e.g., in the method based on the hazard analysis, or in that that uses maximum value statistics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10{sup 3} up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole ( ℓ ≤ 4) moments. However, highermore » multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.« less
NASA Astrophysics Data System (ADS)
Koo, Bryan Bonsuk
Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the U.S. almost doubled for the last three year from 2009 to 2012. Multiple papers point out that RES-E policies implemented by state governments play a crucial role in increasing RES-E generation or capacity. This study examines the effects of state RES-E policies on state RES-E generating capacity, using a fixed effects model. The research employs panel data from the 50 states and the District of Columbia, for the period 1990 to 2011, and uses a two-stage approach to control endogeneity embedded in the policies adopted by state governments, and a Prais-Winsten estimator to fix any autocorrelation in the panel data. The analysis finds that Renewable Portfolio Standards (RPS) and Net-metering are significantly and positively associated with RES-E generating capacity, but neither Public Benefit Funds nor the Mandatory Green Power Option has a statistically significant relation to RES-E generating capacity. Results of the two-stage model are quite different from models which do not employ predicted policy variables. Analysis using non-predicted variables finds that RPS and Net-metering policy are statistically insignificant and negatively associated with RES-E generating capacity. On the other hand, Green Energy Purchasing policy is insignificant in the two-stage model, but significant in the model without predicted values.
NASA Astrophysics Data System (ADS)
Misra, Shikha; Upadhyay Kahaly, M.; Mishra, S. K.
2017-02-01
A formalism describing the thermionic emission from a single layer graphene sheet operating at a finite temperature and the consequent formation of the thermionic sheath in its proximity has been established. The formulation takes account of two dimensional densities of state configuration, Fermi-Dirac (f-d) statistics of the electron energy distribution, Fowler's treatment of electron emission, and Poisson's equation. The thermionic current estimates based on the present analysis is found to be in reasonably good agreement with experimental observations (Zhu et al., Nano Res. 07, 1 (2014)). The analysis has further been simplified for the case where f-d statistics of an electron energy distribution converges to Maxwellian distribution. By using this formulation, the steady state sheath features, viz., spatial dependence of the surface potential and electron density structure in the thermionic sheath are derived and illustrated graphically for graphene parameters; the electron density in the sheath is seen to diminish within ˜10 s of Debye lengths. By utilizing the graphene based cathode in configuring a thermionic converter (TC), an appropriate operating regime in achieving the efficient energy conversion has been identified. A TC configured with the graphene based cathode (operating at ˜1200 K/work function 4.74 V) along with the metallic anode (operating at ˜400 K/ work function 2.0 V) is predicted to display ˜56% of the input thermal flux into the electrical energy, which infers approximately ˜84% of the Carnot efficiency.
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration
2016-08-01
The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10-3 up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
Statistical analysis of the calibration procedure for personnel radiation measurement instruments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, W.J.; Bengston, S.J.; Kalbeitzer, F.L.
1980-11-01
Thermoluminescent analyzer (TLA) calibration procedures were used to estimate personnel radiation exposure levels at the Idaho National Engineering Laboratory (INEL). A statistical analysis is presented herein based on data collected over a six month period in 1979 on four TLA's located in the Department of Energy (DOE) Radiological and Environmental Sciences Laboratory at the INEL. The data were collected according to the day-to-day procedure in effect at that time. Both gamma and beta radiation models are developed. Observed TLA readings of thermoluminescent dosimeters are correlated with known radiation levels. This correlation is then used to predict unknown radiation doses frommore » future analyzer readings of personnel thermoluminescent dosimeters. The statistical techniques applied in this analysis include weighted linear regression, estimation of systematic and random error variances, prediction interval estimation using Scheffe's theory of calibration, the estimation of the ratio of the means of two normal bivariate distributed random variables and their corresponding confidence limits according to Kendall and Stuart, tests of normality, experimental design, a comparison between instruments, and quality control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, D.; Mosey, G.; Dagher, L.
2008-01-01
Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As a local sponsor for HPwES, Austin Energy's HPwES program offers a complete home energy assessment and a list of recommendations for efficiency improvements, along with cost estimates. The owner can choose to implement only one or the complete set of energy conservation measures. Austin Energy facilitatesmore » the process by providing economic incentives to the homeowner through its HPwES Loan program and its HPwES Rebate program. In 2005, the total number of participants in both programs was approximately 1,400. Both programs are only available for improvements made by a participating HPwES contractor. The individual household billing data - encompassing more than 7,000 households - provided by Austin Energy provides a rich data set to estimate the impacts of its HPwES program. The length of the billing histories is sufficient to develop PRISM-type models of electricity use based on several years of monthly bills before and after the installation of the conservation measures. Individual household savings were estimated from a restricted version of a PRISM-type regression model where the reference temperature to define cooling (or heating degree days) was estimated along with other parameters. Because the statistical quality of the regression models varies across individual households, three separate samples were used to measure the aggregate results. The samples were distinguished on the basis of the statistical significance of the estimated (normalized) cooling consumption. A normalized measure of cooling consumption was based on average temperatures observed over the most recent nine-year period ending in 2006. This study provided a statistically rigorous approach to incorporating the variability of expected savings across the households in the sample together with the uncertainty inherent in the regression models used to estimate those savings. While the impact of the regression errors was found to be relatively small in these particular samples, this approach may be useful in future studies using individual household billing data. The median percentage savings for the largest sample of 6,000 households in the analysis was 32%, while the mean savings was 28%. Because the number of households in the sample is very large, the standard error associated with the mean percentage savings are very small, less than 1%. A conservative statement of the average savings is that is falls in the range of 25% to 30% with a high level of certainty. This preliminary analysis provides robust estimates of average program savings, but offers no insight into how savings may vary by type of conservation measure or whether savings vary by the amount of cooling electricity used prior to undertaking the measure. Follow-up researchers may want to analyze the impacts of specific ECMs. Households that use electricity for heating might also be separately analyzed. In potential future work several methodological improvements could also be explored. As mentioned in Section 2, there was no formal attempt to clean the data set of outliers and other abnormal patterns of billing data prior to the statistical analysis. The restriction of a constant reference temperature might also be relaxed. This approach may provide evidence as to whether any 'take-back' efforts are present, whereby thermostat settings are lowered during the summer months after the measures are undertaken (reflected in lower reference temperatures in the post-ECM period). A more extended analysis may also justify the investment in and use of the PRISM software package, which may provide more diagnostic measures with respect to the reference temperature. PRISM also appears to contain some built-in capability to detect outliers and other anomalous data points.« less
Methods for Analysis of Urban Energy Systems: A New York City Case Study
NASA Astrophysics Data System (ADS)
Howard, Bianca
This dissertation describes methods developed for analysis of the New York City energy system. The analysis specifically aims to consider the built environment and its' impacts on greenhouse gas (GHG) emissions. Several contributions to the urban energy systems literature were made. First, estimates of annual energy intensities of the New York building stock were derived using a statistical analysis that leveraged energy consumption and tax assessor data collected by the Office of the Mayor. These estimates provided the basis for an assessment of the spatial distribution of building energy consumption. The energy consumption estimates were then leveraged to estimate the potential for combined heat and power (CHP) systems in New York City at both the building and microgrid scales. In aggregate, given the 2009 non-baseload GHG emissions factors for electricity production, these systems could reduce citywide GHG emissions by 10%. The operational characteristics of CHP systems were explored further considering different prime movers, climates, and GHG emissions factors. A combination of mixed integer linear programing and controlled random search algorithms were the methods used to determine the optimal capacity and operating strategies for the CHP systems under the various scenarios. Lastly a multi-regional unit commitment model of electricity and GHG emissions production for New York State was developed using data collected from several publicly available sources. The model was used to estimate average and marginal GHG emissions factors for New York State and New York City. The analysis found that marginal GHG emissions factors could reduce by 30% to 370 g CO2e/kWh in the next 10 years.
Single atom catalysts on amorphous supports: A quenched disorder perspective
NASA Astrophysics Data System (ADS)
Peters, Baron; Scott, Susannah L.
2015-03-01
Phenomenological models that invoke catalyst sites with different adsorption constants and rate constants are well-established, but computational and experimental methods are just beginning to provide atomically resolved details about amorphous surfaces and their active sites. This letter develops a statistical transformation from the quenched disorder distribution of site structures to the distribution of activation energies for sites on amorphous supports. We show that the overall kinetics are highly sensitive to the precise nature of the low energy tail in the activation energy distribution. Our analysis motivates further development of systematic methods to identify and understand the most reactive members of the active site distribution.
Streamwise Evolution of Statistical Events in a Model Wind-Turbine Array
NASA Astrophysics Data System (ADS)
Viestenz, Kyle; Cal, Raúl Bayoán
2016-02-01
Hot-wire anemometry data, obtained from a wind-tunnel experiment containing a 3 × 3 model wind-turbine array, are used to conditionally average the Reynolds stresses. Nine profiles at the centreline behind the array are analyzed to characterize the turbulent velocity statistics of the wake flow. Quadrant analysis yields statistical events occurring in the wake of the wind farm where quadrants 2 and 4 produce ejections and sweeps, respectively. The scaled difference between these two events is expressed via the Δ R0 parameter and is based on the Δ S0 quantity as introduced by M. R. Raupach (J Fluid Mech 108:363-382, 1981). Δ R0 attains a maximum value at hub height and changes sign near the top of the rotor. The ratio of quadrant events of upward momentum flux to those of the downward flux, known as the exuberance, is examined and reveals the effect of root vortices persisting to eight rotor diameters downstream. These events are then associated with the triple correlation term present in the turbulent kinetic energy equation of the fluctuations where it is found that ejections play the dual role of entraining mean kinetic energy while convecting turbulent kinetic energy out of the turbine canopy. The development of these various quantities possesses significance in closure models, and is assessed in light of wake remediation, energy transport and power fluctuations, where it is found that the maximum fluctuation is about 30% of the mean power produced.
The Ups and Downs of Repeated Cleavage and Internal Fragment Production in Top-Down Proteomics.
Lyon, Yana A; Riggs, Dylan; Fornelli, Luca; Compton, Philip D; Julian, Ryan R
2018-01-01
Analysis of whole proteins by mass spectrometry, or top-down proteomics, has several advantages over methods relying on proteolysis. For example, proteoforms can be unambiguously identified and examined. However, from a gas-phase ion-chemistry perspective, proteins are enormous molecules that present novel challenges relative to peptide analysis. Herein, the statistics of cleaving the peptide backbone multiple times are examined to evaluate the inherent propensity for generating internal versus terminal ions. The raw statistics reveal an inherent bias favoring production of terminal ions, which holds true regardless of protein size. Importantly, even if the full suite of internal ions is generated by statistical dissociation, terminal ions are predicted to account for at least 50% of the total ion current, regardless of protein size, if there are three backbone dissociations or fewer. Top-down analysis should therefore be a viable approach for examining proteins of significant size. Comparison of the purely statistical analysis with actual top-down data derived from ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD) reveals that terminal ions account for much of the total ion current in both experiments. Terminal ion production is more favored in UVPD relative to HCD, which is likely due to differences in the mechanisms controlling fragmentation. Importantly, internal ions are not found to dominate from either the theoretical or experimental point of view. Graphical abstract ᅟ.
The Ups and Downs of Repeated Cleavage and Internal Fragment Production in Top-Down Proteomics
NASA Astrophysics Data System (ADS)
Lyon, Yana A.; Riggs, Dylan; Fornelli, Luca; Compton, Philip D.; Julian, Ryan R.
2018-01-01
Analysis of whole proteins by mass spectrometry, or top-down proteomics, has several advantages over methods relying on proteolysis. For example, proteoforms can be unambiguously identified and examined. However, from a gas-phase ion-chemistry perspective, proteins are enormous molecules that present novel challenges relative to peptide analysis. Herein, the statistics of cleaving the peptide backbone multiple times are examined to evaluate the inherent propensity for generating internal versus terminal ions. The raw statistics reveal an inherent bias favoring production of terminal ions, which holds true regardless of protein size. Importantly, even if the full suite of internal ions is generated by statistical dissociation, terminal ions are predicted to account for at least 50% of the total ion current, regardless of protein size, if there are three backbone dissociations or fewer. Top-down analysis should therefore be a viable approach for examining proteins of significant size. Comparison of the purely statistical analysis with actual top-down data derived from ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD) reveals that terminal ions account for much of the total ion current in both experiments. Terminal ion production is more favored in UVPD relative to HCD, which is likely due to differences in the mechanisms controlling fragmentation. Importantly, internal ions are not found to dominate from either the theoretical or experimental point of view. [Figure not available: see fulltext.
A simple, physically-based method for evaluating the economic costs of geo-engineering schemes
NASA Astrophysics Data System (ADS)
Garrett, T. J.
2009-04-01
The consumption of primary energy (e.g coal, oil, uranium) by the global economy is done in expectation of a return on investment. For geo-engineering schemes, however, the relationship between the primary energy consumption required and the economic return is, at first glance, quite different. The energy costs of a given scheme represent a removal of economically productive available energy to do work in the normal global economy. What are the economic implications of the energy consumption associated with geo-engineering techniques? I will present a simple thermodynamic argument that, in general, real (inflation-adjusted) economic value has a fixed relationship to the rate of global primary energy consumption. This hypothesis will be shown to be supported by 36 years of available energy statistics and a two millennia period of statistics for global economic production. What is found from this analysis is that the value in any given inflation-adjusted 1990 dollar is sustained by a constant 9.7 +/- 0.3 milliwatts of global primary energy consumption. Thus, insofar as geo-engineering is concerned, any scheme that requires some nominal fraction of continuous global primary energy output necessitates a corresponding inflationary loss of real global economic value. For example, if 1% of global energy output is required, at today's consumption rates of 15 TW this corresponds to an inflationary loss of 15 trillion 1990 dollars of real value. The loss will be less, however, if the geo-engineering scheme also enables a demonstrable enhancement to global economic production capacity through climate modification.
NASA Astrophysics Data System (ADS)
Larsen, A. C.; Guttormsen, M.; Blasi, N.; Bracco, A.; Camera, F.; Crespo Campo, L.; Eriksen, T. K.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Leoni, S.; E Midtbø, J.; Million, B.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; E Ruud, I.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.; Zeiser, F.
2017-06-01
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter-Thomas fluctuations, there is no indication of any significant excitation energy dependence in the γ-ray strength function, in support of the generalized Brink-Axel hypothesis.
AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyden, Ryan D.; Offner, Stella S. R.; Koch, Eric W.
2016-12-20
All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations aremore » at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.« less
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. Congressional Research Service.
This handbook contains a comprehensive selection of United States and foreign energy statistics in the form of graphs and tables. The data are classified according to resources, production, consumption and demand, energy and gross national product, and research and development. Statistics on energy sources such as coal, oil, gas, nuclear energy,…
Martin, Daniel R; Matyushov, Dmitry V
2012-08-30
We show that electrostatic fluctuations of the protein-water interface are globally non-Gaussian. The electrostatic component of the optical transition energy (energy gap) in a hydrated green fluorescent protein is studied here by classical molecular dynamics simulations. The distribution of the energy gap displays a high excess in the breadth of electrostatic fluctuations over the prediction of the Gaussian statistics. The energy gap dynamics include a nanosecond component. When simulations are repeated with frozen protein motions, the statistics shifts to the expectations of linear response and the slow dynamics disappear. We therefore suggest that both the non-Gaussian statistics and the nanosecond dynamics originate largely from global, low-frequency motions of the protein coupled to the interfacial water. The non-Gaussian statistics can be experimentally verified from the temperature dependence of the first two spectral moments measured at constant-volume conditions. Simulations at different temperatures are consistent with other indicators of the non-Gaussian statistics. In particular, the high-temperature part of the energy gap variance (second spectral moment) scales linearly with temperature and extrapolates to zero at a temperature characteristic of the protein glass transition. This result, violating the classical limit of the fluctuation-dissipation theorem, leads to a non-Boltzmann statistics of the energy gap and corresponding non-Arrhenius kinetics of radiationless electronic transitions, empirically described by the Vogel-Fulcher-Tammann law.
The Super-TIGER Instrument to Probe Galactic Cosmic-Ray Origins
NASA Astrophysics Data System (ADS)
Ward, John E.
2013-04-01
Super-TIGER is a large area (5.4 m^2) balloon-borne instrument designed to measure cosmic-ray nuclei in the charge interval 30 <= Z <= 42 with individual-element resolution and high statistical precision, and make exploratory measurements through Z = 56. These measurements will provide sensitive tests of the emerging model of cosmic-ray origins in OB associations and models of the mechanism for selection of nuclei for acceleration. Furthermore, Super-TIGER will measure with high statistical accuracy the energy spectra of the more abundant elements in the interval 10 <= Z <= 28 at energies 0.8 < E < 10 GeV/nucleon to test the hypothesis that nearby micro-quasars could superpose features on the energy spectra. Super-TIGER, which builds on the heritage of the smaller TIGER, was constructed by a collaboration involving WUSTL, NASA/GSFC, Caltech, JPL and U Minn. It was successfully launched from Antarctica in December 2012, collecting high-quality data for over one month. Particle charge and energy were measured with a combination of plastic scintillators, acrylic and silica-aerogel Cherenkov detectors, and a scintillating fiber hodoscope. Details of the flight, instrument performance, data analysis and preliminary results of the Super-TIGER flight will be presented.
NASA Astrophysics Data System (ADS)
Pathak, Maharshi
City administrators and real-estate developers have been setting up rather aggressive energy efficiency targets. This, in turn, has led the building science research groups across the globe to focus on urban scale building performance studies and level of abstraction associated with the simulations of the same. The increasing maturity of the stakeholders towards energy efficiency and creating comfortable working environment has led researchers to develop methodologies and tools for addressing the policy driven interventions whether it's urban level energy systems, buildings' operational optimization or retrofit guidelines. Typically, these large-scale simulations are carried out by grouping buildings based on their design similarities i.e. standardization of the buildings. Such an approach does not necessarily lead to potential working inputs which can make decision-making effective. To address this, a novel approach is proposed in the present study. The principle objective of this study is to propose, to define and evaluate the methodology to utilize machine learning algorithms in defining representative building archetypes for the Stock-level Building Energy Modeling (SBEM) which are based on operational parameter database. The study uses "Phoenix- climate" based CBECS-2012 survey microdata for analysis and validation. Using the database, parameter correlations are studied to understand the relation between input parameters and the energy performance. Contrary to precedence, the study establishes that the energy performance is better explained by the non-linear models. The non-linear behavior is explained by advanced learning algorithms. Based on these algorithms, the buildings at study are grouped into meaningful clusters. The cluster "mediod" (statistically the centroid, meaning building that can be represented as the centroid of the cluster) are established statistically to identify the level of abstraction that is acceptable for the whole building energy simulations and post that the retrofit decision-making. Further, the methodology is validated by conducting Monte-Carlo simulations on 13 key input simulation parameters. The sensitivity analysis of these 13 parameters is utilized to identify the optimum retrofits. From the sample analysis, the envelope parameters are found to be more sensitive towards the EUI of the building and thus retrofit packages should also be directed to maximize the energy usage reduction.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-10-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-01-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512
Monthly energy review, August 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. 37 figs., 73 tabs.
Control of Laser Plasma Based Accelerators up to 1 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Kei
2007-12-01
This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> ± 10 mrad) were realized by employing a slitless scheme. A scintillating screenmore » (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 μm diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 10 18 W/cm 2) over 3.3 centimeters of sufficiently low density (≃ 4.3 x 10 18/cm 3) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of ≃ 0.5 GeV by using a 225 μm diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 10 18W/cm 2) were guided over 3.3 centimeters of low density (≃ 3.5 x 10 18/cm 3) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate experimental system, several thousands of shots were taken in a broad range of the laser and plasma parameters. An analysis program was developed to sort and select the data by specified parameters, and then to evaluate performance statistically. The analysis suggested that the generation of GeV-level beams comes from a highly unstable and regime. By having the plasma density slightly above the threshold density for self injection, (1) the longest dephasing length possible was provided, which led to the generation of high energy e-beams, and (2) the number of electrons injected into the wakefield was kept small, which led to the generation of high quality (low energy spread) e-beams by minimizing the beam loading effect on the wake. The analysis of the stable half-GeV beam regime showed the requirements for stable self injection and acceleration. A small change of discharge delay t dsc, and input energy E in, significantly affected performance. The statistical analysis provided information for future optimization, and suggested possible schemes for improvement of the stability and higher quality beam generation. A CDG-LWFA is envisioned as a construction block for the next generation accelerator, enabling significant cost and size reductions.« less
The magnitude and effects of extreme solar particle events
NASA Astrophysics Data System (ADS)
Jiggens, Piers; Chavy-Macdonald, Marc-Andre; Santin, Giovanni; Menicucci, Alessandra; Evans, Hugh; Hilgers, Alain
2014-06-01
The solar energetic particle (SEP) radiation environment is an important consideration for spacecraft design, spacecraft mission planning and human spaceflight. Herein is presented an investigation into the likely severity of effects of a very large Solar Particle Event (SPE) on technology and humans in space. Fluences for SPEs derived using statistical models are compared to historical SPEs to verify their appropriateness for use in the analysis which follows. By combining environment tools with tools to model effects behind varying layers of spacecraft shielding it is possible to predict what impact a large SPE would be likely to have on a spacecraft in Near-Earth interplanetary space or geostationary Earth orbit. Also presented is a comparison of results generated using the traditional method of inputting the environment spectra, determined using a statistical model, into effects tools and a new method developed as part of the ESA SEPEM Project allowing for the creation of an effect time series on which statistics, previously applied to the flux data, can be run directly. The SPE environment spectra is determined and presented as energy integrated proton fluence (cm-2) as a function of particle energy (in MeV). This is input into the SHIELDOSE-2, MULASSIS, NIEL, GRAS and SEU effects tools to provide the output results. In the case of the new method for analysis, the flux time series is fed directly into the MULASSIS and GEMAT tools integrated into the SEPEM system. The output effect quantities include total ionising dose (in rads), non-ionising energy loss (MeV g-1), single event upsets (upsets/bit) and the dose in humans compared to established limits for stochastic (or cancer-causing) effects and tissue reactions (such as acute radiation sickness) in humans given in grey-equivalent and sieverts respectively.
MAI statistics estimation and analysis in a DS-CDMA system
NASA Astrophysics Data System (ADS)
Alami Hassani, A.; Zouak, M.; Mrabti, M.; Abdi, F.
2018-05-01
A primary limitation of Direct Sequence Code Division Multiple Access DS-CDMA link performance and system capacity is multiple access interference (MAI). To examine the performance of CDMA systems in the presence of MAI, i.e., in a multiuser environment, several works assumed that the interference can be approximated by a Gaussian random variable. In this paper, we first develop a new and simple approach to characterize the MAI in a multiuser system. In addition to statistically quantifying the MAI power, the paper also proposes a statistical model for both variance and mean of the MAI for synchronous and asynchronous CDMA transmission. We show that the MAI probability density function (PDF) is Gaussian for the equal-received-energy case and validate it by computer simulations.
Energy Statistics : A Supplement to the Summary of National Transportation Statistics
DOT National Transportation Integrated Search
1973-09-01
This annual report is a compendium of selected time-series data describing the transportation, production, processing, and consumption of energy. The report is divided into three main sections. The first, entitled Energy Transport, contains such item...
Energy Statistics : A Supplement to the Summary of Transportation Statistics
DOT National Transportation Integrated Search
1974-08-01
This annual report is a compendium of selected time-series data describing the transportation, production, processing, and consumption of energy. The report is divided into three main sections. The first, entitled Energy Transport, contains such item...
Matos, C; Bentes, I; Pereira, S; Gonçalves, A M; Faria, D; Briga-Sá, A
2018-06-12
Rural and urban environments present significant differences between water and energy consumptions. It is important to know, in detail, which factors related to the consumption of these two resources are different in both environments, once that will be those important to manage and discuss in order to improve its use efficiency and sustainability. This research work involves a survey whose aim is to find the factors that in rural and urban environments may justify the differences found in water and energy consumptions. Besides the collection of water and energy consumption data, this survey analyzed 80 variables (socio-demographic, economic, household characterization, among others), that were chosen among the bibliography as possible factors that should influence water and energy consumptions. After the survey application in rural and urban areas and the data statistical treatment, 42 variables remained as truly differentiating factors of rural and urban environments and so as possible determinants of water and energy consumptions. In order to achieve these objectives, a descriptive data analysis and statistical inference (Mann-Whitney-Wilcoxon test and the Chi-square test of homogeneity) were performed. All the 42 differentiating variables that result from this study may be able to justify these differences, however this will not be presented in the paper and it is reserved for future work. Copyright © 2018. Published by Elsevier B.V.
Biomass Energy Data Book: Edition 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D
The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format.more » There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less
Gamma-ray blazar spectra with H.E.S.S. II mono analysis: The case of PKS 2155$-$304 and PG 1553+113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdalla, H.; Abramowski, A.; Aharonian, F.
In this paper, the addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment’s sensitivityto lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument’s energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift ≥0.5. The high-frequency peaked BL Lac objects PKS 2155–304 (z = 0.116) and PG 1553+113 (0.43 < z < 0.58) are among the brightestmore » objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Furthermore, the aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155–304 and PG 1553+113 near their SED peaks at energies ≈100 GeV. Multiple observational campaigns of PKS 2155–304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1–5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. As a result, using the data from CT5, the energy spectra of PKS 2155–304 and PG 1553+113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155–304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0σ statistical preference for non-zero curvature for PKS 2155–304 and 4.5σ for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E ≈ 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155–304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.« less
Gamma-ray blazar spectra with H.E.S.S. II mono analysis: The case of PKS 2155$-$304 and PG 1553+113
Abdalla, H.; Abramowski, A.; Aharonian, F.; ...
2017-04-05
In this paper, the addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment’s sensitivityto lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument’s energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift ≥0.5. The high-frequency peaked BL Lac objects PKS 2155–304 (z = 0.116) and PG 1553+113 (0.43 < z < 0.58) are among the brightestmore » objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Furthermore, the aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155–304 and PG 1553+113 near their SED peaks at energies ≈100 GeV. Multiple observational campaigns of PKS 2155–304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1–5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. As a result, using the data from CT5, the energy spectra of PKS 2155–304 and PG 1553+113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155–304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0σ statistical preference for non-zero curvature for PKS 2155–304 and 4.5σ for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E ≈ 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155–304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.« less
WEC Design Response Toolbox v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Ryan; Michelen, Carlos; Eckert-Gallup, Aubrey
2016-03-30
The WEC Design Response Toolbox (WDRT) is a numerical toolbox for design-response analysis of wave energy converters (WECs). The WDRT was developed during a series of efforts to better understand WEC survival design. The WDRT has been designed as a tool for researchers and developers, enabling the straightforward application of statistical and engineering methods. The toolbox includes methods for short-term extreme response, environmental characterization, long-term extreme response and risk analysis, fatigue, and design wave composition.
Breast Density Assessment by Dual Energy X-ray Absorptiometry in Women and Girls
2008-07-01
daughter pairs next year. Task 6. Data Management and Analysis. All current participants’’ data collected during the study visits have been...projects although in some woman the areola continues to form a secondary mound. Statistical Analysis. All data management and anal- yses were done using the...from the viewpoint of qaulity control. Washington (DC): Graduate School of the Department of Agriculture; 1939. 19. Irwin ML, Aiello EJ, McTiernan A
Acoustic fill factors for a 120 inch diameter fairing
NASA Technical Reports Server (NTRS)
Lee, Y. Albert
1992-01-01
Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.
Replica and extreme-value analysis of the Jarzynski free-energy estimator
NASA Astrophysics Data System (ADS)
Palassini, Matteo; Ritort, Felix
2008-03-01
We analyze the Jarzynski estimator of free-energy differences from nonequilibrium work measurements. By a simple mapping onto Derrida's Random Energy Model, we obtain a scaling limit for the expectation of the bias of the estimator. We then derive analytical approximations in three different regimes of the scaling parameter x = log(N)/W, where N is the number of measurements and W the mean dissipated work. Our approach is valid for a generic distribution of the dissipated work, and is based on a replica symmetry breaking scheme for x >> 1, the asymptotic theory of extreme value statistics for x << 1, and a direct approach for x near one. The combination of the three analytic approximations describes well Monte Carlo data for the expectation value of the estimator, for a wide range of values of N, from N=1 to large N, and for different work distributions. Based on these results, we introduce improved free-energy estimators and discuss the application to the analysis of experimental data.
Pairwise velocities in the "Running FLRW" cosmological model
NASA Astrophysics Data System (ADS)
Bibiano, Antonio; Croton, Darren J.
2017-05-01
We present an analysis of the pairwise velocity statistics from a suite of cosmological N-body simulations describing the 'Running Friedmann-Lemaître-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Λ cold dark matter (CDM) with a time-evolving vacuum energy density, ρ _Λ. To enforce local conservation of matter, a time-evolving gravitational coupling is also included. Our results constitute the first study of velocities in the R-FLRW cosmology, and we also compare with other dark energy simulations suites, repeating the same analysis. We find a strong degeneracy between the pairwise velocity and σ8 at z = 0 for almost all scenarios considered, which remains even when we look back to epochs as early as z = 2. We also investigate various coupled dark energy models, some of which show minimal degeneracy, and reveal interesting deviations from ΛCDM that could be readily exploited by future cosmological observations to test and further constrain our understanding of dark energy.
Analysis on H Spectral Shape During the Early 2012 SEPs with the PAMELA Experiment
NASA Technical Reports Server (NTRS)
Martucci, Matteo; Boezio, M.; Bravar, U.; Carbone, R.; Christian, E. R.; De Nolfo, G. A.; Merge, M.; Mocchiutti, E.; Munini, R.; Ricci, M.;
2013-01-01
The satellite-borne PAMELA experiment has been continuously collecting data since 2006.This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does its pan the energy range between the ground-based neutron monitor data and the observations of SEPs from space,but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs).In particular, PAMELA has registered many SEP events during solar cycle 24,offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work.
Substorm injection boundaries. [magnetospheric electric field model
NASA Technical Reports Server (NTRS)
Mcilwain, C. E.
1974-01-01
An improved magnetospheric electric field model is used to compute the initial locations of particles injected by several substorms. Trajectories are traced from the time of their encounter with the ATS-5 satellite backwards to the onset time given by ground-based magnetometers. A spiral shaped inner boundary of injection is found which is quite similar to that found by a statistical analysis. This injection boundary is shown to move in an energy dependent fashion which can explain the soft energy spectra observed at the inner edge of the electrons plasma sheet.
Upsets in Erased Floating Gate Cells With High-Energy Protons
Gerardin, S.; Bagatin, M.; Paccagnella, A.; ...
2017-01-01
We discuss upsets in erased floating gate cells, due to large threshold voltage shifts, using statistical distributions collected on a large number of memory cells. The spread in the neutral threshold voltage appears to be too low to quantitatively explain the experimental observations in terms of simple charge loss, at least in SLC devices. The possibility that memories exposed to high energy protons and heavy ions exhibit negative charge transfer between programmed and erased cells is investigated, although the analysis does not provide conclusive support to this hypothesis.
NASA Astrophysics Data System (ADS)
Budaev, Bair V.; Bogy, David B.
2018-06-01
We extend the statistical analysis of equilibrium systems to systems with a constant heat flux. This extension leads to natural generalizations of Maxwell-Boltzmann's and Planck's equilibrium energy distributions to energy distributions of systems with a net heat flux. This development provides a long needed foundation for addressing problems of nanoscale heat transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative heat flux between narrowly spaced half-spaces maintained at different temperatures.
Impact of Damping Uncertainty on SEA Model Response Variance
NASA Technical Reports Server (NTRS)
Schiller, Noah; Cabell, Randolph; Grosveld, Ferdinand
2010-01-01
Statistical Energy Analysis (SEA) is commonly used to predict high-frequency vibroacoustic levels. This statistical approach provides the mean response over an ensemble of random subsystems that share the same gross system properties such as density, size, and damping. Recently, techniques have been developed to predict the ensemble variance as well as the mean response. However these techniques do not account for uncertainties in the system properties. In the present paper uncertainty in the damping loss factor is propagated through SEA to obtain more realistic prediction bounds that account for both ensemble and damping variance. The analysis is performed on a floor-equipped cylindrical test article that resembles an aircraft fuselage. Realistic bounds on the damping loss factor are determined from measurements acquired on the sidewall of the test article. The analysis demonstrates that uncertainties in damping have the potential to significantly impact the mean and variance of the predicted response.
Statistical Study of the Properties of Magnetosheath Lion Roars using MMS observations
NASA Astrophysics Data System (ADS)
Giagkiozis, S.; Wilson, L. B., III
2017-12-01
Intense whistler-mode waves of very short duration are frequently encountered in the magnetosheath. These emissions have been linked to mirror mode waves and the Earth's bow shock. They can efficiently transfer energy between different plasma populations. These electromagnetic waves are commonly referred to as Lion roars (LR), due to the sound generated when the signals are sonified. They are generally observed during dips of the magnetic field that are anti-correlated with increases of density. Using MMS data, we have identified more than 1750 individual LR burst intervals. Each emission was band-pass filtered and further split into >35,000 subintervals, for which the direction of propagation and the polarization were calculated. The analysis of subinterval properties provides a more accurate representation of their true nature than the more commonly used time- and frequency-averaged dynamic spectra analysis. The results of the statistical analysis of the wave properties will be presented.
Symmetric and asymmetric ternary fission of hot nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.
1993-07-01
Emission of [alpha] particles accompanying fusion-fission processes in the [sup 40]Ar +[sup 232]Th reaction at [ital E]([sup 40]Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of [alpha] particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission,more » and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7[times]10[sup [minus]20] s) and the motion during the descent to scission almost completely damped.« less
Estimates of point defect production in α-quartz using molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Cowen, Benjamin J.; El-Genk, Mohamed S.
2017-07-01
Molecular dynamics (MD) simulations are performed to investigate the production of point defects in α-quartz by oxygen and silicon primary knock-on atoms (PKAs) of 0.25-2 keV. The Wigner-Seitz (WS) defect analysis is used to identify the produced vacancies, interstitials, and antisites, and the coordination defect analysis is used to identify the under and over-coordinated oxygen and silicon atoms. The defects at the end of the ballistic phase and the residual defects, after annealing, increase with increased PKA energy, and are statistically the same for the oxygen and silicon PKAs. The WS defect analysis results show that the numbers of the oxygen vacancies and interstitials (VO, Oi) at the end of the ballistic phase is the highest, followed closely by those of the silicon vacancies and interstitials (VSi, Sii). The number of the residual oxygen and silicon vacancies and interstitials are statistically the same. In addition, the under-coordinated OI and SiIII, which are the primary defects during the ballistic phase, have high annealing efficiencies (>89%). The over-coordinated defects of OIII and SiV, which are not nearly as abundant in the ballistic phase, have much lower annealing efficiencies (<63%) that decrease with increased PKA energy.
3Drefine: an interactive web server for efficient protein structure refinement
Bhattacharya, Debswapna; Nowotny, Jackson; Cao, Renzhi; Cheng, Jianlin
2016-01-01
3Drefine is an interactive web server for consistent and computationally efficient protein structure refinement with the capability to perform web-based statistical and visual analysis. The 3Drefine refinement protocol utilizes iterative optimization of hydrogen bonding network combined with atomic-level energy minimization on the optimized model using a composite physics and knowledge-based force fields for efficient protein structure refinement. The method has been extensively evaluated on blind CASP experiments as well as on large-scale and diverse benchmark datasets and exhibits consistent improvement over the initial structure in both global and local structural quality measures. The 3Drefine web server allows for convenient protein structure refinement through a text or file input submission, email notification, provided example submission and is freely available without any registration requirement. The server also provides comprehensive analysis of submissions through various energy and statistical feedback and interactive visualization of multiple refined models through the JSmol applet that is equipped with numerous protein model analysis tools. The web server has been extensively tested and used by many users. As a result, the 3Drefine web server conveniently provides a useful tool easily accessible to the community. The 3Drefine web server has been made publicly available at the URL: http://sysbio.rnet.missouri.edu/3Drefine/. PMID:27131371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.
A Pedagogical Approach to the Boltzmann Factor through Experiments and Simulations
ERIC Educational Resources Information Center
Battaglia, O. R.; Bonura, A.; Sperandeo-Mineo, R. M.
2009-01-01
The Boltzmann factor is the basis of a huge amount of thermodynamic and statistical physics, both classical and quantum. It governs the behaviour of all systems in nature that are exchanging energy with their environment. To understand why the expression has this specific form involves a deep mathematical analysis, whose flow of logic is hard to…
Nature of Driving Force for Protein Folding: A Result From Analyzing the Statistical Potential
NASA Astrophysics Data System (ADS)
Li, Hao; Tang, Chao; Wingreen, Ned S.
1997-07-01
In a statistical approach to protein structure analysis, Miyazawa and Jernigan derived a 20×20 matrix of inter-residue contact energies between different types of amino acids. Using the method of eigenvalue decomposition, we find that the Miyazawa-Jernigan matrix can be accurately reconstructed from its first two principal component vectors as Mij = C0+C1\\(qi+qj\\)+C2qiqj, with constant C's, and 20 q values associated with the 20 amino acids. This regularity is due to hydrophobic interactions and a force of demixing, the latter obeying Hildebrand's solubility theory of simple liquids.
2017-01-01
Recent advances in understanding protein folding have benefitted from coarse-grained representations of protein structures. Empirical energy functions derived from these techniques occasionally succeed in distinguishing native structures from their corresponding ensembles of nonnative folds or decoys which display varying degrees of structural dissimilarity to the native proteins. Here we utilized atomic coordinates of single protein chains, comprising a large diverse training set, to develop and evaluate twelve all-atom four-body statistical potentials obtained by exploring alternative values for a pair of inherent parameters. Delaunay tessellation was performed on the atomic coordinates of each protein to objectively identify all quadruplets of interacting atoms, and atomic potentials were generated via statistical analysis of the data and implementation of the inverted Boltzmann principle. Our potentials were evaluated using benchmarking datasets from Decoys-‘R'-Us, and comparisons were made with twelve other physics- and knowledge-based potentials. Ranking 3rd, our best potential tied CHARMM19 and surpassed AMBER force field potentials. We illustrate how a generalized version of our potential can be used to empirically calculate binding energies for target-ligand complexes, using HIV-1 protease-inhibitor complexes for a practical application. The combined results suggest an accurate and efficient atomic four-body statistical potential for protein structure prediction and assessment. PMID:29119109
Perspective: chemical dynamics simulations of non-statistical reaction dynamics
Ma, Xinyou; Hase, William L.
2017-01-01
Non-statistical chemical dynamics are exemplified by disagreements with the transition state (TS), RRKM and phase space theories of chemical kinetics and dynamics. The intrinsic reaction coordinate (IRC) is often used for the former two theories, and non-statistical dynamics arising from non-IRC dynamics are often important. In this perspective, non-statistical dynamics are discussed for chemical reactions, with results primarily obtained from chemical dynamics simulations and to a lesser extent from experiment. The non-statistical dynamical properties discussed are: post-TS dynamics, including potential energy surface bifurcations, product energy partitioning in unimolecular dissociation and avoiding exit-channel potential energy minima; non-RRKM unimolecular decomposition; non-IRC dynamics; direct mechanisms for bimolecular reactions with pre- and/or post-reaction potential energy minima; non-TS theory barrier recrossings; and roaming dynamics. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320906
Statistical functions and relevant correlation coefficients of clearness index
NASA Astrophysics Data System (ADS)
Pavanello, Diego; Zaaiman, Willem; Colli, Alessandra; Heiser, John; Smith, Scott
2015-08-01
This article presents a statistical analysis of the sky conditions, during years from 2010 to 2012, for three different locations: the Joint Research Centre site in Ispra (Italy, European Solar Test Installation - ESTI laboratories), the site of National Renewable Energy Laboratory in Golden (Colorado, USA) and the site of Brookhaven National Laboratories in Upton (New York, USA). The key parameter is the clearness index kT, a dimensionless expression of the global irradiance impinging upon a horizontal surface at a given instant of time. In the first part, the sky conditions are characterized using daily averages, giving a general overview of the three sites. In the second part the analysis is performed using data sets with a short-term resolution of 1 sample per minute, demonstrating remarkable properties of the statistical distributions of the clearness index, reinforced by a proof using fuzzy logic methods. Successively some time-dependent correlations between different meteorological variables are presented in terms of Pearson and Spearman correlation coefficients, and introducing a new one.
Experimental observation of steady inertial wave turbulence in deep rotating flows
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Sharon, Eran
2015-11-01
We present experimental evidence of inertial wave turbulence in deep rotating fluid. Experiments were performed in a rotating cylindrical water tank, where previous work showed statistics similar to 2D turbulence (specifically an inverse energy cascade). Using Fourier analysis of high resolution data in both space (3D) and time we show that most of the energy of a steady state flow is contained around the inertial wave dispersion relation. The nonlinear interaction between the waves is manifested by the widening of the time spectrum around the dispersion relation. We show that as the Rossby number increases so does the spectrum width, with a strong dependence on wave number. Our results suggest that in some parameters range, rotating turbulence velocity field can be represented as a field of interacting waves (wave turbulence). Such formalism may provide a better understanding of the flow statistics. This work was supported by the Israel Science Foundation, Grant No. 81/12.
New efficient optimizing techniques for Kalman filters and numerical weather prediction models
NASA Astrophysics Data System (ADS)
Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis
2016-06-01
The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.
Low, Diana H P; Motakis, Efthymios
2013-10-01
Binding free energy calculations obtained through molecular dynamics simulations reflect intermolecular interaction states through a series of independent snapshots. Typically, the free energies of multiple simulated series (each with slightly different starting conditions) need to be estimated. Previous approaches carry out this task by moving averages at certain decorrelation times, assuming that the system comes from a single conformation description of binding events. Here, we discuss a more general approach that uses statistical modeling, wavelets denoising and hierarchical clustering to estimate the significance of multiple statistically distinct subpopulations, reflecting potential macrostates of the system. We present the deltaGseg R package that performs macrostate estimation from multiple replicated series and allows molecular biologists/chemists to gain physical insight into the molecular details that are not easily accessible by experimental techniques. deltaGseg is a Bioconductor R package available at http://bioconductor.org/packages/release/bioc/html/deltaGseg.html.
Evidence for a Second Component in the High-energy Core Emission from Centaurus A?
NASA Astrophysics Data System (ADS)
Sahakyan, N.; Yang, R.; Aharonian, F. A.; Rieger, F. M.
2013-06-01
We report on an analysis of Fermi Large Area Telescope data from four years of observations of the nearby radio galaxy Centaurus A (Cen A). The increased photon statistics results in a detection of high-energy (>100 MeV) gamma-rays up to 50 GeV from the core of Cen A, with a detection significance of about 44σ. The average gamma-ray spectrum of the core reveals evidence for a possible deviation from a simple power law. A likelihood analysis with a broken power-law model shows that the photon index becomes harder above Eb ~= 4 GeV, changing from Γ1 = 2.74 ± 0.03 below to Γ2 = 2.09 ± 0.20 above. This hardening could be caused by the contribution of an additional high-energy component beyond the common synchrotron self-Compton jet emission. No clear evidence for variability in the high-energy domain is seen. We compare our results with the spectrum reported by H.E.S.S. in the TeV energy range and discuss possible origins of the hardening observed.
The Hurst exponent in energy futures prices
NASA Astrophysics Data System (ADS)
Serletis, Apostolos; Rosenberg, Aryeh Adam
2007-07-01
This paper extends the work in Elder and Serletis [Long memory in energy futures prices, Rev. Financial Econ., forthcoming, 2007] and Serletis et al. [Detrended fluctuation analysis of the US stock market, Int. J. Bifurcation Chaos, forthcoming, 2007] by re-examining the empirical evidence for random walk type behavior in energy futures prices. In doing so, it uses daily data on energy futures traded on the New York Mercantile Exchange, over the period from July 2, 1990 to November 1, 2006, and a statistical physics approach-the ‘detrending moving average’ technique-providing a reliable framework for testing the information efficiency in financial markets as shown by Alessio et al. [Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27 (2002) 197-200] and Carbone et al. [Time-dependent hurst exponent in financial time series. Physica A 344 (2004) 267-271; Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E 69 (2004) 026105]. The results show that energy futures returns display long memory and that the particular form of long memory is anti-persistence.
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2018-05-01
The LUX experiment has performed searches for dark-matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived from 1.4 ×104 kg days of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This report, Housing Characteristics 1993, presents statistics about the energy-related characteristics of US households. These data were collected in the 1993 Residential Energy Consumption Survey (RECS) -- the ninth in a series of nationwide energy consumption surveys conducted since 1978 by the Energy Information Administration of the US Department of Energy. Over 7 thousand households were surveyed, representing 97 million households nationwide. A second report, to be released in late 1995, will present statistics on residential energy consumption and expenditures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development formore » improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.« less
Estimated intakes and sources of total and added sugars in the Canadian diet.
Brisbois, Tristin D; Marsden, Sandra L; Anderson, G Harvey; Sievenpiper, John L
2014-05-08
National food supply data and dietary surveys are essential to estimate nutrient intakes and monitor trends, yet there are few published studies estimating added sugars consumption. The purpose of this report was to estimate and trend added sugars intakes and their contribution to total energy intake among Canadians by, first, using Canadian Community Health Survey (CCHS) nutrition survey data of intakes of sugars in foods and beverages, and second, using Statistics Canada availability data and adjusting these for wastage to estimate intakes. Added sugars intakes were estimated from CCHS data by categorizing the sugars content of food groups as either added or naturally occurring. Added sugars accounted for approximately half of total sugars consumed. Annual availability data were obtained from Statistics Canada CANSIM database. Estimates for added sugars were obtained by summing the availability of "sugars and syrups" with availability of "soft drinks" (proxy for high fructose corn syrup) and adjusting for waste. Analysis of both survey and availability data suggests that added sugars average 11%-13% of total energy intake. Availability data indicate that added sugars intakes have been stable or modestly declining as a percent of total energy over the past three decades. Although these are best estimates based on available data, this analysis may encourage the development of better databases to help inform public policy recommendations.
Research in Theoretical High Energy Nuclear Physics at the University of Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafelski, Johann
In the past decade (2004-2015) we addressed the quest for the understanding of how quark confinement works, how it can be dissolved in a limited space-time domain, and what this means: i) for the paradigm of the laws of physics of present day; and, ii) for our understanding of cosmology. The focus of our in laboratory matter formation work has been centered on the understanding of the less frequently produced hadronic particles (e.g. strange antibaryons, charmed and beauty hadrons, massive resonances, charmonium, B c). We have developed a public analysis tool, SHARE (Statistical HAdronization with REsonances) which allows a precisemore » model description of experimental particle yield and fluctuation data. We have developed a charm recombination model to allow for off-equilibrium rate of charmonium production. We have developed methods and techniques which allowed us to study the hadron resonance yield evolution by kinetic theory. We explored entropy, strangeness and charm as signature of QGP addressing the wide range of reaction energy for AGS, SPS, RHIC and LHC energy range. In analysis of experimental data, we obtained both statistical parameters as well as physical properties of the hadron source. The following pages present listings of our primary writing on these questions. The abstracts are included in lieu of more detailed discussion of our research accomplishments in each of the publications.« less
Estimated Intakes and Sources of Total and Added Sugars in the Canadian Diet
Brisbois, Tristin D.; Marsden, Sandra L.; Anderson, G. Harvey; Sievenpiper, John L.
2014-01-01
National food supply data and dietary surveys are essential to estimate nutrient intakes and monitor trends, yet there are few published studies estimating added sugars consumption. The purpose of this report was to estimate and trend added sugars intakes and their contribution to total energy intake among Canadians by, first, using Canadian Community Health Survey (CCHS) nutrition survey data of intakes of sugars in foods and beverages, and second, using Statistics Canada availability data and adjusting these for wastage to estimate intakes. Added sugars intakes were estimated from CCHS data by categorizing the sugars content of food groups as either added or naturally occurring. Added sugars accounted for approximately half of total sugars consumed. Annual availability data were obtained from Statistics Canada CANSIM database. Estimates for added sugars were obtained by summing the availability of “sugars and syrups” with availability of “soft drinks” (proxy for high fructose corn syrup) and adjusting for waste. Analysis of both survey and availability data suggests that added sugars average 11%–13% of total energy intake. Availability data indicate that added sugars intakes have been stable or modestly declining as a percent of total energy over the past three decades. Although these are best estimates based on available data, this analysis may encourage the development of better databases to help inform public policy recommendations. PMID:24815507
Study of subgrid-scale velocity models for reacting and nonreacting flows
NASA Astrophysics Data System (ADS)
Langella, I.; Doan, N. A. K.; Swaminathan, N.; Pope, S. B.
2018-05-01
A study is conducted to identify advantages and limitations of existing large-eddy simulation (LES) closures for the subgrid-scale (SGS) kinetic energy using a database of direct numerical simulations (DNS). The analysis is conducted for both reacting and nonreacting flows, different turbulence conditions, and various filter sizes. A model, based on dissipation and diffusion of momentum (LD-D model), is proposed in this paper based on the observed behavior of four existing models. Our model shows the best overall agreements with DNS statistics. Two main investigations are conducted for both reacting and nonreacting flows: (i) an investigation on the robustness of the model constants, showing that commonly used constants lead to a severe underestimation of the SGS kinetic energy and enlightening their dependence on Reynolds number and filter size; and (ii) an investigation on the statistical behavior of the SGS closures, which suggests that the dissipation of momentum is the key parameter to be considered in such closures and that dilatation effect is important and must be captured correctly in reacting flows. Additional properties of SGS kinetic energy modeling are identified and discussed.
Compressor seal rub energetics study
NASA Technical Reports Server (NTRS)
Laverty, W. F.
1978-01-01
The rub mechanics of compressor abradable blade tip seals at simulated engine conditions were investigated. Twelve statistically planned, instrumented rub tests were conducted with titanium blades and Feltmetal fibermetal rubstrips. The tests were conducted with single stationary blades rubbing against seal material bonded to rotating test disks. The instantaneous rub torque, speed, incursion rate and blade temperatures were continuously measured and recorded. Basic rub parameters (incursion rate, rub depth, abradable density, blade thickness and rub velocity) were varied to determine the effects on rub energy and heat split between the blade, rubstrip surface and rub debris. The test data was reduced, energies were determined and statistical analyses were completed to determine the primary and interactive effects. Wear surface morphology, profile measurements and metallographic analysis were used to determine wear, glazing, melting and material transfer. The rub energies for these tests were most significantly affected by the incursion rate while rub velocity and blade thickness were of secondary importance. The ratios of blade wear to seal wear were representative of those experienced in engine operation of these seal system materials.
Correlation of Thermally Induced Pores with Microstructural Features Using High Energy X-rays
NASA Astrophysics Data System (ADS)
Menasche, David B.; Shade, Paul A.; Lind, Jonathan; Li, Shiu Fai; Bernier, Joel V.; Kenesei, Peter; Schuren, Jay C.; Suter, Robert M.
2016-11-01
Combined application of a near-field High Energy Diffraction Microscopy measurement of crystal lattice orientation fields and a tomographic measurement of pore distributions in a sintered nickel-based superalloy sample allows pore locations to be correlated with microstructural features. Measurements were carried out at the Advanced Photon Source beamline 1-ID using an X-ray energy of 65 keV for each of the measurement modes. The nickel superalloy sample was prepared in such a way as to generate significant thermally induced porosity. A three-dimensionally resolved orientation map is directly overlaid with the tomographically determined pore map through a careful registration procedure. The data are shown to reliably reproduce the expected correlations between specific microstructural features (triple lines and quadruple nodes) and pore positions. With the statistics afforded by the 3D data set, we conclude that within statistical limits, pore formation does not depend on the relative orientations of the grains. The experimental procedures and analysis tools illustrated are being applied to a variety of materials problems in which local heterogeneities can affect materials properties.
NASA Astrophysics Data System (ADS)
Capozzi, Francesco; Lisi, Eligio; Marrone, Antonio
2016-04-01
Within the standard 3ν oscillation framework, we illustrate the status of currently unknown oscillation parameters: the θ23 octant, the mass hierarchy (normal or inverted), and the possible CP-violating phase δ, as derived by a (preliminary) global analysis of oscillation data available in 2015. We then discuss some challenges that will be faced by future, high-statistics analyses of spectral data, starting with one-dimensional energy spectra in reactor experiments, and concluding with two-dimensional energy-angle spectra in large-volume atmospheric experiments. It is shown that systematic uncertainties in the spectral shapes can noticeably affect the prospective sensitivities to unknown oscillation parameters, in particular to the mass hierarchy.
Besley, John C; Oh, Sang-Hwa
2014-05-01
This study involves the analysis of three waves of survey data about nuclear energy using a probability-based online panel of respondents in the United States. Survey waves included an initial baseline survey conducted in early 2010, a follow-up survey conducted in 2010 following the Deepwater Horizon oil spill in the Gulf of Mexico, and an additional follow-up conducted just after the 2011 Fukushima, Japan, nuclear accident. The central goal is to assess the degree to which changes in public views following an accident are contingent on individual attention and respondent predispositions. Such results would provide real-world evidence of motivated reasoning. The primary analysis focuses on the impact of Fukushima and how the impact of individual attention to energy issues is moderated by both environmental views and political ideology over time. The analysis uses both mean comparisons and multivariate statistics to test key relationships. Additional variables common in the study of emerging technologies are included in the analysis, including demographics, risk and benefit perceptions, and views about the fairness of decisionmakers in both government and the private sector. © 2013 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, A. C.; Guttormsen, M.; Blasi, N.
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less
Interference of interchromophoric energy-transfer pathways in π-conjugated macrocycles
Alfonso Hernandez, Laura; Nelson, Tammie Renee; Gelin, Maxim F.; ...
2016-11-10
The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene–ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unitmore » but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Finally, simulation results are validated by modeling the fluorescence anisotropy decay.« less
Larsen, A. C.; Guttormsen, M.; Blasi, N.; ...
2017-04-24
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less
Soy-enhanced lunch acceptance by preschoolers.
Endres, Jeannette; Barter, Sharon; Theodora, Perseli; Welch, Patricia
2003-03-01
To evaluate acceptance of soy-enhanced compared with traditional menus by preschool children. Soy-enhanced foods were substituted on a traditional cycle menu, and the amount eaten, energy, and nutrient values for traditional and soy-enhanced lunches were compared. A traditional three-week cycle menu, using the Child and Adult Care Food Program (CACFP) meal pattern guidelines, was used to develop a comparable soy-enhanced menu. Traditional and soy-enhanced lunches were randomly assigned to respective days. Foods were portioned onto individual plates using standardized measuring utensils. Individual plate waste techniques were used to collect food waste. Subjects/setting Participants were preschool children, three to six years of age and of white and Hispanic origin, attending a part-day Head Start program. Statistical analyses performed Analysis of covariance was used to adjust lunch and food intakes for differences in average amounts of foods served. The Nutrient Data System was used to calculate energy and nutrient content of lunches. Analysis of variance was used to calculate differences in amounts eaten, energy values, and nutrient values of traditional and soy-enhanced lunches and foods. Data analyses were performed with the Statistical Analysis Software (version 8.0, 1999, SAS Institute, Cary, NC). Soy-enhanced foods were successfully substituted for 23 traditional foods included in the cycle menus. Soy-enhanced foods tended to be higher in energy, protein, and iron. Traditional lunches tended to be higher in fat, saturated fat, and vitamin A. Consumption was significantly less for energy, protein, fiber, and iron from foods eaten from traditional compared with soy-enhanced lunch menus. Applications/conclusions Acceptance of soy-enhanced lunches was shown because there were no significant differences in the average amount eaten (grams per meal) between traditional and soy-enhanced lunches. Preschool programs can substitute soy-enhanced for traditional foods, which will add variety to the diet without sacrificing taste, energy, or nutrient value. The fat and energy content of the lunches was higher than recommended, and soy-enhanced foods were not always lower in fat. There is a need for the food industry and foodservice personnel to address the energy and fat content of all foods served in lunches to preschool children because a few extra calories added to the daily intakes can contribute to weight gain.
NASA Technical Reports Server (NTRS)
Milynczak, Martin G.
1991-01-01
The conversion of chemical potential energy and infrared radiative energy to kinetic energy by non-LTE processes involving ozone is a potentially significant source of heat in the terrestrial upper mesosphere and lower thermosphere. Heating rates are calculated and compared using two different statistical equilibrium models previously applied in the analysis of measurements of limb emission from ozone. The calculated heating depends strongly on the assumed distribution and relaxation of energy in the quasi-nascent ozone molecule. Finally, in the absence of a detailed data base of rate coefficients it may be possible to estimate the heating rate due to non-LTE processes in ozone from appropriate satellite measurements of the ozone concentration and of the infrared emission from ozone in the 9-12 micron spectral interval.
Can Airports be a Green Source of Energy?
NASA Astrophysics Data System (ADS)
Solus, Daniel; Archer, Charysse; Malone, Brandi; Chesterfield, Norrisha; Jackson, Lateria; Erenso, Daniel
2008-04-01
When Boeing 747 lands its energy (896MJ) is dissipated by friction. Our statistical analysis for commercial aircrafts landing at the Nashville International Airport (BNA) have discovered that nearly 30 average single family households can be powered by the dissipated energy on a monthly basis. It may be possible to land an airplane on a frictionless surface and transform its energy into electrical energy. To demonstrate this we have conducted theoretical and experimental studies using a conducting rod attached to a toy car sliding on a U-shaped conducting wire placed in a uniform magnetic field track. The results concluded that this technique requires a very strong magnetic field. We then used a cylindrical magnet mounted on toy trucks and set to roll on a track inside a solenoid and been able to generate an ac voltage (4-10 volts).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiferlein, Katherine E.
1998-07-01
The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 1997. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is in keeping with responsibilities given to the Energy Information Administration (EIA) in Public Law 95–91 (Department of Energy Organization Act), which states, in part, in Section 205(a)(2) that: “The Administrator shall be responsiblemore » for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.« less
Statistical Analysis of Large-Scale Structure of Universe
NASA Astrophysics Data System (ADS)
Tugay, A. V.
While galaxy cluster catalogs were compiled many decades ago, other structural elements of cosmic web are detected at definite level only in the newest works. For example, extragalactic filaments were described by velocity field and SDSS galaxy distribution during the last years. Large-scale structure of the Universe could be also mapped in the future using ATHENA observations in X-rays and SKA in radio band. Until detailed observations are not available for the most volume of Universe, some integral statistical parameters can be used for its description. Such methods as galaxy correlation function, power spectrum, statistical moments and peak statistics are commonly used with this aim. The parameters of power spectrum and other statistics are important for constraining the models of dark matter, dark energy, inflation and brane cosmology. In the present work we describe the growth of large-scale density fluctuations in one- and three-dimensional case with Fourier harmonics of hydrodynamical parameters. In result we get power-law relation for the matter power spectrum.
Design and Test Research on Cutting Blade of Corn Harvester Based on Bionic Principle.
Tian, Kunpeng; Li, Xianwang; Zhang, Bin; Chen, Qiaomin; Shen, Cheng; Huang, Jicheng
2017-01-01
Existing corn harvester cutting blades have problems associated with large cutting resistance, high energy consumption, and poor cut quality. Using bionics principles, a bionic blade was designed by extracting the cutting tooth profile curve of the B. horsfieldi palate. Using a double-blade cutting device testing system, a single stalk cutting performance contrast test for corn stalks obtained at harvest time was carried out. Results show that bionic blades have superior performance, demonstrated by strong cutting ability and good cut quality. Using statistical analysis of two groups of cutting test data, the average cutting force and cutting energy of bionic blades and ordinary blades were obtained as 480.24 N and 551.31 N and 3.91 J and 4.38 J, respectively. Average maximum cutting force and cutting energy consumption for the bionic blade were reduced by 12.89% and 10.73%, respectively. Variance analysis showed that both blade types had a significant effect on maximum cutting energy and cutting energy required to cut a corn stalk. This demonstrates that bionic blades have better cutting force and energy consumption reduction performance than ordinary blades.
The spectrum of galactic electrons with energies between 10 and 900 GeV
NASA Technical Reports Server (NTRS)
Mueller, D.; Meyer, P.
1973-01-01
A cosmic-ray electron detector has been exposed during 1970 in three high-altitude balloon flights from Palestine, Texas. The data analysis is based on results from accelerator calibrations with electrons and pions at SLAC. Discrimination against a contamination of the electron data due to interacting protons has been achieved by statistical methods. The resulting differential energy spectrum of cosmic-ray electrons can be well described by a single power law with spectral index 2.66 plus or minus 0.1 up to energies around 250 GeV. Within the experimental uncertainty, no change in this spectral slope up to almost 1000 GeV can be detected. Some implications of these results are discussed.
Analysis of satellite data on energetic particles of ionospheric origin
NASA Technical Reports Server (NTRS)
Sharp, R. D.; Johnson, R. G.; Shelley, E. G.
1976-01-01
The principal result of this program has been the completion of a detailed statistical study of the properties of precipitating O(+) and H(+) ions during two principal magnetic storms. The results of the analysis of selected data of ion mass spectrometer experiment on satellites are given with emphasis on the morphology of the O(+) ions of ionospheric origin with energies in the 0.7 les than or equal to E less than or equal to 12 keV range that were discovered with this experiment.
Distributed video data fusion and mining
NASA Astrophysics Data System (ADS)
Chang, Edward Y.; Wang, Yuan-Fang; Rodoplu, Volkan
2004-09-01
This paper presents an event sensing paradigm for intelligent event-analysis in a wireless, ad hoc, multi-camera, video surveillance system. In particilar, we present statistical methods that we have developed to support three aspects of event sensing: 1) energy-efficient, resource-conserving, and robust sensor data fusion and analysis, 2) intelligent event modeling and recognition, and 3) rapid deployment, dynamic configuration, and continuous operation of the camera networks. We outline our preliminary results, and discuss future directions that research might take.
The non-equilibrium statistical mechanics of a simple geophysical fluid dynamics model
NASA Astrophysics Data System (ADS)
Verkley, Wim; Severijns, Camiel
2014-05-01
Lorenz [1] has devised a dynamical system that has proved to be very useful as a benchmark system in geophysical fluid dynamics. The system in its simplest form consists of a periodic array of variables that can be associated with an atmospheric field on a latitude circle. The system is driven by a constant forcing, is damped by linear friction and has a simple advection term that causes the model to behave chaotically if the forcing is large enough. Our aim is to predict the statistics of Lorenz' model on the basis of a given average value of its total energy - obtained from a numerical integration - and the assumption of statistical stationarity. Our method is the principle of maximum entropy [2] which in this case reads: the information entropy of the system's probability density function shall be maximal under the constraints of normalization, a given value of the average total energy and statistical stationarity. Statistical stationarity is incorporated approximately by using `stationarity constraints', i.e., by requiring that the average first and possibly higher-order time-derivatives of the energy are zero in the maximization of entropy. The analysis [3] reveals that, if the first stationarity constraint is used, the resulting probability density function rather accurately reproduces the statistics of the individual variables. If the second stationarity constraint is used as well, the correlations between the variables are also reproduced quite adequately. The method can be generalized straightforwardly and holds the promise of a viable non-equilibrium statistical mechanics of the forced-dissipative systems of geophysical fluid dynamics. [1] E.N. Lorenz, 1996: Predictability - A problem partly solved, in Proc. Seminar on Predictability (ECMWF, Reading, Berkshire, UK), Vol. 1, pp. 1-18. [2] E.T. Jaynes, 2003: Probability Theory - The Logic of Science (Cambridge University Press, Cambridge). [3] W.T.M. Verkley and C.A. Severijns, 2014: The maximum entropy principle applied to a dynamical system proposed by Lorenz, Eur. Phys. J. B, 87:7, http://dx.doi.org/10.1140/epjb/e2013-40681-2 (open access).
Smart energy management system
NASA Astrophysics Data System (ADS)
Desai, Aniruddha; Singh, Jugdutt
2010-04-01
Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.
Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.
A statistical study of EMIC waves observed by Cluster: 1. Wave properties
NASA Astrophysics Data System (ADS)
Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-01
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.
Renewable Energy Zones for the Africa Clean Energy Corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Grace C.; Deshmukh, Ranjit; Ndhlukula, Kudakwashe
Multi-criteria Analysis for Planning Renewable Energy (MapRE) is a study approach developed by the Lawrence Berkeley National Laboratory with the support of the International Renewable Energy Agency (IRENA). The approach combines geospatial, statistical, energy engineering, and economic methods to comprehensively identify and value high-quality wind, solar PV, and solar CSP resources for grid integration based on techno-economic criteria, generation profiles (for wind), and socio-environmental impacts. The Renewable Energy Zones for the Africa Clean Energy Corridor study sought to identify and comprehensively value high-quality wind, solar photovoltaic (PV), and concentrating solar power (CSP) resources in 21 countries in the East andmore » Southern Africa Power Pools to support the prioritization of areas for development through a multi-criteria planning process. These countries include Angola, Botswana, Burundi, Djibouti, Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Lesotho, Libya, Malawi, Mozambique, Namibia, Rwanda, South Africa, Sudan, Swaziland, Tanzania, Uganda, Zambia, and Zimbabwe. The study includes the methodology and the key results including renewable energy potential for each region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyer, D.A.
In this report, tests of statistical significance of five sets of variables with household energy consumption (at the point of end-use) are described. Five models, in sequence, were empirically estimated and tested for statistical significance by using the Residential Energy Consumption Survey of the US Department of Energy, Energy Information Administration. Each model incorporated additional information, embodied in a set of variables not previously specified in the energy demand system. The variable sets were generally labeled as economic variables, weather variables, household-structure variables, end-use variables, and housing-type variables. The tests of statistical significance showed each of the variable sets tomore » be highly significant in explaining the overall variance in energy consumption. The findings imply that the contemporaneous interaction of different types of variables, and not just one exclusive set of variables, determines the level of household energy consumption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiferlein, Katherine E.
The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2000. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration under Section 205(a)(2), which states: “The Administrator shall bemore » responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kacprzak, T.; Kirk, D.; Friedrich, O.
Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 degmore » $^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $$0<\\mathcal S / \\mathcal N<4$$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $$\\Omega_{\\rm m}$$ and $$\\sigma_8$$, fixing $w = -1$, $$\\Omega_{\\rm b} = 0.04$$, $h = 0.7$ and $$n_s=1$$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $$\\sigma_{8}(\\Omega_{\\rm m}/0.3)^{0.6}=0.77 \\pm 0.07$$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $$\\mathcal S / \\mathcal N>4$$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. As a result, we discuss prospects for future peak statistics analysis with upcoming DES data.« less
OSO 8 observational limits to the acoustic coronal heating mechanism
NASA Technical Reports Server (NTRS)
Bruner, E. C., Jr.
1981-01-01
An improved analysis of time-resolved line profiles of the C IV resonance line at 1548 A has been used to test the acoustic wave hypothesis of solar coronal heating. It is shown that the observed motions and brightness fluctuations are consistent with the existence of acoustic waves. Specific account is taken of the effect of photon statistics on the observed velocities, and a test is devised to determine whether the motions represent propagating or evanescent waves. It is found that on the average about as much energy is carried upward as downward such that the net acoustic flux density is statistically consistent with zero. The statistical uncertainty in this null result is three orders of magnitue lower than the flux level needed to heat the corona.
Global, Regional, and National Fossil-Fuel CO2 Emissions, 1751 - 2008 (Version 2011)
Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Marland, G. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory
2011-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2010), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2010) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2010) (V. 2013)
Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory; Marland, G.
2013-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2013), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2012) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2014) (V. 2017)
Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)
2017-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2017), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2017) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2013) (V. 2016)
Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)
2016-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2016), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2016) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2011) (V. 2015)
Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University Boone, NC (USA)
2015-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2014), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2014) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2009) (V. 2012)
Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [Oak Ridge National Laboratory; Marland, G. [Research Institute for Environment, Energy and Economics, Appalachian State University
2012-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2012), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2011) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions, 1751 - 2007 (Version 2010)
Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Marland, G. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory
2010-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2009), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2009) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions, 1751 - 2006 (published 2009)
Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Marland, G. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory
2009-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2008), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2008) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Chandrasekaran, A; Ravisankar, R; Harikrishnan, N; Satapathy, K K; Prasad, M V R; Kanagasabapathy, K V
2015-02-25
Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks. Copyright © 2014 Elsevier B.V. All rights reserved.
Inference from the small scales of cosmic shear with current and future Dark Energy Survey data
MacCrann, N.; Aleksić, J.; Amara, A.; ...
2016-11-05
Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model tomore » account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.« less
NASA Astrophysics Data System (ADS)
Seaward, James Nicholas
International development organizations have recently ramped up efforts to promote the use of improved cookstoves (ICS) in developing countries, aiming to reduce the harmful environmental and public health impacts of the burning of biomass for cooking and heating. I hypothesize that ICS use also has additional benefits---economic and social benefits---that can contribute to women's economic empowerment in the developing world. To explore the relationship between ICS use and women's economic empowerment, I use Ordinary Least Squares and Logit models based on data from the India Human Development Survey (IHDS) to analyze differences between women living in households that use ICS and those living in homes that use traditional cookstoves. My regression results reveal that ICS use has a statistically significant and negative effect on the amount of time women and girls spend on fuel collection and a statistically significant and positive effect on the likelihood of women's participation in side businesses, but does not have a statistically significant effect on the likelihood of lost productivity. My analysis shows promise that in addition to health and environmental benefits, fuel-efficient cooking technologies can also have social and economic impacts that are especially beneficial to women. It is my hope that the analysis provided in this paper will be used to further the dialogue about the importance of women's access to modern energy services in the fight to improve women's living standards in the developing world.
Statistics of baryon correlation functions in lattice QCD
NASA Astrophysics Data System (ADS)
Wagman, Michael L.; Savage, Martin J.; Nplqcd Collaboration
2017-12-01
A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in these correlation functions is shown, as long suspected, to result from a sign problem. The log-magnitude and complex phase are found to be approximately described by normal and wrapped normal distributions respectively. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and "Lévy flights," are found to play a central role in their time evolution. A new method of analyzing correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant, rather than exponentially degrading, with increasing source-sink separation time. This new method includes an additional systematic uncertainty that can be removed by performing an extrapolation, and the signal-to-noise problem reemerges in the statistics of this extrapolation. It is demonstrated that this new method allows accurate results for the nucleon mass to be extracted from the large-time noise region inaccessible to standard methods. The observations presented here are expected to apply to quantum Monte Carlo calculations more generally. Similar methods to those introduced here may lead to practical improvements in analysis of noisier systems.
Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartzsch, Stefan, E-mail: stefan.bartzsch@icr.ac.uk; Oelfke, Uwe; Lott, Johanna
2015-07-15
Purpose: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 μm. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. Methods: Gafchromic{sup ®} HD-810 and HD-V2 films are exposed to MRT fields at the biomedicalmore » beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. Results: The dose was measured with a resolution of 5 × 1000 μm{sup 2} and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 μm, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. Conclusions: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required. Dosimetry at low photon energies should be performed with great caution due to the energy sensitivity of the films. In this respect, HD-V2 films showed to have an advantage over HD-810 films. However, HD-810 films have a lower statistical noise level. When a higher resolution is required, e.g., for the dosimetry of pencil beam irradiations, noise may render HD-V2 films inapplicable.« less
Spectral kinetic energy transfer in turbulent premixed reacting flows.
Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E
2016-05-01
Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.
Novel Atmospheric and Sea State Modeling in Ocean Energy Applications
NASA Astrophysics Data System (ADS)
Kallos, George; Galanis, George; Kalogeri, Christina; Larsen, Xiaoli Guo
2013-04-01
The rapidly increasing use of renewable energy sources poses new challenges for the research and technological community today. The integration of the, usually, highly variable wind and wave energy amounts into the general grid, the optimization of energy transition and the forecast of extreme values that could lead to instabilities and failures of the system can be listed among them. In the present work, novel methodologies based on state of the art numerical wind/wave simulation systems and advanced statistical techniques addressing such type of problems are discussed. In particular, extremely high resolution modeling systems simulating the atmospheric and sea state conditions with spatial resolution of 100 meters or less and temporal discretization of a few seconds are utilized in order to simulate in the most detailed way the combined wind-wave energy potential at offshore sites. In addition, a statistical analysis based on a variety of mean and variation measures as well as univariate and bivariate probability distributions is used for the estimation of the variability of the power potential revealing the advantages of the use of combined forms of energy by offshore platforms able to produce wind and wave power simultaneously. The estimation and prediction of extreme wind/wave conditions - a critical issue both for site assessment and infrastructure maintenance - is also studied by means of the 50-year return period over areas with increased power potential. This work has been carried out within the framework of the FP7 project MARINA Platform (http://www.marina-platform.info/index.aspx).
NASA Astrophysics Data System (ADS)
Alshipli, Marwan; Kabir, Norlaili A.
2017-05-01
Computed tomography (CT) employs X-ray radiation to create cross-sectional images. Dual-energy CT acquisition includes the images acquired from an alternating voltage of X-ray tube: a low- and a high-peak kilovoltage. The main objective of this study is to determine the best slice thickness that reduces image noise with adequate diagnostic information using dual energy CT head protocol. The study used the ImageJ software and statistical analyses to aid the medical image analysis of dual-energy CT. In this study, ImageJ software and F-test were utilised as the combination methods to analyse DICOM CT images. They were used to investigate the effect of slice thickness on noise and visibility in dual-energy CT head protocol images. Catphan-600 phantom was scanned at different slice thickness values;.6, 1, 2, 3, 4, 5 and 6 mm, then quantitative analyses were carried out. The DECT operated in helical mode with another fixed scan parameter values. Based on F-test statistical analyses, image noise at 0.6, 1, and 2 mm were significantly different compared to the other images acquired at slice thickness of 3, 4, 5, and 6 mm. However, no significant differences of image noise were observed at 3, 4, 5, and 6 mm. As a result, better diagnostic image value, image visibility, and lower image noise in dual-energy CT head protocol was observed at a slice thickness of 3 mm.
NASA Astrophysics Data System (ADS)
Lockwood, Timothy A.
Federal legislative changes in 2006 no longer entitle cogeneration project financings by law to receive the benefit of a power purchase agreement underwritten by an investment-grade investor-owned utility. Consequently, this research explored the need for a new market-risk model for future cogeneration and combined heat and power (CHP) project financing. CHP project investment represents a potentially enormous energy efficiency benefit through its application by reducing fossil fuel use up to 55% when compared to traditional energy generation, and concurrently eliminates constituent air emissions up to 50%, including global warming gases. As a supplemental approach to a comprehensive technical analysis, a quantitative multivariate modeling was also used to test the statistical validity and reliability of host facility energy demand and CHP supply ratios in predicting the economic performance of CHP project financing. The resulting analytical models, although not statistically reliable at this time, suggest a radically simplified CHP design method for future profitable CHP investments using four easily attainable energy ratios. This design method shows that financially successful CHP adoption occurs when the average system heat-to-power-ratio supply is less than or equal to the average host-convertible-energy-ratio, and when the average nominally-rated capacity is less than average host facility-load-factor demands. New CHP investments can play a role in solving the world-wide problem of accommodating growing energy demand while preserving our precious and irreplaceable air quality for future generations.
Pressure balance inconsistency exhibited in a statistical model of magnetospheric plasma
NASA Astrophysics Data System (ADS)
Garner, T. W.; Wolf, R. A.; Spiro, R. W.; Thomsen, M. F.; Korth, H.
2003-08-01
While quantitative theories of plasma flow from the magnetotail to the inner magnetosphere typically assume adiabatic convection, it has long been understood that these convection models tend to overestimate the plasma pressure in the inner magnetosphere. This phenomenon is called the pressure crisis or the pressure balance inconsistency. In order to analyze it in a new and more detailed manner we utilize an empirical model of the proton and electron distribution functions in the near-Earth plasma sheet (-50 RE < X < -10 RE), which uses the [1989] magnetic field model and a plasma sheet representation based upon several previously published statistical studies. We compare our results to a statistically derived particle distribution function at geosynchronous orbit. In this analysis the particle distribution function is characterized by the isotropic energy invariant λ = EV2/3, where E is the particle's kinetic energy and V is the magnetic flux tube volume. The energy invariant is conserved in guiding center drift under the assumption of strong, elastic pitch angle scattering. If, in addition, loss is negligible, the phase space density f(λ) is also conserved along the same path. The statistical model indicates that f(λ, ?) is approximately independent of X for X ≤ -35 RE but decreases with increasing X for X ≥ -35 RE. The tailward gradient of f(λ, ?) might be attributed to gradient/curvature drift for large isotropic energy invariants but not for small invariants. The tailward gradient of the distribution function indicates a violation of the adiabatic drift condition in the plasma sheet. It also confirms the existence of a "number crisis" in addition to the pressure crisis. In addition, plasma sheet pressure gradients, when crossed with the gradient of flux tube volume computed from the [1989] magnetic field model, indicate Region 1 currents on the dawn and dusk sides of the outer plasma sheet.
An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques
2018-01-09
ARL-TR-8272 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological and...is no longer needed. Do not return it to the originator. ARL-TR-8272 ● JAN 2018 US Army Research Laboratory An Automated Energy ...4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques 5a. CONTRACT NUMBER
Fractal planetary rings: Energy inequalities and random field model
NASA Astrophysics Data System (ADS)
Malyarenko, Anatoliy; Ostoja-Starzewski, Martin
2017-12-01
This study is motivated by a recent observation, based on photographs from the Cassini mission, that Saturn’s rings have a fractal structure in radial direction. Accordingly, two questions are considered: (1) What Newtonian mechanics argument in support of such a fractal structure of planetary rings is possible? (2) What kinematics model of such fractal rings can be formulated? Both challenges are based on taking planetary rings’ spatial structure as being statistically stationary in time and statistically isotropic in space, but statistically nonstationary in space. An answer to the first challenge is given through an energy analysis of circular rings having a self-generated, noninteger-dimensional mass distribution [V. E. Tarasov, Int. J. Mod Phys. B 19, 4103 (2005)]. The second issue is approached by taking the random field of angular velocity vector of a rotating particle of the ring as a random section of a special vector bundle. Using the theory of group representations, we prove that such a field is completely determined by a sequence of continuous positive-definite matrix-valued functions defined on the Cartesian square F2 of the radial cross-section F of the rings, where F is a fat fractal.
Mathematics and statistics research department. Progress report, period ending June 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lever, W.E.; Kane, V.E.; Scott, D.S.
1981-09-01
This report is the twenty-fourth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation - Nuclear Division (UCC-ND). Part A records research progress in biometrics research, materials science applications, model evaluation, moving boundary problems, multivariate analysis, numerical linear algebra, risk analysis, and complementary areas. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology and health sciences, chemistry, energy, engineering, environmental sciences, health and safety research, materials sciences, safeguards, surveys, and uranium resource evaluation. Part C summarizes the variousmore » educational activities in which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period.« less
Nonlinear estimation of parameters in biphasic Arrhenius plots.
Puterman, M L; Hrboticky, N; Innis, S M
1988-05-01
This paper presents a formal procedure for the statistical analysis of data on the thermotropic behavior of membrane-bound enzymes generated using the Arrhenius equation and compares the analysis to several alternatives. Data is modeled by a bent hyperbola. Nonlinear regression is used to obtain estimates and standard errors of the intersection of line segments, defined as the transition temperature, and slopes, defined as energies of activation of the enzyme reaction. The methodology allows formal tests of the adequacy of a biphasic model rather than either a single straight line or a curvilinear model. Examples on data concerning the thermotropic behavior of pig brain synaptosomal acetylcholinesterase are given. The data support the biphasic temperature dependence of this enzyme. The methodology represents a formal procedure for statistical validation of any biphasic data and allows for calculation of all line parameters with estimates of precision.
Effects off system factors on the economics of and demand for small solar thermal power systems
NASA Technical Reports Server (NTRS)
1981-01-01
Market penetration as a function time, SPS performance factors, and market/economic considerations was estimated, and commercialization strategies were formulated. A market analysis task included personal interviews and supplemental mail surveys to acquire statistical data and to identify and measure attitudes, reactions and intentions of prospective SPS users. Interviews encompassed three ownership classes of electric utilities and industrial firms in the SIC codes for energy consumption. A market demand model was developed which utilized the data base developed, and projected energy price and consumption data to perform sensitivity analyses and estimate potential market for SPS.
NASA Technical Reports Server (NTRS)
Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn
1991-01-01
The mean wind, its standard deviation, and the momentum fluxes in the PBL are estimated with a 10.6-micron Doppler lidar. Spectral analysis of the radial velocities was performed, from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. The statistical form of the Navier-Stokes equations was used to derive the surface heat flux as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation.
Effects off system factors on the economics of and demand for small solar thermal power systems
NASA Astrophysics Data System (ADS)
1981-09-01
Market penetration as a function time, SPS performance factors, and market/economic considerations was estimated, and commercialization strategies were formulated. A market analysis task included personal interviews and supplemental mail surveys to acquire statistical data and to identify and measure attitudes, reactions and intentions of prospective SPS users. Interviews encompassed three ownership classes of electric utilities and industrial firms in the SIC codes for energy consumption. A market demand model was developed which utilized the data base developed, and projected energy price and consumption data to perform sensitivity analyses and estimate potential market for SPS.
Analysis of the effect of numbers of aircraft operations on community annoyance
NASA Technical Reports Server (NTRS)
Connor, W. K.; Patterson, H. P.
1976-01-01
The general validity of the equivalent-energy concept as applied to community annoyance to aircraft noise has been recently questioned by investigators using a peak-dBA concept. Using data previously gathered around nine U.S. airports, empirical tests of both concepts are presented. Results show that annoyance response follows neither concept, that annoyance increases steadily with energy-mean level for constant daily operations and with numbers of operations up to 100-199 per day (then decreases for higher numbers), and that the behavior of certain response descriptors is dependent upon the statistical distributions of numbers and levels.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; Ben-Zvi, S. Y.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Farrar, G. R.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.
2005-04-01
We present the results of a search for cosmic-ray point sources at energies in excess of 4.0×1019 eV in the combined data sets recorded by the Akeno Giant Air Shower Array and High Resolution Fly's Eye stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.
Nature of Driving Force for Protein Folding-- A Result From Analyzing the Statistical Potential
NASA Astrophysics Data System (ADS)
Li, Hao; Tang, Chao; Wingreen, Ned S.
1998-03-01
In a statistical approach to protein structure analysis, Miyazawa and Jernigan (MJ) derived a 20× 20 matrix of inter-residue contact energies between different types of amino acids. Using the method of eigenvalue decomposition, we find that the MJ matrix can be accurately reconstructed from its first two principal component vectors as M_ij=C_0+C_1(q_i+q_j)+C2 qi q_j, with constant C's, and 20 q values associated with the 20 amino acids. This regularity is due to hydrophobic interactions and a force of demixing, the latter obeying Hildebrand's solubility theory of simple liquids.
NASA Astrophysics Data System (ADS)
Egiyan, H.; Langheinrich, J.; Gothe, R. W.; Graham, L.; Holtrop, M.; Lu, H.; Mattione, P.; Mutchler, G.; Park, K.; Smith, E. S.; Stepanyan, S.; Zhao, Z. W.; Adhikari, K. P.; Aghasyan, M.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Contalbrigo, M.; D'Angelo, A.; Daniel, A.; Dashyan, N.; de Vita, R.; de Sanctis, E.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Joo, K.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Livingston, K.; MacGregor, I. J. D.; Mao, Y.; Mayer, M.; McKinnon, B.; Mokeev, V.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niculescu, G.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Stepanyan, S. S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tedeschi, D. J.; Ungaro, M.; Voutier, E.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhao, B.
2012-01-01
We searched for the Φ--(1860) pentaquark in the photoproduction process off the deuteron in the Ξ-π--decay channel using CLAS. The invariant-mass spectrum of the Ξ-π- system does not indicate any statistically significant enhancement near the reported mass M=1.860 GeV. The statistical analysis of the sideband-subtracted mass spectrum yields a 90%-confidence-level upper limit of 0.7 nb for the photoproduction cross section of Φ--(1860) with a consecutive decay into Ξ-π- in the photon-energy range 4.5GeV
NASA Astrophysics Data System (ADS)
Baiyegunhi, Christopher; Liu, Kuiwu; Gwavava, Oswald
2017-11-01
Grain size analysis is a vital sedimentological tool used to unravel the hydrodynamic conditions, mode of transportation and deposition of detrital sediments. In this study, detailed grain-size analysis was carried out on thirty-five sandstone samples from the Ecca Group in the Eastern Cape Province of South Africa. Grain-size statistical parameters, bivariate analysis, linear discriminate functions, Passega diagrams and log-probability curves were used to reveal the depositional processes, sedimentation mechanisms, hydrodynamic energy conditions and to discriminate different depositional environments. The grain-size parameters show that most of the sandstones are very fine to fine grained, moderately well sorted, mostly near-symmetrical and mesokurtic in nature. The abundance of very fine to fine grained sandstones indicate the dominance of low energy environment. The bivariate plots show that the samples are mostly grouped, except for the Prince Albert samples that show scattered trend, which is due to the either mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function analysis is dominantly indicative of turbidity current deposits under shallow marine environments for samples from the Prince Albert, Collingham and Ripon Formations, while those samples from the Fort Brown Formation are lacustrine or deltaic deposits. The C-M plots indicated that the sediments were deposited mainly by suspension and saltation, and graded suspension. Visher diagrams show that saltation is the major process of transportation, followed by suspension.
From creation and annihilation operators to statistics
NASA Astrophysics Data System (ADS)
Hoyuelos, M.
2018-01-01
A procedure to derive the partition function of non-interacting particles with exotic or intermediate statistics is presented. The partition function is directly related to the associated creation and annihilation operators that obey some specific commutation or anti-commutation relations. The cases of Gentile statistics, quons, Polychronakos statistics, and ewkons are considered. Ewkons statistics was recently derived from the assumption of free diffusion in energy space (Hoyuelos and Sisterna, 2016); an ideal gas of ewkons has negative pressure, a feature that makes them suitable for the description of dark energy.
Han, Dong; Ma, Guangming; Wei, Lequn; Ren, Chenglong; Zhou, Jieli; Shen, Chen
2017-01-01
Objective: To investigate the value of using the quantitative parameters from only the pre-contrast dual-energy spectral CT imaging for distinguishing between parapelvic cyst and hydronephrosis with non-calculous (HNC). Methods: This retrospective study was approved by the institutional review board. 28 patients with parapelvic cyst and 24 patients with HNC who underwent standard pre-contrast and multiphase contrast-enhanced dual-energy spectral CT imaging were retrospectively identified. The parapelvic cyst and HNC were identified using the contrast-enhanced scans, and their CT number in the 70-keV monochromatic images, effective atomic number (Zeff), iodine concentration (IC) and water concentration in the pre-contrast images were measured. The slope of the spectral curve (λ) was calculated. The difference in the measurements between parapelvic cyst and HNC was statistically analyzed using SPSS® v. 19.0 (IBM Corp., New York, NY; formerly SPSS Inc., Chicago, IL) statistical software. Receiver-operating characteristic analysis was performed to assess the diagnostic performance. Results: The CT numbers in the 70-keV images, Zeff and IC values were statistically different between parapelvic cyst and HNC (all p < 0.05). The sensitivity, specificity and accuracy of these parameters for distinguishing between parapelvic cyst and HNC were 89.2%, 73.3% and 82.1%; 86.5%, 43.3% and 67.2%; 91.9%, 40.0% and 68.7%; and 64.9%, 73.3% and 83.6%, respectively, and the combined specificity was 92.9%. There was no statistical difference in λ between the two groups (p > 0.05). Conclusion: The quantitative parameters obtained in the pre-contrast dual-energy spectral CT imaging may be used to differentiate between parapelvic cyst and HNC. Advances in knowledge: The pre-contrast dual-energy spectral CT scans may be used to screen parapelvic cysts for patients who are asymptomatic, thereby avoiding contrast-enhanced CT or CT urography examination for these patients to reduce ionizing radiation dose and contrast dose. PMID:28281789
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonso Hernandez, Laura; Nelson, Tammie Renee; Gelin, Maxim F.
The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene–ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unitmore » but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Finally, simulation results are validated by modeling the fluorescence anisotropy decay.« less
Evolution, Energy Landscapes and the Paradoxes of Protein Folding
Wolynes, Peter G.
2014-01-01
Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem involved in folding however has been simplified through the evolution of folding energy landscapes that are funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal frustration principle. Strong quantitative predictions that follow from energy landscape theory have been widely confirmed both through laboratory folding experiments and from detailed simulations. Energy landscape ideas also have allowed successful protein structure prediction algorithms to be developed. The selection constraint of having funneled folding landscapes has left its imprint on the sequences of existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the statistical characteristics of the folding landscape. These turn out to be consistent with what has been obtained from laboratory physicochemical folding experiments signalling a beautiful confluence of genomics and chemical physics. PMID:25530262
Incorporating Experience Curves in Appliance Standards Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbesi, Karina; Chan, Peter; Greenblatt, Jeffery
2011-10-31
The technical analyses in support of U.S. energy conservation standards for residential appliances and commercial equipment have typically assumed that manufacturing costs and retail prices remain constant during the projected 30-year analysis period. There is, however, considerable evidence that this assumption does not reflect real market prices. Costs and prices generally fall in relation to cumulative production, a phenomenon known as experience and modeled by a fairly robust empirical experience curve. Using price data from the Bureau of Labor Statistics, and shipment data obtained as part of the standards analysis process, we present U.S. experience curves for room air conditioners,more » clothes dryers, central air conditioners, furnaces, and refrigerators and freezers. These allow us to develop more representative appliance price projections than the assumption-based approach of constant prices. These experience curves were incorporated into recent energy conservation standards for these products. The impact on the national modeling can be significant, often increasing the net present value of potential standard levels in the analysis. In some cases a previously cost-negative potential standard level demonstrates a benefit when incorporating experience. These results imply that past energy conservation standards analyses may have undervalued the economic benefits of potential standard levels.« less
NASA Technical Reports Server (NTRS)
Perrier, A.; Itier, B.; Boissard, P. (Principal Investigator); Goillot, C.; Belluomo, P.; Valery, P.
1980-01-01
A consecutive night and day flight and measurements on the ground, were made in the region of Voves, south of Chartres. The statistical analysis of the thermal scanner data permitted the establishment of criteria for the homogeneity of surfaces. These criteria were used in defining the surface temperature values which are most representative for use in an energy balance approach to evapotranspiration (day) and heat balance (night). For a number of maize fields that airborne thermal scanner data permitted a detailed energy analysis of different fields of a same crop to be carried out. Such a detailed analysis was not necessary for a calculation of crop evapotranspiration which could be evaluated from the mean temperature of the crop surface. A differential analysis day night is of interest for enhancing the contrast between types of surfaces, as well as for a better definition of the daily energy balance. It should be stressed that, for a homogeneous region, a study such as the present one, could be carried out on a relatively small part of the total surface, as the results for a surface of 2.5 x 2 sq km were not significantly different from those obtained from a surface three times larger.
The influence of academic examinations on energy and nutrient intake in male university students.
Barker, Margo E; Blain, Richard J; Russell, Jean M
2015-09-25
Taking examinations is central to student experience at University and may cause psychological stress. Although stress is recognised to impact on food intake, the effects of undertaking examinations on students' dietary intake have not been well characterised. The purpose of this study was to assess how students' energy and nutrient intake may alter during examination periods. The study design was a within-subject comparison of students' energy and nutrient intake during an examination period contrasted with that outside an examination period (baseline). A total of 20 male students from the University of Sheffield completed an automated photographic 4-d dietary record alongside four 24-h recalls in each time period. Daily energy and nutrient intake was estimated for each student by time period and change in energy and nutrient intake calculated. Intakes at baseline were compared to UK dietary recommendations. Cluster analysis categorised students according to their change in energy intake between baseline and the examination period. Non-parametric statistical tests identified differences by cluster. Baseline intakes did not meet recommendations for energy, non-milk extrinsic sugars, non-starch polysaccharide and sodium. Three defined clusters of students were identified: Cluster D who decreased daily energy intake by 12.06 MJ (n = 5), Cluster S who had similar energy intakes (n = 13) and Cluster I who substantially increased energy intake by 6.37 MJ (n = 2) between baseline and examination period. There were statistically significant differences (all p < 0.05) in change in intake of protein, carbohydrate, calcium and sodium between clusters. Cluster D recorded greater energy, carbohydrate and protein intakes than Cluster I at baseline. The majority of students were dietary resilient. Students who demonstrated hypophagia in the examination period had a high energy and nutrient intake at baseline, conversely those who showed hyperphagia had a low energy and nutrient intake. These patterns require confirmation in studies including women, but if confirmed, there is need to address some students' poor food choice especially during examinations.
Exploring efficacy of residential energy efficiency programs in Florida
NASA Astrophysics Data System (ADS)
Taylor, Nicholas Wade
Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale datasets that would facilitate robust program analysis. Along with measuring and optimizing energy conservation programs, utilities should provide public access to historical consumption data. Open access to data, program optimization, consistent measurement and verification and transparency in reported savings are essential to reducing energy use and its associated environmental impacts.
NASA Astrophysics Data System (ADS)
Jasper, Ahren W.; Dawes, Richard
2013-10-01
The lowest-energy singlet (1 1A') and two lowest-energy triplet (1 3A' and 1 3A″) electronic states of CO2 are characterized using dynamically weighted multireference configuration interaction (dw-MRCI+Q) electronic structure theory calculations extrapolated to the complete basis set (CBS) limit. Global analytic representations of the dw-MRCI+Q/CBS singlet and triplet surfaces and of their CASSCF/aug-cc-pVQZ spin-orbit coupling surfaces are obtained via the interpolated moving least squares (IMLS) semiautomated surface fitting method. The spin-forbidden kinetics of the title reaction is calculated using the coupled IMLS surfaces and coherent switches with decay of mixing non-Born-Oppenheimer molecular dynamics. The calculated spin-forbidden association rate coefficient (corresponding to the high pressure limit of the rate coefficient) is 7-35 times larger at 1000-5000 K than the rate coefficient used in many detailed chemical models of combustion. A dynamical analysis of the multistate trajectories is presented. The trajectory calculations reveal direct (nonstatistical) and indirect (statistical) spin-forbidden reaction mechanisms and may be used to test the suitability of transition-state-theory-like statistical methods for spin-forbidden kinetics. Specifically, we consider the appropriateness of the "double passage" approximation, of assuming statistical distributions of seam crossings, and of applications of the unified statistical model for spin-forbidden reactions.
3Drefine: an interactive web server for efficient protein structure refinement.
Bhattacharya, Debswapna; Nowotny, Jackson; Cao, Renzhi; Cheng, Jianlin
2016-07-08
3Drefine is an interactive web server for consistent and computationally efficient protein structure refinement with the capability to perform web-based statistical and visual analysis. The 3Drefine refinement protocol utilizes iterative optimization of hydrogen bonding network combined with atomic-level energy minimization on the optimized model using a composite physics and knowledge-based force fields for efficient protein structure refinement. The method has been extensively evaluated on blind CASP experiments as well as on large-scale and diverse benchmark datasets and exhibits consistent improvement over the initial structure in both global and local structural quality measures. The 3Drefine web server allows for convenient protein structure refinement through a text or file input submission, email notification, provided example submission and is freely available without any registration requirement. The server also provides comprehensive analysis of submissions through various energy and statistical feedback and interactive visualization of multiple refined models through the JSmol applet that is equipped with numerous protein model analysis tools. The web server has been extensively tested and used by many users. As a result, the 3Drefine web server conveniently provides a useful tool easily accessible to the community. The 3Drefine web server has been made publicly available at the URL: http://sysbio.rnet.missouri.edu/3Drefine/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
EVIDENCE FOR A SECOND COMPONENT IN THE HIGH-ENERGY CORE EMISSION FROM CENTAURUS A?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahakyan, N.; Yang, R.; Aharonian, F. A.
2013-06-10
We report on an analysis of Fermi Large Area Telescope data from four years of observations of the nearby radio galaxy Centaurus A (Cen A). The increased photon statistics results in a detection of high-energy (>100 MeV) gamma-rays up to 50 GeV from the core of Cen A, with a detection significance of about 44{sigma}. The average gamma-ray spectrum of the core reveals evidence for a possible deviation from a simple power law. A likelihood analysis with a broken power-law model shows that the photon index becomes harder above E{sub b} {approx_equal} 4 GeV, changing from {Gamma}{sub 1} = 2.74more » {+-} 0.03 below to {Gamma}{sub 2} = 2.09 {+-} 0.20 above. This hardening could be caused by the contribution of an additional high-energy component beyond the common synchrotron self-Compton jet emission. No clear evidence for variability in the high-energy domain is seen. We compare our results with the spectrum reported by H.E.S.S. in the TeV energy range and discuss possible origins of the hardening observed.« less
Low energy neutrinos in Super-Kamiokande
NASA Astrophysics Data System (ADS)
Sekiya, Hiroyuki
2016-05-01
Super-Kamiokande (SK), a 50 kton water Cherenkov detector, observes 8B solar neutrinos via neutrino-electron elastic scattering. The analysis threshold was successfully lowered to 3.5 MeV (recoil electron kinetic energy) in SK-IV. To date SK has observed solar neutrinos for 18 years. An analysis regarding possible correlations between the solar neutrino flux and the 11 year solar activity cycle is shown. With large statistics, SK searches for distortions of the solar neutrino energy spectrum caused by the MSW resonance in the core of the sun. SK also searches for a day/night solar neutrino flux asymmetry induced by the matter in the Earth. The Super-Kamiokande Gd (SK-Gd) project is the upgrade of the SK detector via the addition of water-soluble gadolinium (Gd) salt. This modification will enable it to efficiently identify low energy anti-neutrinos. SK-Gd will pursue low energy physics currently inaccessible to SK due to backgrounds. The most important will be the world’s first observation of the diffuse supernova neutrino background. The main R&D program towards SK-Gd is EG ADS: a 200 ton, fully instrumented tank built in a new cavern in the Kamioka mine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix
The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29more » s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.« less
Increasing power-law range in avalanche amplitude and energy distributions
NASA Astrophysics Data System (ADS)
Navas-Portella, Víctor; Serra, Isabel; Corral, Álvaro; Vives, Eduard
2018-02-01
Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.
Increasing power-law range in avalanche amplitude and energy distributions.
Navas-Portella, Víctor; Serra, Isabel; Corral, Álvaro; Vives, Eduard
2018-02-01
Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.
Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation
NASA Technical Reports Server (NTRS)
Frost, W.; Harper, W. L.; Fichtl, G. H.
1975-01-01
Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.
Statistical analysis of DOE EML QAP data from 1982 to 1998.
Mizanur Rahman, G M; Isenhour, T L; Larget, B; Greenlaw, P D
2001-01-01
The historical database from the Environmental Measurements Laboratory's Quality Assessment Program from 1982 to 1998 has been analyzed to determine control limits for future performance evaluations of the different laboratories contracted to the U.S. Department of Energy. Seventy-three radionuclides in four different matrices (air filter, soil, vegetation, and water) were analyzed. The evaluation criteria were established based on a z-score calculation.
NASA Technical Reports Server (NTRS)
Mixson, John S.; Wilby, John F.
1991-01-01
The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.
Discrete geometric analysis of message passing algorithm on graphs
NASA Astrophysics Data System (ADS)
Watanabe, Yusuke
2010-04-01
We often encounter probability distributions given as unnormalized products of non-negative functions. The factorization structures are represented by hypergraphs called factor graphs. Such distributions appear in various fields, including statistics, artificial intelligence, statistical physics, error correcting codes, etc. Given such a distribution, computations of marginal distributions and the normalization constant are often required. However, they are computationally intractable because of their computational costs. One successful approximation method is Loopy Belief Propagation (LBP) algorithm. The focus of this thesis is an analysis of the LBP algorithm. If the factor graph is a tree, i.e. having no cycle, the algorithm gives the exact quantities. If the factor graph has cycles, however, the LBP algorithm does not give exact results and possibly exhibits oscillatory and non-convergent behaviors. The thematic question of this thesis is "How the behaviors of the LBP algorithm are affected by the discrete geometry of the factor graph?" The primary contribution of this thesis is the discovery of a formula that establishes the relation between the LBP, the Bethe free energy and the graph zeta function. This formula provides new techniques for analysis of the LBP algorithm, connecting properties of the graph and of the LBP and the Bethe free energy. We demonstrate applications of the techniques to several problems including (non) convexity of the Bethe free energy, the uniqueness and stability of the LBP fixed point. We also discuss the loop series initiated by Chertkov and Chernyak. The loop series is a subgraph expansion of the normalization constant, or partition function, and reflects the graph geometry. We investigate theoretical natures of the series. Moreover, we show a partial connection between the loop series and the graph zeta function.
NASA Astrophysics Data System (ADS)
Wilson, D.; Hopkins, C.
2015-04-01
For bending wave transmission across periodic box-like arrangements of plates, the effects of spatial filtering can be significant and this needs to be considered in the choice of prediction model. This paper investigates the errors that can occur with Statistical Energy Analysis (SEA) and the potential of using Advanced SEA (ASEA) to improve predictions. The focus is on the low- and mid-frequency range where plates only support local modes with low mode counts and the in situ modal overlap is relatively high. To increase the computational efficiency when using ASEA on large systems, a beam tracing method is introduced which groups together all rays with the same heading into a single beam. Based on a diffuse field on the source plate, numerical experiments are used to determine the angular distribution of incident power on receiver plate edges on linear and cuboid box-like structures. These show that on receiver plates which do not share a boundary with the source plate, the angular distribution on the receiver plate boundaries differs significantly from a diffuse field. SEA and ASEA predictions are assessed through comparison with finite element models. With rain-on-the-roof excitation on the source plate, the results show that compared to SEA, ASEA provides significantly better estimates of the receiver plate energy, but only where there are at least one or two bending modes in each one-third octave band. Whilst ASEA provides better accuracy than SEA, discrepancies still exist which become more apparent when the direct propagation path crosses more than three nominally identical structural junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenomori, M.; Bi, X. J.; Ding, L. K.
2008-05-10
We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10{sup 14} to 10{sup 17} eV using 5.5 x 10{sup 7} events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m above sea level (an atmospheric depth of 606 g cm{sup -2}). The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We discuss our extensive Monte Carlo calculations and the model dependencies involved in the final result, assuming interaction modelsmore » QGSJET01c and SIBYLL2.1, and heavy dominant (HD) and proton dominant (PD) primary composition models. Pure proton and pure iron primary models are also examined as extreme cases. A detector simulation was also performed to improve our accuracy in determining the size of the air showers and the energy of the primary particle. We confirmed that the all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other, which was the expected result given the characteristics of the experiment at high altitude, where the air showers of the primary energy around the knee reach near-maximum development, with their features dominated by electromagnetic components, leading to a weak dependence on the interaction model or the primary mass. This is the highest statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.« less
NASA Astrophysics Data System (ADS)
MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colak, S. M.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Inada, T.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.
2017-09-01
Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different energies, emitted simultaneously from astrophysical sources, could accumulate measurable differences in their time of flight until they reach the Earth. Such tests have been carried out in the past using fast variations of gamma-ray flux from pulsars, and more recently from active galactic nuclei and gamma-ray bursts. We present new constraints studying the gamma-ray emission of the galactic Crab Pulsar, recently observed up to TeV energies by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) collaboration. A profile likelihood analysis of pulsar events reconstructed for energies above 400 GeV finds no significant variation in arrival time as their energy increases. Ninety-five percent CL limits are obtained on the effective Lorentz invariance violating energy scale at the level of {E}{{QG}1}> 5.5× {10}17 {GeV} (4.5× {10}17 {GeV}) for a linear, and {E}{{QG}2}> 5.9× {10}10 {GeV} (5.3× {10}10 {GeV}) for a quadratic scenario, for the subluminal and the superluminal cases, respectively. A substantial part of this study is dedicated to calibration of the test statistic, with respect to bias and coverage properties. Moreover, the limits take into account systematic uncertainties, which are found to worsen the statistical limits by about 36%-42%. Our constraints would have been much more stringent if the intrinsic pulse shape of the pulsar between 200 GeV and 400 GeV was understood in sufficient detail and allowed inclusion of events well below 400 GeV.
The Statistical Analysis of Global Oxygen ENAs Sky Maps from IBEX-Lo: Implication on the ENA sources
NASA Astrophysics Data System (ADS)
Park, J.; Kucharek, H.; Moebius, E.; Bochsler, P. A.
2013-12-01
Energetic Neutral Atoms (ENAs) created in the interstellar medium and heliospheric interface have been observed by the Interstellar Boundary Explorer (IBEX) orbiting the Earth on a highly elliptical trajectory since 2008. The science payload on this small spacecraft consists of two highly sensitive single-pixel ENA cameras: the IBEX-Lo sensor covering the energy ranges from 0.01 to 2 keV and the IBEX-Hi sensor covering the energy ranges from 0.3 to 6 keV. In order to measure the incident ENAs, the IBEX-Lo sensor uses a conversion surface to convert neutrals to negative ions. After passing an electrostatic analyzer, they are separated by species (H and heavier species) via a time-of-flight mass spectrometer. All-sky H ENA maps over three years were completed and show two significant features: the interstellar H and He neutral flow is shown at the low energy ranges (0.01 to 0.11 keV) and the ribbon appears at the higher energies (0.21 to 1.35 keV). Like in the hydrogen sky maps, the interstellar O+Ne neutral flow appears in all-sky O ENA maps at the energy ranges from 0.21 to 0.87 keV The distributed heliospheric Oxygen ENAs over the entire energy ranges is determined from very low counting statistics. In this study, we therefore apply the Cash's C statistics (Cash, 1979) and determine the upper and lower confidence limits (Gehrels, 1986) for the statistical significance among all events in all-sky O ENA maps. These newly created sky maps specifically show the distributed heliospheric O ENA flux surrounding the interstellar O+Ne neutral flow. This enhancement distributed ENA flux will provide us new insights into the ion population creation the ENA emission. It seems that there is no signature of ribbon in all-sky O ENA maps. If one assumes that the generation mechanism of the ribbon is the same for hydrogen and oxygen, the location of source ion population may be closer to the heliosheath. In this poster we will discuss all the results of this study and their implications for the source regions and populations in detail.
NASA Astrophysics Data System (ADS)
VandeVondele, Joost; Rothlisberger, Ursula
2000-09-01
We present a method for calculating multidimensional free energy surfaces within the limited time scale of a first-principles molecular dynamics scheme. The sampling efficiency is enhanced using selected terms of a classical force field as a bias potential. This simple procedure yields a very substantial increase in sampling accuracy while retaining the high quality of the underlying ab initio potential surface and can thus be used for a parameter free calculation of free energy surfaces. The success of the method is demonstrated by the applications to two gas phase molecules, ethane and peroxynitrous acid, as test case systems. A statistical analysis of the results shows that the entire free energy landscape is well converged within a 40 ps simulation at 500 K, even for a system with barriers as high as 15 kcal/mol.
A design study of the energy selection system for carbon-ion therapy
NASA Astrophysics Data System (ADS)
Hahn, Garam; An, Dong Hyun; Hong, Bong Hwan; Kim, Geun Beom; Yim, Heejoong; Chang, Hong Seok; Jung, In Su; Kang, Kun Uk; Nam, Sang Hoon; Park, Inkyu
2015-02-01
KHIMA, a research project to construct a carbon radio-therapy facility in Korea, has been developing a superconducting cyclotron named KIRAMS-430 as a carbon(12 C 6+) particle accelerator. Due to the fixed beam energy of the cyclotron, an energy selection system (ESS) is required for treatment of tumors located at various depths in the human body. In the present paper, two design stages of the ESS are discussed. First, the beam tracks behind the degrader block and the statistical twiss parameters for the entire energy range were calculated by using the GEANT4 simulation toolkit. Analysis of the beam transmission and the contamination ratios were performed. In the second stage, the beam optics was designed to support the same phase profile at the end regardless of the variations in all of input twiss parameters and the emittance.
Scaling cosmology with variable dark-energy equation of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, David R.; Velten, Hermano; Zimdahl, Winfried, E-mail: drodriguez-ufes@hotmail.com, E-mail: velten@physik.uni-bielefeld.de, E-mail: winfried.zimdahl@pq.cnpq.br
2012-06-01
Interactions between dark matter and dark energy which result in a power-law behavior (with respect to the cosmic scale factor) of the ratio between the energy densities of the dark components (thus generalizing the ΛCDM model) have been considered as an attempt to alleviate the cosmic coincidence problem phenomenologically. We generalize this approach by allowing for a variable equation of state for the dark energy within the CPL-parametrization. Based on analytic solutions for the Hubble rate and using the Constitution and Union2 SNIa sets, we present a statistical analysis and classify different interacting and non-interacting models according to the Akaikemore » (AIC) and the Bayesian (BIC) information criteria. We do not find noticeable evidence for an alleviation of the coincidence problem with the mentioned type of interaction.« less
Cosmology with interaction in the dark sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, F. E. M.; Barboza, E. M. Jr.; Alcaniz, J. S.
2009-06-15
Unless some unknown symmetry in nature prevents or suppresses a nonminimal coupling in the dark sector, the dark energy field may interact with the pressureless component of dark matter. In this paper, we investigate some cosmological consequences of a general model of interacting dark matter-dark energy characterized by a dimensionless parameter {epsilon}. We derive a coupled scalar field version for this general class of scenarios and carry out a joint statistical analysis involving type Ia supernovae data (Legacy and Constitution sets), measurements of baryon acoustic oscillation peaks at z=0.20 (2dFGRS) and z=0.35 (SDSS), and measurements of the Hubble evolution H(z).more » For the specific case of vacuum decay (w=-1), we find that, although physically forbidden, a transfer of energy from dark matter to dark energy is favored by the data.« less
NASA Astrophysics Data System (ADS)
Cao, X.; Du, A.
2014-12-01
We statistically studied the response time of the SYMH to the solar wind energy input ɛ by using the RFA approach. The average response time was 64 minutes. There was no clear trend among these events concerning to the minimum SYMH and storm type. It seems that the response time of magnetosphere to the solar wind energy input is independent on the storm intensity and the solar wind condition. The response function shows one peak even when the solar wind energy input and the SYMH have multi-peak. The response time exhibits as the intrinsic property of the magnetosphere that stands for the typical formation time of the ring current. This may be controlled by magnetospheric temperature, average number density, the oxygen abundance et al.
A study of tensile test on open-cell aluminum foam sandwich
NASA Astrophysics Data System (ADS)
Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.
2018-01-01
Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiferlein, Katherine E.
The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2002. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration (EIA) under Section 205(a)(2), which states: “The Administrator shallmore » be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications. Related Publication: Readers of the AER may also be interested in EIA’s Monthly Energy Review, which presents monthly updates of many of the data in the AER. Contact our National Energy Information Center for more information.« less
Statistical issues in searches for new phenomena in High Energy Physics
NASA Astrophysics Data System (ADS)
Lyons, Louis; Wardle, Nicholas
2018-03-01
Many analyses of data in High Energy Physics are concerned with searches for New Physics. We review the statistical issues that arise in such searches, and then illustrate these using the specific example of the recent successful search for the Higgs boson, produced in collisions between high energy protons at CERN’s Large Hadron Collider.
Many-body localization of bosons in optical lattices
NASA Astrophysics Data System (ADS)
Sierant, Piotr; Zakrzewski, Jakub
2018-04-01
Many-body localization for a system of bosons trapped in a one-dimensional lattice is discussed. Two models that may be realized for cold atoms in optical lattices are considered. The model with a random on-site potential is compared with previously introduced random interactions model. While the origin and character of the disorder in both systems is different they show interesting similar properties. In particular, many-body localization appears for a sufficiently large disorder as verified by a time evolution of initial density wave states as well as using statistical properties of energy levels for small system sizes. Starting with different initial states, we observe that the localization properties are energy-dependent which reveals an inverted many-body localization edge in both systems (that finding is also verified by statistical analysis of energy spectrum). Moreover, we consider computationally challenging regime of transition between many body localized and extended phases where we observe a characteristic algebraic decay of density correlations which may be attributed to subdiffusion (and Griffiths-like regions) in the studied systems. Ergodicity breaking in the disordered Bose–Hubbard models is compared with the slowing-down of the time evolution of the clean system at large interactions.
Baryon-antibaryon dynamics in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Seifert, E.; Cassing, W.
2018-04-01
The dynamics of baryon-antibaryon annihilation and reproduction (B B ¯↔3 M ) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model. At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon (B B ¯ ) pairs while for the LHC energy of √{sN N}=2.76 TeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizable difference between data and statistical calculations in Pb+Pb collisions at √{sN N}=2.76 TeV for proton and antiproton yields [ALICE Collaboration, B. Abelev et al., Phys. Rev. C 88, 044910 (2013), 10.1103/PhysRevC.88.044910], where a deviation of 2.7 σ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons and antiprotons). Furthermore, we find that the B B ¯↔3 M reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2-2.5 can be extracted from the PHSD calculations for central Au+Au collisions.
India's pulp and paper industry: Productivity and energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Katja
1999-07-01
Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector hasmore » been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.« less
ON THE MAGNETIC AND ENERGY CHARACTERISTICS OF RECURRENT HOMOLOGOUS JETS FROM AN EMERGING FLUX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiajia; Wang, Yuming; Liu, Rui
In this paper, we present the detailed analysis of recurrent homologous jets originating from an emerging negative magnetic flux at the edge of an active region. The observed jets show multithermal features. Their evolution shows high consistence with the characteristic parameters of the emerging flux, suggesting that with more free magnetic energy, the eruptions tend to be more violent, frequent, and blowout-like. The average temperature, average electron number density, and axial speed are found to be similar for different jets, indicating that they should have been formed by plasmas from similar origins. Statistical analysis of the jets and their footpointmore » region conditions reveals a strong positive relationship between the footpoint region total 131 Å intensity enhancement and jets’ length/width. Stronger linearly positive relationships also exist between the total intensity enhancement/thermal energy of the footpoint regions and jets’ mass/kinetic/thermal energy, with higher cross-correlation coefficients. All the above results together confirm the direct relationship between the magnetic reconnection and the jets and validate the important role of magnetic reconnection in transporting large amounts of free magnetic energy into jets. It is also suggested that there should be more free energy released during the magnetic reconnection of blowout than of standard jet events.« less
Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A
2017-01-01
The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60-90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity.
2011-10-14
landscapes. It is motivated by statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and...statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and estimating the free energy...experimentally, to characterize global changes as well as investigate relative stabilities. In most applications, a brute- force computation based on
Akerib, DS; Alsum, S; Araújo, HM; ...
2018-01-05
The LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less
Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...
2018-05-31
Here, the LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerib, D. S.; Alsum, S.; Araújo, H. M.
Here, the LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less
First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer
NASA Astrophysics Data System (ADS)
Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.
2016-07-01
The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.
Reconstructing the intermittent dynamics of the torque in wind turbines
NASA Astrophysics Data System (ADS)
Lind, Pedro G.; Wächter, Matthias; Peinke, Joachim
2014-06-01
We apply a framework introduced in the late nineties to analyze load measurements in off-shore wind energy converters (WEC). The framework is borrowed from statistical physics and properly adapted to the analysis of multivariate data comprising wind velocity, power production and torque measurements, taken at one single WEC. In particular, we assume that wind statistics drives the fluctuations of the torque produced in the wind turbine and show how to extract an evolution equation of the Langevin type for the torque driven by the wind velocity. It is known that the intermittent nature of the atmosphere, i.e. of the wind field, is transferred to the power production of a wind energy converter and consequently to the shaft torque. We show that the derived stochastic differential equation quantifies the dynamical coupling of the measured fluctuating properties as well as it reproduces the intermittency observed in the data. Finally, we discuss our approach in the light of turbine monitoring, a particular important issue in off-shore wind farms.
Markovian properties of wind turbine wakes within a 3x3 array
NASA Astrophysics Data System (ADS)
Melius, Matthew; Tutkun, Murat; Cal, Raúl Bayoán
2012-11-01
Wind turbine arrays have proven to be significant sources of renewable energy. Accurate projections of energy production is difficult to achieve because the wake of a wind turbine is highly intermittent and turbulent. Seeking to further the understanding of the downstream propagation of wind turbine wakes, a stochastic analysis of experimentally obtained turbulent flow data behind a wind turbine was performed. A 3x3 wind turbine array was constructed in the test section of a recirculating wind tunnel where X-wire anemometers were used to collect point velocity statistics. In this work, mathematics of the theory of Markovian processes are applied to obtain a statistical description of longitudinal velocity increments inside the turbine wake using conditional probability density functions. Our results indicate an existence of Markovian properties at scales on the order of the Taylor microscale, λ, which has also been observed and documented in different turbulent flows. This leads to characterization of the multi-point description of the wind turbine wakes using the most recent states of the flow.
NASA Astrophysics Data System (ADS)
Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim
2017-09-01
Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.
Air-flow distortion and turbulence statistics near an animal facility
NASA Astrophysics Data System (ADS)
Prueger, J. H.; Eichinger, W. E.; Hipps, L. E.; Hatfield, J. L.; Cooper, D. I.
The emission and dispersion of particulates and gases from concentrated animal feeding operations (CAFO) at local to regional scales is a current issue in science and society. The transport of particulates, odors and toxic chemical species from the source into the local and eventually regional atmosphere is largely determined by turbulence. Any models that attempt to simulate the dispersion of particles must either specify or assume various statistical properties of the turbulence field. Statistical properties of turbulence are well documented for idealized boundary layers above uniform surfaces. However, an animal production facility is a complex surface with structures that act as bluff bodies that distort the turbulence intensity near the buildings. As a result, the initial release and subsequent dispersion of effluents in the region near a facility will be affected by the complex nature of the surface. Previous Lidar studies of plume dispersion over the facility used in this study indicated that plumes move in complex yet organized patterns that would not be explained by the properties of turbulence generally assumed in models. The objective of this study was to characterize the near-surface turbulence statistics in the flow field around an array of animal confinement buildings. Eddy covariance towers were erected in the upwind, within the building array and downwind regions of the flow field. Substantial changes in turbulence intensity statistics and turbulence-kinetic energy (TKE) were observed as the mean wind flow encountered the building structures. Spectra analysis demonstrated unique distribution of the spectral energy in the vertical profile above the buildings.
Statistical analysis of dynamic fibrils observed from NST/BBSO observations
NASA Astrophysics Data System (ADS)
Gopalan Priya, Thambaje; Su, Jiang-Tao; Chen, Jie; Deng, Yuan-Yong; Prasad Choudhury, Debi
2018-02-01
We present the results obtained from the analysis of dynamic fibrils in NOAA active region (AR) 12132, using high resolution Hα observations from the New Solar Telescope operating at Big Bear Solar Observatory. The dynamic fibrils are seen to be moving up and down, and most of these dynamic fibrils are periodic and have a jet-like appearance. We found from our observations that the fibrils follow almost perfect parabolic paths in many cases. A statistical analysis on the properties of the parabolic paths showing an analysis on deceleration, maximum velocity, duration and kinetic energy of these fibrils is presented here. We found the average maximum velocity to be around 15 kms‑1 and mean deceleration to be around 100 ms‑2. The observed deceleration appears to be a fraction of gravity of the Sun and is not compatible with the path of ballistic motion due to gravity of the Sun. We found a positive correlation between deceleration and maximum velocity. This correlation is consistent with simulations done earlier on magnetoacoustic shock waves propagating upward.
Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na
2014-11-17
In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level ofmore » aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.« less
NASA Astrophysics Data System (ADS)
Rich, Grayson Currie
The COHERENT Collaboration has produced the first-ever observation, with a significance of 6.7sigma, of a process consistent with coherent, elastic neutrino-nucleus scattering (CEnuNS) as first predicted and described by D.Z. Freedman in 1974. Physics of the CEnuNS process are presented along with its relationship to future measurements in the arenas of nuclear physics, fundamental particle physics, and astroparticle physics, where the newly-observed interaction presents a viable tool for investigations into numerous outstanding questions about the nature of the universe. To enable the CEnuNS observation with a 14.6-kg CsI[Na] detector, new measurements of the response of CsI[Na] to low-energy nuclear recoils, which is the only mechanism by which CEnuNS is detectable, were carried out at Triangle Universities Nuclear Laboratory; these measurements are detailed and an effective nuclear-recoil quenching factor of 8.78 +/- 1.66% is established for CsI[Na] in the recoil-energy range of 5-30 keV, based on new and literature data. Following separate analyses of the CEnuNS-search data by groups at the University of Chicago and the Moscow Engineering and Physics Institute, information from simulations, calculations, and ancillary measurements were used to inform statistical analyses of the collected data. Based on input from the Chicago analysis, the number of CEnuNS events expected from the Standard Model is 173 +/- 48; interpretation as a simple counting experiment finds 136 +/- 31 CEnuNS counts in the data, while a two-dimensional, profile likelihood fit yields 134 +/- 22 CEnuNS counts. Details of the simulations, calculations, and supporting measurements are discussed, in addition to the statistical procedures. Finally, potential improvements to the CsI[Na]-based CEnuNS measurement are presented along with future possibilities for COHERENT Collaboration, including new CEnuNS detectors and measurement of the neutrino-induced neutron spallation process.
Abdalla, H; Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Andersson, T; Angüner, E O; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; Devin, J; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Ernenwein, J-P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M-H; Grudzińska, M; Hadasch, D; Hahn, J; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kerszberg, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J-P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Leser, E; Liu, R; Lohse, T; Lorentz, M; Lypova, I; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; O'Brien, P; Odaka, H; Ohm, S; Ostrowski, M; Öttl, S; Oya, I; Padovani, M; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Perennes, C; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Settimo, M; Seyffert, A S; Shafi, N; Shilon, I; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tibaldo, L; Tluczykont, M; Trichard, C; Tuffs, R; van der Walt, J; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N
2016-10-07
A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l=-1.5°, b=0° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.
Belu, Radian; Koracin, Darko
2013-01-01
The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less
NASA Astrophysics Data System (ADS)
Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Liu, R.; Lohse, T.; Lorentz, M.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Öttl, S.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; H. E. S. S. Collaboration
2016-10-01
A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l =-1.5 ° , b =0 ° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. results. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.
Statistical physics of the symmetric group.
Williams, Mobolaji
2017-04-01
Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.
Statistical physics of the symmetric group
NASA Astrophysics Data System (ADS)
Williams, Mobolaji
2017-04-01
Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.
A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...
2015-07-23
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less
Statistical properties of the radiation belt seed population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, A. J.; Spence, H. E.; Huang, C. -L.
Here, we present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular, we investigate the relationship between the tens and hundreds of keV seed electrons and >1 MeV core radiation belt electron population. Using a cross-correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈0.73 with a time lag of 10–15 h. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of themore » acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of hundreds of keV electrons is only one of several conditions required for MeV electron radiation belt acceleration.« less
Statistical properties of the radiation belt seed population
Boyd, A. J.; Spence, H. E.; Huang, C. -L.; ...
2016-07-25
Here, we present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular, we investigate the relationship between the tens and hundreds of keV seed electrons and >1 MeV core radiation belt electron population. Using a cross-correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈0.73 with a time lag of 10–15 h. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of themore » acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of hundreds of keV electrons is only one of several conditions required for MeV electron radiation belt acceleration.« less
Langmuir waveforms at interplanetary shocks: STEREO statistical analysis
NASA Astrophysics Data System (ADS)
Briand, C.
2016-12-01
Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.
Flares, ejections, proton events
NASA Astrophysics Data System (ADS)
Belov, A. V.
2017-11-01
Statistical analysis is performed for the relationship of coronal mass ejections (CMEs) and X-ray flares with the fluxes of solar protons with energies >10 and >100 MeV observed near the Earth. The basis for this analysis was the events that took place in 1976-2015, for which there are reliable observations of X-ray flares on GOES satellites and CME observations with SOHO/LASCO coronagraphs. A fairly good correlation has been revealed between the magnitude of proton enhancements and the power and duration of flares, as well as the initial CME speed. The statistics do not give a clear advantage either to CMEs or the flares concerning their relation with proton events, but the characteristics of the flares and ejections complement each other well and are reasonable to use together in the forecast models. Numerical dependences are obtained that allow estimation of the proton fluxes to the Earth expected from solar observations; possibilities for improving the model are discussed.
Singular Spectrum Analysis for Astronomical Time Series: Constructing a Parsimonious Hypothesis Test
NASA Astrophysics Data System (ADS)
Greco, G.; Kondrashov, D.; Kobayashi, S.; Ghil, M.; Branchesi, M.; Guidorzi, C.; Stratta, G.; Ciszak, M.; Marino, F.; Ortolan, A.
We present a data-adaptive spectral method - Monte Carlo Singular Spectrum Analysis (MC-SSA) - and its modification to tackle astrophysical problems. Through numerical simulations we show the ability of the MC-SSA in dealing with 1/f β power-law noise affected by photon counting statistics. Such noise process is simulated by a first-order autoregressive, AR(1) process corrupted by intrinsic Poisson noise. In doing so, we statistically estimate a basic stochastic variation of the source and the corresponding fluctuations due to the quantum nature of light. In addition, MC-SSA test retains its effectiveness even when a significant percentage of the signal falls below a certain level of detection, e.g., caused by the instrument sensitivity. The parsimonious approach presented here may be broadly applied, from the search for extrasolar planets to the extraction of low-intensity coherent phenomena probably hidden in high energy transients.