Sample records for statistical model comparison

  1. Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors

    DTIC Science & Technology

    2015-07-15

    Long-term effects on cancer survivors’ quality of life of physical training versus physical training combined with cognitive-behavioral therapy ...COMPARISON OF NEURAL NETWORK AND LINEAR REGRESSION MODELS IN STATISTICALLY PREDICTING MENTAL AND PHYSICAL HEALTH STATUS OF BREAST...34Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors

  2. New powerful statistics for alignment-free sequence comparison under a pattern transfer model.

    PubMed

    Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S; Sun, Fengzhu

    2011-09-07

    Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D*2 and D(s)2 showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D*2 and D(s)2 by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. New Powerful Statistics for Alignment-free Sequence Comparison Under a Pattern Transfer Model

    PubMed Central

    Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S.; Sun, Fengzhu

    2011-01-01

    Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D2∗ and D2s showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D2∗ and D2s by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. PMID:21723298

  4. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling.

    PubMed

    Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall

    2016-01-01

    Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.

  5. Numerical and Qualitative Contrasts of Two Statistical Models ...

    EPA Pesticide Factsheets

    Two statistical approaches, weighted regression on time, discharge, and season and generalized additive models, have recently been used to evaluate water quality trends in estuaries. Both models have been used in similar contexts despite differences in statistical foundations and products. This study provided an empirical and qualitative comparison of both models using 29 years of data for two discrete time series of chlorophyll-a (chl-a) in the Patuxent River estuary. Empirical descriptions of each model were based on predictive performance against the observed data, ability to reproduce flow-normalized trends with simulated data, and comparisons of performance with validation datasets. Between-model differences were apparent but minor and both models had comparable abilities to remove flow effects from simulated time series. Both models similarly predicted observations for missing data with different characteristics. Trends from each model revealed distinct mainstem influences of the Chesapeake Bay with both models predicting a roughly 65% increase in chl-a over time in the lower estuary, whereas flow-normalized predictions for the upper estuary showed a more dynamic pattern, with a nearly 100% increase in chl-a in the last 10 years. Qualitative comparisons highlighted important differences in the statistical structure, available products, and characteristics of the data and desired analysis. This manuscript describes a quantitative comparison of two recently-

  6. Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum

    2011-01-01

    Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…

  7. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    PubMed

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  8. Sample sizes and model comparison metrics for species distribution models

    Treesearch

    B.B. Hanberry; H.S. He; D.C. Dey

    2012-01-01

    Species distribution models use small samples to produce continuous distribution maps. The question of how small a sample can be to produce an accurate model generally has been answered based on comparisons to maximum sample sizes of 200 observations or fewer. In addition, model comparisons often are made with the kappa statistic, which has become controversial....

  9. Markov model plus k-word distributions: a synergy that produces novel statistical measures for sequence comparison.

    PubMed

    Dai, Qi; Yang, Yanchun; Wang, Tianming

    2008-10-15

    Many proposed statistical measures can efficiently compare biological sequences to further infer their structures, functions and evolutionary information. They are related in spirit because all the ideas for sequence comparison try to use the information on the k-word distributions, Markov model or both. Motivated by adding k-word distributions to Markov model directly, we investigated two novel statistical measures for sequence comparison, called wre.k.r and S2.k.r. The proposed measures were tested by similarity search, evaluation on functionally related regulatory sequences and phylogenetic analysis. This offers the systematic and quantitative experimental assessment of our measures. Moreover, we compared our achievements with these based on alignment or alignment-free. We grouped our experiments into two sets. The first one, performed via ROC (receiver operating curve) analysis, aims at assessing the intrinsic ability of our statistical measures to search for similar sequences from a database and discriminate functionally related regulatory sequences from unrelated sequences. The second one aims at assessing how well our statistical measure is used for phylogenetic analysis. The experimental assessment demonstrates that our similarity measures intending to incorporate k-word distributions into Markov model are more efficient.

  10. Comparisons of non-Gaussian statistical models in DNA methylation analysis.

    PubMed

    Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-06-16

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.

  11. Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis

    PubMed Central

    Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-01-01

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687

  12. Statistical analysis of modeling error in structural dynamic systems

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.; Chrostowski, J. D.

    1990-01-01

    The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.

  13. Non-equilibrium dog-flea model

    NASA Astrophysics Data System (ADS)

    Ackerson, Bruce J.

    2017-11-01

    We develop the open dog-flea model to serve as a check of proposed non-equilibrium theories of statistical mechanics. The model is developed in detail. Then it is applied to four recent models for non-equilibrium statistical mechanics. Comparison of the dog-flea solution with these different models allows checking claims and giving a concrete example of the theoretical models.

  14. Statistical Comparison of Spike Responses to Natural Stimuli in Monkey Area V1 With Simulated Responses of a Detailed Laminar Network Model for a Patch of V1

    PubMed Central

    Schuch, Klaus; Logothetis, Nikos K.; Maass, Wolfgang

    2011-01-01

    A major goal of computational neuroscience is the creation of computer models for cortical areas whose response to sensory stimuli resembles that of cortical areas in vivo in important aspects. It is seldom considered whether the simulated spiking activity is realistic (in a statistical sense) in response to natural stimuli. Because certain statistical properties of spike responses were suggested to facilitate computations in the cortex, acquiring a realistic firing regimen in cortical network models might be a prerequisite for analyzing their computational functions. We present a characterization and comparison of the statistical response properties of the primary visual cortex (V1) in vivo and in silico in response to natural stimuli. We recorded from multiple electrodes in area V1 of 4 macaque monkeys and developed a large state-of-the-art network model for a 5 × 5-mm patch of V1 composed of 35,000 neurons and 3.9 million synapses that integrates previously published anatomical and physiological details. By quantitative comparison of the model response to the “statistical fingerprint” of responses in vivo, we find that our model for a patch of V1 responds to the same movie in a way which matches the statistical structure of the recorded data surprisingly well. The deviation between the firing regimen of the model and the in vivo data are on the same level as deviations among monkeys and sessions. This suggests that, despite strong simplifications and abstractions of cortical network models, they are nevertheless capable of generating realistic spiking activity. To reach a realistic firing state, it was not only necessary to include both N-methyl-d-aspartate and GABAB synaptic conductances in our model, but also to markedly increase the strength of excitatory synapses onto inhibitory neurons (>2-fold) in comparison to literature values, hinting at the importance to carefully adjust the effect of inhibition for achieving realistic dynamics in current network models. PMID:21106898

  15. Modeling the sound transmission between rooms coupled through partition walls by using a diffusion model.

    PubMed

    Billon, Alexis; Foy, Cédric; Picaut, Judicaël; Valeau, Vincent; Sakout, Anas

    2008-06-01

    In this paper, a modification of the diffusion model for room acoustics is proposed to account for sound transmission between two rooms, a source room and an adjacent room, which are coupled through a partition wall. A system of two diffusion equations, one for each room, together with a set of two boundary conditions, one for the partition wall and one for the other walls of a room, is obtained and numerically solved. The modified diffusion model is validated by numerical comparisons with the statistical theory for several coupled-room configurations by varying the coupling area surface, the absorption coefficient of each room, and the volume of the adjacent room. An experimental comparison is also carried out for two coupled classrooms. The modified diffusion model results agree very well with both the statistical theory and the experimental data. The diffusion model can then be used as an alternative to the statistical theory, especially when the statistical theory is not applicable, that is, when the reverberant sound field is not diffuse. Moreover, the diffusion model allows the prediction of the spatial distribution of sound energy within each coupled room, while the statistical theory gives only one sound level for each room.

  16. Comparison of hypertabastic survival model with other unimodal hazard rate functions using a goodness-of-fit test.

    PubMed

    Tahir, M Ramzan; Tran, Quang X; Nikulin, Mikhail S

    2017-05-30

    We studied the problem of testing a hypothesized distribution in survival regression models when the data is right censored and survival times are influenced by covariates. A modified chi-squared type test, known as Nikulin-Rao-Robson statistic, is applied for the comparison of accelerated failure time models. This statistic is used to test the goodness-of-fit for hypertabastic survival model and four other unimodal hazard rate functions. The results of simulation study showed that the hypertabastic distribution can be used as an alternative to log-logistic and log-normal distribution. In statistical modeling, because of its flexible shape of hazard functions, this distribution can also be used as a competitor of Birnbaum-Saunders and inverse Gaussian distributions. The results for the real data application are shown. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Asset Attribution Stability and Portfolio Construction: An Educational Example

    ERIC Educational Resources Information Center

    Chong, James T.; Jennings, William P.; Phillips, G. Michael

    2014-01-01

    This paper illustrates how a third statistic from asset pricing models, the R-squared statistic, may have information that can help in portfolio construction. Using a traditional CAPM model in comparison to an 18-factor Arbitrage Pricing Style Model, a portfolio separation test is conducted. Portfolio returns and risk metrics are compared using…

  18. Comparison of individual-based model output to data using a model of walleye pollock early life history in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Hinckley, Sarah; Parada, Carolina; Horne, John K.; Mazur, Michael; Woillez, Mathieu

    2016-10-01

    Biophysical individual-based models (IBMs) have been used to study aspects of early life history of marine fishes such as recruitment, connectivity of spawning and nursery areas, and marine reserve design. However, there is no consistent approach to validating the spatial outputs of these models. In this study, we hope to rectify this gap. We document additions to an existing individual-based biophysical model for Alaska walleye pollock (Gadus chalcogrammus), some simulations made with this model and methods that were used to describe and compare spatial output of the model versus field data derived from ichthyoplankton surveys in the Gulf of Alaska. We used visual methods (e.g. distributional centroids with directional ellipses), several indices (such as a Normalized Difference Index (NDI), and an Overlap Coefficient (OC), and several statistical methods: the Syrjala method, the Getis-Ord Gi* statistic, and a geostatistical method for comparing spatial indices. We assess the utility of these different methods in analyzing spatial output and comparing model output to data, and give recommendations for their appropriate use. Visual methods are useful for initial comparisons of model and data distributions. Metrics such as the NDI and OC give useful measures of co-location and overlap, but care must be taken in discretizing the fields into bins. The Getis-Ord Gi* statistic is useful to determine the patchiness of the fields. The Syrjala method is an easily implemented statistical measure of the difference between the fields, but does not give information on the details of the distributions. Finally, the geostatistical comparison of spatial indices gives good information of details of the distributions and whether they differ significantly between the model and the data. We conclude that each technique gives quite different information about the model-data distribution comparison, and that some are easy to apply and some more complex. We also give recommendations for a multistep process to validate spatial output from IBMs.

  19. Alignment-free sequence comparison (II): theoretical power of comparison statistics.

    PubMed

    Wan, Lin; Reinert, Gesine; Sun, Fengzhu; Waterman, Michael S

    2010-11-01

    Rapid methods for alignment-free sequence comparison make large-scale comparisons between sequences increasingly feasible. Here we study the power of the statistic D2, which counts the number of matching k-tuples between two sequences, as well as D2*, which uses centralized counts, and D2S, which is a self-standardized version, both from a theoretical viewpoint and numerically, providing an easy to use program. The power is assessed under two alternative hidden Markov models; the first one assumes that the two sequences share a common motif, whereas the second model is a pattern transfer model; the null model is that the two sequences are composed of independent and identically distributed letters and they are independent. Under the first alternative model, the means of the tuple counts in the individual sequences change, whereas under the second alternative model, the marginal means are the same as under the null model. Using the limit distributions of the count statistics under the null and the alternative models, we find that generally, asymptotically D2S has the largest power, followed by D2*, whereas the power of D2 can even be zero in some cases. In contrast, even for sequences of length 140,000 bp, in simulations D2* generally has the largest power. Under the first alternative model of a shared motif, the power of D2*approaches 100% when sufficiently many motifs are shared, and we recommend the use of D2* for such practical applications. Under the second alternative model of pattern transfer,the power for all three count statistics does not increase with sequence length when the sequence is sufficiently long, and hence none of the three statistics under consideration canbe recommended in such a situation. We illustrate the approach on 323 transcription factor binding motifs with length at most 10 from JASPAR CORE (October 12, 2009 version),verifying that D2* is generally more powerful than D2. The program to calculate the power of D2, D2* and D2S can be downloaded from http://meta.cmb.usc.edu/d2. Supplementary Material is available at www.liebertonline.com/cmb.

  20. Comparison of statistical models for writer verification

    NASA Astrophysics Data System (ADS)

    Srihari, Sargur; Ball, Gregory R.

    2009-01-01

    A novel statistical model for determining whether a pair of documents, a known and a questioned, were written by the same individual is proposed. The goal of this formulation is to learn the specific uniqueness of style in a particular author's writing, given the known document. Since there are often insufficient samples to extrapolate a generalized model of an writer's handwriting based solely on the document, we instead generalize over the differences between the author and a large population of known different writers. This is in contrast to an earlier model proposed whereby probability distributions were a priori without learning. We show the performance of the model along with a comparison in performance to the non-learning, older model, which shows significant improvement.

  1. Value Added Productivity Indicators: A Statistical Comparison of the Pre-Test/Post-Test Model and Gain Model.

    ERIC Educational Resources Information Center

    Weerasinghe, Dash; Orsak, Timothy; Mendro, Robert

    In an age of student accountability, public school systems must find procedures for identifying effective schools, classrooms, and teachers that help students continue to learn academically. As a result, researchers have been modeling schools and classrooms to calculate productivity indicators that will withstand not only statistical review but…

  2. Comparison of statistical and theoretical habitat models for conservation planning: the benefit of ensemble prediction

    Treesearch

    D. Todd Jones-Farrand; Todd M. Fearer; Wayne E. Thogmartin; Frank R. Thompson; Mark D. Nelson; John M. Tirpak

    2011-01-01

    Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and...

  3. An Extension of RSS-based Model Comparison Tests for Weighted Least Squares

    DTIC Science & Technology

    2012-08-22

    use the model comparison test statistic to analyze the null hypothesis. Under the null hypothesis, the weighted least squares cost functional is JWLS ...q̂WLSH ) = 10.3040×106. Under the alternative hypothesis, the weighted least squares cost functional is JWLS (q̂WLS) = 8.8394 × 106. Thus the model

  4. Comparison of Artificial Neural Networks and ARIMA statistical models in simulations of target wind time series

    NASA Astrophysics Data System (ADS)

    Kolokythas, Kostantinos; Vasileios, Salamalikis; Athanassios, Argiriou; Kazantzidis, Andreas

    2015-04-01

    The wind is a result of complex interactions of numerous mechanisms taking place in small or large scales, so, the better knowledge of its behavior is essential in a variety of applications, especially in the field of power production coming from wind turbines. In the literature there is a considerable number of models, either physical or statistical ones, dealing with the problem of simulation and prediction of wind speed. Among others, Artificial Neural Networks (ANNs) are widely used for the purpose of wind forecasting and, in the great majority of cases, outperform other conventional statistical models. In this study, a number of ANNs with different architectures, which have been created and applied in a dataset of wind time series, are compared to Auto Regressive Integrated Moving Average (ARIMA) statistical models. The data consist of mean hourly wind speeds coming from a wind farm on a hilly Greek region and cover a period of one year (2013). The main goal is to evaluate the models ability to simulate successfully the wind speed at a significant point (target). Goodness-of-fit statistics are performed for the comparison of the different methods. In general, the ANN showed the best performance in the estimation of wind speed prevailing over the ARIMA models.

  5. Probability of Detection (POD) as a statistical model for the validation of qualitative methods.

    PubMed

    Wehling, Paul; LaBudde, Robert A; Brunelle, Sharon L; Nelson, Maria T

    2011-01-01

    A statistical model is presented for use in validation of qualitative methods. This model, termed Probability of Detection (POD), harmonizes the statistical concepts and parameters between quantitative and qualitative method validation. POD characterizes method response with respect to concentration as a continuous variable. The POD model provides a tool for graphical representation of response curves for qualitative methods. In addition, the model allows comparisons between candidate and reference methods, and provides calculations of repeatability, reproducibility, and laboratory effects from collaborative study data. Single laboratory study and collaborative study examples are given.

  6. Probability distributions of molecular observables computed from Markov models. II. Uncertainties in observables and their time-evolution

    NASA Astrophysics Data System (ADS)

    Chodera, John D.; Noé, Frank

    2010-09-01

    Discrete-state Markov (or master equation) models provide a useful simplified representation for characterizing the long-time statistical evolution of biomolecules in a manner that allows direct comparison with experiments as well as the elucidation of mechanistic pathways for an inherently stochastic process. A vital part of meaningful comparison with experiment is the characterization of the statistical uncertainty in the predicted experimental measurement, which may take the form of an equilibrium measurement of some spectroscopic signal, the time-evolution of this signal following a perturbation, or the observation of some statistic (such as the correlation function) of the equilibrium dynamics of a single molecule. Without meaningful error bars (which arise from both approximation and statistical error), there is no way to determine whether the deviations between model and experiment are statistically meaningful. Previous work has demonstrated that a Bayesian method that enforces microscopic reversibility can be used to characterize the statistical component of correlated uncertainties in state-to-state transition probabilities (and functions thereof) for a model inferred from molecular simulation data. Here, we extend this approach to include the uncertainty in observables that are functions of molecular conformation (such as surrogate spectroscopic signals) characterizing each state, permitting the full statistical uncertainty in computed spectroscopic experiments to be assessed. We test the approach in a simple model system to demonstrate that the computed uncertainties provide a useful indicator of statistical variation, and then apply it to the computation of the fluorescence autocorrelation function measured for a dye-labeled peptide previously studied by both experiment and simulation.

  7. Quantifying the indirect impacts of climate on agriculture: an inter-method comparison

    NASA Astrophysics Data System (ADS)

    Calvin, Kate; Fisher-Vanden, Karen

    2017-11-01

    Climate change and increases in CO2 concentration affect the productivity of land, with implications for land use, land cover, and agricultural production. Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, we attempt to measure the importance of these interaction effects through an inter-method comparison between process models, statistical models, and integrated assessment model (IAMs). We find the impacts on crop yields vary widely between these three modeling approaches. Yield impacts generated by the IAMs are 20%-40% higher than the yield impacts generated by process-based or statistical crop models, with indirect climate effects adjusting yields by between -12% and +15% (e.g. input substitution and crop switching). The remaining effects are due to technological change.

  8. A Backscatter-Lidar Forward-Operator

    NASA Astrophysics Data System (ADS)

    Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Vogel, Bernhard; Mattis, Ina; Flentje, Harald; Förstner, Jochen; Potthast, Roland

    2015-04-01

    We have developed a forward-operator which is capable of calculating virtual lidar profiles from atmospheric state simulations. The operator allows us to compare lidar measurements and model simulations based on the same measurement parameter: the lidar backscatter profile. This method simplifies qualitative comparisons and also makes quantitative comparisons possible, including statistical error quantification. Implemented into an aerosol-capable model system, the operator will act as a component to assimilate backscatter-lidar measurements. As many weather services maintain already networks of backscatter-lidars, such data are acquired already in an operational manner. To estimate and quantify errors due to missing or uncertain aerosol information, we started sensitivity studies about several scattering parameters such as the aerosol size and both the real and imaginary part of the complex index of refraction. Furthermore, quantitative and statistical comparisons between measurements and virtual measurements are shown in this study, i.e. applying the backscatter-lidar forward-operator on model output.

  9. Counts-in-cylinders in the Sloan Digital Sky Survey with Comparisons to N-body Simulations

    NASA Astrophysics Data System (ADS)

    Berrier, Heather D.; Barton, Elizabeth J.; Berrier, Joel C.; Bullock, James S.; Zentner, Andrew R.; Wechsler, Risa H.

    2011-01-01

    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments, and a vital test of models of galaxy formation within the prevailing hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey Data Release 4 (SDSS DR4). We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations and data from SDSS DR4, to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent empirical models of galaxy clustering, that match observed two- and three-point clustering statistics well, fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3, and 6 h -1 Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6 h -1 Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h -1 Mpc cylinder than the galaxies in any of the models we use. Simple phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.

  10. Comparison of 7.5-minute and 1-degree digital elevation models

    NASA Technical Reports Server (NTRS)

    Isaacson, Dennis L.; Ripple, William J.

    1995-01-01

    We compared two digital elevation models (DEM's) for the Echo Mountain SE quadrangle in the Cascade Mountains of Oregon. Comparisons were made between 7.5-minute (1:24,000-scale) and 1-degree (1:250,000-scale) images using the variables of elevation, slope aspect, and slope gradient. Both visual and statistical differences are presented.

  11. Comparison of 7.5-minute and 1-degree digital elevation models

    NASA Technical Reports Server (NTRS)

    Isaacson, Dennis L.; Ripple, William J.

    1990-01-01

    Two digital elevation models are compared for the Echo Mountain SE quadrangle in the Cascade Mountains of Oregon. Comparisons were made between 7.5-minute (1:24,000-scale) and 1-degree (1:250,000-scale) images using the variables of elevation, slope aspect, and slope gradient. Both visual and statistical differences are presented.

  12. Nondestructive Evaluation (NDE) Technology Initiatives (NTIP). Delivery Order 0039: Statistical Comparison of Competing Material Models

    DTIC Science & Technology

    2003-01-01

    adapted from Kass and Rafferty (1995) and Congdon (2001). Page 10 of 57 density adjusted for resin content, z, since resin contributes to the density...c.f.: Congdon , 2001). How to Download the WinBUGS Software Package BUGS was originally a statistical research project at the Medical Research...Likelihood Estimation,” July 2002, working paper to be published. 18) Congdon , Peter, Bayesian Statistical Modeling, Wiley, 2001 19) Cox, D. R. and

  13. Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.

  14. A Comparison Study of Rule Space Method and Neural Network Model for Classifying Individuals and an Application.

    ERIC Educational Resources Information Center

    Hayashi, Atsuhiro

    Both the Rule Space Method (RSM) and the Neural Network Model (NNM) are techniques of statistical pattern recognition and classification approaches developed for applications from different fields. RSM was developed in the domain of educational statistics. It started from the use of an incidence matrix Q that characterizes the underlying cognitive…

  15. A Meta-Meta-Analysis: Empirical Review of Statistical Power, Type I Error Rates, Effect Sizes, and Model Selection of Meta-Analyses Published in Psychology

    ERIC Educational Resources Information Center

    Cafri, Guy; Kromrey, Jeffrey D.; Brannick, Michael T.

    2010-01-01

    This article uses meta-analyses published in "Psychological Bulletin" from 1995 to 2005 to describe meta-analyses in psychology, including examination of statistical power, Type I errors resulting from multiple comparisons, and model choice. Retrospective power estimates indicated that univariate categorical and continuous moderators, individual…

  16. Statistical Power of Alternative Structural Models for Comparative Effectiveness Research: Advantages of Modeling Unreliability.

    PubMed

    Coman, Emil N; Iordache, Eugen; Dierker, Lisa; Fifield, Judith; Schensul, Jean J; Suggs, Suzanne; Barbour, Russell

    2014-05-01

    The advantages of modeling the unreliability of outcomes when evaluating the comparative effectiveness of health interventions is illustrated. Adding an action-research intervention component to a regular summer job program for youth was expected to help in preventing risk behaviors. A series of simple two-group alternative structural equation models are compared to test the effect of the intervention on one key attitudinal outcome in terms of model fit and statistical power with Monte Carlo simulations. Some models presuming parameters equal across the intervention and comparison groups were underpowered to detect the intervention effect, yet modeling the unreliability of the outcome measure increased their statistical power and helped in the detection of the hypothesized effect. Comparative Effectiveness Research (CER) could benefit from flexible multi-group alternative structural models organized in decision trees, and modeling unreliability of measures can be of tremendous help for both the fit of statistical models to the data and their statistical power.

  17. Comparison of Histograms for Use in Cloud Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Green, Lisa; Xu, Kuan-Man

    2005-01-01

    Cloud observation and cloud modeling data can be presented in histograms for each characteristic to be measured. Combining information from single-cloud histograms yields a summary histogram. Summary histograms can be compared to each other to reach conclusions about the behavior of an ensemble of clouds in different places at different times or about the accuracy of a particular cloud model. As in any scientific comparison, it is necessary to decide whether any apparent differences are statistically significant. The usual methods of deciding statistical significance when comparing histograms do not apply in this case because they assume independent data. Thus, a new method is necessary. The proposed method uses the Euclidean distance metric and bootstrapping to calculate the significance level.

  18. Small Sample Statistics for Incomplete Nonnormal Data: Extensions of Complete Data Formulae and a Monte Carlo Comparison

    ERIC Educational Resources Information Center

    Savalei, Victoria

    2010-01-01

    Incomplete nonnormal data are common occurrences in applied research. Although these 2 problems are often dealt with separately by methodologists, they often cooccur. Very little has been written about statistics appropriate for evaluating models with such data. This article extends several existing statistics for complete nonnormal data to…

  19. Binomial test statistics using Psi functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Kimiko o

    2007-01-01

    For the negative binomial model (probability generating function (p + 1 - pt){sup -k}) a logarithmic derivative is the Psi function difference {psi}(k + x) - {psi}(k); this and its derivatives lead to a test statistic to decide on the validity of a specified model. The test statistic uses a data base so there exists a comparison available between theory and application. Note that the test function is not dominated by outliers. Applications to (i) Fisher's tick data, (ii) accidents data, (iii) Weldon's dice data are included.

  20. 2008 GEM Modeling Challenge: Metrics Study of the Dst Index in Physics-Based Magnetosphere and Ring Current Models and in Statistical and Analytic Specifications

    NASA Technical Reports Server (NTRS)

    Rastaetter, L.; Kuznetsova, M.; Hesse, M.; Pulkkinen, A.; Glocer, A.; Yu, Y.; Meng, X.; Raeder, J.; Wiltberger, M.; Welling, D.; hide

    2011-01-01

    In this paper the metrics-based results of the Dst part of the 2008-2009 GEM Metrics Challenge are reported. The Metrics Challenge asked modelers to submit results for 4 geomagnetic storm events and 5 different types of observations that can be modeled by statistical or climatological or physics-based (e.g. MHD) models of the magnetosphere-ionosphere system. We present the results of over 25 model settings that were run at the Community Coordinated Modeling Center (CCMC) and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations we use comparisons of one-hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of one-minute model data with the one-minute Dst index calculated by the United States Geologic Survey (USGS).

  1. Statistical Evaluation of CRM-Simulated Cloud and Precipitation Structures Using Multi- sensor TRMM Measurements and Retrievals

    NASA Astrophysics Data System (ADS)

    Posselt, D.; L'Ecuyer, T.; Matsui, T.

    2009-05-01

    Cloud resolving models are typically used to examine the characteristics of clouds and precipitation and their relationship to radiation and the large-scale circulation. As such, they are not required to reproduce the exact location of each observed convective system, much less each individual cloud. Some of the most relevant information about clouds and precipitation is provided by instruments located on polar-orbiting satellite platforms, but these observations are intermittent "snapshots" in time, making assessment of model performance challenging. In contrast to direct comparison, model results can be evaluated statistically. This avoids the requirement for the model to reproduce the observed systems, while returning valuable information on the performance of the model in a climate-relevant sense. The focus of this talk is a model evaluation study, in which updates to the microphysics scheme used in a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model are evaluated using statistics of observed clouds, precipitation, and radiation. We present the results of multiday (non-equilibrium) simulations of organized deep convection using single- and double-moment versions of a the model's cloud microphysical scheme. Statistics of TRMM multi-sensor derived clouds, precipitation, and radiative fluxes are used to evaluate the GCE results, as are simulated TRMM measurements obtained using a sophisticated instrument simulator suite. We present advantages and disadvantages of performing model comparisons in retrieval and measurement space and conclude by motivating the use of data assimilation techniques for analyzing and improving model parameterizations.

  2. Right-Sizing Statistical Models for Longitudinal Data

    PubMed Central

    Wood, Phillip K.; Steinley, Douglas; Jackson, Kristina M.

    2015-01-01

    Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to “right-size” the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting overly parsimonious models to more complex better fitting alternatives, and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically under-identified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A three-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation/covariation patterns. The orthogonal, free-curve slope-intercept (FCSI) growth model is considered as a general model which includes, as special cases, many models including the Factor Mean model (FM, McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, Hierarchical Linear Models (HLM), Repeated Measures MANOVA, and the Linear Slope Intercept (LinearSI) Growth Model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparison of several candidate parametric growth and chronometric models in a Monte Carlo study. PMID:26237507

  3. Quantum probability, choice in large worlds, and the statistical structure of reality.

    PubMed

    Ross, Don; Ladyman, James

    2013-06-01

    Classical probability models of incentive response are inadequate in "large worlds," where the dimensions of relative risk and the dimensions of similarity in outcome comparisons typically differ. Quantum probability models for choice in large worlds may be motivated pragmatically - there is no third theory - or metaphysically: statistical processing in the brain adapts to the true scale-relative structure of the universe.

  4. A simple rain attenuation model for earth-space radio links operating at 10-35 GHz

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Yon, K. M.

    1986-01-01

    The simple attenuation model has been improved from an earlier version and now includes the effect of wave polarization. The model is for the prediction of rain attenuation statistics on earth-space communication links operating in the 10-35 GHz band. Simple calculations produce attenuation values as a function of average rain rate. These together with rain rate statistics (either measured or predicted) can be used to predict annual rain attenuation statistics. In this paper model predictions are compared to measured data from a data base of 62 experiments performed in the U.S., Europe, and Japan. Comparisons are also made to predictions from other models.

  5. ABrox-A user-friendly Python module for approximate Bayesian computation with a focus on model comparison.

    PubMed

    Mertens, Ulf Kai; Voss, Andreas; Radev, Stefan

    2018-01-01

    We give an overview of the basic principles of approximate Bayesian computation (ABC), a class of stochastic methods that enable flexible and likelihood-free model comparison and parameter estimation. Our new open-source software called ABrox is used to illustrate ABC for model comparison on two prominent statistical tests, the two-sample t-test and the Levene-Test. We further highlight the flexibility of ABC compared to classical Bayesian hypothesis testing by computing an approximate Bayes factor for two multinomial processing tree models. Last but not least, throughout the paper, we introduce ABrox using the accompanied graphical user interface.

  6. Data-Based Detection of Potential Terrorist Attacks: Statistical and Graphical Methods

    DTIC Science & Technology

    2010-06-01

    Naren; Vasquez-Robinet, Cecilia; Watkinson, Jonathan: "A General Probabilistic Model of the PCR Process," Applied Mathematics and Computation 182(1...September 2006. Seminar, Measuring the effect of Length biased sampling, Mathematical Sciences Section, National Security Agency, 19 September 2006...Committee on National Statistics, 9 February 2007. Invited seminar, Statistical Tests for Bullet Lead Comparisons, Department of Mathematics , Butler

  7. A Bootstrap Algorithm for Mixture Models and Interval Data in Inter-Comparisons

    DTIC Science & Technology

    2001-07-01

    parametric bootstrap. The present algorithm will be applied to a thermometric inter-comparison, where data cannot be assumed to be normally distributed. 2 Data...experimental methods, used in each laboratory) often imply that the statistical assumptions are not satisfied, as for example in several thermometric ...triangular). Indeed, in thermometric experiments these three probabilistic models can represent several common stochastic variabilities for

  8. Comparison analysis for classification algorithm in data mining and the study of model use

    NASA Astrophysics Data System (ADS)

    Chen, Junde; Zhang, Defu

    2018-04-01

    As a key technique in data mining, classification algorithm was received extensive attention. Through an experiment of classification algorithm in UCI data set, we gave a comparison analysis method for the different algorithms and the statistical test was used here. Than that, an adaptive diagnosis model for preventive electricity stealing and leakage was given as a specific case in the paper.

  9. Moving in Parallel Toward a Modern Modeling Epistemology: Bayes Factors and Frequentist Modeling Methods.

    PubMed

    Rodgers, Joseph Lee

    2016-01-01

    The Bayesian-frequentist debate typically portrays these statistical perspectives as opposing views. However, both Bayesian and frequentist statisticians have expanded their epistemological basis away from a singular focus on the null hypothesis, to a broader perspective involving the development and comparison of competing statistical/mathematical models. For frequentists, statistical developments such as structural equation modeling and multilevel modeling have facilitated this transition. For Bayesians, the Bayes factor has facilitated this transition. The Bayes factor is treated in articles within this issue of Multivariate Behavioral Research. The current presentation provides brief commentary on those articles and more extended discussion of the transition toward a modern modeling epistemology. In certain respects, Bayesians and frequentists share common goals.

  10. Statistical comparison of a hybrid approach with approximate and exact inference models for Fusion 2+

    NASA Astrophysics Data System (ADS)

    Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew

    2007-04-01

    One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.

  11. A Comparison of the Performance of Advanced Statistical Techniques for the Refinement of Day-ahead and Longer NWP-based Wind Power Forecasts

    NASA Astrophysics Data System (ADS)

    Zack, J. W.

    2015-12-01

    Predictions from Numerical Weather Prediction (NWP) models are the foundation for wind power forecasts for day-ahead and longer forecast horizons. The NWP models directly produce three-dimensional wind forecasts on their respective computational grids. These can be interpolated to the location and time of interest. However, these direct predictions typically contain significant systematic errors ("biases"). This is due to a variety of factors including the limited space-time resolution of the NWP models and shortcomings in the model's representation of physical processes. It has become common practice to attempt to improve the raw NWP forecasts by statistically adjusting them through a procedure that is widely known as Model Output Statistics (MOS). The challenge is to identify complex patterns of systematic errors and then use this knowledge to adjust the NWP predictions. The MOS-based improvements are the basis for much of the value added by commercial wind power forecast providers. There are an enormous number of statistical approaches that can be used to generate the MOS adjustments to the raw NWP forecasts. In order to obtain insight into the potential value of some of the newer and more sophisticated statistical techniques often referred to as "machine learning methods" a MOS-method comparison experiment has been performed for wind power generation facilities in 6 wind resource areas of California. The underlying NWP models that provided the raw forecasts were the two primary operational models of the US National Weather Service: the GFS and NAM models. The focus was on 1- and 2-day ahead forecasts of the hourly wind-based generation. The statistical methods evaluated included: (1) screening multiple linear regression, which served as a baseline method, (2) artificial neural networks, (3) a decision-tree approach called random forests, (4) gradient boosted regression based upon an decision-tree algorithm, (5) support vector regression and (6) analog ensemble, which is a case-matching scheme. The presentation will provide (1) an overview of each method and the experimental design, (2) performance comparisons based on standard metrics such as bias, MAE and RMSE, (3) a summary of the performance characteristics of each approach and (4) a preview of further experiments to be conducted.

  12. An Assessment of Land Surface and Lightning Characteristics Associated with Lightning-Initiated Wildfires

    NASA Technical Reports Server (NTRS)

    Coy, James; Schultz, Christopher J.; Case, Jonathan L.

    2017-01-01

    Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.

  13. Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran

    NASA Astrophysics Data System (ADS)

    Ghezelbash, Reza; Maghsoudi, Abbas

    2018-05-01

    The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C-A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene-Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.

  14. Methods of comparing associative models and an application to retrospective revaluation.

    PubMed

    Witnauer, James E; Hutchings, Ryan; Miller, Ralph R

    2017-11-01

    Contemporary theories of associative learning are increasingly complex, which necessitates the use of computational methods to reveal predictions of these models. We argue that comparisons across multiple models in terms of goodness of fit to empirical data from experiments often reveal more about the actual mechanisms of learning and behavior than do simulations of only a single model. Such comparisons are best made when the values of free parameters are discovered through some optimization procedure based on the specific data being fit (e.g., hill climbing), so that the comparisons hinge on the psychological mechanisms assumed by each model rather than being biased by using parameters that differ in quality across models with respect to the data being fit. Statistics like the Bayesian information criterion facilitate comparisons among models that have different numbers of free parameters. These issues are examined using retrospective revaluation data. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Using Artificial Neural Networks in Educational Research: Some Comparisons with Linear Statistical Models.

    ERIC Educational Resources Information Center

    Everson, Howard T.; And Others

    This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…

  16. Sampling stored product insect pests: a comparison of four statistical sampling models for probability of pest detection

    USDA-ARS?s Scientific Manuscript database

    Statistically robust sampling strategies form an integral component of grain storage and handling activities throughout the world. Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult due to species biology and behavioral characteristics. ...

  17. Three Strategies for the Critical Use of Statistical Methods in Psychological Research

    ERIC Educational Resources Information Center

    Campitelli, Guillermo; Macbeth, Guillermo; Ospina, Raydonal; Marmolejo-Ramos, Fernando

    2017-01-01

    We present three strategies to replace the null hypothesis statistical significance testing approach in psychological research: (1) visual representation of cognitive processes and predictions, (2) visual representation of data distributions and choice of the appropriate distribution for analysis, and (3) model comparison. The three strategies…

  18. A Statistical Comparison of PSC Model Simulations and POAM Observations

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Drdla, K.; Fromm, M.; Bokarius, K.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A better knowledge of PSC composition and formation mechanisms is important to better understand and predict stratospheric ozone depletion. Several past studies have attempted to compare modeling results with satellite observations. These comparisons have concentrated on case studies. In this paper we adopt a statistical approach. POAM PSC observations from several Arctic winters are categorized into Type Ia and Ib PSCs using a technique based on Strawa et al. The discrimination technique has been modified to employ the wavelengths dependence of the extinction signal at all wavelengths rather than only at 603 and 10 18 nm. Winter-long simulations for the 1999-2000 Arctic winter have been made using the IMPACT model. These simulations have been constrained by aircraft observations made during the SOLVE/THESEO 2000 campaign. A complete set of winter-long simulations was run for several different microphysical and PSC formation scenarios. The simulations give us perfect knowledge of PSC type (Ia, Ib, or II), composition, especially condensed phase HNO3 which is important for denitrification, and condensed phase H2O. Comparisons are made between the simulation and observation of PSC extinction at 1018 rim versus wavelength dependence, winter-long percentages of Ia and Ib occurrence, and temporal and altitude trends of the PSCs. These comparisons allow us to comment on how realistic some modeling scenarios are.

  19. SPSS macros to compare any two fitted values from a regression model.

    PubMed

    Weaver, Bruce; Dubois, Sacha

    2012-12-01

    In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.

  20. Model Checking Techniques for Assessing Functional Form Specifications in Censored Linear Regression Models.

    PubMed

    León, Larry F; Cai, Tianxi

    2012-04-01

    In this paper we develop model checking techniques for assessing functional form specifications of covariates in censored linear regression models. These procedures are based on a censored data analog to taking cumulative sums of "robust" residuals over the space of the covariate under investigation. These cumulative sums are formed by integrating certain Kaplan-Meier estimators and may be viewed as "robust" censored data analogs to the processes considered by Lin, Wei & Ying (2002). The null distributions of these stochastic processes can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be generated by computer simulation. Each observed process can then be graphically compared with a few realizations from the Gaussian process. We also develop formal test statistics for numerical comparison. Such comparisons enable one to assess objectively whether an apparent trend seen in a residual plot reects model misspecification or natural variation. We illustrate the methods with a well known dataset. In addition, we examine the finite sample performance of the proposed test statistics in simulation experiments. In our simulation experiments, the proposed test statistics have good power of detecting misspecification while at the same time controlling the size of the test.

  1. The statistical evaluation and comparison of ADMS-Urban model for the prediction of nitrogen dioxide with air quality monitoring network.

    PubMed

    Dėdelė, Audrius; Miškinytė, Auksė

    2015-09-01

    In many countries, road traffic is one of the main sources of air pollution associated with adverse effects on human health and environment. Nitrogen dioxide (NO2) is considered to be a measure of traffic-related air pollution, with concentrations tending to be higher near highways, along busy roads, and in the city centers, and the exceedances are mainly observed at measurement stations located close to traffic. In order to assess the air quality in the city and the air pollution impact on public health, air quality models are used. However, firstly, before the model can be used for these purposes, it is important to evaluate the accuracy of the dispersion modelling as one of the most widely used method. The monitoring and dispersion modelling are two components of air quality monitoring system (AQMS), in which statistical comparison was made in this research. The evaluation of the Atmospheric Dispersion Modelling System (ADMS-Urban) was made by comparing monthly modelled NO2 concentrations with the data of continuous air quality monitoring stations in Kaunas city. The statistical measures of model performance were calculated for annual and monthly concentrations of NO2 for each monitoring station site. The spatial analysis was made using geographic information systems (GIS). The calculation of statistical parameters indicated a good ADMS-Urban model performance for the prediction of NO2. The results of this study showed that the agreement of modelled values and observations was better for traffic monitoring stations compared to the background and residential stations.

  2. An application of seasonal ARIMA models on group commodities to forecast Philippine merchandise exports performance

    NASA Astrophysics Data System (ADS)

    Natividad, Gina May R.; Cawiding, Olive R.; Addawe, Rizavel C.

    2017-11-01

    The increase in the merchandise exports of the country offers information about the Philippines' trading role within the global economy. Merchandise exports statistics are used to monitor the country's overall production that is consumed overseas. This paper investigates the comparison between two models obtained by a) clustering the commodity groups into two based on its proportional contribution to the total exports, and b) treating only the total exports. Different seasonal autoregressive integrated moving average (SARIMA) models were then developed for the clustered commodities and for the total exports based on the monthly merchandise exports of the Philippines from 2011 to 2016. The data set used in this study was retrieved from the Philippine Statistics Authority (PSA) which is the central statistical authority in the country responsible for primary data collection. A test for significance of the difference between means at 0.05 level of significance was then performed on the forecasts produced. The result indicates that there is a significant difference between the mean of the forecasts of the two models. Moreover, upon a comparison of the root mean square error (RMSE) and mean absolute error (MAE) of the models, it was found that the models used for the clustered groups outperform the model for the total exports.

  3. Geospace environment modeling 2008--2009 challenge: Dst index

    USGS Publications Warehouse

    Rastätter, L.; Kuznetsova, M.M.; Glocer, A.; Welling, D.; Meng, X.; Raeder, J.; Wittberger, M.; Jordanova, V.K.; Yu, Y.; Zaharia, S.; Weigel, R.S.; Sazykin, S.; Boynton, R.; Wei, H.; Eccles, V.; Horton, W.; Mays, M.L.; Gannon, J.

    2013-01-01

    This paper reports the metrics-based results of the Dst index part of the 2008–2009 GEM Metrics Challenge. The 2008–2009 GEM Metrics Challenge asked modelers to submit results for four geomagnetic storm events and five different types of observations that can be modeled by statistical, climatological or physics-based models of the magnetosphere-ionosphere system. We present the results of 30 model settings that were run at the Community Coordinated Modeling Center and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations, we use comparisons of 1 hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of 1 minute model data with the 1 minute Dst index calculated by the United States Geological Survey. The latter index can be used to calculate spectral variability of model outputs in comparison to the index. We find that model rankings vary widely by skill score used. None of the models consistently perform best for all events. We find that empirical models perform well in general. Magnetohydrodynamics-based models of the global magnetosphere with inner magnetosphere physics (ring current model) included and stand-alone ring current models with properly defined boundary conditions perform well and are able to match or surpass results from empirical models. Unlike in similar studies, the statistical models used in this study found their challenge in the weakest events rather than the strongest events.

  4. Task-Driven Comparison of Topic Models.

    PubMed

    Alexander, Eric; Gleicher, Michael

    2016-01-01

    Topic modeling, a method of statistically extracting thematic content from a large collection of texts, is used for a wide variety of tasks within text analysis. Though there are a growing number of tools and techniques for exploring single models, comparisons between models are generally reduced to a small set of numerical metrics. These metrics may or may not reflect a model's performance on the analyst's intended task, and can therefore be insufficient to diagnose what causes differences between models. In this paper, we explore task-centric topic model comparison, considering how we can both provide detail for a more nuanced understanding of differences and address the wealth of tasks for which topic models are used. We derive comparison tasks from single-model uses of topic models, which predominantly fall into the categories of understanding topics, understanding similarity, and understanding change. Finally, we provide several visualization techniques that facilitate these tasks, including buddy plots, which combine color and position encodings to allow analysts to readily view changes in document similarity.

  5. A New Scoring System to Predict the Risk for High-risk Adenoma and Comparison of Existing Risk Calculators.

    PubMed

    Murchie, Brent; Tandon, Kanwarpreet; Hakim, Seifeldin; Shah, Kinchit; O'Rourke, Colin; Castro, Fernando J

    2017-04-01

    Colorectal cancer (CRC) screening guidelines likely over-generalizes CRC risk, 35% of Americans are not up to date with screening, and there is growing incidence of CRC in younger patients. We developed a practical prediction model for high-risk colon adenomas in an average-risk population, including an expanded definition of high-risk polyps (≥3 nonadvanced adenomas), exposing higher than average-risk patients. We also compared results with previously created calculators. Patients aged 40 to 59 years, undergoing first-time average-risk screening or diagnostic colonoscopies were evaluated. Risk calculators for advanced adenomas and high-risk adenomas were created based on age, body mass index, sex, race, and smoking history. Previously established calculators with similar risk factors were selected for comparison of concordance statistic (c-statistic) and external validation. A total of 5063 patients were included. Advanced adenomas, and high-risk adenomas were seen in 5.7% and 7.4% of the patient population, respectively. The c-statistic for our calculator was 0.639 for the prediction of advanced adenomas, and 0.650 for high-risk adenomas. When applied to our population, all previous models had lower c-statistic results although one performed similarly. Our model compares favorably to previously established prediction models. Age and body mass index were used as continuous variables, likely improving the c-statistic. It also reports absolute predictive probabilities of advanced and high-risk polyps, allowing for more individualized risk assessment of CRC.

  6. Comparison of dark energy models: A perspective from the latest observational data

    NASA Astrophysics Data System (ADS)

    Li, Miao; Li, Xiaodong; Zhang, Xin

    2010-09-01

    We compare some popular dark energy models under the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations and the determination of H 0 from the Hubble Space Telescope. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For other dynamical dark energy models, we find that some of them, such as the α dark energy, constant w, generalized Chaplygin gas, Chevalliear-Polarski-Linder parametrization, and holographic dark energy models, can provide good fits to the current data, and three of them, namely, the Ricci dark energy, agegraphic dark energy, and Dvali-Gabadadze-Porrati models, are clearly disfavored by the data.

  7. Manipulating measurement scales in medical statistical analysis and data mining: A review of methodologies

    PubMed Central

    Marateb, Hamid Reza; Mansourian, Marjan; Adibi, Peyman; Farina, Dario

    2014-01-01

    Background: selecting the correct statistical test and data mining method depends highly on the measurement scale of data, type of variables, and purpose of the analysis. Different measurement scales are studied in details and statistical comparison, modeling, and data mining methods are studied based upon using several medical examples. We have presented two ordinal–variables clustering examples, as more challenging variable in analysis, using Wisconsin Breast Cancer Data (WBCD). Ordinal-to-Interval scale conversion example: a breast cancer database of nine 10-level ordinal variables for 683 patients was analyzed by two ordinal-scale clustering methods. The performance of the clustering methods was assessed by comparison with the gold standard groups of malignant and benign cases that had been identified by clinical tests. Results: the sensitivity and accuracy of the two clustering methods were 98% and 96%, respectively. Their specificity was comparable. Conclusion: by using appropriate clustering algorithm based on the measurement scale of the variables in the study, high performance is granted. Moreover, descriptive and inferential statistics in addition to modeling approach must be selected based on the scale of the variables. PMID:24672565

  8. Empirical Reference Distributions for Networks of Different Size

    PubMed Central

    Smith, Anna; Calder, Catherine A.; Browning, Christopher R.

    2016-01-01

    Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although “normalized” versions of some network statistics exist, we demonstrate via simulation why direct comparison is often inappropriate. We consider normalizing network statistics relative to a simple fully parameterized reference distribution and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively comparable across different network sizes but still describe interesting features of networks, and that this can be accomplished at relatively low computational expense. Finally, we apply this methodology to a collection of ecological networks derived from the Los Angeles Family and Neighborhood Survey activity location data. PMID:27721556

  9. Statistical characteristics of trajectories of diamagnetic unicellular organisms in a magnetic field.

    PubMed

    Gorobets, Yu I; Gorobets, O Yu

    2015-01-01

    The statistical model is proposed in this paper for description of orientation of trajectories of unicellular diamagnetic organisms in a magnetic field. The statistical parameter such as the effective energy is calculated on basis of this model. The resulting effective energy is the statistical characteristics of trajectories of diamagnetic microorganisms in a magnetic field connected with their metabolism. The statistical model is applicable for the case when the energy of the thermal motion of bacteria is negligible in comparison with their energy in a magnetic field and the bacteria manifest the significant "active random movement", i.e. there is the randomizing motion of the bacteria of non thermal nature, for example, movement of bacteria by means of flagellum. The energy of the randomizing active self-motion of bacteria is characterized by the new statistical parameter for biological objects. The parameter replaces the energy of the randomizing thermal motion in calculation of the statistical distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS

    DOE PAGES

    Jozefik, Zoltan; Kerstein, Alan R.; Schmidt, Heiko; ...

    2015-06-01

    The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-mean-square (RMS) velocity, temperature, and major and minor species profiles aremore » shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. As a result, conditional statistics show signs of underignition.« less

  11. Finding Groups Using Model-Based Cluster Analysis: Heterogeneous Emotional Self-Regulatory Processes and Heavy Alcohol Use Risk

    ERIC Educational Resources Information Center

    Mun, Eun Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.

    2008-01-01

    Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of nonnested models using the Bayesian information criterion to compare multiple models and identify the…

  12. Ice Water Classification Using Statistical Distribution Based Conditional Random Fields in RADARSAT-2 Dual Polarization Imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.

    2017-09-01

    In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.

  13. Detecting Mixtures from Structural Model Differences Using Latent Variable Mixture Modeling: A Comparison of Relative Model Fit Statistics

    ERIC Educational Resources Information Center

    Henson, James M.; Reise, Steven P.; Kim, Kevin H.

    2007-01-01

    The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…

  14. A comparison of large-scale climate signals and the North American Multi-Model Ensemble (NMME) for drought prediction in China

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Chen, Nengcheng; Zhang, Xiang

    2018-02-01

    Drought is an extreme natural disaster that can lead to huge socioeconomic losses. Drought prediction ahead of months is helpful for early drought warning and preparations. In this study, we developed a statistical model, two weighted dynamic models and a statistical-dynamic (hybrid) model for 1-6 month lead drought prediction in China. Specifically, statistical component refers to climate signals weighting by support vector regression (SVR), dynamic components consist of the ensemble mean (EM) and Bayesian model averaging (BMA) of the North American Multi-Model Ensemble (NMME) climatic models, and the hybrid part denotes a combination of statistical and dynamic components by assigning weights based on their historical performances. The results indicate that the statistical and hybrid models show better rainfall predictions than NMME-EM and NMME-BMA models, which have good predictability only in southern China. In the 2011 China winter-spring drought event, the statistical model well predicted the spatial extent and severity of drought nationwide, although the severity was underestimated in the mid-lower reaches of Yangtze River (MLRYR) region. The NMME-EM and NMME-BMA models largely overestimated rainfall in northern and western China in 2011 drought. In the 2013 China summer drought, the NMME-EM model forecasted the drought extent and severity in eastern China well, while the statistical and hybrid models falsely detected negative precipitation anomaly (NPA) in some areas. Model ensembles such as multiple statistical approaches, multiple dynamic models or multiple hybrid models for drought predictions were highlighted. These conclusions may be helpful for drought prediction and early drought warnings in China.

  15. Using structural equation modeling for network meta-analysis.

    PubMed

    Tu, Yu-Kang; Wu, Yun-Chun

    2017-07-14

    Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.

  16. Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model

    NASA Astrophysics Data System (ADS)

    Al Sobhi, Mashail M.

    2015-02-01

    Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.

  17. Statistical study of air pollutant concentrations via generalized gamma distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marani, A.; Lavagnini, I.; Buttazzoni, C.

    1986-11-01

    This paper deals with modeling observed frequency distributions of air quality data measured in the area of Venice, Italy. The paper discusses the application of the generalized gamma distribution (ggd) which has not been commonly applied to air quality data notwithstanding the fact that it embodies most distribution models used for air quality analyses. The approach yields important simplifications for statistical analyses. A comparison among the ggd and other relevant models (standard gamma, Weibull, lognormal), carried out on daily sulfur dioxide concentrations in the area of Venice underlines the efficiency of ggd models in portraying experimental data.

  18. Preliminary comparative assessment of PM10 hourly measurement results from new monitoring stations type using stochastic and exploratory methodology and models

    NASA Astrophysics Data System (ADS)

    Czechowski, Piotr Oskar; Owczarek, Tomasz; Badyda, Artur; Majewski, Grzegorz; Rogulski, Mariusz; Ogrodnik, Paweł

    2018-01-01

    The paper presents selected preliminary stage key issues proposed extended equivalence measurement results assessment for new portable devices - the comparability PM10 concentration results hourly series with reference station measurement results with statistical methods. In article presented new portable meters technical aspects. The emphasis was placed on the comparability the results using the stochastic and exploratory methods methodology concept. The concept is based on notice that results series simple comparability in the time domain is insufficient. The comparison of regularity should be done in three complementary fields of statistical modeling: time, frequency and space. The proposal is based on model's results of five annual series measurement results new mobile devices and WIOS (Provincial Environmental Protection Inspectorate) reference station located in Nowy Sacz city. The obtained results indicate both the comparison methodology completeness and the high correspondence obtained new measurements results devices with reference.

  19. Comparison of thermal signatures of a mine buried in mineral and organic soils

    NASA Astrophysics Data System (ADS)

    Lamorski, K.; Pregowski, Piotr; Swiderski, Waldemar; Usowicz, B.; Walczak, R. T.

    2001-10-01

    Values of thermal signature of a mine buried in soils, which ave different properties, were compared using mathematical- statistical modeling. There was applied a model of transport phenomena in the soil, which takes into consideration water and energy transfer. The energy transport is described using Fourier's equation. Liquid phase transport of water is calculated using Richard's model of water flow in porous medium. For the comparison, there were selected two soils: mineral and organic, which differs significantly in thermal and hydrological properties. The heat capacity of soil was estimated using de Vries model. The thermal conductivity was calculated using a statistical model, which incorprates fundamental soil physical properties. The model of soil thermal conductivity was built on the base of heat resistance, two Kirchhoff's laws and polynomial distribution. Soil hydrological properties were described using Mualem-van Genuchten model. The impact of thermal properties of the medium in which a mien had been placed on its thermal signature in the conditions of heat input was presented. The dependence was stated between observed thermal signature of a mine and thermal parameters of the medium.

  20. Comparison of simulation modeling and satellite techniques for monitoring ecological processes

    NASA Technical Reports Server (NTRS)

    Box, Elgene O.

    1988-01-01

    In 1985 improvements were made in the world climatic data base for modeling and predictive mapping; in individual process models and the overall carbon-balance models; and in the interface software for mapping the simulation results. Statistical analysis of the data base was begun. In 1986 mapping was shifted to NASA-Goddard. The initial approach involving pattern comparisons was modified to a more statistical approach. A major accomplishment was the expansion and improvement of a global data base of measurements of biomass and primary production, to complement the simulation data. The main accomplishments during 1987 included: production of a master tape with all environmental and satellite data and model results for the 1600 sites; development of a complete mapping system used for the initial color maps comparing annual and monthly patterns of Normalized Difference Vegetation Index (NDVI), actual evapotranspiration, net primary productivity, gross primary productivity, and net ecosystem production; collection of more biosphere measurements for eventual improvement of the biological models; and development of some initial monthly models for primary productivity, based on satellite data.

  1. An empirical comparison of statistical tests for assessing the proportional hazards assumption of Cox's model.

    PubMed

    Ng'andu, N H

    1997-03-30

    In the analysis of survival data using the Cox proportional hazard (PH) model, it is important to verify that the explanatory variables analysed satisfy the proportional hazard assumption of the model. This paper presents results of a simulation study that compares five test statistics to check the proportional hazard assumption of Cox's model. The test statistics were evaluated under proportional hazards and the following types of departures from the proportional hazard assumption: increasing relative hazards; decreasing relative hazards; crossing hazards; diverging hazards, and non-monotonic hazards. The test statistics compared include those based on partitioning of failure time and those that do not require partitioning of failure time. The simulation results demonstrate that the time-dependent covariate test, the weighted residuals score test and the linear correlation test have equally good power for detection of non-proportionality in the varieties of non-proportional hazards studied. Using illustrative data from the literature, these test statistics performed similarly.

  2. Strengthening the Regression Discontinuity Design Using Additional Design Elements: A Within-Study Comparison

    ERIC Educational Resources Information Center

    Wing, Coady; Cook, Thomas D.

    2013-01-01

    The sharp regression discontinuity design (RDD) has three key weaknesses compared to the randomized clinical trial (RCT). It has lower statistical power, it is more dependent on statistical modeling assumptions, and its treatment effect estimates are limited to the narrow subpopulation of cases immediately around the cutoff, which is rarely of…

  3. Comparisons of Student Achievement Levels by District Performance and Poverty. ACT Research Report Series 2016-11

    ERIC Educational Resources Information Center

    Dougherty, Chrys; Shaw, Teresa

    2016-01-01

    This report looks at student achievement levels in Arkansas school districts disaggregated by district poverty and by the district's performance relative to other districts. We estimated district performance statistics by subject and grade level (4, 8, and 11-12) for longitudinal student cohorts, using statistical models that adjusted for district…

  4. Comparison of HSPF and PRMS model simulated flows using different temporal and spatial scales in the Black Hills, South Dakota

    USGS Publications Warehouse

    Chalise, D. R.; Haj, Adel E.; Fontaine, T.A.

    2018-01-01

    The hydrological simulation program Fortran (HSPF) [Hydrological Simulation Program Fortran version 12.2 (Computer software). USEPA, Washington, DC] and the precipitation runoff modeling system (PRMS) [Precipitation Runoff Modeling System version 4.0 (Computer software). USGS, Reston, VA] models are semidistributed, deterministic hydrological tools for simulating the impacts of precipitation, land use, and climate on basin hydrology and streamflow. Both models have been applied independently to many watersheds across the United States. This paper reports the statistical results assessing various temporal (daily, monthly, and annual) and spatial (small versus large watershed) scale biases in HSPF and PRMS simulations using two watersheds in the Black Hills, South Dakota. The Nash-Sutcliffe efficiency (NSE), Pearson correlation coefficient (r">rr), and coefficient of determination (R2">R2R2) statistics for the daily, monthly, and annual flows were used to evaluate the models’ performance. Results from the HSPF models showed that the HSPF consistently simulated the annual flows for both large and small basins better than the monthly and daily flows, and the simulated flows for the small watershed better than flows for the large watershed. In comparison, the PRMS model results show that the PRMS simulated the monthly flows for both the large and small watersheds better than the daily and annual flows, and the range of statistical error in the PRMS models was greater than that in the HSPF models. Moreover, it can be concluded that the statistical error in the HSPF and the PRMSdaily, monthly, and annual flow estimates for watersheds in the Black Hills was influenced by both temporal and spatial scale variability.

  5. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models.

    PubMed

    Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei

    2017-06-01

    To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (P<0.05). In addition, a comparison of the area under receiver operating characteristic curves of the two models showed a statistically significant difference (P<0.05). The RBF ANNs model is more likely to predict the occurrence of PVT induced by AP than logistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cleanroom certification model

    NASA Technical Reports Server (NTRS)

    Currit, P. A.

    1983-01-01

    The Cleanroom software development methodology is designed to take the gamble out of product releases for both suppliers and receivers of the software. The ingredients of this procedure are a life cycle of executable product increments, representative statistical testing, and a standard estimate of the MTTF (Mean Time To Failure) of the product at the time of its release. A statistical approach to software product testing using randomly selected samples of test cases is considered. A statistical model is defined for the certification process which uses the timing data recorded during test. A reasonableness argument for this model is provided that uses previously published data on software product execution. Also included is a derivation of the certification model estimators and a comparison of the proposed least squares technique with the more commonly used maximum likelihood estimators.

  7. Evaluation of different models to estimate the global solar radiation on inclined surface

    NASA Astrophysics Data System (ADS)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  8. Possible future changes in South East Australian frost frequency: an inter-comparison of statistical downscaling approaches

    NASA Astrophysics Data System (ADS)

    Crimp, Steven; Jin, Huidong; Kokic, Philip; Bakar, Shuvo; Nicholls, Neville

    2018-04-01

    Anthropogenic climate change has already been shown to effect the frequency, intensity, spatial extent, duration and seasonality of extreme climate events. Understanding these changes is an important step in determining exposure, vulnerability and focus for adaptation. In an attempt to support adaptation decision-making we have examined statistical modelling techniques to improve the representation of global climate model (GCM) derived projections of minimum temperature extremes (frosts) in Australia. We examine the spatial changes in minimum temperature extreme metrics (e.g. monthly and seasonal frost frequency etc.), for a region exhibiting the strongest station trends in Australia, and compare these changes with minimum temperature extreme metrics derived from 10 GCMs, from the Coupled Model Inter-comparison Project Phase 5 (CMIP 5) datasets, and via statistical downscaling. We compare the observed trends with those derived from the "raw" GCM minimum temperature data as well as examine whether quantile matching (QM) or spatio-temporal (spTimerQM) modelling with Quantile Matching can be used to improve the correlation between observed and simulated extreme minimum temperatures. We demonstrate, that the spTimerQM modelling approach provides correlations with observed daily minimum temperatures for the period August to November of 0.22. This represents an almost fourfold improvement over either the "raw" GCM or QM results. The spTimerQM modelling approach also improves correlations with observed monthly frost frequency statistics to 0.84 as opposed to 0.37 and 0.81 for the "raw" GCM and QM results respectively. We apply the spatio-temporal model to examine future extreme minimum temperature projections for the period 2016 to 2048. The spTimerQM modelling results suggest the persistence of current levels of frost risk out to 2030, with the evidence of continuing decadal variation.

  9. Development of a statistical model for cervical cancer cell death with irreversible electroporation in vitro.

    PubMed

    Yang, Yongji; Moser, Michael A J; Zhang, Edwin; Zhang, Wenjun; Zhang, Bing

    2018-01-01

    The aim of this study was to develop a statistical model for cell death by irreversible electroporation (IRE) and to show that the statistic model is more accurate than the electric field threshold model in the literature using cervical cancer cells in vitro. HeLa cell line was cultured and treated with different IRE protocols in order to obtain data for modeling the statistical relationship between the cell death and pulse-setting parameters. In total, 340 in vitro experiments were performed with a commercial IRE pulse system, including a pulse generator and an electric cuvette. Trypan blue staining technique was used to evaluate cell death after 4 hours of incubation following IRE treatment. Peleg-Fermi model was used in the study to build the statistical relationship using the cell viability data obtained from the in vitro experiments. A finite element model of IRE for the electric field distribution was also built. Comparison of ablation zones between the statistical model and electric threshold model (drawn from the finite element model) was used to show the accuracy of the proposed statistical model in the description of the ablation zone and its applicability in different pulse-setting parameters. The statistical models describing the relationships between HeLa cell death and pulse length and the number of pulses, respectively, were built. The values of the curve fitting parameters were obtained using the Peleg-Fermi model for the treatment of cervical cancer with IRE. The difference in the ablation zone between the statistical model and the electric threshold model was also illustrated to show the accuracy of the proposed statistical model in the representation of ablation zone in IRE. This study concluded that: (1) the proposed statistical model accurately described the ablation zone of IRE with cervical cancer cells, and was more accurate compared with the electric field model; (2) the proposed statistical model was able to estimate the value of electric field threshold for the computer simulation of IRE in the treatment of cervical cancer; and (3) the proposed statistical model was able to express the change in ablation zone with the change in pulse-setting parameters.

  10. Effects of preprocessing Landsat MSS data on derived features

    NASA Technical Reports Server (NTRS)

    Parris, T. M.; Cicone, R. C.

    1983-01-01

    Important to the use of multitemporal Landsat MSS data for earth resources monitoring, such as agricultural inventories, is the ability to minimize the effects of varying atmospheric and satellite viewing conditions, while extracting physically meaningful features from the data. In general, the approaches to the preprocessing problem have been derived from either physical or statistical models. This paper compares three proposed algorithms; XSTAR haze correction, Color Normalization, and Multiple Acquisition Mean Level Adjustment. These techniques represent physical, statistical, and hybrid physical-statistical models, respectively. The comparisons are made in the context of three feature extraction techniques; the Tasseled Cap, the Cate Color Cube. and Normalized Difference.

  11. The optimal hormonal replacement modality selection for multiple organ procurement from brain-dead organ donors

    PubMed Central

    Mi, Zhibao; Novitzky, Dimitri; Collins, Joseph F; Cooper, David KC

    2015-01-01

    The management of brain-dead organ donors is complex. The use of inotropic agents and replacement of depleted hormones (hormonal replacement therapy) is crucial for successful multiple organ procurement, yet the optimal hormonal replacement has not been identified, and the statistical adjustment to determine the best selection is not trivial. Traditional pair-wise comparisons between every pair of treatments, and multiple comparisons to all (MCA), are statistically conservative. Hsu’s multiple comparisons with the best (MCB) – adapted from the Dunnett’s multiple comparisons with control (MCC) – has been used for selecting the best treatment based on continuous variables. We selected the best hormonal replacement modality for successful multiple organ procurement using a two-step approach. First, we estimated the predicted margins by constructing generalized linear models (GLM) or generalized linear mixed models (GLMM), and then we applied the multiple comparison methods to identify the best hormonal replacement modality given that the testing of hormonal replacement modalities is independent. Based on 10-year data from the United Network for Organ Sharing (UNOS), among 16 hormonal replacement modalities, and using the 95% simultaneous confidence intervals, we found that the combination of thyroid hormone, a corticosteroid, antidiuretic hormone, and insulin was the best modality for multiple organ procurement for transplantation. PMID:25565890

  12. Reevaluation of a walleye (Sander vitreus) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; Wang, Chunfang

    2013-01-01

    Walleye (Sander vitreus) is an important sport fish throughout much of North America, and walleye populations support valuable commercial fisheries in certain lakes as well. Using a corrected algorithm for balancing the energy budget, we reevaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks each day during a 126-day experiment. Feeding rates ranged from 1.4 to 1.7 % of walleye body weight per day. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with observed monthly consumption, we concluded that the bioenergetics model estimated food consumption by walleye without any significant bias. Similarly, based on a statistical comparison of bioenergetics model predictions of weight at the end of the monthly test period with observed weight, we concluded that the bioenergetics model predicted walleye growth without any detectable bias. In addition, the bioenergetics model predictions of cumulative consumption over the 126-day experiment differed fromobserved cumulative consumption by less than 10 %. Although additional laboratory and field testing will be needed to fully evaluate model performance, based on our laboratory results, the Wisconsin bioenergetics model for walleye appears to be providing unbiased predictions of food consumption.

  13. SciSpark: Highly Interactive and Scalable Model Evaluation and Climate Metrics

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Mattmann, C. A.; Waliser, D. E.; Kim, J.; Loikith, P.; Lee, H.; McGibbney, L. J.; Whitehall, K. D.

    2014-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We are developing a lightning fast Big Data technology called SciSpark based on ApacheTM Spark. Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory computation, "spilling" to disk only as needed, and so outperforms the disk-based ApacheTM Hadoop by 100x in memory and by 10x on disk, and makes iterative algorithms feasible. SciSpark will enable scalable model evaluation by executing large-scale comparisons of A-Train satellite observations to model grids on a cluster of 100 to 1000 compute nodes. This 2nd generation capability for NASA's Regional Climate Model Evaluation System (RCMES) will compute simple climate metrics at interactive speeds, and extend to quite sophisticated iterative algorithms such as machine-learning (ML) based clustering of temperature PDFs, and even graph-based algorithms for searching for Mesocale Convective Complexes. The goals of SciSpark are to: (1) Decrease the time to compute comparison statistics and plots from minutes to seconds; (2) Allow for interactive exploration of time-series properties over seasons and years; (3) Decrease the time for satellite data ingestion into RCMES to hours; (4) Allow for Level-2 comparisons with higher-order statistics or PDF's in minutes to hours; and (5) Move RCMES into a near real time decision-making platform. We will report on: the architecture and design of SciSpark, our efforts to integrate climate science algorithms in Python and Scala, parallel ingest and partitioning (sharding) of A-Train satellite observations from HDF files and model grids from netCDF files, first parallel runs to compute comparison statistics and PDF's, and first metrics quantifying parallel speedups and memory & disk usage.

  14. Effect of completion-time windows in the analysis of health-related quality of life outcomes in cancer patients

    PubMed Central

    Ediebah, D. E.; Coens, C.; Maringwa, J. T.; Quinten, C.; Zikos, E.; Ringash, J.; King, M.; Gotay, C.; Flechtner, H.-H.; Schmucker von Koch, J.; Weis, J.; Smit, E. F.; Köhne, C.-H.; Bottomley, A.

    2013-01-01

    Background We examined if cancer patients' health-related quality of life (HRQoL) scores on the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 are affected by the specific time point, before or during treatment, at which the questionnaire is completed, and whether this could bias the overall treatment comparison analyses. Patients and methods A ‘completion-time window’ variable was created on three closed EORTC randomised control trials in lung (non-small cell lung cancer, NSCLC) and colorectal cancer (CRC) to indicate when the QLQ-30 was completed relative to chemotherapy cycle dates, defined as ‘before’, ‘on’ and ‘after’. HRQoL mean scores were calculated using a linear mixed model. Results Statistically significant differences (P < 0.05) were observed on 6 and 5 scales for ‘on’ and ‘after’ comparisons in the NSCLC and two-group CRC trial, respectively. As for the three-group CRC trial, several statistical differences were observed in the ‘before’ to ‘on’ and the ‘on’ to ‘after’ comparisons. For all three trials, including the ‘completion-time window’ variable in the model resulted in a better fit, but no substantial changes in the treatment effects were noted. Conclusions We showed that considering the exact timing of completion within specified windows resulted in statistical and potentially clinically significant differences, but it did not alter the conclusions of treatment comparison in these studies. PMID:22935549

  15. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling.

    PubMed

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant

    2016-05-15

    A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Vertical transport by convective clouds: Comparisons of three modeling approaches

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Rood, Richard B.; Mcnamara, Donna P.; Molod, Andrea M.

    1995-01-01

    A preliminary comparison of the GEOS-1 (Goddard Earth Observing System) data assimilation system convective cloud mass fluxes with fluxes from a cloud-resolving model (the Goddard Cumulus Ensemble Model, GCE) is reported. A squall line case study (10-11 June 1985 Oklahoma PRESTORM episode) is the basis of the comparison. Regional (central U. S.) monthly total convective mass flux for June 1985 from GEOS-1 compares favorably with estimates from a statistical/dynamical approach using GCE simulations and satellite-derived cloud observations. The GEOS-1 convective mass fluxes produce reasonable estimates of monthly-averaged regional convective venting of CO from the boundary layer at least in an urban-influenced continental region, suggesting that they can be used in tracer transport simulations.

  17. A Comparison of Item Fit Statistics for Mixed IRT Models

    ERIC Educational Resources Information Center

    Chon, Kyong Hee; Lee, Won-Chan; Dunbar, Stephen B.

    2010-01-01

    In this study we examined procedures for assessing model-data fit of item response theory (IRT) models for mixed format data. The model fit indices used in this study include PARSCALE's G[superscript 2], Orlando and Thissen's S-X[superscript 2] and S-G[superscript 2], and Stone's chi[superscript 2*] and G[superscript 2*]. To investigate the…

  18. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-07-25

    This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load valuesmore » to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  19. An experimental comparison of various methods of nearfield acoustic holography

    DOE PAGES

    Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.

    2017-05-19

    An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less

  20. An experimental comparison of various methods of nearfield acoustic holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.

    An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less

  1. LES-based filter-matrix lattice Boltzmann model for simulating fully developed turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Zhuo, Congshan; Zhong, Chengwen

    2016-11-01

    In this paper, a three-dimensional filter-matrix lattice Boltzmann (FMLB) model based on large eddy simulation (LES) was verified for simulating wall-bounded turbulent flows. The Vreman subgrid-scale model was employed in the present FMLB-LES framework, which had been proved to be capable of predicting turbulent near-wall region accurately. The fully developed turbulent channel flows were performed at a friction Reynolds number Reτ of 180. The turbulence statistics computed from the present FMLB-LES simulations, including mean stream velocity profile, Reynolds stress profile and root-mean-square velocity fluctuations greed well with the LES results of multiple-relaxation-time (MRT) LB model, and some discrepancies in comparison with those direct numerical simulation (DNS) data of Kim et al. was also observed due to the relatively low grid resolution. Moreover, to investigate the influence of grid resolution on the present LES simulation, a DNS simulation on a finer gird was also implemented by present FMLB-D3Q19 model. Comparisons of detailed computed various turbulence statistics with available benchmark data of DNS showed quite well agreement.

  2. Review of Nearshore Morphologic Prediction

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Dalyander, S.; Long, J.

    2014-12-01

    The evolution of the world's erodible coastlines will determine the balance between the benefits and costs associated with human and ecological utilization of shores, beaches, dunes, barrier islands, wetlands, and estuaries. So, we would like to predict coastal evolution to guide management and planning of human and ecological response to coastal changes. After decades of research investment in data collection, theoretical and statistical analysis, and model development we have a number of empirical, statistical, and deterministic models that can predict the evolution of the shoreline, beaches, dunes, and wetlands over time scales of hours to decades, and even predict the evolution of geologic strata over the course of millennia. Comparisons of predictions to data have demonstrated that these models can have meaningful predictive skill. But these comparisons also highlight the deficiencies in fundamental understanding, formulations, or data that are responsible for prediction errors and uncertainty. Here, we review a subset of predictive models of the nearshore to illustrate tradeoffs in complexity, predictive skill, and sensitivity to input data and parameterization errors. We identify where future improvement in prediction skill will result from improved theoretical understanding, and data collection, and model-data assimilation.

  3. The Earthquake‐Source Inversion Validation (SIV) Project

    USGS Publications Warehouse

    Mai, P. Martin; Schorlemmer, Danijel; Page, Morgan T.; Ampuero, Jean-Paul; Asano, Kimiyuki; Causse, Mathieu; Custodio, Susana; Fan, Wenyuan; Festa, Gaetano; Galis, Martin; Gallovic, Frantisek; Imperatori, Walter; Käser, Martin; Malytskyy, Dmytro; Okuwaki, Ryo; Pollitz, Fred; Passone, Luca; Razafindrakoto, Hoby N. T.; Sekiguchi, Haruko; Song, Seok Goo; Somala, Surendra N.; Thingbaijam, Kiran K. S.; Twardzik, Cedric; van Driel, Martin; Vyas, Jagdish C.; Wang, Rongjiang; Yagi, Yuji; Zielke, Olaf

    2016-01-01

    Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake‐source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward‐modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source‐model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake‐source imaging problem.

  4. Uncertainty in eddy covariance measurements and its application to physiological models

    Treesearch

    D.Y. Hollinger; A.D. Richardson; A.D. Richardson

    2005-01-01

    Flux data are noisy, and this uncertainty is largely due to random measurement error. Knowledge of uncertainty is essential for the statistical evaluation of modeled andmeasured fluxes, for comparison of parameters derived by fitting models to measured fluxes and in formal data-assimilation efforts. We used the difference between simultaneous measurements from two...

  5. Investigation of a Nonparametric Procedure for Assessing Goodness-of-Fit in Item Response Theory

    ERIC Educational Resources Information Center

    Wells, Craig S.; Bolt, Daniel M.

    2008-01-01

    Tests of model misfit are often performed to validate the use of a particular model in item response theory. Douglas and Cohen (2001) introduced a general nonparametric approach for detecting misfit under the two-parameter logistic model. However, the statistical properties of their approach, and empirical comparisons to other methods, have not…

  6. A Comparison of Normal and Elliptical Estimation Methods in Structural Equation Models.

    ERIC Educational Resources Information Center

    Schumacker, Randall E.; Cheevatanarak, Suchittra

    Monte Carlo simulation compared chi-square statistics, parameter estimates, and root mean square error of approximation values using normal and elliptical estimation methods. Three research conditions were imposed on the simulated data: sample size, population contamination percent, and kurtosis. A Bentler-Weeks structural model established the…

  7. INTERANNUAL VARIATION IN METEOROLOGICALLY ADJUSTED OZONE LEVELS IN THE EASTERN UNITED STATES: A COMPARISON OF TWO APPROACHED

    EPA Science Inventory

    Assessing the influence of abatement efforts and other human activities on ozone levels is complicated by the atmosphere's changeable nature. Two statistical methods, the dynamic linear model(DLM) and the generalized additive model (GAM), are used to estimate ozone trends in the...

  8. “Plateau”-related summary statistics are uninformative for comparing working memory models

    PubMed Central

    van den Berg, Ronald; Ma, Wei Ji

    2014-01-01

    Performance on visual working memory tasks decreases as more items need to be remembered. Over the past decade, a debate has unfolded between proponents of slot models and slotless models of this phenomenon. Zhang and Luck (2008) and Anderson, Vogel, and Awh (2011) noticed that as more items need to be remembered, “memory noise” seems to first increase and then reach a “stable plateau.” They argued that three summary statistics characterizing this plateau are consistent with slot models, but not with slotless models. Here, we assess the validity of their methods. We generated synthetic data both from a leading slot model and from a recent slotless model and quantified model evidence using log Bayes factors. We found that the summary statistics provided, at most, 0.15% of the expected model evidence in the raw data. In a model recovery analysis, a total of more than a million trials were required to achieve 99% correct recovery when models were compared on the basis of summary statistics, whereas fewer than 1,000 trials were sufficient when raw data were used. At realistic numbers of trials, plateau-related summary statistics are completely unreliable for model comparison. Applying the same analyses to subject data from Anderson et al. (2011), we found that the evidence in the summary statistics was, at most, 0.12% of the evidence in the raw data and far too weak to warrant any conclusions. These findings call into question claims about working memory that are based on summary statistics. PMID:24719235

  9. TOMS and SBUV Data: Comparison to 3D Chemical-Transport Model Results

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Steenrod, Steve; Frith, Stacey

    2003-01-01

    We have updated our merged ozone data (MOD) set using the TOMS data from the new version 8 algorithm. We then analyzed these data for contributions from solar cycle, volcanoes, QBO, and halogens using a standard statistical time series model. We have recently completed a hindcast run of our 3D chemical-transport model for the same years. This model uses off-line winds from the finite-volume GCM, a full stratospheric photochemistry package, and time-varying forcing due to halogens, solar uv, and volcanic aerosols. We will report on a parallel analysis of these model results using the same statistical time series technique as used for the MOD data.

  10. KECSA-Movable Type Implicit Solvation Model (KMTISM)

    PubMed Central

    2015-01-01

    Computation of the solvation free energy for chemical and biological processes has long been of significant interest. The key challenges to effective solvation modeling center on the choice of potential function and configurational sampling. Herein, an energy sampling approach termed the “Movable Type” (MT) method, and a statistical energy function for solvation modeling, “Knowledge-based and Empirical Combined Scoring Algorithm” (KECSA) are developed and utilized to create an implicit solvation model: KECSA-Movable Type Implicit Solvation Model (KMTISM) suitable for the study of chemical and biological systems. KMTISM is an implicit solvation model, but the MT method performs energy sampling at the atom pairwise level. For a specific molecular system, the MT method collects energies from prebuilt databases for the requisite atom pairs at all relevant distance ranges, which by its very construction encodes all possible molecular configurations simultaneously. Unlike traditional statistical energy functions, KECSA converts structural statistical information into categorized atom pairwise interaction energies as a function of the radial distance instead of a mean force energy function. Within the implicit solvent model approximation, aqueous solvation free energies are then obtained from the NVT ensemble partition function generated by the MT method. Validation is performed against several subsets selected from the Minnesota Solvation Database v2012. Results are compared with several solvation free energy calculation methods, including a one-to-one comparison against two commonly used classical implicit solvation models: MM-GBSA and MM-PBSA. Comparison against a quantum mechanics based polarizable continuum model is also discussed (Cramer and Truhlar’s Solvation Model 12). PMID:25691832

  11. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  12. A new statistical methodology predicting chip failure probability considering electromigration

    NASA Astrophysics Data System (ADS)

    Sun, Ted

    In this research thesis, we present a new approach to analyze chip reliability subject to electromigration (EM) whose fundamental causes and EM phenomenon happened in different materials are presented in this thesis. This new approach utilizes the statistical nature of EM failure in order to assess overall EM risk. It includes within-die temperature variations from the chip's temperature map extracted by an Electronic Design Automation (EDA) tool to estimate the failure probability of a design. Both the power estimation and thermal analysis are performed in the EDA flow. We first used the traditional EM approach to analyze the design with a single temperature across the entire chip that involves 6 metal and 5 via layers. Next, we used the same traditional approach but with a realistic temperature map. The traditional EM analysis approach and that coupled with a temperature map and the comparison between the results of considering and not considering temperature map are presented in in this research. A comparison between these two results confirms that using a temperature map yields a less pessimistic estimation of the chip's EM risk. Finally, we employed the statistical methodology we developed considering a temperature map and different use-condition voltages and frequencies to estimate the overall failure probability of the chip. The statistical model established considers the scaling work with the usage of traditional Black equation and four major conditions. The statistical result comparisons are within our expectations. The results of this statistical analysis confirm that the chip level failure probability is higher i) at higher use-condition frequencies for all use-condition voltages, and ii) when a single temperature instead of a temperature map across the chip is considered. In this thesis, I start with an overall review on current design types, common flows, and necessary verifications and reliability checking steps used in this IC design industry. Furthermore, the important concepts about "Scripting Automation" which is used in all the integration of using diversified EDA tools in this research work are also described in detail with several examples and my completed coding works are also put in the appendix for your reference. Hopefully, this construction of my thesis will give readers a thorough understanding about my research work from the automation of EDA tools to the statistical data generation, from the nature of EM to the statistical model construction, and the comparisons among the traditional EM analysis and the statistical EM analysis approaches.

  13. Surface wave effect on the upper ocean in marine forecast

    NASA Astrophysics Data System (ADS)

    Wang, Guansuo; Qiao, Fangli; Xia, Changshui; Zhao, Chang

    2015-04-01

    An Operational Coupled Forecast System for the seas off China and adjacent (OCFS-C) is constructed based on the paralleled wave-circulation coupled model, which is tested with comprehensive experiments and operational since November 1st, 2007. The main feature of the system is that the wave-induced mixing is considered in circulation model. Daily analyses and three day forecasts of three-dimensional temperature, salinity, currents and wave height are produced. Coverage is global at 1/2 degreed resolution with nested models up to 1/24 degree resolution in China Sea. Daily remote sensing sea surface temperatures (SST) are taken to relax to an analytical product as hot restarting fields for OCFS-C by the Nudging techniques. Forecasting-data inter-comparisons are performed to measure the effectiveness of OCFS-C in predicting upper-ocean quantities including SST, mixed layer depth (MLD) and subsurface temperature. The variety of performance with lead time and real-time is discussed as well using the daily statistic results for SST between forecast and satellite data. Several buoy observations and many Argo profiles are used for this validation. Except the conventional statistical metrics, non-dimension skill scores (SS) is taken to estimate forecast skill. Model SST comparisons with more one year-long SST time series from 2 buoys given a large SS value (more than 0.90). And skill in predicting the seasonal variability of SST is confirmed. Model subsurface temperature comparisons with that from a lot of Argo profiles indicated that OCFS-C has low skill in predicting subsurface temperatures between 80m and 120m. Inter-comparisons of MLD reveal that MLD from model is shallower than that from Argo profiles by about 12m. QCFS-C is successful and steady in predicting MLD. The daily statistic results for SST between 1-d, 2-d and 3-d forecast and data is adopted to describe variability of Skill in predicting SST with lead time or real time. In a word QCFS-C shows reasonable accuracy over a series of studies designed to test ability to predict upper ocean conditions.

  14. Clinical study of the Erlanger silver catheter--data management and biometry.

    PubMed

    Martus, P; Geis, C; Lugauer, S; Böswald, M; Guggenbichler, J P

    1999-01-01

    The clinical evaluation of venous catheters for catheter-induced infections must conform to a strict biometric methodology. The statistical planning of the study (target population, design, degree of blinding), data management (database design, definition of variables, coding), quality assurance (data inspection at several levels) and the biometric evaluation of the Erlanger silver catheter project are described. The three-step data flow included: 1) primary data from the hospital, 2) relational database, 3) files accessible for statistical evaluation. Two different statistical models were compared: analyzing the first catheter only of a patient in the analysis (independent data) and analyzing several catheters from the same patient (dependent data) by means of the generalized estimating equations (GEE) method. The main result of the study was based on the comparison of both statistical models.

  15. A comparison of linear and nonlinear statistical techniques in performance attribution.

    PubMed

    Chan, N H; Genovese, C R

    2001-01-01

    Performance attribution is usually conducted under the linear framework of multifactor models. Although commonly used by practitioners in finance, linear multifactor models are known to be less than satisfactory in many situations. After a brief survey of nonlinear methods, nonlinear statistical techniques are applied to performance attribution of a portfolio constructed from a fixed universe of stocks using factors derived from some commonly used cross sectional linear multifactor models. By rebalancing this portfolio monthly, the cumulative returns for procedures based on standard linear multifactor model and three nonlinear techniques-model selection, additive models, and neural networks-are calculated and compared. It is found that the first two nonlinear techniques, especially in combination, outperform the standard linear model. The results in the neural-network case are inconclusive because of the great variety of possible models. Although these methods are more complicated and may require some tuning, toolboxes are developed and suggestions on calibration are proposed. This paper demonstrates the usefulness of modern nonlinear statistical techniques in performance attribution.

  16. Development and Validation of a Statistical Shape Modeling-Based Finite Element Model of the Cervical Spine Under Low-Level Multiple Direction Loading Conditions

    PubMed Central

    Bredbenner, Todd L.; Eliason, Travis D.; Francis, W. Loren; McFarland, John M.; Merkle, Andrew C.; Nicolella, Daniel P.

    2014-01-01

    Cervical spinal injuries are a significant concern in all trauma injuries. Recent military conflicts have demonstrated the substantial risk of spinal injury for the modern warfighter. Finite element models used to investigate injury mechanisms often fail to examine the effects of variation in geometry or material properties on mechanical behavior. The goals of this study were to model geometric variation for a set of cervical spines, to extend this model to a parametric finite element model, and, as a first step, to validate the parametric model against experimental data for low-loading conditions. Individual finite element models were created using cervical spine (C3–T1) computed tomography data for five male cadavers. Statistical shape modeling (SSM) was used to generate a parametric finite element model incorporating variability of spine geometry, and soft-tissue material property variation was also included. The probabilistic loading response of the parametric model was determined under flexion-extension, axial rotation, and lateral bending and validated by comparison to experimental data. Based on qualitative and quantitative comparison of the experimental loading response and model simulations, we suggest that the model performs adequately under relatively low-level loading conditions in multiple loading directions. In conclusion, SSM methods coupled with finite element analyses within a probabilistic framework, along with the ability to statistically validate the overall model performance, provide innovative and important steps toward describing the differences in vertebral morphology, spinal curvature, and variation in material properties. We suggest that these methods, with additional investigation and validation under injurious loading conditions, will lead to understanding and mitigating the risks of injury in the spine and other musculoskeletal structures. PMID:25506051

  17. Daily pan evaporation modelling using a neuro-fuzzy computing technique

    NASA Astrophysics Data System (ADS)

    Kişi, Özgür

    2006-10-01

    SummaryEvaporation, as a major component of the hydrologic cycle, is important in water resources development and management. This paper investigates the abilities of neuro-fuzzy (NF) technique to improve the accuracy of daily evaporation estimation. Five different NF models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity are developed to evaluate degree of effect of each of these variables on evaporation. A comparison is made between the estimates provided by the NF model and the artificial neural networks (ANNs). The Stephens-Stewart (SS) method is also considered for the comparison. Various statistic measures are used to evaluate the performance of the models. Based on the comparisons, it was found that the NF computing technique could be employed successfully in modelling evaporation process from the available climatic data. The ANN also found to perform better than the SS method.

  18. Journal of Air Transportation, Volume 12, No. 1

    NASA Technical Reports Server (NTRS)

    Bowers, Brent D. (Editor); Kabashkin, Igor (Editor)

    2007-01-01

    Topics discussed include: a) Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods; b) Financial Comparisons across Different Business Models in the Canadian Airline Industry; c) Carving a Niche for the "No-Frills" Carrier, Air Arabia, in Oil-Rich Skies; d) Situational Leadership in Air Traffic Control; and e) The Very Light Jet Arrives: Stakeholders and Their Perceptions.

  19. Comparison of optimization strategy and similarity metric in atlas-to-subject registration using statistical deformation model

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Murphy, R. J.; Grupp, R. B.; Sato, Y.; Taylor, R. H.; Armand, M.

    2015-03-01

    A robust atlas-to-subject registration using a statistical deformation model (SDM) is presented. The SDM uses statistics of voxel-wise displacement learned from pre-computed deformation vectors of a training dataset. This allows an atlas instance to be directly translated into an intensity volume and compared with a patient's intensity volume. Rigid and nonrigid transformation parameters were simultaneously optimized via the Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES), with image similarity used as the objective function. The algorithm was tested on CT volumes of the pelvis from 55 female subjects. A performance comparison of the CMA-ES and Nelder-Mead downhill simplex optimization algorithms with the mutual information and normalized cross correlation similarity metrics was conducted. Simulation studies using synthetic subjects were performed, as well as leave-one-out cross validation studies. Both studies suggested that mutual information and CMA-ES achieved the best performance. The leave-one-out test demonstrated 4.13 mm error with respect to the true displacement field, and 26,102 function evaluations in 180 seconds, on average.

  20. Comparison of statistical algorithms for detecting homogeneous river reaches along a longitudinal continuum

    NASA Astrophysics Data System (ADS)

    Leviandier, Thierry; Alber, A.; Le Ber, F.; Piégay, H.

    2012-02-01

    Seven methods designed to delineate homogeneous river segments, belonging to four families, namely — tests of homogeneity, contrast enhancing, spatially constrained classification, and hidden Markov models — are compared, firstly on their principles, then on a case study, and on theoretical templates. These templates contain patterns found in the case study but not considered in the standard assumptions of statistical methods, such as gradients and curvilinear structures. The influence of data resolution, noise and weak satisfaction of the assumptions underlying the methods is investigated. The control of the number of reaches obtained in order to achieve meaningful comparisons is discussed. No method is found that outperforms all the others on all trials. However, the methods with sequential algorithms (keeping at order n + 1 all breakpoints found at order n) fail more often than those running complete optimisation at any order. The Hubert-Kehagias method and Hidden Markov Models are the most successful at identifying subpatterns encapsulated within the templates. Ergodic Hidden Markov Models are, moreover, liable to exhibit transition areas.

  1. Healthy Choices for Every Body Adult Curriculum Improves Participants' Food Resource Management Skills and Food Safety Practices.

    PubMed

    Adedokun, Omolola A; Plonski, Paula; Jenkins-Howard, Brooke; Cotterill, Debra B; Vail, Ann

    2018-06-01

    To evaluate the impact of the University of Kentucky's Healthy Choices for Every Body (HCEB) adult nutrition education curriculum on participants' food resource management (FRM) skills and food safety practices. A quasi-experimental design was employed using propensity score matching to pair 8 intervention counties with 8 comparison counties. Independent-samples t tests and ANCOVA models compared gains in FRM skills and food safety practices between the intervention and comparison groups (n = 413 and 113, respectively). Propensity score matching analysis showed a statistical balance and similarities between the comparison and intervention groups. Food resource management and food safety gain scores were statistically significantly higher for the intervention group (P < .001), with large effect sizes (d = 0.9) for both variables. The group differences persisted even after controlling for race and age in the ANCOVA models. The HCEB curriculum was effective in improving the FRM skills and food safety practices of participants. Copyright © 2018 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  2. Personality assessment and model comparison with behavioral data: A statistical framework and empirical demonstration with bonobos (Pan paniscus).

    PubMed

    Martin, Jordan S; Suarez, Scott A

    2017-08-01

    Interest in quantifying consistent among-individual variation in primate behavior, also known as personality, has grown rapidly in recent decades. Although behavioral coding is the most frequently utilized method for assessing primate personality, limitations in current statistical practice prevent researchers' from utilizing the full potential of their coding datasets. These limitations include the use of extensive data aggregation, not modeling biologically relevant sources of individual variance during repeatability estimation, not partitioning between-individual (co)variance prior to modeling personality structure, the misuse of principal component analysis, and an over-reliance upon exploratory statistical techniques to compare personality models across populations, species, and data collection methods. In this paper, we propose a statistical framework for primate personality research designed to address these limitations. Our framework synthesizes recently developed mixed-effects modeling approaches for quantifying behavioral variation with an information-theoretic model selection paradigm for confirmatory personality research. After detailing a multi-step analytic procedure for personality assessment and model comparison, we employ this framework to evaluate seven models of personality structure in zoo-housed bonobos (Pan paniscus). We find that differences between sexes, ages, zoos, time of observation, and social group composition contributed to significant behavioral variance. Independently of these factors, however, personality nonetheless accounted for a moderate to high proportion of variance in average behavior across observational periods. A personality structure derived from past rating research receives the strongest support relative to our model set. This model suggests that personality variation across the measured behavioral traits is best described by two correlated but distinct dimensions reflecting individual differences in affiliation and sociability (Agreeableness) as well as activity level, social play, and neophilia toward non-threatening stimuli (Openness). These results underscore the utility of our framework for quantifying personality in primates and facilitating greater integration between the behavioral ecological and comparative psychological approaches to personality research. © 2017 Wiley Periodicals, Inc.

  3. Multi-model comparison on the effects of climate change on tree species in the eastern U.S.: results from an enhanced niche model and process-based ecosystem and landscape models

    Treesearch

    Louis R. Iverson; Frank R. Thompson; Stephen Matthews; Matthew Peters; Anantha Prasad; William D. Dijak; Jacob Fraser; Wen J. Wang; Brice Hanberry; Hong He; Maria Janowiak; Patricia Butler; Leslie Brandt; Chris Swanston

    2016-01-01

    Context. Species distribution models (SDM) establish statistical relationships between the current distribution of species and key attributes whereas process-based models simulate ecosystem and tree species dynamics based on representations of physical and biological processes. TreeAtlas, which uses DISTRIB SDM, and Linkages and LANDIS PRO, process...

  4. Incorporating big data into treatment plan evaluation: Development of statistical DVH metrics and visualization dashboards.

    PubMed

    Mayo, Charles S; Yao, John; Eisbruch, Avraham; Balter, James M; Litzenberg, Dale W; Matuszak, Martha M; Kessler, Marc L; Weyburn, Grant; Anderson, Carlos J; Owen, Dawn; Jackson, William C; Haken, Randall Ten

    2017-01-01

    To develop statistical dose-volume histogram (DVH)-based metrics and a visualization method to quantify the comparison of treatment plans with historical experience and among different institutions. The descriptive statistical summary (ie, median, first and third quartiles, and 95% confidence intervals) of volume-normalized DVH curve sets of past experiences was visualized through the creation of statistical DVH plots. Detailed distribution parameters were calculated and stored in JavaScript Object Notation files to facilitate management, including transfer and potential multi-institutional comparisons. In the treatment plan evaluation, structure DVH curves were scored against computed statistical DVHs and weighted experience scores (WESs). Individual, clinically used, DVH-based metrics were integrated into a generalized evaluation metric (GEM) as a priority-weighted sum of normalized incomplete gamma functions. Historical treatment plans for 351 patients with head and neck cancer, 104 with prostate cancer who were treated with conventional fractionation, and 94 with liver cancer who were treated with stereotactic body radiation therapy were analyzed to demonstrate the usage of statistical DVH, WES, and GEM in a plan evaluation. A shareable dashboard plugin was created to display statistical DVHs and integrate GEM and WES scores into a clinical plan evaluation within the treatment planning system. Benchmarking with normal tissue complication probability scores was carried out to compare the behavior of GEM and WES scores. DVH curves from historical treatment plans were characterized and presented, with difficult-to-spare structures (ie, frequently compromised organs at risk) identified. Quantitative evaluations by GEM and/or WES compared favorably with the normal tissue complication probability Lyman-Kutcher-Burman model, transforming a set of discrete threshold-priority limits into a continuous model reflecting physician objectives and historical experience. Statistical DVH offers an easy-to-read, detailed, and comprehensive way to visualize the quantitative comparison with historical experiences and among institutions. WES and GEM metrics offer a flexible means of incorporating discrete threshold-prioritizations and historic context into a set of standardized scoring metrics. Together, they provide a practical approach for incorporating big data into clinical practice for treatment plan evaluations.

  5. A statistical mechanics model for free-for-all airplane passenger boarding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen, Jason H.; /Fermilab

    2008-08-01

    I discuss a model for free-for-all passenger boarding which is employed by some discount air carriers. The model is based on the principles of statistical mechanics where each seat in the aircraft has an associated energy which reflects the preferences of travelers. As each passenger enters the airplane they select their seats using Boltzmann statistics, proceed to that location, load their luggage, sit down, and the partition function seen by remaining passengers is modified to reflect this fact. I discuss the various model parameters and make qualitative comparisons of this passenger boarding model with those that involve assigned seats. Themore » model can be used to predict the probability that certain seats will be occupied at different times during the boarding process. These results might provide a useful description of this boarding method. The model is a relatively unusual application of undergraduate level physics and describes a situation familiar to many students and faculty.« less

  6. Probabilistic Evaluation of Competing Climate Models

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Chatterjee, S.; Heyman, M.; Cressie, N.

    2017-12-01

    A standard paradigm for assessing the quality of climate model simulations is to compare what these models produce for past and present time periods, to observations of the past and present. Many of these comparisons are based on simple summary statistics called metrics. Here, we propose an alternative: evaluation of competing climate models through probabilities derived from tests of the hypothesis that climate-model-simulated and observed time sequences share common climate-scale signals. The probabilities are based on the behavior of summary statistics of climate model output and observational data, over ensembles of pseudo-realizations. These are obtained by partitioning the original time sequences into signal and noise components, and using a parametric bootstrap to create pseudo-realizations of the noise sequences. The statistics we choose come from working in the space of decorrelated and dimension-reduced wavelet coefficients. We compare monthly sequences of CMIP5 model output of average global near-surface temperature anomalies to similar sequences obtained from the well-known HadCRUT4 data set, as an illustration.

  7. Bayesian inference of physiologically meaningful parameters from body sway measurements.

    PubMed

    Tietäväinen, A; Gutmann, M U; Keski-Vakkuri, E; Corander, J; Hæggström, E

    2017-06-19

    The control of the human body sway by the central nervous system, muscles, and conscious brain is of interest since body sway carries information about the physiological status of a person. Several models have been proposed to describe body sway in an upright standing position, however, due to the statistical intractability of the more realistic models, no formal parameter inference has previously been conducted and the expressive power of such models for real human subjects remains unknown. Using the latest advances in Bayesian statistical inference for intractable models, we fitted a nonlinear control model to posturographic measurements, and we showed that it can accurately predict the sway characteristics of both simulated and real subjects. Our method provides a full statistical characterization of the uncertainty related to all model parameters as quantified by posterior probability density functions, which is useful for comparisons across subjects and test settings. The ability to infer intractable control models from sensor data opens new possibilities for monitoring and predicting body status in health applications.

  8. Evaluation of airborne lidar data to predict vegetation Presence/Absence

    USGS Publications Warehouse

    Palaseanu-Lovejoy, M.; Nayegandhi, A.; Brock, J.; Woodman, R.; Wright, C.W.

    2009-01-01

    This study evaluates the capabilities of the Experimental Advanced Airborne Research Lidar (EAARL) in delineating vegetation assemblages in Jean Lafitte National Park, Louisiana. Five-meter-resolution grids of bare earth, canopy height, canopy-reflection ratio, and height of median energy were derived from EAARL data acquired in September 2006. Ground-truth data were collected along transects to assess species composition, canopy cover, and ground cover. To decide which model is more accurate, comparisons of general linear models and generalized additive models were conducted using conventional evaluation methods (i.e., sensitivity, specificity, Kappa statistics, and area under the curve) and two new indexes, net reclassification improvement and integrated discrimination improvement. Generalized additive models were superior to general linear models in modeling presence/absence in training vegetation categories, but no statistically significant differences between the two models were achieved in determining the classification accuracy at validation locations using conventional evaluation methods, although statistically significant improvements in net reclassifications were observed. ?? 2009 Coastal Education and Research Foundation.

  9. Effectiveness of feature and classifier algorithms in character recognition systems

    NASA Astrophysics Data System (ADS)

    Wilson, Charles L.

    1993-04-01

    At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.

  10. Evaluation of eight short-term long-range transport models using field data

    NASA Astrophysics Data System (ADS)

    Carhart, R. A.; Policastro, A. J.; Wastag, M.; Coke, L.

    Eight short-term long-range transport models (MESOPUFF, MESOPLUME, MSPUFF, MESOPUFF II, MTDDIS, ARRPA, RADM and RTM-II) have been tested with field data from two data bases involving tracer releases. The Oklahoma data base involved two separate experiments with measurements taken at 100 and 600 km arcs downwind of a 3-h perfluorocarbon release. The Savannah River Plant data base encompassed 15 experiments with measurements taken over 2-5 days at distances of 28-144 km downwind from a 62 m stack release of Kr-85 gas. Application of the American Meteorological Society statistics to the model/data comparisons showed that six of the eight models predicted within a factor of two of the observed concentrations for all of the following: points paired in space and time, points paired in space only, and for points unpaired in space and time. However, the ratio of the standard deviation of residuals to the average observed value showed improvement as more unpairing was done in the comparison of the models with the data. The statistical comparisons reveal a definite tendency of the models to overpredict plume concentrations. Supplemental graphical comparisons showed that plume concentration overprediction is accompanied with an underprediction of plume spreading, and that a definite time lag is often observed between the time of arrival of the observed plume and the time of arrival of the predicted plume. The causes of model/data discrepancies can be largely traced to inadequate wind field modeling that leads to an incorrect temporal and spatial positioning of the plume, and the use of the Turner [Workbook of atmospheric dispersion estimates. U.S. Dept of H.E.W. Publication 999-AP-26 (1970)] curves to downwind distances beyond which they can accurately represent the scales of atmospheric turbulence. The use of multilayer wind field models and the use of the Heffter [ J. appl. Met.4, 153-156 (1965)] formula for lateral plume dispersion close to the source appear to improve model accuracies.

  11. A Model Comparison for Count Data with a Positively Skewed Distribution with an Application to the Number of University Mathematics Courses Completed

    ERIC Educational Resources Information Center

    Liou, Pey-Yan

    2009-01-01

    The current study examines three regression models: OLS (ordinary least square) linear regression, Poisson regression, and negative binomial regression for analyzing count data. Simulation results show that the OLS regression model performed better than the others, since it did not produce more false statistically significant relationships than…

  12. Avalanches and generalized memory associativity in a network model for conscious and unconscious mental functioning

    NASA Astrophysics Data System (ADS)

    Siddiqui, Maheen; Wedemann, Roseli S.; Jensen, Henrik Jeldtoft

    2018-01-01

    We explore statistical characteristics of avalanches associated with the dynamics of a complex-network model, where two modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's ideas regarding the neuroses and that consciousness is related with symbolic and linguistic memory activity in the brain. It incorporates the Stariolo-Tsallis generalization of the Boltzmann Machine in order to model memory retrieval and associativity. In the present work, we define and measure avalanche size distributions during memory retrieval, in order to gain insight regarding basic aspects of the functioning of these complex networks. The avalanche sizes defined for our model should be related to the time consumed and also to the size of the neuronal region which is activated, during memory retrieval. This allows the qualitative comparison of the behaviour of the distribution of cluster sizes, obtained during fMRI measurements of the propagation of signals in the brain, with the distribution of avalanche sizes obtained in our simulation experiments. This comparison corroborates the indication that the Nonextensive Statistical Mechanics formalism may indeed be more well suited to model the complex networks which constitute brain and mental structure.

  13. "Plateau"-related summary statistics are uninformative for comparing working memory models.

    PubMed

    van den Berg, Ronald; Ma, Wei Ji

    2014-10-01

    Performance on visual working memory tasks decreases as more items need to be remembered. Over the past decade, a debate has unfolded between proponents of slot models and slotless models of this phenomenon (Ma, Husain, Bays (Nature Neuroscience 17, 347-356, 2014). Zhang and Luck (Nature 453, (7192), 233-235, 2008) and Anderson, Vogel, and Awh (Attention, Perception, Psychophys 74, (5), 891-910, 2011) noticed that as more items need to be remembered, "memory noise" seems to first increase and then reach a "stable plateau." They argued that three summary statistics characterizing this plateau are consistent with slot models, but not with slotless models. Here, we assess the validity of their methods. We generated synthetic data both from a leading slot model and from a recent slotless model and quantified model evidence using log Bayes factors. We found that the summary statistics provided at most 0.15 % of the expected model evidence in the raw data. In a model recovery analysis, a total of more than a million trials were required to achieve 99 % correct recovery when models were compared on the basis of summary statistics, whereas fewer than 1,000 trials were sufficient when raw data were used. Therefore, at realistic numbers of trials, plateau-related summary statistics are highly unreliable for model comparison. Applying the same analyses to subject data from Anderson et al. (Attention, Perception, Psychophys 74, (5), 891-910, 2011), we found that the evidence in the summary statistics was at most 0.12 % of the evidence in the raw data and far too weak to warrant any conclusions. The evidence in the raw data, in fact, strongly favored the slotless model. These findings call into question claims about working memory that are based on summary statistics.

  14. A Comparison of Latent Growth Models for Constructs Measured by Multiple Items

    ERIC Educational Resources Information Center

    Leite, Walter L.

    2007-01-01

    Univariate latent growth modeling (LGM) of composites of multiple items (e.g., item means or sums) has been frequently used to analyze the growth of latent constructs. This study evaluated whether LGM of composites yields unbiased parameter estimates, standard errors, chi-square statistics, and adequate fit indexes. Furthermore, LGM was compared…

  15. A Comparison of Conventional Linear Regression Methods and Neural Networks for Forecasting Educational Spending.

    ERIC Educational Resources Information Center

    Baker, Bruce D.; Richards, Craig E.

    1999-01-01

    Applies neural network methods for forecasting 1991-95 per-pupil expenditures in U.S. public elementary and secondary schools. Forecasting models included the National Center for Education Statistics' multivariate regression model and three neural architectures. Regarding prediction accuracy, neural network results were comparable or superior to…

  16. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    ERIC Educational Resources Information Center

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  17. Percent Effort vs. Fee-for-Service: A Comparison of Models for Statistical Collaboration

    ERIC Educational Resources Information Center

    Ittenbach, Richard F.; DeAngelis, Francis W.

    2012-01-01

    Many statisticians are uncomfortable with discussions about the financial implications of their work. Those who are comfortable may not fully understand the policies and procedures underlying the financial operations of the department. The purpose of the present paper is twofold: first, to describe two predominant models of compensation used by…

  18. Data Assimilation to Extract Soil Moisture Information From SMAP Observations

    NASA Technical Reports Server (NTRS)

    Kolassa, J.; Reichle, R. H.; Liu, Q.; Alemohammad, S. H.; Gentine, P.

    2017-01-01

    Statistical techniques permit the retrieval of soil moisture estimates in a model climatology while retaining the spatial and temporal signatures of the satellite observations. As a consequence, they can be used to reduce the need for localized bias correction techniques typically implemented in data assimilation (DA) systems that tend to remove some of the independent information provided by satellite observations. Here, we use a statistical neural network (NN) algorithm to retrieve SMAP (Soil Moisture Active Passive) surface soil moisture estimates in the climatology of the NASA Catchment land surface model. Assimilating these estimates without additional bias correction is found to significantly reduce the model error and increase the temporal correlation against SMAP CalVal in situ observations over the contiguous United States. A comparison with assimilation experiments using traditional bias correction techniques shows that the NN approach better retains the independent information provided by the SMAP observations and thus leads to larger model skill improvements during the assimilation. A comparison with the SMAP Level 4 product shows that the NN approach is able to provide comparable skill improvements and thus represents a viable assimilation approach.

  19. Bias and inference from misspecified mixed-effect models in stepped wedge trial analysis.

    PubMed

    Thompson, Jennifer A; Fielding, Katherine L; Davey, Calum; Aiken, Alexander M; Hargreaves, James R; Hayes, Richard J

    2017-10-15

    Many stepped wedge trials (SWTs) are analysed by using a mixed-effect model with a random intercept and fixed effects for the intervention and time periods (referred to here as the standard model). However, it is not known whether this model is robust to misspecification. We simulated SWTs with three groups of clusters and two time periods; one group received the intervention during the first period and two groups in the second period. We simulated period and intervention effects that were either common-to-all or varied-between clusters. Data were analysed with the standard model or with additional random effects for period effect or intervention effect. In a second simulation study, we explored the weight given to within-cluster comparisons by simulating a larger intervention effect in the group of the trial that experienced both the control and intervention conditions and applying the three analysis models described previously. Across 500 simulations, we computed bias and confidence interval coverage of the estimated intervention effect. We found up to 50% bias in intervention effect estimates when period or intervention effects varied between clusters and were treated as fixed effects in the analysis. All misspecified models showed undercoverage of 95% confidence intervals, particularly the standard model. A large weight was given to within-cluster comparisons in the standard model. In the SWTs simulated here, mixed-effect models were highly sensitive to departures from the model assumptions, which can be explained by the high dependence on within-cluster comparisons. Trialists should consider including a random effect for time period in their SWT analysis model. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  20. Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen.

    PubMed

    Tian, Yuzhen; Guo, Jin; Wang, Rui; Wang, Tingfeng

    2011-09-12

    In order to research the statistical properties of Gaussian beam propagation through an arbitrary thickness random phase screen for adaptive optics and laser communication application in the laboratory, we establish mathematic models of statistical quantities, which are based on the Rytov method and the thin phase screen model, involved in the propagation process. And the analytic results are developed for an arbitrary thickness phase screen based on the Kolmogorov power spectrum. The comparison between the arbitrary thickness phase screen and the thin phase screen shows that it is more suitable for our results to describe the generalized case, especially the scintillation index.

  1. Forecasting runout of rock and debris avalanches

    USGS Publications Warehouse

    Iverson, Richard M.; Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L.

    2006-01-01

    Physically based mathematical models and statistically based empirical equations each may provide useful means of forecasting runout of rock and debris avalanches. This paper compares the foundations, strengths, and limitations of a physically based model and a statistically based forecasting method, both of which were developed to predict runout across three-dimensional topography. The chief advantage of the physically based model results from its ties to physical conservation laws and well-tested axioms of soil and rock mechanics, such as the Coulomb friction rule and effective-stress principle. The output of this model provides detailed information about the dynamics of avalanche runout, at the expense of high demands for accurate input data, numerical computation, and experimental testing. In comparison, the statistical method requires relatively modest computation and no input data except identification of prospective avalanche source areas and a range of postulated avalanche volumes. Like the physically based model, the statistical method yields maps of predicted runout, but it provides no information on runout dynamics. Although the two methods differ significantly in their structure and objectives, insights gained from one method can aid refinement of the other.

  2. Correction of defective pixels for medical and space imagers based on Ising Theory

    NASA Astrophysics Data System (ADS)

    Cohen, Eliahu; Shnitser, Moriel; Avraham, Tsvika; Hadar, Ofer

    2014-09-01

    We propose novel models for image restoration based on statistical physics. We investigate the affinity between these fields and describe a framework from which interesting denoising algorithms can be derived: Ising-like models and simulated annealing techniques. When combined with known predictors such as Median and LOCO-I, these models become even more effective. In order to further examine the proposed models we apply them to two important problems: (i) Digital Cameras in space damaged from cosmic radiation. (ii) Ultrasonic medical devices damaged from speckle noise. The results, as well as benchmark and comparisons, suggest in most of the cases a significant gain in PSNR and SSIM in comparison to other filters.

  3. An Empirical Comparison of Selected Two-Sample Hypothesis Testing Procedures Which Are Locally Most Powerful Under Certain Conditions.

    ERIC Educational Resources Information Center

    Hoover, H. D.; Plake, Barbara

    The relative power of the Mann-Whitney statistic, the t-statistic, the median test, a test based on exceedances (A,B), and two special cases of (A,B) the Tukey quick test and the revised Tukey quick test, was investigated via a Monte Carlo experiment. These procedures were compared across four population probability models: uniform, beta, normal,…

  4. Euler equation existence, non-uniqueness and mesh converged statistics

    PubMed Central

    Glimm, James; Sharp, David H.; Lim, Hyunkyung; Kaufman, Ryan; Hu, Wenlin

    2015-01-01

    We review existence and non-uniqueness results for the Euler equation of fluid flow. These results are placed in the context of physical models and their solutions. Non-uniqueness is in direct conflict with the purpose of practical simulations, so that a mitigating strategy, outlined here, is important. We illustrate these issues in an examination of mesh converged turbulent statistics, with comparison to laboratory experiments. PMID:26261361

  5. Computational Software to Fit Seismic Data Using Epidemic-Type Aftershock Sequence Models and Modeling Performance Comparisons

    NASA Astrophysics Data System (ADS)

    Chu, A.

    2016-12-01

    Modern earthquake catalogs are often analyzed using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). My work implements three of the homogeneous ETAS models described in Ogata (1998). With a model's log-likelihood function, my software finds the Maximum-Likelihood Estimates (MLEs) of the model's parameters to estimate the homogeneous background rate and the temporal and spatial parameters that govern triggering effects. EM-algorithm is employed for its advantages of stability and robustness (Veen and Schoenberg, 2008). My work also presents comparisons among the three models in robustness, convergence speed, and implementations from theory to computing practice. Up-to-date regional seismic data of seismic active areas such as Southern California and Japan are used to demonstrate the comparisons. Data analysis has been done using computer languages Java and R. Java has the advantages of being strong-typed and easiness of controlling memory resources, while R has the advantages of having numerous available functions in statistical computing. Comparisons are also made between the two programming languages in convergence and stability, computational speed, and easiness of implementation. Issues that may affect convergence such as spatial shapes are discussed.

  6. A Comparative Evaluation of Mixed Dentition Analysis on Reliability of Cone Beam Computed Tomography Image Compared to Plaster Model.

    PubMed

    Gowd, Snigdha; Shankar, T; Dash, Samarendra; Sahoo, Nivedita; Chatterjee, Suravi; Mohanty, Pritam

    2017-01-01

    The aim of the study was to evaluate the reliability of cone beam computed tomography (CBCT) obtained image over plaster model for the assessment of mixed dentition analysis. Thirty CBCT-derived images and thirty plaster models were derived from the dental archives, and Moyer's and Tanaka-Johnston analyses were performed. The data obtained were interpreted and analyzed statistically using SPSS 10.0/PC (SPSS Inc., Chicago, IL, USA). Descriptive and analytical analysis along with Student's t -test was performed to qualitatively evaluate the data and P < 0.05 was considered statistically significant. Statistically, significant results were obtained on data comparison between CBCT-derived images and plaster model; the mean for Moyer's analysis in the left and right lower arch for CBCT and plaster model was 21.2 mm, 21.1 mm and 22.5 mm, 22.5 mm, respectively. CBCT-derived images were less reliable as compared to data obtained directly from plaster model for mixed dentition analysis.

  7. Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study.

    PubMed

    MacLean, Adam L; Harrington, Heather A; Stumpf, Michael P H; Byrne, Helen M

    2016-01-01

    The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.

  8. Statistical Comparisons of watershed scale response to climate change in selected basins across the United States

    USGS Publications Warehouse

    Risley, John; Moradkhani, Hamid; Hay, Lauren E.; Markstrom, Steve

    2011-01-01

    In an earlier global climate-change study, air temperature and precipitation data for the entire twenty-first century simulated from five general circulation models were used as input to precalibrated watershed models for 14 selected basins across the United States. Simulated daily streamflow and energy output from the watershed models were used to compute a range of statistics. With a side-by-side comparison of the statistical analyses for the 14 basins, regional climatic and hydrologic trends over the twenty-first century could be qualitatively identified. Low-flow statistics (95% exceedance, 7-day mean annual minimum, and summer mean monthly streamflow) decreased for almost all basins. Annual maximum daily streamflow also decreased in all the basins, except for all four basins in California and the Pacific Northwest. An analysis of the supply of available energy and water for the basins indicated that ratios of evaporation to precipitation and potential evapotranspiration to precipitation for most of the basins will increase. Probability density functions (PDFs) were developed to assess the uncertainty and multimodality in the impact of climate change on mean annual streamflow variability. Kolmogorov?Smirnov tests showed significant differences between the beginning and ending twenty-first-century PDFs for most of the basins, with the exception of four basins that are located in the western United States. Almost none of the basin PDFs were normally distributed, and two basins in the upper Midwest had PDFs that were extremely dispersed and skewed.

  9. Dissolution comparisons using a Multivariate Statistical Distance (MSD) test and a comparison of various approaches for calculating the measurements of dissolution profile comparison.

    PubMed

    Cardot, J-M; Roudier, B; Schütz, H

    2017-07-01

    The f 2 test is generally used for comparing dissolution profiles. In cases of high variability, the f 2 test is not applicable, and the Multivariate Statistical Distance (MSD) test is frequently proposed as an alternative by the FDA and EMA. The guidelines provide only general recommendations. MSD tests can be performed either on raw data with or without time as a variable or on parameters of models. In addition, data can be limited-as in the case of the f 2 test-to dissolutions of up to 85% or to all available data. In the context of the present paper, the recommended calculation included all raw dissolution data up to the first point greater than 85% as a variable-without the various times as parameters. The proposed MSD overcomes several drawbacks found in other methods.

  10. Comparisons of Three-Dimensional Variational Data Assimilation and Model Output Statistics in Improving Atmospheric Chemistry Forecasts

    NASA Astrophysics Data System (ADS)

    Ma, Chaoqun; Wang, Tijian; Zang, Zengliang; Li, Zhijin

    2018-07-01

    Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation (DA) and model output statistics (MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here, a one-month air quality forecast with the Weather Research and Forecasting-Chemistry (WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational (3DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3DVar DA in improving the operational forecasting ability of WRF-Chem.

  11. Computational statistics using the Bayesian Inference Engine

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.

    2013-09-01

    This paper introduces the Bayesian Inference Engine (BIE), a general parallel, optimized software package for parameter inference and model selection. This package is motivated by the analysis needs of modern astronomical surveys and the need to organize and reuse expensive derived data. The BIE is the first platform for computational statistics designed explicitly to enable Bayesian update and model comparison for astronomical problems. Bayesian update is based on the representation of high-dimensional posterior distributions using metric-ball-tree based kernel density estimation. Among its algorithmic offerings, the BIE emphasizes hybrid tempered Markov chain Monte Carlo schemes that robustly sample multimodal posterior distributions in high-dimensional parameter spaces. Moreover, the BIE implements a full persistence or serialization system that stores the full byte-level image of the running inference and previously characterized posterior distributions for later use. Two new algorithms to compute the marginal likelihood from the posterior distribution, developed for and implemented in the BIE, enable model comparison for complex models and data sets. Finally, the BIE was designed to be a collaborative platform for applying Bayesian methodology to astronomy. It includes an extensible object-oriented and easily extended framework that implements every aspect of the Bayesian inference. By providing a variety of statistical algorithms for all phases of the inference problem, a scientist may explore a variety of approaches with a single model and data implementation. Additional technical details and download details are available from http://www.astro.umass.edu/bie. The BIE is distributed under the GNU General Public License.

  12. A Comparison of Four Estimators of a Population Measure of Model Fit in Covariance Structure Analysis

    ERIC Educational Resources Information Center

    Zhang, Wei

    2008-01-01

    A major issue in the utilization of covariance structure analysis is model fit evaluation. Recent years have witnessed increasing interest in various test statistics and so-called fit indexes, most of which are actually based on or closely related to F[subscript 0], a measure of model fit in the population. This study aims to provide a systematic…

  13. Statistical Design Model (SDM) of satellite thermal control subsystem

    NASA Astrophysics Data System (ADS)

    Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi

    2016-07-01

    Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware

  14. A comparison of different statistical methods analyzing hypoglycemia data using bootstrap simulations.

    PubMed

    Jiang, Honghua; Ni, Xiao; Huster, William; Heilmann, Cory

    2015-01-01

    Hypoglycemia has long been recognized as a major barrier to achieving normoglycemia with intensive diabetic therapies. It is a common safety concern for the diabetes patients. Therefore, it is important to apply appropriate statistical methods when analyzing hypoglycemia data. Here, we carried out bootstrap simulations to investigate the performance of the four commonly used statistical models (Poisson, negative binomial, analysis of covariance [ANCOVA], and rank ANCOVA) based on the data from a diabetes clinical trial. Zero-inflated Poisson (ZIP) model and zero-inflated negative binomial (ZINB) model were also evaluated. Simulation results showed that Poisson model inflated type I error, while negative binomial model was overly conservative. However, after adjusting for dispersion, both Poisson and negative binomial models yielded slightly inflated type I errors, which were close to the nominal level and reasonable power. Reasonable control of type I error was associated with ANCOVA model. Rank ANCOVA model was associated with the greatest power and with reasonable control of type I error. Inflated type I error was observed with ZIP and ZINB models.

  15. Comparisons of modeled height predictions to ocular height estimates

    Treesearch

    W.A. Bechtold; S.J. Zarnoch; W.G. Burkman

    1998-01-01

    Equations used by USDA Forest Service Forest Inventory and Analysis projects to predict individual tree heights on the basis of species and d.b.h. were improved by the addition of mean overstory height. However, ocular estimates of total height by field crews were more accurate than the statistically improved models, especially for hardwood species. Height predictions...

  16. Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications

    ERIC Educational Resources Information Center

    Pabon, Peter; Ternstrom, Sten; Lamarche, Anick

    2011-01-01

    Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…

  17. Alpha, delta and theta rhythms in a neural net model. Comparison with MEG data.

    PubMed

    Kotini, A; Anninos, P

    2016-01-07

    The aim of this study is to provide information regarding the comparison of a neural model to MEG measurements. Our study population consisted of 10 epileptic patients and 10 normal subjects. The epileptic patients had high MEG amplitudes characterized with θ (4-7 Hz) or δ (2-3 Hz) rhythms and absence of α-rhythm (8-13 Hz). The statistical analysis of such activities corresponded to Poisson distribution. Conversely, the MEG from normal subjects had low amplitudes, higher frequencies and presence of α-rhythm (8-13 Hz). Such activities were not synchronized and their distributions were Gauss. These findings were in agreement with our theoretical neural model. The comparison of the neural network with MEG data provides information about the status of brain function in epileptic and normal states. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A hybrid model for traffic flow and crowd dynamics with random individual properties.

    PubMed

    Schleper, Veronika

    2015-04-01

    Based on an established mathematical model for the behavior of large crowds, a new model is derived that is able to take into account the statistical variation of individual maximum walking speeds. The same model is shown to be valid also in traffic flow situations, where for instance the statistical variation of preferred maximum speeds can be considered. The model involves explicit bounds on the state variables, such that a special Riemann solver is derived that is proved to respect the state constraints. Some care is devoted to a valid construction of random initial data, necessary for the use of the new model. The article also includes a numerical method that is shown to respect the bounds on the state variables and illustrative numerical examples, explaining the properties of the new model in comparison with established models.

  19. High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Liang; Cheng, Ching-Hsue; Teoh, Hia-Jong

    2008-02-01

    Stock investors usually make their short-term investment decisions according to recent stock information such as the late market news, technical analysis reports, and price fluctuations. To reflect these short-term factors which impact stock price, this paper proposes a comprehensive fuzzy time-series, which factors linear relationships between recent periods of stock prices and fuzzy logical relationships (nonlinear relationships) mined from time-series into forecasting processes. In empirical analysis, the TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) and HSI (Heng Seng Index) are employed as experimental datasets, and four recent fuzzy time-series models, Chen’s (1996), Yu’s (2005), Cheng’s (2006) and Chen’s (2007), are used as comparison models. Besides, to compare with conventional statistic method, the method of least squares is utilized to estimate the auto-regressive models of the testing periods within the databases. From analysis results, the performance comparisons indicate that the multi-period adaptation model, proposed in this paper, can effectively improve the forecasting performance of conventional fuzzy time-series models which only factor fuzzy logical relationships in forecasting processes. From the empirical study, the traditional statistic method and the proposed model both reveal that stock price patterns in the Taiwan stock and Hong Kong stock markets are short-term.

  20. Relaxing the closure assumption in single-season occupancy models: staggered arrival and departure times

    USGS Publications Warehouse

    Kendall, William L.; Hines, James E.; Nichols, James D.; Grant, Evan H. Campbell

    2013-01-01

    Occupancy statistical models that account for imperfect detection have proved very useful in several areas of ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which it is assumed the species is either absent or present and available for detection while each sample is taken. However, for some species, individuals are only present or available for detection seasonally. We present a statistical model that relaxes the closure assumption within a season by permitting staggered entry and exit times for the species of interest at each site. Based on simulation, our open model eliminates bias in occupancy estimators and in some cases increases precision. The power to detect the violation of closure is high if detection probability is reasonably high. In addition to providing more robust estimation of occupancy, this model permits comparison of phenology across sites, species, or years, by modeling variation in arrival or departure probabilities. In a comparison of four species of amphibians in Maryland we found that two toad species arrived at breeding sites later in the season than a salamander and frog species, and departed from sites earlier.

  1. Integration of Marine Mammal Movement and Behavior into the Effects of Sound on the Marine Environment

    DTIC Science & Technology

    2011-09-30

    capability to emulate the dive and movement behavior of marine mammals provides a significant advantage to modeling environmental impact than do historic...approaches used in Navy environmental assessments (EA) and impact statements (EIS). Many previous methods have been statistical or pseudo-statistical...Siderius. 2011. Comparison of methods used for computing the impact of sound on the marine environment, Marine Environmental Research, 71:342-350. [published

  2. Structure of wind-shear turbulence

    NASA Technical Reports Server (NTRS)

    Trevino, G.; Laituri, T. R.

    1989-01-01

    The statistical characteristics of wind shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of turbulence scales in wind shear is addressed from the perspective of power spectral density.

  3. A Statistical Examination of Magnetic Field Model Accuracy for Mapping Geosynchronous Solar Energetic Particle Observations to Lower Earth Orbits

    NASA Astrophysics Data System (ADS)

    Young, S. L.; Kress, B. T.; Rodriguez, J. V.; McCollough, J. P.

    2013-12-01

    Operational specifications of space environmental hazards can be an important input used by decision makers. Ideally the specification would come from on-board sensors, but for satellites where that capability is not available another option is to map data from remote observations to the location of the satellite. This requires a model of the physical environment and an understanding of its accuracy for mapping applications. We present a statistical comparison between magnetic field model mappings of solar energetic particle observations made by NOAA's Geostationary Operational Environmental Satellites (GOES) to the location of the Combined Release and Radiation Effects Satellite (CRRES). Because CRRES followed a geosynchronous transfer orbit which precessed in local time this allows us to examine the model accuracy between LEO and GEO orbits across a range of local times. We examine the accuracy of multiple magnetic field models using a variety of statistics and examine their utility for operational purposes.

  4. Identifying the Source of Misfit in Item Response Theory Models.

    PubMed

    Liu, Yang; Maydeu-Olivares, Alberto

    2014-01-01

    When an item response theory model fails to fit adequately, the items for which the model provides a good fit and those for which it does not must be determined. To this end, we compare the performance of several fit statistics for item pairs with known asymptotic distributions under maximum likelihood estimation of the item parameters: (a) a mean and variance adjustment to bivariate Pearson's X(2), (b) a bivariate subtable analog to Reiser's (1996) overall goodness-of-fit test, (c) a z statistic for the bivariate residual cross product, and (d) Maydeu-Olivares and Joe's (2006) M2 statistic applied to bivariate subtables. The unadjusted Pearson's X(2) with heuristically determined degrees of freedom is also included in the comparison. For binary and ordinal data, our simulation results suggest that the z statistic has the best Type I error and power behavior among all the statistics under investigation when the observed information matrix is used in its computation. However, if one has to use the cross-product information, the mean and variance adjusted X(2) is recommended. We illustrate the use of pairwise fit statistics in 2 real-data examples and discuss possible extensions of the current research in various directions.

  5. Comparison of measurement methods with a mixed effects procedure accounting for replicated evaluations (COM3PARE): method comparison algorithm implementation for head and neck IGRT positional verification.

    PubMed

    Roy, Anuradha; Fuller, Clifton D; Rosenthal, David I; Thomas, Charles R

    2015-08-28

    Comparison of imaging measurement devices in the absence of a gold-standard comparator remains a vexing problem; especially in scenarios where multiple, non-paired, replicated measurements occur, as in image-guided radiotherapy (IGRT). As the number of commercially available IGRT presents a challenge to determine whether different IGRT methods may be used interchangeably, an unmet need conceptually parsimonious and statistically robust method to evaluate the agreement between two methods with replicated observations. Consequently, we sought to determine, using an previously reported head and neck positional verification dataset, the feasibility and utility of a Comparison of Measurement Methods with the Mixed Effects Procedure Accounting for Replicated Evaluations (COM3PARE), a unified conceptual schema and analytic algorithm based upon Roy's linear mixed effects (LME) model with Kronecker product covariance structure in a doubly multivariate set-up, for IGRT method comparison. An anonymized dataset consisting of 100 paired coordinate (X/ measurements from a sequential series of head and neck cancer patients imaged near-simultaneously with cone beam CT (CBCT) and kilovoltage X-ray (KVX) imaging was used for model implementation. Software-suggested CBCT and KVX shifts for the lateral (X), vertical (Y) and longitudinal (Z) dimensions were evaluated for bias, inter-method (between-subject variation), intra-method (within-subject variation), and overall agreement using with a script implementing COM3PARE with the MIXED procedure of the statistical software package SAS (SAS Institute, Cary, NC, USA). COM3PARE showed statistically significant bias agreement and difference in inter-method between CBCT and KVX was observed in the Z-axis (both p - value<0.01). Intra-method and overall agreement differences were noted as statistically significant for both the X- and Z-axes (all p - value<0.01). Using pre-specified criteria, based on intra-method agreement, CBCT was deemed preferable for X-axis positional verification, with KVX preferred for superoinferior alignment. The COM3PARE methodology was validated as feasible and useful in this pilot head and neck cancer positional verification dataset. COM3PARE represents a flexible and robust standardized analytic methodology for IGRT comparison. The implemented SAS script is included to encourage other groups to implement COM3PARE in other anatomic sites or IGRT platforms.

  6. A statistical model of brittle fracture by transgranular cleavage

    NASA Astrophysics Data System (ADS)

    Lin, Tsann; Evans, A. G.; Ritchie, R. O.

    A MODEL for brittle fracture by transgranular cleavage cracking is presented based on the application of weakest link statistics to the critical microstructural fracture mechanisms. The model permits prediction of the macroscopic fracture toughness, KI c, in single phase microstructures containing a known distribution of particles, and defines the critical distance from the crack tip at which the initial cracking event is most probable. The model is developed for unstable fracture ahead of a sharp crack considering both linear elastic and nonlinear elastic ("elastic/plastic") crack tip stress fields. Predictions are evaluated by comparison with experimental results on the low temperature flow and fracture behavior of a low carbon mild steel with a simple ferrite/grain boundary carbide microstructure.

  7. Millimeter wave attenuation prediction using a piecewise uniform rain rate model

    NASA Technical Reports Server (NTRS)

    Persinger, R. R.; Stutzman, W. L.; Bostian, C. W.; Castle, R. E., Jr.

    1980-01-01

    A piecewise uniform rain rate distribution model is introduced as a quasi-physical model of real rain along earth-space millimeter wave propagation paths. It permits calculation of the total attenuation from specific attenuation in a simple fashion. The model predications are verified by comparison with direct attenuation measurements for several frequencies, elevation angles, and locations. Also, coupled with the Rice-Holmberg rain rate model, attenuation statistics are predicated from rainfall accumulation data.

  8. Comparison of potential fecundity models for walleye pollock Gadus chalcogrammus in the Pacific waters off Hokkaido, Japan.

    PubMed

    Tanaka, H; Hamatsu, T; Mori, K

    2017-01-01

    Potential fecundity models of walleye or Alaska pollock Gadus chalcogrammus in the Pacific waters off Hokkaido, Japan, were developed. They were compared using a generalized linear model with using either standard body length (L S ) or total body mass (M T ) as a main covariate along with Fulton's condition factor (K) and mean diameter of oocytes (D O ) as additional potential covariates to account for maternal conditions and maturity stage. The results of model selection showed that M T was a better single predictor of potential fecundity (F P ) than L S . The biological importance of K on F P was obscure, because it was statistically significant when used in the predictor with L S (i.e. length-based model), but not significant when used with M T (i.e. mass-based model). Meanwhile, D O was statistically significant in both length and mass-based models, suggesting the importance of downregulation on the number of oocytes with advancing maturation. Among all candidate models, the model with M T and D O in the predictor had the lowest Akaike's information criterion value, suggesting its better predictive power. These newly developed models will improve future comparisons of the potential fecundity within and among stocks by excluding potential biases other than body size. © 2016 The Fisheries Society of the British Isles.

  9. [Establishment of diagnostic model to monitor minimal residual disease of acute promyelocytic leukemia by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry].

    PubMed

    Zhang, Lin-lin; Xu, Zhi-fang; Tan, Yan-hong; Chen, Xiu-hua; Xu, Ai-ning; Ren, Fang-gang; Wang, Hong-wei

    2013-01-01

    To screen the potential protein biomarkers in minimal residual disease (MRD) of the acute promyelocytic leukemia (APL) by comparison of differentially expressed serum protein between APL patients at diagnosis and after complete remission (CR) and healthy controls, and to establish and verify a diagnostic model. Serum proteins from 36 cases of primary APL, 29 cases of APL during complete remission and 32 healthy controls were purified by magnetic beads and then analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The spectra were analyzed statistically using FlexAnalysis(TM) and ClinProt(TM) software. Two prediction model of primary APL/healthy control, primary APL/APL CR were developed. Thirty four statistically significant peptide peaks were obtained with the m/z value ranging from 1000 to 10 000 (P < 0.001) in primary APL/healthy control model. Seven statistically significant peptide peaks were obtained in primary APL/APL CR model (P < 0.001). Comparison of the protein profiles between the two models, three peptides with m/z 4642, 7764 and 9289 were considered as the protein biomarker of APL MRD. A diagnostic pattern for APL CR using m/z 4642 and 9289 was established. Blind validation yielded correct classification of 6 out of 8 cases. The MALDI-TOF MS analysis of APL patients serum protein can be used as a promising dynamic method for MRD detection and the two peptides with m/z 4642 and 9289 may be better biomarkers.

  10. Comparing physically-based and statistical landslide susceptibility model outputs - a case study from Lower Austria

    NASA Astrophysics Data System (ADS)

    Canli, Ekrem; Thiebes, Benni; Petschko, Helene; Glade, Thomas

    2015-04-01

    By now there is a broad consensus that due to human-induced global change the frequency and magnitude of heavy precipitation events is expected to increase in certain parts of the world. Given the fact, that rainfall serves as the most common triggering agent for landslide initiation, also an increased landside activity can be expected there. Landslide occurrence is a globally spread phenomenon that clearly needs to be handled. The present and well known problems in modelling landslide susceptibility and hazard give uncertain results in the prediction. This includes the lack of a universal applicable modelling solution for adequately assessing landslide susceptibility (which can be seen as the relative indication of the spatial probability of landslide initiation). Generally speaking, there are three major approaches for performing landslide susceptibility analysis: heuristic, statistical and deterministic models, all with different assumptions, its distinctive data requirements and differently interpretable outcomes. Still, detailed comparison of resulting landslide susceptibility maps are rare. In this presentation, the susceptibility modelling outputs of a deterministic model (Stability INdex MAPping - SINMAP) and a statistical modelling approach (generalized additive model - GAM) are compared. SINMAP is an infinite slope stability model which requires parameterization of soil mechanical parameters. Modelling with the generalized additive model, which represents a non-linear extension of a generalized linear model, requires a high quality landslide inventory that serves as the dependent variable in the statistical approach. Both methods rely on topographical data derived from the DTM. The comparison has been carried out in a study area located in the district of Waidhofen/Ybbs in Lower Austria. For the whole district (ca. 132 km²), 1063 landslides have been mapped and partially used within the analysis and the validation of the model outputs. The respective susceptibility maps have been reclassified to contain three susceptibility classes each. The comparison of the susceptibility maps was performed on a grid cell basis. A match of the maps was observed for grid cells located in the same susceptibility class. In contrast, a mismatch or deviation was observed for locations with different assigned susceptibility classes (up to two classes' difference). Although the modelling approaches differ significantly, more than 70% of the pixels reveal a match in the same susceptibility class. A mismatch by two classes' difference occurred in less than 2% of all pixels. Although the result looks promising and strengthens the confidence in the susceptibility zonation for this area, some of the general drawbacks related to the respective approaches still have to be addressed in further detail. Future work is heading towards an integration of probabilistic aspects into deterministic modelling.

  11. Comparison of Response Surface and Kriging Models in the Multidisciplinary Design of an Aerospike Nozzle

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.

    1998-01-01

    The use of response surface models and kriging models are compared for approximating non-random, deterministic computer analyses. After discussing the traditional response surface approach for constructing polynomial models for approximation, kriging is presented as an alternative statistical-based approximation method for the design and analysis of computer experiments. Both approximation methods are applied to the multidisciplinary design and analysis of an aerospike nozzle which consists of a computational fluid dynamics model and a finite element analysis model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations. Four optimization problems are formulated and solved using both approximation models. While neither approximation technique consistently outperforms the other in this example, the kriging models using only a constant for the underlying global model and a Gaussian correlation function perform as well as the second order polynomial response surface models.

  12. Modeling Count Outcomes from HIV Risk Reduction Interventions: A Comparison of Competing Statistical Models for Count Responses

    PubMed Central

    Xia, Yinglin; Morrison-Beedy, Dianne; Ma, Jingming; Feng, Changyong; Cross, Wendi; Tu, Xin

    2012-01-01

    Modeling count data from sexual behavioral outcomes involves many challenges, especially when the data exhibit a preponderance of zeros and overdispersion. In particular, the popular Poisson log-linear model is not appropriate for modeling such outcomes. Although alternatives exist for addressing both issues, they are not widely and effectively used in sex health research, especially in HIV prevention intervention and related studies. In this paper, we discuss how to analyze count outcomes distributed with excess of zeros and overdispersion and introduce appropriate model-fit indices for comparing the performance of competing models, using data from a real study on HIV prevention intervention. The in-depth look at these common issues arising from studies involving behavioral outcomes will promote sound statistical analyses and facilitate research in this and other related areas. PMID:22536496

  13. A comparison of hydrologic models for ecological flows and water availability

    USGS Publications Warehouse

    Caldwell, Peter V; Kennen, Jonathan G.; Sun, Ge; Kiang, Julie E.; Butcher, John B; Eddy, Michelle C; Hay, Lauren E.; LaFontaine, Jacob H.; Hain, Ernie F.; Nelson, Stacy C; McNulty, Steve G

    2015-01-01

    Robust hydrologic models are needed to help manage water resources for healthy aquatic ecosystems and reliable water supplies for people, but there is a lack of comprehensive model comparison studies that quantify differences in streamflow predictions among model applications developed to answer management questions. We assessed differences in daily streamflow predictions by four fine-scale models and two regional-scale monthly time step models by comparing model fit statistics and bias in ecologically relevant flow statistics (ERFSs) at five sites in the Southeastern USA. Models were calibrated to different extents, including uncalibrated (level A), calibrated to a downstream site (level B), calibrated specifically for the site (level C) and calibrated for the site with adjusted precipitation and temperature inputs (level D). All models generally captured the magnitude and variability of observed streamflows at the five study sites, and increasing level of model calibration generally improved performance. All models had at least 1 of 14 ERFSs falling outside a +/−30% range of hydrologic uncertainty at every site, and ERFSs related to low flows were frequently over-predicted. Our results do not indicate that any specific hydrologic model is superior to the others evaluated at all sites and for all measures of model performance. Instead, we provide evidence that (1) model performance is as likely to be related to calibration strategy as it is to model structure and (2) simple, regional-scale models have comparable performance to the more complex, fine-scale models at a monthly time step.

  14. A Comparison of Tropical Storm (TS) and Non-TS Gust Factors for Assessing Peak Wind Probabilities at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Crawford, Winifred C.

    2010-01-01

    Knowledge of peak wind speeds is important to the safety of personnel and flight hardware at Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS), but they are more difficult to forecast than mean wind speeds. Development of a reliable model for the gust factor (GF) relating the peak to the mean wind speed motivated a previous study of GF in tropical storms. The same motivation inspired a climatological study of non-TS peak wind speed statistics without the use of GF. Both studies presented their respective statistics as functions of mean wind speed and height. The few comparisons of IS and non-TS GF in the literature suggest that the non-TS GF at a given height and mean wind speed are smaller than the corresponding TS GF. The investigation reported here converted the non-TS peak wind statistics mentioned above to the equivalent GF statistics and compared the results with the previous TS GF results. The advantage of this effort over all previously reported studies of its kind is that the TS and non-TS data are taken from the same towers in the same locations. That eliminates differing surface attributes, including roughness length and thermal properties, as a major source of variance in the comparison. The results are consistent with the literature, but include much more detailed, quantitative information on the nature of the relationship between TS and non-TS GF as a function of height and mean wind speed. In addition, the data suggest the possibility of providing an operational model for non-TS GF as a function of height and wind speed in a manner similar to the one previously developed for TS GF.

  15. Statistics of Storm Updraft Velocities from TWP-ICE Including Verification with Profiling Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collis, Scott; Protat, Alain; May, Peter T.

    2013-08-01

    Comparisons between direct measurements and modeled values of vertical air motions in precipitating systems are complicated by differences in temporal and spatial scales. On one hand, vertically profiling radars more directly measure the vertical air motion but do not adequately capture full storm dynamics. On the other hand, vertical air motions retrieved from two or more scanning Doppler radars capture the full storm dynamics but require model constraints that may not capture all updraft features because of inadequate sampling, resolution, numerical constraints, and the fact that the storm is evolving as it is scanned by the radars. To investigate themore » veracity of radar-based retrievals, which can be used to verify numerically modeled vertical air motions, this article presents several case studies from storm events around Darwin, Northern Territory, Australia, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind retrievals are compared. While a direct comparison was not possible because of instrumentation location, an indirect comparison shows promising results, with volume retrievals comparing well to those obtained from the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Results show less vigorous deep convective cores with maximum updraft velocities occurring at lower heights than some cloudresolving modeling studies suggest. 1. Introduction The regionalization of global climate models has been a driver of demand for more complex convective parameterization schemes. A key readjustment of the modeled atmosphere« less

  16. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons

    PubMed Central

    2017-01-01

    Systematic reviews and pairwise meta-analyses of randomized controlled trials, at the intersection of clinical medicine, epidemiology and statistics, are positioned at the top of evidence-based practice hierarchy. These are important tools to base drugs approval, clinical protocols and guidelines formulation and for decision-making. However, this traditional technique only partially yield information that clinicians, patients and policy-makers need to make informed decisions, since it usually compares only two interventions at the time. In the market, regardless the clinical condition under evaluation, usually many interventions are available and few of them have been studied in head-to-head studies. This scenario precludes conclusions to be drawn from comparisons of all interventions profile (e.g. efficacy and safety). The recent development and introduction of a new technique – usually referred as network meta-analysis, indirect meta-analysis, multiple or mixed treatment comparisons – has allowed the estimation of metrics for all possible comparisons in the same model, simultaneously gathering direct and indirect evidence. Over the last years this statistical tool has matured as technique with models available for all types of raw data, producing different pooled effect measures, using both Frequentist and Bayesian frameworks, with different software packages. However, the conduction, report and interpretation of network meta-analysis still poses multiple challenges that should be carefully considered, especially because this technique inherits all assumptions from pairwise meta-analysis but with increased complexity. Thus, we aim to provide a basic explanation of network meta-analysis conduction, highlighting its risks and benefits for evidence-based practice, including information on statistical methods evolution, assumptions and steps for performing the analysis. PMID:28503228

  17. Examining the Process of Responding to Circumplex Scales of Interpersonal Values Items: Should Ideal Point Scoring Methods Be Considered?

    PubMed

    Ling, Ying; Zhang, Minqiang; Locke, Kenneth D; Li, Guangming; Li, Zonglong

    2016-01-01

    The Circumplex Scales of Interpersonal Values (CSIV) is a 64-item self-report measure of goals from each octant of the interpersonal circumplex. We used item response theory methods to compare whether dominance models or ideal point models best described how people respond to CSIV items. Specifically, we fit a polytomous dominance model called the generalized partial credit model and an ideal point model of similar complexity called the generalized graded unfolding model to the responses of 1,893 college students. The results of both graphical comparisons of item characteristic curves and statistical comparisons of model fit suggested that an ideal point model best describes the process of responding to CSIV items. The different models produced different rank orderings of high-scoring respondents, but overall the models did not differ in their prediction of criterion variables (agentic and communal interpersonal traits and implicit motives).

  18. Evaluation of the flame propagation within an SI engine using flame imaging and LES

    NASA Astrophysics Data System (ADS)

    He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes

    2017-11-01

    This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.

  19. Introduction to Bayesian statistical approaches to compositional analyses of transgenic crops 1. Model validation and setting the stage.

    PubMed

    Harrison, Jay M; Breeze, Matthew L; Harrigan, George G

    2011-08-01

    Statistical comparisons of compositional data generated on genetically modified (GM) crops and their near-isogenic conventional (non-GM) counterparts typically rely on classical significance testing. This manuscript presents an introduction to Bayesian methods for compositional analysis along with recommendations for model validation. The approach is illustrated using protein and fat data from two herbicide tolerant GM soybeans (MON87708 and MON87708×MON89788) and a conventional comparator grown in the US in 2008 and 2009. Guidelines recommended by the US Food and Drug Administration (FDA) in conducting Bayesian analyses of clinical studies on medical devices were followed. This study is the first Bayesian approach to GM and non-GM compositional comparisons. The evaluation presented here supports a conclusion that a Bayesian approach to analyzing compositional data can provide meaningful and interpretable results. We further describe the importance of method validation and approaches to model checking if Bayesian approaches to compositional data analysis are to be considered viable by scientists involved in GM research and regulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Prediction of the dollar to the ruble rate. A system-theoretic approach

    NASA Astrophysics Data System (ADS)

    Borodachev, Sergey M.

    2017-07-01

    Proposed a simple state-space model of dollar rate formation based on changes in oil prices and some mechanisms of money transfer between monetary and stock markets. Comparison of predictions by means of input-output model and state-space model is made. It concludes that with proper use of statistical data (Kalman filter) the second approach provides more adequate predictions of the dollar rate.

  1. Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling.

    PubMed

    Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W

    2007-07-01

    Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.

  2. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-12-18

    This paper presents four algorithms to generate random forecast error time series, including a truncated-normal distribution model, a state-space based Markov model, a seasonal autoregressive moving average (ARMA) model, and a stochastic-optimization based model. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets, used for variable generation integration studies. A comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics. This paper discusses and comparesmore » the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  3. Structure of wind-shear turbulence

    NASA Technical Reports Server (NTRS)

    Trevino, G.; Laituri, T. R.

    1988-01-01

    The statistical characteristics of wind-shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of how turbulence scales in a wind shear is addressed from the perspective of power spectral density.

  4. Quantifying the indirect impacts of climate on agriculture: an inter-method comparison

    DOE PAGES

    Calvin, Kate; Fisher-Vanden, Karen

    2017-10-27

    Climate change and increases in CO2 concentration affect the productivity of land, with implications for land use, land cover, and agricultural production. Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, we attempt to measure the importance of these interaction effects through an inter-method comparisonmore » between process models, statistical models, and integrated assessment model (IAMs). We find the impacts on crop yields vary widely between these three modeling approaches. Yield impacts generated by the IAMs are 20%-40% higher than the yield impacts generated by process-based or statistical crop models, with indirect climate effects adjusting yields by between - 12% and + 15% (e.g. input substitution and crop switching). The remaining effects are due to technological change.« less

  5. Quantifying the indirect impacts of climate on agriculture: an inter-method comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Kate; Fisher-Vanden, Karen

    Climate change and increases in CO2 concentration affect the productivity of land, with implications for land use, land cover, and agricultural production. Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, we attempt to measure the importance of these interaction effects through an inter-method comparisonmore » between process models, statistical models, and integrated assessment model (IAMs). We find the impacts on crop yields vary widely between these three modeling approaches. Yield impacts generated by the IAMs are 20%-40% higher than the yield impacts generated by process-based or statistical crop models, with indirect climate effects adjusting yields by between - 12% and + 15% (e.g. input substitution and crop switching). The remaining effects are due to technological change.« less

  6. Statistical power as a function of Cronbach alpha of instrument questionnaire items.

    PubMed

    Heo, Moonseong; Kim, Namhee; Faith, Myles S

    2015-10-14

    In countless number of clinical trials, measurements of outcomes rely on instrument questionnaire items which however often suffer measurement error problems which in turn affect statistical power of study designs. The Cronbach alpha or coefficient alpha, here denoted by C(α), can be used as a measure of internal consistency of parallel instrument items that are developed to measure a target unidimensional outcome construct. Scale score for the target construct is often represented by the sum of the item scores. However, power functions based on C(α) have been lacking for various study designs. We formulate a statistical model for parallel items to derive power functions as a function of C(α) under several study designs. To this end, we assume fixed true score variance assumption as opposed to usual fixed total variance assumption. That assumption is critical and practically relevant to show that smaller measurement errors are inversely associated with higher inter-item correlations, and thus that greater C(α) is associated with greater statistical power. We compare the derived theoretical statistical power with empirical power obtained through Monte Carlo simulations for the following comparisons: one-sample comparison of pre- and post-treatment mean differences, two-sample comparison of pre-post mean differences between groups, and two-sample comparison of mean differences between groups. It is shown that C(α) is the same as a test-retest correlation of the scale scores of parallel items, which enables testing significance of C(α). Closed-form power functions and samples size determination formulas are derived in terms of C(α), for all of the aforementioned comparisons. Power functions are shown to be an increasing function of C(α), regardless of comparison of interest. The derived power functions are well validated by simulation studies that show that the magnitudes of theoretical power are virtually identical to those of the empirical power. Regardless of research designs or settings, in order to increase statistical power, development and use of instruments with greater C(α), or equivalently with greater inter-item correlations, is crucial for trials that intend to use questionnaire items for measuring research outcomes. Further development of the power functions for binary or ordinal item scores and under more general item correlation strutures reflecting more real world situations would be a valuable future study.

  7. Evaporation residue cross-section measurements for 48Ti-induced reactions

    NASA Astrophysics Data System (ADS)

    Sharma, Priya; Behera, B. R.; Mahajan, Ruchi; Thakur, Meenu; Kaur, Gurpreet; Kapoor, Kushal; Rani, Kavita; Madhavan, N.; Nath, S.; Gehlot, J.; Dubey, R.; Mazumdar, I.; Patel, S. M.; Dhibar, M.; Hosamani, M. M.; Khushboo, Kumar, Neeraj; Shamlath, A.; Mohanto, G.; Pal, Santanu

    2017-09-01

    Background: A significant research effort is currently aimed at understanding the synthesis of heavy elements. For this purpose, heavy ion induced fusion reactions are used and various experimental observations have indicated the influence of shell and deformation effects in the compound nucleus (CN) formation. There is a need to understand these two effects. Purpose: To investigate the effect of proton shell closure and deformation through the comparison of evaporation residue (ER) cross sections for the systems involving heavy compound nuclei around the ZCN=82 region. Methods: A systematic study of ER cross-section measurements was carried out for the 48Ti+Nd,150142 , 144Sm systems in the energy range of 140 -205 MeV . The measurement has been performed using the gas-filled mode of the hybrid recoil mass analyzer present at the Inter University Accelerator Centre (IUAC), New Delhi. Theoretical calculations based on a statistical model were carried out incorporating an adjustable barrier scaling factor to fit the experimental ER cross section. Coupled-channel calculations were also performed using the ccfull code to obtain the spin distribution of the CN, which was used as an input in the calculations. Results: Experimental ER cross sections for 48Ti+Nd,150142 were found to be considerably smaller than the statistical model predictions whereas experimental and statistical model predictions for 48Ti+144Sm were of comparable magnitudes. Conclusion: Though comparison of experimental ER cross sections with statistical model predictions indicate considerable non-compound-nuclear processes for 48Ti+Nd,150142 reactions, no such evidence is found for the 48Ti+144Sm system. Further investigations are required to understand the difference in fusion probabilities of 48Ti+142Nd and 48Ti+144Sm systems.

  8. Strengthen forensic entomology in court--the need for data exploration and the validation of a generalised additive mixed model.

    PubMed

    Baqué, Michèle; Amendt, Jens

    2013-01-01

    Developmental data of juvenile blow flies (Diptera: Calliphoridae) are typically used to calculate the age of immature stages found on or around a corpse and thus to estimate a minimum post-mortem interval (PMI(min)). However, many of those data sets don't take into account that immature blow flies grow in a non-linear fashion. Linear models do not supply a sufficient reliability on age estimates and may even lead to an erroneous determination of the PMI(min). According to the Daubert standard and the need for improvements in forensic science, new statistic tools like smoothing methods and mixed models allow the modelling of non-linear relationships and expand the field of statistical analyses. The present study introduces into the background and application of these statistical techniques by analysing a model which describes the development of the forensically important blow fly Calliphora vicina at different temperatures. The comparison of three statistical methods (linear regression, generalised additive modelling and generalised additive mixed modelling) clearly demonstrates that only the latter provided regression parameters that reflect the data adequately. We focus explicitly on both the exploration of the data--to assure their quality and to show the importance of checking it carefully prior to conducting the statistical tests--and the validation of the resulting models. Hence, we present a common method for evaluating and testing forensic entomological data sets by using for the first time generalised additive mixed models.

  9. Evaluation of dissolution profile similarity - Comparison between the f2, the multivariate statistical distance and the f2 bootstrapping methods.

    PubMed

    Paixão, Paulo; Gouveia, Luís F; Silva, Nuno; Morais, José A G

    2017-03-01

    A simulation study is presented, evaluating the performance of the f 2 , the model-independent multivariate statistical distance and the f 2 bootstrap methods in the ability to conclude similarity between two dissolution profiles. Different dissolution profiles, based on the Noyes-Whitney equation and ranging from theoretical f 2 values between 100 and 40, were simulated. Variability was introduced in the dissolution model parameters in an increasing order, ranging from a situation complying with the European guidelines requirements for the use of the f 2 metric to several situations where the f 2 metric could not be used anymore. Results have shown that the f 2 is an acceptable metric when used according to the regulatory requirements, but loses its applicability when variability increases. The multivariate statistical distance presented contradictory results in several of the simulation scenarios, which makes it an unreliable metric for dissolution profile comparisons. The bootstrap f 2 , although conservative in its conclusions is an alternative suitable method. Overall, as variability increases, all of the discussed methods reveal problems that can only be solved by increasing the number of dosage form units used in the comparison, which is usually not practical or feasible. Additionally, experimental corrective measures may be undertaken in order to reduce the overall variability, particularly when it is shown that it is mainly due to the dissolution assessment instead of being intrinsic to the dosage form. Copyright © 2016. Published by Elsevier B.V.

  10. An investigation into the effects of temporal resolution on hepatic dynamic contrast-enhanced MRI in volunteers and in patients with hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.

    2014-06-01

    This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.

  11. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.

    PubMed

    Chen, Li; Wang, Chi; Qin, Zhaohui S; Wu, Hao

    2015-06-15

    ChIP-seq is a powerful technology to measure the protein binding or histone modification strength in the whole genome scale. Although there are a number of methods available for single ChIP-seq data analysis (e.g. 'peak detection'), rigorous statistical method for quantitative comparison of multiple ChIP-seq datasets with the considerations of data from control experiment, signal to noise ratios, biological variations and multiple-factor experimental designs is under-developed. In this work, we develop a statistical method to perform quantitative comparison of multiple ChIP-seq datasets and detect genomic regions showing differential protein binding or histone modification. We first detect peaks from all datasets and then union them to form a single set of candidate regions. The read counts from IP experiment at the candidate regions are assumed to follow Poisson distribution. The underlying Poisson rates are modeled as an experiment-specific function of artifacts and biological signals. We then obtain the estimated biological signals and compare them through the hypothesis testing procedure in a linear model framework. Simulations and real data analyses demonstrate that the proposed method provides more accurate and robust results compared with existing ones. An R software package ChIPComp is freely available at http://web1.sph.emory.edu/users/hwu30/software/ChIPComp.html. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Empirical comparison study of approximate methods for structure selection in binary graphical models.

    PubMed

    Viallon, Vivian; Banerjee, Onureena; Jougla, Eric; Rey, Grégoire; Coste, Joel

    2014-03-01

    Looking for associations among multiple variables is a topical issue in statistics due to the increasing amount of data encountered in biology, medicine, and many other domains involving statistical applications. Graphical models have recently gained popularity for this purpose in the statistical literature. In the binary case, however, exact inference is generally very slow or even intractable because of the form of the so-called log-partition function. In this paper, we review various approximate methods for structure selection in binary graphical models that have recently been proposed in the literature and compare them through an extensive simulation study. We also propose a modification of one existing method, that is shown to achieve good performance and to be generally very fast. We conclude with an application in which we search for associations among causes of death recorded on French death certificates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The potential of statistical shape modelling for geometric morphometric analysis of human teeth in archaeological research

    PubMed Central

    Fernee, Christianne; Browne, Martin; Zakrzewski, Sonia

    2017-01-01

    This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique’s application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets. PMID:29216199

  14. Annual Research Briefs, 1987

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Reynolds, William C.

    1988-01-01

    Lagrangian techniques have found widespread application to the prediction and understanding of turbulent transport phenomena and have yielded satisfactory results for different cases of shear flow problems. However, it must be kept in mind that in most experiments what is really available are Eulerian statistics, and it is far from obvious how to extract from them the information relevant to the Lagrangian behavior of the flow; in consequence, Lagrangian models still include some hypothesis for which no adequate supporting evidence was until now available. Direct numerical simulation of turbulence offers a new way to obtain Lagrangian statistics and so verify the validity of the current predictive models and the accuracy of their results. After the pioneering work of Riley (Riley and Patterson, 1974) in the 70's, some such results have just appeared in the literature (Lee et al, Yeung and Pope). The present contribution follows in part similar lines, but focuses on two particle statistics and comparison with existing models.

  15. Computational and Statistical Models: A Comparison for Policy Modeling of Childhood Obesity

    NASA Astrophysics Data System (ADS)

    Mabry, Patricia L.; Hammond, Ross; Ip, Edward Hak-Sing; Huang, Terry T.-K.

    As systems science methodologies have begun to emerge as a set of innovative approaches to address complex problems in behavioral, social science, and public health research, some apparent conflicts with traditional statistical methodologies for public health have arisen. Computational modeling is an approach set in context that integrates diverse sources of data to test the plausibility of working hypotheses and to elicit novel ones. Statistical models are reductionist approaches geared towards proving the null hypothesis. While these two approaches may seem contrary to each other, we propose that they are in fact complementary and can be used jointly to advance solutions to complex problems. Outputs from statistical models can be fed into computational models, and outputs from computational models can lead to further empirical data collection and statistical models. Together, this presents an iterative process that refines the models and contributes to a greater understanding of the problem and its potential solutions. The purpose of this panel is to foster communication and understanding between statistical and computational modelers. Our goal is to shed light on the differences between the approaches and convey what kinds of research inquiries each one is best for addressing and how they can serve complementary (and synergistic) roles in the research process, to mutual benefit. For each approach the panel will cover the relevant "assumptions" and how the differences in what is assumed can foster misunderstandings. The interpretations of the results from each approach will be compared and contrasted and the limitations for each approach will be delineated. We will use illustrative examples from CompMod, the Comparative Modeling Network for Childhood Obesity Policy. The panel will also incorporate interactive discussions with the audience on the issues raised here.

  16. Multiple alignment-free sequence comparison

    PubMed Central

    Ren, Jie; Song, Kai; Sun, Fengzhu; Deng, Minghua; Reinert, Gesine

    2013-01-01

    Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, and , extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, , and , averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences. Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics. Availability: Our implementation of the five statistics is available as R package named ‘multiAlignFree’ at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html. Contact: reinert@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23990418

  17. Stated Choice design comparison in a developing country: recall and attribute nonattendance

    PubMed Central

    2014-01-01

    Background Experimental designs constitute a vital component of all Stated Choice (aka discrete choice experiment) studies. However, there exists limited empirical evaluation of the statistical benefits of Stated Choice (SC) experimental designs that employ non-zero prior estimates in constructing non-orthogonal constrained designs. This paper statistically compares the performance of contrasting SC experimental designs. In so doing, the effect of respondent literacy on patterns of Attribute non-Attendance (ANA) across fractional factorial orthogonal and efficient designs is also evaluated. The study uses a ‘real’ SC design to model consumer choice of primary health care providers in rural north India. A total of 623 respondents were sampled across four villages in Uttar Pradesh, India. Methods Comparison of orthogonal and efficient SC experimental designs is based on several measures. Appropriate comparison of each design’s respective efficiency measure is made using D-error results. Standardised Akaike Information Criteria are compared between designs and across recall periods. Comparisons control for stated and inferred ANA. Coefficient and standard error estimates are also compared. Results The added complexity of the efficient SC design, theorised elsewhere, is reflected in higher estimated amounts of ANA among illiterate respondents. However, controlling for ANA using stated and inferred methods consistently shows that the efficient design performs statistically better. Modelling SC data from the orthogonal and efficient design shows that model-fit of the efficient design outperform the orthogonal design when using a 14-day recall period. The performance of the orthogonal design, with respect to standardised AIC model-fit, is better when longer recall periods of 30-days, 6-months and 12-months are used. Conclusions The effect of the efficient design’s cognitive demand is apparent among literate and illiterate respondents, although, more pronounced among illiterate respondents. This study empirically confirms that relaxing the orthogonality constraint of SC experimental designs increases the information collected in choice tasks, subject to the accuracy of the non-zero priors in the design and the correct specification of a ‘real’ SC recall period. PMID:25386388

  18. Time density curve analysis for C-arm FDCT PBV imaging.

    PubMed

    Kamran, Mudassar; Byrne, James V

    2016-04-01

    Parenchymal blood volume (PBV) estimation using C-arm flat detector computed tomography (FDCT) assumes a steady-state contrast concentration in cerebral vasculature for the scan duration. Using time density curve (TDC) analysis, we explored if the steady-state assumption is met for C-arm CT PBV scans, and how consistent the contrast-material dynamics in cerebral vasculature are across patients. Thirty C-arm FDCT datasets of 26 patients with aneurysmal-SAH, acquired as part of a prospective study comparing C-arm CT PBV with MR-PWI, were analysed. TDCs were extracted from the 2D rotational projections. Goodness-of-fit of TDCs to a steady-state horizontal-line-model and the statistical similarity among the individual TDCs were tested. Influence of the differences in TDC characteristics on the agreement of resulting PBV measurements with MR-CBV was calculated. Despite identical scan parameters and contrast-injection-protocol, the individual TDCs were statistically non-identical (p < 0.01). Using Dunn's multiple comparisons test, of the total 435 individual comparisons among the 30 TDCs, 330 comparisons (62%) reached statistical significance for difference. All TDCs deviated significantly (p < 0.01) from the steady-state horizontal-line-model. PBV values of those datasets for which the TDCs showed largest deviations from the steady-state model demonstrated poor agreement and correlation with MR-CBV, compared with the PBV values of those datasets for which the TDCs were closer to steady-state. For clinical C-arm CT PBV examinations, the administered contrast material does not reach the assumed 'ideal steady-state' for the duration of scan. Using a prolonged injection protocol, the degree to which the TDCs approximate the ideal steady-state influences the agreement of resulting PBV measurements with MR-CBV. © The Author(s) 2016.

  19. Time density curve analysis for C-arm FDCT PBV imaging

    PubMed Central

    Byrne, James V

    2016-01-01

    Introduction Parenchymal blood volume (PBV) estimation using C-arm flat detector computed tomography (FDCT) assumes a steady-state contrast concentration in cerebral vasculature for the scan duration. Using time density curve (TDC) analysis, we explored if the steady-state assumption is met for C-arm CT PBV scans, and how consistent the contrast-material dynamics in cerebral vasculature are across patients. Methods Thirty C-arm FDCT datasets of 26 patients with aneurysmal-SAH, acquired as part of a prospective study comparing C-arm CT PBV with MR-PWI, were analysed. TDCs were extracted from the 2D rotational projections. Goodness-of-fit of TDCs to a steady-state horizontal-line-model and the statistical similarity among the individual TDCs were tested. Influence of the differences in TDC characteristics on the agreement of resulting PBV measurements with MR-CBV was calculated. Results Despite identical scan parameters and contrast-injection-protocol, the individual TDCs were statistically non-identical (p < 0.01). Using Dunn's multiple comparisons test, of the total 435 individual comparisons among the 30 TDCs, 330 comparisons (62%) reached statistical significance for difference. All TDCs deviated significantly (p < 0.01) from the steady-state horizontal-line-model. PBV values of those datasets for which the TDCs showed largest deviations from the steady-state model demonstrated poor agreement and correlation with MR-CBV, compared with the PBV values of those datasets for which the TDCs were closer to steady-state. Conclusion For clinical C-arm CT PBV examinations, the administered contrast material does not reach the assumed ‘ideal steady-state’ for the duration of scan. Using a prolonged injection protocol, the degree to which the TDCs approximate the ideal steady-state influences the agreement of resulting PBV measurements with MR-CBV. PMID:26769736

  20. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments

    PubMed Central

    Avalappampatty Sivasamy, Aneetha; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668

  1. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments.

    PubMed

    Sivasamy, Aneetha Avalappampatty; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.

  2. Statistical downscaling of GCM simulations to streamflow using relevance vector machine

    NASA Astrophysics Data System (ADS)

    Ghosh, Subimal; Mujumdar, P. P.

    2008-01-01

    General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology. The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM) to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables. NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and climatic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical methodology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose. The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.

  3. Comparison of mean climate trends in the Northern Hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Russell, Gary L.

    2002-08-01

    Results are presented for two greenhouse gas experiments of the Goddard Institute for Space Studies atmosphere-ocean model (AOM). The computed trends of surface pressure; surface temperature; 850, 500, and 200 mbar geopotential heights; and related temperatures of the model for the time frame 1960-2000 are compared with those obtained from the National Centers for Enviromental Prediction (NCEP) observations. The domain of interest is the Northern Hemisphere because of the higher reliability of both the model results and the observations. A spatial correlation analysis and a mean value comparison are performed, showing good agreement in terms of statistical significance for most of the variables considered in the winter and annual means. However, the 850 mbar temperature trends do not show significant positive correlation, and the surface pressure and 850 mbar geopotential height mean trends confidence intervals do not overlap. A brief general discussion about the statistics of trend detection is presented. The accuracy that this AOM has in describing the regional and NH mean climate trends inferred from NCEP through the atmosphere suggests that it may be reliable in forecasting future climate changes.

  4. Artificial bias typically neglected in comparisons of uncertain atmospheric data

    NASA Astrophysics Data System (ADS)

    Pitkänen, Mikko R. A.; Mikkonen, Santtu; Lehtinen, Kari E. J.; Lipponen, Antti; Arola, Antti

    2016-09-01

    Publications in atmospheric sciences typically neglect biases caused by regression dilution (bias of the ordinary least squares line fitting) and regression to the mean (RTM) in comparisons of uncertain data. We use synthetic observations mimicking real atmospheric data to demonstrate how the biases arise from random data uncertainties of measurements, model output, or satellite retrieval products. Further, we provide examples of typical methods of data comparisons that have a tendency to pronounce the biases. The results show, that data uncertainties can significantly bias data comparisons due to regression dilution and RTM, a fact that is known in statistics but disregarded in atmospheric sciences. Thus, we argue that often these biases are widely regarded as measurement or modeling errors, for instance, while they in fact are artificial. It is essential that atmospheric and geoscience communities become aware of and consider these features in research.

  5. Comparison of thunderstorm simulations from WRF-NMM and WRF-ARW models over East Indian Region.

    PubMed

    Litta, A J; Mary Ididcula, Sumam; Mohanty, U C; Kiran Prasad, S

    2012-01-01

    The thunderstorms are typical mesoscale systems dominated by intense convection. Mesoscale models are essential for the accurate prediction of such high-impact weather events. In the present study, an attempt has been made to compare the simulated results of three thunderstorm events using NMM and ARW model core of WRF system and validated the model results with observations. Both models performed well in capturing stability indices which are indicators of severe convective activity. Comparison of model-simulated radar reflectivity imageries with observations revealed that NMM model has simulated well the propagation of the squall line, while the squall line movement was slow in ARW. From the model-simulated spatial plots of cloud top temperature, we can see that NMM model has better captured the genesis, intensification, and propagation of thunder squall than ARW model. The statistical analysis of rainfall indicates the better performance of NMM than ARW. Comparison of model-simulated thunderstorm affected parameters with that of the observed showed that NMM has performed better than ARW in capturing the sharp rise in humidity and drop in temperature. This suggests that NMM model has the potential to provide unique and valuable information for severe thunderstorm forecasters over east Indian region.

  6. Slant path rain attenuation and path diversity statistics obtained through radar modeling of rain structure

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1984-01-01

    Single and joint terminal slant path attenuation statistics at frequencies of 28.56 and 19.04 GHz have been derived, employing a radar data base obtained over a three-year period at Wallops Island, VA. Statistics were independently obtained for path elevation angles of 20, 45, and 90 deg for purposes of examining how elevation angles influences both single-terminal and joint probability distributions. Both diversity gains and autocorrelation function dependence on site spacing and elevation angles were determined employing the radar modeling results. Comparisons with other investigators are presented. An independent path elevation angle prediction technique was developed and demonstrated to fit well with the radar-derived single and joint terminal radar-derived cumulative fade distributions at various elevation angles.

  7. Statistical modelling for recurrent events: an application to sports injuries

    PubMed Central

    Ullah, Shahid; Gabbett, Tim J; Finch, Caroline F

    2014-01-01

    Background Injuries are often recurrent, with subsequent injuries influenced by previous occurrences and hence correlation between events needs to be taken into account when analysing such data. Objective This paper compares five different survival models (Cox proportional hazards (CoxPH) model and the following generalisations to recurrent event data: Andersen-Gill (A-G), frailty, Wei-Lin-Weissfeld total time (WLW-TT) marginal, Prentice-Williams-Peterson gap time (PWP-GT) conditional models) for the analysis of recurrent injury data. Methods Empirical evaluation and comparison of different models were performed using model selection criteria and goodness-of-fit statistics. Simulation studies assessed the size and power of each model fit. Results The modelling approach is demonstrated through direct application to Australian National Rugby League recurrent injury data collected over the 2008 playing season. Of the 35 players analysed, 14 (40%) players had more than 1 injury and 47 contact injuries were sustained over 29 matches. The CoxPH model provided the poorest fit to the recurrent sports injury data. The fit was improved with the A-G and frailty models, compared to WLW-TT and PWP-GT models. Conclusions Despite little difference in model fit between the A-G and frailty models, in the interest of fewer statistical assumptions it is recommended that, where relevant, future studies involving modelling of recurrent sports injury data use the frailty model in preference to the CoxPH model or its other generalisations. The paper provides a rationale for future statistical modelling approaches for recurrent sports injury. PMID:22872683

  8. Comparison of LIDAR system performance for alternative single-mode receiver architectures: modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Toliver, Paul; Ozdur, Ibrahim; Agarwal, Anjali; Woodward, T. K.

    2013-05-01

    In this paper, we describe a detailed performance comparison of alternative single-pixel, single-mode LIDAR architectures including (i) linear-mode APD-based direct-detection, (ii) optically-preamplified PIN receiver, (iii) PINbased coherent-detection, and (iv) Geiger-mode single-photon-APD counting. Such a comparison is useful when considering next-generation LIDAR on a chip, which would allow one to leverage extensive waveguide-based structures and processing elements developed for telecom and apply them to small form-factor sensing applications. Models of four LIDAR transmit and receive systems are described in detail, which include not only the dominant sources of receiver noise commonly assumed in each of the four detection limits, but also additional noise terms present in realistic implementations. These receiver models are validated through the analysis of detection statistics collected from an experimental LIDAR testbed. The receiver is reconfigurable into four modes of operation, while transmit waveforms and channel characteristics are held constant. The use of a diffuse hard target highlights the importance of including speckle noise terms in the overall system analysis. All measurements are done at 1550 nm, which offers multiple system advantages including less stringent eye safety requirements and compatibility with available telecom components, optical amplification, and photonic integration. Ultimately, the experimentally-validated detection statistics can be used as part of an end-to-end system model for projecting rate, range, and resolution performance limits and tradeoffs of alternative integrated LIDAR architectures.

  9. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.

  10. Systematic review of statistically-derived models of immunological response in HIV-infected adults on antiretroviral therapy in Sub-Saharan Africa.

    PubMed

    Sempa, Joseph B; Ujeneza, Eva L; Nieuwoudt, Martin

    2017-01-01

    In Sub-Saharan African (SSA) resource limited settings, Cluster of Differentiation 4 (CD4) counts continue to be used for clinical decision making in antiretroviral therapy (ART). Here, HIV-infected people often remain with CD4 counts <350 cells/μL even after 5 years of viral load suppression. Ongoing immunological monitoring is necessary. Due to varying statistical modeling methods comparing immune response to ART across different cohorts is difficult. We systematically review such models and detail the similarities, differences and problems. 'Preferred Reporting Items for Systematic Review and Meta-Analyses' guidelines were used. Only studies of immune-response after ART initiation from SSA in adults were included. Data was extracted from each study and tabulated. Outcomes were categorized into 3 groups: 'slope', 'survival', and 'asymptote' models. Wordclouds were drawn wherein the frequency of variables occurring in the reviewed models is indicated by their size and color. 69 covariates were identified in the final models of 35 studies. Effect sizes of covariates were not directly quantitatively comparable in view of the combination of differing variables and scale transformation methods across models. Wordclouds enabled the identification of qualitative and semi-quantitative covariate sets for each outcome category. Comparison across categories identified sex, baseline age, baseline log viral load, baseline CD4, ART initiation regimen and ART duration as a minimal consensus set. Most models were different with respect to covariates included, variable transformations and scales, model assumptions, modelling strategies and reporting methods, even for the same outcomes. To enable comparison across cohorts, statistical models would benefit from the application of more uniform modelling techniques. Historic efforts have produced results that are anecdotal to individual cohorts only. This study was able to define 'prior' knowledge in the Bayesian sense. Such information has value for prospective modelling efforts.

  11. Fragment size distribution statistics in dynamic fragmentation of laser shock-loaded tin

    NASA Astrophysics Data System (ADS)

    He, Weihua; Xin, Jianting; Zhao, Yongqiang; Chu, Genbai; Xi, Tao; Shui, Min; Lu, Feng; Gu, Yuqiu

    2017-06-01

    This work investigates the geometric statistics method to characterize the size distribution of tin fragments produced in the laser shock-loaded dynamic fragmentation process. In the shock experiments, the ejection of the tin sample with etched V-shape groove in the free surface are collected by the soft recovery technique. Subsequently, the produced fragments are automatically detected with the fine post-shot analysis techniques including the X-ray micro-tomography and the improved watershed method. To characterize the size distributions of the fragments, a theoretical random geometric statistics model based on Poisson mixtures is derived for dynamic heterogeneous fragmentation problem, which reveals linear combinational exponential distribution. The experimental data related to fragment size distributions of the laser shock-loaded tin sample are examined with the proposed theoretical model, and its fitting performance is compared with that of other state-of-the-art fragment size distribution models. The comparison results prove that our proposed model can provide far more reasonable fitting result for the laser shock-loaded tin.

  12. Scale Dependence of Statistics of Spatially Averaged Rain Rate Seen in TOGA COARE Comparison with Predictions from a Stochastic Model

    NASA Technical Reports Server (NTRS)

    Kundu, Prasun K.; Bell, T. L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    A characteristic feature of rainfall statistics is that they in general depend on the space and time scales over which rain data are averaged. As a part of an earlier effort to determine the sampling error of satellite rain averages, a space-time model of rainfall statistics was developed to describe the statistics of gridded rain observed in GATE. The model allows one to compute the second moment statistics of space- and time-averaged rain rate which can be fitted to satellite or rain gauge data to determine the four model parameters appearing in the precipitation spectrum - an overall strength parameter, a characteristic length separating the long and short wavelength regimes and a characteristic relaxation time for decay of the autocorrelation of the instantaneous local rain rate and a certain 'fractal' power law exponent. For area-averaged instantaneous rain rate, this exponent governs the power law dependence of these statistics on the averaging length scale $L$ predicted by the model in the limit of small $L$. In particular, the variance of rain rate averaged over an $L \\times L$ area exhibits a power law singularity as $L \\rightarrow 0$. In the present work the model is used to investigate how the statistics of area-averaged rain rate over the tropical Western Pacific measured with ship borne radar during TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response Experiment) and gridded on a 2 km grid depends on the size of the spatial averaging scale. Good agreement is found between the data and predictions from the model over a wide range of averaging length scales.

  13. Body size affects the strength of social interactions and spatial organization of a schooling fish (Pseudomugil signifer)

    NASA Astrophysics Data System (ADS)

    Romenskyy, Maksym; Herbert-Read, James E.; Ward, Ashley J. W.; Sumpter, David J. T.

    2017-04-01

    While a rich variety of self-propelled particle models propose to explain the collective motion of fish and other animals, rigorous statistical comparison between models and data remains a challenge. Plausible models should be flexible enough to capture changes in the collective behaviour of animal groups at their different developmental stages and group sizes. Here, we analyse the statistical properties of schooling fish (Pseudomugil signifer) through a combination of experiments and simulations. We make novel use of a Boltzmann inversion method, usually applied in molecular dynamics, to identify the effective potential of the mean force of fish interactions. Specifically, we show that larger fish have a larger repulsion zone, but stronger attraction, resulting in greater alignment in their collective motion. We model the collective dynamics of schools using a self-propelled particle model, modified to include varying particle speed and a local repulsion rule. We demonstrate that the statistical properties of the fish schools are reproduced by our model, thereby capturing a number of features of the behaviour and development of schooling fish.

  14. A Comparative Evaluation of Mixed Dentition Analysis on Reliability of Cone Beam Computed Tomography Image Compared to Plaster Model

    PubMed Central

    Gowd, Snigdha; Shankar, T; Dash, Samarendra; Sahoo, Nivedita; Chatterjee, Suravi; Mohanty, Pritam

    2017-01-01

    Aims and Objective: The aim of the study was to evaluate the reliability of cone beam computed tomography (CBCT) obtained image over plaster model for the assessment of mixed dentition analysis. Materials and Methods: Thirty CBCT-derived images and thirty plaster models were derived from the dental archives, and Moyer's and Tanaka-Johnston analyses were performed. The data obtained were interpreted and analyzed statistically using SPSS 10.0/PC (SPSS Inc., Chicago, IL, USA). Descriptive and analytical analysis along with Student's t-test was performed to qualitatively evaluate the data and P < 0.05 was considered statistically significant. Results: Statistically, significant results were obtained on data comparison between CBCT-derived images and plaster model; the mean for Moyer's analysis in the left and right lower arch for CBCT and plaster model was 21.2 mm, 21.1 mm and 22.5 mm, 22.5 mm, respectively. Conclusion: CBCT-derived images were less reliable as compared to data obtained directly from plaster model for mixed dentition analysis. PMID:28852639

  15. Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology

    NASA Astrophysics Data System (ADS)

    Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen

    2018-07-01

    Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper, we use massive asymptotically optimal data compression to reduce the dimensionality of the data space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parametrized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate DELFI with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological data sets.

  16. New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail Dmitrievic; Geogdzhayev, Igor V.; Tsigaridis, Konstantinos; Marshak, Alexander; Levy, Robert; Cairns, Brian

    2016-01-01

    A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the consideration of AOT fields as realizations of a stochastic process, that is the exponent of an underlying Gaussian process with a specific autocorrelation function. In this approach AOT fields have lognormal PDFs and structure functions having the correct asymptotic behavior at large scales. The latter is an advantage compared with fractal (scale-invariant) approaches. The simple analytical form of the structure function in the proposed model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new approach is illustrated using a month-long global MODIS AOT dataset (over ocean) with 10 km resolution. It was used to compute AOT statistics for sample cells forming a grid with 5deg spacing. The observed shapes of the structure functions indicated that in a large number of cases the AOT variability is split into two regimes that exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to enhance comparisons between remote sensing datasets and climate models beyond regional mean AOTs.

  17. Compilation and Analysis of 20 and 30 GHz Rain Fade Events at the ACTS NASA Ground Station: Statistics and Model Assessment

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1996-01-01

    The purpose of the propagation studies within the ACTS Project Office is to acquire 20 and 30 GHz rain fade statistics using the ACTS beacon links received at the NGS (NASA Ground Station) in Cleveland. Other than the raw, statistically unprocessed rain fade events that occur in real time, relevant rain fade statistics derived from such events are the cumulative rain fade statistics as well as fade duration statistics (beyond given fade thresholds) over monthly and yearly time intervals. Concurrent with the data logging exercise, monthly maximum rainfall levels recorded at the US Weather Service at Hopkins Airport are appended to the database to facilitate comparison of observed fade statistics with those predicted by the ACTS Rain Attenuation Model. Also, the raw fade data will be in a format, complete with documentation, for use by other investigators who require realistic fade event evolution in time for simulation purposes or further analysis for comparisons with other rain fade prediction models, etc. The raw time series data from the 20 and 30 GHz beacon signals is purged of non relevant data intervals where no rain fading has occurred. All other data intervals which contain rain fade events are archived with the accompanying time stamps. The definition of just what constitutes a rain fade event will be discussed later. The archived data serves two purposes. First, all rain fade event data is recombined into a contiguous data series every month and every year; this will represent an uninterrupted record of the actual (i.e., not statistically processed) temporal evolution of rain fade at 20 and 30 GHz at the location of the NGS. The second purpose of the data in such a format is to enable a statistical analysis of prevailing propagation parameters such as cumulative distributions of attenuation on a monthly and yearly basis as well as fade duration probabilities below given fade thresholds, also on a monthly and yearly basis. In addition, various subsidiary statistics such as attenuation rate probabilities are derived. The purged raw rain fade data as well as the results of the analyzed data will be made available for use by parties in the private sector upon their request. The process which will be followed in this dissemination is outlined in this paper.

  18. Comparison of the predictive validity of diagnosis-based risk adjusters for clinical outcomes.

    PubMed

    Petersen, Laura A; Pietz, Kenneth; Woodard, LeChauncy D; Byrne, Margaret

    2005-01-01

    Many possible methods of risk adjustment exist, but there is a dearth of comparative data on their performance. We compared the predictive validity of 2 widely used methods (Diagnostic Cost Groups [DCGs] and Adjusted Clinical Groups [ACGs]) for 2 clinical outcomes using a large national sample of patients. We studied all patients who used Veterans Health Administration (VA) medical services in fiscal year (FY) 2001 (n = 3,069,168) and assigned both a DCG and an ACG to each. We used logistic regression analyses to compare predictive ability for death or long-term care (LTC) hospitalization for age/gender models, DCG models, and ACG models. We also assessed the effect of adding age to the DCG and ACG models. Patients in the highest DCG categories, indicating higher severity of illness, were more likely to die or to require LTC hospitalization. Surprisingly, the age/gender model predicted death slightly more accurately than the ACG model (c-statistic of 0.710 versus 0.700, respectively). The addition of age to the ACG model improved the c-statistic to 0.768. The highest c-statistic for prediction of death was obtained with a DCG/age model (0.830). The lowest c-statistics were obtained for age/gender models for LTC hospitalization (c-statistic 0.593). The c-statistic for use of ACGs to predict LTC hospitalization was 0.783, and improved to 0.792 with the addition of age. The c-statistics for use of DCGs and DCG/age to predict LTC hospitalization were 0.885 and 0.890, respectively, indicating the best prediction. We found that risk adjusters based upon diagnoses predicted an increased likelihood of death or LTC hospitalization, exhibiting good predictive validity. In this comparative analysis using VA data, DCG models were generally superior to ACG models in predicting clinical outcomes, although ACG model performance was enhanced by the addition of age.

  19. Population Synthesis of Radio & Gamma-Ray Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Gonthier, P. L.; Harding, A. K.

    2014-01-01

    In recent years, the number of known gamma-ray millisecond pulsars (MSPs) in the Galactic disk has risen substantially thanks to confirmed detections by Fermi Gamma-ray Space Telescope (Fermi). We have developed a new population synthesis of gamma-ray and radio MSPs in the galaxy which uses Markov Chain Monte Carlo techniques to explore the large and small worlds of the model parameter space and allows for comparisons of the simulated and detected MSP distributions. The simulation employs empirical radio and gamma-ray luminosity models that are dependent upon the pulsar period and period derivative with freely varying exponents. Parameters associated with the birth distributions are also free to vary. The computer code adjusts the magnitudes of the model luminosities to reproduce the number of MSPs detected by a group of ten radio surveys, thus normalizing the simulation and predicting the MSP birth rates in the Galaxy. Computing many Markov chains leads to preferred sets of model parameters that are further explored through two statistical methods. Marginalized plots define confidence regions in the model parameter space using maximum likelihood methods. A secondary set of confidence regions is determined in parallel using Kuiper statistics calculated from comparisons of cumulative distributions. These two techniques provide feedback to affirm the results and to check for consistency. Radio flux and dispersion measure constraints have been imposed on the simulated gamma-ray distributions in order to reproduce realistic detection conditions. The simulated and detected distributions agree well for both sets of radio and gamma-ray pulsar characteristics, as evidenced by our various comparisons.

  20. Comparison of parameterized nitric acid rainout rates using a coupled stochastic-photochemical tropospheric model

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.; Thompson, Anne M.; Owens, Melody A.; Herwehe, Jerold A.

    1989-01-01

    A major tropospheric loss of soluble species such as nitric acid results from scavenging by water droplets. Several theoretical formulations have been advanced which relate an effective time-independent loss rate for soluble species to statistical properties of precipitation such as the wet fraction and length of a precipitation cycle. In this paper, various 'effective' loss rates that have been proposed are compared with the results of detailed time-dependent model calculations carried out over a seasonal time scale. The model is a stochastic precipitation model coupled to a tropospheric photochemical model. The results of numerous time-dependent seasonal model runs are used to derive numerical values for the nitric acid residence time for several assumed sets of preciptation statistics. These values are then compared with the results obtained by utilizing theoretical 'effective' loss rates in time-independent models.

  1. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model

    NASA Astrophysics Data System (ADS)

    Ogawa, T.; Sato, T.; Hashimoto, S.; Niita, K.

    2013-09-01

    The fragmentation cross-sections of relativistic energy nucleus-nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus-nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections.

  2. A Three Dimensional Kinematic and Kinetic Study of the Golf Swing

    PubMed Central

    Nesbit, Steven M.

    2005-01-01

    This paper discusses the three-dimensional kinematics and kinetics of a golf swing as performed by 84 male and one female amateur subjects of various skill levels. The analysis was performed using a variable full-body computer model of a human coupled with a flexible model of a golf club. Data to drive the model was obtained from subject swings recorded using a multi-camera motion analysis system. Model output included club trajectories, golfer/club interaction forces and torques, work and power, and club deflections. These data formed the basis for a statistical analysis of all subjects, and a detailed analysis and comparison of the swing characteristics of four of the subjects. The analysis generated much new data concerning the mechanics of the golf swing. It revealed that a golf swing is a highly coordinated and individual motion and subject-to-subject variations were significant. The study highlighted the importance of the wrists in generating club head velocity and orienting the club face. The trajectory of the hands and the ability to do work were the factors most closely related to skill level. Key Points Full-body model of the golf swing. Mechanical description of the golf swing. Statistical analysis of golf swing mechanics. Comparisons of subject swing mechanics PMID:24627665

  3. A three dimensional kinematic and kinetic study of the golf swing.

    PubMed

    Nesbit, Steven M

    2005-12-01

    This paper discusses the three-dimensional kinematics and kinetics of a golf swing as performed by 84 male and one female amateur subjects of various skill levels. The analysis was performed using a variable full-body computer model of a human coupled with a flexible model of a golf club. Data to drive the model was obtained from subject swings recorded using a multi-camera motion analysis system. Model output included club trajectories, golfer/club interaction forces and torques, work and power, and club deflections. These data formed the basis for a statistical analysis of all subjects, and a detailed analysis and comparison of the swing characteristics of four of the subjects. The analysis generated much new data concerning the mechanics of the golf swing. It revealed that a golf swing is a highly coordinated and individual motion and subject-to-subject variations were significant. The study highlighted the importance of the wrists in generating club head velocity and orienting the club face. The trajectory of the hands and the ability to do work were the factors most closely related to skill level. Key PointsFull-body model of the golf swing.Mechanical description of the golf swing.Statistical analysis of golf swing mechanics.Comparisons of subject swing mechanics.

  4. Efficient Posterior Probability Mapping Using Savage-Dickey Ratios

    PubMed Central

    Penny, William D.; Ridgway, Gerard R.

    2013-01-01

    Statistical Parametric Mapping (SPM) is the dominant paradigm for mass-univariate analysis of neuroimaging data. More recently, a Bayesian approach termed Posterior Probability Mapping (PPM) has been proposed as an alternative. PPM offers two advantages: (i) inferences can be made about effect size thus lending a precise physiological meaning to activated regions, (ii) regions can be declared inactive. This latter facility is most parsimoniously provided by PPMs based on Bayesian model comparisons. To date these comparisons have been implemented by an Independent Model Optimization (IMO) procedure which separately fits null and alternative models. This paper proposes a more computationally efficient procedure based on Savage-Dickey approximations to the Bayes factor, and Taylor-series approximations to the voxel-wise posterior covariance matrices. Simulations show the accuracy of this Savage-Dickey-Taylor (SDT) method to be comparable to that of IMO. Results on fMRI data show excellent agreement between SDT and IMO for second-level models, and reasonable agreement for first-level models. This Savage-Dickey test is a Bayesian analogue of the classical SPM-F and allows users to implement model comparison in a truly interactive manner. PMID:23533640

  5. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    PubMed

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  6. Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk.

    PubMed

    Bryan, Rebecca; Nair, Prasanth B; Taylor, Mark

    2009-09-18

    Interpatient variability is often overlooked in orthopaedic computational studies due to the substantial challenges involved in sourcing and generating large numbers of bone models. A statistical model of the whole femur incorporating both geometric and material property variation was developed as a potential solution to this problem. The statistical model was constructed using principal component analysis, applied to 21 individual computer tomography scans. To test the ability of the statistical model to generate realistic, unique, finite element (FE) femur models it was used as a source of 1000 femurs to drive a study on femoral neck fracture risk. The study simulated the impact of an oblique fall to the side, a scenario known to account for a large proportion of hip fractures in the elderly and have a lower fracture load than alternative loading approaches. FE model generation, application of subject specific loading and boundary conditions, FE processing and post processing of the solutions were completed automatically. The generated models were within the bounds of the training data used to create the statistical model with a high mesh quality, able to be used directly by the FE solver without remeshing. The results indicated that 28 of the 1000 femurs were at highest risk of fracture. Closer analysis revealed the percentage of cortical bone in the proximal femur to be a crucial differentiator between the failed and non-failed groups. The likely fracture location was indicated to be intertrochantic. Comparison to previous computational, clinical and experimental work revealed support for these findings.

  7. Statistically significant relational data mining :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Jonathan W.; Leung, Vitus Joseph; Phillips, Cynthia Ann

    This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publicationsmore » that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.« less

  8. Effects of Non-Normal Outlier-Prone Error Distribution on Kalman Filter Track

    DTIC Science & Technology

    1991-09-01

    other possibilities exist. For example the GST (Generic Statistical Tracker) uses four motion models [Ref. 41. The GST keeps track of both the target...1.011 + + + 3.113 1.291 4 Although this procedure is not easily statistically interpretable, it was used for the sake of comparison with the other... TRANSITOR TARGET’ WRITE(6,*)’ 3 SECOND ORDER GAUSS MARKOV TARGET’ WRITE(6,*)’ 4 RANDOM TOUR TARGET’ READ(6,*) CHOICE IF((CHOICE.LT.1).OR.(CHOICE.GT.4

  9. Inconsistency between direct and indirect comparisons of competing interventions: meta-epidemiological study.

    PubMed

    Song, Fujian; Xiong, Tengbin; Parekh-Bhurke, Sheetal; Loke, Yoon K; Sutton, Alex J; Eastwood, Alison J; Holland, Richard; Chen, Yen-Fu; Glenny, Anne-Marie; Deeks, Jonathan J; Altman, Doug G

    2011-08-16

    To investigate the agreement between direct and indirect comparisons of competing healthcare interventions. Meta-epidemiological study based on sample of meta-analyses of randomised controlled trials. Data sources Cochrane Database of Systematic Reviews and PubMed. Inclusion criteria Systematic reviews that provided sufficient data for both direct comparison and independent indirect comparisons of two interventions on the basis of a common comparator and in which the odds ratio could be used as the outcome statistic. Inconsistency measured by the difference in the log odds ratio between the direct and indirect methods. The study included 112 independent trial networks (including 1552 trials with 478,775 patients in total) that allowed both direct and indirect comparison of two interventions. Indirect comparison had already been explicitly done in only 13 of the 85 Cochrane reviews included. The inconsistency between the direct and indirect comparison was statistically significant in 16 cases (14%, 95% confidence interval 9% to 22%). The statistically significant inconsistency was associated with fewer trials, subjectively assessed outcomes, and statistically significant effects of treatment in either direct or indirect comparisons. Owing to considerable inconsistency, many (14/39) of the statistically significant effects by direct comparison became non-significant when the direct and indirect estimates were combined. Significant inconsistency between direct and indirect comparisons may be more prevalent than previously observed. Direct and indirect estimates should be combined in mixed treatment comparisons only after adequate assessment of the consistency of the evidence.

  10. Inconsistency between direct and indirect comparisons of competing interventions: meta-epidemiological study

    PubMed Central

    Xiong, Tengbin; Parekh-Bhurke, Sheetal; Loke, Yoon K; Sutton, Alex J; Eastwood, Alison J; Holland, Richard; Chen, Yen-Fu; Glenny, Anne-Marie; Deeks, Jonathan J; Altman, Doug G

    2011-01-01

    Objective To investigate the agreement between direct and indirect comparisons of competing healthcare interventions. Design Meta-epidemiological study based on sample of meta-analyses of randomised controlled trials. Data sources Cochrane Database of Systematic Reviews and PubMed. Inclusion criteria Systematic reviews that provided sufficient data for both direct comparison and independent indirect comparisons of two interventions on the basis of a common comparator and in which the odds ratio could be used as the outcome statistic. Main outcome measure Inconsistency measured by the difference in the log odds ratio between the direct and indirect methods. Results The study included 112 independent trial networks (including 1552 trials with 478 775 patients in total) that allowed both direct and indirect comparison of two interventions. Indirect comparison had already been explicitly done in only 13 of the 85 Cochrane reviews included. The inconsistency between the direct and indirect comparison was statistically significant in 16 cases (14%, 95% confidence interval 9% to 22%). The statistically significant inconsistency was associated with fewer trials, subjectively assessed outcomes, and statistically significant effects of treatment in either direct or indirect comparisons. Owing to considerable inconsistency, many (14/39) of the statistically significant effects by direct comparison became non-significant when the direct and indirect estimates were combined. Conclusions Significant inconsistency between direct and indirect comparisons may be more prevalent than previously observed. Direct and indirect estimates should be combined in mixed treatment comparisons only after adequate assessment of the consistency of the evidence. PMID:21846695

  11. Comparing estimates of climate change impacts from process-based and statistical crop models

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Asseng, Senthold

    2017-01-01

    The potential impacts of climate change on crop productivity are of widespread interest to those concerned with addressing climate change and improving global food security. Two common approaches to assess these impacts are process-based simulation models, which attempt to represent key dynamic processes affecting crop yields, and statistical models, which estimate functional relationships between historical observations of weather and yields. Examples of both approaches are increasingly found in the scientific literature, although often published in different disciplinary journals. Here we compare published sensitivities to changes in temperature, precipitation, carbon dioxide (CO2), and ozone from each approach for the subset of crops, locations, and climate scenarios for which both have been applied. Despite a common perception that statistical models are more pessimistic, we find no systematic differences between the predicted sensitivities to warming from process-based and statistical models up to +2 °C, with limited evidence at higher levels of warming. For precipitation, there are many reasons why estimates could be expected to differ, but few estimates exist to develop robust comparisons, and precipitation changes are rarely the dominant factor for predicting impacts given the prominent role of temperature, CO2, and ozone changes. A common difference between process-based and statistical studies is that the former tend to include the effects of CO2 increases that accompany warming, whereas statistical models typically do not. Major needs moving forward include incorporating CO2 effects into statistical studies, improving both approaches’ treatment of ozone, and increasing the use of both methods within the same study. At the same time, those who fund or use crop model projections should understand that in the short-term, both approaches when done well are likely to provide similar estimates of warming impacts, with statistical models generally requiring fewer resources to produce robust estimates, especially when applied to crops beyond the major grains.

  12. Order-Constrained Reference Priors with Implications for Bayesian Isotonic Regression, Analysis of Covariance and Spatial Models

    NASA Astrophysics Data System (ADS)

    Gong, Maozhen

    Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.

  13. The Cryosphere Model Comparison Tool (CmCt): Ice Sheet Model Validation and Comparison Tool for Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Simon, E.; Nowicki, S.; Neumann, T.; Tyahla, L.; Saba, J. L.; Guerber, J. R.; Bonin, J. A.; DiMarzio, J. P.

    2017-12-01

    The Cryosphere model Comparison tool (CmCt) is a web based ice sheet model validation tool that is being developed by NASA to facilitate direct comparison between observational data and various ice sheet models. The CmCt allows the user to take advantage of several decades worth of observations from Greenland and Antarctica. Currently, the CmCt can be used to compare ice sheet models provided by the user with remotely sensed satellite data from ICESat (Ice, Cloud, and land Elevation Satellite) laser altimetry, GRACE (Gravity Recovery and Climate Experiment) satellite, and radar altimetry (ERS-1, ERS-2, and Envisat). One or more models can be uploaded through the CmCt website and compared with observational data, or compared to each other or other models. The CmCt calculates statistics on the differences between the model and observations, and other quantitative and qualitative metrics, which can be used to evaluate the different model simulations against the observations. The qualitative metrics consist of a range of visual outputs and the quantitative metrics consist of several whole-ice-sheet scalar values that can be used to assign an overall score to a particular simulation. The comparison results from CmCt are useful in quantifying improvements within a specific model (or within a class of models) as a result of differences in model dynamics (e.g., shallow vs. higher-order dynamics approximations), model physics (e.g., representations of ice sheet rheological or basal processes), or model resolution (mesh resolution and/or changes in the spatial resolution of input datasets). The framework and metrics could also be used for use as a model-to-model intercomparison tool, simply by swapping outputs from another model as the observational datasets. Future versions of the tool will include comparisons with other datasets that are of interest to the modeling community, such as ice velocity, ice thickness, and surface mass balance.

  14. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems.

    PubMed

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R (2)). Graphical plots were also used for model comparison. The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.

  15. Leuconostoc Mesenteroides Growth in Food Products: Prediction and Sensitivity Analysis by Adaptive-Network-Based Fuzzy Inference Systems

    PubMed Central

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    Background An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. Methods The ANFIS and ANN models were compared in terms of six statistical indices calculated by comparing their prediction results with actual data: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R 2). Graphical plots were also used for model comparison. Conclusions The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. PMID:23705023

  16. Towards a General Turbulence Model for Planetary Boundary Layers Based on Direct Statistical Simulation

    NASA Astrophysics Data System (ADS)

    Skitka, J.; Marston, B.; Fox-Kemper, B.

    2016-02-01

    Sub-grid turbulence models for planetary boundary layers are typically constructed additively, starting with local flow properties and including non-local (KPP) or higher order (Mellor-Yamada) parameters until a desired level of predictive capacity is achieved or a manageable threshold of complexity is surpassed. Such approaches are necessarily limited in general circumstances, like global circulation models, by their being optimized for particular flow phenomena. By building a model reductively, starting with the infinite hierarchy of turbulence statistics, truncating at a given order, and stripping degrees of freedom from the flow, we offer the prospect a turbulence model and investigative tool that is equally applicable to all flow types and able to take full advantage of the wealth of nonlocal information in any flow. Direct statistical simulation (DSS) that is based upon expansion in equal-time cumulants can be used to compute flow statistics of arbitrary order. We investigate the feasibility of a second-order closure (CE2) by performing simulations of the ocean boundary layer in a quasi-linear approximation for which CE2 is exact. As oceanographic examples, wind-driven Langmuir turbulence and thermal convection are studied by comparison of the quasi-linear and fully nonlinear statistics. We also characterize the computational advantages and physical uncertainties of CE2 defined on a reduced basis determined via proper orthogonal decomposition (POD) of the flow fields.

  17. RAD-ADAPT: Software for modelling clonogenic assay data in radiation biology.

    PubMed

    Zhang, Yaping; Hu, Kaiqiang; Beumer, Jan H; Bakkenist, Christopher J; D'Argenio, David Z

    2017-04-01

    We present a comprehensive software program, RAD-ADAPT, for the quantitative analysis of clonogenic assays in radiation biology. Two commonly used models for clonogenic assay analysis, the linear-quadratic model and single-hit multi-target model, are included in the software. RAD-ADAPT uses maximum likelihood estimation method to obtain parameter estimates with the assumption that cell colony count data follow a Poisson distribution. The program has an intuitive interface, generates model prediction plots, tabulates model parameter estimates, and allows automatic statistical comparison of parameters between different groups. The RAD-ADAPT interface is written using the statistical software R and the underlying computations are accomplished by the ADAPT software system for pharmacokinetic/pharmacodynamic systems analysis. The use of RAD-ADAPT is demonstrated using an example that examines the impact of pharmacologic ATM and ATR kinase inhibition on human lung cancer cell line A549 after ionizing radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.

    PubMed

    Chu, Annie; Cui, Jenny; Dinov, Ivo D

    2009-03-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.

  19. Nested Sampling for Bayesian Model Comparison in the Context of Salmonella Disease Dynamics

    PubMed Central

    Dybowski, Richard; McKinley, Trevelyan J.; Mastroeni, Pietro; Restif, Olivier

    2013-01-01

    Understanding the mechanisms underlying the observed dynamics of complex biological systems requires the statistical assessment and comparison of multiple alternative models. Although this has traditionally been done using maximum likelihood-based methods such as Akaike's Information Criterion (AIC), Bayesian methods have gained in popularity because they provide more informative output in the form of posterior probability distributions. However, comparison between multiple models in a Bayesian framework is made difficult by the computational cost of numerical integration over large parameter spaces. A new, efficient method for the computation of posterior probabilities has recently been proposed and applied to complex problems from the physical sciences. Here we demonstrate how nested sampling can be used for inference and model comparison in biological sciences. We present a reanalysis of data from experimental infection of mice with Salmonella enterica showing the distribution of bacteria in liver cells. In addition to confirming the main finding of the original analysis, which relied on AIC, our approach provides: (a) integration across the parameter space, (b) estimation of the posterior parameter distributions (with visualisations of parameter correlations), and (c) estimation of the posterior predictive distributions for goodness-of-fit assessments of the models. The goodness-of-fit results suggest that alternative mechanistic models and a relaxation of the quasi-stationary assumption should be considered. PMID:24376528

  20. A Comparison between the WATCH Flare Data Statistical Properties and Predictions of the Statistical Flare Model

    NASA Astrophysics Data System (ADS)

    Crosby, N.; Georgoulis, M.; Vilmer, N.

    1999-10-01

    Solar burst observations in the deka-keV energy range originating from the WATCH experiment aboard the GRANAT spacecraft were used to perform frequency distributions built on measured X-ray flare parameters (Crosby et al., 1998). The results of the study show that: 1- the overall distribution functions are robust power laws extending over a number of decades. The typical parameters of events (total counts, peak count rates, duration) are all correlated to each other. 2- the overall distribution functions are the convolution of significantly different distribution functions built on parts of the whole data set filtered by the event duration. These "partial" frequency distributions are still power law distributions over several decades, with a slope systematically decreasing with increasing duration. 3- No correlation is found between the elapsed time interval between successive bursts arising from the same active region and the peak intensity of the flare. In this paper, we attempt a tentative comparison between the statistical properties of the self-organized critical (SOC) cellular automaton statistical flare models (see e.g. Lu and Hamilton (1991), Georgoulis and Vlahos (1996, 1998)) and the respective properties of the WATCH flare data. Despite the inherent weaknesses of the SOC models to simulate a number of physical processes in the active region, it is found that most of the observed statistical properties can be reproduced using the SOC models, including the various frequency distributions and scatter plots. We finally conclude that, even if SOC models must be refined to improve the physical links to MHD approaches, they nevertheless represent a good approach to describe the properties of rapid energy dissipation and magnetic field annihilation in complex and magnetized plasmas. Crosby N., Vilmer N., Lund N. and Sunyaev R., A&A; 334; 299-313; 1998 Crosby N., Lund N., Vilmer N. and Sunyaev R.; A&A Supplement Series; 130, 233, 1998 Georgoulis M. and Vlahos L., 1996, Astrophy. J. Letters, 469, L135 Georgoulis M. and Vlahos L., 1998, in preparation Lu E.T. and Hamilton R.J., 1991, Astroph. J., 380, L89

  1. Applications of statistics to medical science, II overview of statistical procedures for general use.

    PubMed

    Watanabe, Hiroshi

    2012-01-01

    Procedures of statistical analysis are reviewed to provide an overview of applications of statistics for general use. Topics that are dealt with are inference on a population, comparison of two populations with respect to means and probabilities, and multiple comparisons. This study is the second part of series in which we survey medical statistics. Arguments related to statistical associations and regressions will be made in subsequent papers.

  2. Dynamic causal modelling: a critical review of the biophysical and statistical foundations.

    PubMed

    Daunizeau, J; David, O; Stephan, K E

    2011-09-15

    The goal of dynamic causal modelling (DCM) of neuroimaging data is to study experimentally induced changes in functional integration among brain regions. This requires (i) biophysically plausible and physiologically interpretable models of neuronal network dynamics that can predict distributed brain responses to experimental stimuli and (ii) efficient statistical methods for parameter estimation and model comparison. These two key components of DCM have been the focus of more than thirty methodological articles since the seminal work of Friston and colleagues published in 2003. In this paper, we provide a critical review of the current state-of-the-art of DCM. We inspect the properties of DCM in relation to the most common neuroimaging modalities (fMRI and EEG/MEG) and the specificity of inference on neural systems that can be made from these data. We then discuss both the plausibility of the underlying biophysical models and the robustness of the statistical inversion techniques. Finally, we discuss potential extensions of the current DCM framework, such as stochastic DCMs, plastic DCMs and field DCMs. Copyright © 2009 Elsevier Inc. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fangyan; Zhang, Song; Chung Wong, Pak

    Effectively visualizing large graphs and capturing the statistical properties are two challenging tasks. To aid in these two tasks, many sampling approaches for graph simplification have been proposed, falling into three categories: node sampling, edge sampling, and traversal-based sampling. It is still unknown which approach is the best. We evaluate commonly used graph sampling methods through a combined visual and statistical comparison of graphs sampled at various rates. We conduct our evaluation on three graph models: random graphs, small-world graphs, and scale-free graphs. Initial results indicate that the effectiveness of a sampling method is dependent on the graph model, themore » size of the graph, and the desired statistical property. This benchmark study can be used as a guideline in choosing the appropriate method for a particular graph sampling task, and the results presented can be incorporated into graph visualization and analysis tools.« less

  4. Comparison of GEANT4 very low energy cross section models with experimental data in water.

    PubMed

    Incerti, S; Ivanchenko, A; Karamitros, M; Mantero, A; Moretto, P; Tran, H N; Mascialino, B; Champion, C; Ivanchenko, V N; Bernal, M A; Francis, Z; Villagrasa, C; Baldacchin, G; Guèye, P; Capra, R; Nieminen, P; Zacharatou, C

    2010-09-01

    The GEANT4 general-purpose Monte Carlo simulation toolkit is able to simulate physical interaction processes of electrons, hydrogen and helium atoms with charge states (H0, H+) and (He0, He+, He2+), respectively, in liquid water, the main component of biological systems, down to the electron volt regime and the submicrometer scale, providing GEANT4 users with the so-called "GEANT4-DNA" physics models suitable for microdosimetry simulation applications. The corresponding software has been recently re-engineered in order to provide GEANT4 users with a coherent and unique approach to the simulation of electromagnetic interactions within the GEANT4 toolkit framework (since GEANT4 version 9.3 beta). This work presents a quantitative comparison of these physics models with a collection of experimental data in water collected from the literature. An evaluation of the closeness between the total and differential cross section models available in the GEANT4 toolkit for microdosimetry and experimental reference data is performed using a dedicated statistical toolkit that includes the Kolmogorov-Smirnov statistical test. The authors used experimental data acquired in water vapor as direct measurements in the liquid phase are not yet available in the literature. Comparisons with several recommendations are also presented. The authors have assessed the compatibility of experimental data with GEANT4 microdosimetry models by means of quantitative methods. The results show that microdosimetric measurements in liquid water are necessary to assess quantitatively the validity of the software implementation for the liquid water phase. Nevertheless, a comparison with existing experimental data in water vapor provides a qualitative appreciation of the plausibility of the simulation models. The existing reference data themselves should undergo a critical interpretation and selection, as some of the series exhibit significant deviations from each other. The GEANT4-DNA physics models available in the GEANT4 toolkit have been compared in this article to available experimental data in the water vapor phase as well as to several published recommendations on the mass stopping power. These models represent a first step in the extension of the GEANT4 Monte Carlo toolkit to the simulation of biological effects of ionizing radiation.

  5. COMPARING MID-INFRARED GLOBULAR CLUSTER COLORS WITH POPULATION SYNTHESIS MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmby, P.; Jalilian, F. F.

    2012-04-15

    Several population synthesis models now predict integrated colors of simple stellar populations in the mid-infrared bands. To date, the models have not been extensively tested in this wavelength range. In a comparison of the predictions of several recent population synthesis models, the integrated colors are found to cover approximately the same range but to disagree in detail, for example, on the effects of metallicity. To test against observational data, globular clusters (GCs) are used as the closest objects to idealized groups of stars with a single age and single metallicity. Using recent mass estimates, we have compiled a sample ofmore » massive, old GCs in M31 which contain enough stars to guard against the stochastic effects of small-number statistics, and measured their integrated colors in the Spitzer/IRAC bands. Comparison of the cluster photometry in the IRAC bands with the model predictions shows that the models reproduce the cluster colors reasonably well, except for a small (not statistically significant) offset in [4.5] - [5.8]. In this color, models without circumstellar dust emission predict bluer values than are observed. Model predictions of colors formed from the V band and the IRAC 3.6 and 4.5 {mu}m bands are redder than the observed data at high metallicities and we discuss several possible explanations. In agreement with model predictions, V - [3.6] and V - [4.5] colors are found to have metallicity sensitivity similar to or slightly better than V - K{sub s}.« less

  6. A new approach to fracture modelling in reservoirs using deterministic, genetic and statistical models of fracture growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawnsley, K.; Swaby, P.

    1996-08-01

    It is increasingly acknowledged that in order to understand and forecast the behavior of fracture influenced reservoirs we must attempt to reproduce the fracture system geometry and use this as a basis for fluid flow calculation. This article aims to present a recently developed fracture modelling prototype designed specifically for use in hydrocarbon reservoir environments. The prototype {open_quotes}FRAME{close_quotes} (FRActure Modelling Environment) aims to provide a tool which will allow the generation of realistic 3D fracture systems within a reservoir model, constrained to the known geology of the reservoir by both mechanical and statistical considerations, and which can be used asmore » a basis for fluid flow calculation. Two newly developed modelling techniques are used. The first is an interactive tool which allows complex fault surfaces and their associated deformations to be reproduced. The second is a {open_quotes}genetic{close_quotes} model which grows fracture patterns from seeds using conceptual models of fracture development. The user defines the mechanical input and can retrieve all the statistics of the growing fractures to allow comparison to assumed statistical distributions for the reservoir fractures. Input parameters include growth rate, fracture interaction characteristics, orientation maps and density maps. More traditional statistical stochastic fracture models are also incorporated. FRAME is designed to allow the geologist to input hard or soft data including seismically defined surfaces, well fractures, outcrop models, analogue or numerical mechanical models or geological {open_quotes}feeling{close_quotes}. The geologist is not restricted to {open_quotes}a priori{close_quotes} models of fracture patterns that may not correspond to the data.« less

  7. COMPARISON OF CANCER SLOPE FACTORS FOR USING DIFFERENT STATISTICAL APPROACHES

    EPA Science Inventory

    In the past, the cancer slope factor has been calculated as the upper 95% confidence limit on the coefficient (q1*) of the linear term of the multistage model for the extra cancer risk over background. The U.S. EPA's draft final cancer guidelines, released in 2003, however, pres...

  8. A Comparison of Statistical Techniques for Combining Modeled and Observed Concentrations to Create High-Resolution Ozone Air Quality Surfaces

    EPA Science Inventory

    Air quality surfaces representing pollutant concentrations across space and time are needed for many applications, including tracking trends and relating air quality to human and ecosystem health. The spatial and temporal characteristics of these surfaces may reveal new informat...

  9. A Comparison of Conjoint Analysis Response Formats

    Treesearch

    Kevin J. Boyle; Thomas P. Holmes; Mario F. Teisl; Brian Roe

    2001-01-01

    A split-sample design is used to evaluate the convergent validity of three response formats used in conjoint analysis experiments. WC investigate whether recoding rating data to rankings and choose-one formats, and recoding ranking data to choose one. result in structural models and welfare estimates that are statistically indistinguishable from...

  10. Injury profiles related to mortality in patients with a low Injury Severity Score: a case-mix issue?

    PubMed

    Joosse, Pieter; Schep, Niels W L; Goslings, J Carel

    2012-07-01

    Outcome prediction models are widely used to evaluate trauma care. External benchmarking provides individual institutions with a tool to compare survival with a reference dataset. However, these models do have limitations. In this study, the hypothesis was tested whether specific injuries are associated with increased mortality and whether differences in case-mix of these injuries influence outcome comparison. A retrospective study was conducted in a Dutch trauma region. Injury profiles, based on injuries most frequently endured by unexpected death, were determined. The association between these injury profiles and mortality was studied in patients with a low Injury Severity Score by logistic regression. The standardized survival of our population (Ws statistic) was compared with North-American and British reference databases, with and without patients suffering from previously defined injury profiles. In total, 14,811 patients were included. Hip fractures, minor pelvic fractures, femur fractures, and minor thoracic injuries were significantly associated with mortality corrected for age, sex, and physiologic derangement in patients with a low injury severity. Odds ratios ranged from 2.42 to 2.92. The Ws statistic for comparison with North-American databases significantly improved after exclusion of patients with these injuries. The Ws statistic for comparison with a British reference database remained unchanged. Hip fractures, minor pelvic fractures, femur fractures, and minor thoracic wall injuries are associated with increased mortality. Comparative outcome analysis of a population with a reference database that differs in case-mix with respect to these injuries should be interpreted cautiously. Prognostic study, level II.

  11. Galaxy mergers and gravitational lens statistics

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Maoz, Dan; Turner, Edwin L.; Fukugita, Masataka

    1994-01-01

    We investigate the impact of hierarchical galaxy merging on the statistics of gravitational lensing of distant sources. Since no definite theoretical predictions for the merging history of luminous galaxies exist, we adopt a parameterized prescription, which allows us to adjust the expected number of pieces comprising a typical present galaxy at z approximately 0.65. The existence of global parameter relations for elliptical galaxies and constraints on the evolution of the phase space density in dissipationless mergers, allow us to limit the possible evolution of galaxy lens properties under merging. We draw two lessons from implementing this lens evolution into statistical lens calculations: (1) The total optical depth to multiple imaging (e.g., of quasars) is quite insensitive to merging. (2) Merging leads to a smaller mean separation of observed multiple images. Because merging does not reduce drastically the expected lensing frequency, it cannot make lambda-dominated cosmologies compatible with the existing lensing observations. A comparison with the data from the Hubble Space Telescope (HST) Snapshot Survey shows that models with little or no evolution of the lens population are statistically favored over strong merging scenarios. A specific merging scenario proposed to Toomre can be rejected (95% level) by such a comparison. Some versions of the scenario proposed by Broadhurst, Ellis, & Glazebrook are statistically acceptable.

  12. Measurement-based reliability prediction methodology. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Linn, Linda Shen

    1991-01-01

    In the past, analytical and measurement based models were developed to characterize computer system behavior. An open issue is how these models can be used, if at all, for system design improvement. The issue is addressed here. A combined statistical/analytical approach to use measurements from one environment to model the system failure behavior in a new environment is proposed. A comparison of the predicted results with the actual data from the new environment shows a close correspondence.

  13. Simple Statistical Model to Quantify Maximum Expected EMC in Spacecraft and Avionics Boxes

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Bremner, Paul

    2014-01-01

    This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. Test and model data correlation is shown. In addition, this presentation shows application of the power balance and extention of this method to predict the variance and maximum exptected mean of the E-field data. This is valuable for large scale evaluations of transmission inside cavities.

  14. A comparison of methods of fitting several models to nutritional response data.

    PubMed

    Vedenov, D; Pesti, G M

    2008-02-01

    A variety of models have been proposed to fit nutritional input-output response data. The models are typically nonlinear; therefore, fitting the models usually requires sophisticated statistical software and training to use it. An alternative tool for fitting nutritional response models was developed by using widely available and easier-to-use Microsoft Excel software. The tool, implemented as an Excel workbook (NRM.xls), allows simultaneous fitting and side-by-side comparisons of several popular models. This study compared the results produced by the tool we developed and PROC NLIN of SAS. The models compared were the broken line (ascending linear and quadratic segments), saturation kinetics, 4-parameter logistics, sigmoidal, and exponential models. The NRM.xls workbook provided results nearly identical to those of PROC NLIN. Furthermore, the workbook successfully fit several models that failed to converge in PROC NLIN. Two data sets were used as examples to compare fits by the different models. The results suggest that no particular nonlinear model is necessarily best for all nutritional response data.

  15. Tooth-size discrepancy: A comparison between manual and digital methods

    PubMed Central

    Correia, Gabriele Dória Cabral; Habib, Fernando Antonio Lima; Vogel, Carlos Jorge

    2014-01-01

    Introduction Technological advances in Dentistry have emerged primarily in the area of diagnostic tools. One example is the 3D scanner, which can transform plaster models into three-dimensional digital models. Objective This study aimed to assess the reliability of tooth size-arch length discrepancy analysis measurements performed on three-dimensional digital models, and compare these measurements with those obtained from plaster models. Material and Methods To this end, plaster models of lower dental arches and their corresponding three-dimensional digital models acquired with a 3Shape R700T scanner were used. All of them had lower permanent dentition. Four different tooth size-arch length discrepancy calculations were performed on each model, two of which by manual methods using calipers and brass wire, and two by digital methods using linear measurements and parabolas. Results Data were statistically assessed using Friedman test and no statistically significant differences were found between the two methods (P > 0.05), except for values found by the linear digital method which revealed a slight, non-significant statistical difference. Conclusions Based on the results, it is reasonable to assert that any of these resources used by orthodontists to clinically assess tooth size-arch length discrepancy can be considered reliable. PMID:25279529

  16. Linking Statistically- and Physically-Based Models for Improved Streamflow Simulation in Gaged and Ungaged Areas

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Archfield, S. A.; Farmer, W. H.; Kiang, J. E.

    2014-12-01

    The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is being used to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models. The GCPO LCC covers part or all of 12 states and 5 sub-geographies, totaling approximately 726,000 km2, and is centered on the lower Mississippi Alluvial Valley. A total of 346 USGS streamgages in the GCPO LCC region were selected to evaluate the performance of this new calibration methodology for the period 1980 to 2013. Initially, the physically-based models are calibrated to measured streamflow data to provide a baseline for comparison. An enhanced calibration procedure then is used to calibrate the physically-based models in the gaged and ungaged areas of the GCPO LCC using statistically-based estimates of streamflow. For this application, the calibration procedure is adjusted to address the limitations of the statistically generated time series to reproduce measured streamflow in gaged basins, primarily by incorporating error and bias estimates. As part of this effort, estimates of uncertainty in the model simulations are also computed for the gaged and ungaged watersheds.

  17. A mathematical model for HIV and hepatitis C co-infection and its assessment from a statistical perspective.

    PubMed

    Castro Sanchez, Amparo Yovanna; Aerts, Marc; Shkedy, Ziv; Vickerman, Peter; Faggiano, Fabrizio; Salamina, Guiseppe; Hens, Niel

    2013-03-01

    The hepatitis C virus (HCV) and the human immunodeficiency virus (HIV) are a clear threat for public health, with high prevalences especially in high risk groups such as injecting drug users. People with HIV infection who are also infected by HCV suffer from a more rapid progression to HCV-related liver disease and have an increased risk for cirrhosis and liver cancer. Quantifying the impact of HIV and HCV co-infection is therefore of great importance. We propose a new joint mathematical model accounting for co-infection with the two viruses in the context of injecting drug users (IDUs). Statistical concepts and methods are used to assess the model from a statistical perspective, in order to get further insights in: (i) the comparison and selection of optional model components, (ii) the unknown values of the numerous model parameters, (iii) the parameters to which the model is most 'sensitive' and (iv) the combinations or patterns of values in the high-dimensional parameter space which are most supported by the data. Data from a longitudinal study of heroin users in Italy are used to illustrate the application of the proposed joint model and its statistical assessment. The parameters associated with contact rates (sharing syringes) and the transmission rates per syringe-sharing event are shown to play a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Benefits of statistical molecular design, covariance analysis, and reference models in QSAR: a case study on acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Andersson, C. David; Hillgren, J. Mikael; Lindgren, Cecilia; Qian, Weixing; Akfur, Christine; Berg, Lotta; Ekström, Fredrik; Linusson, Anna

    2015-03-01

    Scientific disciplines such as medicinal- and environmental chemistry, pharmacology, and toxicology deal with the questions related to the effects small organic compounds exhort on biological targets and the compounds' physicochemical properties responsible for these effects. A common strategy in this endeavor is to establish structure-activity relationships (SARs). The aim of this work was to illustrate benefits of performing a statistical molecular design (SMD) and proper statistical analysis of the molecules' properties before SAR and quantitative structure-activity relationship (QSAR) analysis. Our SMD followed by synthesis yielded a set of inhibitors of the enzyme acetylcholinesterase (AChE) that had very few inherent dependencies between the substructures in the molecules. If such dependencies exist, they cause severe errors in SAR interpretation and predictions by QSAR-models, and leave a set of molecules less suitable for future decision-making. In our study, SAR- and QSAR models could show which molecular sub-structures and physicochemical features that were advantageous for the AChE inhibition. Finally, the QSAR model was used for the prediction of the inhibition of AChE by an external prediction set of molecules. The accuracy of these predictions was asserted by statistical significance tests and by comparisons to simple but relevant reference models.

  19. Comparison of Thunderstorm Simulations from WRF-NMM and WRF-ARW Models over East Indian Region

    PubMed Central

    Litta, A. J.; Mary Ididcula, Sumam; Mohanty, U. C.; Kiran Prasad, S.

    2012-01-01

    The thunderstorms are typical mesoscale systems dominated by intense convection. Mesoscale models are essential for the accurate prediction of such high-impact weather events. In the present study, an attempt has been made to compare the simulated results of three thunderstorm events using NMM and ARW model core of WRF system and validated the model results with observations. Both models performed well in capturing stability indices which are indicators of severe convective activity. Comparison of model-simulated radar reflectivity imageries with observations revealed that NMM model has simulated well the propagation of the squall line, while the squall line movement was slow in ARW. From the model-simulated spatial plots of cloud top temperature, we can see that NMM model has better captured the genesis, intensification, and propagation of thunder squall than ARW model. The statistical analysis of rainfall indicates the better performance of NMM than ARW. Comparison of model-simulated thunderstorm affected parameters with that of the observed showed that NMM has performed better than ARW in capturing the sharp rise in humidity and drop in temperature. This suggests that NMM model has the potential to provide unique and valuable information for severe thunderstorm forecasters over east Indian region. PMID:22645480

  20. Achievement Goal Orientations and Adolescents’ Subjective Well-Being in School: The Mediating Roles of Academic Social Comparison Directions

    PubMed Central

    Tian, Lili; Yu, Tingting; Huebner, E. Scott

    2017-01-01

    The purpose of this study was to examine the multiple mediational roles of academic social comparison directions (upward academic social comparison and downward academic social comparison) on the relationships between achievement goal orientations (i.e., mastery goals, performance-approach goals, and performance-avoidance goals) and subjective well-being (SWB) in school (school satisfaction, school affect) in adolescent students in China. A total of 883 Chinese adolescent students (430 males; Mean age = 12.99) completed a multi-measure questionnaire. Structural equation modeling was used to examine the hypotheses. Results indicated that (1) mastery goal orientations and performance-approach goal orientations both showed a statistically significant, positive correlation with SWB in school whereas performance-avoidance goal orientations showed a statistically significant, negative correlation with SWB in school among adolescents; (2) upward academic social comparisons mediated the relation between the three types of achievement goal orientations (i.e., mastery goals, performance-approach goals, and performance-avoidance goals) and SWB in school; (3) downward academic social comparisons mediated the relation between mastery goal orientations and SWB in school as well as the relation between performance-avoidance goal orientations and SWB in school. The findings suggest possible important cultural differences in the antecedents of SWB in school in adolescent students in China compared to adolescent students in Western nations. PMID:28197109

  1. The challenging use and interpretation of circulating biomarkers of exposure to persistent organic pollutants in environmental health: Comparison of lipid adjustment approaches in a case study related to endometriosis.

    PubMed

    Cano-Sancho, German; Labrune, Léa; Ploteau, Stéphane; Marchand, Philippe; Le Bizec, Bruno; Antignac, Jean-Philippe

    2018-06-01

    The gold-standard matrix for measuring the internal levels of persistent organic pollutants (POPs) is the adipose tissue, however in epidemiological studies the use of serum is preferred due to the low cost and higher accessibility. The interpretation of serum biomarkers is tightly related to the understanding of the underlying causal structure relating the POPs, serum lipids and the disease. Considering the extended benefits of using serum biomarkers we aimed to further examine if through statistical modelling we would be able to improve the use and interpretation of serum biomarkers in the study of endometriosis. Hence, we have conducted a systematic comparison of statistical approaches commonly used to lipid-adjust the circulating biomarkers of POPs based on existing methods, using data from a pilot case-control study focused on severe deep infiltrating endometriosis. The odds ratios (ORs) obtained from unconditional regression for those models with serum biomarkers were further compared to those obtained from adipose tissue. The results of this exploratory study did not support the use of blood biomarkers as proxy estimates of POPs in adipose tissue to implement in risk models for endometriosis with the available statistical approaches to correct for lipids. The current statistical approaches commonly used to lipid-adjust circulating POPs, do not fully represent the underlying biological complexity between POPs, lipids and disease (especially those directly or indirectly affecting or affected by lipid metabolism). Hence, further investigations are warranted to improve the use and interpretation of blood biomarkers under complex scenarios of lipid dynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Right-sizing statistical models for longitudinal data.

    PubMed

    Wood, Phillip K; Steinley, Douglas; Jackson, Kristina M

    2015-12-01

    Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study. (c) 2015 APA, all rights reserved).

  3. Dissolution curve comparisons through the F(2) parameter, a Bayesian extension of the f(2) statistic.

    PubMed

    Novick, Steven; Shen, Yan; Yang, Harry; Peterson, John; LeBlond, Dave; Altan, Stan

    2015-01-01

    Dissolution (or in vitro release) studies constitute an important aspect of pharmaceutical drug development. One important use of such studies is for justifying a biowaiver for post-approval changes which requires establishing equivalence between the new and old product. We propose a statistically rigorous modeling approach for this purpose based on the estimation of what we refer to as the F2 parameter, an extension of the commonly used f2 statistic. A Bayesian test procedure is proposed in relation to a set of composite hypotheses that capture the similarity requirement on the absolute mean differences between test and reference dissolution profiles. Several examples are provided to illustrate the application. Results of our simulation study comparing the performance of f2 and the proposed method show that our Bayesian approach is comparable to or in many cases superior to the f2 statistic as a decision rule. Further useful extensions of the method, such as the use of continuous-time dissolution modeling, are considered.

  4. Development of a procedure to model high-resolution wind profiles from smoothed or low-frequency data

    NASA Technical Reports Server (NTRS)

    Camp, D. W.

    1977-01-01

    The derivation of simulated Jimsphere wind profiles from low-frequency rawinsonde data and a generated set of white noise data are presented. A computer program is developed to model high-resolution wind profiles based on the statistical properties of data from the Kennedy Space Center, Florida. Comparison of the measured Jimsphere data, rawinsonde data, and the simulated profiles shows excellent agreement.

  5. Bayesian truncation errors in chiral effective field theory: model checking and accounting for correlations

    NASA Astrophysics Data System (ADS)

    Melendez, Jordan; Wesolowski, Sarah; Furnstahl, Dick

    2017-09-01

    Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion, which induces an error that must be quantified for robust statistical comparisons to experiment. A Bayesian model yields posterior probability distribution functions for these errors based on expectations of naturalness encoded in Bayesian priors and the observed order-by-order convergence pattern of the EFT. As a general example of a statistical approach to truncation errors, the model was applied to chiral EFT for neutron-proton scattering using various semi-local potentials of Epelbaum, Krebs, and Meißner (EKM). Here we discuss how our model can learn correlation information from the data and how to perform Bayesian model checking to validate that the EFT is working as advertised. Supported in part by NSF PHY-1614460 and DOE NUCLEI SciDAC DE-SC0008533.

  6. Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Min; Wang, Jun

    A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.

  7. Multivariate space - time analysis of PRE-STORM precipitation

    NASA Technical Reports Server (NTRS)

    Polyak, Ilya; North, Gerald R.; Valdes, Juan B.

    1994-01-01

    This paper presents the methodologies and results of the multivariate modeling and two-dimensional spectral and correlation analysis of PRE-STORM rainfall gauge data. Estimated parameters of the models for the specific spatial averages clearly indicate the eastward and southeastward wave propagation of rainfall fluctuations. A relationship between the coefficients of the diffusion equation and the parameters of the stochastic model of rainfall fluctuations is derived that leads directly to the exclusive use of rainfall data to estimate advection speed (about 12 m/s) as well as other coefficients of the diffusion equation of the corresponding fields. The statistical methodology developed here can be used for confirmation of physical models by comparison of the corresponding second-moment statistics of the observed and simulated data, for generating multiple samples of any size, for solving the inverse problem of the hydrodynamic equations, and for application in some other areas of meteorological and climatological data analysis and modeling.

  8. Computed Tomography Image Quality Evaluation of a New Iterative Reconstruction Algorithm in the Abdomen (Adaptive Statistical Iterative Reconstruction-V) a Comparison With Model-Based Iterative Reconstruction, Adaptive Statistical Iterative Reconstruction, and Filtered Back Projection Reconstructions.

    PubMed

    Goodenberger, Martin H; Wagner-Bartak, Nicolaus A; Gupta, Shiva; Liu, Xinming; Yap, Ramon Q; Sun, Jia; Tamm, Eric P; Jensen, Corey T

    The purpose of this study was to compare abdominopelvic computed tomography images reconstructed with adaptive statistical iterative reconstruction-V (ASIR-V) with model-based iterative reconstruction (Veo 3.0), ASIR, and filtered back projection (FBP). Abdominopelvic computed tomography scans for 36 patients (26 males and 10 females) were reconstructed using FBP, ASIR (80%), Veo 3.0, and ASIR-V (30%, 60%, 90%). Mean ± SD patient age was 32 ± 10 years with mean ± SD body mass index of 26.9 ± 4.4 kg/m. Images were reviewed by 2 independent readers in a blinded, randomized fashion. Hounsfield unit, noise, and contrast-to-noise ratio (CNR) values were calculated for each reconstruction algorithm for further comparison. Phantom evaluation of low-contrast detectability (LCD) and high-contrast resolution was performed. Adaptive statistical iterative reconstruction-V 30%, ASIR-V 60%, and ASIR 80% were generally superior qualitatively compared with ASIR-V 90%, Veo 3.0, and FBP (P < 0.05). Adaptive statistical iterative reconstruction-V 90% showed superior LCD and had the highest CNR in the liver, aorta, and, pancreas, measuring 7.32 ± 3.22, 11.60 ± 4.25, and 4.60 ± 2.31, respectively, compared with the next best series of ASIR-V 60% with respective CNR values of 5.54 ± 2.39, 8.78 ± 3.15, and 3.49 ± 1.77 (P <0.0001). Veo 3.0 and ASIR 80% had the best and worst spatial resolution, respectively. Adaptive statistical iterative reconstruction-V 30% and ASIR-V 60% provided the best combination of qualitative and quantitative performance. Adaptive statistical iterative reconstruction 80% was equivalent qualitatively, but demonstrated inferior spatial resolution and LCD.

  9. Statistical thermodynamics of long straight rigid rods on triangular lattices: nematic order and adsorption thermodynamic functions.

    PubMed

    Matoz-Fernandez, D A; Linares, D H; Ramirez-Pastor, A J

    2012-09-04

    The statistical thermodynamics of straight rigid rods of length k on triangular lattices was developed on a generalization in the spirit of the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In this scheme, the Helmholtz free energy and its derivatives were written in terms of the order parameter, δ, which characterizes the nematic phase occurring in the system at intermediate densities. Then, using the principle of minimum free energy with δ as a parameter, the main adsorption properties were calculated. Comparisons with Monte Carlo simulations and experimental data were performed in order to evaluate the outcome and limitations of the theoretical model.

  10. Comparison of Mean Climate Trends in the Northern Hemisphere Between N.C.E.P. and Two Atmosphere-Ocean Model Forced Runs

    NASA Technical Reports Server (NTRS)

    Lucarini, Valerio; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2002-01-01

    Results are presented for two greenhouse gas experiments of the Goddard Institute for Space Studies Atmosphere-Ocean Model (AOM). The computed trends of surface pressure, surface temperature, 850, 500 and 200 mb geopotential heights and related temperatures of the model for the time frame 1960-2000 are compared to those obtained from the National Centers for Environmental Prediction observations. A spatial correlation analysis and mean value comparison are performed, showing good agreement. A brief general discussion about the statistics of trend detection is presented. The domain of interest is the Northern Hemisphere (NH) because of the higher reliability of both the model results and the observations. The accuracy that this AOM has in describing the observed regional and NH climate trends makes it reliable in forecasting future climate changes.

  11. Multivariate statistical model for 3D image segmentation with application to medical images.

    PubMed

    John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O

    2003-12-01

    In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).

  12. Experimental comparisons of hypothesis test and moving average based combustion phase controllers.

    PubMed

    Gao, Jinwu; Wu, Yuhu; Shen, Tielong

    2016-11-01

    For engine control, combustion phase is the most effective and direct parameter to improve fuel efficiency. In this paper, the statistical control strategy based on hypothesis test criterion is discussed. Taking location of peak pressure (LPP) as combustion phase indicator, the statistical model of LPP is first proposed, and then the controller design method is discussed on the basis of both Z and T tests. For comparison, moving average based control strategy is also presented and implemented in this study. The experiments on a spark ignition gasoline engine at various operating conditions show that the hypothesis test based controller is able to regulate LPP close to set point while maintaining the rapid transient response, and the variance of LPP is also well constrained. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. A comparison of different strategies in multivariate regression models for the direct determination of Mn, Cr, and Ni in steel samples using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Luna, Aderval S.; Gonzaga, Fabiano B.; da Rocha, Werickson F. C.; Lima, Igor C. A.

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) analysis was carried out on eleven steel samples to quantify the concentrations of chromium, nickel, and manganese. LIBS spectral data were correlated to known concentrations of the samples using different strategies in partial least squares (PLS) regression models. For the PLS analysis, one predictive model was separately generated for each element, while different approaches were used for the selection of variables (VIP: variable importance in projection and iPLS: interval partial least squares) in the PLS model to quantify the contents of the elements. The comparison of the performance of the models showed that there was no significant statistical difference using the Wilcoxon signed rank test. The elliptical joint confidence region (EJCR) did not detect systematic errors in these proposed methodologies for each metal.

  14. Near-road air pollutant concentrations of CO and PM 2.5: A comparison of MOBILE6.2/CALINE4 and generalized additive models

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Batterman, Stuart

    2010-05-01

    The contribution of vehicular traffic to air pollutant concentrations is often difficult to establish. This paper utilizes both time-series and simulation models to estimate vehicle contributions to pollutant levels near roadways. The time-series model used generalized additive models (GAMs) and fitted pollutant observations to traffic counts and meteorological variables. A one year period (2004) was analyzed on a seasonal basis using hourly measurements of carbon monoxide (CO) and particulate matter less than 2.5 μm in diameter (PM 2.5) monitored near a major highway in Detroit, Michigan, along with hourly traffic counts and local meteorological data. Traffic counts showed statistically significant and approximately linear relationships with CO concentrations in fall, and piecewise linear relationships in spring, summer and winter. The same period was simulated using emission and dispersion models (Motor Vehicle Emissions Factor Model/MOBILE6.2; California Line Source Dispersion Model/CALINE4). CO emissions derived from the GAM were similar, on average, to those estimated by MOBILE6.2. The same analyses for PM 2.5 showed that GAM emission estimates were much higher (by 4-5 times) than the dispersion model results, and that the traffic-PM 2.5 relationship varied seasonally. This analysis suggests that the simulation model performed reasonably well for CO, but it significantly underestimated PM 2.5 concentrations, a likely result of underestimating PM 2.5 emission factors. Comparisons between statistical and simulation models can help identify model deficiencies and improve estimates of vehicle emissions and near-road air quality.

  15. Extending the Confrontation of Weather and Climate Models from Soil Moisture to Surface Flux Data

    NASA Astrophysics Data System (ADS)

    Dirmeyer, P.; Chen, L.; Wu, J.

    2016-12-01

    The atmosphere and land components of weather and climate models are typically developed separately and coupled as a last step before new model versions are released. Separate testing of land surface models (LSMs) and atmospheric models is often quite extensive in the development phase, but validation of coupled land-atmosphere behavior is often minimal if performed at all. This is partly because of this piecemeal model development approach and partly because the necessary in situ data to confront coupled land-atmosphere models (LAMs) has been meager until quite recently. Over the past 10-20 years there has been a growing number of networks of measurements of land surface states, surface fluxes, radiation and near-surface meteorology, although they have been largely uncoordinated and frequently incomplete across the range of variables necessary to validate LAMs. We extend recent work "confronting" a variety of LSMs and LAMs with in situ observations of soil moisture from cross-standardized networks to comparisons with measurements of surface latent and sensible heat fluxes at FLUXNET sites in a variety of climate regimes around the world. The motivation is to determine how well LSMs represent observed statistics of variability and co-variability, how much models differ from one another, and how those statistics change when the LSMs are coupled to atmospheric models. Furthermore, comparisons are made to several LAMs in both open-loop (free running) and reanalysis configurations. This shows to what extent data assimilation can constrain the processes involved in flux variability, and helps illuminate model development pathways to improve coupled land-atmosphere interactions in weather and climate models.

  16. Confronting weather and climate models with observational data from soil moisture networks over the United States

    PubMed Central

    Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal D.; Balsamo, Gianpaolo; Lawrence, David M.

    2018-01-01

    Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison. PMID:29645013

  17. Confronting Weather and Climate Models with Observational Data from Soil Moisture Networks over the United States

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A., Jr.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal Dean; hide

    2016-01-01

    Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses out perform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

  18. Confronting weather and climate models with observational data from soil moisture networks over the United States.

    PubMed

    Dirmeyer, Paul A; Wu, Jiexia; Norton, Holly E; Dorigo, Wouter A; Quiring, Steven M; Ford, Trenton W; Santanello, Joseph A; Bosilovich, Michael G; Ek, Michael B; Koster, Randal D; Balsamo, Gianpaolo; Lawrence, David M

    2016-04-01

    Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

  19. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    NASA Astrophysics Data System (ADS)

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  20. Sandpile-based model for capturing magnitude distributions and spatiotemporal clustering and separation in regional earthquakes

    NASA Astrophysics Data System (ADS)

    Batac, Rene C.; Paguirigan, Antonino A., Jr.; Tarun, Anjali B.; Longjas, Anthony G.

    2017-04-01

    We propose a cellular automata model for earthquake occurrences patterned after the sandpile model of self-organized criticality (SOC). By incorporating a single parameter describing the probability to target the most susceptible site, the model successfully reproduces the statistical signatures of seismicity. The energy distributions closely follow power-law probability density functions (PDFs) with a scaling exponent of around -1. 6, consistent with the expectations of the Gutenberg-Richter (GR) law, for a wide range of the targeted triggering probability values. Additionally, for targeted triggering probabilities within the range 0.004-0.007, we observe spatiotemporal distributions that show bimodal behavior, which is not observed previously for the original sandpile. For this critical range of values for the probability, model statistics show remarkable comparison with long-period empirical data from earthquakes from different seismogenic regions. The proposed model has key advantages, the foremost of which is the fact that it simultaneously captures the energy, space, and time statistics of earthquakes by just introducing a single parameter, while introducing minimal parameters in the simple rules of the sandpile. We believe that the critical targeting probability parameterizes the memory that is inherently present in earthquake-generating regions.

  1. Comparison of statistical and theoretical habitat models for conservation planning: the benefit of ensemble prediction

    USGS Publications Warehouse

    Jones-Farrand, D. Todd; Fearer, Todd M.; Thogmartin, Wayne E.; Thompson, Frank R.; Nelson, Mark D.; Tirpak, John M.

    2011-01-01

    Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and regression tree (CRT), habitat suitability index (HSI), forest structure database (FS), and habitat association database (HA). We focused our comparison on models for five priority forest-breeding species in the Central Hardwoods Bird Conservation Region: Acadian Flycatcher, Cerulean Warbler, Prairie Warbler, Red-headed Woodpecker, and Worm-eating Warbler. Lacking complete knowledge on the distribution and abundance of each species with which we could illuminate differences between approaches and provide strong grounds for recommending one approach over another, we used two approaches to compare models: rank correlations among model outputs and comparison of spatial correspondence. In general, rank correlations were significantly positive among models for each species, indicating general agreement among the models. Worm-eating Warblers had the highest pairwise correlations, all of which were significant (P , 0.05). Red-headed Woodpeckers had the lowest agreement among models, suggesting greater uncertainty in the relative conservation value of areas within the region. We assessed model uncertainty by mapping the spatial congruence in priorities (i.e., top ranks) resulting from each model for each species and calculating the coefficient of variation across model ranks for each location. This allowed identification of areas more likely to be good targets of conservation effort for a species, those areas that were least likely, and those in between where uncertainty is higher and thus conservation action incorporates more risk. Based on our results, models developed independently for the same purpose (conservation planning for a particular species in a particular geography) yield different answers and thus different conservation strategies. We assert that using only one habitat model (even if validated) as the foundation of a conservation plan is risky. Using multiple models (i.e., ensemble prediction) can reduce uncertainty and increase efficacy of conservation action when models corroborate one another and increase understanding of the system when they do not.

  2. Selected 1966-69 interior Alaska wildfire statistics with long-term comparisons.

    Treesearch

    Richard J. Barney

    1971-01-01

    This paper presents selected interior Alaska forest and range wildfire statistics for the period 1966-69. Comparisons are made with the decade 1956-65 and the 30-year period 1940-69, which are essentially the total recorded statistical history on wildfires available for Alaska.

  3. Particle simulation of Coulomb collisions: Comparing the methods of Takizuka and Abe and Nanbu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Chiaming; Lin, Tungyou; Caflisch, Russel

    2008-04-20

    The interactions of charged particles in a plasma are governed by long-range Coulomb collision. We compare two widely used Monte Carlo models for Coulomb collisions. One was developed by Takizuka and Abe in 1977, the other was developed by Nanbu in 1997. We perform deterministic and statistical error analysis with respect to particle number and time step. The two models produce similar stochastic errors, but Nanbu's model gives smaller time step errors. Error comparisons between these two methods are presented.

  4. Simulating wind energy resources with mesoscale models: Intercomparison of state-of-the-art models over Northern Europe

    NASA Astrophysics Data System (ADS)

    Hahmann, A. N.

    2015-12-01

    Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are useful because they give information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Various mesoscale models and families of mesoscale models are being used, with thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. We have carried out a blind benchmarking study to evaluate the capabilities of mesoscale models used in wind energy to estimate site wind conditions: to highlight common issues on mesoscale modeling of wind conditions on sites with different characteristics, and to identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. Three experimental sites with tall mast measurements were selected: FINO3 (offshore), Høvsøre (coastal), and Cabauw (land-based). The participants were asked to provide hourly time series of wind speed and direction, temperature, etc., at various heights for 2011. The methods used were left to the choice of the participants, but they were asked for a detailed description of their model and many other parameters (e.g., horizontal and vertical resolution, model parameterizations, surface roughness length) that could be used to group the models and interpret the results of the intercomparison. The analysis of the time series includes comparison to observations, summarized with well-known measures such as biases, RMSE, correlations, and of sector-wise statistics, and the temporal spectra. The statistics were grouped by the models, their spatial resolution, forcing data, various integration methods, etc. The results show high fidelity of the various entries in simulating the wind climate at the offshore and coastal site. Over land and the statistics of other derived fields (e.g. wind shear distributions) show much less similarities among the models and with the observations. Cloud computing now allows the use of mesoscale models by non-experts for site assessment. This tool is very useful and powerful, but users must be aware of the different issues that might be encountered in working with different setups.

  5. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures.

    PubMed

    Austin, Peter C

    2010-04-22

    Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.

  6. Eutrophication risk assessment in coastal embayments using simple statistical models.

    PubMed

    Arhonditsis, G; Eleftheriadou, M; Karydis, M; Tsirtsis, G

    2003-09-01

    A statistical methodology is proposed for assessing the risk of eutrophication in marine coastal embayments. The procedure followed was the development of regression models relating the levels of chlorophyll a (Chl) with the concentration of the limiting nutrient--usually nitrogen--and the renewal rate of the systems. The method was applied in the Gulf of Gera, Island of Lesvos, Aegean Sea and a surrogate for renewal rate was created using the Canberra metric as a measure of the resemblance between the Gulf and the oligotrophic waters of the open sea in terms of their physical, chemical and biological properties. The Chl-total dissolved nitrogen-renewal rate regression model was the most significant, accounting for 60% of the variation observed in Chl. Predicted distributions of Chl for various combinations of the independent variables, based on Bayesian analysis of the models, enabled comparison of the outcomes of specific scenarios of interest as well as further analysis of the system dynamics. The present statistical approach can be used as a methodological tool for testing the resilience of coastal ecosystems under alternative managerial schemes and levels of exogenous nutrient loading.

  7. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Hoversten, G.M.

    2011-09-15

    Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy tomore » derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.« less

  8. Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms.

    PubMed

    Tang, Jie; Nett, Brian E; Chen, Guang-Hong

    2009-10-07

    Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.

  9. Predicting recreational water quality advisories: A comparison of statistical methods

    USGS Publications Warehouse

    Brooks, Wesley R.; Corsi, Steven R.; Fienen, Michael N.; Carvin, Rebecca B.

    2016-01-01

    Epidemiological studies indicate that fecal indicator bacteria (FIB) in beach water are associated with illnesses among people having contact with the water. In order to mitigate public health impacts, many beaches are posted with an advisory when the concentration of FIB exceeds a beach action value. The most commonly used method of measuring FIB concentration takes 18–24 h before returning a result. In order to avoid the 24 h lag, it has become common to ”nowcast” the FIB concentration using statistical regressions on environmental surrogate variables. Most commonly, nowcast models are estimated using ordinary least squares regression, but other regression methods from the statistical and machine learning literature are sometimes used. This study compares 14 regression methods across 7 Wisconsin beaches to identify which consistently produces the most accurate predictions. A random forest model is identified as the most accurate, followed by multiple regression fit using the adaptive LASSO.

  10. Statistical analysis of effective singular values in matrix rank determination

    NASA Technical Reports Server (NTRS)

    Konstantinides, Konstantinos; Yao, Kung

    1988-01-01

    A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.

  11. Prediction of Patient-Controlled Analgesic Consumption: A Multimodel Regression Tree Approach.

    PubMed

    Hu, Yuh-Jyh; Ku, Tien-Hsiung; Yang, Yu-Hung; Shen, Jia-Ying

    2018-01-01

    Several factors contribute to individual variability in postoperative pain, therefore, individuals consume postoperative analgesics at different rates. Although many statistical studies have analyzed postoperative pain and analgesic consumption, most have identified only the correlation and have not subjected the statistical model to further tests in order to evaluate its predictive accuracy. In this study involving 3052 patients, a multistrategy computational approach was developed for analgesic consumption prediction. This approach uses data on patient-controlled analgesia demand behavior over time and combines clustering, classification, and regression to mitigate the limitations of current statistical models. Cross-validation results indicated that the proposed approach significantly outperforms various existing regression methods. Moreover, a comparison between the predictions by anesthesiologists and medical specialists and those of the computational approach for an independent test data set of 60 patients further evidenced the superiority of the computational approach in predicting analgesic consumption because it produced markedly lower root mean squared errors.

  12. EMC Global Climate And Weather Modeling Branch Personnel

    Science.gov Websites

    Comparison Statistics which includes: NCEP Raw and Bias-Corrected Ensemble Domain Averaged Bias NCEP Raw and Bias-Corrected Ensemble Domain Averaged Bias Reduction (Percents) CMC Raw and Bias-Corrected Control Forecast Domain Averaged Bias CMC Raw and Bias-Corrected Control Forecast Domain Averaged Bias Reduction

  13. A Comparison of Imputation Methods for Bayesian Factor Analysis Models

    ERIC Educational Resources Information Center

    Merkle, Edgar C.

    2011-01-01

    Imputation methods are popular for the handling of missing data in psychology. The methods generally consist of predicting missing data based on observed data, yielding a complete data set that is amiable to standard statistical analyses. In the context of Bayesian factor analysis, this article compares imputation under an unrestricted…

  14. A Comparison of Spatial Statistical Methods in a School Finance Policy Context

    ERIC Educational Resources Information Center

    Slagle, Mike

    2010-01-01

    A shortcoming of the conventional ordinary least squares (OLS) approaches for estimating median voter models of education demand is the inability to more fully explain the spatial relationships between neighboring school districts. Consequently, two school districts that appear to be descriptively similar in terms of conventional measures of…

  15. Attitudes towards Participation in Business Development Programmes: An Ethnic Comparison in Sweden

    ERIC Educational Resources Information Center

    Abbasian, Saeid; Yazdanfar, Darush

    2015-01-01

    Purpose: The aim of the study is to investigate whether there are any differences between the attitudes towards participation in development programmes of entrepreneurs who are immigrants and those who are native-born. Design/methodology/approach: Several statistical methods, including a binary logistic regression model, were used to analyse a…

  16. Validation of non-stationary precipitation series for site-specific impact assessment: Comparison of two statistical downscaling techniques

    USDA-ARS?s Scientific Manuscript database

    The generation of realistic future precipitation scenarios is crucial for assessing their impacts on a range of environmental and socio-economic impact sectors. A scale mismatch exists, however, between the coarse spatial resolution at which global climate models (GCMs) output future climate scenari...

  17. Somatic experiencing treatment with social service workers following Hurricanes Katrina and Rita.

    PubMed

    Leitch, M Laurie; Vanslyke, Jan; Allen, Marisa

    2009-01-01

    In a disaster, social service workers are often survivors themselves.This study examines whether somatic intervention using a brief (one to two session) stabilization model now called the Trauma Resiliency Model (TRM), which uses the skills of Somatic Experiencing (SE), can reduce the postdisaster symptoms of social service workers involved in postdisaster service delivery.The study was implemented with a nonrandom sample of 142 social service workers who were survivors of Hurricanes Katrina and Rita in New Orleans and Baton Rouge, Louisiana, two to three months after the disasters. Ninety-one participants received SE/TRM and were compared with a matched comparison group of 51 participants through the use of propensity score matching. All participants first received group psychoeducation. Results support the benefits of the brief intervention inspired by SE. The treatment group showed statistically significant gains in resiliency indicators and decreases in posttraumatic stress disorder symptoms. Although psychological symptoms increased in both groups at the three to four month follow-up, the treatment group's psychological symptoms were statistically lower than those of the comparison group.

  18. A comparative study of two statistical approaches for the analysis of real seismicity sequences and synthetic seismicity generated by a stick-slip experimental model

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, Leticia Elsa; Ramirez Rojaz, Alejandro; Telesca, Luciano

    2015-04-01

    The study of two statistical approaches is analyzed for two different types of data sets, one is the seismicity generated by the subduction processes occurred at south Pacific coast of Mexico between 2005 and 2012, and the other corresponds to the synthetic seismic data generated by a stick-slip experimental model. The statistical methods used for the present study are the visibility graph in order to investigate the time dynamics of the series and the scaled probability density function in the natural time domain to investigate the critical order of the system. This comparison has the purpose to show the similarities between the dynamical behaviors of both types of data sets, from the point of view of critical systems. The observed behaviors allow us to conclude that the experimental set up globally reproduces the behavior observed in the statistical approaches used to analyses the seismicity of the subduction zone. The present study was supported by the Bilateral Project Italy-Mexico Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences, jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016.

  19. Comparison of statistical models for analyzing wheat yield time series.

    PubMed

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha⁻¹ year⁻¹ in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale.

  20. A comparison of two- and three-dimensional stochastic models of regional solute movement

    USGS Publications Warehouse

    Shapiro, A.M.; Cvetkovic, V.D.

    1990-01-01

    Recent models of solute movement in porous media that are based on a stochastic description of the porous medium properties have been dedicated primarily to a three-dimensional interpretation of solute movement. In many practical problems, however, it is more convenient and consistent with measuring techniques to consider flow and solute transport as an areal, two-dimensional phenomenon. The physics of solute movement, however, is dependent on the three-dimensional heterogeneity in the formation. A comparison of two- and three-dimensional stochastic interpretations of solute movement in a porous medium having a statistically isotropic hydraulic conductivity field is investigated. To provide an equitable comparison between the two- and three-dimensional analyses, the stochastic properties of the transmissivity are defined in terms of the stochastic properties of the hydraulic conductivity. The variance of the transmissivity is shown to be significantly reduced in comparison to that of the hydraulic conductivity, and the transmissivity is spatially correlated over larger distances. These factors influence the two-dimensional interpretations of solute movement by underestimating the longitudinal and transverse growth of the solute plume in comparison to its description as a three-dimensional phenomenon. Although this analysis is based on small perturbation approximations and the special case of a statistically isotropic hydraulic conductivity field, it casts doubt on the use of a stochastic interpretation of the transmissivity in describing regional scale movement. However, by assuming the transmissivity to be the vertical integration of the hydraulic conductivity field at a given position, the stochastic properties of the hydraulic conductivity can be estimated from the stochastic properties of the transmissivity and applied to obtain a more accurate interpretation of solute movement. ?? 1990 Kluwer Academic Publishers.

  1. Statistical properties of the time histories of cosmic gamma-ray bursts detected by the BATSE experiment of the Compton gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    Sagdeev, Roald

    1995-01-01

    The main scientific objectives of the project were: (1) Calculation of average time history for different subsets of BATSE gamma-ray bursts; (2) Comparison of averaged parameters and averaged time history for different Burst And Transient Source Experiments (BASTE) Gamma Ray Bursts (GRB's) sets; (3) Comparison of results obtained with BATSE data with those obtained with APEX experiment at PHOBOS mission; and (4) Use the results of (1)-(3) to compare current models of gamma-ray bursts sources.

  2. Statistics of multi-look AIRSAR imagery: A comparison of theory with measurements

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Hoppel, K. W.; Mango, S. A.

    1993-01-01

    The intensity and amplitude statistics of SAR images, such as L-Band HH for SEASAT and SIR-B, and C-Band VV for ERS-1 have been extensively investigated for various terrain, ground cover and ocean surfaces. Less well-known are the statistics between multiple channels of polarimetric of interferometric SAR's, especially for the multi-look processed data. In this paper, we investigate the probability density functions (PDF's) of phase differences, the magnitude of complex products and the amplitude ratios, between polarization channels (i.e. HH, HV, and VV) using 1-look and 4-look AIRSAR polarimetric data. Measured histograms are compared with theoretical PDF's which were recently derived based on a complex Gaussian model.

  3. The landscape of W± and Z bosons produced in pp collisions up to LHC energies

    NASA Astrophysics Data System (ADS)

    Basso, Eduardo; Bourrely, Claude; Pasechnik, Roman; Soffer, Jacques

    2017-10-01

    We consider a selection of recent experimental results on electroweak W± , Z gauge boson production in pp collisions at BNL RHIC and CERN LHC energies in comparison to prediction of perturbative QCD calculations based on different sets of NLO parton distribution functions including the statistical PDF model known from fits to the DIS data. We show that the current statistical PDF parametrization (fitted to the DIS data only) underestimates the LHC data on W± , Z gauge boson production cross sections at the NLO by about 20%. This suggests that there is a need to refit the parameters of the statistical PDF including the latest LHC data.

  4. Statistical procedures for analyzing mental health services data.

    PubMed

    Elhai, Jon D; Calhoun, Patrick S; Ford, Julian D

    2008-08-15

    In mental health services research, analyzing service utilization data often poses serious problems, given the presence of substantially skewed data distributions. This article presents a non-technical introduction to statistical methods specifically designed to handle the complexly distributed datasets that represent mental health service use, including Poisson, negative binomial, zero-inflated, and zero-truncated regression models. A flowchart is provided to assist the investigator in selecting the most appropriate method. Finally, a dataset of mental health service use reported by medical patients is described, and a comparison of results across several different statistical methods is presented. Implications of matching data analytic techniques appropriately with the often complexly distributed datasets of mental health services utilization variables are discussed.

  5. Prediction of pilot reserve attention capacity during air-to-air target tracking

    NASA Technical Reports Server (NTRS)

    Onstott, E. D.; Faulkner, W. H.

    1977-01-01

    Reserve attention capacity of a pilot was calculated using a pilot model that allocates exclusive model attention according to the ranking of task urgency functions whose variables are tracking error and error rate. The modeled task consisted of tracking a maneuvering target aircraft both vertically and horizontally, and when possible, performing a diverting side task which was simulated by the precise positioning of an electrical stylus and modeled as a task of constant urgency in the attention allocation algorithm. The urgency of the single loop vertical task is simply the magnitude of the vertical tracking error, while the multiloop horizontal task requires a nonlinear urgency measure of error and error rate terms. Comparison of model results with flight simulation data verified the computed model statistics of tracking error of both axes, lateral and longitudinal stick amplitude and rate, and side task episodes. Full data for the simulation tracking statistics as well as the explicit equations and structure of the urgency function multiaxis pilot model are presented.

  6. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A

    2012-03-15

    To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A hybrid ARIMA and neural network model applied to forecast catch volumes of Selar crumenophthalmus

    NASA Astrophysics Data System (ADS)

    Aquino, Ronald L.; Alcantara, Nialle Loui Mar T.; Addawe, Rizavel C.

    2017-11-01

    The Selar crumenophthalmus with the English name big-eyed scad fish, locally known as matang-baka, is one of the fishes commonly caught along the waters of La Union, Philippines. The study deals with the forecasting of catch volumes of big-eyed scad fish for commercial consumption. The data used are quarterly caught volumes of big-eyed scad fish from 2002 to first quarter of 2017. This actual data is available from the open stat database published by the Philippine Statistics Authority (PSA)whose task is to collect, compiles, analyzes and publish information concerning different aspects of the Philippine setting. Autoregressive Integrated Moving Average (ARIMA) models, Artificial Neural Network (ANN) model and the Hybrid model consisting of ARIMA and ANN were developed to forecast catch volumes of big-eyed scad fish. Statistical errors such as Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) were computed and compared to choose the most suitable model for forecasting the catch volume for the next few quarters. A comparison of the results of each model and corresponding statistical errors reveals that the hybrid model, ARIMA-ANN (2,1,2)(6:3:1), is the most suitable model to forecast the catch volumes of the big-eyed scad fish for the next few quarters.

  8. Response to comment on "Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage".

    PubMed

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2013-03-29

    Nakagome et al. reanalyzed some of our data and assert that we cannot refute the mitochondrial DNA-based scenario for polar bear evolution. Their single-locus test statistic is strongly affected by introgression and incomplete lineage sorting, whereas our multilocus approaches are better suited to recover the true species relationships. Indeed, our sister-lineage model receives high support in a Bayesian model comparison.

  9. Backward deletion to minimize prediction errors in models from factorial experiments with zero to six center points

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1980-01-01

    Population model coefficients were chosen to simulate a saturated 2 to the fourth power fixed effects experiment having an unfavorable distribution of relative values. Using random number studies, deletion strategies were compared that were based on the F distribution, on an order statistics distribution of Cochran's, and on a combination of the two. Results of the comparisons and a recommended strategy are given.

  10. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study

    PubMed Central

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2015-01-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a framework for assessing nanoparticle size distributions using TEM for image acquisition. PMID:26361398

  11. Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France)

    NASA Astrophysics Data System (ADS)

    Den Eeckhaut, M. Van; Marre, A.; Poesen, J.

    2010-02-01

    The vineyards of the Montagne de Reims are mostly planted on steep south-oriented cuesta fronts receiving a maximum of sun radiation. Due to the location of the vineyards on steep hillslopes, the viticultural activity is threatened by slope failures. This study attempts to better understand the spatial patterns of landslide susceptibility in the Champagne-Ardenne region by comparing a heuristic (qualitative) and a statistical (quantitative) model in a 1120 km² study area. The heuristic landslide susceptibility model was adopted from the Bureau de Recherches Géologiques et Minières, the GEGEAA - Reims University and the Comité Interprofessionnel du Vin de Champagne. In this model, expert knowledge of the region was used to assign weights to all slope classes and lithologies present in the area, but the final susceptibility map was never evaluated with the location of mapped landslides. For the statistical landslide susceptibility assessment, logistic regression was applied to a dataset of 291 'old' (Holocene) landslides. The robustness of the logistic regression model was evaluated and ROC curves were used for model calibration and validation. With regard to the variables assumed to be important environmental factors controlling landslides, the two models are in agreement. They both indicate that present and future landslides are mainly controlled by slope gradient and lithology. However, the comparison of the two landslide susceptibility maps through (1) an evaluation with the location of mapped 'old' landslides and through (2) a temporal validation with spatial data of 'recent' (1960-1999; n = 48) and 'very recent' (2000-2008; n = 46) landslides showed a better prediction capacity for the statistical model produced in this study compared to the heuristic model. In total, the statistically-derived landslide susceptibility map succeeded in correctly classifying 81.0% of the 'old' and 91.6% of the 'recent' and 'very recent' landslides. On the susceptibility map derived from the heuristic model, on the other hand, only 54.6% of the 'old' and 64.0% of the 'recent' and 'very recent' landslides were correctly classified as unstable. Hence, the landslide susceptibility map obtained from logistic regression is a better tool for regional landslide susceptibility analysis in the study area of the Montagne de Reims. The accurate classification of zones with very high and high susceptibility allows delineating zones where viticulturists should be informed and where implementation of precaution measures is needed to secure slope stability.

  12. Why Income Comparison is Rational

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2010-01-01

    A major factor affecting a person s happiness is the gap between their income and their neighbors , independent of their own income. This effect is strongest when the neighbor has moderately higher income. In addition a person s lifetime happiness often follows a "U" shape. Previous models have explained subsets of these phenomena, typically assuming the person has limited ability to assess their own (hedonic) utility. Here I present a model that explains all the phenomena, without such assumptions. In this model greater income of your neighbor is statistical data that, if carefully analyzed, would recommend that you explore for a new income-generating strategy. This explains unhappiness that your neighbor has greater income, as an emotional "prod" that induces you to explore, in accord with careful statistical analysis. It explains the "U" shape of happiness similarly. Another benefit of this model is that it makes many falsifiable predictions.

  13. Modeling the Test-Retest Statistics of a Localization Experiment in the Full Horizontal Plane.

    PubMed

    Morsnowski, André; Maune, Steffen

    2016-10-01

    Two approaches to model the test-retest statistics of a localization experiment basing on Gaussian distribution and on surrogate data are introduced. Their efficiency is investigated using different measures describing directional hearing ability. A localization experiment in the full horizontal plane is a challenging task for hearing impaired patients. In clinical routine, we use this experiment to evaluate the progress of our cochlear implant (CI) recipients. Listening and time effort limit the reproducibility. The localization experiment consists of a 12 loudspeaker circle, placed in an anechoic room, a "camera silens". In darkness, HSM sentences are presented at 65 dB pseudo-erratically from all 12 directions with five repetitions. This experiment is modeled by a set of Gaussian distributions with different standard deviations added to a perfect estimator, as well as by surrogate data. Five repetitions per direction are used to produce surrogate data distributions for the sensation directions. To investigate the statistics, we retrospectively use the data of 33 CI patients with 92 pairs of test-retest-measurements from the same day. The first model does not take inversions into account, (i.e., permutations of the direction from back to front and vice versa are not considered), although they are common for hearing impaired persons particularly in the rear hemisphere. The second model considers these inversions but does not work with all measures. The introduced models successfully describe test-retest statistics of directional hearing. However, since their applications on the investigated measures perform differently no general recommendation can be provided. The presented test-retest statistics enable pair test comparisons for localization experiments.

  14. InSAR Tropospheric Correction Methods: A Statistical Comparison over Different Regions

    NASA Astrophysics Data System (ADS)

    Bekaert, D. P.; Walters, R. J.; Wright, T. J.; Hooper, A. J.; Parker, D. J.

    2015-12-01

    Observing small magnitude surface displacements through InSAR is highly challenging, and requires advanced correction techniques to reduce noise. In fact, one of the largest obstacles facing the InSAR community is related to tropospheric noise correction. Spatial and temporal variations in temperature, pressure, and relative humidity result in a spatially-variable InSAR tropospheric signal, which masks smaller surface displacements due to tectonic or volcanic deformation. Correction methods applied today include those relying on weather model data, GNSS and/or spectrometer data. Unfortunately, these methods are often limited by the spatial and temporal resolution of the auxiliary data. Alternatively a correction can be estimated from the high-resolution interferometric phase by assuming a linear or a power-law relationship between the phase and topography. For these methods, the challenge lies in separating deformation from tropospheric signals. We will present results of a statistical comparison of the state-of-the-art tropospheric corrections estimated from spectrometer products (MERIS and MODIS), a low and high spatial-resolution weather model (ERA-I and WRF), and both the conventional linear and power-law empirical methods. We evaluate the correction capability over Southern Mexico, Italy, and El Hierro, and investigate the impact of increasing cloud cover on the accuracy of the tropospheric delay estimation. We find that each method has its strengths and weaknesses, and suggest that further developments should aim to combine different correction methods. All the presented methods are included into our new open source software package called TRAIN - Toolbox for Reducing Atmospheric InSAR Noise (Bekaert et al., in review), which is available to the community Bekaert, D., R. Walters, T. Wright, A. Hooper, and D. Parker (in review), Statistical comparison of InSAR tropospheric correction techniques, Remote Sensing of Environment

  15. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    NASA Astrophysics Data System (ADS)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization model and dashboard that demonstrates the use of statistical methods, statistical process control, sensitivity analysis, quantitative and optimization techniques to establish a baseline and predict future customer satisfaction index scores (outcomes). The American Customer Satisfaction Index (ACSI) model and industry benchmarks were used as a framework for the simulation model.

  16. Effects of experimental protocol on global vegetation model accuracy: a comparison of simulated and observed vegetation patterns for Asia

    USGS Publications Warehouse

    Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.

    2009-01-01

    Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.

  17. Scalar Dissipation Modeling for Passive and Active Scalars: a priori Study Using Direct Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Selle, L. C.; Bellan, Josette

    2006-01-01

    Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate modeling.

  18. Equivalent statistics and data interpretation.

    PubMed

    Francis, Gregory

    2017-08-01

    Recent reform efforts in psychological science have led to a plethora of choices for scientists to analyze their data. A scientist making an inference about their data must now decide whether to report a p value, summarize the data with a standardized effect size and its confidence interval, report a Bayes Factor, or use other model comparison methods. To make good choices among these options, it is necessary for researchers to understand the characteristics of the various statistics used by the different analysis frameworks. Toward that end, this paper makes two contributions. First, it shows that for the case of a two-sample t test with known sample sizes, many different summary statistics are mathematically equivalent in the sense that they are based on the very same information in the data set. When the sample sizes are known, the p value provides as much information about a data set as the confidence interval of Cohen's d or a JZS Bayes factor. Second, this equivalence means that different analysis methods differ only in their interpretation of the empirical data. At first glance, it might seem that mathematical equivalence of the statistics suggests that it does not matter much which statistic is reported, but the opposite is true because the appropriateness of a reported statistic is relative to the inference it promotes. Accordingly, scientists should choose an analysis method appropriate for their scientific investigation. A direct comparison of the different inferential frameworks provides some guidance for scientists to make good choices and improve scientific practice.

  19. Geographic Profiling to Assess the Risk of Rare Plant Poaching in Natural Areas

    NASA Astrophysics Data System (ADS)

    Young, John A.; van Manen, Frank T.; Thatcher, Cindy A.

    2011-09-01

    We demonstrate the use of an expert-assisted spatial model to examine geographic factors influencing the poaching risk of a rare plant (American ginseng, Panax quinquefolius L.) in Shenandoah National Park, Virginia, USA. Following principles of the analytic hierarchy process (AHP), we identified a hierarchy of 11 geographic factors deemed important to poaching risk and requested law enforcement personnel of the National Park Service to rank those factors in a series of pair-wise comparisons. We used those comparisons to determine statistical weightings of each factor and combined them into a spatial model predicting poaching risk. We tested the model using 69 locations of previous poaching incidents recorded by law enforcement personnel. These locations occurred more frequently in areas predicted by the model to have a higher risk of poaching than random locations. The results of our study can be used to evaluate resource protection strategies and to target law enforcement activities.

  20. Future mission studies: Preliminary comparisons of solar flux models

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    The results of comparisons of the solar flux models are presented. (The wavelength lambda = 10.7 cm radio flux is the best indicator of the strength of the ionizing radiations such as solar ultraviolet and x-ray emissions that directly affect the atmospheric density thereby changing the orbit lifetime of satellites. Thus, accurate forecasting of solar flux F sub 10.7 is crucial for orbit determination of spacecrafts.) The measured solar flux recorded by National Oceanic and Atmospheric Administration (NOAA) is compared against the forecasts made by Schatten, MSFC, and NOAA itself. The possibility of a combined linear, unbiased minimum-variance estimation that properly combines all three models into one that minimizes the variance is also discussed. All the physics inherent in each model are combined. This is considered to be the dead-end statistical approach to solar flux forecasting before any nonlinear chaotic approach.

  1. Statistics attack on `quantum private comparison with a malicious third party' and its improvement

    NASA Astrophysics Data System (ADS)

    Gu, Jun; Ho, Chih-Yung; Hwang, Tzonelih

    2018-02-01

    Recently, Sun et al. (Quantum Inf Process:14:2125-2133, 2015) proposed a quantum private comparison protocol allowing two participants to compare the equality of their secrets via a malicious third party (TP). They designed an interesting trap comparison method to prevent the TP from knowing the final comparison result. However, this study shows that the malicious TP can use the statistics attack to reveal the comparison result. A simple modification is hence proposed to solve this problem.

  2. Comparison between two statistically based methods, and two physically based models developed to compute daily mean streamflow at ungaged locations in the Cedar River Basin, Iowa

    USGS Publications Warehouse

    Linhart, S. Mike; Nania, Jon F.; Christiansen, Daniel E.; Hutchinson, Kasey J.; Sanders, Curtis L.; Archfield, Stacey A.

    2013-01-01

    A variety of individuals from water resource managers to recreational users need streamflow information for planning and decisionmaking at locations where there are no streamgages. To address this problem, two statistically based methods, the Flow Duration Curve Transfer method and the Flow Anywhere method, were developed for statewide application and the two physically based models, the Precipitation Runoff Modeling-System and the Soil and Water Assessment Tool, were only developed for application for the Cedar River Basin. Observed and estimated streamflows for the two methods and models were compared for goodness of fit at 13 streamgages modeled in the Cedar River Basin by using the Nash-Sutcliffe and the percent-bias efficiency values. Based on median and mean Nash-Sutcliffe values for the 13 streamgages the Precipitation Runoff Modeling-System and Soil and Water Assessment Tool models appear to have performed similarly and better than Flow Duration Curve Transfer and Flow Anywhere methods. Based on median and mean percent bias values, the Soil and Water Assessment Tool model appears to have generally overestimated daily mean streamflows, whereas the Precipitation Runoff Modeling-System model and statistical methods appear to have underestimated daily mean streamflows. The Flow Duration Curve Transfer method produced the lowest median and mean percent bias values and appears to perform better than the other models.

  3. An analytical formulation of two‐dimensional groundwater dispersion induced by surficial recharge variability

    USGS Publications Warehouse

    Swain, Eric D.; Chin, David A.

    2003-01-01

    A predominant cause of dispersion in groundwater is advective mixing due to variability in seepage rates. Hydraulic conductivity variations have been extensively researched as a cause of this seepage variability. In this paper the effect of variations in surface recharge to a shallow surficial aquifer is investigated as an important additional effect. An analytical formulation has been developed that relates aquifer parameters and the statistics of recharge variability to increases in the dispersivity. This is accomplished by solving Fourier transforms of the small perturbation forms of the groundwater flow equations. Two field studies are presented in this paper to determine the statistics of recharge variability for input to the analytical formulation. A time series of water levels at a continuous groundwater recorder is used to investigate the temporal statistics of hydraulic head caused by recharge, and a series of infiltrometer measurements are used to define the spatial variability in the recharge parameters. With these field statistics representing head fluctuations due to recharge, the analytical formulation can be used to compute the dispersivity without an explicit representation of the recharge boundary. Results from a series of numerical experiments are used to define the limits of this analytical formulation and to provide some comparison. A sophisticated model has been developed using a particle‐tracking algorithm (modified to account for temporal variations) to estimate groundwater dispersion. Dispersivity increases of 9 percent are indicated by the analytical formulation for the aquifer at the field site. A comparison with numerical model results indicates that the analytical results are reasonable for shallow surficial aquifers in which two‐dimensional flow can be assumed.

  4. Experiments in monthly mean simulation of the atmosphere with a coarse-mesh general circulation model

    NASA Technical Reports Server (NTRS)

    Lutz, R. J.; Spar, J.

    1978-01-01

    The Hansen atmospheric model was used to compute five monthly forecasts (October 1976 through February 1977). The comparison is based on an energetics analysis, meridional and vertical profiles, error statistics, and prognostic and observed mean maps. The monthly mean model simulations suffer from several defects. There is, in general, no skill in the simulation of the monthly mean sea-level pressure field, and only marginal skill is indicated for the 850 mb temperatures and 500 mb heights. The coarse-mesh model appears to generate a less satisfactory monthly mean simulation than the finer mesh GISS model.

  5. Correcting for population structure and kinship using the linear mixed model: theory and extensions.

    PubMed

    Hoffman, Gabriel E

    2013-01-01

    Population structure and kinship are widespread confounding factors in genome-wide association studies (GWAS). It has been standard practice to include principal components of the genotypes in a regression model in order to account for population structure. More recently, the linear mixed model (LMM) has emerged as a powerful method for simultaneously accounting for population structure and kinship. The statistical theory underlying the differences in empirical performance between modeling principal components as fixed versus random effects has not been thoroughly examined. We undertake an analysis to formalize the relationship between these widely used methods and elucidate the statistical properties of each. Moreover, we introduce a new statistic, effective degrees of freedom, that serves as a metric of model complexity and a novel low rank linear mixed model (LRLMM) to learn the dimensionality of the correction for population structure and kinship, and we assess its performance through simulations. A comparison of the results of LRLMM and a standard LMM analysis applied to GWAS data from the Multi-Ethnic Study of Atherosclerosis (MESA) illustrates how our theoretical results translate into empirical properties of the mixed model. Finally, the analysis demonstrates the ability of the LRLMM to substantially boost the strength of an association for HDL cholesterol in Europeans.

  6. Uranium resource assessment through statistical analysis of exploration geochemical and other data. Final report. [Codes EVAL, SURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, G.S. Jr.; Howarth, R.J.; Schuenemeyer, J.H.

    1981-02-01

    We have developed a procedure that can help quadrangle evaluators to systematically summarize and use hydrogeochemical and stream sediment reconnaissance (HSSR) and occurrence data. Although we have not provided an independent estimate of uranium endowment, we have devised a methodology that will provide this independent estimate when additional calibration is done by enlarging the study area. Our statistical model for evaluation (system EVAL) ranks uranium endowment for each quadrangle. Because using this model requires experience in geology, statistics, and data analysis, we have also devised a simplified model, presented in the package SURE, a System for Uranium Resource Evaluation. Wemore » have developed and tested these models for the four quadrangles in southern Colorado that comprise the study area; to investigate their generality, the models should be applied to other quandrangles. Once they are calibrated with accepted uranium endowments for several well-known quadrangles, the models can be used to give independent estimates for less-known quadrangles. The point-oriented models structure the objective comparison of the quandrangles on the bases of: (1) Anomalies (a) derived from stream sediments, (b) derived from waters (stream, well, pond, etc.), (2) Geology (a) source rocks, as defined by the evaluator, (b) host rocks, as defined by the evaluator, and (3) Aerial radiometric anomalies.« less

  7. The Balance-Scale Task Revisited: A Comparison of Statistical Models for Rule-Based and Information-Integration Theories of Proportional Reasoning

    PubMed Central

    Hofman, Abe D.; Visser, Ingmar; Jansen, Brenda R. J.; van der Maas, Han L. J.

    2015-01-01

    We propose and test three statistical models for the analysis of children’s responses to the balance scale task, a seminal task to study proportional reasoning. We use a latent class modelling approach to formulate a rule-based latent class model (RB LCM) following from a rule-based perspective on proportional reasoning and a new statistical model, the Weighted Sum Model, following from an information-integration approach. Moreover, a hybrid LCM using item covariates is proposed, combining aspects of both a rule-based and information-integration perspective. These models are applied to two different datasets, a standard paper-and-pencil test dataset (N = 779), and a dataset collected within an online learning environment that included direct feedback, time-pressure, and a reward system (N = 808). For the paper-and-pencil dataset the RB LCM resulted in the best fit, whereas for the online dataset the hybrid LCM provided the best fit. The standard paper-and-pencil dataset yielded more evidence for distinct solution rules than the online data set in which quantitative item characteristics are more prominent in determining responses. These results shed new light on the discussion on sequential rule-based and information-integration perspectives of cognitive development. PMID:26505905

  8. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    PubMed

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  9. Incorporation of the statistical multi-fragmentation model in PHITS and its application for simulation of fragmentation by heavy ions and protons

    NASA Astrophysics Data System (ADS)

    Ogawa, Tatsuhiko; Sato, Tatsuhiko; Hashimoto, Shintaro; Niita, Koji

    2014-06-01

    The fragmentation reactions of relativistic-energy nucleus-nucleus and proton-nucleus collisions were simulated using the Statistical Multi-fragmentation Model (SMM) incorporated with the Particle and Heavy Ion Transport code System (PHITS). The comparisons of calculated cross-sections with literature data showed that PHITS-SMM predicts the fragmentation cross-sections of heavy nuclei up to two orders of magnitude more accurately than PHITS for heavy-ion-induced reactions. For proton-induced reactions, noticeable improvements are observed for interactions of the heavy target with protons at an energy greater than 1 GeV. Therefore, consideration for multi-fragmentation reactions is necessary for the accurate simulation of energetic fragmentation reactions of heavy nuclei.

  10. Black swans and dragon kings: A unified model

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-09-01

    The term “black swan” is a metaphor for outlier events whose statistics are characterized by Pareto's Law and by Zipf's Law; namely, statistics governed by power-law tails. The term “dragon king” is a metaphor for a singular outlier event which, in comparison with all other outlier events, is in a league of its own. As an illustrative example consider the wealth of a family that is sampled at random from a medieval society: the nobility constitutes the black-swan category, and the royal family constitutes the dragon-king category. In this paper we present and analyze a dynamical model that generates, universally and jointly, black swans and dragon kings. According to this model, growing from the microscopic scale to the macroscopic scale, black swans and dragon kings emerge together and invariantly with respect to initial conditions.

  11. Modeling the microstructurally dependent mechanical properties of poly(ester-urethane-urea)s.

    PubMed

    Warren, P Daniel; Sycks, Dalton G; McGrath, Dominic V; Vande Geest, Jonathan P

    2013-12-01

    Poly(ester-urethane-urea) (PEUU) is one of many synthetic biodegradable elastomers under scrutiny for biomedical and soft tissue applications. The goal of this study was to investigate the effect of the experimental parameters on mechanical properties of PEUUs following exposure to different degrading environments, similar to that of the human body, using linear regression, producing one predictive model. The model utilizes two independent variables of poly(caprolactone) (PCL) type and copolymer crystallinity to predict the dependent variable of maximum tangential modulus (MTM). Results indicate that comparisons between PCLs at different degradation states are statistically different (p < 0.0003), while the difference between experimental and predicted average MTM is statistically negligible (p < 0.02). The linear correlation between experimental and predicted MTM values is R(2) = 0.75. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  12. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    PubMed Central

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  13. A Comparison of Fuzzy Models in Similarity Assessment of Misregistered Area Class Maps

    NASA Astrophysics Data System (ADS)

    Brown, Scott

    Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.

  14. Comparison of microfacet BRDF model to modified Beckmann-Kirchhoff BRDF model for rough and smooth surfaces.

    PubMed

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-11-02

    A popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics. An approximation relating standard Fresnel reflection with the semi-rough surface polarization term, Q, is presented for unpolarized light. For rough surfaces, the angular dependence of direction cosine space is shown to be identical to the angular dependence in the microfacet distribution function. For polished surfaces, the same comparison shows a breakdown in the microfacet models. Similarities and differences between microfacet BRDF models and the modified Beckmann-Kirchhoff model are identified. The rationale for the original Beckmann-Kirchhoff F(bk)(2) geometric term relative to both microfacet models and generalized Harvey-Shack model is presented. A modification to the geometric F(bk)(2) term in original Beckmann-Kirchhoff BRDF theory is proposed.

  15. Goodness-Of-Fit Test for Nonparametric Regression Models: Smoothing Spline ANOVA Models as Example.

    PubMed

    Teran Hidalgo, Sebastian J; Wu, Michael C; Engel, Stephanie M; Kosorok, Michael R

    2018-06-01

    Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counter-parts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to smoothing spline ANOVA models. The test can consider two sources of lack-of-fit: whether covariates that are not currently in the model need to be included, and whether the current model fits the data well. The proposed method derives estimated residuals from the model. Then, statistical dependence is assessed between the estimated residuals and the covariates using the HSIC. If dependence exists, the model does not capture all the variability in the outcome associated with the covariates, otherwise the model fits the data well. The bootstrap is used to obtain p-values. Application of the method is demonstrated with a neonatal mental development data analysis. We demonstrate correct type I error as well as power performance through simulations.

  16. Subtyping of Children with Developmental Dyslexia via Bootstrap Aggregated Clustering and the Gap Statistic: Comparison with the Double-Deficit Hypothesis

    ERIC Educational Resources Information Center

    King, Wayne M.; Giess, Sally A.; Lombardino, Linda J.

    2007-01-01

    Background: The marked degree of heterogeneity in persons with developmental dyslexia has motivated the investigation of possible subtypes. Attempts have proceeded both from theoretical models of reading and the application of unsupervised learning (clustering) methods. Previous cluster analyses of data obtained from persons with reading…

  17. Synthesis of Single-Case Experimental Data: A Comparison of Alternative Multilevel Approaches

    ERIC Educational Resources Information Center

    Ferron, John; Van den Noortgate, Wim; Beretvas, Tasha; Moeyaert, Mariola; Ugille, Maaike; Petit-Bois, Merlande; Baek, Eun Kyeng

    2013-01-01

    Single-case or single-subject experimental designs (SSED) are used to evaluate the effect of one or more treatments on a single case. Although SSED studies are growing in popularity, the results are in theory case-specific. One systematic and statistical approach for combining single-case data within and across studies is multilevel modeling. The…

  18. Assessing tree and stand biomass: a review with examples and critical comparisons

    Treesearch

    Bernard R. Parresol

    1999-01-01

    There is considerable interest today in estimating the biomass of trees and forests for both practical forestry issues and scientific purposes. New techniques and procedures are brought together along with the more traditional approaches to estimating woody biomass. General model forms and weighted analysis are reviewed, along with statistics for evaluating and...

  19. A Comparison of Statistical Models for Calculating Reliability of the Hoffmann Reflex

    ERIC Educational Resources Information Center

    Christie, A.; Kamen, G.; Boucher, Jean P.; Inglis, J. Greig; Gabriel, David A.

    2010-01-01

    The Hoffmann reflex is obtained through surface electromyographic recordings, and it is one of the most common neurophysiological techniques in exercise science. Measurement and evaluation of the peak-to-peak amplitude of the Hoffmann reflex has been guided by the observation that it is a variable response that requires multiple trials to obtain a…

  20. SOCR Analyses – an Instructional Java Web-based Statistical Analysis Toolkit

    PubMed Central

    Chu, Annie; Cui, Jenny; Dinov, Ivo D.

    2011-01-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test. The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website. In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models. PMID:21546994

  1. Combination of statistical and physically based methods to assess shallow slide susceptibility at the basin scale

    NASA Astrophysics Data System (ADS)

    Oliveira, Sérgio C.; Zêzere, José L.; Lajas, Sara; Melo, Raquel

    2017-07-01

    Approaches used to assess shallow slide susceptibility at the basin scale are conceptually different depending on the use of statistical or physically based methods. The former are based on the assumption that the same causes are more likely to produce the same effects, whereas the latter are based on the comparison between forces which tend to promote movement along the slope and the counteracting forces that are resistant to motion. Within this general framework, this work tests two hypotheses: (i) although conceptually and methodologically distinct, the statistical and deterministic methods generate similar shallow slide susceptibility results regarding the model's predictive capacity and spatial agreement; and (ii) the combination of shallow slide susceptibility maps obtained with statistical and physically based methods, for the same study area, generate a more reliable susceptibility model for shallow slide occurrence. These hypotheses were tested at a small test site (13.9 km2) located north of Lisbon (Portugal), using a statistical method (the information value method, IV) and a physically based method (the infinite slope method, IS). The landslide susceptibility maps produced with the statistical and deterministic methods were combined into a new landslide susceptibility map. The latter was based on a set of integration rules defined by the cross tabulation of the susceptibility classes of both maps and analysis of the corresponding contingency tables. The results demonstrate a higher predictive capacity of the new shallow slide susceptibility map, which combines the independent results obtained with statistical and physically based models. Moreover, the combination of the two models allowed the identification of areas where the results of the information value and the infinite slope methods are contradictory. Thus, these areas were classified as uncertain and deserve additional investigation at a more detailed scale.

  2. The effects and interactions of student, teacher, and setting variables on reading outcomes for kindergartners receiving supplemental reading intervention.

    PubMed

    Hagan-Burke, Shanna; Coyne, Michael D; Kwok, Oi-Man; Simmons, Deborah C; Kim, Minjung; Simmons, Leslie E; Skidmore, Susan T; Hernandez, Caitlin L; McSparran Ruby, Maureen

    2013-01-01

    This exploratory study examined the influences of student, teacher, and setting characteristics on kindergarteners' early reading outcomes and investigated whether those relations were moderated by type of intervention. Participants included 206 kindergarteners identified as at risk for reading difficulties and randomly assigned to one of two supplemental interventions: (a) an experimental explicit, systematic, code-based program or (b) their schools' typical kindergarten reading intervention. Results from separate multilevel structural equation models indicated that among student variables, entry-level alphabet knowledge was positively associated with phonemic and decoding outcomes in both conditions. Entry-level rapid automatized naming also positively influenced decoding outcomes in both conditions. However, its effect on phonemic outcomes was statistically significant only among children in the typical practice comparison condition. Regarding teacher variables, the quality of instruction was associated with significantly higher decoding outcomes in the typical reading intervention condition but had no statistically significant influence on phonemic outcomes in either condition. Among setting variables, instruction in smaller group sizes was associated with better phonemic outcomes in the comparison condition but had no statistically significant influence on outcomes of children in the intervention group. Mode of delivery (i.e., pullout vs. in class) had no statistically significant influence on either outcome variable.

  3. Non-resonant multipactor--A statistical model

    NASA Astrophysics Data System (ADS)

    Rasch, J.; Johansson, J. F.

    2012-12-01

    High power microwave systems operating in vacuum or near vacuum run the risk of multipactor breakdown. In order to avoid multipactor, it is necessary to make theoretical predictions of critical parameter combinations. These treatments are generally based on the assumption of electrons moving in resonance with the electric field while traversing the gap between critical surfaces. Through comparison with experiments, it has been found that only for small system dimensions will the resonant approach give correct predictions. Apparently, the resonance is destroyed due to the statistical spread in electron emission velocity, and for a more valid description it is necessary to resort to rather complicated statistical treatments of the electron population, and extensive simulations. However, in the limit where resonance is completely destroyed it is possible to use a much simpler treatment, here called non-resonant theory. In this paper, we develop the formalism for this theory, use it to calculate universal curves for the existence of multipactor, and compare with previous results. Two important effects that leads to an increase in the multipactor threshold in comparison with the resonant prediction are identified. These are the statistical spread of impact speed, which leads to a lower average electron impact speed, and the impact of electrons in phase regions where the secondary electrons are immediately reabsorbed, leading to an effective removal of electrons from the discharge.

  4. Eulerian and Lagrangian Parameterization of the Oceanic Mixed Layer using Large Eddy Simulation and MPAS-Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Roekel, Luke

    We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.

  5. How to Compare Parametric and Nonparametric Person-Fit Statistics Using Real Data

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2017-01-01

    Person-fit assessment (PFA) is concerned with uncovering atypical test performance as reflected in the pattern of scores on individual items on a test. Existing person-fit statistics (PFSs) include both parametric and nonparametric statistics. Comparison of PFSs has been a popular research topic in PFA, but almost all comparisons have employed…

  6. Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Trigila, Alessandro; Iadanza, Carla; Esposito, Carlo; Scarascia-Mugnozza, Gabriele

    2015-11-01

    The aim of this work is to define reliable susceptibility models for shallow landslides using Logistic Regression and Random Forests multivariate statistical techniques. The study area, located in North-East Sicily, was hit on October 1st 2009 by a severe rainstorm (225 mm of cumulative rainfall in 7 h) which caused flash floods and more than 1000 landslides. Several small villages, such as Giampilieri, were hit with 31 fatalities, 6 missing persons and damage to buildings and transportation infrastructures. Landslides, mainly types such as earth and debris translational slides evolving into debris flows, were triggered on steep slopes and involved colluvium and regolith materials which cover the underlying metamorphic bedrock. The work has been carried out with the following steps: i) realization of a detailed event landslide inventory map through field surveys coupled with observation of high resolution aerial colour orthophoto; ii) identification of landslide source areas; iii) data preparation of landslide controlling factors and descriptive statistics based on a bivariate method (Frequency Ratio) to get an initial overview on existing relationships between causative factors and shallow landslide source areas; iv) choice of criteria for the selection and sizing of the mapping unit; v) implementation of 5 multivariate statistical susceptibility models based on Logistic Regression and Random Forests techniques and focused on landslide source areas; vi) evaluation of the influence of sample size and type of sampling on results and performance of the models; vii) evaluation of the predictive capabilities of the models using ROC curve, AUC and contingency tables; viii) comparison of model results and obtained susceptibility maps; and ix) analysis of temporal variation of landslide susceptibility related to input parameter changes. Models based on Logistic Regression and Random Forests have demonstrated excellent predictive capabilities. Land use and wildfire variables were found to have a strong control on the occurrence of very rapid shallow landslides.

  7. Estimating global cropland production from 1961 to 2010

    NASA Astrophysics Data System (ADS)

    Han, Pengfei; Zeng, Ning; Zhao, Fang; Lin, Xiaohui

    2017-09-01

    Global cropland net primary production (NPP) has tripled over the last 50 years, contributing 17-45 % to the increase in global atmospheric CO2 seasonal amplitude. Although many regional-scale comparisons have been made between statistical data and modeling results, long-term national comparisons across global croplands are scarce due to the lack of detailed spatiotemporal management data. Here, we conducted a simulation study of global cropland NPP from 1961 to 2010 using a process-based model called Vegetation-Global Atmosphere-Soil (VEGAS) and compared the results with Food and Agriculture Organization of the United Nations (FAO) statistical data on both continental and country scales. According to the FAO data, the global cropland NPP was 1.3, 1.8, 2.2, 2.6, 3.0, and 3.6 PgC yr-1 in the 1960s, 1970s, 1980s, 1990s, 2000s, and 2010s, respectively. The VEGAS model captured these major trends on global and continental scales. The NPP increased most notably in the US Midwest, western Europe, and the North China Plain and increased modestly in Africa and Oceania. However, significant biases remained in some regions such as Africa and Oceania, especially in temporal evolution. This finding is not surprising as VEGAS is the first global carbon cycle model with full parameterization representing the Green Revolution. To improve model performance for different major regions, we modified the default values of management intensity associated with the agricultural Green Revolution differences across various regions to better match the FAO statistical data at the continental level and for selected countries. Across all the selected countries, the updated results reduced the RMSE from 19.0 to 10.5 TgC yr-1 (˜ 45 % decrease). The results suggest that these regional differences in model parameterization are due to differences in socioeconomic development. To better explain the past changes and predict the future trends, it is important to calibrate key parameters on regional scales and develop data sets for land management history.

  8. Spatial Accessibility and Availability Measures and Statistical Properties in the Food Environment

    PubMed Central

    Van Meter, E.; Lawson, A.B.; Colabianchi, N.; Nichols, M.; Hibbert, J.; Porter, D.; Liese, A.D.

    2010-01-01

    Spatial accessibility is of increasing interest in the health sciences. This paper addresses the statistical use of spatial accessibility and availability indices. These measures are evaluated via an extensive simulation based on cluster models for local food outlet density. We derived Monte Carlo critical values for several statistical tests based on the indices. In particular we are interested in the ability to make inferential comparisons between different study areas where indices of accessibility and availability are to be calculated. We derive tests of mean difference as well as tests for differences in Moran's I for spatial correlation for each of the accessibility and availability indices. We also apply these new statistical tests to a data example based on two counties in South Carolina for various accessibility and availability measures calculated for food outlets, stores, and restaurants. PMID:21499528

  9. Current and future pluvial flood hazard analysis for the city of Antwerp

    NASA Astrophysics Data System (ADS)

    Willems, Patrick; Tabari, Hossein; De Niel, Jan; Van Uytven, Els; Lambrechts, Griet; Wellens, Geert

    2016-04-01

    For the city of Antwerp in Belgium, higher rainfall extremes were observed in comparison with surrounding areas. The differences were found statistically significant for some areas and may be the result of the heat island effect in combination with the higher concentrations of aerosols. A network of 19 rain gauges but with varying records length (the longest since the 1960s) and continuous radar data for 10 years were combined to map the spatial variability of rainfall extremes over the city at various durations from 15 minutes to 1 day together with the uncertainty. The improved spatial rainfall information was used as input in the sewer system model of the city to analyze the frequency of urban pluvial floods. Comparison with historical flood observations from various sources (fire brigade and media) confirmed that the improved spatial rainfall information also improved sewer impact results on both the magnitude and frequency of the sewer floods. Next to these improved urban flood impact results for recent and current climatological conditions, the new insights on the local rainfall microclimate were also helpful to enhance future projections on rainfall extremes and pluvial floods in the city. This was done by improved statistical downscaling of all available CMIP5 global climate model runs (160 runs) for the 4 RCP scenarios, as well as the available EURO-CORDEX regional climate model runs. Two types of statistical downscaling methods were applied for that purpose (a weather typing based method, and a quantile perturbation approach), making use of the microclimate results and its dependency on specific weather types. Changes in extreme rainfall intensities were analyzed and mapped as a function of the RCP scenario, together with the uncertainty, decomposed in the uncertainties related to the climate models, the climate model initialization or limited length of the 30-year time series (natural climate variability) and the statistical downscaling (albeit limited to two types of methods). These were finally transferred into future pluvial flash flood hazard maps for the city together with the uncertainties, and are considered as basis for spatial planning and adaptation.

  10. Methods to Approach Velocity Data Reduction and Their Effects on Conformation Statistics in Viscoelastic Turbulent Channel Flows

    NASA Astrophysics Data System (ADS)

    Samanta, Gaurab; Beris, Antony; Handler, Robert; Housiadas, Kostas

    2009-03-01

    Karhunen-Loeve (KL) analysis of DNS data of viscoelastic turbulent channel flows helps us to reveal more information on the time-dependent dynamics of viscoelastic modification of turbulence [Samanta et. al., J. Turbulence (in press), 2008]. A selected set of KL modes can be used for a data reduction modeling of these flows. However, it is pertinent that verification be done against established DNS results. For this purpose, we did comparisons of velocity and conformations statistics and probability density functions (PDFs) of relevant quantities obtained from DNS and reconstructed fields using selected KL modes and time-dependent coefficients. While the velocity statistics show good agreement between results from DNS and KL reconstructions even with just hundreds of KL modes, tens of thousands of KL modes are required to adequately capture the trace of polymer conformation resulting from DNS. New modifications to KL method have therefore been attempted to account for the differences in conformation statistics. The applicability and impact of these new modified KL methods will be discussed in the perspective of data reduction modeling.

  11. Cytomorphometric analysis of oral buccal mucosal smears in tobacco and arecanut chewers who abused with and without betel leaf.

    PubMed

    Noufal, Ahammed; George, Antony; Jose, Maji; Khader, Mohasin Abdul; Jayapalan, Cheriyanthal Sisupalan

    2014-01-01

    Tobacco in any form (smoking or chewing), arecanut chewing, and alcohol are considered to be the major extrinsic etiological factors for potentially malignant disorders of the oral cavity and for squamous cell carcinoma, the most common oral malignancy in India. An increase in nuclear diameter (ND) and nucleus-cell ratio (NCR) with a reduction in cell diameter (CD) are early cytological indicators of dysplastic change. The authors sought to identify cytomorphometric changes in ND, CD, and NCR of oral buccal cells in tobacco and arecanut chewers who chewed with or without betel leaf. Participants represented 3 groups. Group I consisted of 30 individuals who chewed tobacco and arecanut with betel leaf (BQT chewers). Group II consisted of 30 individuals who chewed tobacco and arecanut without betel leaf (Gutka chewers). Group III comprised 30 apparently healthy nonabusers. Cytological smears were prepared and stained with modified-Papanicolaou stain. Comparisons between Groups I and II and Groups II and III showed that ND was increased, with P values of .054 and .008, respectively, whereas a comparison of Groups I and III showed no statistical significance. Comparisons between Groups I and II and Groups II and III showed that CD was statistically reduced, with P values of .037 and <.000, respectively, whereas comparison of Groups I and III showed no statistical significance. Comparisons between Groups I and II and groups II and III showed that NCR was statistically increased, with P values of <.000, whereas a comparison of Groups I and III showed no statistical significance. CD, ND, and NCR showed statistically significant changes in Group II in comparison with Group I, which could indicate larger and earlier risk of carcinoma for Gutka chewers than in BQT chewers.

  12. Beyond δ : Tailoring marked statistics to reveal modified gravity

    NASA Astrophysics Data System (ADS)

    Valogiannis, Georgios; Bean, Rachel

    2018-01-01

    Models that seek to explain cosmic acceleration through modifications to general relativity (GR) evade stringent Solar System constraints through a restoring, screening mechanism. Down-weighting the high-density, screened regions in favor of the low density, unscreened ones offers the potential to enhance the amount of information carried in such modified gravity models. In this work, we assess the performance of a new "marked" transformation and perform a systematic comparison with the clipping and logarithmic transformations, in the context of Λ CDM and the symmetron and f (R ) modified gravity models. Performance is measured in terms of the fractional boost in the Fisher information and the signal-to-noise ratio (SNR) for these models relative to the statistics derived from the standard density distribution. We find that all three statistics provide improved Fisher boosts over the basic density statistics. The model parameters for the marked and clipped transformation that best enhance signals and the Fisher boosts are determined. We also show that the mark is useful both as a Fourier and real-space transformation; a marked correlation function also enhances the SNR relative to the standard correlation function, and can on mildly nonlinear scales show a significant difference between the Λ CDM and the modified gravity models. Our results demonstrate how a series of simple analytical transformations could dramatically increase the predicted information extracted on deviations from GR, from large-scale surveys, and give the prospect for a much more feasible potential detection.

  13. Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models

    USGS Publications Warehouse

    Haywood, A.M.; Chandler, M.A.; Valdes, P.J.; Salzmann, U.; Lunt, D.J.; Dowsett, H.J.

    2009-01-01

    The mid-Pliocene warm period (ca. 3 to 3.3??million years ago) has become an important interval of time for palaeoclimate modelling exercises, with a large number of studies published during the last decade. However, there has been no attempt to assess the degree of model dependency of the results obtained. Here we present an initial comparison of mid-Pliocene climatologies produced by the Goddard Institute for Space Studies and Hadley Centre for Climate Prediction and Research atmosphere-only General Circulation Models (GCMAM3 and HadAM3). Whilst both models are consistent in the simulation of broad-scale differences in mid-Pliocene surface air temperature and total precipitation rates, significant variation is noted on regional and local scales. There are also significant differences in the model predictions of total cloud cover. A terrestrial data/model comparison, facilitated by the BIOME 4 model and a new data set of Piacenzian Stage land cover [Salzmann, U., Haywood, A.M., Lunt, D.J., Valdes, P.J., Hill, D.J., (2008). A new global biome reconstruction and data model comparison for the Middle Pliocene. Global Ecology and Biogeography 17, 432-447, doi:10.1111/j.1466-8238.2007.00381.x] and combined with the use of Kappa statistics, indicates that HadAM3-based biome predictions provide a closer fit to proxy data in the mid to high-latitudes. However, GCMAM3-based biomes in the tropics provide the closest fit to proxy data. ?? 2008 Elsevier B.V.

  14. Gaussian Mixture Model of Heart Rate Variability

    PubMed Central

    Costa, Tommaso; Boccignone, Giuseppe; Ferraro, Mario

    2012-01-01

    Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters. PMID:22666386

  15. Statistical models for causation: what inferential leverage do they provide?

    PubMed

    Freedman, David A

    2006-12-01

    Experiments offer more reliable evidence on causation than observational studies, which is not to gainsay the contribution to knowledge from observation. Experiments should be analyzed as experiments, not as observational studies. A simple comparison of rates might be just the right tool, with little value added by "sophisticated" models. This article discusses current models for causation, as applied to experimental and observational data. The intention-to-treat principle and the effect of treatment on the treated will also be discussed. Flaws in per-protocol and treatment-received estimates will be demonstrated.

  16. Characterizing and Addressing the Need for Statistical Adjustment of Global Climate Model Data

    NASA Astrophysics Data System (ADS)

    White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.

    2017-12-01

    As part of its mission to research and measure the effects of the changing climate, the U. S. Army Corps of Engineers (USACE) regularly uses the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset. However, these data are generated at a global level and are not fine-tuned for specific watersheds. This often causes CMIP5 output to vary from locally observed patterns in the climate. Several downscaling methods have been developed to increase the resolution of the CMIP5 data and decrease systemic differences to support decision-makers as they evaluate results at the watershed scale. Evaluating preliminary comparisons of observed and projected flow frequency curves over the US revealed a simple framework for water resources decision makers to plan and design water resources management measures under changing conditions using standard tools. Using this framework as a basis, USACE has begun to explore to use of statistical adjustment to alter global climate model data to better match the locally observed patterns while preserving the general structure and behavior of the model data. When paired with careful measurement and hypothesis testing, statistical adjustment can be particularly effective at navigating the compromise between the locally observed patterns and the global climate model structures for decision makers.

  17. Nakagami-based total variation method for speckle reduction in thyroid ultrasound images.

    PubMed

    Koundal, Deepika; Gupta, Savita; Singh, Sukhwinder

    2016-02-01

    A good statistical model is necessary for the reduction in speckle noise. The Nakagami model is more general than the Rayleigh distribution for statistical modeling of speckle in ultrasound images. In this article, the Nakagami-based noise removal method is presented to enhance thyroid ultrasound images and to improve clinical diagnosis. The statistics of log-compressed image are derived from the Nakagami distribution following a maximum a posteriori estimation framework. The minimization problem is solved by optimizing an augmented Lagrange and Chambolle's projection method. The proposed method is evaluated on both artificial speckle-simulated and real ultrasound images. The experimental findings reveal the superiority of the proposed method both quantitatively and qualitatively in comparison with other speckle reduction methods reported in the literature. The proposed method yields an average signal-to-noise ratio gain of more than 2.16 dB over the non-convex regularizer-based speckle noise removal method, 3.83 dB over the Aubert-Aujol model, 1.71 dB over the Shi-Osher model and 3.21 dB over the Rudin-Lions-Osher model on speckle-simulated synthetic images. Furthermore, visual evaluation of the despeckled images shows that the proposed method suppresses speckle noise well while preserving the textures and fine details. © IMechE 2015.

  18. Comparison of two statistical methods for probability prediction of monthly precipitation during summer over Huaihe River Basin in China, and applications in runoff prediction based on hydrological model

    NASA Astrophysics Data System (ADS)

    Liu, L.; Du, L.; Liao, Y.

    2017-12-01

    Based on the ensemble hindcast dataset of CSM1.1m by NCC, CMA, Bayesian merging models and a two-step statistical model are developed and employed to predict monthly grid/station precipitation in the Huaihe River China during summer at the lead-time of 1 to 3 months. The hindcast datasets span a period of 1991 to 2014. The skill of the two models is evaluated using area under the ROC curve (AUC) in a leave-one-out cross-validation framework, and is compared to the skill of CSM1.1m. CSM1.1m has highest skill for summer precipitation from April while lowest from May, and has highest skill for precipitation in June but lowest for precipitation in July. Compared with raw outputs of climate models, some schemes of the two approaches have higher skill for the prediction from March and May, but almost schemes have lower skill for prediction from April. Compared to two-step approach, one sampling scheme of Bayesian merging approach has higher skill for the prediction from March, but has lower skill from May. The results suggest that there is potential to apply the two statistical models for monthly precipitation forecast in summer from March and from May over Huaihe River basin, but is potential to apply CSM1.1m forecast from April. Finally, the summer runoff during 1991 to 2014 is simulated based on one hydrological model using the climate hindcast of CSM1.1m and the two statistical models.

  19. Comparison of Statistical Models for Analyzing Wheat Yield Time Series

    PubMed Central

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha−1 year−1 in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale. PMID:24205280

  20. Statistical method to compare massive parallel sequencing pipelines.

    PubMed

    Elsensohn, M H; Leblay, N; Dimassi, S; Campan-Fournier, A; Labalme, A; Roucher-Boulez, F; Sanlaville, D; Lesca, G; Bardel, C; Roy, P

    2017-03-01

    Today, sequencing is frequently carried out by Massive Parallel Sequencing (MPS) that cuts drastically sequencing time and expenses. Nevertheless, Sanger sequencing remains the main validation method to confirm the presence of variants. The analysis of MPS data involves the development of several bioinformatic tools, academic or commercial. We present here a statistical method to compare MPS pipelines and test it in a comparison between an academic (BWA-GATK) and a commercial pipeline (TMAP-NextGENe®), with and without reference to a gold standard (here, Sanger sequencing), on a panel of 41 genes in 43 epileptic patients. This method used the number of variants to fit log-linear models for pairwise agreements between pipelines. To assess the heterogeneity of the margins and the odds ratios of agreement, four log-linear models were used: a full model, a homogeneous-margin model, a model with single odds ratio for all patients, and a model with single intercept. Then a log-linear mixed model was fitted considering the biological variability as a random effect. Among the 390,339 base-pairs sequenced, TMAP-NextGENe® and BWA-GATK found, on average, 2253.49 and 1857.14 variants (single nucleotide variants and indels), respectively. Against the gold standard, the pipelines had similar sensitivities (63.47% vs. 63.42%) and close but significantly different specificities (99.57% vs. 99.65%; p < 0.001). Same-trend results were obtained when only single nucleotide variants were considered (99.98% specificity and 76.81% sensitivity for both pipelines). The method allows thus pipeline comparison and selection. It is generalizable to all types of MPS data and all pipelines.

  1. System analysis for the Huntsville Operational Support Center distributed computer system

    NASA Technical Reports Server (NTRS)

    Ingels, E. M.

    1983-01-01

    A simulation model was developed and programmed in three languages BASIC, PASCAL, and SLAM. Two of the programs are included in this report, the BASIC and the PASCAL language programs. SLAM is not supported by NASA/MSFC facilities and hence was not included. The statistical comparison of simulations of the same HOSC system configurations are in good agreement and are in agreement with the operational statistics of HOSC that were obtained. Three variations of the most recent HOSC configuration was run and some conclusions drawn as to the system performance under these variations.

  2. A Simple Illustration for the Need of Multiple Comparison Procedures

    ERIC Educational Resources Information Center

    Carter, Rickey E.

    2010-01-01

    Statistical adjustments to accommodate multiple comparisons are routinely covered in introductory statistical courses. The fundamental rationale for such adjustments, however, may not be readily understood. This article presents a simple illustration to help remedy this.

  3. Comparison of climate envelope models developed using expert-selected variables versus statistical selection

    USGS Publications Warehouse

    Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.

    2017-01-01

    Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (<40%) between the two methods Despite these differences in variable sets (expert versus statistical), models had high performance metrics (>0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable selection is a useful first step, especially when there is a need to model a large number of species or expert knowledge of the species is limited. Expert input can then be used to refine models that seem unrealistic or for species that experts believe are particularly sensitive to change. It also emphasizes the importance of using multiple models to reduce uncertainty and improve map outputs for conservation planning. Where outputs overlap or show the same direction of change there is greater certainty in the predictions. Areas of disagreement can be used for learning by asking why the models do not agree, and may highlight areas where additional on-the-ground data collection could improve the models.

  4. On the paradoxical evolution of the number of photons in a new model of interpolating Hamiltonians

    NASA Astrophysics Data System (ADS)

    Valverde, Clodoaldo; Baseia, Basílio

    2018-01-01

    We introduce a new Hamiltonian model which interpolates between the Jaynes-Cummings model (JCM) and other types of such Hamiltonians. It works with two interpolating parameters, rather than one as traditional. Taking advantage of this greater degree of freedom, we can perform continuous interpolation between the various types of these Hamiltonians. As applications, we discuss a paradox raised in literature and compare the time evolution of the photon statistics obtained in the various interpolating models. The role played by the average excitation in these comparisons is also highlighted.

  5. Comparison of measurement- and proxy-based Vs30 values in California

    USGS Publications Warehouse

    Yong, Alan K.

    2016-01-01

    This study was prompted by the recent availability of a significant amount of openly accessible measured VS30 values and the desire to investigate the trend of using proxy-based models to predict VS30 in the absence of measurements. Comparisons between measured and model-based values were performed. The measured data included 503 VS30 values collected from various projects for 482 seismographic station sites in California. Six proxy-based models—employing geologic mapping, topographic slope, and terrain classification—were also considered. Included was a new terrain class model based on the Yong et al. (2012) approach but recalibrated with updated measured VS30 values. Using the measured VS30 data as the metric for performance, the predictive capabilities of the six models were determined to be statistically indistinguishable. This study also found three models that tend to underpredict VS30 at lower velocities (NEHRP Site Classes D–E) and overpredict at higher velocities (Site Classes B–C).

  6. Effects of alcohol tax increases on alcohol-related disease mortality in Alaska: time-series analyses from 1976 to 2004.

    PubMed

    Wagenaar, Alexander C; Maldonado-Molina, Mildred M; Wagenaar, Bradley H

    2009-08-01

    We evaluated the effects of tax increases on alcoholic beverages in 1983 and 2002 on alcohol-related disease mortality in Alaska. We used a quasi-experimental design with quarterly measures of mortality from 1976 though 2004, and we included other states for comparison. Our statistical approach combined an autoregressive integrated moving average model with structural parameters in interrupted time-series models. We observed statistically significant reductions in the numbers and rates of deaths caused by alcohol-related disease beginning immediately after the 1983 and 2002 alcohol tax increases in Alaska. In terms of effect size, the reductions were -29% (Cohen's d = -0.57) and -11% (Cohen's d = -0.52) for the 2 tax increases. Statistical tests of temporary-effect models versus long-term-effect models showed little dissipation of the effect over time. Increases in alcohol excise tax rates were associated with immediate and sustained reductions in alcohol-related disease mortality in Alaska. Reductions in mortality occurred after 2 tax increases almost 20 years apart. Taxing alcoholic beverages is an effective public health strategy for reducing the burden of alcohol-related disease.

  7. Statistical downscaling of general-circulation-model- simulated average monthly air temperature to the beginning of flowering of the dandelion (Taraxacum officinale) in Slovenia

    NASA Astrophysics Data System (ADS)

    Bergant, Klemen; Kajfež-Bogataj, Lučka; Črepinšek, Zalika

    2002-02-01

    Phenological observations are a valuable source of information for investigating the relationship between climate variation and plant development. Potential climate change in the future will shift the occurrence of phenological phases. Information about future climate conditions is needed in order to estimate this shift. General circulation models (GCM) provide the best information about future climate change. They are able to simulate reliably the most important mean features on a large scale, but they fail on a regional scale because of their low spatial resolution. A common approach to bridging the scale gap is statistical downscaling, which was used to relate the beginning of flowering of Taraxacum officinale in Slovenia with the monthly mean near-surface air temperature for January, February and March in Central Europe. Statistical models were developed and tested with NCAR/NCEP Reanalysis predictor data and EARS predictand data for the period 1960-1999. Prior to developing statistical models, empirical orthogonal function (EOF) analysis was employed on the predictor data. Multiple linear regression was used to relate the beginning of flowering with expansion coefficients of the first three EOF for the Janauary, Febrauary and March air temperatures, and a strong correlation was found between them. Developed statistical models were employed on the results of two GCM (HadCM3 and ECHAM4/OPYC3) to estimate the potential shifts in the beginning of flowering for the periods 1990-2019 and 2020-2049 in comparison with the period 1960-1989. The HadCM3 model predicts, on average, 4 days earlier occurrence and ECHAM4/OPYC3 5 days earlier occurrence of flowering in the period 1990-2019. The analogous results for the period 2020-2049 are a 10- and 11-day earlier occurrence.

  8. Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2.

    PubMed

    Hoaglin, David C; Hawkins, Neil; Jansen, Jeroen P; Scott, David A; Itzler, Robbin; Cappelleri, Joseph C; Boersma, Cornelis; Thompson, David; Larholt, Kay M; Diaz, Mireya; Barrett, Annabel

    2011-06-01

    Evidence-based health care decision making requires comparison of all relevant competing interventions. In the absence of randomized controlled trials involving a direct comparison of all treatments of interest, indirect treatment comparisons and network meta-analysis provide useful evidence for judiciously selecting the best treatment(s). Mixed treatment comparisons, a special case of network meta-analysis, combine direct evidence and indirect evidence for particular pairwise comparisons, thereby synthesizing a greater share of the available evidence than traditional meta-analysis. This report from the International Society for Pharmacoeconomics and Outcomes Research Indirect Treatment Comparisons Good Research Practices Task Force provides guidance on technical aspects of conducting network meta-analyses (our use of this term includes most methods that involve meta-analysis in the context of a network of evidence). We start with a discussion of strategies for developing networks of evidence. Next we briefly review assumptions of network meta-analysis. Then we focus on the statistical analysis of the data: objectives, models (fixed-effects and random-effects), frequentist versus Bayesian approaches, and model validation. A checklist highlights key components of network meta-analysis, and substantial examples illustrate indirect treatment comparisons (both frequentist and Bayesian approaches) and network meta-analysis. A further section discusses eight key areas for future research. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  9. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico.

    PubMed

    Johansson, Michael A; Reich, Nicholas G; Hota, Aditi; Brownstein, John S; Santillana, Mauricio

    2016-09-26

    Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model.

  10. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico

    PubMed Central

    Johansson, Michael A.; Reich, Nicholas G.; Hota, Aditi; Brownstein, John S.; Santillana, Mauricio

    2016-01-01

    Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model. PMID:27665707

  11. Comparisons of thermospheric density data sets and models

    NASA Astrophysics Data System (ADS)

    Doornbos, Eelco; van Helleputte, Tom; Emmert, John; Drob, Douglas; Bowman, Bruce R.; Pilinski, Marcin

    During the past decade, continuous long-term data sets of thermospheric density have become available to researchers. These data sets have been derived from accelerometer measurements made by the CHAMP and GRACE satellites and from Space Surveillance Network (SSN) tracking data and related Two-Line Element (TLE) sets. These data have already resulted in a large number of publications on physical interpretation and improvement of empirical density modelling. This study compares four different density data sets and two empirical density models, for the period 2002-2009. These data sources are the CHAMP (1) and GRACE (2) accelerometer measurements, the long-term database of densities derived from TLE data (3), the High Accuracy Satellite Drag Model (4) run by Air Force Space Command, calibrated using SSN data, and the NRLMSISE-00 (5) and Jacchia-Bowman 2008 (6) empirical models. In describing these data sets and models, specific attention is given to differences in the geo-metrical and aerodynamic satellite modelling, applied in the conversion from drag to density measurements, which are main sources of density biases. The differences in temporal and spa-tial resolution of the density data sources are also described and taken into account. With these aspects in mind, statistics of density comparisons have been computed, both as a function of solar and geomagnetic activity levels, and as a function of latitude and local solar time. These statistics give a detailed view of the relative accuracy of the different data sets and of the biases between them. The differences are analysed with the aim at providing rough error bars on the data and models and pinpointing issues which could receive attention in future iterations of data processing algorithms and in future model development.

  12. Regression Analysis of Long-Term Profile Ozone Data Set from BUV Instruments

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    2005-01-01

    We have produced a profile merged ozone data set (MOD) based on the SBUV/SBUV2 series of nadir-viewing satellite backscatter instruments, covering the period from November 1978 - December 2003. In 2004, data from the Nimbus 7 SBUV and NOAA 9, ll, and 16 SBUV/2 instruments were reprocessed using the Version 8 (V8) algorithm and most recent calibrations. More recently, data from the Nimbus 4 BUT instrument, which was operational from 1970 - 1977, were also reprocessed using the V8 algorithm. As part of the V8 profile calibration, the Nimbus 7 and NOAA 9 (1993-1997 only) instrument calibrations have been adjusted to match the NOAA 11 calibration, which was established based on comparisons with SSBUV shuttle flight data. Differences between NOAA 11, Nimbus 7 and NOAA 9 profile zonal means are within plus or minus 5% at all levels when averaged over the respective periods of data overlap. NOAA 16 SBUV/2 data have insufficient overlap with NOAA 11, so its calibration is based on pre-flight information. Mean differences over 4 months of overlap are within plus or minus 7%. Given the level of agreement between the data sets, we simply average the ozone values during periods of instrument overlap to produce the MOD profile data set. Initial comparisons of coincident matches of N4 BUV and Arosa Umkehr data show mean differences of 0.5 (0.5)% at 30km; 7.5 (0.5)% at 35 km; and 11 (0.7)% at 40 km, where the number in parentheses is the standard error of the mean. In this study, we use the MOD profile data set (1978-2003) to estimate the change in profile ozone due to changing stratospheric chlorine levels. We use a standard linear regression model with proxies for the seasonal cycle, solar cycle, QBO, and ozone trend. To account for the non-linearity of stratospheric chlorine levels since the late 1990s, we use a time series of Effective Chlorine, defined as the global average of Chlorine + 50 * Bromine at 1 hPa, as the trend proxy. The Effective Chlorine data are taken from the 3-D Goddard CTM. We will show the latest trend results using this statistical model. In addition, the Nimbus 4 BUV data offer an opportunity to test the physical properties of our statistical model. From ground-based comparisons we will establish an uncertainty range for the Nimbus 4 data. We then extrapolate our statistical model fit backwards in time and compare to the Nimbus 4 data. We compare the characteristics of the residual, defined as the difference between the data and statistical regression fit, during the Nimbus 4 time period and the 1978-2003 period over which the statistical model coefficients were estimated, and present these results.

  13. Information retrieval from wide-band meteorological data - An example

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.; Smith, O. E.

    1983-01-01

    The methods proposed by Smith and Adelfang (1981) and Smith et al. (1982) are used to calculate probabilities over rectangles and sectors of the gust magnitude-gust length plane; probabilities over the same regions are also calculated from the observed distributions and a comparison is also presented to demonstrate the accuracy of the statistical model. These and other statistical results are calculated from samples of Jimsphere wind profiles at Cape Canaveral. The results are presented for a variety of wavelength bands, altitudes, and seasons. It is shown that wind perturbations observed in Jimsphere wind profiles in various wavelength bands can be analyzed by using digital filters. The relationship between gust magnitude and gust length is modeled with the bivariate gamma distribution. It is pointed out that application of the model to calculate probabilities over specific areas of the gust magnitude-gust length plane can be useful in aerospace design.

  14. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    PubMed

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

  15. Amplitude and Phase Characteristics of Signals at the Output of Spatially Separated Antennas for Paths with Scattering

    NASA Astrophysics Data System (ADS)

    Anikin, A. S.

    2018-06-01

    Conditional statistical characteristics of the phase difference are considered depending on the ratio of instantaneous output signal amplitudes of spatially separated weakly directional antennas for the normal field model for paths with radio-wave scattering. The dependences obtained are related to the physical processes on the radio-wave propagation path. The normal model parameters are established at which the statistical characteristics of the phase difference depend on the ratio of the instantaneous amplitudes and hence can be used to measure the phase difference. Using Shannon's formula, the amount of information on the phase difference of signals contained in the ratio of their amplitudes is calculated depending on the parameters of the normal field model. Approaches are suggested to reduce the shift of phase difference measured for paths with radio-wave scattering. A comparison with results of computer simulation by the Monte Carlo method is performed.

  16. Statistical Agent Based Modelization of the Phenomenon of Drug Abuse

    NASA Astrophysics Data System (ADS)

    di Clemente, Riccardo; Pietronero, Luciano

    2012-07-01

    We introduce a statistical agent based model to describe the phenomenon of drug abuse and its dynamical evolution at the individual and global level. The agents are heterogeneous with respect to their intrinsic inclination to drugs, to their budget attitude and social environment. The various levels of drug use were inspired by the professional description of the phenomenon and this permits a direct comparison with all available data. We show that certain elements have a great importance to start the use of drugs, for example the rare events in the personal experiences which permit to overcame the barrier of drug use occasionally. The analysis of how the system reacts to perturbations is very important to understand its key elements and it provides strategies for effective policy making. The present model represents the first step of a realistic description of this phenomenon and can be easily generalized in various directions.

  17. A statistical model for water quality predictions from a river discharge using coastal observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  18. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models

    NASA Astrophysics Data System (ADS)

    Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.

    2017-06-01

    We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.

  19. Statistical Modeling of Radiometric Error Propagation in Support of Hyperspectral Imaging Inversion and Optimized Ground Sensor Network Design

    DTIC Science & Technology

    2008-09-04

    mospheric correction. volume 3756, pages 348–353. SPIE, 1999. Daniel Birkenheuer and Seth Gutman. A Comparison of GOES Moisture-Derived Product and GPS...pages 417–428. SPIE, 2001. E. J. Ientilucci and S. D. Brown. Advances in wide-area hyperspectral image sim- ulation. In W. R. Watkins , D. Clement

  20. [Analysis of variance of repeated data measured by water maze with SPSS].

    PubMed

    Qiu, Hong; Jin, Guo-qin; Jin, Ru-feng; Zhao, Wei-kang

    2007-01-01

    To introduce the method of analyzing repeated data measured by water maze with SPSS 11.0, and offer a reference statistical method to clinical and basic medicine researchers who take the design of repeated measures. Using repeated measures and multivariate analysis of variance (ANOVA) process of the general linear model in SPSS and giving comparison among different groups and different measure time pairwise. Firstly, Mauchly's test of sphericity should be used to judge whether there were relations among the repeatedly measured data. If any (P

  1. Fourier descriptor analysis and unification of voice range profile contours: method and applications.

    PubMed

    Pabon, Peter; Ternström, Sten; Lamarche, Anick

    2011-06-01

    To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the contour, is assessed and also is compared to density-based VRP averaging methods that use the overlap count. VRP contours can be usefully described and compared using FDs. The method also permits the visualization of the local covariation along the contour average. For example, the FD-based analysis shows that the population variance for ensembles of VRP contours is usually smallest at the upper left part of the VRP. To illustrate the method's advantages and possible further application, graphs are given that compare the averaged contours from different authors and recording devices--for normal, trained, and untrained male and female voices as well as for child voices. The proposed technique allows any VRP shape to be brought to the same uniform base. On this uniform base, VRP contours or contour elements coming from a variety of sources may be placed within the same graph for comparison and for statistical analysis.

  2. Comparison of three artificial intelligence techniques for discharge routing

    NASA Astrophysics Data System (ADS)

    Khatibi, Rahman; Ghorbani, Mohammad Ali; Kashani, Mahsa Hasanpour; Kisi, Ozgur

    2011-06-01

    SummaryThe inter-comparison of three artificial intelligence (AI) techniques are presented using the results of river flow/stage timeseries, that are otherwise handled by traditional discharge routing techniques. These models comprise Artificial Neural Network (ANN), Adaptive Nero-Fuzzy Inference System (ANFIS) and Genetic Programming (GP), which are for discharge routing of Kizilirmak River, Turkey. The daily mean river discharge data with a period between 1999 and 2003 were used for training and testing the models. The comparison includes both visual and parametric approaches using such statistic as Coefficient of Correlation (CC), Mean Absolute Error (MAE) and Mean Square Relative Error (MSRE), as well as a basic scoring system. Overall, the results indicate that ANN and ANFIS have mixed fortunes in discharge routing, and both have different abilities in capturing and reproducing some of the observed information. However, the performance of GP displays a better edge over the other two modelling approaches in most of the respects. Attention is given to the information contents of recorded timeseries in terms of their peak values and timings, where one performance measure may capture some of the information contents but be ineffective in others. Thus, this makes a case for compiling knowledge base for various modelling techniques.

  3. Statistical and dynamical modeling of heavy-ion fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.; Razazzadeh, H.

    2018-02-01

    A modified statistical model and a four dimensional dynamical model based on Langevin equations have been used to simulate the fission process of the excited compound nuclei 207At and 216Ra produced in the fusion 19F + 188Os and 19F + 197Au reactions. The evaporation residue cross section, the fission cross section, the pre-scission neutron, proton and alpha multiplicities and the anisotropy of fission fragments angular distribution have been calculated for the excited compound nuclei 207At and 216Ra. In the modified statistical model the effects of spin K about the symmetry axis and temperature have been considered in calculations of the fission widths and the potential energy surfaces. It was shown that the modified statistical model can reproduce the above mentioned experimental data by using appropriate values of the temperature coefficient of the effective potential equal to λ = 0.0180 ± 0.0055, 0.0080 ± 0.0030 MeV-2 and the scaling factor of the fission barrier height equal to rs = 1.0015 ± 0.0025, 1.0040 ± 0.0020 for the compound nuclei 207At and 216Ra, respectively. Three collective shape coordinates plus the projection of total spin of the compound nucleus on the symmetry axis, K, were considered in the four dimensional dynamical model. In the dynamical calculations, dissipation was generated through the chaos weighted wall and window friction formula. Comparison of the theoretical results with the experimental data showed that two models make it possible to reproduce satisfactorily the above mentioned experimental data for the excited compound nuclei 207At and 216Ra.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John R.; Brooks, Dusty Marie

    In pressurized water reactors, the prevention, detection, and repair of cracks within dissimilar metal welds is essential to ensure proper plant functionality and safety. Weld residual stresses, which are difficult to model and cannot be directly measured, contribute to the formation and growth of cracks due to primary water stress corrosion cracking. Additionally, the uncertainty in weld residual stress measurements and modeling predictions is not well understood, further complicating the prediction of crack evolution. The purpose of this document is to develop methodology to quantify the uncertainty associated with weld residual stress that can be applied to modeling predictions andmore » experimental measurements. Ultimately, the results can be used to assess the current state of uncertainty and to build confidence in both modeling and experimental procedures. The methodology consists of statistically modeling the variation in the weld residual stress profiles using functional data analysis techniques. Uncertainty is quantified using statistical bounds (e.g. confidence and tolerance bounds) constructed with a semi-parametric bootstrap procedure. Such bounds describe the range in which quantities of interest, such as means, are expected to lie as evidenced by the data. The methodology is extended to provide direct comparisons between experimental measurements and modeling predictions by constructing statistical confidence bounds for the average difference between the two quantities. The statistical bounds on the average difference can be used to assess the level of agreement between measurements and predictions. The methodology is applied to experimental measurements of residual stress obtained using two strain relief measurement methods and predictions from seven finite element models developed by different organizations during a round robin study.« less

  5. Constraining nuclear photon strength functions by the decay properties of photo-excited states

    NASA Astrophysics Data System (ADS)

    Isaak, J.; Savran, D.; Krtička, M.; Ahmed, M. W.; Beller, J.; Fiori, E.; Glorius, J.; Kelley, J. H.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Scheck, M.; Schnorrenberger, L.; Silva, J.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.

    2013-12-01

    A new approach for constraining the low-energy part of the electric dipole Photon Strength Function (E1-PSF) is presented. Experiments at the Darmstadt High-Intensity Photon Setup and the High Intensity γ→-Ray Source have been performed to investigate the decay properties of 130Te between 5.50 and 8.15 MeV excitation energy. In particular, the average γ-ray branching ratio to the ground state and the population intensity of low-lying excited states have been studied. A comparison to the statistical model shows that the latter is sensitive to the low-energy behavior of the E1-PSF, while the average ground state branching ratio cannot be described by the statistical model in the energy range between 5.5 and 6.5 MeV.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, R.M.

    A new statistical model (the quantum-statistical model (QSM)) was recently introduced by Kalitkin and Kuzmina for the calculation of thermodynamic properties of compressed matter. This paper examines the QSM and gives (i) a numerical QSM calculation of pressure and energy for aluminum and comparison to existing augmented-plane-wave data; (ii) display of separate kinetic, exchange, and quantum pressure terms; (iii) a study of electron density at the nucleus; (iv) a study of the effects of the Kirzhnitz-Weizsacker parameter controlling the gradient terms; (v) an analytic expansion for very high densities; and (vi) rigorous pressure theorems including a general version of themore » virial theorem which applies to an arbitrary microscopic volume. It is concluded that the QSM represents the most accurate and consistent theory of the Thomas-Fermi type.« less

  7. An investigation into the causes of stratospheric ozone loss in the southern Australasian region

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Karoly, D. J.; Newmann, P. A.; Clarkson, T. S.; Matthews, W. A.

    1992-07-01

    Measurements of total ozone at Macquarie Island (55 deg S, 159 deg E) reveal statistically significant reductions of approximately twelve percent during July to September when comparing the mean levels for 1987-90 with those in the seventies. In order to investigate the possibility that these ozone changes may not be a result of dynamic variability of the stratosphere, a simple linear model of ozone was created from statistical analysis of tropopause height and isentropic transient eddy heat flux, which were assumed representative of the dominant dynamic influences. Comparison of measured and modeled ozone indicates that the recent downward trend in ozone at Macquarie Island is not related to stratospheric dynamic variability and therefore suggests another mechanism, possibly changes in photochemical destruction of ozone.

  8. Connection between two statistical approaches for the modelling of particle velocity and concentration distributions in turbulent flow: The mesoscopic Eulerian formalism and the two-point probability density function method

    NASA Astrophysics Data System (ADS)

    Simonin, Olivier; Zaichik, Leonid I.; Alipchenkov, Vladimir M.; Février, Pierre

    2006-12-01

    The objective of the paper is to elucidate a connection between two approaches that have been separately proposed for modelling the statistical spatial properties of inertial particles in turbulent fluid flows. One of the approaches proposed recently by Février, Simonin, and Squires [J. Fluid Mech. 533, 1 (2005)] is based on the partitioning of particle turbulent velocity field into spatially correlated (mesoscopic Eulerian) and random-uncorrelated (quasi-Brownian) components. The other approach stems from a kinetic equation for the two-point probability density function of the velocity distributions of two particles [Zaichik and Alipchenkov, Phys. Fluids 15, 1776 (2003)]. Comparisons between these approaches are performed for isotropic homogeneous turbulence and demonstrate encouraging agreement.

  9. Modelling of electronic excitation and radiation in the Direct Simulation Monte Carlo Macroscopic Chemistry Method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, M. J.

    2012-10-01

    One of the most useful tools for modelling rarefied hypersonic flows is the Direct Simulation Monte Carlo (DSMC) method. Simulator particle movement and collision calculations are combined with statistical procedures to model thermal non-equilibrium flow-fields described by the Boltzmann equation. The Macroscopic Chemistry Method for DSMC simulations was developed to simplify the inclusion of complex thermal non-equilibrium chemistry. The macroscopic approach uses statistical information which is calculated during the DSMC solution process in the modelling procedures. Here it is shown how inclusion of macroscopic information in models of chemical kinetics, electronic excitation, ionization, and radiation can enhance the capabilities of DSMC to model flow-fields where a range of physical processes occur. The approach is applied to the modelling of a 6.4 km/s nitrogen shock wave and results are compared with those from existing shock-tube experiments and continuum calculations. Reasonable agreement between the methods is obtained. The quality of the comparison is highly dependent on the set of vibrational relaxation and chemical kinetic parameters employed.

  10. A cross-national analysis of how economic inequality predicts biodiversity loss.

    PubMed

    Holland, Tim G; Peterson, Garry D; Gonzalez, Andrew

    2009-10-01

    We used socioeconomic models that included economic inequality to predict biodiversity loss, measured as the proportion of threatened plant and vertebrate species, across 50 countries. Our main goal was to evaluate whether economic inequality, measured as the Gini index of income distribution, improved the explanatory power of our statistical models. We compared four models that included the following: only population density, economic footprint (i.e., the size of the economy relative to the country area), economic footprint and income inequality (Gini index), and an index of environmental governance. We also tested the environmental Kuznets curve hypothesis, but it was not supported by the data. Statistical comparisons of the models revealed that the model including both economic footprint and inequality was the best predictor of threatened species. It significantly outperformed population density alone and the environmental governance model according to the Akaike information criterion. Inequality was a significant predictor of biodiversity loss and significantly improved the fit of our models. These results confirm that socioeconomic inequality is an important factor to consider when predicting rates of anthropogenic biodiversity loss.

  11. Quasi-experimental study designs series-paper 10: synthesizing evidence for effects collected from quasi-experimental studies presents surmountable challenges.

    PubMed

    Becker, Betsy Jane; Aloe, Ariel M; Duvendack, Maren; Stanley, T D; Valentine, Jeffrey C; Fretheim, Atle; Tugwell, Peter

    2017-09-01

    To outline issues of importance to analytic approaches to the synthesis of quasi-experiments (QEs) and to provide a statistical model for use in analysis. We drew on studies of statistics, epidemiology, and social-science methodology to outline methods for synthesis of QE studies. The design and conduct of QEs, effect sizes from QEs, and moderator variables for the analysis of those effect sizes were discussed. Biases, confounding, design complexities, and comparisons across designs offer serious challenges to syntheses of QEs. Key components of meta-analyses of QEs were identified, including the aspects of QE study design to be coded and analyzed. Of utmost importance are the design and statistical controls implemented in the QEs. Such controls and any potential sources of bias and confounding must be modeled in analyses, along with aspects of the interventions and populations studied. Because of such controls, effect sizes from QEs are more complex than those from randomized experiments. A statistical meta-regression model that incorporates important features of the QEs under review was presented. Meta-analyses of QEs provide particular challenges, but thorough coding of intervention characteristics and study methods, along with careful analysis, should allow for sound inferences. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Bayesian Computation for Log-Gaussian Cox Processes: A Comparative Analysis of Methods

    PubMed Central

    Teng, Ming; Nathoo, Farouk S.; Johnson, Timothy D.

    2017-01-01

    The Log-Gaussian Cox Process is a commonly used model for the analysis of spatial point pattern data. Fitting this model is difficult because of its doubly-stochastic property, i.e., it is an hierarchical combination of a Poisson process at the first level and a Gaussian Process at the second level. Various methods have been proposed to estimate such a process, including traditional likelihood-based approaches as well as Bayesian methods. We focus here on Bayesian methods and several approaches that have been considered for model fitting within this framework, including Hamiltonian Monte Carlo, the Integrated nested Laplace approximation, and Variational Bayes. We consider these approaches and make comparisons with respect to statistical and computational efficiency. These comparisons are made through several simulation studies as well as through two applications, the first examining ecological data and the second involving neuroimaging data. PMID:29200537

  13. Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment

    NASA Technical Reports Server (NTRS)

    Frische, F.; Osterloh, J.-P.; Luedtke, A.

    2011-01-01

    This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.

  14. Analysis of the Efficacy of an Intervention to Improve Parent-Adolescent Problem Solving

    PubMed Central

    Semeniuk, Yulia Yuriyivna; Brown, Roger L.; Riesch, Susan K.

    2016-01-01

    We conducted a two-group longitudinal partially nested randomized controlled trial to examine whether young adolescent youth-parent dyads participating in Mission Possible: Parents and Kids Who Listen, in contrast to a comparison group, would demonstrate improved problem solving skill. The intervention is based on the Circumplex Model and Social Problem Solving Theory. The Circumplex Model posits that families who are balanced, that is characterized by high cohesion and flexibility and open communication, function best. Social Problem Solving Theory informs the process and skills of problem solving. The Conditional Latent Growth Modeling analysis revealed no statistically significant differences in problem solving among the final sample of 127 dyads in the intervention and comparison groups. Analyses of effect sizes indicated large magnitude group effects for selected scales for youth and dyads portraying a potential for efficacy and identifying for whom the intervention may be efficacious if study limitations and lessons learned were addressed. PMID:26936844

  15. Peripheral neuropathy in military aircraft maintenance workers in Australia.

    PubMed

    Guest, Maya; Attia, John R; D'este, Catherine A; Boggess, May M; Brown, Anthony M; Gibson, Richard E; Tavener, Meredith A; Ross, James; Gardner, Ian; Harrex, Warren

    2011-04-01

    This study aimed to examine possible persisting peripheral neuropathy in a group who undertook fuel tank repairs on F-111 aircraft, relative to two contemporaneous comparison groups. Vibration perception threshold (VPT) was tested using biothesiometry in 614 exposed personnel, compared with two unexposed groups (513 technical trades and 403 nontrades). Regression modeling was used to examine associations, adjusting for possible confounders. We observed that 26% of participants had chronic persistent increased VPT in the great toe. In contrast, statistically significant higher VPT of the great toe was observed in the comparison groups; however, the effect was small, about 1/4 the magnitude of diabetes. Age, height, and diabetes were all significant and strong predictors in most models. This study highlights chronic persisting peripheral neuropathy in a population of aircraft maintainers.

  16. Visual learning in drosophila: application on a roving robot and comparisons

    NASA Astrophysics Data System (ADS)

    Arena, P.; De Fiore, S.; Patané, L.; Termini, P. S.; Strauss, R.

    2011-05-01

    Visual learning is an important aspect of fly life. Flies are able to extract visual cues from objects, like colors, vertical and horizontal distributedness, and others, that can be used for learning to associate a meaning to specific features (i.e. a reward or a punishment). Interesting biological experiments show trained stationary flying flies avoiding flying towards specific visual objects, appearing on the surrounding environment. Wild-type flies effectively learn to avoid those objects but this is not the case for the learning mutant rutabaga defective in the cyclic AMP dependent pathway for plasticity. A bio-inspired architecture has been proposed to model the fly behavior and experiments on roving robots were performed. Statistical comparisons have been considered and mutant-like effect on the model has been also investigated.

  17. Modelling Long Term Disability following Injury: Comparison of Three Approaches for Handling Multiple Injuries

    PubMed Central

    Gabbe, Belinda J.; Harrison, James E.; Lyons, Ronan A.; Jolley, Damien

    2011-01-01

    Background Injury is a leading cause of the global burden of disease (GBD). Estimates of non-fatal injury burden have been limited by a paucity of empirical outcomes data. This study aimed to (i) establish the 12-month disability associated with each GBD 2010 injury health state, and (ii) compare approaches to modelling the impact of multiple injury health states on disability as measured by the Glasgow Outcome Scale – Extended (GOS-E). Methods 12-month functional outcomes for 11,337 survivors to hospital discharge were drawn from the Victorian State Trauma Registry and the Victorian Orthopaedic Trauma Outcomes Registry. ICD-10 diagnosis codes were mapped to the GBD 2010 injury health states. Cases with a GOS-E score >6 were defined as “recovered.” A split dataset approach was used. Cases were randomly assigned to development or test datasets. Probability of recovery for each health state was calculated using the development dataset. Three logistic regression models were evaluated: a) additive, multivariable; b) “worst injury;” and c) multiplicative. Models were adjusted for age and comorbidity and investigated for discrimination and calibration. Findings A single injury health state was recorded for 46% of cases (1–16 health states per case). The additive (C-statistic 0.70, 95% CI: 0.69, 0.71) and “worst injury” (C-statistic 0.70; 95% CI: 0.68, 0.71) models demonstrated higher discrimination than the multiplicative (C-statistic 0.68; 95% CI: 0.67, 0.70) model. The additive and “worst injury” models demonstrated acceptable calibration. Conclusions The majority of patients survived with persisting disability at 12-months, highlighting the importance of improving estimates of non-fatal injury burden. Additive and “worst” injury models performed similarly. GBD 2010 injury states were moderately predictive of recovery 1-year post-injury. Further evaluation using additional measures of health status and functioning and comparison with the GBD 2010 disability weights will be needed to optimise injury states for future GBD studies. PMID:21984951

  18. Performance comparison of LUR and OK in PM2.5 concentration mapping: a multidimensional perspective

    PubMed Central

    Zou, Bin; Luo, Yanqing; Wan, Neng; Zheng, Zhong; Sternberg, Troy; Liao, Yilan

    2015-01-01

    Methods of Land Use Regression (LUR) modeling and Ordinary Kriging (OK) interpolation have been widely used to offset the shortcomings of PM2.5 data observed at sparse monitoring sites. However, traditional point-based performance evaluation strategy for these methods remains stagnant, which could cause unreasonable mapping results. To address this challenge, this study employs ‘information entropy’, an area-based statistic, along with traditional point-based statistics (e.g. error rate, RMSE) to evaluate the performance of LUR model and OK interpolation in mapping PM2.5 concentrations in Houston from a multidimensional perspective. The point-based validation reveals significant differences between LUR and OK at different test sites despite the similar end-result accuracy (e.g. error rate 6.13% vs. 7.01%). Meanwhile, the area-based validation demonstrates that the PM2.5 concentrations simulated by the LUR model exhibits more detailed variations than those interpolated by the OK method (i.e. information entropy, 7.79 vs. 3.63). Results suggest that LUR modeling could better refine the spatial distribution scenario of PM2.5 concentrations compared to OK interpolation. The significance of this study primarily lies in promoting the integration of point- and area-based statistics for model performance evaluation in air pollution mapping. PMID:25731103

  19. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes.

    PubMed

    Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M

    2011-12-01

    This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy. © 2011 Society for Risk Analysis.

  20. Statistical Modelling of Temperature and Moisture Uptake of Biochars Exposed to Selected Relative Humidity of Air.

    PubMed

    Bastistella, Luciane; Rousset, Patrick; Aviz, Antonio; Caldeira-Pires, Armando; Humbert, Gilles; Nogueira, Manoel

    2018-02-09

    New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens , Cyclobalanopsis glauca , Trigonostemon huangmosun , and Bambusa vulgaris , and involved five relative humidity conditions (22, 43, 75, 84, and 90%), two mass samples (0.1 and 1 g), and two particle sizes (powder and piece). Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.

  1. A Simple Model of Pulsed Ejector Thrust Augmentation

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Deloof, Richard L. (Technical Monitor)

    2003-01-01

    A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. Data on pulsed ejector performance for comparison with the model was obtained using a shrouded Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, diameter, and nose radius were independent parameters, was performed at four different frequencies. These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and two above. Comparison of the model with the experimental data showed reasonable agreement. Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter ratio equal to the cut-off value.

  2. A Comparison of Student Understanding of Seasons Using Inquiry and Didactic Teaching Methods

    NASA Astrophysics Data System (ADS)

    Ashcraft, Paul G.

    2006-02-01

    Student performance on open-ended questions concerning seasons in a university physical science content course was examined to note differences between classes that experienced inquiry using a 5-E lesson planning model and those that experienced the same content with a traditional, didactic lesson. The class examined is a required content course for elementary education majors and understanding the seasons is part of the university's state's elementary science standards. The two self-selected groups of students showed no statistically significant differences in pre-test scores, while there were statistically significant differences between the groups' post-test scores with those who participated in inquiry-based activities scoring higher. There were no statistically significant differences between the pre-test and the post-test for the students who experienced didactic teaching, while there were statistically significant improvements for the students who experienced the 5-E lesson.

  3. Application of statistical classification methods for predicting the acceptability of well-water quality

    NASA Astrophysics Data System (ADS)

    Cameron, Enrico; Pilla, Giorgio; Stella, Fabio A.

    2018-06-01

    The application of statistical classification methods is investigated—in comparison also to spatial interpolation methods—for predicting the acceptability of well-water quality in a situation where an effective quantitative model of the hydrogeological system under consideration cannot be developed. In the example area in northern Italy, in particular, the aquifer is locally affected by saline water and the concentration of chloride is the main indicator of both saltwater occurrence and groundwater quality. The goal is to predict if the chloride concentration in a water well will exceed the allowable concentration so that the water is unfit for the intended use. A statistical classification algorithm achieved the best predictive performances and the results of the study show that statistical classification methods provide further tools for dealing with groundwater quality problems concerning hydrogeological systems that are too difficult to describe analytically or to simulate effectively.

  4. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    NASA Astrophysics Data System (ADS)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  5. Impact of gastrectomy procedural complexity on surgical outcomes and hospital comparisons.

    PubMed

    Mohanty, Sanjay; Paruch, Jennifer; Bilimoria, Karl Y; Cohen, Mark; Strong, Vivian E; Weber, Sharon M

    2015-08-01

    Most risk adjustment approaches adjust for patient comorbidities and the primary procedure. However, procedures done at the same time as the index case may increase operative risk and merit inclusion in adjustment models for fair hospital comparisons. Our objectives were to evaluate the impact of surgical complexity on postoperative outcomes and hospital comparisons in gastric cancer surgery. Patients who underwent gastric resection for cancer were identified from a large clinical dataset. Procedure complexity was characterized using secondary procedure CPT codes and work relative value units (RVUs). Regression models were developed to evaluate the association between complexity variables and outcomes. The impact of complexity adjustment on model performance and hospital comparisons was examined. Among 3,467 patients who underwent gastrectomy for adenocarcinoma, 2,171 operations were distal and 1,296 total. A secondary procedure was reported for 33% of distal gastrectomies and 59% of total gastrectomies. Six of 10 secondary procedures were associated with adverse outcomes. For example, patients who underwent a synchronous bowel resection had a higher risk of mortality (odds ratio [OR], 2.14; 95% CI, 1.07-4.29) and reoperation (OR, 2.09; 95% CI, 1.26-3.47). Model performance was slightly better for nearly all outcomes with complexity adjustment (mortality c-statistics: standard model, 0.853; secondary procedure model, 0.858; RVU model, 0.855). Hospital ranking did not change substantially after complexity adjustment. Surgical complexity variables are associated with adverse outcomes in gastrectomy, but complexity adjustment does not affect hospital rankings appreciably. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Consensus building for interlaboratory studies, key comparisons, and meta-analysis

    NASA Astrophysics Data System (ADS)

    Koepke, Amanda; Lafarge, Thomas; Possolo, Antonio; Toman, Blaza

    2017-06-01

    Interlaboratory studies in measurement science, including key comparisons, and meta-analyses in several fields, including medicine, serve to intercompare measurement results obtained independently, and typically produce a consensus value for the common measurand that blends the values measured by the participants. Since interlaboratory studies and meta-analyses reveal and quantify differences between measured values, regardless of the underlying causes for such differences, they also provide so-called ‘top-down’ evaluations of measurement uncertainty. Measured values are often substantially over-dispersed by comparison with their individual, stated uncertainties, thus suggesting the existence of yet unrecognized sources of uncertainty (dark uncertainty). We contrast two different approaches to take dark uncertainty into account both in the computation of consensus values and in the evaluation of the associated uncertainty, which have traditionally been preferred by different scientific communities. One inflates the stated uncertainties by a multiplicative factor. The other adds laboratory-specific ‘effects’ to the value of the measurand. After distinguishing what we call recipe-based and model-based approaches to data reductions in interlaboratory studies, we state six guiding principles that should inform such reductions. These principles favor model-based approaches that expose and facilitate the critical assessment of validating assumptions, and give preeminence to substantive criteria to determine which measurement results to include, and which to exclude, as opposed to purely statistical considerations, and also how to weigh them. Following an overview of maximum likelihood methods, three general purpose procedures for data reduction are described in detail, including explanations of how the consensus value and degrees of equivalence are computed, and the associated uncertainty evaluated: the DerSimonian-Laird procedure; a hierarchical Bayesian procedure; and the Linear Pool. These three procedures have been implemented and made widely accessible in a Web-based application (NIST Consensus Builder). We illustrate principles, statistical models, and data reduction procedures in four examples: (i) the measurement of the Newtonian constant of gravitation; (ii) the measurement of the half-lives of radioactive isotopes of caesium and strontium; (iii) the comparison of two alternative treatments for carotid artery stenosis; and (iv) a key comparison where the measurand was the calibration factor of a radio-frequency power sensor.

  7. a Single-Exposure Dual-Energy Computed Radiography Technique for Improved Nodule Detection and Classification in Chest Imaging

    NASA Astrophysics Data System (ADS)

    Zink, Frank Edward

    The detection and classification of pulmonary nodules is of great interest in chest radiography. Nodules are often indicative of primary cancer, and their detection is particularly important in asymptomatic patients. The ability to classify nodules as calcified or non-calcified is important because calcification is a positive indicator that the nodule is benign. Dual-energy methods offer the potential to improve both the detection and classification of nodules by allowing the formation of material-selective images. Tissue-selective images can improve detection by virtue of the elimination of obscuring rib structure. Bone -selective images are essentially calcium images, allowing classification of the nodule. A dual-energy technique is introduced which uses a computed radiography system to acquire dual-energy chest radiographs in a single-exposure. All aspects of the dual-energy technique are described, with particular emphasis on scatter-correction, beam-hardening correction, and noise-reduction algorithms. The adaptive noise-reduction algorithm employed improves material-selective signal-to-noise ratio by up to a factor of seven with minimal sacrifice in selectivity. A clinical comparison study is described, undertaken to compare the dual-energy technique to conventional chest radiography for the tasks of nodule detection and classification. Observer performance data were collected using the Free Response Observer Characteristic (FROC) method and the bi-normal Alternative FROC (AFROC) performance model. Results of the comparison study, analyzed using two common multiple observer statistical models, showed that the dual-energy technique was superior to conventional chest radiography for detection of nodules at a statistically significant level (p < .05). Discussion of the comparison study emphasizes the unique combination of data collection and analysis techniques employed, as well as the limitations of comparison techniques in the larger context of technology assessment.

  8. Pitfalls in statistical landslide susceptibility modelling

    NASA Astrophysics Data System (ADS)

    Schröder, Boris; Vorpahl, Peter; Märker, Michael; Elsenbeer, Helmut

    2010-05-01

    The use of statistical methods is a well-established approach to predict landslide occurrence probabilities and to assess landslide susceptibility. This is achieved by applying statistical methods relating historical landslide inventories to topographic indices as predictor variables. In our contribution, we compare several new and powerful methods developed in machine learning and well-established in landscape ecology and macroecology for predicting the distribution of shallow landslides in tropical mountain rainforests in southern Ecuador (among others: boosted regression trees, multivariate adaptive regression splines, maximum entropy). Although these methods are powerful, we think it is necessary to follow a basic set of guidelines to avoid some pitfalls regarding data sampling, predictor selection, and model quality assessment, especially if a comparison of different models is contemplated. We therefore suggest to apply a novel toolbox to evaluate approaches to the statistical modelling of landslide susceptibility. Additionally, we propose some methods to open the "black box" as an inherent part of machine learning methods in order to achieve further explanatory insights into preparatory factors that control landslides. Sampling of training data should be guided by hypotheses regarding processes that lead to slope failure taking into account their respective spatial scales. This approach leads to the selection of a set of candidate predictor variables considered on adequate spatial scales. This set should be checked for multicollinearity in order to facilitate model response curve interpretation. Model quality assesses how well a model is able to reproduce independent observations of its response variable. This includes criteria to evaluate different aspects of model performance, i.e. model discrimination, model calibration, and model refinement. In order to assess a possible violation of the assumption of independency in the training samples or a possible lack of explanatory information in the chosen set of predictor variables, the model residuals need to be checked for spatial auto¬correlation. Therefore, we calculate spline correlograms. In addition to this, we investigate partial dependency plots and bivariate interactions plots considering possible interactions between predictors to improve model interpretation. Aiming at presenting this toolbox for model quality assessment, we investigate the influence of strategies in the construction of training datasets for statistical models on model quality.

  9. A Comparison of the Forecast Skills among Three Numerical Models

    NASA Astrophysics Data System (ADS)

    Lu, D.; Reddy, S. R.; White, L. J.

    2003-12-01

    Three numerical weather forecast models, MM5, COAMPS and WRF, operating with a joint effort of NOAA HU-NCAS and Jackson State University (JSU) during summer 2003 have been chosen to study their forecast skills against observations. The models forecast over the same region with the same initialization, boundary condition, forecast length and spatial resolution. AVN global dataset have been ingested as initial conditions. Grib resolution of 27 km is chosen to represent the current mesoscale model. The forecasts with the length of 36h are performed to output the result with 12h interval. The key parameters used to evaluate the forecast skill include 12h accumulated precipitation, sea level pressure, wind, surface temperature and dew point. Precipitation is evaluated statistically using conventional skill scores, Threat Score (TS) and Bias Score (BS), for different threshold values based on 12h rainfall observations whereas other statistical methods such as Mean Error (ME), Mean Absolute Error(MAE) and Root Mean Square Error (RMSE) are applied to other forecast parameters.

  10. A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation

    PubMed Central

    Eddy, Sean R.

    2008-01-01

    Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236

  11. Analysis methodology and development of a statistical tool for biodistribution data from internal contamination with actinides.

    PubMed

    Lamart, Stephanie; Griffiths, Nina M; Tchitchek, Nicolas; Angulo, Jaime F; Van der Meeren, Anne

    2017-03-01

    The aim of this work was to develop a computational tool that integrates several statistical analysis features for biodistribution data from internal contamination experiments. These data represent actinide levels in biological compartments as a function of time and are derived from activity measurements in tissues and excreta. These experiments aim at assessing the influence of different contamination conditions (e.g. intake route or radioelement) on the biological behavior of the contaminant. The ever increasing number of datasets and diversity of experimental conditions make the handling and analysis of biodistribution data difficult. This work sought to facilitate the statistical analysis of a large number of datasets and the comparison of results from diverse experimental conditions. Functional modules were developed using the open-source programming language R to facilitate specific operations: descriptive statistics, visual comparison, curve fitting, and implementation of biokinetic models. In addition, the structure of the datasets was harmonized using the same table format. Analysis outputs can be written in text files and updated data can be written in the consistent table format. Hence, a data repository is built progressively, which is essential for the optimal use of animal data. Graphical representations can be automatically generated and saved as image files. The resulting computational tool was applied using data derived from wound contamination experiments conducted under different conditions. In facilitating biodistribution data handling and statistical analyses, this computational tool ensures faster analyses and a better reproducibility compared with the use of multiple office software applications. Furthermore, re-analysis of archival data and comparison of data from different sources is made much easier. Hence this tool will help to understand better the influence of contamination characteristics on actinide biokinetics. Our approach can aid the optimization of treatment protocols and therefore contribute to the improvement of the medical response after internal contamination with actinides.

  12. Abnormal hippocampal shape in offenders with psychopathy.

    PubMed

    Boccardi, Marina; Ganzola, Rossana; Rossi, Roberta; Sabattoli, Francesca; Laakso, Mikko P; Repo-Tiihonen, Eila; Vaurio, Olli; Könönen, Mervi; Aronen, Hannu J; Thompson, Paul M; Frisoni, Giovanni B; Tiihonen, Jari

    2010-03-01

    Posterior hippocampal volumes correlate negatively with the severity of psychopathy, but local morphological features are unknown. The aim of this study was to investigate hippocampal morphology in habitually violent offenders having psychopathy. Manual tracings of hippocampi from magnetic resonance images of 26 offenders (age: 32.5 +/- 8.4), with different degrees of psychopathy (12 high, 14 medium psychopathy based on the Psychopathy Checklist Revised), and 25 healthy controls (age: 34.6 +/- 10.8) were used for statistical modelling of local changes with a surface-based radial distance mapping method. Both offenders and controls had similar hippocampal volume and asymmetry ratios. Local analysis showed that the high psychopathy group had a significant depression along the longitudinal hippocampal axis, on both the dorsal and ventral aspects, when compared with the healthy controls and the medium psychopathy group. The opposite comparison revealed abnormal enlargement of the lateral borders in both the right and left hippocampi of both high and medium psychopathy groups versus controls, throughout CA1, CA2-3 and the subicular regions. These enlargement and reduction effects survived statistical correction for multiple comparisons in the main contrast (26 offenders vs. 25 controls) and in most subgroup comparisons. A statistical check excluded a possible confounding effect from amphetamine and polysubstance abuse. These results indicate that habitually violent offenders exhibit a specific abnormal hippocampal morphology, in the absence of total gray matter volume changes, that may relate to different autonomic modulation and abnormal fear-conditioning. 2009 Wiley-Liss, Inc.

  13. Probabilistic properties of the Curve Number

    NASA Astrophysics Data System (ADS)

    Rutkowska, Agnieszka; Banasik, Kazimierz; Kohnova, Silvia; Karabova, Beata

    2013-04-01

    The determination of the Curve Number (CN) is fundamental for the hydrological rainfall-runoff SCS-CN method which assesses the runoff volume in small catchments. The CN depends on geomorphologic and physiographic properties of the catchment and traditionally it is assumed to be constant for each catchment. Many practitioners and researchers observe, however, that the parameter is characterized by a variability. This sometimes causes inconsistency in the river discharge prediction using the SCS-CN model. Hence probabilistic and statistical methods are advisable to investigate the CN as a random variable and to complement and improve the deterministic model. The results that will be presented contain determination of the probabilistic properties of the CNs for various Slovakian and Polish catchments using statistical methods. The detailed study concerns the description of empirical distributions (characteristics, QQ-plots and coefficients of goodness of fit, histograms), testing of the statistical hypotheses about some theoretical distributions (Kolmogorov-Smirnow, Anderson-Darling, Cramer-von Mises, χ2, Shapiro-Wilk), construction of confidence intervals and comparisons among catchments. The relationship between confidence intervals and the ARC soil classification will also be performed. The comparison between the border values of the confidence intervals and the ARC I and ARC III conditions is crucial for further modeling. The study of the response of the catchment to the stormy rainfall depth when the variability of the CN arises is also of special interest. ACKNOWLEDGMENTS The investigation described in the contribution has been initiated by first Author research visit to Technical University of Bratislava in 2012 within a STSM of the COST Action ES0901. Data used here have been provided by research project no. N N305 396238 founded by PL-Ministry of Science and Higher Education. The support provided by the organizations is gratefully acknowledged.

  14. Bayesian Tracking of Emerging Epidemics Using Ensemble Optimal Statistical Interpolation

    PubMed Central

    Cobb, Loren; Krishnamurthy, Ashok; Mandel, Jan; Beezley, Jonathan D.

    2014-01-01

    We present a preliminary test of the Ensemble Optimal Statistical Interpolation (EnOSI) method for the statistical tracking of an emerging epidemic, with a comparison to its popular relative for Bayesian data assimilation, the Ensemble Kalman Filter (EnKF). The spatial data for this test was generated by a spatial susceptible-infectious-removed (S-I-R) epidemic model of an airborne infectious disease. Both tracking methods in this test employed Poisson rather than Gaussian noise, so as to handle epidemic data more accurately. The EnOSI and EnKF tracking methods worked well on the main body of the simulated spatial epidemic, but the EnOSI was able to detect and track a distant secondary focus of infection that the EnKF missed entirely. PMID:25113590

  15. How Can Students' Academic Performance in Statistics Be Improved? Testing the Influence of Social and Temporal-Self Comparison Feedback in a Web-Based Training Environment

    ERIC Educational Resources Information Center

    Delaval, Marine; Michinov, Nicolas; Le Bohec, Olivier; Le Hénaff, Benjamin

    2017-01-01

    The aim of this study was to examine how social or temporal-self comparison feedback, delivered in real-time in a web-based training environment, could influence the academic performance of students in a statistics examination. First-year psychology students were given the opportunity to train for a statistics examination during a semester by…

  16. An error-dependent model of instrument-scanning behavior in commercial airline pilots. Ph.D. Thesis - May 1983

    NASA Technical Reports Server (NTRS)

    Jones, D. H.

    1985-01-01

    A new flexible model of pilot instrument scanning behavior is presented which assumes that the pilot uses a set of deterministic scanning patterns on the pilot's perception of error in the state of the aircraft, and the pilot's knowledge of the interactive nature of the aircraft's systems. Statistical analyses revealed that a three stage Markov process composed of the pilot's three predicted lookpoints (LP), occurring 1/30, 2/30, and 3/30 of a second prior to each LP, accurately modelled the scanning behavior of 14 commercial airline pilots while flying steep turn maneuvers in a Boeing 737 flight simulator. The modelled scanning data for each pilot were not statistically different from the observed scanning data in comparisons of mean dwell time, entropy, and entropy rate. These findings represent the first direct evidence that pilots are using deterministic scanning patterns during instrument flight. The results are interpreted as direct support for the error dependent model and suggestions are made for further research that could allow for identification of the specific scanning patterns suggested by the model.

  17. Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Wang, Jun

    2012-10-01

    The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.

  18. The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides.

    PubMed

    Engin, Ozge; Sayar, Mehmet; Erman, Burak

    2009-01-13

    Relative contributions of local and non-local interactions to the unfolded conformations of peptides are examined by using the rotational isomeric states model which is a Markov model based on pairwise interactions of torsion angles. The isomeric states of a residue are well described by the Ramachandran map of backbone torsion angles. The statistical weight matrices for the states are determined by molecular dynamics simulations applied to monopeptides and dipeptides. Conformational properties of tripeptides formed from combinations of alanine, valine, tyrosine and tryptophan are investigated based on the Markov model. Comparison with molecular dynamics simulation results on these tripeptides identifies the sequence-distant long-range interactions that are missing in the Markov model. These are essentially the hydrogen bond and hydrophobic interactions that are obtained between the first and the third residue of a tripeptide. A systematic correction is proposed for incorporating these long-range interactions into the rotational isomeric states model. Preliminary results suggest that the Markov assumption can be improved significantly by renormalizing the statistical weight matrices to include the effects of the long-range correlations.

  19. Development and Implementation of an Empirical Ionosphere Variability Model

    NASA Technical Reports Server (NTRS)

    Minow, Joesph I.; Almond, Deborah (Technical Monitor)

    2002-01-01

    Spacecraft designers and operations support personnel involved in space environment analysis for low Earth orbit missions require ionospheric specification and forecast models that provide not only average ionospheric plasma parameters for a given set of geophysical conditions but the statistical variations about the mean as well. This presentation describes the development of a prototype empirical model intended for use with the International Reference Ionosphere (IRI) to provide ionospheric Ne and Te variability. We first describe the database of on-orbit observations from a variety of spacecraft and ground based radars over a wide range of latitudes and altitudes used to obtain estimates of the environment variability. Next, comparison of the observations with the IRI model provide estimates of the deviations from the average model as well as the range of possible values that may correspond to a given IRI output. Options for implementation of the statistical variations in software that can be run with the IRI model are described. Finally, we provide example applications including thrust estimates for tethered satellites and specification of sunrise Ne, Te conditions required to support spacecraft charging issues for satellites with high voltage solar arrays.

  20. Comparison of response surface methodology and artificial neural network to enhance the release of reducing sugars from non-edible seed cake by autoclave assisted HCl hydrolysis.

    PubMed

    Shet, Vinayaka B; Palan, Anusha M; Rao, Shama U; Varun, C; Aishwarya, Uday; Raja, Selvaraj; Goveas, Louella Concepta; Vaman Rao, C; Ujwal, P

    2018-02-01

    In the current investigation, statistical approaches were adopted to hydrolyse non-edible seed cake (NESC) of Pongamia and optimize the hydrolysis process by response surface methodology (RSM). Through the RSM approach, the optimized conditions were found to be 1.17%v/v of HCl concentration at 54.12 min for hydrolysis. Under optimized conditions, the release of reducing sugars was found to be 53.03 g/L. The RSM data were used to train the artificial neural network (ANN) and the predictive ability of both models was compared by calculating various statistical parameters. A three-layered ANN model consisting of 2:12:1 topology was developed; the response of the ANN model indicates that it is precise when compared with the RSM model. The fit of the models was expressed with the regression coefficient R 2 , which was found to be 0.975 and 0.888, respectively, for the ANN and RSM models. This further demonstrated that the performance of ANN was better than that of RSM.

  1. Fitting and Modeling in the ASC Data Analysis Environment

    NASA Astrophysics Data System (ADS)

    Doe, S.; Siemiginowska, A.; Joye, W.; McDowell, J.

    As part of the AXAF Science Center (ASC) Data Analysis Environment, we will provide to the astronomical community a Fitting Application. We present a design of the application in this paper. Our design goal is to give the user the flexibility to use a variety of optimization techniques (Levenberg-Marquardt, maximum entropy, Monte Carlo, Powell, downhill simplex, CERN-Minuit, and simulated annealing) and fit statistics (chi (2) , Cash, variance, and maximum likelihood); our modular design allows the user easily to add their own optimization techniques and/or fit statistics. We also present a comparison of the optimization techniques to be provided by the Application. The high spatial and spectral resolutions that will be obtained with AXAF instruments require a sophisticated data modeling capability. We will provide not only a suite of astronomical spatial and spectral source models, but also the capability of combining these models into source models of up to four data dimensions (i.e., into source functions f(E,x,y,t)). We will also provide tools to create instrument response models appropriate for each observation.

  2. The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides

    NASA Astrophysics Data System (ADS)

    Engin, Ozge; Sayar, Mehmet; Erman, Burak

    2009-03-01

    Relative contributions of local and non-local interactions to the unfolded conformations of peptides are examined by using the rotational isomeric states model which is a Markov model based on pairwise interactions of torsion angles. The isomeric states of a residue are well described by the Ramachandran map of backbone torsion angles. The statistical weight matrices for the states are determined by molecular dynamics simulations applied to monopeptides and dipeptides. Conformational properties of tripeptides formed from combinations of alanine, valine, tyrosine and tryptophan are investigated based on the Markov model. Comparison with molecular dynamics simulation results on these tripeptides identifies the sequence-distant long-range interactions that are missing in the Markov model. These are essentially the hydrogen bond and hydrophobic interactions that are obtained between the first and the third residue of a tripeptide. A systematic correction is proposed for incorporating these long-range interactions into the rotational isomeric states model. Preliminary results suggest that the Markov assumption can be improved significantly by renormalizing the statistical weight matrices to include the effects of the long-range correlations.

  3. Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.

    2017-12-01

    Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data. Performance of the statistical model is illustrated through comparisons of generated realizations with the `true' numerical simulations. Finally, we demonstrate how these realizations can be used to determine statistically optimal locations for further interrogation of the subsurface.

  4. Light propagation in Swiss-cheese models of random close-packed Szekeres structures: Effects of anisotropy and comparisons with perturbative results

    NASA Astrophysics Data System (ADS)

    Koksbang, S. M.

    2017-03-01

    Light propagation in two Swiss-cheese models based on anisotropic Szekeres structures is studied and compared with light propagation in Swiss-cheese models based on the Szekeres models' underlying Lemaitre-Tolman-Bondi models. The study shows that the anisotropy of the Szekeres models has only a small effect on quantities such as redshift-distance relations, projected shear and expansion rate along individual light rays. The average angular diameter distance to the last scattering surface is computed for each model. Contrary to earlier studies, the results obtained here are (mostly) in agreement with perturbative results. In particular, a small negative shift, δ DA≔D/A-DA ,b g DA ,b g , in the angular diameter distance is obtained upon line-of-sight averaging in three of the four models. The results are, however, not statistically significant. In the fourth model, there is a small positive shift which has an especially small statistical significance. The line-of-sight averaged inverse magnification at z =1100 is consistent with 1 to a high level of confidence for all models, indicating that the area of the surface corresponding to z =1100 is close to that of the background.

  5. Non-resonant multipactor-A statistical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasch, J.; Johansson, J. F.

    2012-12-15

    High power microwave systems operating in vacuum or near vacuum run the risk of multipactor breakdown. In order to avoid multipactor, it is necessary to make theoretical predictions of critical parameter combinations. These treatments are generally based on the assumption of electrons moving in resonance with the electric field while traversing the gap between critical surfaces. Through comparison with experiments, it has been found that only for small system dimensions will the resonant approach give correct predictions. Apparently, the resonance is destroyed due to the statistical spread in electron emission velocity, and for a more valid description it is necessarymore » to resort to rather complicated statistical treatments of the electron population, and extensive simulations. However, in the limit where resonance is completely destroyed it is possible to use a much simpler treatment, here called non-resonant theory. In this paper, we develop the formalism for this theory, use it to calculate universal curves for the existence of multipactor, and compare with previous results. Two important effects that leads to an increase in the multipactor threshold in comparison with the resonant prediction are identified. These are the statistical spread of impact speed, which leads to a lower average electron impact speed, and the impact of electrons in phase regions where the secondary electrons are immediately reabsorbed, leading to an effective removal of electrons from the discharge.« less

  6. Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic.

    PubMed

    Bai, Xin; Tang, Kujin; Ren, Jie; Waterman, Michael; Sun, Fengzhu

    2017-10-03

    Alignment-free sequence comparison using counts of word patterns (grams, k-tuples) has become an active research topic due to the large amount of sequence data from the new sequencing technologies. Genome sequences are frequently modelled by Markov chains and the likelihood ratio test or the corresponding approximate χ 2 -statistic has been suggested to compare two sequences. However, it is not known how to best choose the word length k in such studies. We develop an optimal strategy to choose k by maximizing the statistical power of detecting differences between two sequences. Let the orders of the Markov chains for the two sequences be r 1 and r 2 , respectively. We show through both simulations and theoretical studies that the optimal k= max(r 1 ,r 2 )+1 for both long sequences and next generation sequencing (NGS) read data. The orders of the Markov chains may be unknown and several methods have been developed to estimate the orders of Markov chains based on both long sequences and NGS reads. We study the power loss of the statistics when the estimated orders are used. It is shown that the power loss is minimal for some of the estimators of the orders of Markov chains. Our studies provide guidelines on choosing the optimal word length for the comparison of Markov sequences.

  7. Applications and Comparisons of Four Time Series Models in Epidemiological Surveillance Data

    PubMed Central

    Young, Alistair A.; Li, Xiaosong

    2014-01-01

    Public health surveillance systems provide valuable data for reliable predication of future epidemic events. This paper describes a study that used nine types of infectious disease data collected through a national public health surveillance system in mainland China to evaluate and compare the performances of four time series methods, namely, two decomposition methods (regression and exponential smoothing), autoregressive integrated moving average (ARIMA) and support vector machine (SVM). The data obtained from 2005 to 2011 and in 2012 were used as modeling and forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE). The accuracy of the statistical models in forecasting future epidemic disease proved their effectiveness in epidemiological surveillance. Although the comparisons found that no single method is completely superior to the others, the present study indeed highlighted that the SVMs outperforms the ARIMA model and decomposition methods in most cases. PMID:24505382

  8. Geographic profiling to assess the risk of rare plant poaching in natural areas

    USGS Publications Warehouse

    Young, J.A.; Van Manen, F.T.; Thatcher, C.A.

    2011-01-01

    We demonstrate the use of an expert-assisted spatial model to examine geographic factors influencing the poaching risk of a rare plant (American ginseng, Panax quinquefolius L.) in Shenandoah National Park, Virginia, USA. Following principles of the analytic hierarchy process (AHP), we identified a hierarchy of 11 geographic factors deemed important to poaching risk and requested law enforcement personnel of the National Park Service to rank those factors in a series of pair-wise comparisons. We used those comparisons to determine statistical weightings of each factor and combined them into a spatial model predicting poaching risk. We tested the model using 69 locations of previous poaching incidents recorded by law enforcement personnel. These locations occurred more frequently in areas predicted by the model to have a higher risk of poaching than random locations. The results of our study can be used to evaluate resource protection strategies and to target law enforcement activities. ?? Springer Science+Business Media, LLC (outside the USA) 2011.

  9. Statistical comparison of various interpolation algorithms for reconstructing regional grid ionospheric maps over China

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Yunbin; Wang, Ningbo; Li, Zishen; Liu, Xifeng; Zhang, Xiao

    2018-07-01

    This paper presents a quantitative comparison of several widely used interpolation algorithms, i.e., Ordinary Kriging (OrK), Universal Kriging (UnK), planar fit and Inverse Distance Weighting (IDW), based on a grid-based single-shell ionosphere model over China. The experimental data were collected from the Crustal Movement Observation Network of China (CMONOC) and the International GNSS Service (IGS), covering the days of year 60-90 in 2015. The quality of these interpolation algorithms was assessed by cross-validation in terms of both the ionospheric correction performance and Single-Frequency (SF) Precise Point Positioning (PPP) accuracy on an epoch-by-epoch basis. The results indicate that the interpolation models perform better at mid-latitudes than low latitudes. For the China region, the performance of OrK and UnK is relatively better than the planar fit and IDW model for estimating ionospheric delay and positioning. In addition, the computational efficiencies of the IDW and planar fit models are better than those of OrK and UnK.

  10. Urban pavement surface temperature. Comparison of numerical and statistical approach

    NASA Astrophysics Data System (ADS)

    Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia

    2015-04-01

    The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.

  11. Multi-criterion model ensemble of CMIP5 surface air temperature over China

    NASA Astrophysics Data System (ADS)

    Yang, Tiantian; Tao, Yumeng; Li, Jingjing; Zhu, Qian; Su, Lu; He, Xiaojia; Zhang, Xiaoming

    2018-05-01

    The global circulation models (GCMs) are useful tools for simulating climate change, projecting future temperature changes, and therefore, supporting the preparation of national climate adaptation plans. However, different GCMs are not always in agreement with each other over various regions. The reason is that GCMs' configurations, module characteristics, and dynamic forcings vary from one to another. Model ensemble techniques are extensively used to post-process the outputs from GCMs and improve the variability of model outputs. Root-mean-square error (RMSE), correlation coefficient (CC, or R) and uncertainty are commonly used statistics for evaluating the performances of GCMs. However, the simultaneous achievements of all satisfactory statistics cannot be guaranteed in using many model ensemble techniques. In this paper, we propose a multi-model ensemble framework, using a state-of-art evolutionary multi-objective optimization algorithm (termed MOSPD), to evaluate different characteristics of ensemble candidates and to provide comprehensive trade-off information for different model ensemble solutions. A case study of optimizing the surface air temperature (SAT) ensemble solutions over different geographical regions of China is carried out. The data covers from the period of 1900 to 2100, and the projections of SAT are analyzed with regard to three different statistical indices (i.e., RMSE, CC, and uncertainty). Among the derived ensemble solutions, the trade-off information is further analyzed with a robust Pareto front with respect to different statistics. The comparison results over historical period (1900-2005) show that the optimized solutions are superior over that obtained simple model average, as well as any single GCM output. The improvements of statistics are varying for different climatic regions over China. Future projection (2006-2100) with the proposed ensemble method identifies that the largest (smallest) temperature changes will happen in the South Central China (the Inner Mongolia), the North Eastern China (the South Central China), and the North Western China (the South Central China), under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, respectively.

  12. Statistical rice yield modeling using blended MODIS-Landsat based crop phenology metrics in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.; Lau, K. V.

    2015-12-01

    Taiwan is a populated island with a majority of residents settled in the western plains where soils are suitable for rice cultivation. Rice is not only the most important commodity, but also plays a critical role for agricultural and food marketing. Information of rice production is thus important for policymakers to devise timely plans for ensuring sustainably socioeconomic development. Because rice fields in Taiwan are generally small and yet crop monitoring requires information of crop phenology associating with the spatiotemporal resolution of satellite data, this study used Landsat-MODIS fusion data for rice yield modeling in Taiwan. We processed the data for the first crop (Feb-Mar to Jun-Jul) and the second (Aug-Sep to Nov-Dec) in 2014 through five main steps: (1) data pre-processing to account for geometric and radiometric errors of Landsat data, (2) Landsat-MODIS data fusion using using the spatial-temporal adaptive reflectance fusion model, (3) construction of the smooth time-series enhanced vegetation index 2 (EVI2), (4) rice yield modeling using EVI2-based crop phenology metrics, and (5) error verification. The fusion results by a comparison bewteen EVI2 derived from the fusion image and that from the reference Landsat image indicated close agreement between the two datasets (R2 > 0.8). We analysed smooth EVI2 curves to extract phenology metrics or phenological variables for establishment of rice yield models. The results indicated that the established yield models significantly explained more than 70% variability in the data (p-value < 0.001). The comparison results between the estimated yields and the government's yield statistics for the first and second crops indicated a close significant relationship between the two datasets (R2 > 0.8), in both cases. The root mean square error (RMSE) and mean absolute error (MAE) used to measure the model accuracy revealed the consistency between the estimated yields and the government's yield statistics. This study demonstrates advantages of using EVI2-based phenology metrics (derived from Landsat-MODIS fusion data) for rice yield estimation in Taiwan prior to the harvest period.

  13. Experience, Challenges, and Opportunities of Being Fully Embedded in a User Group.

    PubMed

    Wu, Lin; Thornton, Joel

    2017-01-01

    Embedded librarian models can assume different forms and levels, depending on patron needs and a library's choice of delivery services. An academic health sciences library decided to enhance its service delivery model by integrating a librarian into the College of Pharmacy, approximately 250 miles away from the main library. This article describes the embedded librarian's first-year experience, challenges, and opportunities working as a library faculty in the college. The comparison of one-year recorded statistics on preembedded and postembedded activities demonstrated the effectiveness and impact of such an embedded librarian model.

  14. Economic impacts of climate change on agriculture: a comparison of process-based and statistical yield models

    NASA Astrophysics Data System (ADS)

    Moore, Frances C.; Baldos, Uris Lantz C.; Hertel, Thomas

    2017-06-01

    A large number of studies have been published examining the implications of climate change for agricultural productivity that, broadly speaking, can be divided into process-based modeling and statistical approaches. Despite a general perception that results from these methods differ substantially, there have been few direct comparisons. Here we use a data-base of yield impact studies compiled for the IPCC Fifth Assessment Report (Porter et al 2014) to systematically compare results from process-based and empirical studies. Controlling for differences in representation of CO2 fertilization between the two methods, we find little evidence for differences in the yield response to warming. The magnitude of CO2 fertilization is instead a much larger source of uncertainty. Based on this set of impact results, we find a very limited potential for on-farm adaptation to reduce yield impacts. We use the Global Trade Analysis Project (GTAP) global economic model to estimate welfare consequences of yield changes and find negligible welfare changes for warming of 1 °C-2 °C if CO2 fertilization is included and large negative effects on welfare without CO2. Uncertainty bounds on welfare changes are highly asymmetric, showing substantial probability of large declines in welfare for warming of 2 °C-3 °C even including the CO2 fertilization effect.

  15. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool.

    PubMed

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-10-01

    Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.

  16. Leave taking and overtime behavior as related to demographic, health, and job variables

    NASA Technical Reports Server (NTRS)

    Arnoldi, L. B.; Townsend, J. C.

    1969-01-01

    An intra-installation model is formulated that correlates demographic, health and job related variables to the various types and amounts of leave and overtime taking behavior of employees. Statistical comparison of composite health ratings assigned to subjects based upon clinical criteria and bio-statistical data show that those employees who take the most annual leave as well as sick leave are the ones that have the poorest health ratings; employees who put in the most overtime have also the poorest health records. Stress effects of peak activity periods increase use of sick leave immediately after peak activity but not the use of annual leave.

  17. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

    PubMed

    Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg

    2009-11-01

    G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

  18. [Development of an Excel spreadsheet for meta-analysis of indirect and mixed treatment comparisons].

    PubMed

    Tobías, Aurelio; Catalá-López, Ferrán; Roqué, Marta

    2014-01-01

    Meta-analyses in clinical research usually aimed to evaluate treatment efficacy and safety in direct comparison with a unique comparator. Indirect comparisons, using the Bucher's method, can summarize primary data when information from direct comparisons is limited or nonexistent. Mixed comparisons allow combining estimates from direct and indirect comparisons, increasing statistical power. There is a need for simple applications for meta-analysis of indirect and mixed comparisons. These can easily be conducted using a Microsoft Office Excel spreadsheet. We developed a spreadsheet for indirect and mixed effects comparisons of friendly use for clinical researchers interested in systematic reviews, but non-familiarized with the use of more advanced statistical packages. The use of the proposed Excel spreadsheet for indirect and mixed comparisons can be of great use in clinical epidemiology to extend the knowledge provided by traditional meta-analysis when evidence from direct comparisons is limited or nonexistent.

  19. Subjective comparison and evaluation of speech enhancement algorithms

    PubMed Central

    Hu, Yi; Loizou, Philipos C.

    2007-01-01

    Making meaningful comparisons between the performance of the various speech enhancement algorithms proposed over the years, has been elusive due to lack of a common speech database, differences in the types of noise used and differences in the testing methodology. To facilitate such comparisons, we report on the development of a noisy speech corpus suitable for evaluation of speech enhancement algorithms. This corpus is subsequently used for the subjective evaluation of 13 speech enhancement methods encompassing four classes of algorithms: spectral subtractive, subspace, statistical-model based and Wiener-type algorithms. The subjective evaluation was performed by Dynastat, Inc. using the ITU-T P.835 methodology designed to evaluate the speech quality along three dimensions: signal distortion, noise distortion and overall quality. This paper reports the results of the subjective tests. PMID:18046463

  20. An Analysis of Competencies for Managing Science and Technology Programs

    DTIC Science & Technology

    2008-03-19

    competency modeling through a two-year task force commissioned by the Society for Industrial and Organizational Psychology (Shippmann and others, 2000:704...positions—specifically within Research and Development (R&D) programs. If so, the final investigative question tests whether those differences are...statistics are used to analyze the comparisons through hypothesis testing and t- tests relevant to the research investigative questions. These

  1. On The Validity of the Assumed PDF Method for Modeling Binary Mixing/Reaction of Evaporated Vapor in GAS/Liquid-Droplet Turbulent Shear Flow

    NASA Technical Reports Server (NTRS)

    Miller, R. S.; Bellan, J.

    1997-01-01

    An Investigation of the statistical description of binary mixing and/or reaction between a carrier gas and an evaporated vapor species in two-phase gas-liquid turbulent flows is perfomed through both theroetical analysis and comparisons with results from direct numerical simulations (DNS) of a two-phase mixing layer.

  2. QSPR using MOLGEN-QSPR: the challenge of fluoroalkane boiling points.

    PubMed

    Rücker, Christoph; Meringer, Markus; Kerber, Adalbert

    2005-01-01

    By means of the new software MOLGEN-QSPR, a multilinear regression model for the boiling points of lower fluoroalkanes is established. The model is based exclusively on simple descriptors derived directly from molecular structure and nevertheless describes a broader set of data more precisely than previous attempts that used either more demanding (quantum chemical) descriptors or more demanding (nonlinear) statistical methods such as neural networks. The model's internal consistency was confirmed by leave-one-out cross-validation. The model was used to predict all unknown boiling points of fluorobutanes, and the quality of predictions was estimated by means of comparison with boiling point predictions for fluoropentanes.

  3. Probabilistic dietary exposure assessment taking into account variability in both amount and frequency of consumption.

    PubMed

    Slob, Wout

    2006-07-01

    Probabilistic dietary exposure assessments that are fully based on Monte Carlo sampling from the raw intake data may not be appropriate. This paper shows that the data should first be analysed by using a statistical model that is able to take the various dimensions of food consumption patterns into account. A (parametric) model is discussed that takes into account the interindividual variation in (daily) consumption frequencies, as well as in amounts consumed. Further, the model can be used to include covariates, such as age, sex, or other individual attributes. Some illustrative examples show how this model may be used to estimate the probability of exceeding an (acute or chronic) exposure limit. These results are compared with the results based on directly counting the fraction of observed intakes exceeding the limit value. This comparison shows that the latter method is not adequate, in particular for the acute exposure situation. A two-step approach for probabilistic (acute) exposure assessment is proposed: first analyse the consumption data by a (parametric) statistical model as discussed in this paper, and then use Monte Carlo techniques for combining the variation in concentrations with the variation in consumption (by sampling from the statistical model). This approach results in an estimate of the fraction of the population as a function of the fraction of days at which the exposure limit is exceeded by the individual.

  4. A new model of physical evolution of Jupiter-family comets

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Szutowicz, S.; Wójcikowski, K.

    2014-07-01

    We aim to find the statistical physical lifetimes of Jupiter Family comets. For this purpose, we try to model the processes that govern the dynamical and physical evolution of comets. We pay special attention to physical evolution; attempts at such modelling have been made before, but we propose a more accurate model, which will include more physical effects. The model is tested on a sample of fictitious comets based on real Jupiter Family comets with some orbital elements changed to a state before the capture by Jupiter. We model four different physical effects: erosion by sublimation, dust mantling, rejuvenation (mantle blow-off), and splitting. While for sublimation and splitting there already are some models, like di Sisto et. al. (2009), and we only wish to make them more accurate, dust mantling and rejuvenation have not been included in previous, statistical physical evolution models. Each of these effects depends on one or more tunable parameters, which we establish by choosing the model that best fits the observed comet sample in a way similar to di Sisto et. al. (2009). In contrast to di Sisto et. al., our comparison also involves the observed active fractions vs. nuclear radii.

  5. Comparison of AERMOD and CALPUFF models for simulating SO2 concentrations in a gas refinery.

    PubMed

    Atabi, Farideh; Jafarigol, Farzaneh; Moattar, Faramarz; Nouri, Jafar

    2016-09-01

    In this study, concentration of SO2 from a gas refinery located in complex terrain was calculated by the steady-state, AERMOD model, and nonsteady-state CALPUFF model. First, in four seasons, SO2 concentrations emitted from 16 refinery stacks, in nine receptors, were obtained by field measurements, and then the performance of both models was evaluated. Then, the simulated results for SO2 ambient concentrations made by each model were compared with the results of the observed concentrations, and model results were compared among themselves. The evaluation of the two models to simulate SO2 concentrations was based on the statistical analysis and Q-Q plots. Review of statistical parameters and Q-Q plots has shown that, according to the evaluation of estimations made, performance of both models to simulate the concentration of SO2 in the region can be considered acceptable. The results showed the AERMOD composite ratio between simulated values made by models and the observed values in various receptors for all four average times is 0.72, whereas CALPUFF's ratio is 0.89. However, in the complex conditions of topography, CALPUFF offers better agreement with the observed concentrations.

  6. Impact of joint statistical dual-energy CT reconstruction of proton stopping power images: Comparison to image- and sinogram-domain material decomposition approaches.

    PubMed

    Zhang, Shuangyue; Han, Dong; Politte, David G; Williamson, Jeffrey F; O'Sullivan, Joseph A

    2018-05-01

    The purpose of this study was to assess the performance of a novel dual-energy CT (DECT) approach for proton stopping power ratio (SPR) mapping that integrates image reconstruction and material characterization using a joint statistical image reconstruction (JSIR) method based on a linear basis vector model (BVM). A systematic comparison between the JSIR-BVM method and previously described DECT image- and sinogram-domain decomposition approaches is also carried out on synthetic data. The JSIR-BVM method was implemented to estimate the electron densities and mean excitation energies (I-values) required by the Bethe equation for SPR mapping. In addition, image- and sinogram-domain DECT methods based on three available SPR models including BVM were implemented for comparison. The intrinsic SPR modeling accuracy of the three models was first validated. Synthetic DECT transmission sinograms of two 330 mm diameter phantoms each containing 17 soft and bony tissues (for a total of 34) of known composition were then generated with spectra of 90 and 140 kVp. The estimation accuracy of the reconstructed SPR images were evaluated for the seven investigated methods. The impact of phantom size and insert location on SPR estimation accuracy was also investigated. All three selected DECT-SPR models predict the SPR of all tissue types with less than 0.2% RMS errors under idealized conditions with no reconstruction uncertainties. When applied to synthetic sinograms, the JSIR-BVM method achieves the best performance with mean and RMS-average errors of less than 0.05% and 0.3%, respectively, for all noise levels, while the image- and sinogram-domain decomposition methods show increasing mean and RMS-average errors with increasing noise level. The JSIR-BVM method also reduces statistical SPR variation by sixfold compared to other methods. A 25% phantom diameter change causes up to 4% SPR differences for the image-domain decomposition approach, while the JSIR-BVM method and sinogram-domain decomposition methods are insensitive to size change. Among all the investigated methods, the JSIR-BVM method achieves the best performance for SPR estimation in our simulation phantom study. This novel method is robust with respect to sinogram noise and residual beam-hardening effects, yielding SPR estimation errors comparable to intrinsic BVM modeling error. In contrast, the achievable SPR estimation accuracy of the image- and sinogram-domain decomposition methods is dominated by the CT image intensity uncertainties introduced by the reconstruction and decomposition processes. © 2018 American Association of Physicists in Medicine.

  7. Regression Analysis of Long-term Profile Ozone Data Set from BUV Instruments

    NASA Technical Reports Server (NTRS)

    Frith, Stacey; Taylor, Steve; DeLand, Matt; Ahn, Chang-Woo; Stolarski, Richard S.

    2005-01-01

    We have produced a profile merged ozone data set (MOD) based on the SBUV/SBUV2 series of nadir-viewing satellite backscatter instruments, covering the period from November 1978 - December 2003. In 2004, data from the Nimbus 7 SBUV and NOAA 9,11, and 16 SBUV/2 instruments were reprocessed using the Version 8 (V8) algorithm and most recent calibrations. More recently, data from the Nimbus 4 BUV instrument, which operated from 1970 - 1977, were also reprocessed using the V8 algorithm. As part of the V8 profile calibration, the Nimbus 7 and NOAA 9 (1993-1997 only) instrument calibrations have been adjusted to match the NOAA 11 calibration, which was established from comparisons with SSBUV shuttle flight data. Given the level of agreement between the data sets, we simply average the ozone values during periods of instrument overlap to produce the MOD profile data set. We use statistical time-series analysis of the MOD profile data set (1978-2003) to estimate the change in profile ozone due to changing stratospheric chlorine levels. The Nimbus 4 BUV data offer an opportunity to test the physical properties of our statistical model. We extrapolate our statistical model fit backwards in time and compare to the Nimbus 4 data. We compare the statistics of the residuals from the fit for the Nimbus 4 period to those obtained from the 1978-2003 period over which the statistical model coefficients were estimated.

  8. Description, instructions, and verification for Basinsoft, a computer program to quantify drainage- basin characteristics

    USGS Publications Warehouse

    Harvey, Craig A.; Eash, David A.

    1996-01-01

    Statistical comparison tests indicate Basinsoft quantifications are not significantly different from manual topographic-map measurements for 9 of 10 basin characteristics tested. The results also indicate that elevation contours generated by ARC/INFO from l:250,000-scale digital elevation model (DEM) data are over-generalized when compared to elevation contours shown on l:250,000-scale topographic maps, and that quantification of basin-slope thus is underestimated using DEM data. A qualitative comparison test indicated that the Basinsoft module used to quantify basin slope is valid and that differences in the quantification of basin slope are due to sourcedata differences.

  9. EMISSION SIGNATURES FROM SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES. I. DIAGNOSTIC POWER OF BROAD EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Khai; Bogdanović, Tamara

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks thatmore » are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.« less

  10. Plasminogen activator inhibitor-1 4G/5G polymorphism and ischemic stroke risk: a meta-analysis in Chinese population.

    PubMed

    Cao, Yuezhou; Chen, Weixian; Qian, Yun; Zeng, Yanying; Liu, Wenhua

    2014-12-01

    The guanosine insertion/deletion polymorphism (4G/5G) of plasminogen activator inhibitor-1 (PAI-1) gene has been suggested as a risk factor for ischemic stroke (IS), but direct evidence from genetic association studies remains inconclusive even in Chinese population. Therefore, we performed a meta-analysis to evaluate this association. All of the relevant studies were identified from PubMed, Embase, Chinese National Knowledge Infrastructure database and Chinese Wanfang database up to September 2013. Statistical analyses were conducted with Revman 5.2 and STATA 12.0 software. Odds ratio (OR) with 95% confidence interval (CI) values were applied to evaluate the strength of the association. Heterogeneity was evaluated by Q-test and the I² statistic. The Begg's test and Egger's test were used to assess the publication bias. A significant association and a borderline association between the PAI-1 4G/5G polymorphism and IS were found under the recessive model (OR = 1.639, 95% CI = 1.136-2.364) and allelic model (OR = 1.256, 95% CI = 1.000-1.578), respectively. However, no significant association was observed under homogeneous comparison model (OR = 1.428, 95% CI = 0.914-2.233), heterogeneous comparison model (OR = 0.856, 95% CI = 0.689-1.063) and dominant model (OR = 1.036, 95% CI = 0.846-1.270). This meta-analysis suggested that 4G4G genotype of PAI-1 4G/5G polymorphism might be a risk factor for IS in the Chinese population.

  11. Scaling Laws in Canopy Flows: A Wind-Tunnel Analysis

    NASA Astrophysics Data System (ADS)

    Segalini, Antonio; Fransson, Jens H. M.; Alfredsson, P. Henrik

    2013-08-01

    An analysis of velocity statistics and spectra measured above a wind-tunnel forest model is reported. Several measurement stations downstream of the forest edge have been investigated and it is observed that, while the mean velocity profile adjusts quickly to the new canopy boundary condition, the turbulence lags behind and shows a continuous penetration towards the free stream along the canopy model. The statistical profiles illustrate this growth and do not collapse when plotted as a function of the vertical coordinate. However, when the statistics are plotted as function of the local mean velocity (normalized with a characteristic velocity scale), they do collapse, independently of the streamwise position and freestream velocity. A new scaling for the spectra of all three velocity components is proposed based on the velocity variance and integral time scale. This normalization improves the collapse of the spectra compared to existing scalings adopted in atmospheric measurements, and allows the determination of a universal function that provides the velocity spectrum. Furthermore, a comparison of the proposed scaling laws for two different canopy densities is shown, demonstrating that the vertical velocity variance is the most sensible statistical quantity to the characteristics of the canopy roughness.

  12. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    NASA Astrophysics Data System (ADS)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  13. Comparison of CFD and operational dispersion models in an urban-like environment

    NASA Astrophysics Data System (ADS)

    Antonioni, G.; Burkhart, S.; Burman, J.; Dejoan, A.; Fusco, A.; Gaasbeek, R.; Gjesdal, T.; Jäppinen, A.; Riikonen, K.; Morra, P.; Parmhed, O.; Santiago, J. L.

    2012-02-01

    Chemical plants, refineries, transportation of hazardous materials are some of the most attractive facilities for external attacks aimed at the release of toxic substances. Dispersion of these substances into the atmosphere forms a concentration distribution of airborne pollutants with severe consequences for exposed individuals. For emergency preparedness and management, the availability of assessed/validated dispersion models, which can be able to predict concentration distribution and thus dangerous zones for exposed individuals, is of primary importance. Air quality models, integral models and analytical models predict the transport and the turbulent dispersion of gases or aerosols after their release without taking into account in detail the presence of obstacles. Obstacles can modify the velocity field and in turn the concentration field. The Computational Fluid Dynamics (CFD) models on the other hand are able to describe such phenomena, but they need to be correctly set up, tested and validated in order to obtain reliable results. Within the project Europa-ERG1 TA 113.034 "NBC Modelling and Simulation" several different approaches in CFD modelling of turbulent dispersion in closed, semi-confined and urban-like environment were adopted and compared with experimental data and with operational models. In this paper the results of a comparison between models describing the dispersion of a neutral gas in an idealized urban-like environment are presented and discussed. Experimental data available in the literature have been used as a benchmark for assessing statistical performance for each model. Selected experimental trials include some water channel tests, that were performed by Coanda at 1:205 scale, and one full-scale case that was tested in the fall of 2001 at the Dugway Proving Grounds in Utah, using an array of shipping containers. The paper also suggests the adoption of improved statistical parameters in order to better address differences between models, and to have a more straightforward method for comparing models suitable for emergency preparedness aims.

  14. Comparison of statistical methods for detection of serum lipid biomarkers for mesothelioma and asbestos exposure.

    PubMed

    Xu, Rengyi; Mesaros, Clementina; Weng, Liwei; Snyder, Nathaniel W; Vachani, Anil; Blair, Ian A; Hwang, Wei-Ting

    2017-07-01

    We compared three statistical methods in selecting a panel of serum lipid biomarkers for mesothelioma and asbestos exposure. Serum samples from mesothelioma, asbestos-exposed subjects and controls (40 per group) were analyzed. Three variable selection methods were considered: top-ranked predictors from univariate model, stepwise and least absolute shrinkage and selection operator. Crossed-validated area under the receiver operating characteristic curve was used to compare the prediction performance. Lipids with high crossed-validated area under the curve were identified. Lipid with mass-to-charge ratio of 372.31 was selected by all three methods comparing mesothelioma versus control. Lipids with mass-to-charge ratio of 1464.80 and 329.21 were selected by two models for asbestos exposure versus control. Different methods selected a similar set of serum lipids. Combining candidate biomarkers can improve prediction.

  15. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  16. Comparison of algebraic and analytical approaches to the formulation of the statistical model-based reconstruction problem for X-ray computed tomography.

    PubMed

    Cierniak, Robert; Lorent, Anna

    2016-09-01

    The main aim of this paper is to investigate properties of our originally formulated statistical model-based iterative approach applied to the image reconstruction from projections problem which are related to its conditioning, and, in this manner, to prove a superiority of this approach over ones recently used by other authors. The reconstruction algorithm based on this conception uses a maximum likelihood estimation with an objective adjusted to the probability distribution of measured signals obtained from an X-ray computed tomography system with parallel beam geometry. The analysis and experimental results presented here show that our analytical approach outperforms the referential algebraic methodology which is explored widely in the literature and exploited in various commercial implementations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Decompression models: review, relevance and validation capabilities.

    PubMed

    Hugon, J

    2014-01-01

    For more than a century, several types of mathematical models have been proposed to describe tissue desaturation mechanisms in order to limit decompression sickness. These models are statistically assessed by DCS cases, and, over time, have gradually included bubble formation biophysics. This paper proposes to review this evolution and discuss its limitations. This review is organized around the comparison of decompression model biophysical criteria and theoretical foundations. Then, the DCS-predictive capability was analyzed to assess whether it could be improved by combining different approaches. Most of the operational decompression models have a neo-Haldanian form. Nevertheless, bubble modeling has been gaining popularity, and the circulating bubble amount has become a major output. By merging both views, it seems possible to build a relevant global decompression model that intends to simulate bubble production while predicting DCS risks for all types of exposures and decompression profiles. A statistical approach combining both DCS and bubble detection databases has to be developed to calibrate a global decompression model. Doppler ultrasound and DCS data are essential: i. to make correlation and validation phases reliable; ii. to adjust biophysical criteria to fit at best the observed bubble kinetics; and iii. to build a relevant risk function.

  18. Random noise effects in pulse-mode digital multilayer neural networks.

    PubMed

    Kim, Y C; Shanblatt, M A

    1995-01-01

    A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.

  19. Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps

    PubMed Central

    Silver, Matt; Montana, Giovanni

    2012-01-01

    Where causal SNPs (single nucleotide polymorphisms) tend to accumulate within biological pathways, the incorporation of prior pathways information into a statistical model is expected to increase the power to detect true associations in a genetic association study. Most existing pathways-based methods rely on marginal SNP statistics and do not fully exploit the dependence patterns among SNPs within pathways. We use a sparse regression model, with SNPs grouped into pathways, to identify causal pathways associated with a quantitative trait. Notable features of our “pathways group lasso with adaptive weights” (P-GLAW) algorithm include the incorporation of all pathways in a single regression model, an adaptive pathway weighting procedure that accounts for factors biasing pathway selection, and the use of a bootstrap sampling procedure for the ranking of important pathways. P-GLAW takes account of the presence of overlapping pathways and uses a novel combination of techniques to optimise model estimation, making it fast to run, even on whole genome datasets. In a comparison study with an alternative pathways method based on univariate SNP statistics, our method demonstrates high sensitivity and specificity for the detection of important pathways, showing the greatest relative gains in performance where marginal SNP effect sizes are small. PMID:22499682

  20. Reentry survivability modeling

    NASA Astrophysics Data System (ADS)

    Fudge, Michael L.; Maher, Robert L.

    1997-10-01

    Statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by re-entering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was recently demonstrated in dramatic fashion by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This paper examines reentry survivability estimation methodology, including the specific methodology used by Caiman Sciences' 'Survive' model. Comparison between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and Survive estimates are presented for selected upper stage or spacecraft components and a Delta launch vehicle second stage.

  1. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE PAGES

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...

    2016-01-01

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  2. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  3. Comparison of methods for estimating flood magnitudes on small streams in Georgia

    USGS Publications Warehouse

    Hess, Glen W.; Price, McGlone

    1989-01-01

    The U.S. Geological Survey has collected flood data for small, natural streams at many sites throughout Georgia during the past 20 years. Flood-frequency relations were developed for these data using four methods: (1) observed (log-Pearson Type III analysis) data, (2) rainfall-runoff model, (3) regional regression equations, and (4) map-model combination. The results of the latter three methods were compared to the analyses of the observed data in order to quantify the differences in the methods and determine if the differences are statistically significant.

  4. Interactions and triggering in a 3D rate and state asperity model

    NASA Astrophysics Data System (ADS)

    Dublanchet, P.; Bernard, P.

    2012-12-01

    Precise relocation of micro-seismicity and careful analysis of seismic source parameters have progressively imposed the concept of seismic asperities embedded in a creeping fault segment as being one of the most important aspect that should appear in a realistic representation of micro-seismic sources. Another important issue concerning micro-seismic activity is the existence of robust empirical laws describing the temporal and magnitude distribution of earthquakes, such as the Omori law, the distribution of inter-event time and the Gutenberg-Richter law. In this framework, this study aims at understanding statistical properties of earthquakes, by generating synthetic catalogs with a 3D, quasi-dynamic continuous rate and state asperity model, that takes into account a realistic geometry of asperities. Our approach contrasts with ETAS models (Kagan and Knopoff, 1981) usually implemented to produce earthquake catalogs, in the sense that the non linearity observed in rock friction experiments (Dieterich, 1979) is fully taken into account by the use of rate and state friction law. Furthermore, our model differs from discrete models of faults (Ziv and Cochard, 2006) because the continuity allows us to define realistic geometries and distributions of asperities by the assembling of sub-critical computational cells that always fail in a single event. Moreover, this model allows us to adress the question of the influence of barriers and distribution of asperities on the event statistics. After recalling the main observations of asperities in the specific case of Parkfield segment of San-Andreas Fault, we analyse earthquake statistical properties computed for this area. Then, we present synthetic statistics obtained by our model that allow us to discuss the role of barriers on clustering and triggering phenomena among a population of sources. It appears that an effective size of barrier, that depends on its frictional strength, controls the presence or the absence, in the synthetic catalog, of statistical laws that are similar to what is observed for real earthquakes. As an application, we attempt to draw a comparison between synthetic statistics and the observed statistics of Parkfield in order to characterize what could be a realistic frictional model of Parkfield area. More generally, we obtained synthetic statistical properties that are in agreement with power-law decays characterized by exponents that match the observations at a global scale, showing that our mechanical model is able to provide new insights into the understanding of earthquake interaction processes in general.

  5. Standard and reduced radiation dose liver CT images: adaptive statistical iterative reconstruction versus model-based iterative reconstruction-comparison of findings and image quality.

    PubMed

    Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M

    2014-12-01

    To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers (n = 100) scored overall image quality as sufficient or good with MBIR model-based iterative reconstruction in 99% (99 of 100). Liver SNR signal-to-noise ratio was significantly greater for MBIR model-based iterative reconstruction (10.8 ± 2.5 [standard deviation] vs 7.7 ± 1.4, P < .001); there was no difference for CNR contrast-to-noise ratio (2.5 ± 1.4 vs 2.4 ± 1.4, P = .45). For ASIR adaptive statistical iterative reconstruction and MBIR model-based iterative reconstruction , respectively, volume CT dose index was 15.2 mGy ± 7.6 versus 6.2 mGy ± 3.6; SSDE size-specific dose estimate was 16.4 mGy ± 6.6 versus 6.7 mGy ± 3.1 (P < .001). Liver CT images reconstructed with MBIR model-based iterative reconstruction may allow up to 59% radiation dose reduction compared with the dose with ASIR adaptive statistical iterative reconstruction , without compromising depiction of findings or image quality. © RSNA, 2014.

  6. Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques

    NASA Astrophysics Data System (ADS)

    Mullan, Donal; Chen, Jie; Zhang, Xunchang John

    2016-02-01

    Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.

  7. Comparison of Bolton analysis and Little’s irregularity index on laser scanned three-dimensional digital study models with conventional study models

    NASA Astrophysics Data System (ADS)

    Kurnia, H.; Noerhadi, N. A. I.

    2017-08-01

    Three-dimensional digital study models were introduced following advances in digital technology. This study was carried out to assess the reliability of digital study models scanned by a laser scanning device newly assembled. The aim of this study was to compare the digital study models and conventional models. Twelve sets of dental impressions were taken from patients with mild-to-moderate crowding. The impressions were taken twice, one with alginate and the other with polyvinylsiloxane. The alginate impressions were made into conventional models, and the polyvinylsiloxane impressions were scanned to produce digital models. The mesiodistal tooth width and Little’s irregularity index (LII) were measured manually with digital calipers on the conventional models and digitally on the digital study models. Bolton analysis was performed on each study models. Each method was carried out twice to check for intra-observer variability. The reproducibility (comparison of the methods) was assessed using independent-sample t-tests. The mesiodistal tooth width between conventional and digital models did not significantly differ (p > 0.05). Independent-sample t-tests did not identify statistically significant differences for Bolton analysis and LII (p = 0.603 for Bolton and p = 0894 for LII). The measurements of the digital study models are as accurate as those of the conventional models.

  8. The Supernovae Analysis Application (SNAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayless, Amanda J.; Fryer, Christopher Lee; Wollaeger, Ryan Thomas

    The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginningmore » to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.« less

  9. The Supernovae Analysis Application (SNAP)

    DOE PAGES

    Bayless, Amanda J.; Fryer, Christopher Lee; Wollaeger, Ryan Thomas; ...

    2017-09-06

    The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginningmore » to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.« less

  10. The Supernovae Analysis Application (SNAP)

    NASA Astrophysics Data System (ADS)

    Bayless, Amanda J.; Fryer, Chris L.; Wollaeger, Ryan; Wiggins, Brandon; Even, Wesley; de la Rosa, Janie; Roming, Peter W. A.; Frey, Lucy; Young, Patrick A.; Thorpe, Rob; Powell, Luke; Landers, Rachel; Persson, Heather D.; Hay, Rebecca

    2017-09-01

    The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginning to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.

  11. Statistical Calibration and Validation of a Homogeneous Ventilated Wall-Interference Correction Method for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.

    2005-01-01

    Wind tunnel experiments will continue to be a primary source of validation data for many types of mathematical and computational models in the aerospace industry. The increased emphasis on accuracy of data acquired from these facilities requires understanding of the uncertainty of not only the measurement data but also any correction applied to the data. One of the largest and most critical corrections made to these data is due to wall interference. In an effort to understand the accuracy and suitability of these corrections, a statistical validation process for wall interference correction methods has been developed. This process is based on the use of independent cases which, after correction, are expected to produce the same result. Comparison of these independent cases with respect to the uncertainty in the correction process establishes a domain of applicability based on the capability of the method to provide reasonable corrections with respect to customer accuracy requirements. The statistical validation method was applied to the version of the Transonic Wall Interference Correction System (TWICS) recently implemented in the National Transonic Facility at NASA Langley Research Center. The TWICS code generates corrections for solid and slotted wall interference in the model pitch plane based on boundary pressure measurements. Before validation could be performed on this method, it was necessary to calibrate the ventilated wall boundary condition parameters. Discrimination comparisons are used to determine the most representative of three linear boundary condition models which have historically been used to represent longitudinally slotted test section walls. Of the three linear boundary condition models implemented for ventilated walls, the general slotted wall model was the most representative of the data. The TWICS code using the calibrated general slotted wall model was found to be valid to within the process uncertainty for test section Mach numbers less than or equal to 0.60. The scatter among the mean corrected results of the bodies of revolution validation cases was within one count of drag on a typical transport aircraft configuration for Mach numbers at or below 0.80 and two counts of drag for Mach numbers at or below 0.90.

  12. Mathematical models of cytotoxic effects in endpoint tumor cell line assays: critical assessment of the application of a single parametric value as a standard criterion to quantify the dose-response effects and new unexplored proposal formats.

    PubMed

    Calhelha, Ricardo C; Martínez, Mireia A; Prieto, M A; Ferreira, Isabel C F R

    2017-10-23

    The development of convenient tools for describing and quantifying the effects of standard and novel therapeutic agents is essential for the research community, to perform more precise evaluations. Although mathematical models and quantification criteria have been exchanged in the last decade between different fields of study, there are relevant methodologies that lack proper mathematical descriptions and standard criteria to quantify their responses. Therefore, part of the relevant information that can be drawn from the experimental results obtained and the quantification of its statistical reliability are lost. Despite its relevance, there is not a standard form for the in vitro endpoint tumor cell lines' assays (TCLA) that enables the evaluation of the cytotoxic dose-response effects of anti-tumor drugs. The analysis of all the specific problems associated with the diverse nature of the available TCLA used is unfeasible. However, since most TCLA share the main objectives and similar operative requirements, we have chosen the sulforhodamine B (SRB) colorimetric assay for cytotoxicity screening of tumor cell lines as an experimental case study. In this work, the common biological and practical non-linear dose-response mathematical models are tested against experimental data and, following several statistical analyses, the model based on the Weibull distribution was confirmed as the convenient approximation to test the cytotoxic effectiveness of anti-tumor compounds. Then, the advantages and disadvantages of all the different parametric criteria derived from the model, which enable the quantification of the dose-response drug-effects, are extensively discussed. Therefore, model and standard criteria for easily performing the comparisons between different compounds are established. The advantages include a simple application, provision of parametric estimations that characterize the response as standard criteria, economization of experimental effort and enabling rigorous comparisons among the effects of different compounds and experimental approaches. In all experimental data fitted, the calculated parameters were always statistically significant, the equations proved to be consistent and the correlation coefficient of determination was, in most of the cases, higher than 0.98.

  13. Advanced quantitative measurement methodology in physics education research

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three parts. The first part involves the comparison between item response theory (IRT) and classical test theory (CTT). The two theories both provide test item statistics for educational inferences and decisions. The two theories are both applied to Force Concept Inventory data obtained from students enrolled in The Ohio State University. Effort was made to examine the similarity and difference between the two theories, and the possible explanation to the difference. The study suggests that item response theory is more sensitive to the context and conceptual features of the test items than classical test theory. The IRT parameters provide a better measure than CTT parameters for the educational audience to investigate item features. The second part of the dissertation is on the measure of association for binary data. In quantitative assessment, binary data is often encountered because of its simplicity. The current popular measures of association fail under some extremely unbalanced conditions. However, the occurrence of these conditions is not rare in educational data. Two popular association measures, the Pearson's correlation and the tetrachoric correlation are examined. A new method, model based association is introduced, and an educational testing constraint is discussed. The existing popular methods are compared with the model based association measure with and without the constraint. Connections between the value of association and the context and conceptual features of questions are discussed in detail. Results show that all the methods have their advantages and disadvantages. Special attention to the test and data conditions is necessary. The last part of the dissertation is focused on exploratory factor analysis (EFA). The theoretical advantages of EFA are discussed. Typical misunderstanding and misusage of EFA are explored. The EFA is performed on Lawson's Classroom Test of Scientific Reasoning (LCTSR), a widely used assessment on scientific reasoning skills. The reasoning ability structures for U.S. and Chinese students at different educational levels are given by the analysis. A final discussion on the advanced quantitative assessment methodology and the pure mathematical methodology is presented at the end.

  14. Use of Selected Goodness-of-Fit Statistics to Assess the Accuracy of a Model of Henry Hagg Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Rounds, S. A.; Sullivan, A. B.

    2004-12-01

    Assessing a model's ability to reproduce field data is a critical step in the modeling process. For any model, some method of determining goodness-of-fit to measured data is needed to aid in calibration and to evaluate model performance. Visualizations and graphical comparisons of model output are an excellent way to begin that assessment. At some point, however, model performance must be quantified. Goodness-of-fit statistics, including the mean error (ME), mean absolute error (MAE), root mean square error, and coefficient of determination, typically are used to measure model accuracy. Statistical tools such as the sign test or Wilcoxon test can be used to test for model bias. The runs test can detect phase errors in simulated time series. Each statistic is useful, but each has its limitations. None provides a complete quantification of model accuracy. In this study, a suite of goodness-of-fit statistics was applied to a model of Henry Hagg Lake in northwest Oregon. Hagg Lake is a man-made reservoir on Scoggins Creek, a tributary to the Tualatin River. Located on the west side of the Portland metropolitan area, the Tualatin Basin is home to more than 450,000 people. Stored water in Hagg Lake helps to meet the agricultural and municipal water needs of that population. Future water demands have caused water managers to plan for a potential expansion of Hagg Lake, doubling its storage to roughly 115,000 acre-feet. A model of the lake was constructed to evaluate the lake's water quality and estimate how that quality might change after raising the dam. The laterally averaged, two-dimensional, U.S. Army Corps of Engineers model CE-QUAL-W2 was used to construct the Hagg Lake model. Calibrated for the years 2000 and 2001 and confirmed with data from 2002 and 2003, modeled parameters included water temperature, ammonia, nitrate, phosphorus, algae, zooplankton, and dissolved oxygen. Several goodness-of-fit statistics were used to quantify model accuracy and bias. Model performance was judged to be excellent for water temperature (annual ME: -0.22 to 0.05 ° C; annual MAE: 0.62 to 0.68 ° C) and dissolved oxygen (annual ME: -0.28 to 0.18 mg/L; annual MAE: 0.43 to 0.92 mg/L), showing that the model is sufficiently accurate for future water resources planning and management.

  15. The limits of protein sequence comparison?

    PubMed Central

    Pearson, William R; Sierk, Michael L

    2010-01-01

    Modern sequence alignment algorithms are used routinely to identify homologous proteins, proteins that share a common ancestor. Homologous proteins always share similar structures and often have similar functions. Over the past 20 years, sequence comparison has become both more sensitive, largely because of profile-based methods, and more reliable, because of more accurate statistical estimates. As sequence and structure databases become larger, and comparison methods become more powerful, reliable statistical estimates will become even more important for distinguishing similarities that are due to homology from those that are due to analogy (convergence). The newest sequence alignment methods are more sensitive than older methods, but more accurate statistical estimates are needed for their full power to be realized. PMID:15919194

  16. Mediation Analysis with Survival Outcomes: Accelerated Failure Time vs. Proportional Hazards Models.

    PubMed

    Gelfand, Lois A; MacKinnon, David P; DeRubeis, Robert J; Baraldi, Amanda N

    2016-01-01

    Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored) events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH) and fully parametric accelerated failure time (AFT) approaches for illustration. We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively) under varied data conditions, some including censoring. A simulated data set illustrates the findings. AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome-underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG. When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results.

  17. User manual for Blossom statistical package for R

    USGS Publications Warehouse

    Talbert, Marian; Cade, Brian S.

    2005-01-01

    Blossom is an R package with functions for making statistical comparisons with distance-function based permutation tests developed by P.W. Mielke, Jr. and colleagues at Colorado State University (Mielke and Berry, 2001) and for testing parameters estimated in linear models with permutation procedures developed by B. S. Cade and colleagues at the Fort Collins Science Center, U.S. Geological Survey. This manual is intended to provide identical documentation of the statistical methods and interpretations as the manual by Cade and Richards (2005) does for the original Fortran program, but with changes made with respect to command inputs and outputs to reflect the new implementation as a package for R (R Development Core Team, 2012). This implementation in R has allowed for numerous improvements not supported by the Cade and Richards (2005) Fortran implementation, including use of categorical predictor variables in most routines.

  18. An evaluation of the variable-resolution CESM for modeling California's climate: Evaluation of VR-CESM for Modeling California's Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.

    In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less

  19. An evaluation of the variable-resolution CESM for modeling California's climate: Evaluation of VR-CESM for Modeling California's Climate

    DOE PAGES

    Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.; ...

    2016-03-01

    In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less

  20. Statistical Significance and Baseline Monitoring.

    DTIC Science & Technology

    1984-07-01

    impacted at once........................... 24 6 Observed versus nominal a levels for multivariate tests of data sets (50 runs of 4 groups each...cumulative proportion of the observations found for each nominal level. The results of the comparisons of the observed versus nominal a levels for the...a values are always higher than nominal levels. Virtual- . .,ly all nominal a levels are below 0.20. In other words, the discriminant analysis models

  1. Compact Encoding of Robot-Generated 3D Maps for Efficient Wireless Transmission

    DTIC Science & Technology

    2003-01-01

    Lempel - Ziv -Welch (LZW) and Ziv - Lempel (LZ77) respectively. Image based compression can also be based on dic- tionaries... compression of the data , without actually displaying a 3D model, printing statistical results for comparison of the different algorithms . 1http... compression algorithms , and wavelet algorithms tuned to the specific nature of the raw laser data . For most such applications, the usage of lossless

  2. Site comparison for optical visibility statistics in southern California

    NASA Technical Reports Server (NTRS)

    Cowles, K.

    1991-01-01

    Negotiations are under way to locate an atmospheric visibility monitoring (AVM) observatory at Mount Lemmon, just north of Tucson, Arizona. Two more observatories will be located in the southwestern U.S. The observatories are being employed to improve a weather model for deep-space-to-ground optical communications. This article explains the factors considered in choosing a location and recommends Table Mountain Observatory as the location for another AVM facility.

  3. Aerial Refueling Simulator Validation Using Operational Experimentation and Response Surface Methods with Time Series Responses

    DTIC Science & Technology

    2013-03-21

    10 2.3 Time Series Response Data ................................................................................. 12 2.4 Comparison of Response...to 12 evaluating the efficiency of the parameter estimates. In the past, the most popular form of response surface design used the D-optimality...as well. A model can refer to almost anything in math , statistics, or computer science. It can be any “physical, mathematical, or logical

  4. Analysis and Comparison with DNS of a Stochastic Model for the Relative Motion of High-Stokes-Number Particles in Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Dhariwal, Rohit; Rani, Sarma; Koch, Donald

    2015-11-01

    In an earlier work, Rani, Dhariwal, and Koch (JFM, Vol. 756, 2014) developed an analytical closure for the diffusion current in the PDF transport equation describing the relative motion of high-Stokes-number particle pairs in isotropic turbulence. In this study, an improved closure was developed for the diffusion coefficient, such that the motion of the particle-pair center of mass is taken into account. Using the earlier and the new analytical closures, Langevin simulations of pair relative motion were performed for four particle Stokes numbers, Stη = 10 , 20 , 40 , 80 and at two Taylor micro-scale Reynolds numbers Reλ = 76 , 131 . Detailed comparisons of the analytical model predictions with those of DNS were undertaken. It is seen that the pair relative motion statistics obtained from the improved theory show excellent agreement with the DNS statistics. The radial distribution functions (RDFs), and relative velocity PDFs obtained from the improved-closure-based Langevin simulations are found to be in very good agreement with those from DNS. It was found that the RDFs and relative velocity RMS increased with Reλ for all Stη . The collision kernel also increased strongly with Reλ , since it depended on the RDF and the radial relative velocities.

  5. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue.

    PubMed

    Zhang, Zhiqing; Kuzmin, Nikolay V; Groot, Marie Louise; de Munck, Jan C

    2017-06-01

    The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering, segmentation and validation, to extract this information challenging. We developed a salient edge-enhancing model of anisotropic diffusion for image filtering, based on higher order statistics. We split the intrinsic 3-phase segmentation problem into two 2-phase segmentation problems, each of which we solved with a dedicated model, active contour weighted by prior extreme. We applied the novel proposed algorithms to THG images of structurally normal ex-vivo human brain tissue, revealing key tissue components-brain cells, microvessels and neuropil, enabling statistical characterization of these components. Comprehensive comparison to manually delineated ground truth validated the proposed algorithms. Quantitative comparison to second harmonic generation/auto-fluorescence images, acquired simultaneously from the same tissue area, confirmed the correctness of the main THG features detected. The software and test datasets are available from the authors. z.zhang@vu.nl. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. A demonstration of the application of the new paradigm for the evaluation of forensic evidence under conditions reflecting those of a real forensic-voice-comparison case.

    PubMed

    Enzinger, Ewald; Morrison, Geoffrey Stewart; Ochoa, Felipe

    2016-01-01

    The new paradigm for the evaluation of the strength of forensic evidence includes: The use of the likelihood-ratio framework. The use of relevant data, quantitative measurements, and statistical models. Empirical testing of validity and reliability under conditions reflecting those of the case under investigation. Transparency as to decisions made and procedures employed. The present paper illustrates the use of the new paradigm to evaluate strength of evidence under conditions reflecting those of a real forensic-voice-comparison case. The offender recording was from a landline telephone system, had background office noise, and was saved in a compressed format. The suspect recording included substantial reverberation and ventilation system noise, and was saved in a different compressed format. The present paper includes descriptions of the selection of the relevant hypotheses, sampling of data from the relevant population, simulation of suspect and offender recording conditions, and acoustic measurement and statistical modelling procedures. The present paper also explores the use of different techniques to compensate for the mismatch in recording conditions. It also examines how system performance would have differed had the suspect recording been of better quality. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Application of statistical shape analysis for the estimation of bone and forensic age using the shapes of the 2nd, 3rd, and 4th cervical vertebrae in a young Japanese population.

    PubMed

    Rhee, Chang-Hoon; Shin, Sang Min; Choi, Yong-Seok; Yamaguchi, Tetsutaro; Maki, Koutaro; Kim, Yong-Il; Kim, Seong-Sik; Park, Soo-Byung; Son, Woo-Sung

    2015-12-01

    From computed tomographic images, the dentocentral synchondrosis can be identified in the second cervical vertebra. This can demarcate the border between the odontoid process and the body of the 2nd cervical vertebra and serve as a good model for the prediction of bone and forensic age. Nevertheless, until now, there has been no application of the 2nd cervical vertebra based on the dentocentral synchondrosis. In this study, statistical shape analysis was used to build bone and forensic age estimation regression models. Following the principles of statistical shape analysis and principal components analysis, we used cone-beam computed tomography (CBCT) to evaluate a Japanese population (35 males and 45 females, from 5 to 19 years old). The narrowest prediction intervals among the multivariate regression models were 19.63 for bone age and 2.99 for forensic age. There was no significant difference between form space and shape space in the bone and forensic age estimation models. However, for gender comparison, the bone and forensic age estimation models for males had the higher explanatory power. This study derived an improved objective and quantitative method for bone and forensic age estimation based on only the 2nd, 3rd and 4th cervical vertebral shapes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. The comparison of proportional hazards and accelerated failure time models in analyzing the first birth interval survival data

    NASA Astrophysics Data System (ADS)

    Faruk, Alfensi

    2018-03-01

    Survival analysis is a branch of statistics, which is focussed on the analysis of time- to-event data. In multivariate survival analysis, the proportional hazards (PH) is the most popular model in order to analyze the effects of several covariates on the survival time. However, the assumption of constant hazards in PH model is not always satisfied by the data. The violation of the PH assumption leads to the misinterpretation of the estimation results and decreasing the power of the related statistical tests. On the other hand, the accelerated failure time (AFT) models do not assume the constant hazards in the survival data as in PH model. The AFT models, moreover, can be used as the alternative to PH model if the constant hazards assumption is violated. The objective of this research was to compare the performance of PH model and the AFT models in analyzing the significant factors affecting the first birth interval (FBI) data in Indonesia. In this work, the discussion was limited to three AFT models which were based on Weibull, exponential, and log-normal distribution. The analysis by using graphical approach and a statistical test showed that the non-proportional hazards exist in the FBI data set. Based on the Akaike information criterion (AIC), the log-normal AFT model was the most appropriate model among the other considered models. Results of the best fitted model (log-normal AFT model) showed that the covariates such as women’s educational level, husband’s educational level, contraceptive knowledge, access to mass media, wealth index, and employment status were among factors affecting the FBI in Indonesia.

  9. Variance estimates and confidence intervals for the Kappa measure of classification accuracy

    Treesearch

    M. A. Kalkhan; R. M. Reich; R. L. Czaplewski

    1997-01-01

    The Kappa statistic is frequently used to characterize the results of an accuracy assessment used to evaluate land use and land cover classifications obtained by remotely sensed data. This statistic allows comparisons of alternative sampling designs, classification algorithms, photo-interpreters, and so forth. In order to make these comparisons, it is...

  10. Evaluation of trace analyte identification in complex matrices by low-resolution gas chromatography--Mass spectrometry through signal simulation.

    PubMed

    Bettencourt da Silva, Ricardo J N

    2016-04-01

    The identification of trace levels of compounds in complex matrices by conventional low-resolution gas chromatography hyphenated with mass spectrometry is based in the comparison of retention times and abundance ratios of characteristic mass spectrum fragments of analyte peaks from calibrators with sample peaks. Statistically sound criteria for the comparison of these parameters were developed based on the normal distribution of retention times and the simulation of possible non-normal distribution of correlated abundances ratios. The confidence level used to set the statistical maximum and minimum limits of parameters defines the true positive rates of identifications. The false positive rate of identification was estimated from worst-case signal noise models. The estimated true and false positive identifications rate from one retention time and two correlated ratios of three fragments abundances were combined using simple Bayes' statistics to estimate the probability of compound identification being correct designated examination uncertainty. Models of the variation of examination uncertainty with analyte quantity allowed the estimation of the Limit of Examination as the lowest quantity that produced "Extremely strong" evidences of compound presence. User friendly MS-Excel files are made available to allow the easy application of developed approach in routine and research laboratories. The developed approach was successfully applied to the identification of chlorpyrifos-methyl and malathion in QuEChERS method extracts of vegetables with high water content for which the estimated Limit of Examination is 0.14 mg kg(-1) and 0.23 mg kg(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A generalized right truncated bivariate Poisson regression model with applications to health data.

    PubMed

    Islam, M Ataharul; Chowdhury, Rafiqul I

    2017-01-01

    A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model.

  12. A generalized right truncated bivariate Poisson regression model with applications to health data

    PubMed Central

    Islam, M. Ataharul; Chowdhury, Rafiqul I.

    2017-01-01

    A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model. PMID:28586344

  13. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    NASA Astrophysics Data System (ADS)

    Summers, Jason E.

    2003-11-01

    A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.

  14. Predictive modelling of the dielectric response of plasmonic substrates: application to the interpretation of ellipsometric spectra

    NASA Astrophysics Data System (ADS)

    Pugliara, A.; Bayle, M.; Bonafos, C.; Carles, R.; Respaud, M.; Makasheva, K.

    2018-03-01

    A predictive modelling of plasmonic substrates appropriate to read ellipsometric spectra is presented in this work. We focus on plasmonic substrates containing a single layer of silver nanoparticles (AgNPs) embedded in silica matrices. The model uses the Abeles matrix formalism and is based on the quasistatic approximation of the classical Maxwell-Garnett mixing rule, however accounting for the electronic confinement effect through the damping parameter. It is applied on samples elaborated by: (i) RF-diode sputtering followed by Plasma Enhanced Chemical Vapor Deposition (PECVD) and (ii) Low Energy Ion Beam Synthesis (LE-IBS), and represents situations with increasing degree of complexity that can be accounted for by the model. It allows extraction of the main characteristics of the AgNPs population: average size, volume fraction and distance of the AgNPs layer from the matrix free surface. Model validation is achieved through comparison with results obtained from transmission electron microscopy approving for its applicability. The advantages and limitations of the proposed model are discussed after eccentricity-based statistical analysis along with further developments related to the quality of comparison between the model-generated spectra and the experimentally-recorded ellipsometric spectra.

  15. A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Bhanu, Bir

    Video networks are becoming increasingly important for solving many real-world problems. Multiple video sensors require collaboration when performing various tasks. One of the most basic tasks is the tracking of objects, which requires mechanisms to select a camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In this chapter, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. We consider geometry-, statistics-, and game theory-based approaches and provide both theoretical and experimental comparison using centralized and distributed computational models. We provide simulation and experimental results using real data for various scenarios of a large number of cameras and objects for in-depth understanding of strengths and weaknesses of these techniques.

  16. A multi-criteria approach to identify favorable areas for goat production systems in Veracruz, México.

    PubMed

    Ramírez-Rivera, Emmanuel de Jesús; Lopez-Collado, Jose; Díaz-Rivera, Pablo; Ortega-Jiménez, Eusebio; Torres-Hernández, Glafiro; Jacinto-Padilla, Jazmín; Herman-Lara, Erasmo

    2017-04-01

    This research identifies favorable areas for goat production systems in the state of Veracruz, Mexico. Through the use of the analytic hierarchy process, layers of biophysical and soil information were combined to generate a model of favorability. Model validation was performed by calculating the area under the curve, the true skill statistic, and a qualitative comparison with census records. The results showed the existence of regions with high (4494.3 km 2 ) and moderate (2985.8 km 2 ) favorability, and these areas correspond to 6.25 and 4.15%, respectively, of the state territory and are located in the regions of Sierra de Huayacocotla, Perote, and Orizaba. These regions are characterized as mountainous and having predominantly temperate-wet or cold climates, and having montane mesophilic forests, containing pine, fir, and desert scrub. The reliability of the distribution model was supported by the area under the curve value (0.96), the true skill statistic (0.86), and consistency with census records.

  17. First Polarized Power Spectra from HERA-19 Commissioning Data: Comparison with Simulations

    NASA Astrophysics Data System (ADS)

    Igarashi, Amy; Chichura, Paul; Fox Fortino, Austin; Kohn, Saul; Aguirre, James; HERA Collaboration, CHAMP

    2018-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio telescope whose primary goal is the detection of redshifted 21-cm line radiation produced from the spin-flip transition of HI during the Epoch of Reionization (EoR). HERA is currently under construction in South Africa, and will eventually be an array of 350 14-m antennas. HERA aims for a statistical detection of the power spectrum of this emission, using the so-called delay spectrum technique (Parsons et al 2012). We examine a first season of commissioning data from the first 19 elements (HERA-19) to characterize Galactic and extragalactic foregrounds. We compare the delay spectrum for HERA-19 constructed from data to those constructed from simulations done using a detailed instrument electromagnetic model and using the unpolarized Global Sky Model (GSM2008). We compare the data and simulations to explore the effects of Stokes-I to Q and U leakage, and further examine whether statistical models of polarization match the observed polarized power spectra.

  18. A global reconstruction of climate-driven subdecadal water storage variability

    NASA Astrophysics Data System (ADS)

    Humphrey, V.; Gudmundsson, L.; Seneviratne, S. I.

    2017-03-01

    Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided unprecedented observations of global mass redistribution caused by hydrological processes. However, there are still few sources on pre-2002 global terrestrial water storage (TWS). Classical approaches to retrieve past TWS rely on either land surface models (LSMs) or basin-scale water balance calculations. Here we propose a new approach which statistically relates anomalies in atmospheric drivers to monthly GRACE anomalies. Gridded subdecadal TWS changes and time-dependent uncertainty intervals are reconstructed for the period 1985-2015. Comparisons with model results demonstrate the performance and robustness of the derived data set, which represents a new and valuable source for studying subdecadal TWS variability, closing the ocean/land water budgets and assessing GRACE uncertainties. At midpoint between GRACE observations and LSM simulations, the statistical approach provides TWS estimates (doi:10.5905/ethz-1007-85) that are essentially derived from observations and are based on a limited number of transparent model assumptions.

  19. Thermodynamic, electronic and magnetic properties of intermetallic compounds through statistical models

    NASA Astrophysics Data System (ADS)

    Cadeville, M. C.; Pierron-Bohnes, V.; Bouzidi, L.; Sanchez, J. M.

    1993-01-01

    Local and average electronic and magnetic properties of transition metal alloys are strongly correlated to the distribution of atoms on the lattice sites. The ability of some systems to form long range ordered structures at low temperature allows to discuss their properties in term of well identified occupation operators as those related to long range order (LRO) parameters. We show that using theoretical determinations of these LRO parameters through statistical models like the cluster variation method (CVM) developed to simulate the experimental phase diagrams, we are able to reproduce a lot of physical properties. In this paper we focus on two points: (i) a comparison between CVM results and an experimental determination of the LRO parameter by NMR at 59Co in a CoPt3 compound, and (ii) the modelling of the resistivity of ferromagnetic and paramagnetic intermetallic compounds belonging to Co-Pt, Ni-Pt and Fe-Al systems. All experiments were performed on samples in identified thermodynamic states, implying that kinetic effects are thoroughly taken into account.

  20. Development of a statistical oil spill model for risk assessment.

    PubMed

    Guo, Weijun

    2017-11-01

    To gain a better understanding of the impacts from potential risk sources, we developed an oil spill model using probabilistic method, which simulates numerous oil spill trajectories under varying environmental conditions. The statistical results were quantified from hypothetical oil spills under multiple scenarios, including area affected probability, mean oil slick thickness, and duration of water surface exposed to floating oil. The three sub-indices together with marine area vulnerability are merged to compute the composite index, characterizing the spatial distribution of risk degree. Integral of the index can be used to identify the overall risk from an emission source. The developed model has been successfully applied in comparison to and selection of an appropriate oil port construction location adjacent to a marine protected area for Phoca largha in China. The results highlight the importance of selection of candidates before project construction, since that risk estimation from two adjacent potential sources may turn out to be significantly different regarding hydrodynamic conditions and eco-environmental sensitivity. Copyright © 2017. Published by Elsevier Ltd.

Top