The extraction and integration framework: a two-process account of statistical learning.
Thiessen, Erik D; Kronstein, Alexandra T; Hufnagle, Daniel G
2013-07-01
The term statistical learning in infancy research originally referred to sensitivity to transitional probabilities. Subsequent research has demonstrated that statistical learning contributes to infant development in a wide array of domains. The range of statistical learning phenomena necessitates a broader view of the processes underlying statistical learning. Learners are sensitive to a much wider range of statistical information than the conditional relations indexed by transitional probabilities, including distributional and cue-based statistics. We propose a novel framework that unifies learning about all of these kinds of statistical structure. From our perspective, learning about conditional relations outputs discrete representations (such as words). Integration across these discrete representations yields sensitivity to cues and distributional information. To achieve sensitivity to all of these kinds of statistical structure, our framework combines processes that extract segments of the input with processes that compare across these extracted items. In this framework, the items extracted from the input serve as exemplars in long-term memory. The similarity structure of those exemplars in long-term memory leads to the discovery of cues and categorical structure, which guides subsequent extraction. The extraction and integration framework provides a way to explain sensitivity to both conditional statistical structure (such as transitional probabilities) and distributional statistical structure (such as item frequency and variability), and also a framework for thinking about how these different aspects of statistical learning influence each other. 2013 APA, all rights reserved
Statistical Learning and Language: An Individual Differences Study
ERIC Educational Resources Information Center
Misyak, Jennifer B.; Christiansen, Morten H.
2012-01-01
Although statistical learning and language have been assumed to be intertwined, this theoretical presupposition has rarely been tested empirically. The present study investigates the relationship between statistical learning and language using a within-subject design embedded in an individual-differences framework. Participants were administered…
Teaching Introductory Business Statistics Using the DCOVA Framework
ERIC Educational Resources Information Center
Levine, David M.; Stephan, David F.
2011-01-01
Introductory business statistics students often receive little guidance on how to apply the methods they learn to further business objectives they may one day face. And those students may fail to see the continuity among the topics taught in an introductory course if they learn those methods outside a context that provides a unifying framework.…
Domain generality vs. modality specificity: The paradox of statistical learning
Frost, Ram; Armstrong, Blair C.; Siegelman, Noam; Christiansen, Morten H.
2015-01-01
Statistical learning is typically considered to be a domain-general mechanism by which cognitive systems discover the underlying distributional properties of the input. Recent studies examining whether there are commonalities in the learning of distributional information across different domains or modalities consistently reveal, however, modality and stimulus specificity. An important question is, therefore, how and why a hypothesized domain-general learning mechanism systematically produces such effects. We offer a theoretical framework according to which statistical learning is not a unitary mechanism, but a set of domain-general computational principles, that operate in different modalities and therefore are subject to the specific constraints characteristic of their respective brain regions. This framework offers testable predictions and we discuss its computational and neurobiological plausibility. PMID:25631249
ERIC Educational Resources Information Center
Lesser, Lawrence M.; Wagler, Amy E.; Esquinca, Alberto; Valenzuela, M. Guadalupe
2013-01-01
The framework of linguistic register and case study research on Spanish-speaking English language learners (ELLs) learning statistics informed the construction of a quantitative instrument, the Communication, Language, And Statistics Survey (CLASS). CLASS aims to assess whether ELLs and non-ELLs approach the learning of statistics differently with…
A Framework for Authenticity in the Mathematics and Statistics Classroom
ERIC Educational Resources Information Center
Garrett, Lauretta; Huang, Li; Charleton, Maria Calhoun
2016-01-01
Authenticity is a term commonly used in reference to pedagogical and curricular qualities of mathematics teaching and learning, but its use lacks a coherent framework. The work of researchers in engineering education provides such a framework. Authentic qualities of mathematics teaching and learning are fit within a model described by Strobel,…
A Framework for Assessing High School Students' Statistical Reasoning.
Chan, Shiau Wei; Ismail, Zaleha; Sumintono, Bambang
2016-01-01
Based on a synthesis of literature, earlier studies, analyses and observations on high school students, this study developed an initial framework for assessing students' statistical reasoning about descriptive statistics. Framework descriptors were established across five levels of statistical reasoning and four key constructs. The former consisted of idiosyncratic reasoning, verbal reasoning, transitional reasoning, procedural reasoning, and integrated process reasoning. The latter include describing data, organizing and reducing data, representing data, and analyzing and interpreting data. In contrast to earlier studies, this initial framework formulated a complete and coherent statistical reasoning framework. A statistical reasoning assessment tool was then constructed from this initial framework. The tool was administered to 10 tenth-grade students in a task-based interview. The initial framework was refined, and the statistical reasoning assessment tool was revised. The ten students then participated in the second task-based interview, and the data obtained were used to validate the framework. The findings showed that the students' statistical reasoning levels were consistent across the four constructs, and this result confirmed the framework's cohesion. Developed to contribute to statistics education, this newly developed statistical reasoning framework provides a guide for planning learning goals and designing instruction and assessments.
Machine Learning Methods for Attack Detection in the Smart Grid.
Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent
2016-08-01
Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.
2017-01-01
Statistical learning has been studied in a variety of different tasks, including word segmentation, object identification, category learning, artificial grammar learning and serial reaction time tasks (e.g. Saffran et al. 1996 Science 274, 1926–1928; Orban et al. 2008 Proceedings of the National Academy of Sciences 105, 2745–2750; Thiessen & Yee 2010 Child Development 81, 1287–1303; Saffran 2002 Journal of Memory and Language 47, 172–196; Misyak & Christiansen 2012 Language Learning 62, 302–331). The difference among these tasks raises questions about whether they all depend on the same kinds of underlying processes and computations, or whether they are tapping into different underlying mechanisms. Prior theoretical approaches to statistical learning have often tried to explain or model learning in a single task. However, in many cases these approaches appear inadequate to explain performance in multiple tasks. For example, explaining word segmentation via the computation of sequential statistics (such as transitional probability) provides little insight into the nature of sensitivity to regularities among simultaneously presented features. In this article, we will present a formal computational approach that we believe is a good candidate to provide a unifying framework to explore and explain learning in a wide variety of statistical learning tasks. This framework suggests that statistical learning arises from a set of processes that are inherent in memory systems, including activation, interference, integration of information and forgetting (e.g. Perruchet & Vinter 1998 Journal of Memory and Language 39, 246–263; Thiessen et al. 2013 Psychological Bulletin 139, 792–814). From this perspective, statistical learning does not involve explicit computation of statistics, but rather the extraction of elements of the input into memory traces, and subsequent integration across those memory traces that emphasize consistent information (Thiessen and Pavlik 2013 Cognitive Science 37, 310–343). This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences'. PMID:27872374
Thiessen, Erik D
2017-01-05
Statistical learning has been studied in a variety of different tasks, including word segmentation, object identification, category learning, artificial grammar learning and serial reaction time tasks (e.g. Saffran et al. 1996 Science 274: , 1926-1928; Orban et al. 2008 Proceedings of the National Academy of Sciences 105: , 2745-2750; Thiessen & Yee 2010 Child Development 81: , 1287-1303; Saffran 2002 Journal of Memory and Language 47: , 172-196; Misyak & Christiansen 2012 Language Learning 62: , 302-331). The difference among these tasks raises questions about whether they all depend on the same kinds of underlying processes and computations, or whether they are tapping into different underlying mechanisms. Prior theoretical approaches to statistical learning have often tried to explain or model learning in a single task. However, in many cases these approaches appear inadequate to explain performance in multiple tasks. For example, explaining word segmentation via the computation of sequential statistics (such as transitional probability) provides little insight into the nature of sensitivity to regularities among simultaneously presented features. In this article, we will present a formal computational approach that we believe is a good candidate to provide a unifying framework to explore and explain learning in a wide variety of statistical learning tasks. This framework suggests that statistical learning arises from a set of processes that are inherent in memory systems, including activation, interference, integration of information and forgetting (e.g. Perruchet & Vinter 1998 Journal of Memory and Language 39: , 246-263; Thiessen et al. 2013 Psychological Bulletin 139: , 792-814). From this perspective, statistical learning does not involve explicit computation of statistics, but rather the extraction of elements of the input into memory traces, and subsequent integration across those memory traces that emphasize consistent information (Thiessen and Pavlik 2013 Cognitive Science 37: , 310-343).This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).
A Framework for Assessing High School Students' Statistical Reasoning
2016-01-01
Based on a synthesis of literature, earlier studies, analyses and observations on high school students, this study developed an initial framework for assessing students’ statistical reasoning about descriptive statistics. Framework descriptors were established across five levels of statistical reasoning and four key constructs. The former consisted of idiosyncratic reasoning, verbal reasoning, transitional reasoning, procedural reasoning, and integrated process reasoning. The latter include describing data, organizing and reducing data, representing data, and analyzing and interpreting data. In contrast to earlier studies, this initial framework formulated a complete and coherent statistical reasoning framework. A statistical reasoning assessment tool was then constructed from this initial framework. The tool was administered to 10 tenth-grade students in a task-based interview. The initial framework was refined, and the statistical reasoning assessment tool was revised. The ten students then participated in the second task-based interview, and the data obtained were used to validate the framework. The findings showed that the students’ statistical reasoning levels were consistent across the four constructs, and this result confirmed the framework’s cohesion. Developed to contribute to statistics education, this newly developed statistical reasoning framework provides a guide for planning learning goals and designing instruction and assessments. PMID:27812091
Active learning methods for interactive image retrieval.
Gosselin, Philippe Henri; Cord, Matthieu
2008-07-01
Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.
A New Mathematical Framework for Design Under Uncertainty
2016-05-05
blending multiple information sources via auto-regressive stochastic modeling. A computationally efficient machine learning framework is developed based on...sion and machine learning approaches; see Fig. 1. This will lead to a comprehensive description of system performance with less uncertainty than in the...Bayesian optimization of super-cavitating hy- drofoils The goal of this study is to demonstrate the capabilities of statistical learning and
Statistically optimal perception and learning: from behavior to neural representations
Fiser, József; Berkes, Pietro; Orbán, Gergő; Lengyel, Máté
2010-01-01
Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and reevaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty. PMID:20153683
Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.
Gopnik, Alison; Wellman, Henry M
2012-11-01
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.
Improved analyses using function datasets and statistical modeling
John S. Hogland; Nathaniel M. Anderson
2014-01-01
Raster modeling is an integral component of spatial analysis. However, conventional raster modeling techniques can require a substantial amount of processing time and storage space and have limited statistical functionality and machine learning algorithms. To address this issue, we developed a new modeling framework using C# and ArcObjects and integrated that framework...
How Does Teacher Knowledge in Statistics Impact on Teacher Listening?
ERIC Educational Resources Information Center
Burgess, Tim
2012-01-01
For teaching statistics investigations at primary school level, teacher knowledge has been identified using a framework developed from a classroom based study. Through development of the framework, three types of teacher listening problems were identified, each of which had potential impact on the students' learning. The three types of problems…
Saffran, Jenny R.; Kirkham, Natasha Z.
2017-01-01
Perception involves making sense of a dynamic, multimodal environment. In the absence of mechanisms capable of exploiting the statistical patterns in the natural world, infants would face an insurmountable computational problem. Infant statistical learning mechanisms facilitate the detection of structure. These abilities allow the infant to compute across elements in their environmental input, extracting patterns for further processing and subsequent learning. In this selective review, we summarize findings that show that statistical learning is both a broad and flexible mechanism (supporting learning from different modalities across many different content areas) and input specific (shifting computations depending on the type of input and goal of learning). We suggest that statistical learning not only provides a framework for studying language development and object knowledge in constrained laboratory settings, but also allows researchers to tackle real-world problems, such as multilingualism, the role of ever-changing learning environments, and differential developmental trajectories. PMID:28793812
Learning Axes and Bridging Tools in a Technology-Based Design for Statistics
ERIC Educational Resources Information Center
Abrahamson, Dor; Wilensky, Uri
2007-01-01
We introduce a design-based research framework, "learning axes and bridging tools," and demonstrate its application in the preparation and study of an implementation of a middle-school experimental computer-based unit on probability and statistics, "ProbLab" (Probability Laboratory, Abrahamson and Wilensky 2002 [Abrahamson, D., & Wilensky, U.…
Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. PMID:22582739
Interaction with Machine Improvisation
NASA Astrophysics Data System (ADS)
Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo
We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.
Rohrmeier, Martin A; Cross, Ian
2014-07-01
Humans rapidly learn complex structures in various domains. Findings of above-chance performance of some untrained control groups in artificial grammar learning studies raise questions about the extent to which learning can occur in an untrained, unsupervised testing situation with both correct and incorrect structures. The plausibility of unsupervised online-learning effects was modelled with n-gram, chunking and simple recurrent network models. A novel evaluation framework was applied, which alternates forced binary grammaticality judgments and subsequent learning of the same stimulus. Our results indicate a strong online learning effect for n-gram and chunking models and a weaker effect for simple recurrent network models. Such findings suggest that online learning is a plausible effect of statistical chunk learning that is possible when ungrammatical sequences contain a large proportion of grammatical chunks. Such common effects of continuous statistical learning may underlie statistical and implicit learning paradigms and raise implications for study design and testing methodologies. Copyright © 2014 Elsevier Inc. All rights reserved.
Theory-based Bayesian models of inductive learning and reasoning.
Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles
2006-07-01
Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.
Putting Cognitive Science behind a Statistics Teacher's Intuition
ERIC Educational Resources Information Center
Jones, Karrie A.; Jones, Jennifer L.; Vermette, Paul J.
2011-01-01
Recent advances in cognitive science have led to an enriched understanding of how people learn. Using a framework presented by Willingham, this article examines instructional best practice from the perspective of conceptual understanding and its implications on statistics education.
Modeling Geomagnetic Variations using a Machine Learning Framework
NASA Astrophysics Data System (ADS)
Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.
2017-12-01
We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.
Zeng, Irene Sui Lan; Lumley, Thomas
2018-01-01
Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.
Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C
2007-01-01
A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.
GeoSegmenter: A statistically learned Chinese word segmenter for the geoscience domain
NASA Astrophysics Data System (ADS)
Huang, Lan; Du, Youfu; Chen, Gongyang
2015-03-01
Unlike English, the Chinese language has no space between words. Segmenting texts into words, known as the Chinese word segmentation (CWS) problem, thus becomes a fundamental issue for processing Chinese documents and the first step in many text mining applications, including information retrieval, machine translation and knowledge acquisition. However, for the geoscience subject domain, the CWS problem remains unsolved. Although a generic segmenter can be applied to process geoscience documents, they lack the domain specific knowledge and consequently their segmentation accuracy drops dramatically. This motivated us to develop a segmenter specifically for the geoscience subject domain: the GeoSegmenter. We first proposed a generic two-step framework for domain specific CWS. Following this framework, we built GeoSegmenter using conditional random fields, a principled statistical framework for sequence learning. Specifically, GeoSegmenter first identifies general terms by using a generic baseline segmenter. Then it recognises geoscience terms by learning and applying a model that can transform the initial segmentation into the goal segmentation. Empirical experimental results on geoscience documents and benchmark datasets showed that GeoSegmenter could effectively recognise both geoscience terms and general terms.
Measuring Lifelong Learning for the New Economy.
ERIC Educational Resources Information Center
Tuijnman, Albert
2003-01-01
Describes the challenges that research and statistical systems are faced with in the education sector. Argues these consequences are the result of decisions made for economically advanced countries to adopt a lifelong learning framework and strategy in response to the move toward the new global economy. (CAJ)
Background Knowledge in Learning-Based Relation Extraction
ERIC Educational Resources Information Center
Do, Quang Xuan
2012-01-01
In this thesis, we study the importance of background knowledge in relation extraction systems. We not only demonstrate the benefits of leveraging background knowledge to improve the systems' performance but also propose a principled framework that allows one to effectively incorporate knowledge into statistical machine learning models for…
Can Service-Learning Help Students Appreciate an Unpopular Course?: A Theoretical Framework.
ERIC Educational Resources Information Center
Evangelopoulos, Nicholas; Sidorova, Anna; Riolli, Laura
2003-01-01
A longitudinal study involving undergraduates in a business statistics course found evidence for a model which suggests that students involved in service learning projects experience an increase in their perception of the course material's usefulness and therefore improved attitudes toward the course. (EV)
General cognitive principles for learning structure in time and space.
Goldstein, Michael H; Waterfall, Heidi R; Lotem, Arnon; Halpern, Joseph Y; Schwade, Jennifer A; Onnis, Luca; Edelman, Shimon
2010-06-01
How are hierarchically structured sequences of objects, events or actions learned from experience and represented in the brain? When several streams of regularities present themselves, which will be learned and which ignored? Can statistical regularities take effect on their own, or are additional factors such as behavioral outcomes expected to influence statistical learning? Answers to these questions are starting to emerge through a convergence of findings from naturalistic observations, behavioral experiments, neurobiological studies, and computational analyses and simulations. We propose that a small set of principles are at work in every situation that involves learning of structure from patterns of experience and outline a general framework that accounts for such learning. (c) 2010 Elsevier Ltd. All rights reserved.
Understanding evaluation of learning support in mathematics and statistics
NASA Astrophysics Data System (ADS)
MacGillivray, Helen; Croft, Tony
2011-03-01
With rapid and continuing growth of learning support initiatives in mathematics and statistics found in many parts of the world, and with the likelihood that this trend will continue, there is a need to ensure that robust and coherent measures are in place to evaluate the effectiveness of these initiatives. The nature of learning support brings challenges for measurement and analysis of its effects. After briefly reviewing the purpose, rationale for, and extent of current provision, this article provides a framework for those working in learning support to think about how their efforts can be evaluated. It provides references and specific examples of how workers in this field are collecting, analysing and reporting their findings. The framework is used to structure evaluation in terms of usage of facilities, resources and services provided, and also in terms of improvements in performance of the students and staff who engage with them. Very recent developments have started to address the effects of learning support on the development of deeper approaches to learning, the affective domain and the development of communities of practice of both learners and teachers. This article intends to be a stimulus to those who work in mathematics and statistics support to gather even richer, more valuable, forms of data. It provides a 'toolkit' for those interested in evaluation of learning support and closes by referring to an on-line resource being developed to archive the growing body of evidence.
Takano, Wataru; Kusajima, Ikuo; Nakamura, Yoshihiko
2016-08-01
It is desirable for robots to be able to linguistically understand human actions during human-robot interactions. Previous research has developed frameworks for encoding human full body motion into model parameters and for classifying motion into specific categories. For full understanding, the motion categories need to be connected to the natural language such that the robots can interpret human motions as linguistic expressions. This paper proposes a novel framework for integrating observation of human motion with that of natural language. This framework consists of two models; the first model statistically learns the relations between motions and their relevant words, and the second statistically learns sentence structures as word n-grams. Integration of these two models allows robots to generate sentences from human motions by searching for words relevant to the motion using the first model and then arranging these words in appropriate order using the second model. This allows making sentences that are the most likely to be generated from the motion. The proposed framework was tested on human full body motion measured by an optical motion capture system. In this, descriptive sentences were manually attached to the motions, and the validity of the system was demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cyber Mentoring in an Online Introductory Statistics Course
ERIC Educational Resources Information Center
Rashid, Mamunur; Sarkar, Jyotirmoy
2018-01-01
Students in an online statistics course were prone to become increasingly disengaged as the semester progressed. In Spring 2015, we took a proactive measure to retain student engagement by introducing a cyber mentoring session. We describe the framework, operation and effectiveness of cyber mentoring in improving students' learning experience and…
NASA Astrophysics Data System (ADS)
Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em
2017-09-01
Exascale-level simulations require fault-resilient algorithms that are robust against repeated and expected software and/or hardware failures during computations, which may render the simulation results unsatisfactory. If each processor can share some global information about the simulation from a coarse, limited accuracy but relatively costless auxiliary simulator we can effectively fill-in the missing spatial data at the required times by a statistical learning technique - multi-level Gaussian process regression, on the fly; this has been demonstrated in previous work [1]. Based on the previous work, we also employ another (nonlinear) statistical learning technique, Diffusion Maps, that detects computational redundancy in time and hence accelerate the simulation by projective time integration, giving the overall computation a "patch dynamics" flavor. Furthermore, we are now able to perform information fusion with multi-fidelity and heterogeneous data (including stochastic data). Finally, we set the foundations of a new framework in CFD, called patch simulation, that combines information fusion techniques from, in principle, multiple fidelity and resolution simulations (and even experiments) with a new adaptive timestep refinement technique. We present two benchmark problems (the heat equation and the Navier-Stokes equations) to demonstrate the new capability that statistical learning tools can bring to traditional scientific computing algorithms. For each problem, we rely on heterogeneous and multi-fidelity data, either from a coarse simulation of the same equation or from a stochastic, particle-based, more "microscopic" simulation. We consider, as such "auxiliary" models, a Monte Carlo random walk for the heat equation and a dissipative particle dynamics (DPD) model for the Navier-Stokes equations. More broadly, in this paper we demonstrate the symbiotic and synergistic combination of statistical learning, domain decomposition, and scientific computing in exascale simulations.
Koelsch, Stefan; Busch, Tobias; Jentschke, Sebastian; Rohrmeier, Martin
2016-02-02
Within the framework of statistical learning, many behavioural studies investigated the processing of unpredicted events. However, surprisingly few neurophysiological studies are available on this topic, and no statistical learning experiment has investigated electroencephalographic (EEG) correlates of processing events with different transition probabilities. We carried out an EEG study with a novel variant of the established statistical learning paradigm. Timbres were presented in isochronous sequences of triplets. The first two sounds of all triplets were equiprobable, while the third sound occurred with either low (10%), intermediate (30%), or high (60%) probability. Thus, the occurrence probability of the third item of each triplet (given the first two items) was varied. Compared to high-probability triplet endings, endings with low and intermediate probability elicited an early anterior negativity that had an onset around 100 ms and was maximal at around 180 ms. This effect was larger for events with low than for events with intermediate probability. Our results reveal that, when predictions are based on statistical learning, events that do not match a prediction evoke an early anterior negativity, with the amplitude of this mismatch response being inversely related to the probability of such events. Thus, we report a statistical mismatch negativity (sMMN) that reflects statistical learning of transitional probability distributions that go beyond auditory sensory memory capabilities.
EHR-based phenotyping: Bulk learning and evaluation.
Chiu, Po-Hsiang; Hripcsak, George
2017-06-01
In data-driven phenotyping, a core computational task is to identify medical concepts and their variations from sources of electronic health records (EHR) to stratify phenotypic cohorts. A conventional analytic framework for phenotyping largely uses a manual knowledge engineering approach or a supervised learning approach where clinical cases are represented by variables encompassing diagnoses, medicinal treatments and laboratory tests, among others. In such a framework, tasks associated with feature engineering and data annotation remain a tedious and expensive exercise, resulting in poor scalability. In addition, certain clinical conditions, such as those that are rare and acute in nature, may never accumulate sufficient data over time, which poses a challenge to establishing accurate and informative statistical models. In this paper, we use infectious diseases as the domain of study to demonstrate a hierarchical learning method based on ensemble learning that attempts to address these issues through feature abstraction. We use a sparse annotation set to train and evaluate many phenotypes at once, which we call bulk learning. In this batch-phenotyping framework, disease cohort definitions can be learned from within the abstract feature space established by using multiple diseases as a substrate and diagnostic codes as surrogates. In particular, using surrogate labels for model training renders possible its subsequent evaluation using only a sparse annotated sample. Moreover, statistical models can be trained and evaluated, using the same sparse annotation, from within the abstract feature space of low dimensionality that encapsulates the shared clinical traits of these target diseases, collectively referred to as the bulk learning set. Copyright © 2017 Elsevier Inc. All rights reserved.
de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony
2016-10-03
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.
de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony
2016-01-01
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials. PMID:27694824
de Jong, Maarten; Chen, Wei; Notestine, Randy; ...
2016-10-03
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. Themore » approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.« less
Supervised Learning for Dynamical System Learning.
Hefny, Ahmed; Downey, Carlton; Gordon, Geoffrey J
2015-01-01
Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoff between computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporate prior information such as sparsity or structure. To address this problem, we present a new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, thereby allowing users to incorporate prior knowledge via standard techniques such as L 1 regularization. Many existing spectral methods are special cases of this new framework, using linear regression as the supervised learner. We demonstrate the effectiveness of our framework by showing examples where nonlinear regression or lasso let us learn better state representations than plain linear regression does; the correctness of these instances follows directly from our general analysis.
Using Interactive "Shiny" Applications to Facilitate Research-Informed Learning and Teaching
ERIC Educational Resources Information Center
Fawcett, Lee
2018-01-01
In this article we discuss our attempt to incorporate research-informed learning and teaching activities into a final year undergraduate Statistics course. We make use of the Shiny web-based application framework for R to develop "Shiny apps" designed to help facilitate student interaction with methods from recently published papers in…
Multiplicative Multitask Feature Learning
Wang, Xin; Bi, Jinbo; Yu, Shipeng; Sun, Jiangwen; Song, Minghu
2016-01-01
We investigate a general framework of multiplicative multitask feature learning which decomposes individual task’s model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods can be proved to be special cases of our framework. We study the theoretical properties of this framework when different regularization conditions are applied to the two decomposed components. We prove that this framework is mathematically equivalent to the widely used multitask feature learning methods that are based on a joint regularization of all model parameters, but with a more general form of regularizers. Further, an analytical formula is derived for the across-task component as related to the task-specific component for all these regularizers, leading to a better understanding of the shrinkage effects of different regularizers. Study of this framework motivates new multitask learning algorithms. We propose two new learning formulations by varying the parameters in the proposed framework. An efficient blockwise coordinate descent algorithm is developed suitable for solving the entire family of formulations with rigorous convergence analysis. Simulation studies have identified the statistical properties of data that would be in favor of the new formulations. Extensive empirical studies on various classification and regression benchmark data sets have revealed the relative advantages of the two new formulations by comparing with the state of the art, which provides instructive insights into the feature learning problem with multiple tasks. PMID:28428735
NASA Astrophysics Data System (ADS)
Judi, Hairulliza Mohamad; Sahari @ Ashari, Noraidah; Eksan, Zanaton Hj
2017-04-01
Previous research in Malaysia indicates that there is a problem regarding attitude towards statistics among students. They didn't show positive attitude in affective, cognitive, capability, value, interest and effort aspects although did well in difficulty. This issue should be given substantial attention because students' attitude towards statistics may give impacts on the teaching and learning process of the subject. Teaching statistics using role play is an appropriate attempt to improve attitudes to statistics, to enhance the learning of statistical techniques and statistical thinking, and to increase generic skills. The objectives of the paper are to give an overview on role play in statistics learning and to access the effect of these activities on students' attitude and learning in action research framework. The computer tool entrepreneur role play is conducted in a two-hour tutorial class session of first year students in Faculty of Information Sciences and Technology (FTSM), Universiti Kebangsaan Malaysia, enrolled in Probability and Statistics course. The results show that most students feel that they have enjoyable and great time in the role play. Furthermore, benefits and disadvantages from role play activities were highlighted to complete the review. Role play is expected to serve as an important activities that take into account students' experience, emotions and responses to provide useful information on how to modify student's thinking or behavior to improve learning.
Machine learning patterns for neuroimaging-genetic studies in the cloud.
Da Mota, Benoit; Tudoran, Radu; Costan, Alexandru; Varoquaux, Gaël; Brasche, Goetz; Conrod, Patricia; Lemaitre, Herve; Paus, Tomas; Rietschel, Marcella; Frouin, Vincent; Poline, Jean-Baptiste; Antoniu, Gabriel; Thirion, Bertrand
2014-01-01
Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a 2 weeks deployment on hundreds of virtual machines.
Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation.
Mansoor, Awais; Cerrolaza, Juan J; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George
2017-02-11
Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM 1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.
Marginal shape deep learning: applications to pediatric lung field segmentation
NASA Astrophysics Data System (ADS)
Mansoor, Awais; Cerrolaza, Juan J.; Perez, Geovany; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George
2017-02-01
Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, local- ization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0:927 using only the four highest modes of variation (compared to 0:888 with classical ASM1 (p-value=0:01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.
Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation
Mansoor, Awais; Cerrolaza, Juan J.; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George
2017-01-01
Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects. PMID:28592911
Probabilistic models in human sensorimotor control
Wolpert, Daniel M.
2009-01-01
Sensory and motor uncertainty form a fundamental constraint on human sensorimotor control. Bayesian decision theory (BDT) has emerged as a unifying framework to understand how the central nervous system performs optimal estimation and control in the face of such uncertainty. BDT has two components: Bayesian statistics and decision theory. Here we review Bayesian statistics and show how it applies to estimating the state of the world and our own body. Recent results suggest that when learning novel tasks we are able to learn the statistical properties of both the world and our own sensory apparatus so as to perform estimation using Bayesian statistics. We review studies which suggest that humans can combine multiple sources of information to form maximum likelihood estimates, can incorporate prior beliefs about possible states of the world so as to generate maximum a posteriori estimates and can use Kalman filter-based processes to estimate time-varying states. Finally, we review Bayesian decision theory in motor control and how the central nervous system processes errors to determine loss functions and optimal actions. We review results that suggest we plan movements based on statistics of our actions that result from signal-dependent noise on our motor outputs. Taken together these studies provide a statistical framework for how the motor system performs in the presence of uncertainty. PMID:17628731
Statistical Learning Analysis in Neuroscience: Aiming for Transparency
Hanke, Michael; Halchenko, Yaroslav O.; Haxby, James V.; Pollmann, Stefan
2009-01-01
Encouraged by a rise of reciprocal interest between the machine learning and neuroscience communities, several recent studies have demonstrated the explanatory power of statistical learning techniques for the analysis of neural data. In order to facilitate a wider adoption of these methods, neuroscientific research needs to ensure a maximum of transparency to allow for comprehensive evaluation of the employed procedures. We argue that such transparency requires “neuroscience-aware” technology for the performance of multivariate pattern analyses of neural data that can be documented in a comprehensive, yet comprehensible way. Recently, we introduced PyMVPA, a specialized Python framework for machine learning based data analysis that addresses this demand. Here, we review its features and applicability to various neural data modalities. PMID:20582270
Challenges in Mathematics and Statistics Teaching Underpinned by Student-Lecturer Expectations
ERIC Educational Resources Information Center
Parashar, Deepak
2014-01-01
This study is motivated by the desire to address some of the enormous challenges faced by the students as well as the lecturer in fulfilling their respective expectations and duties demanded by the process of learning--teaching of mathematics and statistics within the framework of the constraining schedules laid down by the academic institutions…
The impact of learning communities on interpersonal relationships among medical students.
Champaloux, Eve Privman; Keeley, Meg G
2016-01-01
Medical students at the University of Virginia (UVA) are mentored and learn within the framework of a four college learning community. Uniquely, these learning communities are used to organize the third-year clerkship rotations. Students were surveyed after their first pre-clinical year and after their clerkship year to determine what the effect of the learning community was on their social and educational interpersonal relationships. Students knew a higher percentage of their college mates after completing their third-year clerkships within the framework of the college system. Students chose peers from within the college system for social and educational interpersonal scenarios statistically more often than what would be expected at random. Small group learning environments that were not formed within the framework of the college system at UVA did not have the same effect on interpersonal relationships, indicating that learning communities are uniquely able to provide a context for relationship building. Students felt more positively about the social and educational effects of the college system after the clerkship year, with a corresponding increase in the strength of their interpersonal bonds with their college peers. This work is the first to investigate the effects of learning communities on interpersonal relationships among medical students and finds that learning communities positively impact both social and educational medical student bonds.
Onofrey, John A.; Staib, Lawrence H.; Papademetris, Xenophon
2015-01-01
This paper describes a framework for learning a statistical model of non-rigid deformations induced by interventional procedures. We make use of this learned model to perform constrained non-rigid registration of pre-procedural and post-procedural imaging. We demonstrate results applying this framework to non-rigidly register post-surgical computed tomography (CT) brain images to pre-surgical magnetic resonance images (MRIs) of epilepsy patients who had intra-cranial electroencephalography electrodes surgically implanted. Deformations caused by this surgical procedure, imaging artifacts caused by the electrodes, and the use of multi-modal imaging data make non-rigid registration challenging. Our results show that the use of our proposed framework to constrain the non-rigid registration process results in significantly improved and more robust registration performance compared to using standard rigid and non-rigid registration methods. PMID:26900569
A probabilistic framework to infer brain functional connectivity from anatomical connections.
Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel
2011-01-01
We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.
2017-06-01
Training time statistics from Jones’ thesis. . . . . . . . . . . . . . 15 Table 2.2 Evaluation runtime statistics from Camp’s thesis for a single image. 17...Table 2.3 Training and evaluation runtime statistics from Sharpe’s thesis. . . 19 Table 2.4 Sharpe’s screenshot detector results for combinations of...training resources available and time required for each algorithm Jones [15] tested. Table 2.1. Training time statistics from Jones’ [15] thesis. Algorithm
Bridge Health Monitoring Using a Machine Learning Strategy
DOT National Transportation Integrated Search
2017-01-01
The goal of this project was to cast the SHM problem within a statistical pattern recognition framework. Techniques borrowed from speaker recognition, particularly speaker verification, were used as this discipline deals with problems very similar to...
A Bayesian Framework for Word Segmentation: Exploring the Effects of Context
ERIC Educational Resources Information Center
Goldwater, Sharon; Griffiths, Thomas L.; Johnson, Mark
2009-01-01
Since the experiments of Saffran et al. [Saffran, J., Aslin, R., & Newport, E. (1996). Statistical learning in 8-month-old infants. "Science," 274, 1926-1928], there has been a great deal of interest in the question of how statistical regularities in the speech stream might be used by infants to begin to identify individual words. In this work, we…
A Machine Learning Framework for Plan Payment Risk Adjustment.
Rose, Sherri
2016-12-01
To introduce cross-validation and a nonparametric machine learning framework for plan payment risk adjustment and then assess whether they have the potential to improve risk adjustment. 2011-2012 Truven MarketScan database. We compare the performance of multiple statistical approaches within a broad machine learning framework for estimation of risk adjustment formulas. Total annual expenditure was predicted using age, sex, geography, inpatient diagnoses, and hierarchical condition category variables. The methods included regression, penalized regression, decision trees, neural networks, and an ensemble super learner, all in concert with screening algorithms that reduce the set of variables considered. The performance of these methods was compared based on cross-validated R 2 . Our results indicate that a simplified risk adjustment formula selected via this nonparametric framework maintains much of the efficiency of a traditional larger formula. The ensemble approach also outperformed classical regression and all other algorithms studied. The implementation of cross-validated machine learning techniques provides novel insight into risk adjustment estimation, possibly allowing for a simplified formula, thereby reducing incentives for increased coding intensity as well as the ability of insurers to "game" the system with aggressive diagnostic upcoding. © Health Research and Educational Trust.
Daikoku, Tatsuya
2018-06-19
Statistical learning (SL) is a method of learning based on the transitional probabilities embedded in sequential phenomena such as music and language. It has been considered an implicit and domain-general mechanism that is innate in the human brain and that functions independently of intention to learn and awareness of what has been learned. SL is an interdisciplinary notion that incorporates information technology, artificial intelligence, musicology, and linguistics, as well as psychology and neuroscience. A body of recent study has suggested that SL can be reflected in neurophysiological responses based on the framework of information theory. This paper reviews a range of work on SL in adults and children that suggests overlapping and independent neural correlations in music and language, and that indicates disability of SL. Furthermore, this article discusses the relationships between the order of transitional probabilities (TPs) (i.e., hierarchy of local statistics) and entropy (i.e., global statistics) regarding SL strategies in human's brains; claims importance of information-theoretical approaches to understand domain-general, higher-order, and global SL covering both real-world music and language; and proposes promising approaches for the application of therapy and pedagogy from various perspectives of psychology, neuroscience, computational studies, musicology, and linguistics.
SOCR: Statistics Online Computational Resource
Dinov, Ivo D.
2011-01-01
The need for hands-on computer laboratory experience in undergraduate and graduate statistics education has been firmly established in the past decade. As a result a number of attempts have been undertaken to develop novel approaches for problem-driven statistical thinking, data analysis and result interpretation. In this paper we describe an integrated educational web-based framework for: interactive distribution modeling, virtual online probability experimentation, statistical data analysis, visualization and integration. Following years of experience in statistical teaching at all college levels using established licensed statistical software packages, like STATA, S-PLUS, R, SPSS, SAS, Systat, etc., we have attempted to engineer a new statistics education environment, the Statistics Online Computational Resource (SOCR). This resource performs many of the standard types of statistical analysis, much like other classical tools. In addition, it is designed in a plug-in object-oriented architecture and is completely platform independent, web-based, interactive, extensible and secure. Over the past 4 years we have tested, fine-tuned and reanalyzed the SOCR framework in many of our undergraduate and graduate probability and statistics courses and have evidence that SOCR resources build student’s intuition and enhance their learning. PMID:21451741
The impact of learning communities on interpersonal relationships among medical students
Champaloux, Eve Privman; Keeley, Meg G.
2016-01-01
Background Medical students at the University of Virginia (UVA) are mentored and learn within the framework of a four college learning community. Uniquely, these learning communities are used to organize the third-year clerkship rotations. Methods Students were surveyed after their first pre-clinical year and after their clerkship year to determine what the effect of the learning community was on their social and educational interpersonal relationships. Results Students knew a higher percentage of their college mates after completing their third-year clerkships within the framework of the college system. Students chose peers from within the college system for social and educational interpersonal scenarios statistically more often than what would be expected at random. Small group learning environments that were not formed within the framework of the college system at UVA did not have the same effect on interpersonal relationships, indicating that learning communities are uniquely able to provide a context for relationship building. Students felt more positively about the social and educational effects of the college system after the clerkship year, with a corresponding increase in the strength of their interpersonal bonds with their college peers. Conclusion This work is the first to investigate the effects of learning communities on interpersonal relationships among medical students and finds that learning communities positively impact both social and educational medical student bonds. PMID:27806828
Nolan, Bernard T.; Fienen, Michael N.; Lorenz, David L.
2015-01-01
We used a statistical learning framework to evaluate the ability of three machine-learning methods to predict nitrate concentration in shallow groundwater of the Central Valley, California: boosted regression trees (BRT), artificial neural networks (ANN), and Bayesian networks (BN). Machine learning methods can learn complex patterns in the data but because of overfitting may not generalize well to new data. The statistical learning framework involves cross-validation (CV) training and testing data and a separate hold-out data set for model evaluation, with the goal of optimizing predictive performance by controlling for model overfit. The order of prediction performance according to both CV testing R2 and that for the hold-out data set was BRT > BN > ANN. For each method we identified two models based on CV testing results: that with maximum testing R2 and a version with R2 within one standard error of the maximum (the 1SE model). The former yielded CV training R2 values of 0.94–1.0. Cross-validation testing R2 values indicate predictive performance, and these were 0.22–0.39 for the maximum R2 models and 0.19–0.36 for the 1SE models. Evaluation with hold-out data suggested that the 1SE BRT and ANN models predicted better for an independent data set compared with the maximum R2 versions, which is relevant to extrapolation by mapping. Scatterplots of predicted vs. observed hold-out data obtained for final models helped identify prediction bias, which was fairly pronounced for ANN and BN. Lastly, the models were compared with multiple linear regression (MLR) and a previous random forest regression (RFR) model. Whereas BRT results were comparable to RFR, MLR had low hold-out R2 (0.07) and explained less than half the variation in the training data. Spatial patterns of predictions by the final, 1SE BRT model agreed reasonably well with previously observed patterns of nitrate occurrence in groundwater of the Central Valley.
Multi-fidelity machine learning models for accurate bandgap predictions of solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab
Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less
Multi-fidelity machine learning models for accurate bandgap predictions of solids
Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab
2016-12-28
Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less
NASA Astrophysics Data System (ADS)
Li, Xing; Mao, Fenlan; Lin, Mian; Yadi, Nan
2017-12-01
This research presents a conceptual framework for incorporating organizational learning and innovations as the mediating variables between market orientation and organizational performance. The samples of this study include 145 companies from the information technology industry in the Scientific Industry Parks. The global model fit is acceptable. This empirical result supports the constructs mentioned above. 1. Market orientation has a positive and direct impact on organizational learning, administrative and technical innovation. 2. Organizational learning has a positive and direct impact on administrative and technical innovation, but with no statistically significant direct impact on performance. 3. Organizational learning does have a positive and indirect impact on performance by means of organizational innovations. 4. It is not statistically significant that the impact of the two innovation types (both administrative and technical) interact with each other.
Inferring Demographic History Using Two-Locus Statistics.
Ragsdale, Aaron P; Gutenkunst, Ryan N
2017-06-01
Population demographic history may be learned from contemporary genetic variation data. Methods based on aggregating the statistics of many single loci into an allele frequency spectrum (AFS) have proven powerful, but such methods ignore potentially informative patterns of linkage disequilibrium (LD) between neighboring loci. To leverage such patterns, we developed a composite-likelihood framework for inferring demographic history from aggregated statistics of pairs of loci. Using this framework, we show that two-locus statistics are more sensitive to demographic history than single-locus statistics such as the AFS. In particular, two-locus statistics escape the notorious confounding of depth and duration of a bottleneck, and they provide a means to estimate effective population size based on the recombination rather than mutation rate. We applied our approach to a Zambian population of Drosophila melanogaster Notably, using both single- and two-locus statistics, we inferred a substantially lower ancestral effective population size than previous works and did not infer a bottleneck history. Together, our results demonstrate the broad potential for two-locus statistics to enable powerful population genetic inference. Copyright © 2017 by the Genetics Society of America.
Daee, Pedram; Mirian, Maryam S; Ahmadabadi, Majid Nili
2014-01-01
In a multisensory task, human adults integrate information from different sensory modalities--behaviorally in an optimal Bayesian fashion--while children mostly rely on a single sensor modality for decision making. The reason behind this change of behavior over age and the process behind learning the required statistics for optimal integration are still unclear and have not been justified by the conventional Bayesian modeling. We propose an interactive multisensory learning framework without making any prior assumptions about the sensory models. In this framework, learning in every modality and in their joint space is done in parallel using a single-step reinforcement learning method. A simple statistical test on confidence intervals on the mean of reward distributions is used to select the most informative source of information among the individual modalities and the joint space. Analyses of the method and the simulation results on a multimodal localization task show that the learning system autonomously starts with sensory selection and gradually switches to sensory integration. This is because, relying more on modalities--i.e. selection--at early learning steps (childhood) is more rewarding than favoring decisions learned in the joint space since, smaller state-space in modalities results in faster learning in every individual modality. In contrast, after gaining sufficient experiences (adulthood), the quality of learning in the joint space matures while learning in modalities suffers from insufficient accuracy due to perceptual aliasing. It results in tighter confidence interval for the joint space and consequently causes a smooth shift from selection to integration. It suggests that sensory selection and integration are emergent behavior and both are outputs of a single reward maximization process; i.e. the transition is not a preprogrammed phenomenon.
Context-Aware Generative Adversarial Privacy
NASA Astrophysics Data System (ADS)
Huang, Chong; Kairouz, Peter; Chen, Xiao; Sankar, Lalitha; Rajagopal, Ram
2017-12-01
Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. On the one hand, context-free privacy solutions, such as differential privacy, provide strong privacy guarantees, but often lead to a significant reduction in utility. On the other hand, context-aware privacy solutions, such as information theoretic privacy, achieve an improved privacy-utility tradeoff, but assume that the data holder has access to dataset statistics. We circumvent these limitations by introducing a novel context-aware privacy framework called generative adversarial privacy (GAP). GAP leverages recent advancements in generative adversarial networks (GANs) to allow the data holder to learn privatization schemes from the dataset itself. Under GAP, learning the privacy mechanism is formulated as a constrained minimax game between two players: a privatizer that sanitizes the dataset in a way that limits the risk of inference attacks on the individuals' private variables, and an adversary that tries to infer the private variables from the sanitized dataset. To evaluate GAP's performance, we investigate two simple (yet canonical) statistical dataset models: (a) the binary data model, and (b) the binary Gaussian mixture model. For both models, we derive game-theoretically optimal minimax privacy mechanisms, and show that the privacy mechanisms learned from data (in a generative adversarial fashion) match the theoretically optimal ones. This demonstrates that our framework can be easily applied in practice, even in the absence of dataset statistics.
Gao, Yaozong; Zhan, Yiqiang
2015-01-01
Image-guided radiotherapy (IGRT) requires fast and accurate localization of the prostate in 3-D treatment-guided radiotherapy, which is challenging due to low tissue contrast and large anatomical variation across patients. On the other hand, the IGRT workflow involves collecting a series of computed tomography (CT) images from the same patient under treatment. These images contain valuable patient-specific information yet are often neglected by previous works. In this paper, we propose a novel learning framework, namely incremental learning with selective memory (ILSM), to effectively learn the patient-specific appearance characteristics from these patient-specific images. Specifically, starting with a population-based discriminative appearance model, ILSM aims to “personalize” the model to fit patient-specific appearance characteristics. The model is personalized with two steps: backward pruning that discards obsolete population-based knowledge and forward learning that incorporates patient-specific characteristics. By effectively combining the patient-specific characteristics with the general population statistics, the incrementally learned appearance model can localize the prostate of a specific patient much more accurately. This work has three contributions: 1) the proposed incremental learning framework can capture patient-specific characteristics more effectively, compared to traditional learning schemes, such as pure patient-specific learning, population-based learning, and mixture learning with patient-specific and population data; 2) this learning framework does not have any parametric model assumption, hence, allowing the adoption of any discriminative classifier; and 3) using ILSM, we can localize the prostate in treatment CTs accurately (DSC ∼0.89) and fast (∼4 s), which satisfies the real-world clinical requirements of IGRT. PMID:24495983
Gopnik, Alison
2012-09-28
New theoretical ideas and empirical research show that very young children's learning and thinking are strikingly similar to much learning and thinking in science. Preschoolers test hypotheses against data and make causal inferences; they learn from statistics and informal experimentation, and from watching and listening to others. The mathematical framework of probabilistic models and Bayesian inference can describe this learning in precise ways. These discoveries have implications for early childhood education and policy. In particular, they suggest both that early childhood experience is extremely important and that the trend toward more structured and academic early childhood programs is misguided.
Galatzer-Levy, Isaac R.; Ruggles, Kelly; Chen, Zhe
2017-01-01
Diverse environmental and biological systems interact to influence individual differences in response to environmental stress. Understanding the nature of these complex relationships can enhance the development of methods to: (1) identify risk, (2) classify individuals as healthy or ill, (3) understand mechanisms of change, and (4) develop effective treatments. The Research Domain Criteria (RDoC) initiative provides a theoretical framework to understand health and illness as the product of multiple inter-related systems but does not provide a framework to characterize or statistically evaluate such complex relationships. Characterizing and statistically evaluating models that integrate multiple levels (e.g. synapses, genes, environmental factors) as they relate to outcomes that a free from prior diagnostic benchmarks represents a challenge requiring new computational tools that are capable to capture complex relationships and identify clinically relevant populations. In the current review, we will summarize machine learning methods that can achieve these goals. PMID:29527592
SVS: data and knowledge integration in computational biology.
Zycinski, Grzegorz; Barla, Annalisa; Verri, Alessandro
2011-01-01
In this paper we present a framework for structured variable selection (SVS). The main concept of the proposed schema is to take a step towards the integration of two different aspects of data mining: database and machine learning perspective. The framework is flexible enough to use not only microarray data, but other high-throughput data of choice (e.g. from mass spectrometry, microarray, next generation sequencing). Moreover, the feature selection phase incorporates prior biological knowledge in a modular way from various repositories and is ready to host different statistical learning techniques. We present a proof of concept of SVS, illustrating some implementation details and describing current results on high-throughput microarray data.
Gardner, Anne; Gardner, Glenn; Coyer, Fiona; Gosby, Helen
2016-01-01
The nurse practitioner is a growing clinical role in Australia and internationally, with an expanded scope of practice including prescribing, referring and diagnosing. However, key gaps exist in nurse practitioner education regarding governance of specialty clinical learning and teaching. Specifically, there is no internationally accepted framework against which to measure the quality of clinical learning and teaching for advanced specialty practice. A case study design will be used to investigate educational governance and capability theory in nurse practitioner education. Nurse practitioner students, their clinical mentors and university academic staff, from an Australian university that offers an accredited nurse practitioner Master's degree, will be invited to participate in the study. Semi-structured interviews will be conducted with students and their respective clinical mentors and university academic staff to investigate learning objectives related to educational governance and attributes of capability learning. Limited demographic data on age, gender, specialty, education level and nature of the clinical healthcare learning site will also be collected. Episodes of nurse practitioner student specialty clinical learning will be observed and documentation from the students' healthcare learning sites will be collected. Descriptive statistics will be used to report age groups, areas of specialty and types of facilities where clinical learning and teaching is observed. Qualitative data from interviews, observations and student documents will be coded, aggregated and explored to inform a framework of educational governance, to confirm the existing capability framework and describe any additional characteristics of capability and capability learning. This research has widespread significance and will contribute to ongoing development of the Australian health workforce. Stakeholders from industry and academic bodies will be involved in shaping the framework that guides the quality and governance of clinical learning and teaching in specialty nurse practitioner practice. Through developing standards for advanced clinical learning and teaching, and furthering understanding of capability theory for advanced healthcare practitioners, this research will contribute to evidence-based models of advanced specialty postgraduate education.
History matching through dynamic decision-making
Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson
2017-01-01
History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413
Reproducible Computing: a new Technology for Statistics Education and Educational Research
NASA Astrophysics Data System (ADS)
Wessa, Patrick
2009-05-01
This paper explains how the R Framework (http://www.wessa.net) and a newly developed Compendium Platform (http://www.freestatistics.org) allow us to create, use, and maintain documents that contain empirical research results which can be recomputed and reused in derived work. It is illustrated that this technological innovation can be used to create educational applications that can be shown to support effective learning of statistics and associated analytical skills. It is explained how a Compendium can be created by anyone, without the need to understand the technicalities of scientific word processing (L style="font-variant: small-caps">ATEX) or statistical computing (R code). The proposed Reproducible Computing system allows educational researchers to objectively measure key aspects of the actual learning process based on individual and constructivist activities such as: peer review, collaboration in research, computational experimentation, etc. The system was implemented and tested in three statistics courses in which the use of Compendia was used to create an interactive e-learning environment that simulated the real-world process of empirical scientific research.
Statistical Mechanics of the Delayed Reward-Based Learning with Node Perturbation
NASA Astrophysics Data System (ADS)
Hiroshi Saito,; Kentaro Katahira,; Kazuo Okanoya,; Masato Okada,
2010-06-01
In reward-based learning, reward is typically given with some delay after a behavior that causes the reward. In machine learning literature, the framework of the eligibility trace has been used as one of the solutions to handle the delayed reward in reinforcement learning. In recent studies, the eligibility trace is implied to be important for difficult neuroscience problem known as the “distal reward problem”. Node perturbation is one of the stochastic gradient methods from among many kinds of reinforcement learning implementations, and it searches the approximate gradient by introducing perturbation to a network. Since the stochastic gradient method does not require a objective function differential, it is expected to be able to account for the learning mechanism of a complex system, like a brain. We study the node perturbation with the eligibility trace as a specific example of delayed reward-based learning, and analyzed it using a statistical mechanics approach. As a result, we show the optimal time constant of the eligibility trace respect to the reward delay and the existence of unlearnable parameter configurations.
Statistical Knowledge and Learning in Phonology
ERIC Educational Resources Information Center
Dunbar, Ewan Michael
2013-01-01
This dissertation deals with the theory of the phonetic component of grammar in a formal probabilistic inference framework: (1) it has been recognized since the beginning of generative phonology that some language-specific phonetic implementation is actually context-dependent, and thus it can be said that there are gradient "phonetic…
Examining Deaf Students' Equitable Access to Science vis-a-vis Contemporary Pedagogical Practices
NASA Astrophysics Data System (ADS)
Ross, Annemarie D.
As a Deaf individual, it is important to ensure the growth of the Deaf community as science-literate members of society. While many predecessors have contributed to the body of research in Deaf pedagogy, there is still much to be done in safeguarding Deaf learners' equitable access to science education. One area of concern is in narrowing the statistically significant gap in Climate Change knowledge between Deaf students' and Hearing students' at the Rochester Institute of Technology. It is within this topic that the writing-to-learn-science framework is practiced and Deaf students in the Laboratory Science Technology program at the National Technical Institute for the Deaf participate in a study to assess whether or not the use of writing-to-learn-science strategies help them become better scientists, writers and learners. In this study, the social constructivist framework (Vygotsky, 1987) is used to study the impact of the use of the Berland and Reiser (2009) argumentation framework, so that they write-to-learn-science through the steps of sense-making, articulation and persuasion.
Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman
2018-01-01
Background Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Objective Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Methods Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Results Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. Conclusions To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. PMID:29506966
Sadat, Md Nazmus; Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman
2018-03-05
Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. ©Md Nazmus Sadat, Xiaoqian Jiang, Md Momin Al Aziz, Shuang Wang, Noman Mohammed. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2018.
A Framework to Learn Physics from Atomically Resolved Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlcek, L.; Maksov, A.; Pan, M.
Here, we present a generalized framework for physics extraction, i.e., knowledge, from atomically resolved images, and show its utility by applying it to a model system of segregation of chalcogen atoms in an FeSe 0.45Te 0.55 superconductor system. We emphasize that the framework can be used for any imaging data for which a generative physical model exists. Consider that a generative physical model can produce a very large number of configurations, not all of which are observable. By applying a microscope function to a sub-set of this generated data, we form a simulated dataset on which statistics can be computed.
ERIC Educational Resources Information Center
Nelson, Brian; Nugent, Rebecca; Rupp, Andre A.
2012-01-01
This special issue of "JEDM" was dedicated to bridging work done in the disciplines of "educational and psychological assessment" and "educational data mining" (EDM) via the assessment design and implementation framework of "evidence-centered design" (ECD). It consisted of a series of five papers: one…
Bootstrapping in a Language of Thought: A Formal Model of Numerical Concept Learning
ERIC Educational Resources Information Center
Piantadosi, Steven T.; Tenenbaum, Joshua B.; Goodman, Noah D.
2012-01-01
In acquiring number words, children exhibit a qualitative leap in which they transition from understanding a few number words, to possessing a rich system of interrelated numerical concepts. We present a computational framework for understanding this inductive leap as the consequence of statistical inference over a sufficiently powerful…
Understanding Discourse on Work and Job-Related Well-Being in Public Social Media
Liu, Tong; Homan, Christopher M.; Alm, Cecilia Ovesdotter; White, Ann Marie; Lytle, Megan C.; Kautz, Henry A.
2016-01-01
We construct a humans-in-the-loop supervised learning framework that integrates crowdsourcing feedback and local knowledge to detect job-related tweets from individual and business accounts. Using data-driven ethnography, we examine discourse about work by fusing language-based analysis with temporal, geospational, and labor statistics information. PMID:27795613
Carvalho, Paulo F.; Goldstone, Robert L.
2015-01-01
Inductive category learning takes place across time. As such, it is not surprising that the sequence in which information is studied has an impact in what is learned and how efficient learning is. In this paper we review research on different learning sequences and how this impacts learning. We analyze different aspects of interleaved (frequent alternation between categories during study) and blocked study (infrequent alternation between categories during study) that might explain how and when one sequence of study results in improved learning. While these different sequences of study differ in the amount of temporal spacing and temporal juxtaposition between items of different categories, these aspects do not seem to account for the majority of the results available in the literature. However, differences in the type of category being studied and the duration of the retention interval between study and test may play an important role. We conclude that there is no single aspect that is able to account for all the evidence available. Understanding learning as a process of sequential comparisons in time and how different sequences fundamentally alter the statistics of this experience offers a promising framework for understanding sequencing effects in category learning. We use this framework to present novel predictions and hypotheses for future research on sequencing effects in inductive category learning. PMID:25983699
Representing Learning With Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Probabilistic graphical models are being used widely in artificial intelligence, for instance, in diagnosis and expert systems, as a unified qualitative and quantitative framework for representing and reasoning with probabilities and independencies. Their development and use spans several fields including artificial intelligence, decision theory and statistics, and provides an important bridge between these communities. This paper shows by way of example that these models can be extended to machine learning, neural networks and knowledge discovery by representing the notion of a sample on the graphical model. Not only does this allow a flexible variety of learning problems to be represented, it also provides the means for representing the goal of learning and opens the way for the automatic development of learning algorithms from specifications.
NASA Astrophysics Data System (ADS)
Hendikawati, P.; Arifudin, R.; Zahid, M. Z.
2018-03-01
This study aims to design an android Statistics Data Analysis application that can be accessed through mobile devices to making it easier for users to access. The Statistics Data Analysis application includes various topics of basic statistical along with a parametric statistics data analysis application. The output of this application system is parametric statistics data analysis that can be used for students, lecturers, and users who need the results of statistical calculations quickly and easily understood. Android application development is created using Java programming language. The server programming language uses PHP with the Code Igniter framework, and the database used MySQL. The system development methodology used is the Waterfall methodology with the stages of analysis, design, coding, testing, and implementation and system maintenance. This statistical data analysis application is expected to support statistical lecturing activities and make students easier to understand the statistical analysis of mobile devices.
Harrysson, Iliana J; Cook, Jonathan; Sirimanna, Pramudith; Feldman, Liane S; Darzi, Ara; Aggarwal, Rajesh
2014-07-01
To determine how minimally invasive surgical learning curves are assessed and define an ideal framework for this assessment. Learning curves have implications for training and adoption of new procedures and devices. In 2000, a review of the learning curve literature was done by Ramsay et al and it called for improved reporting and statistical evaluation of learning curves. Since then, a body of literature is emerging on learning curves but the presentation and analysis vary. A systematic search was performed of MEDLINE, EMBASE, ISI Web of Science, ERIC, and the Cochrane Library from 1985 to August 2012. The inclusion criteria are minimally invasive abdominal surgery formally analyzing the learning curve and English language. 592 (11.1%) of the identified studies met the selection criteria. Time is the most commonly used proxy for the learning curve (508, 86%). Intraoperative outcomes were used in 316 (53%) of the articles, postoperative outcomes in 306 (52%), technical skills in 102 (17%), and patient-oriented outcomes in 38 (6%) articles. Over time, there was evidence of an increase in the relative amount of laparoscopic and robotic studies (P < 0.001) without statistical evidence of a change in the complexity of analysis (P = 0.121). Assessment of learning curves is needed to inform surgical training and evaluate new clinical procedures. An ideal analysis would account for the degree of complexity of individual cases and the inherent differences between surgeons. There is no single proxy that best represents the success of surgery, and hence multiple outcomes should be collected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, R.; Kaplan, A.
Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-building elements and their functions in a fully-designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejectionmore » rate (GRR) relevant for realistic applications.« less
NASA Astrophysics Data System (ADS)
Li, Sissi L.
At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning environment demands not only conceptual understanding but also learning to be a scientist. However, the success of student learning is typically measured in test performance and course grades while assessment of student development as science learners is largely ignored. This dissertation addresses this issue with the development of an instrument towards a measure of physics learning identity (PLI) which is used to guide and complement case studies through student interviews and in class observations. Using the conceptual framework based on Etienne Wenger's communities of practice (1998), I examine the relationship between science learning and learning identity from a situated perspective in the context of a large enrollment science class as a community of practice. This conceptual framework emphasizes the central role of identity in the practices negotiated in the classroom community and in the way students figure out their trajectory as members. Using this framework, I seek to understand how the changes in student learning identity are supported by active engagement based instruction. In turn, this understanding can better facilitate the building of a productive learning community and provide a measure for achievement of the curricular learning goals in active engagement strategies. Based on the conceptual framework, I developed and validated an instrument for measuring physics learning identity in terms of student learning preferences, self-efficacy for learning physics, and self-image as a physics learner. The instrument was pilot tested with a population of Oregon State University students taking calculus based introductory physics. The responses were analyzed using principal component exploratory factor analysis. The emergent factors were analyzed to create reliable subscales to measure PLI in terms of physics learning self-efficacy and social expectations about learning. Using these subscales, I present a case study of a student who performed well in the course but resisted the identity learning goals of the curriculum. These findings are used to support the factors that emerged from the statistical analysis and suggest a potential model of the relationships between the factors describing science learning and learning identity in large enrollment college science classes. This study offers an instrument with which to measure aspects of physics learning identity and insights on how PLI might develop in a classroom community of practice.
Communicating Patient Status: Comparison of Teaching Strategies in Prelicensure Nursing Education.
Lanz, Amelia S; Wood, Felecia G
Research indicates that nurses lack adequate preparation for reporting patient status. This study compared 2 instructional methods focused on patient status reporting in the clinical setting using a randomized posttest-only comparison group design. Reporting performance using a standardized communication framework and student perceptions of satisfaction and confidence with learning were measured in a simulated event that followed the instruction. Between the instructional methods, there was no statistical difference in student reporting performance or perceptions of learning. Performance evaluations provided helpful insights for the nurse educator.
Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu
2015-05-27
Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.
Active learning for noisy oracle via density power divergence.
Sogawa, Yasuhiro; Ueno, Tsuyoshi; Kawahara, Yoshinobu; Washio, Takashi
2013-10-01
The accuracy of active learning is critically influenced by the existence of noisy labels given by a noisy oracle. In this paper, we propose a novel pool-based active learning framework through robust measures based on density power divergence. By minimizing density power divergence, such as β-divergence and γ-divergence, one can estimate the model accurately even under the existence of noisy labels within data. Accordingly, we develop query selecting measures for pool-based active learning using these divergences. In addition, we propose an evaluation scheme for these measures based on asymptotic statistical analyses, which enables us to perform active learning by evaluating an estimation error directly. Experiments with benchmark datasets and real-world image datasets show that our active learning scheme performs better than several baseline methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Implementation and evaluation of a community-based interprofessional learning activity.
Luebbers, Ellen L; Dolansky, Mary A; Vehovec, Anton; Petty, Gayle
2017-01-01
Implementation of large-scale, meaningful interprofessional learning activities for pre-licensure students has significant barriers and requires novel approaches to ensure success. To accomplish this goal, faculty at Case Western Reserve University, Ohio, USA, used the Ottawa Model of Research Use (OMRU) framework to create, improve, and sustain a community-based interprofessional learning activity for large numbers of medical students (N = 177) and nursing students (N = 154). The model guided the process and included identification of context-specific barriers and facilitators, continual monitoring and improvement using data, and evaluation of student learning outcomes as well as programme outcomes. First year Case Western Reserve University medical students and undergraduate nursing students participated in team-structured prevention screening clinics in the Cleveland Metropolitan Public School District. Identification of barriers and facilitators assisted with overcoming logistic and scheduling issues, large class size, differing ages and skill levels of students and creating sustainability. Continual monitoring led to three distinct phases of improvement and resulted in the creation of an authentic team structure, role clarification, and relevance for students. Evaluation of student learning included both qualitative and quantitative methods, resulting in statistically significant findings and qualitative themes of learner outcomes. The OMRU implementation model provided a useful framework for successful implementation resulting in a sustainable interprofessional learning activity.
Das, Dev Kumar; Ghosh, Madhumala; Pal, Mallika; Maiti, Asok K; Chakraborty, Chandan
2013-02-01
The aim of this paper is to address the development of computer assisted malaria parasite characterization and classification using machine learning approach based on light microscopic images of peripheral blood smears. In doing this, microscopic image acquisition from stained slides, illumination correction and noise reduction, erythrocyte segmentation, feature extraction, feature selection and finally classification of different stages of malaria (Plasmodium vivax and Plasmodium falciparum) have been investigated. The erythrocytes are segmented using marker controlled watershed transformation and subsequently total ninety six features describing shape-size and texture of erythrocytes are extracted in respect to the parasitemia infected versus non-infected cells. Ninety four features are found to be statistically significant in discriminating six classes. Here a feature selection-cum-classification scheme has been devised by combining F-statistic, statistical learning techniques i.e., Bayesian learning and support vector machine (SVM) in order to provide the higher classification accuracy using best set of discriminating features. Results show that Bayesian approach provides the highest accuracy i.e., 84% for malaria classification by selecting 19 most significant features while SVM provides highest accuracy i.e., 83.5% with 9 most significant features. Finally, the performance of these two classifiers under feature selection framework has been compared toward malaria parasite classification. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Sensor Driven Probabilistic Method for Enabling Hyper Resolution Flood Simulations
NASA Astrophysics Data System (ADS)
Fries, K. J.; Salas, F.; Kerkez, B.
2016-12-01
A reduction in the cost of sensors and wireless communications is now enabling researchers and local governments to make flow, stage and rain measurements at locations that are not covered by existing USGS or state networks. We ask the question: how should these new sources of densified, street-level sensor measurements be used to make improved forecasts using the National Water Model (NWM)? Assimilating these data "into" the NWM can be challenging due to computational complexity, as well as heterogeneity of sensor and other input data. Instead, we introduce a machine learning and statistical framework that layers these data "on top" of the NWM outputs to improve high-resolution hydrologic and hydraulic forecasting. By generalizing our approach into a post-processing framework, a rapidly repeatable blueprint is generated for for decision makers who want to improve local forecasts by coupling sensor data with the NWM. We present preliminary results based on case studies in highly instrumented watersheds in the US. Through the use of statistical learning tools and hydrologic routing schemes, we demonstrate the ability of our approach to improve forecasts while simultaneously characterizing bias and uncertainty in the NWM.
A unified framework for image retrieval using keyword and visual features.
Jing, Feng; Li, Mingling; Zhang, Hong-Jiang; Zhang, Bo
2005-07-01
In this paper, a unified image retrieval framework based on both keyword annotations and visual features is proposed. In this framework, a set of statistical models are built based on visual features of a small set of manually labeled images to represent semantic concepts and used to propagate keywords to other unlabeled images. These models are updated periodically when more images implicitly labeled by users become available through relevance feedback. In this sense, the keyword models serve the function of accumulation and memorization of knowledge learned from user-provided relevance feedback. Furthermore, two sets of effective and efficient similarity measures and relevance feedback schemes are proposed for query by keyword scenario and query by image example scenario, respectively. Keyword models are combined with visual features in these schemes. In particular, a new, entropy-based active learning strategy is introduced to improve the efficiency of relevance feedback for query by keyword. Furthermore, a new algorithm is proposed to estimate the keyword features of the search concept for query by image example. It is shown to be more appropriate than two existing relevance feedback algorithms. Experimental results demonstrate the effectiveness of the proposed framework.
Machine Learning-based discovery of closures for reduced models of dynamical systems
NASA Astrophysics Data System (ADS)
Pan, Shaowu; Duraisamy, Karthik
2017-11-01
Despite the successful application of machine learning (ML) in fields such as image processing and speech recognition, only a few attempts has been made toward employing ML to represent the dynamics of complex physical systems. Previous attempts mostly focus on parameter calibration or data-driven augmentation of existing models. In this work we present a ML framework to discover closure terms in reduced models of dynamical systems and provide insights into potential problems associated with data-driven modeling. Based on exact closure models for linear system, we propose a general linear closure framework from viewpoint of optimization. The framework is based on trapezoidal approximation of convolution term. Hyperparameters that need to be determined include temporal length of memory effect, number of sampling points, and dimensions of hidden states. To circumvent the explicit specification of memory effect, a general framework inspired from neural networks is also proposed. We conduct both a priori and posteriori evaluations of the resulting model on a number of non-linear dynamical systems. This work was supported in part by AFOSR under the project ``LES Modeling of Non-local effects using Statistical Coarse-graining'' with Dr. Jean-Luc Cambier as the technical monitor.
NASA Astrophysics Data System (ADS)
Jedaman, Pornchai; Buaraphan, Khajornsak; Pimdee, Paitoon; Yuenyong, Chokchai; Sukkamart, Aukkapong; Suksup, Charoen
2018-01-01
This article aims to study and analyze the 21st Century of sustainable leadership under the education THAILAND 4.0 Framework, and factor analysis of sustainable leadership for science learning. The study employed both quantitative and qualitative approaches in collecting data including a questionnaire survey, a documentary review and a Participatory Action Learning (PAL). The sample were sampling purposively. There were 225 administrators of Primary and Secondary Education Area Offices throughout Thailand. Out of 225, 183 (83.33%) and 42 (16.67%) respondents were the administrators of Primary and Secondary Education Offices, respectively. The quantitative data was analyzed by descriptive statistical analysis including mean, standard deviation. Also, the Confirmatory Factor Analysis (CFA) was conducted to analyze the factors associated with sustainable leadership under the education THAILAND 4.0 Framework. The qualitative data was analyzed by using three main stages, i.e., data reduction, data organization, data interpretation to conclusion. The study revealed that sustainable leadership under the education THAILAND 4.0 Framework needs to focus on development, awareness of duty and responsibility, equality, moral and knowledge. All aspects should be integrated together in order to achieve the organizational goals, good governance culture and identity. Importantly, there were six "key" elements of sustainable leadership under the education THAILAND 4.0 framework: i) Professional Leadership Role, ii) Leadership Under Change, iii) Leadership Skills 4.0 in the 21st Century, iv) Development in the Pace With Change, v) Creativity and Creative Tension, and vi) Hold True Assessments. The CFA showed that the six key elements of sustainable leadership under the education THAILAND 4.0 framework by weight of each elements were significant at the .01 significance level.
Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A
2011-10-01
Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions.
BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing
NASA Astrophysics Data System (ADS)
Dong, Bo; Zheng, Qinghua; Qiao, Mu; Shu, Jian; Yang, Jie
Currently, E-Learning has grown into a widely accepted way of learning. With the huge growth of users, services, education contents and resources, E-Learning systems are facing challenges of optimizing resource allocations, dealing with dynamic concurrency demands, handling rapid storage growth requirements and cost controlling. In this paper, an E-Learning framework based on cloud computing is presented, namely BlueSky cloud framework. Particularly, the architecture and core components of BlueSky cloud framework are introduced. In BlueSky cloud framework, physical machines are virtualized, and allocated on demand for E-Learning systems. Moreover, BlueSky cloud framework combines with traditional middleware functions (such as load balancing and data caching) to serve for E-Learning systems as a general architecture. It delivers reliable, scalable and cost-efficient services to E-Learning systems, and E-Learning organizations can establish systems through these services in a simple way. BlueSky cloud framework solves the challenges faced by E-Learning, and improves the performance, availability and scalability of E-Learning systems.
Optimally designing games for behavioural research
Rafferty, Anna N.; Zaharia, Matei; Griffiths, Thomas L.
2014-01-01
Computer games can be motivating and engaging experiences that facilitate learning, leading to their increasing use in education and behavioural experiments. For these applications, it is often important to make inferences about the knowledge and cognitive processes of players based on their behaviour. However, designing games that provide useful behavioural data are a difficult task that typically requires significant trial and error. We address this issue by creating a new formal framework that extends optimal experiment design, used in statistics, to apply to game design. In this framework, we use Markov decision processes to model players' actions within a game, and then make inferences about the parameters of a cognitive model from these actions. Using a variety of concept learning games, we show that in practice, this method can predict which games will result in better estimates of the parameters of interest. The best games require only half as many players to attain the same level of precision. PMID:25002821
Student Perceptions of Motivational Behaviors of Instructions in a Military Setting
2005-06-01
surveys of students, faculty, and alumni, (b) summaries of research, (c) theories of leading researchers, and (d) statistically identified factors. Three...habits, motivation, learning style, cogitative, socioemotional , and morale character development. Theoretical Framework of Motivation in Teacher...and not in others has been the subject of many theories McKeachie (2002). 23 McClelland, Atkinson, Clark, and Lowell (1953) stated that motivation
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics.
Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo; Laufs, Helmut; Lacasa, Lucas
2018-02-23
We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.
A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias
With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less
Yin, X-X; Zhang, Y; Cao, J; Wu, J-L; Hadjiloucas, S
2016-12-01
We provide a comprehensive account of recent advances in biomedical image analysis and classification from two complementary imaging modalities: terahertz (THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The work aims to highlight underlining commonalities in both data structures so that a common multi-channel data fusion framework can be developed. Signal pre-processing in both datasets is discussed briefly taking into consideration advances in multi-resolution analysis and model based fractional order calculus system identification. Developments in statistical signal processing using principal component and independent component analysis are also considered. These algorithms have been developed independently by the THz-pulse imaging and DCE-MRI communities, and there is scope to place them in a common multi-channel framework to provide better software standardization at the pre-processing de-noising stage. A comprehensive discussion of feature selection strategies is also provided and the importance of preserving textural information is highlighted. Feature extraction and classification methods taking into consideration recent advances in support vector machine (SVM) and extreme learning machine (ELM) classifiers and their complex extensions are presented. An outlook on Clifford algebra classifiers and deep learning techniques suitable to both types of datasets is also provided. The work points toward the direction of developing a new unified multi-channel signal processing framework for biomedical image analysis that will explore synergies from both sensing modalities for inferring disease proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Evicase: an evidence-based case structuring approach for personalized healthcare.
Carmeli, Boaz; Casali, Paolo; Goldbraich, Anna; Goldsteen, Abigail; Kent, Carmel; Licitra, Lisa; Locatelli, Paolo; Restifo, Nicola; Rinott, Ruty; Sini, Elena; Torresani, Michele; Waks, Zeev
2012-01-01
The personalized medicine era stresses a growing need to combine evidence-based medicine with case based reasoning in order to improve the care process. To address this need we suggest a framework to generate multi-tiered statistical structures we call Evicases. Evicase integrates established medical evidence together with patient cases from the bedside. It then uses machine learning algorithms to produce statistical results and aggregators, weighted predictions, and appropriate recommendations. Designed as a stand-alone structure, Evicase can be used for a range of decision support applications including guideline adherence monitoring and personalized prognostic predictions.
A Framework for Mobile Learning for Enhancing Learning in Higher Education
ERIC Educational Resources Information Center
Barreh, Kadar Abdillahi; Abas, Zoraini Wati
2015-01-01
As mobile learning becomes increasingly pervasive, many higher education institutions have initiated a number of mobile learning initiatives to support their traditional learning modes. This study proposes a framework for mobile learning for enhancing learning in higher education. This framework for mobile learning is based on research conducted…
University students' learning approaches in three cultures: an investigation of Biggs's 3P model.
Zhang, L F
2000-01-01
The relationship of various learning approaches to students' academic achievement, abilities, and other characteristics was examined in a sample of university students in Hong Kong, mainland China, and the United States. The theoretical framework for this project was J. B. Biggs's (1987) theory of student learning approaches. The participants completed the Study Process Questionnaire (based on Biggs's theory) and provided a variety of demographic information. The participants' achievement scores and self-rated scores on analytical, creative, and practical abilities were also obtained. Results indicated that scores on certain subscales of the Study Process Questionnaire statistically predicted participants' achievement beyond their self-rated abilities. In addition, certain learning approaches were significantly related to the participants' ages, gender, parents' education levels, and their travel and work experiences. Implications of these findings are discussed as they relate to teaching and learning.
NASA Astrophysics Data System (ADS)
Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.
2017-12-01
Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.
Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.
Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X
2018-01-05
Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value <0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.
The development of a digital logic concept inventory
NASA Astrophysics Data System (ADS)
Herman, Geoffrey Lindsay
Instructors in electrical and computer engineering and in computer science have developed innovative methods to teach digital logic circuits. These methods attempt to increase student learning, satisfaction, and retention. Although there are readily accessible and accepted means for measuring satisfaction and retention, there are no widely accepted means for assessing student learning. Rigorous assessment of learning is elusive because differences in topic coverage, curriculum and course goals, and exam content prevent direct comparison of two teaching methods when using tools such as final exam scores or course grades. Because of these difficulties, computing educators have issued a general call for the adoption of assessment tools to critically evaluate and compare the various teaching methods. Science, Technology, Engineering, and Mathematics (STEM) education researchers commonly measure students' conceptual learning to compare how much different pedagogies improve learning. Conceptual knowledge is often preferred because all engineering courses should teach a fundamental set of concepts even if they emphasize design or analysis to different degrees. Increasing conceptual learning is also important, because students who can organize facts and ideas within a consistent conceptual framework are able to learn new information quickly and can apply what they know in new situations. If instructors can accurately assess their students' conceptual knowledge, they can target instructional interventions to remedy common problems. To properly assess conceptual learning, several researchers have developed concept inventories (CIs) for core subjects in engineering sciences. CIs are multiple-choice assessment tools that evaluate how well a student's conceptual framework matches the accepted conceptual framework of a discipline or common faulty conceptual frameworks. We present how we created and evaluated the digital logic concept inventory (DLCI).We used a Delphi process to identify the important and difficult concepts to include on the DLCI. To discover and describe common student misconceptions, we interviewed students who had completed a digital logic course. Students vocalized their thoughts as they solved digital logic problems. We analyzed the interview data using a qualitative grounded theory approach. We have administered the DLCI at several institutions and have checked the validity, reliability, and bias of the DLCI with classical testing theory procedures. These procedures consisted of follow-up interviews with students, analysis of administration results with statistical procedures, and expert feedback. We discuss these results and present the DLCI's potential for providing a meaningful tool for comparing student learning at different institutions.
Standardized data collection to build prediction models in oncology: a prototype for rectal cancer.
Meldolesi, Elisa; van Soest, Johan; Damiani, Andrea; Dekker, Andre; Alitto, Anna Rita; Campitelli, Maura; Dinapoli, Nicola; Gatta, Roberto; Gambacorta, Maria Antonietta; Lanzotti, Vito; Lambin, Philippe; Valentini, Vincenzo
2016-01-01
The advances in diagnostic and treatment technology are responsible for a remarkable transformation in the internal medicine concept with the establishment of a new idea of personalized medicine. Inter- and intra-patient tumor heterogeneity and the clinical outcome and/or treatment's toxicity's complexity, justify the effort to develop predictive models from decision support systems. However, the number of evaluated variables coming from multiple disciplines: oncology, computer science, bioinformatics, statistics, genomics, imaging, among others could be very large thus making traditional statistical analysis difficult to exploit. Automated data-mining processes and machine learning approaches can be a solution to organize the massive amount of data, trying to unravel important interaction. The purpose of this paper is to describe the strategy to collect and analyze data properly for decision support and introduce the concept of an 'umbrella protocol' within the framework of 'rapid learning healthcare'.
Bootstrapping in a language of thought: a formal model of numerical concept learning.
Piantadosi, Steven T; Tenenbaum, Joshua B; Goodman, Noah D
2012-05-01
In acquiring number words, children exhibit a qualitative leap in which they transition from understanding a few number words, to possessing a rich system of interrelated numerical concepts. We present a computational framework for understanding this inductive leap as the consequence of statistical inference over a sufficiently powerful representational system. We provide an implemented model that is powerful enough to learn number word meanings and other related conceptual systems from naturalistic data. The model shows that bootstrapping can be made computationally and philosophically well-founded as a theory of number learning. Our approach demonstrates how learners may combine core cognitive operations to build sophisticated representations during the course of development, and how this process explains observed developmental patterns in number word learning. Copyright © 2011 Elsevier B.V. All rights reserved.
An Oracle-based co-training framework for writer identification in offline handwriting
NASA Astrophysics Data System (ADS)
Porwal, Utkarsh; Rajan, Sreeranga; Govindaraju, Venu
2012-01-01
State-of-the-art techniques for writer identification have been centered primarily on enhancing the performance of the system for writer identification. Machine learning algorithms have been used extensively to improve the accuracy of such system assuming sufficient amount of data is available for training. Little attention has been paid to the prospect of harnessing the information tapped in a large amount of un-annotated data. This paper focuses on co-training based framework that can be used for iterative labeling of the unlabeled data set exploiting the independence between the multiple views (features) of the data. This paradigm relaxes the assumption of sufficiency of the data available and tries to generate labeled data from unlabeled data set along with improving the accuracy of the system. However, performance of co-training based framework is dependent on the effectiveness of the algorithm used for the selection of data points to be added in the labeled set. We propose an Oracle based approach for data selection that learns the patterns in the score distribution of classes for labeled data points and then predicts the labels (writers) of the unlabeled data point. This method for selection statistically learns the class distribution and predicts the most probable class unlike traditional selection algorithms which were based on heuristic approaches. We conducted experiments on publicly available IAM dataset and illustrate the efficacy of the proposed approach.
One lens missing? Clarifying the clinical microsystem framework with learning theories.
Norman, Ann-Charlott; Fritzen, Lena; Fridh, Marianne Lindblad
2013-01-01
The clinical microsystem (CMS) approach is widely used and is perceived as helpful in practice but, we ask the question: "Is its learning potential sufficiently utilized?" To scrutinize aspects of learning within the CMS framework and to clarify the learning aspects the framework includes and thereby support the framework with the enhanced learning perspective that becomes visible. Literature on the CMS framework was systematically searched and selected using inclusion criteria. An analytical tool was constructed in the form of a theoretical lens that was used to clarify learning aspects that are associated with the framework. The analysis revealed 3 learning aspects: (1) The CMS framework describes individual and social learning but not how to adapt learning strategies for purposes of change. (2) The metaphorical language of how to reach a holistic health care system for each patient has developed over time but can still be improved by naming social interactions to transcend organizational boundaries. (3) Power structures are recognized but not as a characteristic that restricts learning due to asymmetric communication. The "lens" perspective reveals new meanings to learning that enhance our understanding of health care as a social system and provides new practical learning strategies.
Liu, Xiao; Chen, Hsinchun
2015-12-01
Social media offer insights of patients' medical problems such as drug side effects and treatment failures. Patient reports of adverse drug events from social media have great potential to improve current practice of pharmacovigilance. However, extracting patient adverse drug event reports from social media continues to be an important challenge for health informatics research. In this study, we develop a research framework with advanced natural language processing techniques for integrated and high-performance patient reported adverse drug event extraction. The framework consists of medical entity extraction for recognizing patient discussions of drug and events, adverse drug event extraction with shortest dependency path kernel based statistical learning method and semantic filtering with information from medical knowledge bases, and report source classification to tease out noise. To evaluate the proposed framework, a series of experiments were conducted on a test bed encompassing about postings from major diabetes and heart disease forums in the United States. The results reveal that each component of the framework significantly contributes to its overall effectiveness. Our framework significantly outperforms prior work. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Underwood, Sonia M.; Reyes-Gastelum, David; Cooper, Melanie M.
2015-01-01
Longitudinal studies can provide significant insights into how students develop competence in a topic or subject area over time. However, there are many barriers, such as retention of students in the study and the complexity of data analysis, that make these studies rare. Here, we present how a statistical framework, discrete-time survival…
KOJAK: Scalable Semantic Link Discovery Via Integrated Knowledge-Based and Statistical Reasoning
2006-11-01
program can find interesting connections in a network without having to learn the patterns of interestingness beforehand. The key advantage of our...Interesting Instances in Semantic Graphs Below we describe how the UNICORN framework can discover interesting instances in a multi-relational dataset...We can now describe how UNICORN solves the first problem of finding the top interesting nodes in a semantic net by ranking them according to
Statistical Inference for Data Adaptive Target Parameters.
Hubbard, Alan E; Kherad-Pajouh, Sara; van der Laan, Mark J
2016-05-01
Consider one observes n i.i.d. copies of a random variable with a probability distribution that is known to be an element of a particular statistical model. In order to define our statistical target we partition the sample in V equal size sub-samples, and use this partitioning to define V splits in an estimation sample (one of the V subsamples) and corresponding complementary parameter-generating sample. For each of the V parameter-generating samples, we apply an algorithm that maps the sample to a statistical target parameter. We define our sample-split data adaptive statistical target parameter as the average of these V-sample specific target parameters. We present an estimator (and corresponding central limit theorem) of this type of data adaptive target parameter. This general methodology for generating data adaptive target parameters is demonstrated with a number of practical examples that highlight new opportunities for statistical learning from data. This new framework provides a rigorous statistical methodology for both exploratory and confirmatory analysis within the same data. Given that more research is becoming "data-driven", the theory developed within this paper provides a new impetus for a greater involvement of statistical inference into problems that are being increasingly addressed by clever, yet ad hoc pattern finding methods. To suggest such potential, and to verify the predictions of the theory, extensive simulation studies, along with a data analysis based on adaptively determined intervention rules are shown and give insight into how to structure such an approach. The results show that the data adaptive target parameter approach provides a general framework and resulting methodology for data-driven science.
Science Teaching Orientations and Technology-Enhanced Tools for Student Learning
NASA Astrophysics Data System (ADS)
Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Shelton, Brett E.
2013-10-01
This qualitative study examines teacher orientations and technology-enhanced tools for student learning within a science literacy framework. Data for this study came from a group of 10 eighth grade science teachers. Each of these teachers was a participant in a professional development (PD) project focused on reformed and technology-enhanced science instruction shaped by national standards documents. The research is focused on identifying teacher orientations and use of technology-enhanced tools prior to or unaffected by PD. The primary data sources for this study are drawn from learning journals and classroom observations. Qualitative methods were used to analyze learning journals, while descriptive statistics were used from classroom observations to further explore and triangulate the emergent qualitative findings. Two teacher orientation teacher profiles were developed to reveal the emergent teacher orientation dimensions and technology-enhanced tool categories found: "more traditional teacher orientation profile" and "toward a reformed-based teacher orientation profile." Both profiles were founded on "knowledge of" beliefs about the goals and purposes for science education, while neither profile revealed sophisticated beliefs about the nature of science. The "traditional" profile revealed more teacher-centered beliefs about science teaching and learning, and the "towards reformed-based" profile revealed student-centered beliefs. Finally, only technology-enhanced tools supportive of collaborative construction of science knowledge were found connected to the "towards reformed-based" profile. This research is concluded with a proposed "reformed-based teacher orientation profile" as a future target for science teaching and learning with technology-enhanced tools in a science literacy framework.
The Triangle Technique: a new evidence-based educational tool for pediatric medication calculations.
Sredl, Darlene
2006-01-01
Many nursing student verbalize an aversion to mathematical concepts and experience math anxiety whenever a mathematical problem is confronted. Since nurses confront mathematical problems on a daily basis, they must learn to feel comfortable with their ability to perform these calculations correctly. The Triangle Technique, a new educational tool available to nurse educators, incorporates evidence-based concepts within a graphic model using visual, auditory, and kinesthetic learning styles to demonstrate pediatric medication calculations of normal therapeutic ranges. The theoretical framework for the technique is presented, as is a pilot study examining the efficacy of the educational tool. Statistically significant results obtained by Pearson's product-moment correlation indicate that students are better able to calculate accurate pediatric therapeutic dosage ranges after participation in the educational intervention of learning the Triangle Technique.
Machine learning bandgaps of double perovskites
Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.
2016-01-01
The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance. PMID:26783247
Sheet, Debdoot; Karamalis, Athanasios; Eslami, Abouzar; Noël, Peter; Chatterjee, Jyotirmoy; Ray, Ajoy K; Laine, Andrew F; Carlier, Stephane G; Navab, Nassir; Katouzian, Amin
2014-01-01
Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper. Copyright © 2013 Elsevier B.V. All rights reserved.
Knowledge dimensions in hypothesis test problems
NASA Astrophysics Data System (ADS)
Krishnan, Saras; Idris, Noraini
2012-05-01
The reformation in statistics education over the past two decades has predominantly shifted the focus of statistical teaching and learning from procedural understanding to conceptual understanding. The emphasis of procedural understanding is on the formulas and calculation procedures. Meanwhile, conceptual understanding emphasizes students knowing why they are using a particular formula or executing a specific procedure. In addition, the Revised Bloom's Taxonomy offers a twodimensional framework to describe learning objectives comprising of the six revised cognition levels of original Bloom's taxonomy and four knowledge dimensions. Depending on the level of complexities, the four knowledge dimensions essentially distinguish basic understanding from the more connected understanding. This study identifiesthe factual, procedural and conceptual knowledgedimensions in hypothesis test problems. Hypothesis test being an important tool in making inferences about a population from sample informationis taught in many introductory statistics courses. However, researchers find that students in these courses still have difficulty in understanding the underlying concepts of hypothesis test. Past studies also show that even though students can perform the hypothesis testing procedure, they may not understand the rationale of executing these steps or know how to apply them in novel contexts. Besides knowing the procedural steps in conducting a hypothesis test, students must have fundamental statistical knowledge and deep understanding of the underlying inferential concepts such as sampling distribution and central limit theorem. By identifying the knowledge dimensions of hypothesis test problems in this study, suitable instructional and assessment strategies can be developed in future to enhance students' learning of hypothesis test as a valuable inferential tool.
A Framework to Support Mobile Learning in Multilingual Environments
ERIC Educational Resources Information Center
Jantjies, Mmaki E.; Joy, Mike
2014-01-01
This paper presents a multilingual mobile learning framework that can be used to support the pedagogical development of mobile learning systems which can support learning in under-resourced multilingual schools. The framework has been developed following two empirical mobile learning studies. Both studies were conducted in multilingual South…
An e-Learning Theoretical Framework
ERIC Educational Resources Information Center
Aparicio, Manuela; Bacao, Fernando; Oliveira, Tiago
2016-01-01
E-learning systems have witnessed a usage and research increase in the past decade. This article presents the e-learning concepts ecosystem. It summarizes the various scopes on e-learning studies. Here we propose an e-learning theoretical framework. This theory framework is based upon three principal dimensions: users, technology, and services…
Transforming the advanced lab: Part I - Learning goals
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin; Finkelstein, Noah; Lewandowski, H. J.
2012-02-01
Within the physics education research community relatively little attention has been given to laboratory courses, especially at the upper-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University of Colorado Boulder we are developing learning goals, revising curricula, and creating assessments. In this paper, we report on the establishment of our learning goals and a surrounding framework that have emerged from discussions with a wide variety of faculty, from a review of the literature on labs, and from identifying the goals of existing lab courses. Our goals go beyond those of specific physics content and apparatus, allowing instructors to personalize them to their contexts. We report on four broad themes and associated learning goals: Modeling (math-physics-data connection, statistical error analysis, systematic error, modeling of engineered "black boxes"), Design (of experiments, apparatus, programs, troubleshooting), Communication, and Technical Lab Skills (computer-aided data analysis, LabVIEW, test and measurement equipment).
Preparing learners with partly incorrect intuitive prior knowledge for learning
Ohst, Andrea; Fondu, Béatrice M. E.; Glogger, Inga; Nückles, Matthias; Renkl, Alexander
2014-01-01
Learners sometimes have incoherent and fragmented intuitive prior knowledge that is (partly) “incompatible” with the to-be-learned contents. Such knowledge in pieces can cause conceptual disorientation and cognitive overload while learning. We hypothesized that a pre-training intervention providing a generalized schema as a structuring framework for such knowledge in pieces would support (re)organizing-processes of prior knowledge and thus reduce unnecessary cognitive load during subsequent learning. Fifty-six student teachers participated in the experiment. A framework group underwent a pre-training intervention providing a generalized, categorical schema for categorizing primary learning strategies and related but different strategies as a cognitive framework for (re-)organizing their prior knowledge. Our control group received comparable factual information but no framework. Afterwards, all participants learned about primary learning strategies. The framework group claimed to possess higher levels of interest and self-efficacy, achieved higher learning outcomes, and learned more efficiently. Hence, providing a categorical framework can help overcome the barrier of incorrect prior knowledge in pieces. PMID:25071638
Interactive classification and content-based retrieval of tissue images
NASA Astrophysics Data System (ADS)
Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof
2002-11-01
We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.
NASA Astrophysics Data System (ADS)
Yang, Qian; Sing-Long, Carlos; Chen, Enze; Reed, Evan
2017-06-01
Complex chemical processes, such as the decomposition of energetic materials and the chemistry of planetary interiors, are typically studied using large-scale molecular dynamics simulations that run for weeks on high performance parallel machines. These computations may involve thousands of atoms forming hundreds of molecular species and undergoing thousands of reactions. It is natural to wonder whether this wealth of data can be utilized to build more efficient, interpretable, and predictive models. In this talk, we will use techniques from statistical learning to develop a framework for constructing Kinetic Monte Carlo (KMC) models from molecular dynamics data. We will show that our KMC models can not only extrapolate the behavior of the chemical system by as much as an order of magnitude in time, but can also be used to study the dynamics of entirely different chemical trajectories with a high degree of fidelity. Then, we will discuss three different methods for reducing our learned KMC models, including a new and efficient data-driven algorithm using L1-regularization. We demonstrate our framework throughout on a system of high-temperature high-pressure liquid methane, thought to be a major component of gas giant planetary interiors.
The CABES (Clare Adult Basic Education Service) Framework as a Tool for Teaching and Learning
ERIC Educational Resources Information Center
Greene, Moira
2015-01-01
This article describes a Framework that can be used to help bridge the gap between theory and practice in adult learning. The Framework promotes practice informed by three strands important to adult literacy work: social theories of literacy, social-constructivist learning theory and principles of adult learning. The Framework shows how five key…
A Unified Theoretical Framework for Cognitive Sequencing.
Savalia, Tejas; Shukla, Anuj; Bapi, Raju S
2016-01-01
The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks.
A Unified Theoretical Framework for Cognitive Sequencing
Savalia, Tejas; Shukla, Anuj; Bapi, Raju S.
2016-01-01
The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks. PMID:27917146
Design of Mobile Augmented Reality in Health Care Education: A Theory-Driven Framework.
Zhu, Egui; Lilienthal, Anneliese; Shluzas, Lauren Aquino; Masiello, Italo; Zary, Nabil
2015-09-18
Augmented reality (AR) is increasingly used across a range of subject areas in health care education as health care settings partner to bridge the gap between knowledge and practice. As the first contact with patients, general practitioners (GPs) are important in the battle against a global health threat, the spread of antibiotic resistance. AR has potential as a practical tool for GPs to combine learning and practice in the rational use of antibiotics. This paper was driven by learning theory to develop a mobile augmented reality education (MARE) design framework. The primary goal of the framework is to guide the development of AR educational apps. This study focuses on (1) identifying suitable learning theories for guiding the design of AR education apps, (2) integrating learning outcomes and learning theories to support health care education through AR, and (3) applying the design framework in the context of improving GPs' rational use of antibiotics. The design framework was first constructed with the conceptual framework analysis method. Data were collected from multidisciplinary publications and reference materials and were analyzed with directed content analysis to identify key concepts and their relationships. Then the design framework was applied to a health care educational challenge. The proposed MARE framework consists of three hierarchical layers: the foundation, function, and outcome layers. Three learning theories-situated, experiential, and transformative learning-provide foundational support based on differing views of the relationships among learning, practice, and the environment. The function layer depends upon the learners' personal paradigms and indicates how health care learning could be achieved with MARE. The outcome layer analyzes different learning abilities, from knowledge to the practice level, to clarify learning objectives and expectations and to avoid teaching pitched at the wrong level. Suggestions for learning activities and the requirements of the learning environment form the foundation for AR to fill the gap between learning outcomes and medical learners' personal paradigms. With the design framework, the expected rational use of antibiotics by GPs is described and is easy to execute and evaluate. The comparison of specific expected abilities with the GP personal paradigm helps solidify the GP practical learning objectives and helps design the learning environment and activities. The learning environment and activities were supported by learning theories. This paper describes a framework for guiding the design, development, and application of mobile AR for medical education in the health care setting. The framework is theory driven with an understanding of the characteristics of AR and specific medical disciplines toward helping medical education improve professional development from knowledge to practice. Future research will use the framework as a guide for developing AR apps in practice to validate and improve the design framework.
Efficient Multi-Concept Visual Classifier Adaptation in Changing Environments
2016-09-01
yet to be discussed in existing supervised multi-concept visual perception systems used in robotics applications.1,5–7 Anno - tation of images is...Autonomous robot navigation in highly populated pedestrian zones. J Field Robotics. 2015;32(4):565–589. 3. Milella A, Reina G, Underwood J . A self...learning framework for statistical ground classification using RADAR and monocular vision. J Field Robotics. 2015;32(1):20–41. 4. Manjanna S, Dudek G
ERIC Educational Resources Information Center
Gynther, Karsten
2016-01-01
The research project has developed a design framework for an adaptive MOOC that complements the MOOC format with blended learning. The design framework consists of a design model and a series of learning design principles which can be used to design in-service courses for teacher professional development. The framework has been evaluated by…
The Practicality of Statistical Physics Handout Based on KKNI and the Constructivist Approach
NASA Astrophysics Data System (ADS)
Sari, S. Y.; Afrizon, R.
2018-04-01
Statistical physics lecture shows that: 1) the performance of lecturers, social climate, students’ competence and soft skills needed at work are in enough category, 2) students feel difficulties in following the lectures of statistical physics because it is abstract, 3) 40.72% of students needs more understanding in the form of repetition, practice questions and structured tasks, and 4) the depth of statistical physics material needs to be improved gradually and structured. This indicates that learning materials in accordance of The Indonesian National Qualification Framework or Kerangka Kualifikasi Nasional Indonesia (KKNI) with the appropriate learning approach are needed to help lecturers and students in lectures. The author has designed statistical physics handouts which have very valid criteria (90.89%) according to expert judgment. In addition, the practical level of handouts designed also needs to be considered in order to be easy to use, interesting and efficient in lectures. The purpose of this research is to know the practical level of statistical physics handout based on KKNI and a constructivist approach. This research is a part of research and development with 4-D model developed by Thiagarajan. This research activity has reached part of development test at Development stage. Data collection took place by using a questionnaire distributed to lecturers and students. Data analysis using descriptive data analysis techniques in the form of percentage. The analysis of the questionnaire shows that the handout of statistical physics has very practical criteria. The conclusion of this study is statistical physics handouts based on the KKNI and constructivist approach have been practically used in lectures.
ERIC Educational Resources Information Center
Paulsson, Fredrik; Naeve, Ambjorn
2006-01-01
Based on existing Learning Object taxonomies, this article suggests an alternative Learning Object taxonomy, combined with a general Service Oriented Architecture (SOA) framework, aiming to transfer the modularized concept of Learning Objects to modularized Virtual Learning Environments. The taxonomy and SOA-framework exposes a need for a clearer…
Mutual interference between statistical summary perception and statistical learning.
Zhao, Jiaying; Ngo, Nhi; McKendrick, Ryan; Turk-Browne, Nicholas B
2011-09-01
The visual system is an efficient statistician, extracting statistical summaries over sets of objects (statistical summary perception) and statistical regularities among individual objects (statistical learning). Although these two kinds of statistical processing have been studied extensively in isolation, their relationship is not yet understood. We first examined how statistical summary perception influences statistical learning by manipulating the task that participants performed over sets of objects containing statistical regularities (Experiment 1). Participants who performed a summary task showed no statistical learning of the regularities, whereas those who performed control tasks showed robust learning. We then examined how statistical learning influences statistical summary perception by manipulating whether the sets being summarized contained regularities (Experiment 2) and whether such regularities had already been learned (Experiment 3). The accuracy of summary judgments improved when regularities were removed and when learning had occurred in advance. In sum, calculating summary statistics impeded statistical learning, and extracting statistical regularities impeded statistical summary perception. This mutual interference suggests that statistical summary perception and statistical learning are fundamentally related.
E-learning process maturity level: a conceptual framework
NASA Astrophysics Data System (ADS)
Rahmah, A.; Santoso, H. B.; Hasibuan, Z. A.
2018-03-01
ICT advancement is a sure thing with the impact influencing many domains, including learning in both formal and informal situations. It leads to a new mindset that we should not only utilize the given ICT to support the learning process, but also improve it gradually involving a lot of factors. These phenomenon is called e-learning process evolution. Accordingly, this study attempts to explore maturity level concept to provide the improvement direction gradually and progression monitoring for the individual e-learning process. Extensive literature review, observation, and forming constructs are conducted to develop a conceptual framework for e-learning process maturity level. The conceptual framework consists of learner, e-learning process, continuous improvement, evolution of e-learning process, technology, and learning objectives. Whilst, evolution of e-learning process depicted as current versus expected conditions of e-learning process maturity level. The study concludes that from the e-learning process maturity level conceptual framework, it may guide the evolution roadmap for e-learning process, accelerate the evolution, and decrease the negative impact of ICT. The conceptual framework will be verified and tested in the future study.
Luetsch, Karen; Burrows, Judith
2017-08-12
Pharmacists' communication with patients often focuses on technical aspects of advice giving, while limiting socio-emotional content. To develop pharmacists' patient-centered communication a learning and practice module integrating motivational interviewing (MI) was designed for an online postgraduate program, and its impact on their self-described practice evaluated. To investigate whether training in patient-centered communication changes pharmacists' perceptions of communicating with patients, and how any changes in their communication style influenced interactions and relationships with patients. A descriptive, qualitative study analyzing reflective journal entries detailing pharmacists' experiences of implementing patient-centered communication in practice was designed, evaluating reflections on initial patient interactions after training and 9-12 weeks later. Using the framework method of content and thematic analysis, an evaluation framework was devised that integrated communication, change and learning theories. Reflections were categorized within the framework as transitional (e.g. using good communication skills), transactional (e.g. using MI techniques, achieving reciprocity) or transformational (e.g. describing transformative learning, changing frames of reference in understanding of patient-centeredness). Differences between the first and last journal entries were evaluated and analyzed using descriptive statistics. Eighty-nine pharmacists provided two reflective journal entries for evaluation. Over 9-12 weeks, pharmacists described a change in their perspective of patient-centeredness, how they expanded the socio-emotional aspects of communication and succeeded in difficult conversations. When applying the thematic evaluation framework to initial journal entries, 38 (42%) of reflections fell within the transitional category, 51 (58%) were deemed transactional and none transformational. This changed to 10 (11%) transitional, 45 (51%) transactional and 34 (38%) transformational. Differences were observed between journal entries from pharmacists who studied completely online and those who also attended a workshop. Learning and practicing techniques of MI and person-focused communication changed many pharmacists' frames of reference in regards to patient-centeredness and their self-reported communication style with patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Design of Mobile Augmented Reality in Health Care Education: A Theory-Driven Framework
Lilienthal, Anneliese; Shluzas, Lauren Aquino; Masiello, Italo; Zary, Nabil
2015-01-01
Background Augmented reality (AR) is increasingly used across a range of subject areas in health care education as health care settings partner to bridge the gap between knowledge and practice. As the first contact with patients, general practitioners (GPs) are important in the battle against a global health threat, the spread of antibiotic resistance. AR has potential as a practical tool for GPs to combine learning and practice in the rational use of antibiotics. Objective This paper was driven by learning theory to develop a mobile augmented reality education (MARE) design framework. The primary goal of the framework is to guide the development of AR educational apps. This study focuses on (1) identifying suitable learning theories for guiding the design of AR education apps, (2) integrating learning outcomes and learning theories to support health care education through AR, and (3) applying the design framework in the context of improving GPs’ rational use of antibiotics. Methods The design framework was first constructed with the conceptual framework analysis method. Data were collected from multidisciplinary publications and reference materials and were analyzed with directed content analysis to identify key concepts and their relationships. Then the design framework was applied to a health care educational challenge. Results The proposed MARE framework consists of three hierarchical layers: the foundation, function, and outcome layers. Three learning theories—situated, experiential, and transformative learning—provide foundational support based on differing views of the relationships among learning, practice, and the environment. The function layer depends upon the learners’ personal paradigms and indicates how health care learning could be achieved with MARE. The outcome layer analyzes different learning abilities, from knowledge to the practice level, to clarify learning objectives and expectations and to avoid teaching pitched at the wrong level. Suggestions for learning activities and the requirements of the learning environment form the foundation for AR to fill the gap between learning outcomes and medical learners’ personal paradigms. With the design framework, the expected rational use of antibiotics by GPs is described and is easy to execute and evaluate. The comparison of specific expected abilities with the GP personal paradigm helps solidify the GP practical learning objectives and helps design the learning environment and activities. The learning environment and activities were supported by learning theories. Conclusions This paper describes a framework for guiding the design, development, and application of mobile AR for medical education in the health care setting. The framework is theory driven with an understanding of the characteristics of AR and specific medical disciplines toward helping medical education improve professional development from knowledge to practice. Future research will use the framework as a guide for developing AR apps in practice to validate and improve the design framework. PMID:27731839
ERIC Educational Resources Information Center
Adult Learning, 2012
2012-01-01
This article presents the Belem Framework for Action. This framework focuses on harnessing the power and potential of adult learning and education for a viable future. This framework begins with a preamble on adult education and towards lifelong learning.
Britten, Nicole; Wallar, Lauren E; McEwen, Scott A; Papadopoulos, Andrew
2014-07-31
Master of Public Health programs have been developed across Canada in response to the need for graduate-level trained professionals to work in the public health sector. The University of Guelph recently conducted a five-year outcome assessment using the Core Competencies for Public Health in Canada as an evaluative framework to determine whether graduates are receiving adequate training, and identify areas for improvement. A curriculum map of core courses and an online survey of University of Guelph Master of Public Health graduates comprised the outcome assessment. The curriculum map was constructed by evaluating course outlines, assignments, and content to determine the extent to which the Core Competencies were covered in each course. Quantitative survey results were characterized using descriptive statistics. Qualitative survey results were analyzed to identify common themes and patterns in open-ended responses. The University of Guelph Master of Public Health program provided a positive learning environment in which graduates gained proficiency across the Core Competencies through core and elective courses, meaningful practicums, and competent faculty. Practice-based learning environments, particularly in collaboration with public health organizations, were deemed to be beneficial to students' learning experiences. The Core Competencies and graduate surveys can be used to conduct a meaningful and informative outcome assessment. We encourage other Master of Public Health programs to conduct their own outcome assessments using a similar framework, and disseminate these results in order to identify best practices and strengthen the Canadian graduate public health education system.
Chen, Tianle; Zeng, Donglin
2015-01-01
Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419
Applying Bayesian statistics to the study of psychological trauma: A suggestion for future research.
Yalch, Matthew M
2016-03-01
Several contemporary researchers have noted the virtues of Bayesian methods of data analysis. Although debates continue about whether conventional or Bayesian statistics is the "better" approach for researchers in general, there are reasons why Bayesian methods may be well suited to the study of psychological trauma in particular. This article describes how Bayesian statistics offers practical solutions to the problems of data non-normality, small sample size, and missing data common in research on psychological trauma. After a discussion of these problems and the effects they have on trauma research, this article explains the basic philosophical and statistical foundations of Bayesian statistics and how it provides solutions to these problems using an applied example. Results of the literature review and the accompanying example indicates the utility of Bayesian statistics in addressing problems common in trauma research. Bayesian statistics provides a set of methodological tools and a broader philosophical framework that is useful for trauma researchers. Methodological resources are also provided so that interested readers can learn more. (c) 2016 APA, all rights reserved).
A Framework for a Computer System to Support Distributed Cooperative Learning
ERIC Educational Resources Information Center
Chiu, Chiung-Hui
2004-01-01
To develop a computer system to support cooperative learning among distributed students; developers should consider the foundations of cooperative learning. This article examines the basic elements that make cooperation work and proposes a framework for such computer supported cooperative learning (CSCL) systems. This framework is constituted of…
The ICCE Framework: Framing Learning Experiences Afforded by Games
ERIC Educational Resources Information Center
Foster, Aroutis; Shah, Mamta
2015-01-01
There is a need for game-based learning frameworks that provide a lens for understanding learning experiences afforded in digital games. These frameworks should aim to facilitate game analyses, identification of learning opportunities, and support for learner experiences. This article uses the inquiry, communication, construction, and expression…
ERIC Educational Resources Information Center
Wang, Zhijun; Anderson, Terry; Chen, Li; Barbera, Elena
2017-01-01
Connectivist learning is interaction-centered learning. A framework describing interaction and cognitive engagement in connectivist learning was constructed using logical reasoning techniques. The framework and analysis was designed to help researchers and learning designers understand and adapt the characteristics and principles of interaction in…
A Conceptual Framework for Educational Design at Modular Level to Promote Transfer of Learning
ERIC Educational Resources Information Center
Botma, Yvonne; Van Rensburg, G. H.; Coetzee, I. M.; Heyns, T.
2015-01-01
Students bridge the theory-practice gap when they apply in practice what they have learned in class. A conceptual framework was developed that can serve as foundation to design for learning transfer at modular level. The framework is based on an adopted and adapted systemic model of transfer of learning, existing learning theories, constructive…
The computational nature of memory modification.
Gershman, Samuel J; Monfils, Marie-H; Norman, Kenneth A; Niv, Yael
2017-03-15
Retrieving a memory can modify its influence on subsequent behavior. We develop a computational theory of memory modification, according to which modification of a memory trace occurs through classical associative learning, but which memory trace is eligible for modification depends on a structure learning mechanism that discovers the units of association by segmenting the stream of experience into statistically distinct clusters (latent causes). New memories are formed when the structure learning mechanism infers that a new latent cause underlies current sensory observations. By the same token, old memories are modified when old and new sensory observations are inferred to have been generated by the same latent cause. We derive this framework from probabilistic principles, and present a computational implementation. Simulations demonstrate that our model can reproduce the major experimental findings from studies of memory modification in the Pavlovian conditioning literature.
Machine learning bandgaps of double perovskites
Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; ...
2016-01-19
The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the mostmore » crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.« less
The Adolescent Community of Engagement: A Framework for Research on Adolescent Online Learning
ERIC Educational Resources Information Center
Borup, Jered; West, Richard E.; Graham, Charles R.; Davies, Randall S.
2014-01-01
This paper describes the Adolescent Community of Engagement (ACE) framework as a lens to guide research and design in adolescent online learning environments. Several online learning frameworks have emerged from higher education contexts, but these frameworks do not explicitly address the unique student and environmental characteristics of the…
A Framework for Developing Sustainable E-Learning Programmes
ERIC Educational Resources Information Center
Chipere, Ngoni
2017-01-01
A framework was created at the University of the West Indies to guide the development of 18 e-learning programmes. The framework is based on three principles for sustainable e-learning design: (1) stakeholder-centredness; (2) cost-effectiveness and (3) high operational efficiency. These principles give rise to nine framework elements: (1) a labour…
Davila, Juan Carlos; Cretu, Ana-Maria; Zaremba, Marek
2017-06-07
The design of multiple human activity recognition applications in areas such as healthcare, sports and safety relies on wearable sensor technologies. However, when making decisions based on the data acquired by such sensors in practical situations, several factors related to sensor data alignment, data losses, and noise, among other experimental constraints, deteriorate data quality and model accuracy. To tackle these issues, this paper presents a data-driven iterative learning framework to classify human locomotion activities such as walk, stand, lie, and sit, extracted from the Opportunity dataset. Data acquired by twelve 3-axial acceleration sensors and seven inertial measurement units are initially de-noised using a two-stage consecutive filtering approach combining a band-pass Finite Impulse Response (FIR) and a wavelet filter. A series of statistical parameters are extracted from the kinematical features, including the principal components and singular value decomposition of roll, pitch, yaw and the norm of the axial components. The novel interactive learning procedure is then applied in order to minimize the number of samples required to classify human locomotion activities. Only those samples that are most distant from the centroids of data clusters, according to a measure presented in the paper, are selected as candidates for the training dataset. The newly built dataset is then used to train an SVM multi-class classifier. The latter will produce the lowest prediction error. The proposed learning framework ensures a high level of robustness to variations in the quality of input data, while only using a much lower number of training samples and therefore a much shorter training time, which is an important consideration given the large size of the dataset.
Acquiring and processing verb argument structure: distributional learning in a miniature language.
Wonnacott, Elizabeth; Newport, Elissa L; Tanenhaus, Michael K
2008-05-01
Adult knowledge of a language involves correctly balancing lexically-based and more language-general patterns. For example, verb argument structures may sometimes readily generalize to new verbs, yet with particular verbs may resist generalization. From the perspective of acquisition, this creates significant learnability problems, with some researchers claiming a crucial role for verb semantics in the determination of when generalization may and may not occur. Similarly, there has been debate regarding how verb-specific and more generalized constraints interact in sentence processing and on the role of semantics in this process. The current work explores these issues using artificial language learning. In three experiments using languages without semantic cues to verb distribution, we demonstrate that learners can acquire both verb-specific and verb-general patterns, based on distributional information in the linguistic input regarding each of the verbs as well as across the language as a whole. As with natural languages, these factors are shown to affect production, judgments and real-time processing. We demonstrate that learners apply a rational procedure in determining their usage of these different input statistics and conclude by suggesting that a Bayesian perspective on statistical learning may be an appropriate framework for capturing our findings.
A semi-supervised learning framework for biomedical event extraction based on hidden topics.
Zhou, Deyu; Zhong, Dayou
2015-05-01
Scientists have devoted decades of efforts to understanding the interaction between proteins or RNA production. The information might empower the current knowledge on drug reactions or the development of certain diseases. Nevertheless, due to the lack of explicit structure, literature in life science, one of the most important sources of this information, prevents computer-based systems from accessing. Therefore, biomedical event extraction, automatically acquiring knowledge of molecular events in research articles, has attracted community-wide efforts recently. Most approaches are based on statistical models, requiring large-scale annotated corpora to precisely estimate models' parameters. However, it is usually difficult to obtain in practice. Therefore, employing un-annotated data based on semi-supervised learning for biomedical event extraction is a feasible solution and attracts more interests. In this paper, a semi-supervised learning framework based on hidden topics for biomedical event extraction is presented. In this framework, sentences in the un-annotated corpus are elaborately and automatically assigned with event annotations based on their distances to these sentences in the annotated corpus. More specifically, not only the structures of the sentences, but also the hidden topics embedded in the sentences are used for describing the distance. The sentences and newly assigned event annotations, together with the annotated corpus, are employed for training. Experiments were conducted on the multi-level event extraction corpus, a golden standard corpus. Experimental results show that more than 2.2% improvement on F-score on biomedical event extraction is achieved by the proposed framework when compared to the state-of-the-art approach. The results suggest that by incorporating un-annotated data, the proposed framework indeed improves the performance of the state-of-the-art event extraction system and the similarity between sentences might be precisely described by hidden topics and structures of the sentences. Copyright © 2015 Elsevier B.V. All rights reserved.
Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics.
Yang, Qian; Sing-Long, Carlos A; Reed, Evan J
2017-08-01
We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.
Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics
Sing-Long, Carlos A.
2017-01-01
We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates. PMID:28989618
Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics
Yang, Qian; Sing-Long, Carlos A.; Reed, Evan J.
2017-06-19
Here, we propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. Conversely, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our methodmore » on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. Furthermore, we describe a framework in this work that paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.« less
NASA Astrophysics Data System (ADS)
Allen, David
Some informal discussions among educators regarding motivation of students and academic performance have included the topic of magnet schools. The premise is that a focused theme, such as an aspect of science, positively affects student motivation and academic achievement. However, there is limited research involving magnet schools and their influence on student motivation and academic performance. This study provides empirical data for the discussion about magnet schools influence on motivation and academic ability. This study utilized path analysis in a structural equation modeling framework to simultaneously investigate the relationships between demographic exogenous independent variables, the independent variable of attending a science or technology magnet middle school, and the dependent variables of motivation to learn science and academic achievement in science. Due to the categorical nature of the variables, Bayesian statistical analysis was used to calculate the path coefficients and the standardized effects for each relationship in the model. The coefficients of determination were calculated to determine the amount of variance each path explained. Only five of 21 paths had statistical significance. Only one of the five statistically significant paths (Attended Magnet School to Motivation to Learn Science) explained a noteworthy amount (45.8%) of the variance.
Encoding Dissimilarity Data for Statistical Model Building.
Wahba, Grace
2010-12-01
We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.
ERIC Educational Resources Information Center
Yin, Chengjiu; Song, Yanjie; Tabata, Yoshiyuki; Ogata, Hiroaki; Hwang, Gwo-Jen
2013-01-01
This paper proposes a conceptual framework, scaffolding participatory simulation for mobile learning (SPSML), used on mobile devices for helping students learn conceptual knowledge in the classroom. As the pedagogical design, the framework adopts an experiential learning model, which consists of five sequential but cyclic steps: the initial stage,…
ERIC Educational Resources Information Center
Indiana Department of Education, 2015
2015-01-01
The "Foundations" (English/language arts, mathematics, social emotional skills, approaches to play and learning, science, social studies, creative arts, and physical health and growth) are Indiana's early learning development framework and are aligned to the 2014 Indiana Academic Standards. This framework provides core elements that…
Ask-the-expert: Active Learning Based Knowledge Discovery Using the Expert
NASA Technical Reports Server (NTRS)
Das, Kamalika; Avrekh, Ilya; Matthews, Bryan; Sharma, Manali; Oza, Nikunj
2017-01-01
Often the manual review of large data sets, either for purposes of labeling unlabeled instances or for classifying meaningful results from uninteresting (but statistically significant) ones is extremely resource intensive, especially in terms of subject matter expert (SME) time. Use of active learning has been shown to diminish this review time significantly. However, since active learning is an iterative process of learning a classifier based on a small number of SME-provided labels at each iteration, the lack of an enabling tool can hinder the process of adoption of these technologies in real-life, in spite of their labor-saving potential. In this demo we present ASK-the-Expert, an interactive tool that allows SMEs to review instances from a data set and provide labels within a single framework. ASK-the-Expert is powered by an active learning algorithm for training a classifier in the backend. We demonstrate this system in the context of an aviation safety application, but the tool can be adopted to work as a simple review and labeling tool as well, without the use of active learning.
Ask-the-Expert: Active Learning Based Knowledge Discovery Using the Expert
NASA Technical Reports Server (NTRS)
Das, Kamalika
2017-01-01
Often the manual review of large data sets, either for purposes of labeling unlabeled instances or for classifying meaningful results from uninteresting (but statistically significant) ones is extremely resource intensive, especially in terms of subject matter expert (SME) time. Use of active learning has been shown to diminish this review time significantly. However, since active learning is an iterative process of learning a classifier based on a small number of SME-provided labels at each iteration, the lack of an enabling tool can hinder the process of adoption of these technologies in real-life, in spite of their labor-saving potential. In this demo we present ASK-the-Expert, an interactive tool that allows SMEs to review instances from a data set and provide labels within a single framework. ASK-the-Expert is powered by an active learning algorithm for training a classifier in the back end. We demonstrate this system in the context of an aviation safety application, but the tool can be adopted to work as a simple review and labeling tool as well, without the use of active learning.
CReaTE Excellence: Using a Teacher Framework to Maximize STEM Learning with Your Child
ERIC Educational Resources Information Center
Tassell, Janet; Maxwell, Margaret; Stobaugh, Rebecca
2013-01-01
Gifted children crave meaning through learning experiences, and they are naturally inquisitive. This article provides a teaching framework that parents can adapt for use with gifted children to help facilitate STEM knowledge and skills. The CReaTE Framework, adapted from an evolving lesson plan framework, can promote learning in a nontraditional,…
ERIC Educational Resources Information Center
Lappas, Pantelis Z.; Kritikos, Manolis N.
2018-01-01
The main objective of this paper is to propose a didactic framework for teaching Applied Mathematics in higher education. After describing the structure of the framework, several applications of inquiry-based learning in teaching numerical analysis and optimization are provided to illustrate the potential of the proposed framework. The framework…
ERIC Educational Resources Information Center
Raffe, David
2011-01-01
The Scottish Credit and Qualifications Framework (SCQF) was formally launched in 2001. It is a comprehensive credit-based National Qualifications Framework (NQF) with twelve levels, intended to accommodate all qualifications and assessed learning in Scotland. It aims to support access to learning and to make the education and training system more…
Application and Adaptation of an Institutional Learning Framework
ERIC Educational Resources Information Center
Foutz, Susan; Emmons, Claire Thoma
2017-01-01
The Children's Museum of Indianapolis has used a mission-aligned learning framework for more than a decade. Designed to foster and support adult-child interaction in exhibitions and programs, the central tool of the family learning framework is the Assessment of Learning Families in Exhibits (ALFIE) Inventory. ALFIE is used as a tool to plan for…
Kobayashi, Yutaka; Ohtsuki, Hisashi
2014-03-01
Learning abilities are categorized into social (learning from others) and individual learning (learning on one's own). Despite the typically higher cost of individual learning, there are mechanisms that allow stable coexistence of both learning modes in a single population. In this paper, we investigate by means of mathematical modeling how the effect of spatial structure on evolutionary outcomes of pure social and individual learning strategies depends on the mechanisms for coexistence. We model a spatially structured population based on the infinite-island framework and consider three scenarios that differ in coexistence mechanisms. Using the inclusive-fitness method, we derive the equilibrium frequency of social learners and the genetic load of social learning (defined as average fecundity reduction caused by the presence of social learning) in terms of some summary statistics, such as relatedness, for each of the three scenarios and compare the results. This comparative analysis not only reconciles previous models that made contradictory predictions as to the effect of spatial structure on the equilibrium frequency of social learners but also derives a simple mathematical rule that determines the sign of the genetic load (i.e. whether or not social learning contributes to the mean fecundity of the population). Copyright © 2013 Elsevier Inc. All rights reserved.
Learning to Learn in the European Reference Framework for Lifelong Learning
ERIC Educational Resources Information Center
Pirrie, Anne; Thoutenhoofd, Ernst D.
2013-01-01
This article explores the construction of learning to learn that is implicit in the document "Key Competences for Lifelong Learning--European Reference Framework" and related education policy from the European Commission. The authors argue that the hallmark of learning to learn is the development of a fluid sociality rather than the…
Evaluation of Learning Materials: A Holistic Framework
ERIC Educational Resources Information Center
Bundsgaard, Jeppe; Hansen, Thomas Illum
2011-01-01
This paper presents a holistic framework for evaluating learning materials and designs for learning. A holistic evaluation comprises investigations of the potential learning potential, the actualised learning potential, and the actual learning. Each aspect is explained and exemplified through theoretical models and definitions. (Contains 3 figures…
Shea, Jennifer; Taylor, Tory
2017-12-01
In the last 20 years, developmental evaluation has emerged as a promising approach to support organizational learning in emergent social programs. Through a continuous system of inquiry, reflection, and application of knowledge, developmental evaluation serves as a system of tools, methods, and guiding principles intended to support constructive organizational learning. However, missing from the developmental evaluation literature is a nuanced framework to guide evaluators in how to elevate the organizational practices and concepts most relevant for emergent programs. In this article, we describe and reflect on work we did to develop, pilot, and refine an integrated pilot framework. Drawing on established developmental evaluation inquiry frameworks and incorporating lessons learned from applying the pilot framework, we put forward the Evaluation-led Learning framework to help fill that gap and encourage others to implement and refine it. We posit that without explicitly incorporating the assessments at the foundation of the Evaluation-led Learning framework, developmental evaluation's ability to affect organizational learning in productive ways will likely be haphazard and limited. Copyright © 2017 Elsevier Ltd. All rights reserved.
Can Performance-Related Learning Outcomes Have Standards?
ERIC Educational Resources Information Center
Brockmann, Michaela; Clarke, Linda; Winch, Christopher
2008-01-01
Purpose: This paper aims to explain the distinction between educational standards and learning outcomes and to indicate the problems that potentially arise when a learning outcomes approach is applied to a qualification meta-framework like the European Qualification Framework, or indeed to national qualification frameworks.…
Chen, Shuhang; Liu, Huafeng; Shi, Pengcheng; Chen, Yunmei
2015-01-21
Accurate and robust reconstruction of the radioactivity concentration is of great importance in positron emission tomography (PET) imaging. Given the Poisson nature of photo-counting measurements, we present a reconstruction framework that integrates sparsity penalty on a dictionary into a maximum likelihood estimator. Patch-sparsity on a dictionary provides the regularization for our effort, and iterative procedures are used to solve the maximum likelihood function formulated on Poisson statistics. Specifically, in our formulation, a dictionary could be trained on CT images, to provide intrinsic anatomical structures for the reconstructed images, or adaptively learned from the noisy measurements of PET. Accuracy of the strategy with very promising application results from Monte-Carlo simulations, and real data are demonstrated.
Real-time probabilistic covariance tracking with efficient model update.
Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li
2012-05-01
The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.
Charting molecular free-energy landscapes with an atlas of collective variables
NASA Astrophysics Data System (ADS)
Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino
2016-11-01
Collective variables (CVs) are a fundamental tool to understand molecular flexibility, to compute free energy landscapes, and to enhance sampling in molecular dynamics simulations. However, identifying suitable CVs is challenging, and is increasingly addressed with systematic data-driven manifold learning techniques. Here, we provide a flexible framework to model molecular systems in terms of a collection of locally valid and partially overlapping CVs: an atlas of CVs. The specific motivation for such a framework is to enhance the applicability and robustness of CVs based on manifold learning methods, which fail in the presence of periodicities in the underlying conformational manifold. More generally, using an atlas of CVs rather than a single chart may help us better describe different regions of conformational space. We develop the statistical mechanics foundation for our multi-chart description and propose an algorithmic implementation. The resulting atlas of data-based CVs are then used to enhance sampling and compute free energy surfaces in two model systems, alanine dipeptide and β-D-glucopyranose, whose conformational manifolds have toroidal and spherical topologies.
Origin of the spike-timing-dependent plasticity rule
NASA Astrophysics Data System (ADS)
Cho, Myoung Won; Choi, M. Y.
2016-08-01
A biological synapse changes its efficacy depending on the difference between pre- and post-synaptic spike timings. Formulating spike-timing-dependent interactions in terms of the path integral, we establish a neural-network model, which makes it possible to predict relevant quantities rigorously by means of standard methods in statistical mechanics and field theory. In particular, the biological synaptic plasticity rule is shown to emerge as the optimal form for minimizing the free energy. It is further revealed that maximization of the entropy of neural activities gives rise to the competitive behavior of biological learning. This demonstrates that statistical mechanics helps to understand rigorously key characteristic behaviors of a neural network, thus providing the possibility of physics serving as a useful and relevant framework for probing life.
Collaborative classification of hyperspectral and visible images with convolutional neural network
NASA Astrophysics Data System (ADS)
Zhang, Mengmeng; Li, Wei; Du, Qian
2017-10-01
Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.
Optimism as a Prior Belief about the Probability of Future Reward
Kalra, Aditi; Seriès, Peggy
2014-01-01
Optimists hold positive a priori beliefs about the future. In Bayesian statistical theory, a priori beliefs can be overcome by experience. However, optimistic beliefs can at times appear surprisingly resistant to evidence, suggesting that optimism might also influence how new information is selected and learned. Here, we use a novel Pavlovian conditioning task, embedded in a normative framework, to directly assess how trait optimism, as classically measured using self-report questionnaires, influences choices between visual targets, by learning about their association with reward progresses. We find that trait optimism relates to an a priori belief about the likelihood of rewards, but not losses, in our task. Critically, this positive belief behaves like a probabilistic prior, i.e. its influence reduces with increasing experience. Contrary to findings in the literature related to unrealistic optimism and self-beliefs, it does not appear to influence the iterative learning process directly. PMID:24853098
Affective bias as a rational response to the statistics of rewards and punishments.
Pulcu, Erdem; Browning, Michael
2017-10-04
Affective bias, the tendency to differentially prioritise the processing of negative relative to positive events, is commonly observed in clinical and non-clinical populations. However, why such biases develop is not known. Using a computational framework, we investigated whether affective biases may reflect individuals' estimates of the information content of negative relative to positive events. During a reinforcement learning task, the information content of positive and negative outcomes was manipulated independently by varying the volatility of their occurrence. Human participants altered the learning rates used for the outcomes selectively, preferentially learning from the most informative. This behaviour was associated with activity of the central norepinephrine system, estimated using pupilometry, for loss outcomes. Humans maintain independent estimates of the information content of distinct positive and negative outcomes which may bias their processing of affective events. Normalising affective biases using computationally inspired interventions may represent a novel approach to treatment development.
Affective bias as a rational response to the statistics of rewards and punishments
Pulcu, Erdem
2017-01-01
Affective bias, the tendency to differentially prioritise the processing of negative relative to positive events, is commonly observed in clinical and non-clinical populations. However, why such biases develop is not known. Using a computational framework, we investigated whether affective biases may reflect individuals’ estimates of the information content of negative relative to positive events. During a reinforcement learning task, the information content of positive and negative outcomes was manipulated independently by varying the volatility of their occurrence. Human participants altered the learning rates used for the outcomes selectively, preferentially learning from the most informative. This behaviour was associated with activity of the central norepinephrine system, estimated using pupilometry, for loss outcomes. Humans maintain independent estimates of the information content of distinct positive and negative outcomes which may bias their processing of affective events. Normalising affective biases using computationally inspired interventions may represent a novel approach to treatment development. PMID:28976304
The computational nature of memory modification
Gershman, Samuel J; Monfils, Marie-H; Norman, Kenneth A; Niv, Yael
2017-01-01
Retrieving a memory can modify its influence on subsequent behavior. We develop a computational theory of memory modification, according to which modification of a memory trace occurs through classical associative learning, but which memory trace is eligible for modification depends on a structure learning mechanism that discovers the units of association by segmenting the stream of experience into statistically distinct clusters (latent causes). New memories are formed when the structure learning mechanism infers that a new latent cause underlies current sensory observations. By the same token, old memories are modified when old and new sensory observations are inferred to have been generated by the same latent cause. We derive this framework from probabilistic principles, and present a computational implementation. Simulations demonstrate that our model can reproduce the major experimental findings from studies of memory modification in the Pavlovian conditioning literature. DOI: http://dx.doi.org/10.7554/eLife.23763.001 PMID:28294944
Transfer Learning for Improved Audio-Based Human Activity Recognition.
Ntalampiras, Stavros; Potamitis, Ilyas
2018-06-25
Human activities are accompanied by characteristic sound events, the processing of which might provide valuable information for automated human activity recognition. This paper presents a novel approach addressing the case where one or more human activities are associated with limited audio data, resulting in a potentially highly imbalanced dataset. Data augmentation is based on transfer learning; more specifically, the proposed method: (a) identifies the classes which are statistically close to the ones associated with limited data; (b) learns a multiple input, multiple output transformation; and (c) transforms the data of the closest classes so that it can be used for modeling the ones associated with limited data. Furthermore, the proposed framework includes a feature set extracted out of signal representations of diverse domains, i.e., temporal, spectral, and wavelet. Extensive experiments demonstrate the relevance of the proposed data augmentation approach under a variety of generative recognition schemes.
Strategies, Systems and Services: A Northern Ireland Early Years Policy Perspective
ERIC Educational Resources Information Center
McMillan, Dorothy J.; McConnell, Barbara
2015-01-01
Following a lengthy consultation process across Northern Ireland (NI), 2013 saw the publication of Learning to Learn: A Framework for Early Years Education and Learning [DE (Department of Education). 2013. "Learning to Learn: A Framework for Early Years Education and Learning." Accessed July 15, 2014.…
Analyzing Learning in Professional Learning Communities: A Conceptual Framework
ERIC Educational Resources Information Center
Van Lare, Michelle D.; Brazer, S. David
2013-01-01
The purpose of this article is to build a conceptual framework that informs current understanding of how professional learning communities (PLCs) function in conjunction with organizational learning. The combination of sociocultural learning theories and organizational learning theories presents a more complete picture of PLC processes that has…
2014-01-01
Background Master of Public Health programs have been developed across Canada in response to the need for graduate-level trained professionals to work in the public health sector. The University of Guelph recently conducted a five-year outcome assessment using the Core Competencies for Public Health in Canada as an evaluative framework to determine whether graduates are receiving adequate training, and identify areas for improvement. Methods A curriculum map of core courses and an online survey of University of Guelph Master of Public Health graduates comprised the outcome assessment. The curriculum map was constructed by evaluating course outlines, assignments, and content to determine the extent to which the Core Competencies were covered in each course. Quantitative survey results were characterized using descriptive statistics. Qualitative survey results were analyzed to identify common themes and patterns in open-ended responses. Results The University of Guelph Master of Public Health program provided a positive learning environment in which graduates gained proficiency across the Core Competencies through core and elective courses, meaningful practicums, and competent faculty. Practice-based learning environments, particularly in collaboration with public health organizations, were deemed to be beneficial to students’ learning experiences. Conclusions The Core Competencies and graduate surveys can be used to conduct a meaningful and informative outcome assessment. We encourage other Master of Public Health programs to conduct their own outcome assessments using a similar framework, and disseminate these results in order to identify best practices and strengthen the Canadian graduate public health education system. PMID:25078124
Learning Probabilistic Logic Models from Probabilistic Examples
Chen, Jianzhong; Muggleton, Stephen; Santos, José
2009-01-01
Abstract We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples. PMID:19888348
Learning Probabilistic Logic Models from Probabilistic Examples.
Chen, Jianzhong; Muggleton, Stephen; Santos, José
2008-10-01
We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.
The 4C framework for making reasonable adjustments for people with learning disabilities.
Marsden, Daniel; Giles, Rachel
2017-01-18
Background People with learning disabilities experience significant inequalities in accessing healthcare. Legal frameworks, such as the Equality Act 2010, are intended to reduce such disparities in care, and require organisations to make 'reasonable adjustments' for people with disabilities, including learning disabilities. However, reasonable adjustments are often not clearly defined or adequately implemented in clinical practice. Aim To examine and synthesise the challenges in caring for people with learning disabilities to develop a framework for making reasonable adjustments for people with learning disabilities in hospital. This framework would assist ward staff in identifying and managing the challenges of delivering person-centred, safe and effective healthcare to people with learning disabilities in this setting. Method Fourth-generation evaluation, collaborative thematic analysis, reflection and a secondary analysis were used to develop a framework for making reasonable adjustments in the hospital setting. The authors attended ward manager and matron group meetings to collect their claims, concerns and issues, then conducted a collaborative thematic analysis with the group members to identify the main themes. Findings Four main themes were identified from the ward manager and matron group meetings: communication, choice-making, collaboration and coordination. These were used to develop the 4C framework for making reasonable adjustments for people with learning disabilities in hospital. Discussion The 4C framework has provided a basis for delivering person-centred care for people with learning disabilities. It has been used to inform training needs analyses, develop audit tools to review delivery of care that is adjusted appropriately to the individual patient; and to develop competencies for learning disability champions. The most significant benefit of the 4C framework has been in helping to evaluate and resolve practice-based scenarios. Conclusion Use of the 4C framework may enhance the care of people with learning disabilities in hospital, by enabling reasonable adjustments to be made in these settings.
A statistical parts-based appearance model of inter-subject variability.
Toews, Matthew; Collins, D Louis; Arbel, Tal
2006-01-01
In this article, we present a general statistical parts-based model for representing the appearance of an image set, applied to the problem of inter-subject MR brain image matching. In contrast with global image representations such as active appearance models, the parts-based model consists of a collection of localized image parts whose appearance, geometry and occurrence frequency are quantified statistically. The parts-based approach explicitly addresses the case where one-to-one correspondence does not exist between subjects due to anatomical differences, as parts are not expected to occur in all subjects. The model can be learned automatically, discovering structures that appear with statistical regularity in a large set of subject images, and can be robustly fit to new images, all in the presence of significant inter-subject variability. As parts are derived from generic scale-invariant features, the framework can be applied in a wide variety of image contexts, in order to study the commonality of anatomical parts or to group subjects according to the parts they share. Experimentation shows that a parts-based model can be learned from a large set of MR brain images, and used to determine parts that are common within the group of subjects. Preliminary results indicate that the model can be used to automatically identify distinctive features for inter-subject image registration despite large changes in appearance.
Methods for Assessment of Memory Reactivation.
Liu, Shizhao; Grosmark, Andres D; Chen, Zhe
2018-04-13
It has been suggested that reactivation of previously acquired experiences or stored information in declarative memories in the hippocampus and neocortex contributes to memory consolidation and learning. Understanding memory consolidation depends crucially on the development of robust statistical methods for assessing memory reactivation. To date, several statistical methods have seen established for assessing memory reactivation based on bursts of ensemble neural spike activity during offline states. Using population-decoding methods, we propose a new statistical metric, the weighted distance correlation, to assess hippocampal memory reactivation (i.e., spatial memory replay) during quiet wakefulness and slow-wave sleep. The new metric can be combined with an unsupervised population decoding analysis, which is invariant to latent state labeling and allows us to detect statistical dependency beyond linearity in memory traces. We validate the new metric using two rat hippocampal recordings in spatial navigation tasks. Our proposed analysis framework may have a broader impact on assessing memory reactivations in other brain regions under different behavioral tasks.
Adventure Learning and Learner-Engagement: Frameworks for Designers and Educators
ERIC Educational Resources Information Center
Henrickson, Jeni; Doering, Aaron
2013-01-01
There is a recognized need for theoretical frameworks that can guide designers and educators in the development of engagement-rich learning experiences that incorporate emerging technologies in pedagogically sound ways. This study investigated one such promising framework, adventure learning (AL). Data were gathered via surveys, interviews, direct…
Bayesian Image Segmentations by Potts Prior and Loopy Belief Propagation
NASA Astrophysics Data System (ADS)
Tanaka, Kazuyuki; Kataoka, Shun; Yasuda, Muneki; Waizumi, Yuji; Hsu, Chiou-Ting
2014-12-01
This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in loopy belief propagations for Potts models influence our hyperparameter estimation procedures.
NASA Astrophysics Data System (ADS)
Ahmadibasir, Mohammad
In this study an interpretive learning framework that aims to measure learning on the classroom level is introduced. In order to develop and evaluate the value of the framework, a theoretical/empirical study is designed. The researcher attempted to illustrate how the proposed framework provides insights on the problem of classroom-level learning. The framework is developed by construction of connections between the current literature on science learning and Wittgenstein's language-game theory. In this framework learning is defined as change of classroom language-game or discourse. In the proposed framework, learning is measured by analysis of classroom discourse. The empirical explanation power of the framework is evaluated by applying the framework in the analysis of learning in a fifth-grade science classroom. The researcher attempted to analyze how students' colloquial discourse changed to a discourse that bears more resemblance to science discourse. The results of the empirical part of the investigation are presented in three parts: first, the gap between what students did and what they were supposed to do was reported. The gap showed that students during the classroom inquiry wanted to do simple comparisons by direct observation, while they were supposed to do tool-assisted observation and procedural manipulation for a complete comparison. Second, it was illustrated that the first attempt to connect the colloquial to science discourse was done by what was immediately intelligible for students and then the teacher negotiated with students in order to help them to connect the old to the new language-game more purposefully. The researcher suggested that these two events in the science classroom are critical in discourse change. Third, it was illustrated that through the academic year, the way that students did the act of comparison was improved and by the end of the year more accurate causal inferences were observable in classroom communication. At the end of the study, the researcher illustrates that the application of the proposed framework resulted in an improved version of the framework. The improved version of the proposed framework is more connected to the topic of science learning, and is able to measure the change of discourse in higher resolution.
ERIC Educational Resources Information Center
Office of Head Start, US Department of Health and Human Services, 2010
2010-01-01
This report presents a revision of the Head Start Child Outcomes Framework (2000), renamed The Head Start Child Development and Learning Framework: Promoting Positive Outcomes in Early Childhood Programs Serving Children 3-5 Years Old. The Framework outlines the essential areas of development and learning that are to be used by Head Start programs…
A Framework for the Flexible Content Packaging of Learning Objects and Learning Designs
ERIC Educational Resources Information Center
Lukasiak, Jason; Agostinho, Shirley; Burnett, Ian; Drury, Gerrard; Goodes, Jason; Bennett, Sue; Lockyer, Lori; Harper, Barry
2004-01-01
This paper presents a platform-independent method for packaging learning objects and learning designs. The method, entitled a Smart Learning Design Framework, is based on the MPEG-21 standard, and uses IEEE Learning Object Metadata (LOM) to provide bibliographic, technical, and pedagogical descriptors for the retrieval and description of learning…
Second Language Experience Facilitates Statistical Learning of Novel Linguistic Materials.
Potter, Christine E; Wang, Tianlin; Saffran, Jenny R
2017-04-01
Recent research has begun to explore individual differences in statistical learning, and how those differences may be related to other cognitive abilities, particularly their effects on language learning. In this research, we explored a different type of relationship between language learning and statistical learning: the possibility that learning a new language may also influence statistical learning by changing the regularities to which learners are sensitive. We tested two groups of participants, Mandarin Learners and Naïve Controls, at two time points, 6 months apart. At each time point, participants performed two different statistical learning tasks: an artificial tonal language statistical learning task and a visual statistical learning task. Only the Mandarin-learning group showed significant improvement on the linguistic task, whereas both groups improved equally on the visual task. These results support the view that there are multiple influences on statistical learning. Domain-relevant experiences may affect the regularities that learners can discover when presented with novel stimuli. Copyright © 2016 Cognitive Science Society, Inc.
Second language experience facilitates statistical learning of novel linguistic materials
Potter, Christine E.; Wang, Tianlin; Saffran, Jenny R.
2016-01-01
Recent research has begun to explore individual differences in statistical learning, and how those differences may be related to other cognitive abilities, particularly their effects on language learning. In the present research, we explored a different type of relationship between language learning and statistical learning: the possibility that learning a new language may also influence statistical learning by changing the regularities to which learners are sensitive. We tested two groups of participants, Mandarin Learners and Naïve Controls, at two time points, six months apart. At each time point, participants performed two different statistical learning tasks: an artificial tonal language statistical learning task and a visual statistical learning task. Only the Mandarin-learning group showed significant improvement on the linguistic task, while both groups improved equally on the visual task. These results support the view that there are multiple influences on statistical learning. Domain-relevant experiences may affect the regularities that learners can discover when presented with novel stimuli. PMID:27988939
ERIC Educational Resources Information Center
Rockinson-Szapkiw, Amanda J.; Wendt, Jillian; Wighting, Mervyn; Nisbet, Deanna
2016-01-01
The Community of Inquiry framework has been widely supported by research to provide a model of online learning that informs the design and implementation of distance learning courses. However, the relationship between elements of the CoI framework and perceived learning warrants further examination as a predictive model for online graduate student…
Statistical Methods in Ai: Rare Event Learning Using Associative Rules and Higher-Order Statistics
NASA Astrophysics Data System (ADS)
Iyer, V.; Shetty, S.; Iyengar, S. S.
2015-07-01
Rare event learning has not been actively researched since lately due to the unavailability of algorithms which deal with big samples. The research addresses spatio-temporal streams from multi-resolution sensors to find actionable items from a perspective of real-time algorithms. This computing framework is independent of the number of input samples, application domain, labelled or label-less streams. A sampling overlap algorithm such as Brooks-Iyengar is used for dealing with noisy sensor streams. We extend the existing noise pre-processing algorithms using Data-Cleaning trees. Pre-processing using ensemble of trees using bagging and multi-target regression showed robustness to random noise and missing data. As spatio-temporal streams are highly statistically correlated, we prove that a temporal window based sampling from sensor data streams converges after n samples using Hoeffding bounds. Which can be used for fast prediction of new samples in real-time. The Data-cleaning tree model uses a nonparametric node splitting technique, which can be learned in an iterative way which scales linearly in memory consumption for any size input stream. The improved task based ensemble extraction is compared with non-linear computation models using various SVM kernels for speed and accuracy. We show using empirical datasets the explicit rule learning computation is linear in time and is only dependent on the number of leafs present in the tree ensemble. The use of unpruned trees (t) in our proposed ensemble always yields minimum number (m) of leafs keeping pre-processing computation to n × t log m compared to N2 for Gram Matrix. We also show that the task based feature induction yields higher Qualify of Data (QoD) in the feature space compared to kernel methods using Gram Matrix.
Diagnosing Student Learning Outcomes Using the Organizational Learning Contract Framework
ERIC Educational Resources Information Center
Sutton, Kyra Leigh; Ezell, Jeremy; Sankar, Chetan S.
2013-01-01
Using the Goodman and Beenen (2008) organizational learning contract framework as a diagnostic tool, this study investigates the effectiveness of an academic institution's learning environments by examining students' perception of their mastery of the institution's established curriculum learning goals. Students at a major Southeastern university…
Distance Learning Courses on the Web: The Authoring Approach.
ERIC Educational Resources Information Center
Santos, Neide; Diaz, Alicia; Bibbo, Luis Mariano
This paper proposes a framework for supporting the authoring process of distance learning courses. An overview of distance learning courses and the World Wide Web is presented. The proposed framework is then described, including: (1) components of the framework--a hypermedia design methodology for authoring the course, links to related Web sites,…
An Instructional Strategy Framework for Online Learning Environments
ERIC Educational Resources Information Center
Johnson, Scott D.; Aragon, Steven R.
2003-01-01
The rapid growth of Web-based instruction has raised many questions about the quality of online courses. This chapter presents a conceptual framework that can guide the development of online courses by providing a holistic perspective on online teaching and learning. Although this framework is based on well-recognized theories of learning and…
ERIC Educational Resources Information Center
de Velasco, Jorge Ruiz; Newman, Elizabeth; Borsato, Graciela
2016-01-01
This report proposes a conceptual framework for defining and implementing a system of integrated student supports that provides equitable access to college and career readiness via Linked Learning pathways in high schools. The framework emphasizes the central commitment of the Linked Learning approach to challenge prevailing norms of…
A Framework for Credit. Framework Guidelines 2. Learning Outcomes, Units and Modules.
ERIC Educational Resources Information Center
Further Education Development Agency, London (England).
This document refines and develops a 1992 proposal by Great Britain's Further Education Unit (FEU) that all kinds of student achievement be documented within a common framework involving the following procedures: describing adult learners' achievements in terms of learning outcomes; grouping the learning outcomes into coherent units; defining the…
A Framework and a Methodology for Developing Authentic Constructivist e-Learning Environments
ERIC Educational Resources Information Center
Zualkernan, Imran A.
2006-01-01
Semantically rich domains require operative knowledge to solve complex problems in real-world settings. These domains provide an ideal environment for developing authentic constructivist e-learning environments. In this paper we present a framework and a methodology for developing authentic learning environments for such domains. The framework is…
ERIC Educational Resources Information Center
Vermont Department of Education, 2004
2004-01-01
This document, "Grade Expectations for Vermont's Framework of Standards and Learning Opportunities" (hereafter "Vermont's Grade Expectations"), is an important companion to "Vermont's Framework." These Grade Expectations (GEs) serve the same purposes as "Vermont's Framework," but articulate learning…
NASA Astrophysics Data System (ADS)
Sugiyanta, Lipur; Sukardjo, Moch.
2018-04-01
The 2013 curriculum requires teachers to be more productive, creative, and innovative in encouraging students to be more independent by strengthening attitudes, skills and knowledge. Teachers are given the options to create lesson plan according to the environment and conditions of their students. At the junior level, Core Competence (KI) and Basic Competence (KD) have been completely designed. In addition, there had already guidebooks, both for teacher manuals (Master’s Books) and for learners (Student Books). The lesson plan and guidebooks which already exist are intended only for learning in the classroom/in-school. Many alternative classrooms and alternatives learning models opened up using educational technology. The advance of educational technology opened opportunity for combination of class interaction using mobile learning applications. Mobile learning has rapidly evolved in education for the last ten years and many initiatives have been conducted worldwide. However, few of these efforts have produced any lasting outcomes. It is evident that mobile education applications are complex and hence, will not become sustainable. Long-term sustainability remains a risk. Long-term sustainability usually was resulted from continuous adaptation to changing conditions [4]. Frameworks are therefore required to avoid sustainability pitfalls. The implementation should start from simple environment then gradually become complex through adaptation steps. Therefore, our paper developed the framework of mobile learning (m-learning) adaptation for grade 7th (junior high school). The environment setup was blended mobile learning (not full mobile learning) and emphasize on Algebra. The research is done by R&D method (research and development). Results of the framework includes requirements and adaptation steps. The adjusted m-learning framework is designed to be a guidance for teachers to adopt m-learning to support blended learning environments. During mock-up prototype, the adjusted framework demonstrates how to make successful implementation of early blended mobile learning through framework. The Social area is in focus of adaptation because participation is important to improve the sustainability. From the short practice of mock-up prototype, blended mobile learning can be an effective pedagogical model in supporting students in inquiry-based learning.
Improving Teaching Quality and the Learning Organisation
ERIC Educational Resources Information Center
Collie, Sarah L.; Taylor, Alton L.
2004-01-01
This study applied a learning organisation framework to understand academic departments' efforts to improve teaching quality. The theoretical framework was generated from literature on learning organisations, organisations devoted to continuous improvement through continuous learning. Research questions addressed relationships among departments'…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciuca, Razvan; Hernández, Oscar F., E-mail: razvan.ciuca@mail.mcgill.ca, E-mail: oscarh@physics.mcgill.ca
There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension G μ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this frameworkmore » with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of G μ=5 ×10{sup −9} and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that G μ≤2.3×10{sup −9}.« less
Interest and Self-Sustained Learning as Catalysts of Development: A Learning Ecology Perspective
ERIC Educational Resources Information Center
Barron, Brigid
2006-01-01
Adolescents often pursue learning opportunities both in and outside school once they become interested in a topic. In this paper, a learning ecology framework and an associated empirical research agenda are described. This framework highlights the need to better understand how learning outside school relates to learning within schools or other…
University Educators' Instructional Choices and Their Learning Styles within a Lesson Framework
ERIC Educational Resources Information Center
Mazo, Lucille B.
2017-01-01
Research on learning styles often focuses on the learning style of the student; however, the learning style of the educator may affect instructional choices and student learning. Few studies have addressed the lack of knowledge that exists in universities with respect to educators' learning styles and a lesson framework (development, delivery, and…
Automated Tissue Classification Framework for Reproducible Chronic Wound Assessment
Mukherjee, Rashmi; Manohar, Dhiraj Dhane; Das, Dev Kumar; Achar, Arun; Mitra, Analava; Chakraborty, Chandan
2014-01-01
The aim of this paper was to develop a computer assisted tissue classification (granulation, necrotic, and slough) scheme for chronic wound (CW) evaluation using medical image processing and statistical machine learning techniques. The red-green-blue (RGB) wound images grabbed by normal digital camera were first transformed into HSI (hue, saturation, and intensity) color space and subsequently the “S” component of HSI color channels was selected as it provided higher contrast. Wound areas from 6 different types of CW were segmented from whole images using fuzzy divergence based thresholding by minimizing edge ambiguity. A set of color and textural features describing granulation, necrotic, and slough tissues in the segmented wound area were extracted using various mathematical techniques. Finally, statistical learning algorithms, namely, Bayesian classification and support vector machine (SVM), were trained and tested for wound tissue classification in different CW images. The performance of the wound area segmentation protocol was further validated by ground truth images labeled by clinical experts. It was observed that SVM with 3rd order polynomial kernel provided the highest accuracies, that is, 86.94%, 90.47%, and 75.53%, for classifying granulation, slough, and necrotic tissues, respectively. The proposed automated tissue classification technique achieved the highest overall accuracy, that is, 87.61%, with highest kappa statistic value (0.793). PMID:25114925
Statistical and optimal learning with applications in business analytics
NASA Astrophysics Data System (ADS)
Han, Bin
Statistical learning is widely used in business analytics to discover structure or exploit patterns from historical data, and build models that capture relationships between an outcome of interest and a set of variables. Optimal learning on the other hand, solves the operational side of the problem, by iterating between decision making and data acquisition/learning. All too often the two problems go hand-in-hand, which exhibit a feedback loop between statistics and optimization. We apply this statistical/optimal learning concept on a context of fundraising marketing campaign problem arising in many non-profit organizations. Many such organizations use direct-mail marketing to cultivate one-time donors and convert them into recurring contributors. Cultivated donors generate much more revenue than new donors, but also lapse with time, making it important to steadily draw in new cultivations. The direct-mail budget is limited, but better-designed mailings can improve success rates without increasing costs. We first apply statistical learning to analyze the effectiveness of several design approaches used in practice, based on a massive dataset covering 8.6 million direct-mail communications with donors to the American Red Cross during 2009-2011. We find evidence that mailed appeals are more effective when they emphasize disaster preparedness and training efforts over post-disaster cleanup. Including small cards that affirm donors' identity as Red Cross supporters is an effective strategy, while including gift items such as address labels is not. Finally, very recent acquisitions are more likely to respond to appeals that ask them to contribute an amount similar to their most recent donation, but this approach has an adverse effect on donors with a longer history. We show via simulation that a simple design strategy based on these insights has potential to improve success rates from 5.4% to 8.1%. Given these findings, when new scenario arises, however, new data need to be acquired to update our model and decisions, which is studied under optimal learning framework. The goal becomes discovering a sequential information collection strategy that learns the best campaign design alternative as quickly as possible. Regression structure is used to learn about a set of unknown parameters, which alternates with optimization to design new data points. Such problems have been extensively studied in the ranking and selection (R&S) community, but traditional R&S procedures experience high computational costs when the decision space grows combinatorially. We present a value of information procedure for simultaneously learning unknown regression parameters and unknown sampling noise. We then develop an approximate version of the procedure, based on semi-definite programming relaxation, that retains good performance and scales better to large problems. We also prove the asymptotic consistency of the algorithm in the parametric model, a result that has not previously been available for even the known-variance case.
Online incidental statistical learning of audiovisual word sequences in adults: a registered report.
Kuppuraj, Sengottuvel; Duta, Mihaela; Thompson, Paul; Bishop, Dorothy
2018-02-01
Statistical learning has been proposed as a key mechanism in language learning. Our main goal was to examine whether adults are capable of simultaneously extracting statistical dependencies in a task where stimuli include a range of structures amenable to statistical learning within a single paradigm. We devised an online statistical learning task using real word auditory-picture sequences that vary in two dimensions: (i) predictability and (ii) adjacency of dependent elements. This task was followed by an offline recall task to probe learning of each sequence type. We registered three hypotheses with specific predictions. First, adults would extract regular patterns from continuous stream (effect of grammaticality). Second, within grammatical conditions, they would show differential speeding up for each condition as a factor of statistical complexity of the condition and exposure. Third, our novel approach to measure online statistical learning would be reliable in showing individual differences in statistical learning ability. Further, we explored the relation between statistical learning and a measure of verbal short-term memory (STM). Forty-two participants were tested and retested after an interval of at least 3 days on our novel statistical learning task. We analysed the reaction time data using a novel regression discontinuity approach. Consistent with prediction, participants showed a grammaticality effect, agreeing with the predicted order of difficulty for learning different statistical structures. Furthermore, a learning index from the task showed acceptable test-retest reliability ( r = 0.67). However, STM did not correlate with statistical learning. We discuss the findings noting the benefits of online measures in tracking the learning process.
Online incidental statistical learning of audiovisual word sequences in adults: a registered report
Duta, Mihaela; Thompson, Paul
2018-01-01
Statistical learning has been proposed as a key mechanism in language learning. Our main goal was to examine whether adults are capable of simultaneously extracting statistical dependencies in a task where stimuli include a range of structures amenable to statistical learning within a single paradigm. We devised an online statistical learning task using real word auditory–picture sequences that vary in two dimensions: (i) predictability and (ii) adjacency of dependent elements. This task was followed by an offline recall task to probe learning of each sequence type. We registered three hypotheses with specific predictions. First, adults would extract regular patterns from continuous stream (effect of grammaticality). Second, within grammatical conditions, they would show differential speeding up for each condition as a factor of statistical complexity of the condition and exposure. Third, our novel approach to measure online statistical learning would be reliable in showing individual differences in statistical learning ability. Further, we explored the relation between statistical learning and a measure of verbal short-term memory (STM). Forty-two participants were tested and retested after an interval of at least 3 days on our novel statistical learning task. We analysed the reaction time data using a novel regression discontinuity approach. Consistent with prediction, participants showed a grammaticality effect, agreeing with the predicted order of difficulty for learning different statistical structures. Furthermore, a learning index from the task showed acceptable test–retest reliability (r = 0.67). However, STM did not correlate with statistical learning. We discuss the findings noting the benefits of online measures in tracking the learning process. PMID:29515876
ERIC Educational Resources Information Center
Fisher, Tony; Denning, Tim; Higgins, Chris; Loveless, Avril
2012-01-01
This article describes a project to apply and validate a conceptual framework of clusters of purposeful learning activity involving ICT tools. The framework, which is based in a socio-cultural perspective, is described as "DECK", and comprises the following major categories of the use of digital technologies to support learning:…
A Response to the Review of the Community of Inquiry Framework
ERIC Educational Resources Information Center
Akyol, Zehra; Arbaugh, J. Ben; Cleveland-Innes, Marti; Garrison, D. Randy; Ice, Phil; Richardson, Jennifer C.; Swan, Karen
2009-01-01
The Community of Inquiry (CoI) framework has become a prominent model of teaching and learning in online and blended learning environments. Considerable research has been conducted which employs the framework with promising results, resulting in wide use to inform the practice of online and blended teaching and learning. For the CoI model to…
Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D; Turpen, Chandra
2013-06-01
The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives.
Gillespie, Mary; Shackell, Eileen
2017-11-01
In nursing education, physiological concepts are typically presented within a body 'systems' framework yet learners are often challenged to apply this knowledge in the holistic and functional manner needed for effective clinical decision-making and safe patient care. A nursing faculty addressed this learning challenge by developing an advanced organizer as a conceptual and integrative learning tool to support learners in diverse learning environments and practice settings. A mixed methods research study was conducted that explored the effectiveness of the Oxygen Supply and Demand Framework as a learning tool in undergraduate nursing education. A pretest/post-test assessment and reflective journal were used to gather data. Findings indicated the Oxygen Supply and Demand Framework guided the development of pattern recognition and thinking processes and supported knowledge development, knowledge application and clinical decision-making. The Oxygen Supply and Demand Framework supports undergraduate students learning to provide safe and effective nursing care. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D.; Turpen, Chandra
2013-01-01
The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives. PMID:23737627
NASA Astrophysics Data System (ADS)
Quinnell, R.; Thompson, R.; LeBard, R. J.
2013-09-01
Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.
Flexible Learning in an Information Society
ERIC Educational Resources Information Center
Khan, Badrul, Ed.
2007-01-01
Flexible Learning in an Information Society uses a flexible learning framework to explain the best ways of creating a meaningful learning environment. This framework consists of eight factors--institutional, management, technological, pedagogical, ethical, interface design, resource support, and evaluation--and a systematic understanding of these…
Maximum entropy methods for extracting the learned features of deep neural networks.
Finnegan, Alex; Song, Jun S
2017-10-01
New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.
Supporting new graduate professional development: a clinical learning framework.
Fitzgerald, Cate; Moores, Alis; Coleman, Allison; Fleming, Jennifer
2015-02-01
New graduate occupational therapists are required to competently deliver health-care practices within complex care environments. An occupational therapy clinical education programme within a large public sector health service sought to investigate methods to support new graduates in their clinical learning and professional development. Three cycles of an insider action research approach each using the steps of planning, action, critical observation and reflection were undertaken to investigate new graduate learning strategies, develop a learning framework and pilot its utility. Qualitative research methods were used to analyse data gathered during the action research cycles. Action research identified variations in current practices to support new graduate learning and to the development of the Occupational Therapy Clinical Learning Framework (OTCLF). Investigation into the utility of the OTCLF revealed two themes associated with its implementation namely (i) contribution to learning goal development and (ii) compatibility with existing learning supports. The action research cycles aimed to review current practices to support new graduate learning. The learning framework developed encourages reflection to identify learning needs and the review, discussion of, and engagement in, goal setting and learning strategies. Preliminary evidence indicates that the OTCLF has potential as an approach to guide new graduate goal development supported by supervision. Future opportunity to implement a similar learning framework in other allied health professions was identified, enabling a continuation of the cyclical nature of enquiry, integral to this research approach within the workplace. © 2014 Occupational Therapy Australia.
Ontologies for Effective Use of Context in E-Learning Settings
ERIC Educational Resources Information Center
Jovanovic, Jelena; Gasevic, Dragan; Knight, Colin; Richards, Griff
2007-01-01
This paper presents an ontology-based framework aimed at explicit representation of context-specific metadata derived from the actual usage of learning objects and learning designs. The core part of the proposed framework is a learning object context ontology, that leverages a range of other kinds of learning ontologies (e.g., user modeling…
Outcomes-Based Assessment and Learning: Trialling Change in a Postgraduate Civil Engineering Course
ERIC Educational Resources Information Center
El-Maaddawy, Tamer; Deneen, Christopher
2017-01-01
This paper aims to demonstrate how assessment tasks can function within an outcomes-based learning framework to evaluate student attainment of learning outcomes. An outcomes-based learning framework designed to integrate teaching, learning, and assessment activities was developed and implemented in a civil engineering master-level course. The…
The SAMR Model as a Framework for Evaluating mLearning
ERIC Educational Resources Information Center
Romrell, Danae; Kidder, Lisa C.; Wood, Emma
2014-01-01
As mobile devices become more prominent in the lives of students, the use of mobile devices has the potential to transform learning. Mobile learning, or mLearning, is defined as learning that is personalized, situated, and connected through the use of a mobile device. As mLearning activities are developed, there is a need for a framework within…
Clark, Kevin B
2010-03-01
Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate previous work demonstrating ciliates with improving expertise search grouped 'courting' assurances at quantum efficiencies and verify efficient processing by primitive 'social' intelligences involves network forms of Bose-Einstein condensation coupled to preceding thermodynamic-sensitive computational phases. 2009 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Huh, Yeol; Reigeluth, Charles M.
2017-01-01
A modified conceptual framework called the Continuous-Change Framework for self-regulated learning (SRL) is presented. Common elements and limitations among the past frameworks are discussed in relation to the modified conceptual framework. The iterative nature of the goal setting process and overarching presence of self-efficacy and motivational…
Dynamics of EEG functional connectivity during statistical learning.
Tóth, Brigitta; Janacsek, Karolina; Takács, Ádám; Kóbor, Andrea; Zavecz, Zsófia; Nemeth, Dezso
2017-10-01
Statistical learning is a fundamental mechanism of the brain, which extracts and represents regularities of our environment. Statistical learning is crucial in predictive processing, and in the acquisition of perceptual, motor, cognitive, and social skills. Although previous studies have revealed competitive neurocognitive processes underlying statistical learning, the neural communication of the related brain regions (functional connectivity, FC) has not yet been investigated. The present study aimed to fill this gap by investigating FC networks that promote statistical learning in humans. Young adults (N=28) performed a statistical learning task while 128-channels EEG was acquired. The task involved probabilistic sequences, which enabled to measure incidental/implicit learning of conditional probabilities. Phase synchronization in seven frequency bands was used to quantify FC between cortical regions during the first, second, and third periods of the learning task, respectively. Here we show that statistical learning is negatively correlated with FC of the anterior brain regions in slow (theta) and fast (beta) oscillations. These negative correlations increased as the learning progressed. Our findings provide evidence that dynamic antagonist brain networks serve a hallmark of statistical learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.
2017-07-14
A machine learning–based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (eg, random forests, and LASSO) to map a large set of inexpensively computed “error indicators” (ie, features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed bymore » simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering) and subsequently constructs a “local” regression model to predict the time-instantaneous error within each identified region of feature space. We consider 2 uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (eg, time-integrated errors). We then apply the proposed framework to model errors in reduced-order models of nonlinear oil-water subsurface flow simulations, with time-varying well-control (bottom-hole pressure) parameters. The reduced-order models used in this work entail application of trajectory piecewise linearization in conjunction with proper orthogonal decomposition. Moreover, when the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well-averaged errors.« less
Dendritic tree extraction from noisy maximum intensity projection images in C. elegans.
Greenblum, Ayala; Sznitman, Raphael; Fua, Pascal; Arratia, Paulo E; Oren, Meital; Podbilewicz, Benjamin; Sznitman, Josué
2014-06-12
Maximum Intensity Projections (MIP) of neuronal dendritic trees obtained from confocal microscopy are frequently used to study the relationship between tree morphology and mechanosensory function in the model organism C. elegans. Extracting dendritic trees from noisy images remains however a strenuous process that has traditionally relied on manual approaches. Here, we focus on automated and reliable 2D segmentations of dendritic trees following a statistical learning framework. Our dendritic tree extraction (DTE) method uses small amounts of labelled training data on MIPs to learn noise models of texture-based features from the responses of tree structures and image background. Our strategy lies in evaluating statistical models of noise that account for both the variability generated from the imaging process and from the aggregation of information in the MIP images. These noisy models are then used within a probabilistic, or Bayesian framework to provide a coarse 2D dendritic tree segmentation. Finally, some post-processing is applied to refine the segmentations and provide skeletonized trees using a morphological thinning process. Following a Leave-One-Out Cross Validation (LOOCV) method for an MIP databse with available "ground truth" images, we demonstrate that our approach provides significant improvements in tree-structure segmentations over traditional intensity-based methods. Improvements for MIPs under various imaging conditions are both qualitative and quantitative, as measured from Receiver Operator Characteristic (ROC) curves and the yield and error rates in the final segmentations. In a final step, we demonstrate our DTE approach on previously unseen MIP samples including the extraction of skeletonized structures, and compare our method to a state-of-the art dendritic tree tracing software. Overall, our DTE method allows for robust dendritic tree segmentations in noisy MIPs, outperforming traditional intensity-based methods. Such approach provides a useable segmentation framework, ultimately delivering a speed-up for dendritic tree identification on the user end and a reliable first step towards further morphological characterizations of tree arborization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.
A machine learning–based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (eg, random forests, and LASSO) to map a large set of inexpensively computed “error indicators” (ie, features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed bymore » simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering) and subsequently constructs a “local” regression model to predict the time-instantaneous error within each identified region of feature space. We consider 2 uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (eg, time-integrated errors). We then apply the proposed framework to model errors in reduced-order models of nonlinear oil-water subsurface flow simulations, with time-varying well-control (bottom-hole pressure) parameters. The reduced-order models used in this work entail application of trajectory piecewise linearization in conjunction with proper orthogonal decomposition. Moreover, when the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well-averaged errors.« less
ERIC Educational Resources Information Center
Barnhardt, Bradford; Ginns, Paul
2014-01-01
This article orients a recently proposed alienation-based framework for student learning theory (SLT) to the empirical basis of the approaches to learning perspective. The proposed framework makes new macro-level interpretations of an established micro-level theory, across three levels of interpretation: (1) a context-free psychological state…
Proposal of a Framework for Internet Based Licensing of Learning Objects
ERIC Educational Resources Information Center
Santos, Osvaldo A.; Ramos, Fernando M. S.
2004-01-01
This paper presents a proposal of a framework whose main objective is to manage the delivery and rendering of learning objects in a digital rights controlled environment. The framework is based on a digital licensing scheme that requires each learning object to have the proper license in order to be rendered by a trusted player. A conceptual model…
ERIC Educational Resources Information Center
Drachsler, H.; Kalz, M.
2016-01-01
The article deals with the interplay between learning analytics and massive open online courses (MOOCs) and provides a conceptual framework to situate ongoing research in the MOOC and learning analytics innovation cycle (MOLAC framework). The MOLAC framework is organized on three levels: On the micro-level, the data collection and analytics…
Revised Community of Inquiry Framework: Examining Learning Presence in a Blended Mode of Delivery
ERIC Educational Resources Information Center
Pool, Jessica; Reitsma, Gerda; van den Berg, Dirk
2017-01-01
This paper presents a study grounded in the Community of Inquiry (CoI) framework using qualitative content analysis and focus group interviews in an effort to identify aspects of learning presence in a blended learning course. Research has suggested that the CoI framework may need additional emphasis based on the roles of strategic learners in…
Nkhata, Bimo Abraham; Breen, Charles
2010-02-01
This article discusses how the concept of integrated learning systems provides a useful means of exploring the functional linkages between the governance and management of public protected areas. It presents a conceptual framework of an integrated learning system that explicitly incorporates learning processes in governance and management subsystems. The framework is premised on the assumption that an understanding of an integrated learning system is essential if we are to successfully promote learning across multiple scales as a fundamental component of adaptability in the governance and management of protected areas. The framework is used to illustrate real-world situations that reflect the nature and substance of the linkages between governance and management. Drawing on lessons from North America and Africa, the article demonstrates that the establishment and maintenance of an integrated learning system take place in a complex context which links elements of governance learning and management learning subsystems. The degree to which the two subsystems are coupled influences the performance of an integrated learning system and ultimately adaptability. Such performance is largely determined by how integrated learning processes allow for the systematic testing of societal assumptions (beliefs, values, and public interest) to enable society and protected area agencies to adapt and learn in the face of social and ecological change. It is argued that an integrated perspective provides a potentially useful framework for explaining and improving shared understanding around which the concept of adaptability is structured and implemented.
Wu, Zujian; Pang, Wei; Coghill, George M
2015-01-01
Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.
Language Acquisition and Machine Learning.
1986-02-01
machine learning and examine its implications for computational models of language acquisition. As a framework for understanding this research, the authors propose four component tasks involved in learning from experience-aggregation, clustering, characterization, and storage. They then consider four common problems studied by machine learning researchers-learning from examples, heuristics learning, conceptual clustering, and learning macro-operators-describing each in terms of our framework. After this, they turn to the problem of grammar
Perceptual statistical learning over one week in child speech production.
Richtsmeier, Peter T; Goffman, Lisa
2017-07-01
What cognitive mechanisms account for the trajectory of speech sound development, in particular, gradually increasing accuracy during childhood? An intriguing potential contributor is statistical learning, a type of learning that has been studied frequently in infant perception but less often in child speech production. To assess the relevance of statistical learning to developing speech accuracy, we carried out a statistical learning experiment with four- and five-year-olds in which statistical learning was examined over one week. Children were familiarized with and tested on word-medial consonant sequences in novel words. There was only modest evidence for statistical learning, primarily in the first few productions of the first session. This initial learning effect nevertheless aligns with previous statistical learning research. Furthermore, the overall learning effect was similar to an estimate of weekly accuracy growth based on normative studies. The results implicate other important factors in speech sound development, particularly learning via production. Copyright © 2017 Elsevier Inc. All rights reserved.
Statistical mechanics of complex neural systems and high dimensional data
NASA Astrophysics Data System (ADS)
Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya
2013-03-01
Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.
Abstinence education for urban youth.
Carter-Jessop, L; Franklin, L N; Heath, J W; Jimenez-Irizarry, G; Peace, M D
2000-08-01
Teen sexual problems in the U.S. are reaching enormous proportions. Attempts to prevent common problems, pregnancy and sexually transmitted diseases, are underway through the persistent efforts of community, health, academic and government organizations. Abstinence education is one of the current attempts. However, the lack of well defined theoretical frameworks and analyses of outcomes have limited progress in the study of abstinence education. This article describes a pilot program in abstinence-only education provided to six groups of young teens within an urban middle school. The framework for the program, cognitive social learning theory, is described and operationalized. Student pretest-posttest attitudes, open-ended written comments about the program and the researchers' anecdotes about behavioral changes in the students are the outcome measures. Positive attitudes about premarital abstinence increased for all six groups; for four of the six groups the increase was statistically significant.
Modelling Trial-by-Trial Changes in the Mismatch Negativity
Lieder, Falk; Daunizeau, Jean; Garrido, Marta I.; Friston, Karl J.; Stephan, Klaas E.
2013-01-01
The mismatch negativity (MMN) is a differential brain response to violations of learned regularities. It has been used to demonstrate that the brain learns the statistical structure of its environment and predicts future sensory inputs. However, the algorithmic nature of these computations and the underlying neurobiological implementation remain controversial. This article introduces a mathematical framework with which competing ideas about the computational quantities indexed by MMN responses can be formalized and tested against single-trial EEG data. This framework was applied to five major theories of the MMN, comparing their ability to explain trial-by-trial changes in MMN amplitude. Three of these theories (predictive coding, model adjustment, and novelty detection) were formalized by linking the MMN to different manifestations of the same computational mechanism: approximate Bayesian inference according to the free-energy principle. We thereby propose a unifying view on three distinct theories of the MMN. The relative plausibility of each theory was assessed against empirical single-trial MMN amplitudes acquired from eight healthy volunteers in a roving oddball experiment. Models based on the free-energy principle provided more plausible explanations of trial-by-trial changes in MMN amplitude than models representing the two more traditional theories (change detection and adaptation). Our results suggest that the MMN reflects approximate Bayesian learning of sensory regularities, and that the MMN-generating process adjusts a probabilistic model of the environment according to prediction errors. PMID:23436989
Tug-o-Where: Situating Mobilities of Learning (T)here
ERIC Educational Resources Information Center
Enriquez, Judith Guevarra
2011-01-01
This article explores "mobilities" as a research framework for learning not so much in terms of what has to be done to enhance learning using mobile technologies. Instead it focuses on our embodied ways of knowing and learning by "being mobile" in physical and mediated spaces. It reviews current mobility frameworks used in mobile learning research…
ERIC Educational Resources Information Center
Gan, Yongcheng; Zhu, Zhiting
2007-01-01
This study represents an effort to construct a learning framework for knowledge building and collective wisdom advancement in a virtual learning community (VLC) from the perspectives of system wholeness, intelligence wholeness and dynamics, learning models, and knowledge management. It also tries to construct the zone of proximal development (ZPD)…
Professional Development Framework for e-Learning: A Guide for Advisers and Practitioners
ERIC Educational Resources Information Center
Smith, Ros
2007-01-01
In January 2006 the Learning and Skills Development Agency (LSDA) launched its draft publication, "A Professional Development Framework for e-Learning" (ePD) for consultation with the post-16 education and training sector. In March 2006 the Learning and Skills Council funded the Learning and Skills Network (LSN) to run a pilot to…
ERIC Educational Resources Information Center
Huang, Leelien Ken
2010-01-01
E-learning and traditional classroom learning have been combined to deliver library and information science (LIS) education. However, the framework for planning and implementing a hybrid e-learning model is unclear in the literature. Using a routines-based perspective, e-learning opportunities were explored through identifying the internal…
ERIC Educational Resources Information Center
Bodily, Robert; Nyland, Rob; Wiley, David
2017-01-01
The RISE (Resource Inspection, Selection, and Enhancement) Framework is a framework supporting the continuous improvement of open educational resources (OER). The framework is an automated process that identifies learning resources that should be evaluated and either eliminated or improved. This is particularly useful in OER contexts where the…
Probabilistic machine learning and artificial intelligence.
Ghahramani, Zoubin
2015-05-28
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
Probabilistic machine learning and artificial intelligence
NASA Astrophysics Data System (ADS)
Ghahramani, Zoubin
2015-05-01
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
ERIC Educational Resources Information Center
Kim, Jun Hee; Callahan, Jamie L.
2013-01-01
Purpose: This article aims to develop a conceptual framework delineating the key dimension of the learning organization which significantly influences learning transfer. Design/methodology/approach: The conceptual framework was developed by analyzing previous studies and synthesizing the results associated with the following four relationships:…
Quality Indicators for Learning Analytics
ERIC Educational Resources Information Center
Scheffel, Maren; Drachsler, Hendrik; Stoyanov, Slavi; Specht, Marcus
2014-01-01
This article proposes a framework of quality indicators for learning analytics that aims to standardise the evaluation of learning analytics tools and to provide a mean to capture evidence for the impact of learning analytics on educational practices in a standardised manner. The criteria of the framework and its quality indicators are based on…
Adapting a Framework for Assessing Students' Approaches to Modeling
ERIC Educational Resources Information Center
Bennett, Steven Carl
2017-01-01
We used an "approach to learning" theoretical framework to explicate the ways students engage in scientific modeling. Approach to learning theory suggests that when students approach learning deeply, they link science concepts with prior knowledge and experiences. Conversely, when students engage in a surface approach to learning, they…
Wang, Guoli; Ebrahimi, Nader
2014-01-01
Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H, such that V ∼ W H. It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H. In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data. PMID:25821345
Devarajan, Karthik; Wang, Guoli; Ebrahimi, Nader
2015-04-01
Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H , such that V ∼ W H . It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H . In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data.
Grounding theories of W(e)Learn: a framework for online interprofessional education.
Casimiro, Lynn; MacDonald, Colla J; Thompson, Terrie Lynn; Stodel, Emma J
2009-07-01
Interprofessional care (IPC) is a prerequisite for enhanced communication between healthcare team members, improved quality of care, and better outcomes for patients. A move to an IPC model requires changing the learning experiences of healthcare providers during and after their qualification program. With the rapid growth of online and blended approaches to learning, an educational framework that explains how to construct quality learning events to provide IPC is pressing. Such a framework would offer a quality standard to help educators design, develop, deliver, and evaluate online interprofessional education (IPE) programs. IPE is an extremely delicate process due to issues related to knowledge, status, power, accountability, personality traits, and culture that surround IPC. In this paper, a review of the pertinent literature that would inform the development of such a framework is presented. The review covers IPC, IPE, learning theories, and eLearning in healthcare.
ERIC Educational Resources Information Center
Maryland State Department of Education, 2011
2011-01-01
Universal Design for Learning (UDL) is a framework for curriculum design, instruction, and assessment that gives all students equal opportunities to learn and to demonstrate what they have learned. UDL is built on the premise that there is not one kind of learning. Learning differs across tasks, across development, and among individuals. UDL is…
ERIC Educational Resources Information Center
Nguyen, Viet Anh
2017-01-01
Purpose: The purpose of this paper is to build an assessment-centred blended learning (BL) framework to assess learners, to analyse and to evaluate the impact of the technology support in the form of formative assessment in students' positive learning. Design/methodology/approach: This research proposed an assessment-centred BL framework at the…
ERIC Educational Resources Information Center
Smith, Sedef Uzuner; Hayes, Suzanne; Shea, Peter
2017-01-01
After presenting a brief overview of the key elements that underpin Etienne Wenger's communities of practice (CoP) theoretical framework, one of the most widely cited and influential conceptions of social learning, this paper reviews extant empirical work grounded in this framework to investigate online/blended learning in higher education and in…
Learning the Language of Statistics: Challenges and Teaching Approaches
ERIC Educational Resources Information Center
Dunn, Peter K.; Carey, Michael D.; Richardson, Alice M.; McDonald, Christine
2016-01-01
Learning statistics requires learning the language of statistics. Statistics draws upon words from general English, mathematical English, discipline-specific English and words used primarily in statistics. This leads to many linguistic challenges in teaching statistics and the way in which the language is used in statistics creates an extra layer…
An Example-Based Brain MRI Simulation Framework.
He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L
2015-02-21
The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.
Evaluating the Quality of Competency Assessment in Pharmacy: A Framework for Workplace Learning.
Shah, Shailly; McLaughlin, Jacqueline E; Eckel, Stephen F; Mangun, Jesica; Hawes, Emily
2016-01-19
Demonstration of achieved competencies is critical in the pharmacy workplace. The purpose of this study was to evaluate the quality of the competency assessment program for pharmacy residents at an academic medical center. The competency assessment program (CAP) survey is a validated, 48-item instrument that evaluates the quality of an assessment program based on 12 criteria, each measured by four questions on a scale of 0 to 100. The CAP was completed by residents ( n = 23) and preceptors ( n = 28) from the pharmacy residency program between 2010 and 2013. Results were analyzed using descriptive statistics, Cronbach's alpha, and non-parametric tests. Educational Consequences was the only quality criteria falling below the standard for "good quality." Participants that completed residency training elsewhere rated the Comparability (0.04) and Meaningfulness (0.01) of the assessment program higher than those that completed residency at the academic medical center. There were no significant differences between resident and preceptor scores. Overall, the quality of the assessment program was rated highly by residents and preceptors. The process described here provides a useful framework for understanding the quality of workplace learning assessments in pharmacy practice.
Learning Theory Foundations of Simulation-Based Mastery Learning.
McGaghie, William C; Harris, Ilene B
2018-06-01
Simulation-based mastery learning (SBML), like all education interventions, has learning theory foundations. Recognition and comprehension of SBML learning theory foundations are essential for thoughtful education program development, research, and scholarship. We begin with a description of SBML followed by a section on the importance of learning theory foundations to shape and direct SBML education and research. We then discuss three principal learning theory conceptual frameworks that are associated with SBML-behavioral, constructivist, social cognitive-and their contributions to SBML thought and practice. We then discuss how the three learning theory frameworks converge in the course of planning, conducting, and evaluating SBML education programs in the health professions. Convergence of these learning theory frameworks is illustrated by a description of an SBML education and research program in advanced cardiac life support. We conclude with a brief coda.
Active Learning Using Hint Information.
Li, Chun-Liang; Ferng, Chun-Sung; Lin, Hsuan-Tien
2015-08-01
The abundance of real-world data and limited labeling budget calls for active learning, an important learning paradigm for reducing human labeling efforts. Many recently developed active learning algorithms consider both uncertainty and representativeness when making querying decisions. However, exploiting representativeness with uncertainty concurrently usually requires tackling sophisticated and challenging learning tasks, such as clustering. In this letter, we propose a new active learning framework, called hinted sampling, which takes both uncertainty and representativeness into account in a simpler way. We design a novel active learning algorithm within the hinted sampling framework with an extended support vector machine. Experimental results validate that the novel active learning algorithm can result in a better and more stable performance than that achieved by state-of-the-art algorithms. We also show that the hinted sampling framework allows improving another active learning algorithm designed from the transductive support vector machine.
Kim, Youngwoo; Hong, Byung Woo; Kim, Seung Ja; Kim, Jong Hyo
2014-07-01
A major challenge when distinguishing glandular tissues on mammograms, especially for area-based estimations, lies in determining a boundary on a hazy transition zone from adipose to glandular tissues. This stems from the nature of mammography, which is a projection of superimposed tissues consisting of different structures. In this paper, the authors present a novel segmentation scheme which incorporates the learned prior knowledge of experts into a level set framework for fully automated mammographic density estimations. The authors modeled the learned knowledge as a population-based tissue probability map (PTPM) that was designed to capture the classification of experts' visual systems. The PTPM was constructed using an image database of a selected population consisting of 297 cases. Three mammogram experts extracted regions for dense and fatty tissues on digital mammograms, which was an independent subset used to create a tissue probability map for each ROI based on its local statistics. This tissue class probability was taken as a prior in the Bayesian formulation and was incorporated into a level set framework as an additional term to control the evolution and followed the energy surface designed to reflect experts' knowledge as well as the regional statistics inside and outside of the evolving contour. A subset of 100 digital mammograms, which was not used in constructing the PTPM, was used to validate the performance. The energy was minimized when the initial contour reached the boundary of the dense and fatty tissues, as defined by experts. The correlation coefficient between mammographic density measurements made by experts and measurements by the proposed method was 0.93, while that with the conventional level set was 0.47. The proposed method showed a marked improvement over the conventional level set method in terms of accuracy and reliability. This result suggests that the proposed method successfully incorporated the learned knowledge of the experts' visual systems and has potential to be used as an automated and quantitative tool for estimations of mammographic breast density levels.
ERIC Educational Resources Information Center
Waheed, M.; Kaur, K.; Kumar, S.
2016-01-01
Quality knowledge has an impact on online students learning outcomes and loyalty. A framework that delineates the perceived eLearning knowledge quality (KQ) and its relationship with learning outcomes and loyalty is currently absent. Grounded in the KQ and information system success framework--this study presents the indicators of perceived…
ERIC Educational Resources Information Center
Doyle, Louise; Kelliher, Felicity; Harrington, Denis
2016-01-01
The aim of this paper is to review the relevant literature on organisational learning and offer a preliminary conceptual framework as a basis to explore how the multi-levels of individual learning and team learning interact in a public healthcare organisation. The organisational learning literature highlights a need for further understanding of…
Sharma, Harshita; Zerbe, Norman; Klempert, Iris; Hellwich, Olaf; Hufnagl, Peter
2017-11-01
Deep learning using convolutional neural networks is an actively emerging field in histological image analysis. This study explores deep learning methods for computer-aided classification in H&E stained histopathological whole slide images of gastric carcinoma. An introductory convolutional neural network architecture is proposed for two computerized applications, namely, cancer classification based on immunohistochemical response and necrosis detection based on the existence of tumor necrosis in the tissue. Classification performance of the developed deep learning approach is quantitatively compared with traditional image analysis methods in digital histopathology requiring prior computation of handcrafted features, such as statistical measures using gray level co-occurrence matrix, Gabor filter-bank responses, LBP histograms, gray histograms, HSV histograms and RGB histograms, followed by random forest machine learning. Additionally, the widely known AlexNet deep convolutional framework is comparatively analyzed for the corresponding classification problems. The proposed convolutional neural network architecture reports favorable results, with an overall classification accuracy of 0.6990 for cancer classification and 0.8144 for necrosis detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
The logical primitives of thought: Empirical foundations for compositional cognitive models.
Piantadosi, Steven T; Tenenbaum, Joshua B; Goodman, Noah D
2016-07-01
The notion of a compositional language of thought (LOT) has been central in computational accounts of cognition from earliest attempts (Boole, 1854; Fodor, 1975) to the present day (Feldman, 2000; Penn, Holyoak, & Povinelli, 2008; Fodor, 2008; Kemp, 2012; Goodman, Tenenbaum, & Gerstenberg, 2015). Recent modeling work shows how statistical inferences over compositionally structured hypothesis spaces might explain learning and development across a variety of domains. However, the primitive components of such representations are typically assumed a priori by modelers and theoreticians rather than determined empirically. We show how different sets of LOT primitives, embedded in a psychologically realistic approximate Bayesian inference framework, systematically predict distinct learning curves in rule-based concept learning experiments. We use this feature of LOT models to design a set of large-scale concept learning experiments that can determine the most likely primitives for psychological concepts involving Boolean connectives and quantification. Subjects' inferences are most consistent with a rich (nonminimal) set of Boolean operations, including first-order, but not second-order, quantification. Our results more generally show how specific LOT theories can be distinguished empirically. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Information-theoretic approach to interactive learning
NASA Astrophysics Data System (ADS)
Still, S.
2009-01-01
The principles of statistical mechanics and information theory play an important role in learning and have inspired both theory and the design of numerous machine learning algorithms. The new aspect in this paper is a focus on integrating feedback from the learner. A quantitative approach to interactive learning and adaptive behavior is proposed, integrating model- and decision-making into one theoretical framework. This paper follows simple principles by requiring that the observer's world model and action policy should result in maximal predictive power at minimal complexity. Classes of optimal action policies and of optimal models are derived from an objective function that reflects this trade-off between prediction and complexity. The resulting optimal models then summarize, at different levels of abstraction, the process's causal organization in the presence of the learner's actions. A fundamental consequence of the proposed principle is that the learner's optimal action policies balance exploration and control as an emerging property. Interestingly, the explorative component is present in the absence of policy randomness, i.e. in the optimal deterministic behavior. This is a direct result of requiring maximal predictive power in the presence of feedback.
Koul, Atesh; Becchio, Cristina; Cavallo, Andrea
2017-12-12
Recent years have seen an increased interest in machine learning-based predictive methods for analyzing quantitative behavioral data in experimental psychology. While these methods can achieve relatively greater sensitivity compared to conventional univariate techniques, they still lack an established and accessible implementation. The aim of current work was to build an open-source R toolbox - "PredPsych" - that could make these methods readily available to all psychologists. PredPsych is a user-friendly, R toolbox based on machine-learning predictive algorithms. In this paper, we present the framework of PredPsych via the analysis of a recently published multiple-subject motion capture dataset. In addition, we discuss examples of possible research questions that can be addressed with the machine-learning algorithms implemented in PredPsych and cannot be easily addressed with univariate statistical analysis. We anticipate that PredPsych will be of use to researchers with limited programming experience not only in the field of psychology, but also in that of clinical neuroscience, enabling computational assessment of putative bio-behavioral markers for both prognosis and diagnosis.
Learning Semantics of Gestural Instructions for Human-Robot Collaboration
Shukla, Dadhichi; Erkent, Özgür; Piater, Justus
2018-01-01
Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions. PMID:29615888
Learning Semantics of Gestural Instructions for Human-Robot Collaboration.
Shukla, Dadhichi; Erkent, Özgür; Piater, Justus
2018-01-01
Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions.
The HTM Spatial Pooler-A Neocortical Algorithm for Online Sparse Distributed Coding.
Cui, Yuwei; Ahmad, Subutai; Hawkins, Jeff
2017-01-01
Hierarchical temporal memory (HTM) provides a theoretical framework that models several key computational principles of the neocortex. In this paper, we analyze an important component of HTM, the HTM spatial pooler (SP). The SP models how neurons learn feedforward connections and form efficient representations of the input. It converts arbitrary binary input patterns into sparse distributed representations (SDRs) using a combination of competitive Hebbian learning rules and homeostatic excitability control. We describe a number of key properties of the SP, including fast adaptation to changing input statistics, improved noise robustness through learning, efficient use of cells, and robustness to cell death. In order to quantify these properties we develop a set of metrics that can be directly computed from the SP outputs. We show how the properties are met using these metrics and targeted artificial simulations. We then demonstrate the value of the SP in a complete end-to-end real-world HTM system. We discuss the relationship with neuroscience and previous studies of sparse coding. The HTM spatial pooler represents a neurally inspired algorithm for learning sparse representations from noisy data streams in an online fashion.
NASA Astrophysics Data System (ADS)
Tyralis, Hristos; Mamassis, Nikos; Photis, Yorgos N.
2016-04-01
We investigate various uses of electricity demand in Greece (agricultural, commercial, domestic, industrial use as well as use for public and municipal authorities and street lightning) and we examine their relation with variables such as population, total area, population density and the Gross Domestic Product. The analysis is performed on data which span from 2008 to 2012 and have annual temporal resolution and spatial resolution down to the level of prefecture. We both visualize the results of the analysis and we perform cluster and outlier analysis using the Anselin local Moran's I statistic as well as hot spot analysis using the Getis-Ord Gi* statistic. The definition of the spatial patterns and relationships of the aforementioned variables in a GIS environment provides meaningful insight and better understanding of the regional development model in Greece and justifies the basis for an energy demand forecasting methodology. Acknowledgement: This research has been partly financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA II: Reinforcement of the interdisciplinary and/ or inter-institutional research and innovation (CRESSENDO project; grant number 5145).
Proposing a Framework for Mobile Applications in Disaster Health Learning.
Liu, Alexander G; Altman, Brian A; Schor, Kenneth; Strauss-Riggs, Kandra; Thomas, Tracy N; Sager, Catherine; Leander-Griffith, Michelle; Harp, Victoria
2017-08-01
Mobile applications, or apps, have gained widespread use with the advent of modern smartphone technologies. Previous research has been conducted in the use of mobile devices for learning. However, there is decidedly less research into the use of mobile apps for health learning (eg, patient self-monitoring, medical student learning). This deficiency in research on using apps in a learning context is especially severe in the disaster health field. The objectives of this article were to provide an overview of the current state of disaster health apps being used for learning, to situate the use of apps in a health learning context, and to adapt a learning framework for the use of mobile apps in the disaster health field. A systematic literature review was conducted by using the PRISMA checklist, and peer-reviewed articles found through the PubMed and CINAHL databases were examined. This resulted in 107 nonduplicative articles, which underwent a 3-phase review, culminating in a final selection of 17 articles. While several learning models were identified, none were sufficient as an app learning framework for the field. Therefore, we propose a learning framework to inform the use of mobile apps in disaster health learning. (Disaster Med Public Health Preparedness. 2017;11:487-495).
FRAN and RBF-PSO as two components of a hyper framework to recognize protein folds.
Abbasi, Elham; Ghatee, Mehdi; Shiri, M E
2013-09-01
In this paper, an intelligent hyper framework is proposed to recognize protein folds from its amino acid sequence which is a fundamental problem in bioinformatics. This framework includes some statistical and intelligent algorithms for proteins classification. The main components of the proposed framework are the Fuzzy Resource-Allocating Network (FRAN) and the Radial Bases Function based on Particle Swarm Optimization (RBF-PSO). FRAN applies a dynamic method to tune up the RBF network parameters. Due to the patterns complexity captured in protein dataset, FRAN classifies the proteins under fuzzy conditions. Also, RBF-PSO applies PSO to tune up the RBF classifier. Experimental results demonstrate that FRAN improves prediction accuracy up to 51% and achieves acceptable multi-class results for protein fold prediction. Although RBF-PSO provides reasonable results for protein fold recognition up to 48%, it is weaker than FRAN in some cases. However the proposed hyper framework provides an opportunity to use a great range of intelligent methods and can learn from previous experiences. Thus it can avoid the weakness of some intelligent methods in terms of memory, computational time and static structure. Furthermore, the performance of this system can be enhanced throughout the system life-cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.
A flexible data-driven comorbidity feature extraction framework.
Sideris, Costas; Pourhomayoun, Mohammad; Kalantarian, Haik; Sarrafzadeh, Majid
2016-06-01
Disease and symptom diagnostic codes are a valuable resource for classifying and predicting patient outcomes. In this paper, we propose a novel methodology for utilizing disease diagnostic information in a predictive machine learning framework. Our methodology relies on a novel, clustering-based feature extraction framework using disease diagnostic information. To reduce the data dimensionality, we identify disease clusters using co-occurrence statistics. We optimize the number of generated clusters in the training set and then utilize these clusters as features to predict patient severity of condition and patient readmission risk. We build our clustering and feature extraction algorithm using the 2012 National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP) which contains 7 million hospital discharge records and ICD-9-CM codes. The proposed framework is tested on Ronald Reagan UCLA Medical Center Electronic Health Records (EHR) from 3041 Congestive Heart Failure (CHF) patients and the UCI 130-US diabetes dataset that includes admissions from 69,980 diabetic patients. We compare our cluster-based feature set with the commonly used comorbidity frameworks including Charlson's index, Elixhauser's comorbidities and their variations. The proposed approach was shown to have significant gains between 10.7-22.1% in predictive accuracy for CHF severity of condition prediction and 4.65-5.75% in diabetes readmission prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visual Hybrid Development Learning System (VHDLS) framework for children with autism.
Banire, Bilikis; Jomhari, Nazean; Ahmad, Rodina
2015-10-01
The effect of education on children with autism serves as a relative cure for their deficits. As a result of this, they require special techniques to gain their attention and interest in learning as compared to typical children. Several studies have shown that these children are visual learners. In this study, we proposed a Visual Hybrid Development Learning System (VHDLS) framework that is based on an instructional design model, multimedia cognitive learning theory, and learning style in order to guide software developers in developing learning systems for children with autism. The results from this study showed that the attention of children with autism increased more with the proposed VHDLS framework.
A Security Framework for Online Distance Learning and Training.
ERIC Educational Resources Information Center
Furnell, S. M.; Onions, P. D.; Bleimann, U.; Gojny, U.; Knahl, M.; Roder, H. F.; Sanders, P. W.
1998-01-01
Presents a generic reference model for online distance learning and discusses security issues for each stage (enrollment, study, completion, termination, suspension). Discusses a security framework (authentication and accountability, access control, intrusion detection, network communications, nonrepudiation, learning resources provider…
Digital case-based learning system in school.
Gu, Peipei; Guo, Jiayang
2017-01-01
With the continuing growth of multi-media learning resources, it is important to offer methods helping learners to explore and acquire relevant learning information effectively. As services that organize multi-media learning materials together to support programming learning, the digital case-based learning system is needed. In order to create a case-oriented e-learning system, this paper concentrates on the digital case study of multi-media resources and learning processes with an integrated framework. An integration of multi-media resources, testing and learning strategies recommendation as the learning unit is proposed in the digital case-based learning framework. The learning mechanism of learning guidance, multi-media materials learning and testing feedback is supported in our project. An improved personalized genetic algorithm which incorporates preference information and usage degree into the crossover and mutation process is proposed to assemble the personalized test sheet for each learner. A learning strategies recommendation solution is proposed to recommend learning strategies for learners to help them to learn. The experiments are conducted to prove that the proposed approaches are capable of constructing personalized sheets and the effectiveness of the framework.
Digital case-based learning system in school
Gu, Peipei
2017-01-01
With the continuing growth of multi-media learning resources, it is important to offer methods helping learners to explore and acquire relevant learning information effectively. As services that organize multi-media learning materials together to support programming learning, the digital case-based learning system is needed. In order to create a case-oriented e-learning system, this paper concentrates on the digital case study of multi-media resources and learning processes with an integrated framework. An integration of multi-media resources, testing and learning strategies recommendation as the learning unit is proposed in the digital case-based learning framework. The learning mechanism of learning guidance, multi-media materials learning and testing feedback is supported in our project. An improved personalized genetic algorithm which incorporates preference information and usage degree into the crossover and mutation process is proposed to assemble the personalized test sheet for each learner. A learning strategies recommendation solution is proposed to recommend learning strategies for learners to help them to learn. The experiments are conducted to prove that the proposed approaches are capable of constructing personalized sheets and the effectiveness of the framework. PMID:29107965
Self-Regulated Learning Strategies in Relation with Statistics Anxiety
ERIC Educational Resources Information Center
Kesici, Sahin; Baloglu, Mustafa; Deniz, M. Engin
2011-01-01
Dealing with students' attitudinal problems related to statistics is an important aspect of statistics instruction. Employing the appropriate learning strategies may have a relationship with anxiety during the process of statistics learning. Thus, the present study investigated multivariate relationships between self-regulated learning strategies…
A Framework of Metacognitive Scaffolding in Learning Authoring System through Facebook
ERIC Educational Resources Information Center
Jumaat, Nurul Farhana; Tasir, Zaidatun
2016-01-01
Scaffolding refers to a guidance that helps students during their learning sessions whereby it makes learning easier for them. This study aims to develop a framework of metacognitive scaffolding (MS) to guide students in learning Authoring System through Facebook. Thirty-seven master degree students who were enrolled in Authoring System course…
What's in a Name: Dimensions of Social Learning in Teacher Groups
ERIC Educational Resources Information Center
Vrieling, E.; van den Beemt, A.; de Laat, M.
2016-01-01
Induced by a literature review, this paper presents a framework of dimensions and indicators highlighting the underpinning aspects and values of social learning within teacher groups. Notions of social networks, communities of practice and learning teams were taken as the main perspectives to influence this social learning framework. The review…
A Model Driven Framework to Address Challenges in a Mobile Learning Environment
ERIC Educational Resources Information Center
Khaddage, Ferial; Christensen, Rhonda; Lai, Wing; Knezek, Gerald; Norris, Cathie; Soloway, Elliot
2015-01-01
In this paper a review of the pedagogical, technological, policy and research challenges and concepts underlying mobile learning is presented, followed by a brief description of categories of implementations. A model Mobile learning framework and dynamic criteria for mobile learning implementations are proposed, along with a case study of one site…
Teachers as Informal Learners: Workplace Professional Learning in the United States and Lithuania
ERIC Educational Resources Information Center
Jurasaite-Harbison, Elena; Rex, Lesley A.
2013-01-01
This study demonstrates the understandings that result from teachers' explanations of how they learn when they encounter everyday situations that evoke their learning. The study renders these explanations as a framework for further research on teacher workplace learning in informal settings. The framework emerged from a constant-comparative…
An Analytic Framework to Support E.Learning Strategy Development
ERIC Educational Resources Information Center
Marshall, Stephen J.
2012-01-01
Purpose: The purpose of this paper is to discuss and demonstrate the relevance of a new conceptual framework for leading and managing the development of learning and teaching to e.learning strategy development. Design/methodology/approach: After reviewing and discussing the research literature on e.learning in higher education institutions from…
Machine Learning for Detecting Gene-Gene Interactions
McKinney, Brett A.; Reif, David M.; Ritchie, Marylyn D.; Moore, Jason H.
2011-01-01
Complex interactions among genes and environmental factors are known to play a role in common human disease aetiology. There is a growing body of evidence to suggest that complex interactions are ‘the norm’ and, rather than amounting to a small perturbation to classical Mendelian genetics, interactions may be the predominant effect. Traditional statistical methods are not well suited for detecting such interactions, especially when the data are high dimensional (many attributes or independent variables) or when interactions occur between more than two polymorphisms. In this review, we discuss machine-learning models and algorithms for identifying and characterising susceptibility genes in common, complex, multifactorial human diseases. We focus on the following machine-learning methods that have been used to detect gene-gene interactions: neural networks, cellular automata, random forests, and multifactor dimensionality reduction. We conclude with some ideas about how these methods and others can be integrated into a comprehensive and flexible framework for data mining and knowledge discovery in human genetics. PMID:16722772
Examining Neuronal Connectivity and Its Role in Learning and Memory
NASA Astrophysics Data System (ADS)
Gala, Rohan
Learning and long-term memory formation are accompanied with changes in the patterns and weights of synaptic connections in the underlying neuronal network. However, the fundamental rules that drive connectivity changes, and the precise structure-function relationships within neuronal networks remain elusive. Technological improvements over the last few decades have enabled the observation of large but specific subsets of neurons and their connections in unprecedented detail. Devising robust and automated computational methods is critical to distill information from ever-increasing volumes of raw experimental data. Moreover, statistical models and theoretical frameworks are required to interpret the data and assemble evidence into understanding of brain function. In this thesis, I first describe computational methods to reconstruct connectivity based on light microscopy imaging experiments. Next, I use these methods to quantify structural changes in connectivity based on in vivo time-lapse imaging experiments. Finally, I present a theoretical model of associative learning that can explain many stereotypical features of experimentally observed connectivity.
U.S. stock market interaction network as learned by the Boltzmann machine
Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.
2015-12-07
Here, we study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as themore » market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model’s parameters might be used as a precursor of financial instabilities.« less
An Evaluation of Feature Learning Methods for High Resolution Image Classification
NASA Astrophysics Data System (ADS)
Tokarczyk, P.; Montoya, J.; Schindler, K.
2012-07-01
Automatic image classification is one of the fundamental problems of remote sensing research. The classification problem is even more challenging in high-resolution images of urban areas, where the objects are small and heterogeneous. Two questions arise, namely which features to extract from the raw sensor data to capture the local radiometry and image structure at each pixel or segment, and which classification method to apply to the feature vectors. While classifiers are nowadays well understood, selecting the right features remains a largely empirical process. Here we concentrate on the features. Several methods are evaluated which allow one to learn suitable features from unlabelled image data by analysing the image statistics. In a comparative study, we evaluate unsupervised feature learning with different linear and non-linear learning methods, including principal component analysis (PCA) and deep belief networks (DBN). We also compare these automatically learned features with popular choices of ad-hoc features including raw intensity values, standard combinations like the NDVI, a few PCA channels, and texture filters. The comparison is done in a unified framework using the same images, the target classes, reference data and a Random Forest classifier.
Ramírez-Correa, Patricio E; Arenas-Gaitán, Jorge; Rondán-Cataluña, F Javier
2015-01-01
The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model.
Implicit Statistical Learning and Language Skills in Bilingual Children
ERIC Educational Resources Information Center
Yim, Dongsun; Rudoy, John
2013-01-01
Purpose: Implicit statistical learning in 2 nonlinguistic domains (visual and auditory) was used to investigate (a) whether linguistic experience influences the underlying learning mechanism and (b) whether there are modality constraints in predicting implicit statistical learning with age and language skills. Method: Implicit statistical learning…
Neger, Thordis M.; Rietveld, Toni; Janse, Esther
2014-01-01
Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly. PMID:25225475
Neger, Thordis M; Rietveld, Toni; Janse, Esther
2014-01-01
Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.
Gray, Alistair; Veale, Jaimie F.; Binson, Diane; Sell, Randell L.
2013-01-01
Objective. Effectively addressing health disparities experienced by sexual minority populations requires high-quality official data on sexual orientation. We developed a conceptual framework of sexual orientation to improve the quality of sexual orientation data in New Zealand's Official Statistics System. Methods. We reviewed conceptual and methodological literature, culminating in a draft framework. To improve the framework, we held focus groups and key-informant interviews with sexual minority stakeholders and producers and consumers of official statistics. An advisory board of experts provided additional guidance. Results. The framework proposes working definitions of the sexual orientation topic and measurement concepts, describes dimensions of the measurement concepts, discusses variables framing the measurement concepts, and outlines conceptual grey areas. Conclusion. The framework proposes standard definitions and concepts for the collection of official sexual orientation data in New Zealand. It presents a model for producers of official statistics in other countries, who wish to improve the quality of health data on their citizens. PMID:23840231
Framing ICT-Enabled Innovation for Learning: The Case of One-to-One Learning Initiatives in Europe
ERIC Educational Resources Information Center
Bocconi, Stefania; Kampylis, Panagiotis; Punie, Yves
2013-01-01
This article discusses 1:1 learning initiatives in Europe in the context of a mapping framework of ICT-enabled innovation for learning. The aim of the framework, visualised as a spider's web, is two-fold: (i) to provide a further understanding of the nature of ICT-enabled innovation for learning; and (ii) to depict the impact of existing and…
Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics.
Ocone, Andrea; Millar, Andrew J; Sanguinetti, Guido
2013-04-01
Computational modelling of the dynamics of gene regulatory networks is a central task of systems biology. For networks of small/medium scale, the dominant paradigm is represented by systems of coupled non-linear ordinary differential equations (ODEs). ODEs afford great mechanistic detail and flexibility, but calibrating these models to data is often an extremely difficult statistical problem. Here, we develop a general statistical inference framework for stochastic transcription-translation networks. We use a coarse-grained approach, which represents the system as a network of stochastic (binary) promoter and (continuous) protein variables. We derive an exact inference algorithm and an efficient variational approximation that allows scalable inference and learning of the model parameters. We demonstrate the power of the approach on two biological case studies, showing that the method allows a high degree of flexibility and is capable of testable novel biological predictions. http://homepages.inf.ed.ac.uk/gsanguin/software.html. Supplementary data are available at Bioinformatics online.
Rock, Adam J.; Coventry, William L.; Morgan, Methuen I.; Loi, Natasha M.
2016-01-01
Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology. PMID:27014147
Rock, Adam J; Coventry, William L; Morgan, Methuen I; Loi, Natasha M
2016-01-01
Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology.
Infant Statistical-Learning Ability Is Related to Real-Time Language Processing
ERIC Educational Resources Information Center
Lany, Jill; Shoaib, Amber; Thompson, Abbie; Estes, Katharine Graf
2018-01-01
Infants are adept at learning statistical regularities in artificial language materials, suggesting that the ability to learn statistical structure may support language development. Indeed, infants who perform better on statistical learning tasks tend to be more advanced in parental reports of infants' language skills. Work with adults suggests…
Statistical Learning Is Related to Early Literacy-Related Skills
ERIC Educational Resources Information Center
Spencer, Mercedes; Kaschak, Michael P.; Jones, John L.; Lonigan, Christopher J.
2015-01-01
It has been demonstrated that statistical learning, or the ability to use statistical information to learn the structure of one's environment, plays a role in young children's acquisition of linguistic knowledge. Although most research on statistical learning has focused on language acquisition processes, such as the segmentation of words from…
A Statistical Framework for Analyzing Cyber Threats
defender cares most about the attacks against certain ports or services). The grey-box statistical framework formulates a new methodology of Cybersecurity ...the design of prediction models. Our research showed that the grey-box framework is effective in predicting cybersecurity situational awareness.
Learning to learn causal models.
Kemp, Charles; Goodman, Noah D; Tenenbaum, Joshua B
2010-09-01
Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the objects into categories and specifies the causal powers and characteristic features of these categories and the characteristic causal interactions between categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned, and we explore this accelerated learning in four experiments. Our results confirm that humans learn rapidly about the causal powers of novel objects, and we show that our framework accounts better for our data than alternative models of causal learning. Copyright © 2010 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Shea, Peter; Gozza-Cohen, Mary; Uzuner, Sedef; Mehta, Ruchi; Valtcheva, Anna Valentinova; Hayes, Suzanne; Vickers, Jason
2011-01-01
This paper presents both a conceptual and empirical investigation of teaching and learning in online courses. Employing both the Community of Inquiry framework (CoI) and the Structure of Observed Learning Outcomes (SOLO) taxonomy, two complete online courses were examined for the quality of both collaborative learning processes and learning…
ERIC Educational Resources Information Center
Lahwal, Fathia; Al-Ajlan, Ajlan S.; Amain, Mohamad
2016-01-01
This study focuses on interactive multimedia e-learning aims to improve our understanding about the dynamics of e-learning. The objective is to critical evaluate and better understand the interrelationships in the proposed framework between internal, external and the pedagogy dimensions in adoption of interactive multimedia and e-learning. It…
ERIC Educational Resources Information Center
Hanyak, Michael E., Jr.
2015-01-01
In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…
ERIC Educational Resources Information Center
Jacobson, Michael J.; Kapur, Manu; Reimann, Peter
2016-01-01
This article proposes a conceptual framework of learning based on perspectives and methodologies being employed in the study of complex physical and social systems to inform educational research. We argue that the contexts in which learning occurs are complex systems with elements or agents at different levels--including neuronal, cognitive,…
An Ontology-Based Framework for Bridging Learning Design and Learning Content
ERIC Educational Resources Information Center
Knight, Colin, Gasevic, Dragan; Richards, Griff
2006-01-01
The paper describes an ontology-based framework for bridging learning design and learning object content. In present solutions, researchers have proposed conceptual models and developed tools for both of those subjects, but without detailed discussions of how they can be used together. In this paper we advocate the use of ontologies to explicitly…
PESTE Factors in Developing a Framework for E-Learning
ERIC Educational Resources Information Center
Graham, Deryn
2007-01-01
This article describes the development of a framework for e-learning and presents the findings of a study investigating whether the use of blended learning can fulfil or at least accommodate some of the human requirements presently neglected by current e-learning systems. The study evaluated the in-house system, Teachmat, and discussed how the use…
Games and Simulations in Online Learning: Research and Development Frameworks
ERIC Educational Resources Information Center
Gibson, David; Aldrich, Clark; Prensky, Marc
2007-01-01
Games and Simulations in Online Learning: Research and Development Frameworks examines the potential of games and simulations in online learning, and how the future could look as developers learn to use the emerging capabilities of the Semantic Web. It presents a general understanding of how the Semantic Web will impact education and how games and…
ENGAGE: A Game Based Learning and Problem Solving Framework
2012-07-13
Gamification Summit 2012 Mensa Colloquium 2012.2: Social and Video Games Seattle Science Festival TED Salon Vancouver : http...From - To) 6/1/2012 – 6/30/2012 4. TITLE AND SUBTITLE ENGAGE: A Game Based Learning and Problem Solving Framework 5a. CONTRACT NUMBER N/A 5b...Popović ENGAGE: A Game Based Learning and Problem Solving Framework (Task 1 Month 4) Progress, Status and Management Report Monthly Progress
Advanced Machine Learning Emulators of Radiative Transfer Models
NASA Astrophysics Data System (ADS)
Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.
2017-12-01
Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.
Younghak Shin; Balasingham, Ilangko
2017-07-01
Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.
Intercultural Historical Learning: A Conceptual Framework
ERIC Educational Resources Information Center
Nordgren, Kenneth; Johansson, Maria
2015-01-01
This paper outlines a conceptual framework in order to systematically discuss the meaning of intercultural learning in history education and how it could be advanced. We do so by bringing together theories of historical consciousness, intercultural competence and postcolonial thinking. By combining these theories into one framework, we identify…
A Conceptual Framework for Evolving, Recommender Online Learning Systems
ERIC Educational Resources Information Center
Peiris, K. Dharini Amitha; Gallupe, R. Brent
2012-01-01
A comprehensive conceptual framework is developed and described for evolving recommender-driven online learning systems (ROLS). This framework describes how such systems can support students, course authors, course instructors, systems administrators, and policy makers in developing and using these ROLS. The design science information systems…
An Instructional Design Framework for Fostering Student Engagement in Online Learning Environments
ERIC Educational Resources Information Center
Czerkawski, Betul C.; Lyman, Eugene W.
2016-01-01
Many approaches, models and frameworks exist when designing quality online learning environments. These approaches assist and guide instructional designers through the process of analysis, design, development, implementation and evaluation of instructional processes. Some of these frameworks are concerned with student participation, some with…
ERIC Educational Resources Information Center
Garfield, Joan; Ben-Zvi, Dani
2009-01-01
This article describes a model for an interactive, introductory secondary- or tertiary-level statistics course that is designed to develop students' statistical reasoning. This model is called a "Statistical Reasoning Learning Environment" and is built on the constructivist theory of learning.
Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei
2013-12-12
The dynamics of a protein along a well-defined coordinate can be formally projected onto the form of an overdamped Lagevin equation. Here, we present a comprehensive statistical-learning framework for simultaneously quantifying the deterministic force (the potential of mean force, PMF) and the stochastic force (characterized by the diffusion coefficient, D) from single-molecule Förster-type resonance energy transfer (smFRET) experiments. The likelihood functional of the Langevin parameters, PMF and D, is expressed by a path integral of the latent smFRET distance that follows Langevin dynamics and realized by the donor and the acceptor photon emissions. The solution is made possible by an eigen decomposition of the time-symmetrized form of the corresponding Fokker-Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this new method.
Dafalla, Tarig Dafalla Mohamed; Kushniruk, Andre W; Borycki, Elizabeth M
2015-01-01
A pragmatic evaluation framework for evaluating the usability and usefulness of an e-learning intervention for a patient clinical information scheduling system is presented in this paper. The framework was conceptualized based on two different but related concepts (usability and usefulness) and selection of appropriate and valid methods of data collection and analysis that included: (1) Low-Cost Rapid Usability Engineering (LCRUE), (2) Cognitive Task Analysis (CTA), (3) Heuristic Evaluation (HE) criteria for web-based learning, and (4) Software Usability Measurement Inventory (SUMI). The results of the analysis showed some areas where usability that were related to General Interface Usability (GIU), instructional design and content was problematic; some of which might account for the poorly rated aspects of usability when subjectively measured. This paper shows that using a pragmatic framework can be a useful way, not only for measuring the usability and usefulness, but also for providing a practical objective evidences for learning and continuous quality improvement of e-learning systems. The findings should be of interest to educators, developers, designers, researchers, and usability practitioners involved in the development of e-learning systems in healthcare. This framework could be an appropriate method for assessing the usability, usefulness and safety of health information systems both in the laboratory and in the clinical context.
NASA Technical Reports Server (NTRS)
Prive, Nikki; Errico, R. M.; Carvalho, D.
2018-01-01
The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO) has spent more than a decade developing and implementing a global Observing System Simulation Experiment framework for use in evaluting both new observation types as well as the behavior of data assimilation systems. The NASA/GMAO OSSE has constantly evolved to relect changes in the Gridpoint Statistical Interpolation data assimiation system, the Global Earth Observing System model, version 5 (GEOS-5), and the real world observational network. Software and observational datasets for the GMAO OSSE are publicly available, along with a technical report. Substantial modifications have recently been made to the NASA/GMAO OSSE framework, including the character of synthetic observation errors, new instrument types, and more sophisticated atmospheric wind vectors. These improvements will be described, along with the overall performance of the current OSSE. Lessons learned from investigations into correlated errors and model error will be discussed.
An empirical generative framework for computational modeling of language acquisition.
Waterfall, Heidi R; Sandbank, Ben; Onnis, Luca; Edelman, Shimon
2010-06-01
This paper reports progress in developing a computer model of language acquisition in the form of (1) a generative grammar that is (2) algorithmically learnable from realistic corpus data, (3) viable in its large-scale quantitative performance and (4) psychologically real. First, we describe new algorithmic methods for unsupervised learning of generative grammars from raw CHILDES data and give an account of the generative performance of the acquired grammars. Next, we summarize findings from recent longitudinal and experimental work that suggests how certain statistically prominent structural properties of child-directed speech may facilitate language acquisition. We then present a series of new analyses of CHILDES data indicating that the desired properties are indeed present in realistic child-directed speech corpora. Finally, we suggest how our computational results, behavioral findings, and corpus-based insights can be integrated into a next-generation model aimed at meeting the four requirements of our modeling framework.
A Role for Chunk Formation in Statistical Learning of Second Language Syntax
ERIC Educational Resources Information Center
Hamrick, Phillip
2014-01-01
Humans are remarkably sensitive to the statistical structure of language. However, different mechanisms have been proposed to account for such statistical sensitivities. The present study compared adult learning of syntax and the ability of two models of statistical learning to simulate human performance: Simple Recurrent Networks, which learn by…
Honoring Family and Culture: Learning from New Zealand
ERIC Educational Resources Information Center
Nagel, Nancy G.
2009-01-01
The New Zealand Ministry of Education's early childhood curriculum policy is built on a framework called "Te Whariki." This framework provides a sociocultural context for children's early learning and emphasizes a learning partnership between teachers, parents, families, and community. Besides interpersonal relationships, Te Whariki…
Statistical Learning is Related to Early Literacy-Related Skills
Spencer, Mercedes; Kaschak, Michael P.; Jones, John L.; Lonigan, Christopher J.
2015-01-01
It has been demonstrated that statistical learning, or the ability to use statistical information to learn the structure of one’s environment, plays a role in young children’s acquisition of linguistic knowledge. Although most research on statistical learning has focused on language acquisition processes, such as the segmentation of words from fluent speech and the learning of syntactic structure, some recent studies have explored the extent to which individual differences in statistical learning are related to literacy-relevant knowledge and skills. The present study extends on this literature by investigating the relations between two measures of statistical learning and multiple measures of skills that are critical to the development of literacy—oral language, vocabulary knowledge, and phonological processing—within a single model. Our sample included a total of 553 typically developing children from prekindergarten through second grade. Structural equation modeling revealed that statistical learning accounted for a unique portion of the variance in these literacy-related skills. Practical implications for instruction and assessment are discussed. PMID:26478658
A Bayesian framework for extracting human gait using strong prior knowledge.
Zhou, Ziheng; Prügel-Bennett, Adam; Damper, Robert I
2006-11-01
Extracting full-body motion of walking people from monocular video sequences in complex, real-world environments is an important and difficult problem, going beyond simple tracking, whose satisfactory solution demands an appropriate balance between use of prior knowledge and learning from data. We propose a consistent Bayesian framework for introducing strong prior knowledge into a system for extracting human gait. In this work, the strong prior is built from a simple articulated model having both time-invariant (static) and time-variant (dynamic) parameters. The model is easily modified to cater to situations such as walkers wearing clothing that obscures the limbs. The statistics of the parameters are learned from high-quality (indoor laboratory) data and the Bayesian framework then allows us to "bootstrap" to accurate gait extraction on the noisy images typical of cluttered, outdoor scenes. To achieve automatic fitting, we use a hidden Markov model to detect the phases of images in a walking cycle. We demonstrate our approach on silhouettes extracted from fronto-parallel ("sideways on") sequences of walkers under both high-quality indoor and noisy outdoor conditions. As well as high-quality data with synthetic noise and occlusions added, we also test walkers with rucksacks, skirts, and trench coats. Results are quantified in terms of chamfer distance and average pixel error between automatically extracted body points and corresponding hand-labeled points. No one part of the system is novel in itself, but the overall framework makes it feasible to extract gait from very much poorer quality image sequences than hitherto. This is confirmed by comparing person identification by gait using our method and a well-established baseline recognition algorithm.
Unsupervised active learning based on hierarchical graph-theoretic clustering.
Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve
2009-10-01
Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.
Krumwiede, Kelly A; Van Gelderen, Stacey A; Krumwiede, Norma K
2015-01-01
The purposes of this service learning project were to trial nursing student application of the Community-Based Collaborative Action Research (CBCAR) framework while conducting a community health needs assessment and to assess the effectiveness of the CBCAR framework in providing real-world learning opportunities for enhancing baccalaureate nursing students' public health knowledge. In this case study analysis, the CBCAR framework linked service learning and community health needs assessment with public health nursing core competencies. Fifteen nursing students partnered with collaborative members. Student observational field notes and narrative reflections were analyzed qualitatively for fidelity to the CBCAR framework and to evaluate student public health knowledge. Students successfully employed the CBCAR framework in collaboration with the critical access hospital and community stakeholders to design and conduct the community health needs assessment. Service learning themes were real-world solutions, professional development, community collaboration, and making a difference. Students developed skills in six of the eight domains of the Quad Council's core competencies for public health nurses. Community-Based Collaborative Action Research facilitates collaborative partnerships and relationships throughout the research process. Students benefited by applying what they have learned from their education to a real community who lacks resources. © 2014 Wiley Periodicals, Inc.
Takiyama, Ken; Sakai, Yutaka
2017-02-01
Certain theoretical frameworks have successfully explained motor learning in either unimanual or bimanual movements. However, no single theoretical framework can comprehensively explain motor learning in both types of movement because the relationship between these two types of movement remains unclear. Although our recent model of a balanced motor primitive framework attempted to simultaneously explain motor learning in unimanual and bimanual movements, this model focused only on a limited subset of bimanual movements and therefore did not elucidate the relationships between unimanual movements and various bimanual movements. Here, we extend the balanced motor primitive framework to simultaneously explain motor learning in unimanual and various bimanual movements as well as the transfer of learning effects between unimanual and various bimanual movements; these phenomena can be simultaneously explained if the mean activity of each primitive for various unimanual movements is balanced with the corresponding mean activity for various bimanual movements. Using this balanced condition, we can reproduce the results of prior behavioral and neurophysiological experiments. Furthermore, we demonstrate that the balanced condition can be implemented in a simple neural network model. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Conceptualizing a Framework for Advanced Placement Statistics Teaching Knowledge
ERIC Educational Resources Information Center
Haines, Brenna
2015-01-01
The purpose of this article is to sketch a conceptualization of a framework for Advanced Placement (AP) Statistics Teaching Knowledge. Recent research continues to problematize the lack of knowledge and preparation among secondary level statistics teachers. The College Board's AP Statistics course continues to grow and gain popularity, but is a…
Koh, Jansen
2016-01-01
Lifelong learning is an essential trait that is expected of every physician. The CanMeds 2005 Physician Competency Framework emphasizes lifelong learning as a key competency that physicians must achieve in becoming better physicians. However, many physicians are not competent at engaging in lifelong learning. The current medical education system is deficient in preparing medical students to develop and carry out their own lifelong learning curriculum upon graduation. Despite understanding how physicians learn at work, medical students are not trained to learn while working. Similarly, although barriers to lifelong learning are known, medical students are not adequately skilled in overcoming these barriers. Learning to learn is just as important, if not more, as acquiring the skills and knowledge required of a physician. The medical undergraduate curriculum lacks a specific learning strategy to prepare medical students in becoming an adept lifelong learner. In this article, we propose a learning strategy for lifelong learning at the undergraduate level. In developing this novel strategy, we paid particular attention to two parameters. First, this strategy should be grounded on literature describing a physician’s lifelong learning process. Second, the framework for implementing this strategy must be based on existing undergraduate learning strategies to obviate the need for additional resources, learner burden, and faculty time. In this paper, we propose a Problem, Analysis, Independent Research Reporting, Experimentation Debriefing (PAIRED) framework that follows the learning process of a physician and serves to synergize the components of problem-based learning and simulation-based learning in specifically targeting the barriers to lifelong learning. PMID:27446767
Tustison, Nicholas J; Shrinidhi, K L; Wintermark, Max; Durst, Christopher R; Kandel, Benjamin M; Gee, James C; Grossman, Murray C; Avants, Brian B
2015-04-01
Segmenting and quantifying gliomas from MRI is an important task for diagnosis, planning intervention, and for tracking tumor changes over time. However, this task is complicated by the lack of prior knowledge concerning tumor location, spatial extent, shape, possible displacement of normal tissue, and intensity signature. To accommodate such complications, we introduce a framework for supervised segmentation based on multiple modality intensity, geometry, and asymmetry feature sets. These features drive a supervised whole-brain and tumor segmentation approach based on random forest-derived probabilities. The asymmetry-related features (based on optimal symmetric multimodal templates) demonstrate excellent discriminative properties within this framework. We also gain performance by generating probability maps from random forest models and using these maps for a refining Markov random field regularized probabilistic segmentation. This strategy allows us to interface the supervised learning capabilities of the random forest model with regularized probabilistic segmentation using the recently developed ANTsR package--a comprehensive statistical and visualization interface between the popular Advanced Normalization Tools (ANTs) and the R statistical project. The reported algorithmic framework was the top-performing entry in the MICCAI 2013 Multimodal Brain Tumor Segmentation challenge. The challenge data were widely varying consisting of both high-grade and low-grade glioma tumor four-modality MRI from five different institutions. Average Dice overlap measures for the final algorithmic assessment were 0.87, 0.78, and 0.74 for "complete", "core", and "enhanced" tumor components, respectively.
Representation learning via Dual-Autoencoder for recommendation.
Zhuang, Fuzhen; Zhang, Zhiqiang; Qian, Mingda; Shi, Chuan; Xie, Xing; He, Qing
2017-06-01
Recommendation has provoked vast amount of attention and research in recent decades. Most previous works employ matrix factorization techniques to learn the latent factors of users and items. And many subsequent works consider external information, e.g., social relationships of users and items' attributions, to improve the recommendation performance under the matrix factorization framework. However, matrix factorization methods may not make full use of the limited information from rating or check-in matrices, and achieve unsatisfying results. Recently, deep learning has proven able to learn good representation in natural language processing, image classification, and so on. Along this line, we propose a new representation learning framework called Recommendation via Dual-Autoencoder (ReDa). In this framework, we simultaneously learn the new hidden representations of users and items using autoencoders, and minimize the deviations of training data by the learnt representations of users and items. Based on this framework, we develop a gradient descent method to learn hidden representations. Extensive experiments conducted on several real-world data sets demonstrate the effectiveness of our proposed method compared with state-of-the-art matrix factorization based methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the Conditioning of Machine-Learning-Assisted Turbulence Modeling
NASA Astrophysics Data System (ADS)
Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng
2017-11-01
Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.
Lessons Learned From Developing A Streaming Data Framework for Scientific Analysis
NASA Technical Reports Server (NTRS)
Wheeler. Kevin R.; Allan, Mark; Curry, Charles
2003-01-01
We describe the development and usage of a streaming data analysis software framework. The framework is used for three different applications: Earth science hyper-spectral imaging analysis, Electromyograph pattern detection, and Electroencephalogram state determination. In each application the framework was used to answer a series of science questions which evolved with each subsequent answer. This evolution is summarized in the form of lessons learned.
ERIC Educational Resources Information Center
Kamaruddin, Nafisah Kamariah Md; Jaafar, Norzilaila bt; Amin, Zulkarnain Md
2012-01-01
Inaccurate concept in statistics contributes to the assumption by the students that statistics do not relate to the real world and are not relevant to the engineering field. There are universities which introduced learning statistics using statistics lab activities. However, the learning is more on the learning how to use software and not to…
Statistical Machine Learning for Structured and High Dimensional Data
2014-09-17
AFRL-OSR-VA-TR-2014-0234 STATISTICAL MACHINE LEARNING FOR STRUCTURED AND HIGH DIMENSIONAL DATA Larry Wasserman CARNEGIE MELLON UNIVERSITY Final...Re . 8-98) v Prescribed by ANSI Std. Z39.18 14-06-2014 Final Dec 2009 - Aug 2014 Statistical Machine Learning for Structured and High Dimensional...area of resource-constrained statistical estimation. machine learning , high-dimensional statistics U U U UU John Lafferty 773-702-3813 > Research under
A DBR Framework for Designing Mobile Virtual Reality Learning Environments
ERIC Educational Resources Information Center
Cochrane, Thomas Donald; Cook, Stuart; Aiello, Stephen; Christie, Duncan; Sinfield, David; Steagall, Marcus; Aguayo, Claudio
2017-01-01
This paper proposes a design based research (DBR) framework for designing mobile virtual reality learning environments. The application of the framework is illustrated by two design-based research projects that aim to develop more authentic educational experiences and learner-centred pedagogies in higher education. The projects highlight the first…
Community Psychology, Planning, and Learning: A U.S. Perspective on Sustainable Development.
ERIC Educational Resources Information Center
Perkins, Douglas D.
An ecological framework for predicting citizen participation in grassroots community organizations and predicting community disorder problems (such as crime and fear) was developed and tested. The framework, which is called an ecological framework for sustainable community learning and development, delineates the relevant economic, political,…
A Conceptual Framework for Achieving Good Governance at Open and Distance Learning Institutions
ERIC Educational Resources Information Center
Khanna, Pankaj
2017-01-01
This paper describes a good governance architecture framework that would bring significant improvements in the overall working of open and distance learning institutions in a well-structured and systematic way. The good governance framework is articulated with seven basic principles which are performance, transparency, accountability,…
Assessing Study Abroad Programs: Application of the "SLEPT" Framework through Learning Communities
ERIC Educational Resources Information Center
Tajes, Maria; Ortiz, Jamie
2010-01-01
This case study proposes a comprehensive conceptual framework for exploring student learning outcomes of short-term study abroad programs. It uses the Social, Legal, Economic, Political, and Technological framework to assess understanding of the host country before departing and after returning. Participation fostered global literacy and critical…
The Cognitive Foundations of Learning To Read: A Framework.
ERIC Educational Resources Information Center
Wren, Sebastian
Southwest Educational Research Laboratory's (SEDL's) reading project examines early literacy in Grades K-2 and the prevention of early reading failure. The goals of this effort include the following: developing a framework of the cognitive foundations of learning to read that organizes research information; using that framework to organize…
ERIC Educational Resources Information Center
Caniglia, Guido; John, Beatrice; Kohler, Martin; Bellina, Leonie; Wiek, Arnim; Rojas, Christopher; Laubichler, Manfred D.; Lang, Daniel
2016-01-01
Purpose: This paper aims to present an experience-based learning framework that provides a bottom-up, student-centered entrance point for the development of systems thinking, normative and collaborative competencies in sustainability. Design/methodology/approach: The framework combines mental mapping with exploratory walking. It interweaves…
Representations of the World in Language Textbooks
ERIC Educational Resources Information Center
Risager, Karen
2018-01-01
This book presents a new and comprehensive framework for the analysis of representations of culture, society and the world in textbooks for foreign and second language learning. The framework is transferable to other kinds of learning materials and to other subjects. The framework distinguishes between five approaches: national studies,…
Predicting Length of Stay for Obstetric Patients via Electronic Medical Records.
Gao, Cheng; Kho, Abel N; Ivory, Catherine; Osmundson, Sarah; Malin, Bradley A; Chen, You
2017-01-01
Obstetric care refers to the care provided to patients during ante-, intra-, and postpartum periods. Predicting length of stay (LOS) for these patients during their hospitalizations can assist healthcare organizations in allocating hospital resources more effectively and efficiently, ultimately improving maternal care quality and reducing costs to patients. In this paper, we investigate the extent to which LOS can be forecast from a patient's medical history. We introduce a machine learning framework to incorporate a patient's prior conditions (e.g., diagnostic codes) as features in a predictive model for LOS. We evaluate the framework with three years of historical billing data from the electronic medical records of 9188 obstetric patients in a large academic medical center. The results indicate that our framework achieved an average accuracy of 49.3%, which is higher than the baseline accuracy 37.7% (that relies solely on a patient's age). The most predictive features were found to have statistically significant discriminative ability. These features included billing codes for normal delivery (indicative of shorter stay) and antepartum hypertension (indicative of longer stay).
Second Language Experience Facilitates Statistical Learning of Novel Linguistic Materials
ERIC Educational Resources Information Center
Potter, Christine E.; Wang, Tianlin; Saffran, Jenny R.
2017-01-01
Recent research has begun to explore individual differences in statistical learning, and how those differences may be related to other cognitive abilities, particularly their effects on language learning. In this research, we explored a different type of relationship between language learning and statistical learning: the possibility that learning…
A Framework for Evaluating and Enhancing Alignment in Self-Regulated Learning Research
Dent, Amy L.; Hoyle, Rick H.
2015-01-01
We discuss the articles of this special issue with reference to an important yet previously only implicit dimension of study quality: alignment across the theoretical and methodological decisions that collectively define an approach to self-regulated learning. Integrating and extending work by leaders in the field, we propose a framework for evaluating alignment in the way self-regulated learning research is both conducted and reported. Within this framework, the special issue articles provide a springboard for discussing methodological promises and pitfalls of increasingly sophisticated research on the dynamic, contingent, and contextualized features of self-regulated learning. PMID:25825589
Framing Care for Planners of Education Programs
ERIC Educational Resources Information Center
Glowacki-Dudka, Michelle; Mullett, Cathy; Griswold, Wendy; Baize-Ward, Amy; Vetor-Suits, Crissy; Londt, Susan Cole
2018-01-01
Using a framework of care to design experiences in formal or informal learning does two things. It acknowledges intentions of reflective learning through open communication and meets expectations of scholars seeking knowledge within a learning community. This proposed framework was developed from programs involving popular education, community…
Towards Multimodal Emotion Recognition in E-Learning Environments
ERIC Educational Resources Information Center
Bahreini, Kiavash; Nadolski, Rob; Westera, Wim
2016-01-01
This paper presents a framework (FILTWAM (Framework for Improving Learning Through Webcams And Microphones)) for real-time emotion recognition in e-learning by using webcams. FILTWAM offers timely and relevant feedback based upon learner's facial expressions and verbalizations. FILTWAM's facial expression software module has been developed and…
ERIC Educational Resources Information Center
Lee, Eunbae; Hannafin, Michael J.
2016-01-01
Student-centered learning (SCL) identifies students as the owners of their learning. While SCL is increasingly discussed in K-12 and higher education, researchers and practitioners lack current and comprehensive framework to design, develop, and implement SCL. We examine the implications of theory and research-based evidence to inform those who…
ERIC Educational Resources Information Center
Poell, Rob F.; Yorks, Lyle; Marsick, Victoria J.
2009-01-01
The authors describe research aimed at developing a more comprehensive framework for project-based learning in work contexts. This grows out of a cross-cultural reanalysis of data from two previous studies using two different frameworks: actor-centered learning network theory and a critical pragmatist lens on action reflection learning. Findings…
What is Informal Learning and What are its Antecedents? An Integrative and Meta-Analytic Review
2014-07-01
formal training. Unfortunately, theory and research surrounding informal learning remains fragmented. Given that there has been little systematic...future-oriented. Applying this framework, the construct domain of informal learning in organizations is articulated. Second, an interactionist theory ...theoretical framework and outline an agenda for future theory development, research, and application of informal learning principles in organizations
A Quality Framework for Continuous Improvement of e-Learning: The e-Learning Maturity Model
ERIC Educational Resources Information Center
Marshall, Stephen
2010-01-01
The E-Learning Maturity Model (eMM) is a quality improvement framework designed to help institutional leaders assess their institution's e-learning maturity. This paper reviews the eMM, drawing on examples of assessments conducted in New Zealand, Australia, the UK and the USA to show how it helps institutional leaders assess and compare their…
The unrealized promise of infant statistical word-referent learning
Smith, Linda B.; Suanda, Sumarga H.; Yu, Chen
2014-01-01
Recent theory and experiments offer a new solution as to how infant learners may break into word learning, by using cross-situational statistics to find the underlying word-referent mappings. Computational models demonstrate the in-principle plausibility of this statistical learning solution and experimental evidence shows that infants can aggregate and make statistically appropriate decisions from word-referent co-occurrence data. We review these contributions and then identify the gaps in current knowledge that prevent a confident conclusion about whether cross-situational learning is the mechanism through which infants break into word learning. We propose an agenda to address that gap that focuses on detailing the statistics in the learning environment and the cognitive processes that make use of those statistics. PMID:24637154
ERIC Educational Resources Information Center
Lin, Wen-Shan; Wang, Chun-Hsien
2012-01-01
The objective of this study is to propose a research framework that investigates the relation between perceived fit and system factors that can motivate learners in continuing utilizing an e-learning system in blended learning instruction. As learners have the face-to-face learning opportunity in interacting with lecturers, the study aims at…
Expanding the base for teaching of percutaneous coronary interventions: the explicit approach.
Lanzer, Peter; Prechelt, Lutz
2011-02-15
Accelerate and improve the training and learning process of operators performing percutaneous coronary interventions (PCI). Operator cognitive, in particular decision-making skills and technical skills are a major factor for the success of coronary interventions. Currently, cognitive skills are commonly developed by three methods: (1) Cognitive learning of rules for which statistical evidence is available. This is very incomprehensive and isolates cognitive learning from skill acquisition. (2) Informal tutoring received from experienced operators, and (3) personal experience by trial-and-error are both very slow. We propose in this concept article a conceptual framework to elicit, capture, and transfer expert PCI skills to complement the current approach. This includes the development of an in-depth understanding of the nature of PCI skills, terminology, and nomenclature needed to streamline communication, propensity of reproducible performance assessment, and in particular an explication of intervention planning and intra-intervention decision-making. We illustrate the impact of improved decision-making by simulation results based on a stochastic model of intervention risk. We identify several key concepts that form the basis of this conceptual framework, in particular different risk types and the notions of strategy, interventional module, and tactic. The increasing complexity of cases have brought PCI to the point where the decision-making skills of master operators need to be made explicit to make them systematically learnable such that the skills of beginner and intermediate operators can be improved much faster than is currently possible. Copyright © 2010 Wiley-Liss, Inc.
Comprehensive Framework for Evaluating e-Learning Systems: Using BSC Framework
ERIC Educational Resources Information Center
Momeni, Mansor; Jamporazmey, Mona; Mehrafrouz, Mohsen; Bahadori, Fatemeh
2013-01-01
The development of information and communication technology (ICT) is changing the way in which people work, communicate and learn. Recently developing and implementing e-learning solutions have increased dramatically. According to heavily investing in this area, it is essential to evaluate its different aspects and understand measures, which…
Students' Construction of External Representations in Design-Based Learning Situations
ERIC Educational Resources Information Center
de Vries, Erica
2006-01-01
This article develops a theoretical framework for the study of students' construction of mixed multiple external representations in design-based learning situations involving an adaptation of professional tasks and tools to a classroom setting. The framework draws on research on professional design processes and on learning with multiple external…
Consultation: Professional Learning Framework for the Teaching Profession.
ERIC Educational Resources Information Center
Ontario College of Teachers, Toronto.
This publication describes the professional learning framework for teaching that was developed by the Ontario College of Teachers, a self-regulatory body for the teaching profession in Ontario. The Ontario College of Teachers has a mandate, in legislation, to identify and accredit professional learning programs that support standards of practice…
Retention Assessment of Core Operations Management Topics for Business Administration Students
ERIC Educational Resources Information Center
Koppel, Nicole B.; Hollister, Kimberly Killmer
2009-01-01
To meet the new AACSB International standards regarding retention assessment and adequately determine "if and what students are learning," this research presents a framework within which expected learning outcomes and specific learning are assessed. This paper presents the framework and describes how the process can be implemented with…
From Research to Practice: A Framework for Contextualizing Teaching and Learning
ERIC Educational Resources Information Center
Ambrose, Valerie K.; Davis, C. Amelia; Ziegler, Mary F.
2013-01-01
Developmental reading instructors are increasingly pressured to include real-world content in their curriculum to bring contextualized teaching and learning to life. The purpose of this practitioner-focused article is to tie knowledge about contextualized teaching and learning with classroom application techniques. We present a framework that…
Networked Learning for Agricultural Extension: A Framework for Analysis and Two Cases
ERIC Educational Resources Information Center
Kelly, Nick; Bennett, John McLean; Starasts, Ann
2017-01-01
Purpose: This paper presents economic and pedagogical motivations for adopting information and communications technology (ICT)- mediated learning networks in agricultural education and extension. It proposes a framework for networked learning in agricultural extension and contributes a theoretical and case-based rationale for adopting the…
Distributed Scaffolding: Synergy in Technology-Enhanced Learning Environments
ERIC Educational Resources Information Center
Ustunel, Hale H.; Tokel, Saniye Tugba
2018-01-01
When technology is employed challenges increase in learning environments. Kim et al. ("Sci Educ" 91(6):1010-1030, 2007) presented a pedagogical framework that provides a valid technology-enhanced learning environment. The purpose of the present design-based study was to investigate the micro context dimension of this framework and to…
Orchestration in Learning Technology Research: Evaluation of a Conceptual Framework
ERIC Educational Resources Information Center
Prieto, Luis P.; Dimitriadis, Yannis; Asensio-Pérez, Juan I.; Looi, Chee-Kit
2015-01-01
The term "orchestrating learning" is being used increasingly often, referring to the coordination activities performed while applying learning technologies to authentic settings. However, there is little consensus about how this notion should be conceptualised, and what aspects it entails. In this paper, a conceptual framework for…
ERIC Educational Resources Information Center
Geary, David C.
2009-01-01
Alexander, Schallert, and Reynolds's (2009/this issue) "what," "where," "who," and "when" framework situates different perspectives on learning in different places in this multidimensional space and by doing so helps us to better understand seemingly disparate approaches to learning. The framework is in need of a fifth, "why" dimension. The "why"…
A Framework for Open, Flexible and Distributed Learning.
ERIC Educational Resources Information Center
Khan, Badrul H.
Designing open, flexible distance learning systems on the World Wide Web requires thoughtful analysis and investigation combined with an understanding of both the Web's attributes and resources and the ways instructional design principles can be applied to tap the Web's potential. A framework for open, flexible, and distributed learning has been…
Modelling Diffusion of a Personalized Learning Framework
ERIC Educational Resources Information Center
Karmeshu; Raman, Raghu; Nedungadi, Prema
2012-01-01
A new modelling approach for diffusion of personalized learning as an educational process innovation in social group comprising adopter-teachers is proposed. An empirical analysis regarding the perception of 261 adopter-teachers from 18 schools in India about a particular personalized learning framework has been made. Based on this analysis,…
Towards Real-Time Speech Emotion Recognition for Affective E-Learning
ERIC Educational Resources Information Center
Bahreini, Kiavash; Nadolski, Rob; Westera, Wim
2016-01-01
This paper presents the voice emotion recognition part of the FILTWAM framework for real-time emotion recognition in affective e-learning settings. FILTWAM (Framework for Improving Learning Through Webcams And Microphones) intends to offer timely and appropriate online feedback based upon learner's vocal intonations and facial expressions in order…
Zhang, Qingxue; Zhou, Dian; Zeng, Xuan
2016-11-01
This paper proposes a novel machine learning-enabled framework to robustly monitor the instantaneous heart rate (IHR) from wrist-electrocardiography (ECG) signals continuously and heavily corrupted by random motion artifacts in wearable applications. The framework includes two stages, i.e. heartbeat identification and refinement, respectively. In the first stage, an adaptive threshold-based auto-segmentation approach is proposed to select out heartbeat candidates, including the real heartbeats and large amounts of motion-artifact-induced interferential spikes. Then twenty-six features are extracted for each candidate in time, spatial, frequency and statistical domains, and evaluated by a spare support vector machine (SVM) to select out ten critical features which can effectively reveal residual heartbeat information. Afterwards, an SVM model, created on the training data using the selected feature set, is applied to find high confident heartbeats from a large number of candidates in the testing data. In the second stage, the SVM classification results are further refined by two steps: (1) a rule-based classifier with two attributes named 'continuity check' and 'locality check' for outlier (false positives) removal, and (2) a heartbeat interpolation strategy for missing-heartbeat (false negatives) recovery. The framework is evaluated on a wrist-ECG dataset acquired by a semi-customized platform and also a public dataset. When the signal-to-noise ratio is as low as -7 dB, the mean absolute error of the estimated IHR is 1.4 beats per minute (BPM) and the root mean square error is 6.5 BPM. The proposed framework greatly outperforms well-established approaches, demonstrating that it can effectively identify the heartbeats from ECG signals continuously corrupted by intense motion artifacts and robustly estimate the IHR. This study is expected to contribute to robust long-term wearable IHR monitoring for pervasive heart health and fitness management.
Is Statistical Learning Constrained by Lower Level Perceptual Organization?
Emberson, Lauren L.; Liu, Ran; Zevin, Jason D.
2013-01-01
In order for statistical information to aid in complex developmental processes such as language acquisition, learning from higher-order statistics (e.g. across successive syllables in a speech stream to support segmentation) must be possible while perceptual abilities (e.g. speech categorization) are still developing. The current study examines how perceptual organization interacts with statistical learning. Adult participants were presented with multiple exemplars from novel, complex sound categories designed to reflect some of the spectral complexity and variability of speech. These categories were organized into sequential pairs and presented such that higher-order statistics, defined based on sound categories, could support stream segmentation. Perceptual similarity judgments and multi-dimensional scaling revealed that participants only perceived three perceptual clusters of sounds and thus did not distinguish the four experimenter-defined categories, creating a tension between lower level perceptual organization and higher-order statistical information. We examined whether the resulting pattern of learning is more consistent with statistical learning being “bottom-up,” constrained by the lower levels of organization, or “top-down,” such that higher-order statistical information of the stimulus stream takes priority over the perceptual organization, and perhaps influences perceptual organization. We consistently find evidence that learning is constrained by perceptual organization. Moreover, participants generalize their learning to novel sounds that occupy a similar perceptual space, suggesting that statistical learning occurs based on regions of or clusters in perceptual space. Overall, these results reveal a constraint on learning of sound sequences, such that statistical information is determined based on lower level organization. These findings have important implications for the role of statistical learning in language acquisition. PMID:23618755
ERIC Educational Resources Information Center
Kervin, Lisa; Turbill, Jan; Harden-Thew, Kathryn
2017-01-01
The face of early childhood education continues to change. In Australia, the national early childhood guidelines, "Early Years Learning Framework" (2009) and the "National Quality Framework" have articulated and defined the work of early years' educators in a range of areas, including literacy. Both frameworks state that their…
Towards a Theory-Based Design Framework for an Effective E-Learning Computer Programming Course
ERIC Educational Resources Information Center
McGowan, Ian S.
2016-01-01
Built on Dabbagh (2005), this paper presents a four component theory-based design framework for an e-learning session in introductory computer programming. The framework, driven by a body of exemplars component, emphasizes the transformative interaction between the knowledge building community (KBC) pedagogical model, a mixed instructional…
Framework for the Development of OER-Based Learning Materials in ODL Environment
ERIC Educational Resources Information Center
Teng, Khor Ean; Hung, Chung Sheng
2013-01-01
This paper describes the framework for the development of OER-based learning materials "TCC121/05 Programming Fundamentals with Java" for ODL learners in Wawasan Open University (WOU) using three main development phases mainly: creation, evaluation and production phases. The proposed framework has further been tested on ODL learners to…
A Reconceptualized Framework for "Opportunity to Learn" in School Mathematics
ERIC Educational Resources Information Center
Walkowiak, Temple A.; Pinter, Holly H.; Berry, Robert Q.
2017-01-01
We present a reconceptualized framework for opportunity to learn (OTL) in school mathematics that builds on previous conceptualizations of OTL and includes features related to both quantity (i.e., time) and quality. Our framework draws on existing literature and on our own observational research of mathematics teaching practices. Through the…
ERIC Educational Resources Information Center
Partnership for 21st Century Skills, 2009
2009-01-01
To help practitioners integrate skills into the teaching of core academic subjects, the Partnership for 21st Century Skills has developed a unified, collective vision for learning known as the Framework for 21st Century Learning. This Framework describes the skills, knowledge and expertise students must master to succeed in work and life; it is a…
ERIC Educational Resources Information Center
Milne, Louise; Eames, Chris
2011-01-01
This paper describes teacher responses to a framework designed to support teacher planning for technology. It includes a learning experience outside the classroom [LEOTC] and is designed specifically for five-year-old students. The planning framework draws together characteristics of technology education, junior primary classrooms and LEOTC to…
DIS[subscript 2]ECT: A Framework for Effective Inclusive Science Instruction
ERIC Educational Resources Information Center
Spaulding, Lucinda S.; Flannagan, Jenny Sue
2012-01-01
The purpose of this article is to provide special education and general education teachers a framework (DIS[subscript 2]ECT) for teaching science in inclusive settings. DIS2ECT stands for Design (Backwards); Individualization; Scaffolding and Strategies; Experiential learning; Cooperative Learning; and Teamwork. This framework was derived from our…
A Theoretically Grounded Framework for Integrating the Scholarship of Teaching and Learning
ERIC Educational Resources Information Center
Walls, Jill K.
2016-01-01
SoTL scholars have written about the importance and utility of teaching from a guiding theoretical framework. In this paper, ecological theory and specifically Bronfenbrenner's bioecological model, is examined as a potential framework for synthesizing SoTL research findings to inform teaching and learning scholarship at the college level. A…
Hall, Michelle G; Mattingley, Jason B; Dux, Paul E
2015-08-01
The brain exploits redundancies in the environment to efficiently represent the complexity of the visual world. One example of this is ensemble processing, which provides a statistical summary of elements within a set (e.g., mean size). Another is statistical learning, which involves the encoding of stable spatial or temporal relationships between objects. It has been suggested that ensemble processing over arrays of oriented lines disrupts statistical learning of structure within the arrays (Zhao, Ngo, McKendrick, & Turk-Browne, 2011). Here we asked whether ensemble processing and statistical learning are mutually incompatible, or whether this disruption might occur because ensemble processing encourages participants to process the stimulus arrays in a way that impedes statistical learning. In Experiment 1, we replicated Zhao and colleagues' finding that ensemble processing disrupts statistical learning. In Experiments 2 and 3, we found that statistical learning was unimpaired by ensemble processing when task demands necessitated (a) focal attention to individual items within the stimulus arrays and (b) the retention of individual items in working memory. Together, these results are consistent with an account suggesting that ensemble processing and statistical learning can operate over the same stimuli given appropriate stimulus processing demands during exposure to regularities. (c) 2015 APA, all rights reserved).
skelesim: an extensible, general framework for population genetic simulation in R.
Parobek, Christian M; Archer, Frederick I; DePrenger-Levin, Michelle E; Hoban, Sean M; Liggins, Libby; Strand, Allan E
2017-01-01
Simulations are a key tool in molecular ecology for inference and forecasting, as well as for evaluating new methods. Due to growing computational power and a diversity of software with different capabilities, simulations are becoming increasingly powerful and useful. However, the widespread use of simulations by geneticists and ecologists is hindered by difficulties in understanding these softwares' complex capabilities, composing code and input files, a daunting bioinformatics barrier and a steep conceptual learning curve. skelesim (an R package) guides users in choosing appropriate simulations, setting parameters, calculating genetic summary statistics and organizing data output, in a reproducible pipeline within the R environment. skelesim is designed to be an extensible framework that can 'wrap' around any simulation software (inside or outside the R environment) and be extended to calculate and graph any genetic summary statistics. Currently, skelesim implements coalescent and forward-time models available in the fastsimcoal2 and rmetasim simulation engines to produce null distributions for multiple population genetic statistics and marker types, under a variety of demographic conditions. skelesim is intended to make simulations easier while still allowing full model complexity to ensure that simulations play a fundamental role in molecular ecology investigations. skelesim can also serve as a teaching tool: demonstrating the outcomes of stochastic population genetic processes; teaching general concepts of simulations; and providing an introduction to the R environment with a user-friendly graphical user interface (using shiny). © 2016 John Wiley & Sons Ltd.
skeleSim: an extensible, general framework for population genetic simulation in R
Parobek, Christian M.; Archer, Frederick I.; DePrenger-Levin, Michelle E.; Hoban, Sean M.; Liggins, Libby; Strand, Allan E.
2016-01-01
Simulations are a key tool in molecular ecology for inference and forecasting, as well as for evaluating new methods. Due to growing computational power and a diversity of software with different capabilities, simulations are becoming increasingly powerful and useful. However, the widespread use of simulations by geneticists and ecologists is hindered by difficulties in understanding these softwares’ complex capabilities, composing code and input files, a daunting bioinformatics barrier, and a steep conceptual learning curve. skeleSim (an R package) guides users in choosing appropriate simulations, setting parameters, calculating genetic summary statistics, and organizing data output, in a reproducible pipeline within the R environment. skeleSim is designed to be an extensible framework that can ‘wrap’ around any simulation software (inside or outside the R environment) and be extended to calculate and graph any genetic summary statistics. Currently, skeleSim implements coalescent and forward-time models available in the fastsimcoal2 and rmetasim simulation engines to produce null distributions for multiple population genetic statistics and marker types, under a variety of demographic conditions. skeleSim is intended to make simulations easier while still allowing full model complexity to ensure that simulations play a fundamental role in molecular ecology investigations. skeleSim can also serve as a teaching tool: demonstrating the outcomes of stochastic population genetic processes; teaching general concepts of simulations; and providing an introduction to the R environment with a user-friendly graphical user interface (using shiny). PMID:27736016
Validation of an e-Learning 3.0 Critical Success Factors Framework: A Qualitative Research
ERIC Educational Resources Information Center
Miranda, Paula; Isaias, Pedro; Costa, Carlos J.; Pifano, Sara
2017-01-01
Aim/Purpose: As e-Learning 3.0 evolves from a theoretical construct into an actual solution for online learning, it becomes crucial to accompany this progress by scrutinising the elements that are at the origin of its success. Background: This paper outlines a framework of e-Learning 3.0's critical success factors and its empirical validation.…
Page, M. P. A.; Norris, D.
2009-01-01
We briefly review the considerable evidence for a common ordering mechanism underlying both immediate serial recall (ISR) tasks (e.g. digit span, non-word repetition) and the learning of phonological word forms. In addition, we discuss how recent work on the Hebb repetition effect is consistent with the idea that learning in this task is itself a laboratory analogue of the sequence-learning component of phonological word-form learning. In this light, we present a unifying modelling framework that seeks to account for ISR and Hebb repetition effects, while being extensible to word-form learning. Because word-form learning is performed in the service of later word recognition, our modelling framework also subsumes a mechanism for word recognition from continuous speech. Simulations of a computational implementation of the modelling framework are presented and are shown to be in accordance with data from the Hebb repetition paradigm. PMID:19933143
Smith, Morgan; Warland, Jane; Smith, Colleen
2012-03-01
Online role-play has the potential to actively engage students in authentic learning experiences and help develop their clinical reasoning skills. However, evaluation of student learning for this kind of simulation focuses mainly on the content and outcome of learning, rather than on the process of learning through student engagement. This article reports on the use of a student engagement framework to evaluate an online role-play offered as part of a course in Bachelor of Nursing and Bachelor of Midwifery programs. Instruments that measure student engagement to date have targeted large numbers of students at program and institutional levels, rather than at the level of a specific learning activity. Although the framework produced some useful findings for evaluation purposes, further refinement of the questions is required to be certain that deep learning results from the engagement that occurs with course-level learning initiatives. Copyright 2012, SLACK Incorporated.
Musicians' edge: A comparison of auditory processing, cognitive abilities and statistical learning.
Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Demuth, Katherine; Arciuli, Joanne
2016-12-01
It has been hypothesized that musical expertise is associated with enhanced auditory processing and cognitive abilities. Recent research has examined the relationship between musicians' advantage and implicit statistical learning skills. In the present study, we assessed a variety of auditory processing skills, cognitive processing skills, and statistical learning (auditory and visual forms) in age-matched musicians (N = 17) and non-musicians (N = 18). Musicians had significantly better performance than non-musicians on frequency discrimination, and backward digit span. A key finding was that musicians had better auditory, but not visual, statistical learning than non-musicians. Performance on the statistical learning tasks was not correlated with performance on auditory and cognitive measures. Musicians' superior performance on auditory (but not visual) statistical learning suggests that musical expertise is associated with an enhanced ability to detect statistical regularities in auditory stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.
Developing a holistic policy and intervention framework for global mental health.
Khenti, Akwatu; Fréel, Stéfanie; Trainor, Ruth; Mohamoud, Sirad; Diaz, Pablo; Suh, Erica; Bobbili, Sireesha J; Sapag, Jaime C
2016-02-01
There are significant gaps in the accessibility and quality of mental health services around the globe. A wide range of institutions are addressing the challenges, but there is limited reflection and evaluation on the various approaches, how they compare with each other, and conclusions regarding the most effective approach for particular settings. This article presents a framework for global mental health capacity building that could potentially serve as a promising or best practice in the field. The framework is the outcome of a decade of collaborative global health work at the Centre for Addiction and Mental Health (CAMH) (Ontario, Canada). The framework is grounded in scientific evidence, relevant learning and behavioural theories and the underlying principles of health equity and human rights. Grounded in CAMH's research, programme evaluation and practical experience in developing and implementing mental health capacity building interventions, this article presents the iterative learning process and impetus that formed the basis of the framework. A developmental evaluation (Patton M.2010. Developmental Evaluation: Applying Complexity Concepts to Enhance Innovation and Use. New York: Guilford Press.) approach was used to build the framework, as global mental health collaboration occurs in complex or uncertain environments and evolving learning systems. A multilevel framework consists of five central components: (1) holistic health, (2) cultural and socioeconomic relevance, (3) partnerships, (4) collaborative action-based education and learning and (5) sustainability. The framework's practical application is illustrated through the presentation of three international case studies and four policy implications. Lessons learned, limitations and future opportunities are also discussed. The holistic policy and intervention framework for global mental health reflects an iterative learning process that can be applied and scaled up across different settings through appropriate modifications. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong
2017-09-20
Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.
ICADx: interpretable computer aided diagnosis of breast masses
NASA Astrophysics Data System (ADS)
Kim, Seong Tae; Lee, Hakmin; Kim, Hak Gu; Ro, Yong Man
2018-02-01
In this study, a novel computer aided diagnosis (CADx) framework is devised to investigate interpretability for classifying breast masses. Recently, a deep learning technology has been successfully applied to medical image analysis including CADx. Existing deep learning based CADx approaches, however, have a limitation in explaining the diagnostic decision. In real clinical practice, clinical decisions could be made with reasonable explanation. So current deep learning approaches in CADx are limited in real world deployment. In this paper, we investigate interpretability in CADx with the proposed interpretable CADx (ICADx) framework. The proposed framework is devised with a generative adversarial network, which consists of interpretable diagnosis network and synthetic lesion generative network to learn the relationship between malignancy and a standardized description (BI-RADS). The lesion generative network and the interpretable diagnosis network compete in an adversarial learning so that the two networks are improved. The effectiveness of the proposed method was validated on public mammogram database. Experimental results showed that the proposed ICADx framework could provide the interpretability of mass as well as mass classification. It was mainly attributed to the fact that the proposed method was effectively trained to find the relationship between malignancy and interpretations via the adversarial learning. These results imply that the proposed ICADx framework could be a promising approach to develop the CADx system.
Explorations in Statistics: Hypothesis Tests and P Values
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2009-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This second installment of "Explorations in Statistics" delves into test statistics and P values, two concepts fundamental to the test of a scientific null hypothesis. The essence of a test statistic is that it compares what…
ERIC Educational Resources Information Center
Thompson, Bruce
Web-based statistical instruction, like all statistical instruction, ought to focus on teaching the essence of the research endeavor: the exercise of reflective judgment. Using the framework of the recent report of the American Psychological Association (APA) Task Force on Statistical Inference (Wilkinson and the APA Task Force on Statistical…
Tavazoie, Saeed
2013-01-01
Here we explore the possibility that a core function of sensory cortex is the generation of an internal simulation of sensory environment in real-time. A logical elaboration of this idea leads to a dynamical neural architecture that oscillates between two fundamental network states, one driven by external input, and the other by recurrent synaptic drive in the absence of sensory input. Synaptic strength is modified by a proposed synaptic state matching (SSM) process that ensures equivalence of spike statistics between the two network states. Remarkably, SSM, operating locally at individual synapses, generates accurate and stable network-level predictive internal representations, enabling pattern completion and unsupervised feature detection from noisy sensory input. SSM is a biologically plausible substrate for learning and memory because it brings together sequence learning, feature detection, synaptic homeostasis, and network oscillations under a single unifying computational framework. PMID:23991161
NASA Astrophysics Data System (ADS)
Asencio-Cortés, G.; Morales-Esteban, A.; Shang, X.; Martínez-Álvarez, F.
2018-06-01
Earthquake magnitude prediction is a challenging problem that has been widely studied during the last decades. Statistical, geophysical and machine learning approaches can be found in literature, with no particularly satisfactory results. In recent years, powerful computational techniques to analyze big data have emerged, making possible the analysis of massive datasets. These new methods make use of physical resources like cloud based architectures. California is known for being one of the regions with highest seismic activity in the world and many data are available. In this work, the use of several regression algorithms combined with ensemble learning is explored in the context of big data (1 GB catalog is used), in order to predict earthquakes magnitude within the next seven days. Apache Spark framework, H2 O library in R language and Amazon cloud infrastructure were been used, reporting very promising results.
Milic, Natasa M.; Trajkovic, Goran Z.; Bukumiric, Zoran M.; Cirkovic, Andja; Nikolic, Ivan M.; Milin, Jelena S.; Milic, Nikola V.; Savic, Marko D.; Corac, Aleksandar M.; Marinkovic, Jelena M.; Stanisavljevic, Dejana M.
2016-01-01
Background Although recent studies report on the benefits of blended learning in improving medical student education, there is still no empirical evidence on the relative effectiveness of blended over traditional learning approaches in medical statistics. We implemented blended along with on-site (i.e. face-to-face) learning to further assess the potential value of web-based learning in medical statistics. Methods This was a prospective study conducted with third year medical undergraduate students attending the Faculty of Medicine, University of Belgrade, who passed (440 of 545) the final exam of the obligatory introductory statistics course during 2013–14. Student statistics achievements were stratified based on the two methods of education delivery: blended learning and on-site learning. Blended learning included a combination of face-to-face and distance learning methodologies integrated into a single course. Results Mean exam scores for the blended learning student group were higher than for the on-site student group for both final statistics score (89.36±6.60 vs. 86.06±8.48; p = 0.001) and knowledge test score (7.88±1.30 vs. 7.51±1.36; p = 0.023) with a medium effect size. There were no differences in sex or study duration between the groups. Current grade point average (GPA) was higher in the blended group. In a multivariable regression model, current GPA and knowledge test scores were associated with the final statistics score after adjusting for study duration and learning modality (p<0.001). Conclusion This study provides empirical evidence to support educator decisions to implement different learning environments for teaching medical statistics to undergraduate medical students. Blended and on-site training formats led to similar knowledge acquisition; however, students with higher GPA preferred the technology assisted learning format. Implementation of blended learning approaches can be considered an attractive, cost-effective, and efficient alternative to traditional classroom training in medical statistics. PMID:26859832
Milic, Natasa M; Trajkovic, Goran Z; Bukumiric, Zoran M; Cirkovic, Andja; Nikolic, Ivan M; Milin, Jelena S; Milic, Nikola V; Savic, Marko D; Corac, Aleksandar M; Marinkovic, Jelena M; Stanisavljevic, Dejana M
2016-01-01
Although recent studies report on the benefits of blended learning in improving medical student education, there is still no empirical evidence on the relative effectiveness of blended over traditional learning approaches in medical statistics. We implemented blended along with on-site (i.e. face-to-face) learning to further assess the potential value of web-based learning in medical statistics. This was a prospective study conducted with third year medical undergraduate students attending the Faculty of Medicine, University of Belgrade, who passed (440 of 545) the final exam of the obligatory introductory statistics course during 2013-14. Student statistics achievements were stratified based on the two methods of education delivery: blended learning and on-site learning. Blended learning included a combination of face-to-face and distance learning methodologies integrated into a single course. Mean exam scores for the blended learning student group were higher than for the on-site student group for both final statistics score (89.36±6.60 vs. 86.06±8.48; p = 0.001) and knowledge test score (7.88±1.30 vs. 7.51±1.36; p = 0.023) with a medium effect size. There were no differences in sex or study duration between the groups. Current grade point average (GPA) was higher in the blended group. In a multivariable regression model, current GPA and knowledge test scores were associated with the final statistics score after adjusting for study duration and learning modality (p<0.001). This study provides empirical evidence to support educator decisions to implement different learning environments for teaching medical statistics to undergraduate medical students. Blended and on-site training formats led to similar knowledge acquisition; however, students with higher GPA preferred the technology assisted learning format. Implementation of blended learning approaches can be considered an attractive, cost-effective, and efficient alternative to traditional classroom training in medical statistics.
Emberson, Lauren L.; Rubinstein, Dani
2016-01-01
The influence of statistical information on behavior (either through learning or adaptation) is quickly becoming foundational to many domains of cognitive psychology and cognitive neuroscience, from language comprehension to visual development. We investigate a central problem impacting these diverse fields: when encountering input with rich statistical information, are there any constraints on learning? This paper examines learning outcomes when adult learners are given statistical information across multiple levels of abstraction simultaneously: from abstract, semantic categories of everyday objects to individual viewpoints on these objects. After revealing statistical learning of abstract, semantic categories with scrambled individual exemplars (Exp. 1), participants viewed pictures where the categories as well as the individual objects predicted picture order (e.g., bird1—dog1, bird2—dog2). Our findings suggest that participants preferentially encode the relationships between the individual objects, even in the presence of statistical regularities linking semantic categories (Exps. 2 and 3). In a final experiment we investigate whether learners are biased towards learning object-level regularities or simply construct the most detailed model given the data (and therefore best able to predict the specifics of the upcoming stimulus) by investigating whether participants preferentially learn from the statistical regularities linking individual snapshots of objects or the relationship between the objects themselves (e.g., bird_picture1— dog_picture1, bird_picture2—dog_picture2). We find that participants fail to learn the relationships between individual snapshots, suggesting a bias towards object-level statistical regularities as opposed to merely constructing the most complete model of the input. This work moves beyond the previous existence proofs that statistical learning is possible at both very high and very low levels of abstraction (categories vs. individual objects) and suggests that, at least with the current categories and type of learner, there are biases to pick up on statistical regularities between individual objects even when robust statistical information is present at other levels of abstraction. These findings speak directly to emerging theories about how systems supporting statistical learning and prediction operate in our structure-rich environments. Moreover, the theoretical implications of the current work across multiple domains of study is already clear: statistical learning cannot be assumed to be unconstrained even if statistical learning has previously been established at a given level of abstraction when that information is presented in isolation. PMID:27139779
Let's Talk Learning Analytics: A Framework for Implementation in Relation to Student Retention
ERIC Educational Resources Information Center
West, Deborah; Heath, David; Huijser, Henk
2016-01-01
This paper presents a dialogical tool for the advancement of learning analytics implementation for student retention in Higher Education institutions. The framework was developed as an outcome of a project commissioned and funded by the Australian Government's "Office for Learning and Teaching". The project took a mixed-method approach…
Learning Physical Domains: Toward a Theoretical Framework.
ERIC Educational Resources Information Center
Forbus, Kenneth D.; Gentner, Dedre
People use and extend their knowledge of the physical world constantly. Understanding how this fluency is achieved would be an important milestone in understanding human learning and intelligence, as well as a useful guide for constructing machines that learn. This paper presents a theoretical framework that is being developed in an attempt to…
Expanding the Frontiers of National Qualifications Frameworks through Lifelong Learning
ERIC Educational Resources Information Center
Owusu-Agyeman, Yaw
2017-01-01
The adoption of a national qualifications framework (NQF) by some governments in all world regions has shown some success in the area of formal learning. However, while NQFs continue to enhance "formal" learning in many countries, the same cannot be said for the recognition, validation and accreditation (RVA) of "non-formal"…
Is "Learning without Limits" a Framework of Values?
ERIC Educational Resources Information Center
Booth, Tony
2015-01-01
In this article the author connects his own work with Brian Simon's writing on IQ (intelligence quotient) testing and selection and with the Learning without Limits project. He discusses the significance he gives to a values framework in the development of education and asks whether "Learning without Limits," in part, stands for a…
ERIC Educational Resources Information Center
Mondi, Makingu; Woods, Peter; Rafi, Ahmad
2007-01-01
This paper presents the systematic development of a "Uses and Gratification Expectancy" (UGE) conceptual framework which is able to predict students' "Perceived e-Learning Experience." It is argued that students' UGE as regards e-learning resources cannot be implicitly or explicitly explored without first examining underlying communication…
ERIC Educational Resources Information Center
Prain, Vaughan; Tytler, Russell
2012-01-01
Compared with research on the role of student engagement with expert representations in learning science, investigation of the use and theoretical justification of student-generated representations to learn science is less common. In this paper, we present a framework that aims to integrate three perspectives to explain how and why…
Using a Personal Learning Framework to Transform Middle Grades Teaching Practice
ERIC Educational Resources Information Center
Nagle, James; Taylor, Don
2017-01-01
In 2013 the Vermont legislature enacted Act 77 mandating that students in Grades 7-12 develop personalized learning plans (PLPs) to guide them toward high school graduation using proficiency-based requirements. In the present qualitative self-study, we document the impact of implementation of a personal learning framework integrating PLPs into a…
Children Learning to Use Technologies through Play: A Digital Play Framework
ERIC Educational Resources Information Center
Bird, Jo; Edwards, Susan
2015-01-01
Digital technologies are increasingly acknowledged as an important aspect of early childhood education. A significant problem for early childhood education has been how to understand the pedagogical use of technologies in a sector that values play-based learning. This paper presents a new framework to understand how children learn to use…
Support for Mobile Collaborative Learning Applications
ERIC Educational Resources Information Center
Martin, Sergio; Boticki, Ivica; Jacobs, George; Castro, Manuel; Peire, Juan
2010-01-01
This work is intended to describe a framework aimed to address the challenges in the development of mobile Collaborative Learning applications. Firstly, the paper offers an overview of some of the main principles of Collaborative Learning that will be the basis of the framework, which is based on three main pillars: collaboration and communication…
A Framework for Developing Self-Directed Technology Use for Language Learning
ERIC Educational Resources Information Center
Lai, Chun
2013-01-01
Critical to maximizing the potential of technology for learning is enhancing language learners' self-directed use of technology for learning purposes. This study aimed to enhance our understanding of the determinants of self-directed technology use through the construction of a structural equation modelling (SEM) framework of factors and…
Relativism, Values and Morals in the New Zealand Curriculum Framework
ERIC Educational Resources Information Center
Jorgensen, Lone Morris; Ryan, SueAnn
2004-01-01
"The New Zealand Curriculum Framework", 1993, is the official document for teaching, learning and assessment in New Zealand schools. It consists of a set of curriculum statements, which define the learning principles, achievement aims and essential skills for seven learning areas. It also indicates the place of attitudes and values in…
Analyzing Educators' Online Interactions: A Framework of Online Learning Support Roles
ERIC Educational Resources Information Center
Nacu, Denise C.; Martin, Caitlin K.; Pinkard, Nichole; Gray, Tené
2016-01-01
While the potential benefits of participating in online learning communities are documented, so too are inequities in terms of how different populations access and use them. We present the online learning support roles (OLSR) framework, an approach using both automated analytics and qualitative interpretation to identify and explore online…
Implementation of a Framework for Collaborative Social Networks in E-Learning
ERIC Educational Resources Information Center
Maglajlic, Seid
2016-01-01
This paper describes the implementation of a framework for the construction and utilization of social networks in ELearning. These social networks aim to enhance collaboration between all E-Learning participants (i.e. both traineeto-trainee and trainee-to-tutor communication are targeted). E-Learning systems that include a so-called "social…
Promoting Teachers' Learning and Knowledge Building in a Socio-Technical System
ERIC Educational Resources Information Center
Tammets, Kairit; Pata, Kai; Laanpere, Mart
2013-01-01
The study proposes a way in which the learning and knowledge building (LKB) framework, which is consistent with the knowledge conversion phases proposed by Nonaka and Takeuchi, supports teachers' informal and self-directed workplace learning. An LKB framework in a socio-technical system was developed to support professional development in an…
Methods and Strategies: What's the Story?
ERIC Educational Resources Information Center
Lipsitz, Kelsey; Cisterna, Dante; Hanuscin, Deborah
2017-01-01
This column provides ideas and techniques to enhance your science teaching. This month's issue discusses using the 5E learning cycle to create coherent storylines. The 5E learning cycle provides an important framework to help teachers organize activities. To realize the full potential of the 5E framework for student learning, lessons must also…
Toward a New Motivation to Learn Framework for Older Adult Learners
ERIC Educational Resources Information Center
Lin, Yi-Yin; Sandmann, Lorilee R.
2012-01-01
Although existing literature addresses adults' motivation to learn, and some specifically focuses on older adults, it is now recognized that older adults are more heterogeneous and complex than other age groups. Therefore, this study seeks to provide an alternative theoretical framework to investigate motivation to learn for older adult learners…
ERIC Educational Resources Information Center
Koedinger, Kenneth R.; Corbett, Albert T.; Perfetti, Charles
2012-01-01
Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of…
ERIC Educational Resources Information Center
Levy, Sharona T.; Peleg, Ran; Ofeck, Eyal; Tabor, Naamit; Dubovi, Ilana; Bluestein, Shiri; Ben-Zur, Hadar
2018-01-01
We propose and evaluate a framework supporting collaborative discovery learning of complex systems. The framework blends five design principles: (1) individual action: amidst (2) social interactions; challenged with (3) multiple tasks; set in (4) a constrained interactive learning environment that draws attention to (5) highlighted target…
Neural Correlates of Morphology Acquisition through a Statistical Learning Paradigm.
Sandoval, Michelle; Patterson, Dianne; Dai, Huanping; Vance, Christopher J; Plante, Elena
2017-01-01
The neural basis of statistical learning as it occurs over time was explored with stimuli drawn from a natural language (Russian nouns). The input reflected the "rules" for marking categories of gendered nouns, without making participants explicitly aware of the nature of what they were to learn. Participants were scanned while listening to a series of gender-marked nouns during four sequential scans, and were tested for their learning immediately after each scan. Although participants were not told the nature of the learning task, they exhibited learning after their initial exposure to the stimuli. Independent component analysis of the brain data revealed five task-related sub-networks. Unlike prior statistical learning studies of word segmentation, this morphological learning task robustly activated the inferior frontal gyrus during the learning period. This region was represented in multiple independent components, suggesting it functions as a network hub for this type of learning. Moreover, the results suggest that subnetworks activated by statistical learning are driven by the nature of the input, rather than reflecting a general statistical learning system.
Neural Correlates of Morphology Acquisition through a Statistical Learning Paradigm
Sandoval, Michelle; Patterson, Dianne; Dai, Huanping; Vance, Christopher J.; Plante, Elena
2017-01-01
The neural basis of statistical learning as it occurs over time was explored with stimuli drawn from a natural language (Russian nouns). The input reflected the “rules” for marking categories of gendered nouns, without making participants explicitly aware of the nature of what they were to learn. Participants were scanned while listening to a series of gender-marked nouns during four sequential scans, and were tested for their learning immediately after each scan. Although participants were not told the nature of the learning task, they exhibited learning after their initial exposure to the stimuli. Independent component analysis of the brain data revealed five task-related sub-networks. Unlike prior statistical learning studies of word segmentation, this morphological learning task robustly activated the inferior frontal gyrus during the learning period. This region was represented in multiple independent components, suggesting it functions as a network hub for this type of learning. Moreover, the results suggest that subnetworks activated by statistical learning are driven by the nature of the input, rather than reflecting a general statistical learning system. PMID:28798703
Feedback control by online learning an inverse model.
Waegeman, Tim; Wyffels, Francis; Schrauwen, Francis
2012-10-01
A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made.
Using computer simulations to facilitate conceptual understanding of electromagnetic induction
NASA Astrophysics Data System (ADS)
Lee, Yu-Fen
This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit their revised answers electronically. Students in the TRAD group were not granted access to the CLCS material and followed their normal classroom routine. At the end of the study, both the CLCS and TRAD students took a post-test. Questions on the post-test were divided into "what" questions, "how" questions, and an open response question. Analysis of students' post-test performance showed mixed results. While the TRAD students scored higher on the "what" questions, the CLCS students scored higher on the "how" questions and the one open response questions. This result suggested that more TRAD students knew what kinds of conditions may or may not cause electromagnetic induction without understanding how electromagnetic induction works. Analysis of the CLCS students' learning also suggested that frequent disruption and technical trouble might pose threats to the effectiveness of the CLCS learning framework. Despite the mixed results of students' post-test performance, the CLCS learning framework revealed some limitations to promote conceptual understanding in physics. Improvement can be made by providing students with background knowledge necessary to understand model reasoning and incorporating the CLCS learning framework with other learning frameworks to promote integration of various physics concepts. In addition, the reflective questions in the CLCS learning framework may be refined to better address students' difficulties. Limitations of the study, as well as suggestions for future research, are also presented in this study.
Integrated and implicit: how residents learn CanMEDS roles by participating in practice.
Renting, Nienke; Raat, A N Janet; Dornan, Tim; Wenger-Trayner, Etienne; van der Wal, Martha A; Borleffs, Jan C C; Gans, Rijk O B; Jaarsma, A Debbie C
2017-09-01
Learning outcomes for residency training are defined in competency frameworks such as the CanMEDS framework, which ultimately aim to better prepare residents for their future tasks. Although residents' training relies heavily on learning through participation in the workplace under the supervision of a specialist, it remains unclear how the CanMEDS framework informs practice-based learning and daily interactions between residents and supervisors. This study aimed to explore how the CanMEDS framework informs residents' practice-based training and interactions with supervisors. Constructivist grounded theory guided iterative data collection and analyses. Data were collected by direct observations of residents and supervisors, combined with formal and field interviews. We progressively arrived at an explanatory theory by coding and interpreting the data, building provisional theories and through continuous conversations. Data analysis drew on sensitising insights from communities of practice theory, which provided this study with a social learning perspective. CanMEDS roles occurred in an integrated fashion and usually remained implicit during interactions. The language of CanMEDS was not adopted in clinical practice, which seemed to impede explicit learning interactions. The CanMEDS framework seemed only one of many factors of influence in practice-based training: patient records and other documents were highly influential in daily activities and did not always correspond with CanMEDS roles. Additionally, the position of residents seemed too peripheral to allow them to learn certain aspects of the Health Advocate and Leader roles. The CanMEDS framework did not really guide supervisors' and residents' practice or interactions. It was not explicitly used as a common language in which to talk about resident performance and roles. Therefore, the extent to which CanMEDS actually helps improve residents' learning trajectories and conversations between residents and supervisors about residents' progress remains questionable. This study highlights the fact that the reification of competency frameworks into the complexity of practice-based learning is not a straightforward exercise. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Online neural monitoring of statistical learning
Batterink, Laura J.; Paller, Ken A.
2017-01-01
The extraction of patterns in the environment plays a critical role in many types of human learning, from motor skills to language acquisition. This process is known as statistical learning. Here we propose that statistical learning has two dissociable components: (1) perceptual binding of individual stimulus units into integrated composites and (2) storing those integrated representations for later use. Statistical learning is typically assessed using post-learning tasks, such that the two components are conflated. Our goal was to characterize the online perceptual component of statistical learning. Participants were exposed to a structured stream of repeating trisyllabic nonsense words and a random syllable stream. Online learning was indexed by an EEG-based measure that quantified neural entrainment at the frequency of the repeating words relative to that of individual syllables. Statistical learning was subsequently assessed using conventional measures in an explicit rating task and a reaction-time task. In the structured stream, neural entrainment to trisyllabic words was higher than in the random stream, increased as a function of exposure to track the progression of learning, and predicted performance on the RT task. These results demonstrate that monitoring this critical component of learning via rhythmic EEG entrainment reveals a gradual acquisition of knowledge whereby novel stimulus sequences are transformed into familiar composites. This online perceptual transformation is a critical component of learning. PMID:28324696
Hazard Screening Methods for Nanomaterials: A Comparative Study
Murphy, Finbarr; Mullins, Martin; Furxhi, Irini; Costa, Anna L.; Simeone, Felice C.
2018-01-01
Hazard identification is the key step in risk assessment and management of manufactured nanomaterials (NM). However, the rapid commercialisation of nano-enabled products continues to out-pace the development of a prudent risk management mechanism that is widely accepted by the scientific community and enforced by regulators. However, a growing body of academic literature is developing promising quantitative methods. Two approaches have gained significant currency. Bayesian networks (BN) are a probabilistic, machine learning approach while the weight of evidence (WoE) statistical framework is based on expert elicitation. This comparative study investigates the efficacy of quantitative WoE and Bayesian methodologies in ranking the potential hazard of metal and metal-oxide NMs—TiO2, Ag, and ZnO. This research finds that hazard ranking is consistent for both risk assessment approaches. The BN and WoE models both utilize physico-chemical, toxicological, and study type data to infer the hazard potential. The BN exhibits more stability when the models are perturbed with new data. The BN has the significant advantage of self-learning with new data; however, this assumes all input data is equally valid. This research finds that a combination of WoE that would rank input data along with the BN is the optimal hazard assessment framework. PMID:29495342
ERIC Educational Resources Information Center
Maguire, Bryan; Mernagh, Edwin; Murray, Jim
2008-01-01
In this paper, the issues involved in aligning national and meta-frameworks are explored and analysed. The exploration is timely, given that two qualifications meta-frameworks are currently being developed and implemented in Europe: the question is now how relationships should be established between these new reference tools and national…
Examining Electronic Learning Communities through the Communities of Practice Framework
ERIC Educational Resources Information Center
Linton, Jayme N.
2015-01-01
This qualitative interpretive case study used Wenger's (1998) communities of practice (CoP) framework to analyze how the electronic learning community (eLC) process at an established state virtual high school operated like a community of practice. Components of the eLC process were analyzed according to elements of the CoP framework, which…
Learning in Physics by Doing Laboratory Work: Towards a New Conceptual Framework
ERIC Educational Resources Information Center
Danielsson, Anna Teresia; Linder, Cedric
2009-01-01
Drawing on a study that explores university students' experiences of doing laboratory work in physics, this article outlines a proposed conceptual framework for extending the exploration of the gendered experience of learning. In this framework situated cognition and post-structural gender theory are merged together. By drawing on data that aim at…
ERIC Educational Resources Information Center
Oyao, Sheila G.; Holbrook, Jack; Rannikmäe, Miia; Pagunsan, Marmon M.
2015-01-01
This article proposes a competence-based learning framework for science teaching, applied to the study of "big ideas", in this case to the study of natural hazards and disaster risk reduction (NH&DRR). The framework focuses on new visions of competence, placing emphasis on nurturing connectedness and behavioral actions toward…
ERIC Educational Resources Information Center
Angkananon, Kewalin; Wald, Mike; Gilbert, Lester
2014-01-01
This paper focuses on the development and evaluation of a Technology Enhanced Interaction Framework and Method that can help with designing accessible mobile learning interactions involving disabled people. This new framework and method were developed to help design technological support for communication and interactions between people,…
ERIC Educational Resources Information Center
Klebansky, Anna; Fraser, Sharon P.
2013-01-01
This paper details a conceptual framework that situates curriculum design for information literacy and lifelong learning, through a cohesive developmental information literacy based model for learning, at the core of teacher education courses at UTAS. The implementation of the framework facilitates curriculum design that systematically,…
Application of Frameworks in the Analysis and (Re)design of Interactive Visual Learning Tools
ERIC Educational Resources Information Center
Liang, Hai-Ning; Sedig, Kamran
2009-01-01
Interactive visual learning tools (IVLTs) are software environments that encode and display information visually and allow learners to interact with the visual information. This article examines the application and utility of frameworks in the analysis and design of IVLTs at the micro level. Frameworks play an important role in any design. They…
The Pursuit of a "Better" Explanation as an Organizing Framework for Science Teaching and Learning
ERIC Educational Resources Information Center
Papadouris, Nicos; Vokos, Stamatis; Constantinou, Constantinos P.
2018-01-01
This article seeks to make the case for the pursuit of a "better" explanation being a productive organizing framework for science teaching and learning. Underlying this position is the idea that this framework allows promoting, in a unified manner, facility with the scientific practice of constructing explanations, appreciation of its…
ERIC Educational Resources Information Center
Nutchey, David; Grant, Edlyn; English, Lyn
2016-01-01
This paper reports on the use of the RAMR framework within a curriculum project. Description of the RAMR framework's theoretical bases is followed by two descriptions of students' learning in the classroom. Implications include the need for the teacher to connect student activities in a structured sequence, although this may be predicated on the…
ERIC Educational Resources Information Center
Leite, Maici Duarte; Marczal, Diego; Pimentel, Andrey Ricardo; Direne, Alexandre Ibrahim
2014-01-01
This paper presents the application of some concepts of Intelligent Tutoring Systems (ITS) to elaborate a conceptual framework that uses the remediation of errors with Multiple External Representations (MERs) in Learning Objects (LO). To this is demonstrated a development of LO for teaching the Pythagorean Theorem through this framework. This…
ERIC Educational Resources Information Center
Tosuncuoglu, Irfan
2017-01-01
English is an international language-it is already known by everybody. There have been a lot of ideas and discussions about foreign language learning. And nowadays we have met the framework of ECRIF. It is shortly a framework to help students learn new language and skills so that they can use them fluently and, it has to do with adopting a more…
ERIC Educational Resources Information Center
Shah, Mamta; Foster, Aroutis
2014-01-01
There is a paucity of research frameworks that focus on aiding game selection and use, analyzing the game as a holistic system, and studying learner experiences in games. There is a need for frameworks that provide a lens for understanding learning experiences afforded in digital games and facilitating knowledge construction and motivation to…
ERIC Educational Resources Information Center
Asiri, Mohammed J. Sherbib; Mahmud, Rosnaini bt; Bakar, Kamariah Abu; Ayub, Ahmad Fauzi bin Mohd
2012-01-01
The purpose of this paper is to present the theoretical framework underlying a research on factors that influence utilization of the Jusur Learning Management System (Jusur LMS) in Saudi Arabian public universities. Development of the theoretical framework was done based on library research approach. Initially, the existing literature relevant to…
ERIC Educational Resources Information Center
Ciudad-Gómez, Adelaida
2010-01-01
The framework of the European Higher Education Area (EHEA) has turned the student into the main protagonist of the new educational scenario, and the teacher into the coordinator of teaching-learning process instead of transmitter of knowledge. In this new model of learning, the use of ICT is facilitating competency-based learning and the…
An overview of infusing service-learning in medical education.
Stewart, Trae; Wubbena, Zane
2014-08-04
To identify and review existing empirical research about service-learning and medical education and then to develop a framework for infusing service-learning in Doctor of Medicine or Doctor of Osteopathic Medicine curricula. We selected literature on service-learning and medical education. Articles were screened with a protocol for inclusion or exclusion at two separate stages. At stage one, articles were screened according to their titles, abstracts, and keywords. The second stage involved a full-text review. Finally, a thematic analysis using focused and selective coding was conducted. Eighteen studies were analyzed spanning the years 1998 to 2012. The results from our analysis informed the development of a four-stage service-learning framework: 1) planning and preparation, 2) action, 3) reflection and demonstration, and 4) assessment and celebration. The presented service-learning framework can be used to develop curricula for the infusion of service-learning in medical school. Service-learning curricula in medical education have the potential to provide myriad benefits to faculty, students, community members, and university-community partnerships.
Creating opportunities to learn in mathematics education: a sociocultural perspective
NASA Astrophysics Data System (ADS)
Goos, Merrilyn
2014-09-01
The notion of `opportunities to learn in mathematics education' is open to interpretation from multiple theoretical perspectives, where the focus may be on cognitive, social or affective dimensions of learning, curriculum and assessment design, issues of equity and access, or the broad policy and political contexts of learning and teaching. In this paper, I conceptualise opportunities to learn from a sociocultural perspective. Beginning with my own research on the learning of students and teachers of mathematics, I sketch out two theoretical frameworks for understanding this learning. One framework extends Valsiner's zone theory of child development, and the other draws on Wenger's ideas about communities of practice. My aim is then to suggest how these two frameworks might help us understand the learning of others who have an interest in mathematics education, such as mathematics teacher educator-researchers and mathematicians. In doing so, I attempt to move towards a synthesis of ideas to inform mathematics education research and development.
Statistical learning and language acquisition
Romberg, Alexa R.; Saffran, Jenny R.
2011-01-01
Human learners, including infants, are highly sensitive to structure in their environment. Statistical learning refers to the process of extracting this structure. A major question in language acquisition in the past few decades has been the extent to which infants use statistical learning mechanisms to acquire their native language. There have been many demonstrations showing infants’ ability to extract structures in linguistic input, such as the transitional probability between adjacent elements. This paper reviews current research on how statistical learning contributes to language acquisition. Current research is extending the initial findings of infants’ sensitivity to basic statistical information in many different directions, including investigating how infants represent regularities, learn about different levels of language, and integrate information across situations. These current directions emphasize studying statistical language learning in context: within language, within the infant learner, and within the environment as a whole. PMID:21666883
Zhang, Gang; Liang, Zhaohui; Yin, Jian; Fu, Wenbin; Li, Guo-Zheng
2013-01-01
Chronic neck pain is a common morbid disorder in modern society. Acupuncture has been administered for treating chronic pain as an alternative therapy for a long time, with its effectiveness supported by the latest clinical evidence. However, the potential effective difference in different syndrome types is questioned due to the limits of sample size and statistical methods. We applied machine learning methods in an attempt to solve this problem. Through a multi-objective sorting of subjective measurements, outstanding samples are selected to form the base of our kernel-oriented model. With calculation of similarities between the concerned sample and base samples, we are able to make full use of information contained in the known samples, which is especially effective in the case of a small sample set. To tackle the parameters selection problem in similarity learning, we propose an ensemble version of slightly different parameter setting to obtain stronger learning. The experimental result on a real data set shows that compared to some previous well-known methods, the proposed algorithm is capable of discovering the underlying difference among different syndrome types and is feasible for predicting the effective tendency in clinical trials of large samples.
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos
2018-07-01
Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.
Learning Across Senses: Cross-Modal Effects in Multisensory Statistical Learning
Mitchel, Aaron D.; Weiss, Daniel J.
2014-01-01
It is currently unknown whether statistical learning is supported by modality-general or modality-specific mechanisms. One issue within this debate concerns the independence of learning in one modality from learning in other modalities. In the present study, the authors examined the extent to which statistical learning across modalities is independent by simultaneously presenting learners with auditory and visual streams. After establishing baseline rates of learning for each stream independently, they systematically varied the amount of audiovisual correspondence across 3 experiments. They found that learners were able to segment both streams successfully only when the boundaries of the audio and visual triplets were in alignment. This pattern of results suggests that learners are able to extract multiple statistical regularities across modalities provided that there is some degree of cross-modal coherence. They discuss the implications of their results in light of recent claims that multisensory statistical learning is guided by modality-independent mechanisms. PMID:21574745
ERIC Educational Resources Information Center
Hiedemann, Bridget; Jones, Stacey M.
2010-01-01
We compare the effectiveness of academic service learning to that of case studies in an undergraduate introductory business statistics course. Students in six sections of the course were assigned either an academic service learning project (ASL) or business case studies (CS). We examine two learning outcomes: students' performance on the final…
Jeste, Shafali S; Kirkham, Natasha; Senturk, Damla; Hasenstab, Kyle; Sugar, Catherine; Kupelian, Chloe; Baker, Elizabeth; Sanders, Andrew J; Shimizu, Christina; Norona, Amanda; Paparella, Tanya; Freeman, Stephanny F N; Johnson, Scott P
2015-01-01
Statistical learning is characterized by detection of regularities in one's environment without an awareness or intention to learn, and it may play a critical role in language and social behavior. Accordingly, in this study we investigated the electrophysiological correlates of visual statistical learning in young children with autism spectrum disorder (ASD) using an event-related potential shape learning paradigm, and we examined the relation between visual statistical learning and cognitive function. Compared to typically developing (TD) controls, the ASD group as a whole showed reduced evidence of learning as defined by N1 (early visual discrimination) and P300 (attention to novelty) components. Upon further analysis, in the ASD group there was a positive correlation between N1 amplitude difference and non-verbal IQ, and a positive correlation between P300 amplitude difference and adaptive social function. Children with ASD and a high non-verbal IQ and high adaptive social function demonstrated a distinctive pattern of learning. This is the first study to identify electrophysiological markers of visual statistical learning in children with ASD. Through this work we have demonstrated heterogeneity in statistical learning in ASD that maps onto non-verbal cognition and adaptive social function. © 2014 John Wiley & Sons Ltd.
Changing viewer perspectives reveals constraints to implicit visual statistical learning.
Jiang, Yuhong V; Swallow, Khena M
2014-10-07
Statistical learning-learning environmental regularities to guide behavior-likely plays an important role in natural human behavior. One potential use is in search for valuable items. Because visual statistical learning can be acquired quickly and without intention or awareness, it could optimize search and thereby conserve energy. For this to be true, however, visual statistical learning needs to be viewpoint invariant, facilitating search even when people walk around. To test whether implicit visual statistical learning of spatial information is viewpoint independent, we asked participants to perform a visual search task from variable locations around a monitor placed flat on a stand. Unbeknownst to participants, the target was more often in some locations than others. In contrast to previous research on stationary observers, visual statistical learning failed to produce a search advantage for targets in high-probable regions that were stable within the environment but variable relative to the viewer. This failure was observed even when conditions for spatial updating were optimized. However, learning was successful when the rich locations were referenced relative to the viewer. We conclude that changing viewer perspective disrupts implicit learning of the target's location probability. This form of learning shows limited integration with spatial updating or spatiotopic representations. © 2014 ARVO.
Functional Differences between Statistical Learning with and without Explicit Training
ERIC Educational Resources Information Center
Batterink, Laura J.; Reber, Paul J.; Paller, Ken A.
2015-01-01
Humans are capable of rapidly extracting regularities from environmental input, a process known as statistical learning. This type of learning typically occurs automatically, through passive exposure to environmental input. The presumed function of statistical learning is to optimize processing, allowing the brain to more accurately predict and…
ERIC Educational Resources Information Center
Olsen, Jennifer; Aleven, Vincent; Rummel, Nikol
2017-01-01
Within educational data mining, many statistical models capture the learning of students working individually. However, not much work has been done to extend these statistical models of individual learning to a collaborative setting, despite the effectiveness of collaborative learning activities. We extend a widely used model (the additive factors…
Statistical Learning as a Key to Cracking Chinese Orthographic Codes
ERIC Educational Resources Information Center
He, Xinjie; Tong, Xiuli
2017-01-01
This study examines statistical learning as a mechanism for Chinese orthographic learning among children in Grades 3-5. Using an artificial orthography, children were repeatedly exposed to positional, phonetic, and semantic regularities of radicals. Children showed statistical learning of all three regularities. Regularities' levels of consistency…
Explorations in Statistics: the Bootstrap
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2009-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fourth installment of Explorations in Statistics explores the bootstrap. The bootstrap gives us an empirical approach to estimate the theoretical variability among possible values of a sample statistic such as the…
2015-01-01
The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model. PMID:26465895
A Hierarchical Learning Control Framework for an Aerial Manipulation System
NASA Astrophysics Data System (ADS)
Ma, Le; Chi, yanxun; Li, Jiapeng; Li, Zhongsheng; Ding, Yalei; Liu, Lixing
2017-07-01
A hierarchical learning control framework for an aerial manipulation system is proposed. Firstly, the mechanical design of aerial manipulation system is introduced and analyzed, and the kinematics and the dynamics based on Newton-Euler equation are modeled. Secondly, the framework of hierarchical learning for this system is presented, in which flight platform and manipulator are controlled by different controller respectively. The RBF (Radial Basis Function) neural networks are employed to estimate parameters and control. The Simulation and experiment demonstrate that the methods proposed effective and advanced.
An Asynchronous Many-Task Implementation of In-Situ Statistical Analysis using Legion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe Pierre; Bennett, Janine Camille
2015-11-01
In this report, we propose a framework for the design and implementation of in-situ analy- ses using an asynchronous many-task (AMT) model, using the Legion programming model together with the MiniAero mini-application as a surrogate for full-scale parallel scientific computing applications. The bulk of this work consists of converting the Learn/Derive/Assess model which we had initially developed for parallel statistical analysis using MPI [PTBM11], from a SPMD to an AMT model. In this goal, we propose an original use of the concept of Legion logical regions as a replacement for the parallel communication schemes used for the only operation ofmore » the statistics engines that require explicit communication. We then evaluate this proposed scheme in a shared memory environment, using the Legion port of MiniAero as a proxy for a full-scale scientific application, as a means to provide input data sets of variable size for the in-situ statistical analyses in an AMT context. We demonstrate in particular that the approach has merit, and warrants further investigation, in collaboration with ongoing efforts to improve the overall parallel performance of the Legion system.« less
NASA Astrophysics Data System (ADS)
Alseddiqi, M.; Mishra, R.; Pislaru, C.
2012-05-01
The paper presents the results from a quality framework to measure the effectiveness of a new engineering course entitled 'school-based learning (SBL) to work-based learning (WBL) transition module' in the Technical and Vocational Education (TVE) system in Bahrain. The framework is an extended version of existing information quality frameworks with respect to pedagogical and technological contexts. It incorporates specific pedagogical and technological dimensions as per the Bahrain modern industry requirements. Users' views questionnaire on the effectiveness of the new transition module was distributed to various stakeholders including TVE teachers and students. The aim was to receive critical information in diagnosing, monitoring and evaluating different views and perceptions about the effectiveness of the new module. The analysis categorised the quality dimensions by their relative importance. This was carried out using the principal component analysis available in SPSS. The analysis clearly identified the most important quality dimensions integrated in the new module for SBL-to-WBL transition. It was also apparent that the new module contains workplace proficiencies, prepares TVE students for work placement, provides effective teaching and learning methodologies, integrates innovative technology in the process of learning, meets modern industrial needs, and presents a cooperative learning environment for TVE students. From the principal component analysis finding, to calculate the percentage of relative importance of each factor and its quality dimensions, was significant. The percentage comparison would justify the most important factor as well as the most important quality dimensions. Also, the new, re-arranged quality dimensions from the finding with an extended number of factors tended to improve the extended version of the quality information framework to a revised quality framework.
A Framework for Re-thinking Learning in Science from Recent Cognitive Science Perspectives
NASA Astrophysics Data System (ADS)
Tytler, Russell; Prain, Vaughan
2010-10-01
Recent accounts by cognitive scientists of factors affecting cognition imply the need to reconsider current dominant conceptual theories about science learning. These new accounts emphasize the role of context, embodied practices, and narrative-based representation rather than learners' cognitive constructs. In this paper we analyse data from a longitudinal study of primary school children's learning to outline a framework based on these contemporary accounts and to delineate key points of difference from conceptual change perspectives. The findings suggest this framework provides strong theoretical and practical insights into how children learn and the key role of representational negotiation in this learning. We argue that the nature and process of conceptual change can be re-interpreted in terms of the development of students' representational resources.
ERIC Educational Resources Information Center
Amershi, Saleema; Conati, Cristina
2009-01-01
In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data).…
ERIC Educational Resources Information Center
Al-Harthi, Aisha Salim Ali; Campbell, Chris; Karimi, Arafeh
2018-01-01
This study aimed to develop, validate, and trial a rubric for evaluating the cloud-based learning designs (CBLD) that were developed by teachers using virtual learning environments. The rubric was developed using the technological pedagogical content knowledge (TPACK) framework, with rubric development including content and expert validation of…
ERIC Educational Resources Information Center
Wang, Yu-Lin; Ellinger, Andrea D.
2008-01-01
The purpose of this paper is to develop a conceptual framework and research hypotheses based upon a thorough review of the conceptual and limited published empirical research in the organizational learning and innovation performance literatures. Hypotheses indicate the relationships between organizational learning, its antecedent, perception of…
ERIC Educational Resources Information Center
Black, Robert D.; Weinberg, Lois A.; Brodwin, Martin G.
2015-01-01
Universal design in education is a framework of instruction that aims to be inclusive of different learning preferences and learners, and helps to reduce barriers for students with disabilities. The principles of Universal Design for Learning (UDL) and Universal Design for Instruction (UDI) were used as the framework for this study. The purposes…
The Socio-Materiality of Learning Practices and Implications for the Field of Learning Technology
ERIC Educational Resources Information Center
Johri, Aditya
2011-01-01
Although the use of digital information technologies in education has become commonplace, there are few, if any, central guiding frameworks or theories that explicate the relationship between technology and learning practices. In this paper, I argue that such a theoretical framework can assist scholars and practitioners alike by working as a…
Evaluating QR Code Case Studies Using a Mobile Learning Framework
ERIC Educational Resources Information Center
Rikala, Jenni
2014-01-01
The aim of this study was to evaluate the feasibility of Quick Response (QR) codes and mobile devices in the context of Finnish basic education. The feasibility was analyzed through a mobile learning framework, which includes the core characteristics of mobile learning. The study is part of a larger research where the aim is to develop a…
ERIC Educational Resources Information Center
Kaendler, Celia; Wiedmann, Michael; Rummel, Nikol; Spada, Hans
2015-01-01
This article describes teacher competencies for implementing collaborative learning in the classroom. Research has shown that the effectiveness of collaborative learning largely depends on the quality of student interaction. We therefore focus on what a "teacher" can do to foster student interaction. First, we present a framework that…
Group Problem Solving as a Different Participatory Approach to Citizenship Education
ERIC Educational Resources Information Center
Guérin, Laurence
2017-01-01
Purpose: The main goal of this article is to learning define and justify group problem solving as an approach to citizenship education. It is demonstrated that the choice of theoretical framework of democracy has consequences for the chosen learning goals, educational approach and learning activities. The framework used here is an epistemic theory…
ERIC Educational Resources Information Center
Dull, Richard B.; Schleifer, Lydia L. F.; McMillan, Jeffrey J.
2015-01-01
Students' goal orientations are examined using two major frameworks for learning: achievement goal theory (AGT) and students' approaches to learning (SAL). Previous student success research is extended, by examining goal constructs from the AGT framework to determine if they help explain the learning process in accounting. Data were gathered using…
ERIC Educational Resources Information Center
Buty, Christian; Tiberghien, Andree; Le Marechal, Jean-Francois
2004-01-01
This contribution presents a tool elaborated from a theoretical framework linking epistemological, learning and didactical hypotheses. This framework lead to design teaching sequences from a socio-constructivist perspective, and is based on the role of models in physics or chemistry, and on the role of students' initial knowledge in learning…
ERIC Educational Resources Information Center
Bidarra, José; Rusman, Ellen
2017-01-01
This paper proposes a design framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called "Science Learning Activities Model" (SLAM). The development of this design framework started as a response to complex changes in society and education (e.g.…
ERIC Educational Resources Information Center
Park, Ji Yong; Nuntrakune, Tippawan
2013-01-01
The Thailand education reform adopted cooperative learning to improve the quality of education. However, it has been reported that the introduction and maintenance of cooperative learning has been difficult and uncertain because of the cultural differences. The study proposed a conceptual framework developed based on making a connection between…
ERIC Educational Resources Information Center
Williams, A. Mark; Fawver, Bradley; Hodges, Nicola J.
2017-01-01
The expert performance approach, initially proposed by Ericsson and Smith (1991), is reviewed as a systematic framework for the study of "expert" learning. The need to develop representative tasks to capture learning is discussed, as is the need to employ process-tracing measures during acquisition to examine what actually changes during…
Using a Learning Progression Framework to Assess and Evaluate Student Growth
ERIC Educational Resources Information Center
Briggs, Derek C.; Diaz-Bilello, Elena; Peck, Fred; Alzen, Jessica; Chattergoon, Rajendra; Johnson, Raymond
2015-01-01
This report describes the use of a Learning Progression Framework (LPF) to support the Student Learning Objectives (SLO) process. The report highlights a few common threats we currently see in the SLO process implemented at various states and districts, and offers the LPF as a possible solution for addressing these threats. This report was…
ERIC Educational Resources Information Center
Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A.
2018-01-01
A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…
The Development of a Proposed Global Work-Integrated Learning Framework
ERIC Educational Resources Information Center
McRae, Norah; Johnston, Nancy
2016-01-01
Building on the work completed in BC that resulted in the development of a WIL Matrix for comparing and contrasting various forms of WIL with the Canadian co-op model, this paper proposes a Global Work-Integrated Learning Framework that allows for the comparison of a variety of models of work-integrated learning found in the international…
Reconsidering the Framework. Learning in Science Project. Working Paper No. 14.
ERIC Educational Resources Information Center
Osborne, Roger; And Others
The first working paper of the Learning in Science Project, "An Initial Framework," outlined what was then seen as the major aims of the project and suggested how these aims might be achieved by three phases of research: exploratory (to observe teaching/learning in Form 1 to 4 science classrooms and to identify difficulties perceived by…
The New NGSS Classroom: A Curriculum Framework for Project-Based Science Learning
ERIC Educational Resources Information Center
Holthuis, Nicole; Deutscher, Rebecca; Schultz, Susan E.; Jamshidi, Arash
2018-01-01
As schools work to implement the Next Generation Science Standards (NGSS), a team at Stanford University found that project-based learning is an effective framework for engaging students. The team used project-based learning, group activities, and performance-based assessments to design an effective, engaging curriculum. Over a three-year period,…
Developing a Framework for Social Technologies in Learning via Design-Based Research
ERIC Educational Resources Information Center
Parmaxi, Antigoni; Zaphiris, Panayiotis
2015-01-01
This paper reports on the use of design-based research (DBR) for the development of a framework that grounds the use of social technologies in learning. The paper focuses on three studies which step on the learning theory of constructionism. Constructionism assumes that knowledge is better gained when students find this knowledge for themselves…
ERIC Educational Resources Information Center
Zimmerman, Heather Toomey; McClain, Lucy Richardson
2014-01-01
Using a sociocultural framework to approach intergenerational learning, this inquiry examines learning processes used by families during visits to one nature center. Data were collected from videotaped observations of families participating in an environmental education program and a follow-up task to draw the habitat of raptors. Based on a…
An evaluation framework for participatory modelling
NASA Astrophysics Data System (ADS)
Krueger, T.; Inman, A.; Chilvers, J.
2012-04-01
Strong arguments for participatory modelling in hydrology can be made on substantive, instrumental and normative grounds. These arguments have led to increasingly diverse groups of stakeholders (here anyone affecting or affected by an issue) getting involved in hydrological research and the management of water resources. In fact, participation has become a requirement of many research grants, programs, plans and policies. However, evidence of beneficial outcomes of participation as suggested by the arguments is difficult to generate and therefore rare. This is because outcomes are diverse, distributed, often tacit, and take time to emerge. In this paper we develop an evaluation framework for participatory modelling focussed on learning outcomes. Learning encompasses many of the potential benefits of participation, such as better models through diversity of knowledge and scrutiny, stakeholder empowerment, greater trust in models and ownership of subsequent decisions, individual moral development, reflexivity, relationships, social capital, institutional change, resilience and sustainability. Based on the theories of experiential, transformative and social learning, complemented by practitioner experience our framework examines if, when and how learning has occurred. Special emphasis is placed on the role of models as learning catalysts. We map the distribution of learning between stakeholders, scientists (as a subgroup of stakeholders) and models. And we analyse what type of learning has occurred: instrumental learning (broadly cognitive enhancement) and/or communicative learning (change in interpreting meanings, intentions and values associated with actions and activities; group dynamics). We demonstrate how our framework can be translated into a questionnaire-based survey conducted with stakeholders and scientists at key stages of the participatory process, and show preliminary insights from applying the framework within a rural pollution management situation in the UK.
What You Learn is What You See: Using Eye Movements to Study Infant Cross-Situational Word Learning
Smith, Linda
2016-01-01
Recent studies show that both adults and young children possess powerful statistical learning capabilities to solve the word-to-world mapping problem. However, the underlying mechanisms that make statistical learning possible and powerful are not yet known. With the goal of providing new insights into this issue, the research reported in this paper used an eye tracker to record the moment-by-moment eye movement data of 14-month-old babies in statistical learning tasks. Various measures are applied to such fine-grained temporal data, such as looking duration and shift rate (the number of shifts in gaze from one visual object to the other) trial by trial, showing different eye movement patterns between strong and weak statistical learners. Moreover, an information-theoretic measure is developed and applied to gaze data to quantify the degree of learning uncertainty trial by trial. Next, a simple associative statistical learning model is applied to eye movement data and these simulation results are compared with empirical results from young children, showing strong correlations between these two. This suggests that an associative learning mechanism with selective attention can provide a cognitively plausible model of cross-situational statistical learning. The work represents the first steps to use eye movement data to infer underlying real-time processes in statistical word learning. PMID:22213894
Statistical label fusion with hierarchical performance models
Asman, Andrew J.; Dagley, Alexander S.; Landman, Bennett A.
2014-01-01
Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally – fully neglecting the known, yet complex, anatomical relationships exhibited in the data. To address this problem, we propose a generalized statistical fusion framework using hierarchical models of rater performance. Building on the seminal work in statistical fusion, we reformulate the traditional rater performance model from a multi-tiered hierarchical perspective. This new approach provides a natural framework for leveraging known anatomical relationships and accurately modeling the types of errors that raters (or atlases) make within a hierarchically consistent formulation. Herein, we describe several contributions. First, we derive a theoretical advancement to the statistical fusion framework that enables the simultaneous estimation of multiple (hierarchical) performance models within the statistical fusion context. Second, we demonstrate that the proposed hierarchical formulation is highly amenable to the state-of-the-art advancements that have been made to the statistical fusion framework. Lastly, in an empirical whole-brain segmentation task we demonstrate substantial qualitative and significant quantitative improvement in overall segmentation accuracy. PMID:24817809
Statistical Learning Is Not Affected by a Prior Bout of Physical Exercise.
Stevens, David J; Arciuli, Joanne; Anderson, David I
2016-05-01
This study examined the effect of a prior bout of exercise on implicit cognition. Specifically, we examined whether a prior bout of moderate intensity exercise affected performance on a statistical learning task in healthy adults. A total of 42 participants were allocated to one of three conditions-a control group, a group that exercised for 15 min prior to the statistical learning task, and a group that exercised for 30 min prior to the statistical learning task. The participants in the exercise groups cycled at 60% of their respective V˙O2 max. Each group demonstrated significant statistical learning, with similar levels of learning among the three groups. Contrary to previous research that has shown that a prior bout of exercise can affect performance on explicit cognitive tasks, the results of the current study suggest that the physiological stress induced by moderate-intensity exercise does not affect implicit cognition as measured by statistical learning. Copyright © 2015 Cognitive Science Society, Inc.
Cooper, Katelyn M; Ashley, Michael; Brownell, Sara E
2017-01-01
There has been a national movement to transition college science courses from passive lectures to active learning environments. Active learning has been shown to be a more effective way for students to learn, yet there is concern that some students are resistant to active learning approaches. Although there is much discussion about student resistance to active learning, few studies have explored this topic. Furthermore, a limited number of studies have applied theoretical frameworks to student engagement in active learning. We propose using a theoretical lens of expectancy value theory to understand student resistance to active learning. In this study, we examined student perceptions of active learning after participating in 40 hours of active learning. We used the principal components of expectancy value theory to probe student experience in active learning: student perceived self-efficacy in active learning, value of active learning, and potential cost of participating in active learning. We found that students showed positive changes in the components of expectancy value theory and reported high levels of engagement in active learning, which provide proof of concept that expectancy value theory can be used to boost student perceptions of active learning and their engagement in active learning classrooms. From these findings, we have built a theoretical framework of expectancy value theory applied to active learning.
Cooper, Katelyn M.; Ashley, Michael; Brownell, Sara E.
2017-01-01
There has been a national movement to transition college science courses from passive lectures to active learning environments. Active learning has been shown to be a more effective way for students to learn, yet there is concern that some students are resistant to active learning approaches. Although there is much discussion about student resistance to active learning, few studies have explored this topic. Furthermore, a limited number of studies have applied theoretical frameworks to student engagement in active learning. We propose using a theoretical lens of expectancy value theory to understand student resistance to active learning. In this study, we examined student perceptions of active learning after participating in 40 hours of active learning. We used the principal components of expectancy value theory to probe student experience in active learning: student perceived self-efficacy in active learning, value of active learning, and potential cost of participating in active learning. We found that students showed positive changes in the components of expectancy value theory and reported high levels of engagement in active learning, which provide proof of concept that expectancy value theory can be used to boost student perceptions of active learning and their engagement in active learning classrooms. From these findings, we have built a theoretical framework of expectancy value theory applied to active learning. PMID:28861130
ERIC Educational Resources Information Center
Jeste, Shafali S.; Kirkham, Natasha; Senturk, Damla; Hasenstab, Kyle; Sugar, Catherine; Kupelian, Chloe; Baker, Elizabeth; Sanders, Andrew J.; Shimizu, Christina; Norona, Amanda; Paparella, Tanya; Freeman, Stephanny F. N.; Johnson, Scott P.
2015-01-01
Statistical learning is characterized by detection of regularities in one's environment without an awareness or intention to learn, and it may play a critical role in language and social behavior. Accordingly, in this study we investigated the electrophysiological correlates of visual statistical learning in young children with autism…
The Necessity of the Hippocampus for Statistical Learning
Covington, Natalie V.; Brown-Schmidt, Sarah; Duff, Melissa C.
2018-01-01
Converging evidence points to a role for the hippocampus in statistical learning, but open questions about its necessity remain. Evidence for necessity comes from Schapiro and colleagues who report that a single patient with damage to hippocampus and broader medial temporal lobe cortex was unable to discriminate new from old sequences in several statistical learning tasks. The aim of the current study was to replicate these methods in a larger group of patients who have either damage localized to hippocampus or a broader medial temporal lobe damage, to ascertain the necessity of the hippocampus in statistical learning. Patients with hippocampal damage consistently showed less learning overall compared with healthy comparison participants, consistent with an emerging consensus for hippocampal contributions to statistical learning. Interestingly, lesion size did not reliably predict performance. However, patients with hippocampal damage were not uniformly at chance and demonstrated above-chance performance in some task variants. These results suggest that hippocampus is necessary for statistical learning levels achieved by most healthy comparison participants but significant hippocampal pathology alone does not abolish such learning. PMID:29308986
ERIC Educational Resources Information Center
Psillos, D.; Tselfes, Vassilis; Kariotoglou, Petros
2004-01-01
In the present paper we propose a theoretical framework for an epistemological modelling of teaching-learning (didactical) activities, which draws on recent studies of scientific practice. We present and analyse the framework, which includes three categories: namely, Cosmos-Evidence-Ideas (CEI). We also apply this framework in order to model a…
ERIC Educational Resources Information Center
Peers, Chris; Fleer, Marilyn
2014-01-01
The implementation in 2009-10 of the Early Years Learning Framework (EYLF) spearheaded the efforts of the Australian Commonwealth government to institute a national curriculum. The theme of the new early childhood framework follows three guiding concepts: Belonging, Being and Becoming. In this article, we discuss these three concepts in order to…
Using the "Indicators of Engaged Learning Online" Framework to Evaluate Online Course Quality
ERIC Educational Resources Information Center
Bigatel, Paula M.; Edel-Malizia, Stephanie
2018-01-01
This article is a case study of the use of the "Indicators of Engaged Learning Online" (IELO) framework (See Appendix 1) as a guide to evaluate the quality of online courses. The framework lends itself well to measures of engagement, particularly, in terms of online course design because of its comprehensiveness. Six online courses were…
Envision and Observe: Using the Studio Thinking Framework for Learning and Teaching in Digital Arts
ERIC Educational Resources Information Center
Sheridan, Kimberly M.
2011-01-01
The Studio Thinking Framework (STF) focuses on habits of mind taught through studio arts rather than disciplinary content or media-specific techniques. It is well suited to integrate studies of arts learning and teaching in a range of contexts, and it provides a framework for understanding how visual arts participation is dramatically changing…
ERIC Educational Resources Information Center
Togawa, Satoshi; Kanenishi, Kazuhide
2014-01-01
In this research, we have built a framework of disaster recovery such as against earthquake, tsunami disaster and a heavy floods for e-Learning environment. Especially, our proposed framework is based on private cloud collaboration. We build a prototype system based on IaaS architecture, and this prototype system is constructed by several private…
Score As You Lift (SAYL): A Statistical Relational Learning Approach to Uplift Modeling.
Nassif, Houssam; Kuusisto, Finn; Burnside, Elizabeth S; Page, David; Shavlik, Jude; Costa, Vítor Santos
We introduce Score As You Lift (SAYL), a novel Statistical Relational Learning (SRL) algorithm, and apply it to an important task in the diagnosis of breast cancer. SAYL combines SRL with the marketing concept of uplift modeling, uses the area under the uplift curve to direct clause construction and final theory evaluation, integrates rule learning and probability assignment, and conditions the addition of each new theory rule to existing ones. Breast cancer, the most common type of cancer among women, is categorized into two subtypes: an earlier in situ stage where cancer cells are still confined, and a subsequent invasive stage. Currently older women with in situ cancer are treated to prevent cancer progression, regardless of the fact that treatment may generate undesirable side-effects, and the woman may die of other causes. Younger women tend to have more aggressive cancers, while older women tend to have more indolent tumors. Therefore older women whose in situ tumors show significant dissimilarity with in situ cancer in younger women are less likely to progress, and can thus be considered for watchful waiting. Motivated by this important problem, this work makes two main contributions. First, we present the first multi-relational uplift modeling system, and introduce, implement and evaluate a novel method to guide search in an SRL framework. Second, we compare our algorithm to previous approaches, and demonstrate that the system can indeed obtain differential rules of interest to an expert on real data, while significantly improving the data uplift.
Boddez, Yannick; Haesen, Kim; Baeyens, Frank; Beckers, Tom
2014-01-01
Blocking is the most important phenomenon in the history of associative learning theory: for over 40 years, blocking has inspired a whole generation of learning models. Blocking is part of a family of effects that are typically termed “cue competition” effects. Common amongst all cue competition effects is that a cue-outcome relation is poorly learned or poorly expressed because the cue is trained in the presence of an alternative predictor or cause of the outcome. We provide an overview of the cognitive processes involved in cue competition effects in humans and propose a stage framework that brings these processes together. The framework contends that the behavioral display of cue competition is cognitively construed following three stages that include (1) an encoding stage, (2) a retention stage, and (3) a performance stage. We argue that the stage framework supports a comprehensive understanding of cue competition effects. PMID:25429280
ERIC Educational Resources Information Center
Nitko, Anthony J.; Hsu, Tse-chi
Item analysis procedures appropriate for domain-referenced classroom testing are described. A conceptual framework within which item statistics can be considered and promising statistics in light of this framework are presented. The sampling fluctuations of the more promising item statistics for sample sizes comparable to the typical classroom…
Fast Learning for Immersive Engagement in Energy Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian W; Bugbee, Bruce; Gruchalla, Kenny M
The fast computation which is critical for immersive engagement with and learning from energy simulations would be furthered by developing a general method for creating rapidly computed simplified versions of NREL's computation-intensive energy simulations. Created using machine learning techniques, these 'reduced form' simulations can provide statistically sound estimates of the results of the full simulations at a fraction of the computational cost with response times - typically less than one minute of wall-clock time - suitable for real-time human-in-the-loop design and analysis. Additionally, uncertainty quantification techniques can document the accuracy of the approximate models and their domain of validity. Approximationmore » methods are applicable to a wide range of computational models, including supply-chain models, electric power grid simulations, and building models. These reduced-form representations cannot replace or re-implement existing simulations, but instead supplement them by enabling rapid scenario design and quality assurance for large sets of simulations. We present an overview of the framework and methods we have implemented for developing these reduced-form representations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Kristin C; Brunhart-Lupo, Nicholas J; Bush, Brian W
We have developed a framework for the exploration, design, and planning of energy systems that combines interactive visualization with machine-learning based approximations of simulations through a general purpose dataflow API. Our system provides a visual inter- face allowing users to explore an ensemble of energy simulations representing a subset of the complex input parameter space, and spawn new simulations to 'fill in' input regions corresponding to new enegery system scenarios. Unfortunately, many energy simula- tions are far too slow to provide interactive responses. To support interactive feedback, we are developing reduced-form models via machine learning techniques, which provide statistically soundmore » esti- mates of the full simulations at a fraction of the computational cost and which are used as proxies for the full-form models. Fast com- putation and an agile dataflow enhance the engagement with energy simulations, and allow researchers to better allocate computational resources to capture informative relationships within the system and provide a low-cost method for validating and quality-checking large-scale modeling efforts.« less
NASA Astrophysics Data System (ADS)
Shen, C.; Fang, K.
2017-12-01
Deep Learning (DL) methods have made revolutionary strides in recent years. A core value proposition of DL is that abstract notions and patterns can be extracted purely from data, without the need for domain expertise. Process-based models (PBM), on the other hand, can be regarded as repositories of human knowledge or hypotheses about how systems function. Here, through computational examples, we argue that there is merit in integrating PBMs with DL due to the imbalance and lack of data in many situations, especially in hydrology. We trained a deep-in-time neural network, the Long Short-Term Memory (LSTM), to learn soil moisture dynamics from Soil Moisture Active Passive (SMAP) Level 3 product. We show that when PBM solutions are integrated into LSTM, the network is able to better generalize across regions. LSTM is able to better utilize PBM solutions than simpler statistical methods. Our results suggest PBMs have generalization value which should be carefully assessed and utilized. We also emphasize that when properly regularized, the deep network is robust and is of superior testing performance compared to simpler methods.
Short-Term Solar Forecasting Performance of Popular Machine Learning Algorithms: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florita, Anthony R; Elgindy, Tarek; Hodge, Brian S
A framework for assessing the performance of short-term solar forecasting is presented in conjunction with a range of numerical results using global horizontal irradiation (GHI) from the open-source Surface Radiation Budget (SURFRAD) data network. A suite of popular machine learning algorithms is compared according to a set of statistically distinct metrics and benchmarked against the persistence-of-cloudiness forecast and a cloud motion forecast. Results show significant improvement compared to the benchmarks with trade-offs among the machine learning algorithms depending on the desired error metric. Training inputs include time series observations of GHI for a history of years, historical weather and atmosphericmore » measurements, and corresponding date and time stamps such that training sensitivities might be inferred. Prediction outputs are GHI forecasts for 1, 2, 3, and 4 hours ahead of the issue time, and they are made for every month of the year for 7 locations. Photovoltaic power and energy outputs can then be made using the solar forecasts to better understand power system impacts.« less
Fernandez-Lozano, Carlos; Gestal, Marcos; Munteanu, Cristian R; Dorado, Julian; Pazos, Alejandro
2016-01-01
The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.