Sample records for statistical model selection

  1. Hyperparameterization of soil moisture statistical models for North America with Ensemble Learning Models (Elm)

    NASA Astrophysics Data System (ADS)

    Steinberg, P. D.; Brener, G.; Duffy, D.; Nearing, G. S.; Pelissier, C.

    2017-12-01

    Hyperparameterization, of statistical models, i.e. automated model scoring and selection, such as evolutionary algorithms, grid searches, and randomized searches, can improve forecast model skill by reducing errors associated with model parameterization, model structure, and statistical properties of training data. Ensemble Learning Models (Elm), and the related Earthio package, provide a flexible interface for automating the selection of parameters and model structure for machine learning models common in climate science and land cover classification, offering convenient tools for loading NetCDF, HDF, Grib, or GeoTiff files, decomposition methods like PCA and manifold learning, and parallel training and prediction with unsupervised and supervised classification, clustering, and regression estimators. Continuum Analytics is using Elm to experiment with statistical soil moisture forecasting based on meteorological forcing data from NASA's North American Land Data Assimilation System (NLDAS). There Elm is using the NSGA-2 multiobjective optimization algorithm for optimizing statistical preprocessing of forcing data to improve goodness-of-fit for statistical models (i.e. feature engineering). This presentation will discuss Elm and its components, including dask (distributed task scheduling), xarray (data structures for n-dimensional arrays), and scikit-learn (statistical preprocessing, clustering, classification, regression), and it will show how NSGA-2 is being used for automate selection of soil moisture forecast statistical models for North America.

  2. Frequentist Model Averaging in Structural Equation Modelling.

    PubMed

    Jin, Shaobo; Ankargren, Sebastian

    2018-06-04

    Model selection from a set of candidate models plays an important role in many structural equation modelling applications. However, traditional model selection methods introduce extra randomness that is not accounted for by post-model selection inference. In the current study, we propose a model averaging technique within the frequentist statistical framework. Instead of selecting an optimal model, the contributions of all candidate models are acknowledged. Valid confidence intervals and a [Formula: see text] test statistic are proposed. A simulation study shows that the proposed method is able to produce a robust mean-squared error, a better coverage probability, and a better goodness-of-fit test compared to model selection. It is an interesting compromise between model selection and the full model.

  3. Comparing geological and statistical approaches for element selection in sediment tracing research

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; McMahon, Joe; Evrard, Olivier; Olley, Jon

    2015-04-01

    Elevated suspended sediment loads reduce reservoir capacity and significantly increase the cost of operating water treatment infrastructure, making the management of sediment supply to reservoirs of increasingly importance. Sediment fingerprinting techniques can be used to determine the relative contributions of different sources of sediment accumulating in reservoirs. The objective of this research is to compare geological and statistical approaches to element selection for sediment fingerprinting modelling. Time-integrated samplers (n=45) were used to obtain source samples from four major subcatchments flowing into the Baroon Pocket Dam in South East Queensland, Australia. The geochemistry of potential sources were compared to the geochemistry of sediment cores (n=12) sampled in the reservoir. The geochemical approach selected elements for modelling that provided expected, observed and statistical discrimination between sediment sources. Two statistical approaches selected elements for modelling with the Kruskal-Wallis H-test and Discriminatory Function Analysis (DFA). In particular, two different significance levels (0.05 & 0.35) for the DFA were included to investigate the importance of element selection on modelling results. A distribution model determined the relative contributions of different sources to sediment sampled in the Baroon Pocket Dam. Elemental discrimination was expected between one subcatchment (Obi Obi Creek) and the remaining subcatchments (Lexys, Falls and Bridge Creek). Six major elements were expected to provide discrimination. Of these six, only Fe2O3 and SiO2 provided expected, observed and statistical discrimination. Modelling results with this geological approach indicated 36% (+/- 9%) of sediment sampled in the reservoir cores were from mafic-derived sources and 64% (+/- 9%) were from felsic-derived sources. The geological and the first statistical approach (DFA0.05) differed by only 1% (σ 5%) for 5 out of 6 model groupings with only the Lexys Creek modelling results differing significantly (35%). The statistical model with expanded elemental selection (DFA0.35) differed from the geological model by an average of 30% for all 6 models. Elemental selection for sediment fingerprinting therefore has the potential to impact modeling results. Accordingly is important to incorporate both robust geological and statistical approaches when selecting elements for sediment fingerprinting. For the Baroon Pocket Dam, management should focus on reducing the supply of sediments derived from felsic sources in each of the subcatchments.

  4. ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online

    PubMed Central

    Posada, David

    2006-01-01

    ModelTest server is a web-based application for the selection of models of nucleotide substitution using the program ModelTest. The server takes as input a text file with likelihood scores for the set of candidate models. Models can be selected with hierarchical likelihood ratio tests, or with the Akaike or Bayesian information criteria. The output includes several statistics for the assessment of model selection uncertainty, for model averaging or to estimate the relative importance of model parameters. The server can be accessed at . PMID:16845102

  5. Comparison of climate envelope models developed using expert-selected variables versus statistical selection

    USGS Publications Warehouse

    Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.

    2017-01-01

    Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (<40%) between the two methods Despite these differences in variable sets (expert versus statistical), models had high performance metrics (>0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable selection is a useful first step, especially when there is a need to model a large number of species or expert knowledge of the species is limited. Expert input can then be used to refine models that seem unrealistic or for species that experts believe are particularly sensitive to change. It also emphasizes the importance of using multiple models to reduce uncertainty and improve map outputs for conservation planning. Where outputs overlap or show the same direction of change there is greater certainty in the predictions. Areas of disagreement can be used for learning by asking why the models do not agree, and may highlight areas where additional on-the-ground data collection could improve the models.

  6. A Model for Investigating Predictive Validity at Highly Selective Institutions.

    ERIC Educational Resources Information Center

    Gross, Alan L.; And Others

    A statistical model for investigating predictive validity at highly selective institutions is described. When the selection ratio is small, one must typically deal with a data set containing relatively large amounts of missing data on both criterion and predictor variables. Standard statistical approaches are based on the strong assumption that…

  7. Two Paradoxes in Linear Regression Analysis.

    PubMed

    Feng, Ge; Peng, Jing; Tu, Dongke; Zheng, Julia Z; Feng, Changyong

    2016-12-25

    Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection.

  8. Quantification of model uncertainty in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-09-01

    We study uncertainty quantification in remote sensing of aerosols in the atmosphere with top of the atmosphere reflectance measurements from the nadir-viewing Ozone Monitoring Instrument (OMI). Focus is on the uncertainty in aerosol model selection of pre-calculated aerosol models and on the statistical modelling of the model inadequacies. The aim is to apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness (AOT) retrieval by propagating model selection and model error related uncertainties more realistically. We utilise Bayesian model selection and model averaging methods for the model selection problem and use Gaussian processes to model the smooth systematic discrepancies from the modelled to observed reflectance. The systematic model error is learned from an ensemble of operational retrievals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud free, over land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques. The method is demonstrated with four examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara dessert dust. The presented statistical methodology is general; it is not restricted to this particular satellite retrieval application.

  9. Two Paradoxes in Linear Regression Analysis

    PubMed Central

    FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong

    2016-01-01

    Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214

  10. Targeted versus statistical approaches to selecting parameters for modelling sediment provenance

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick

    2017-04-01

    One effective field-based approach to modelling sediment provenance is the source fingerprinting technique. Arguably, one of the most important steps for this approach is selecting the appropriate suite of parameters or fingerprints used to model source contributions. Accordingly, approaches to selecting parameters for sediment source fingerprinting will be reviewed. Thereafter, opportunities and limitations of these approaches and some future research directions will be presented. For properties to be effective tracers of sediment, they must discriminate between sources whilst behaving conservatively. Conservative behavior is characterized by constancy in sediment properties, where the properties of sediment sources remain constant, or at the very least, any variation in these properties should occur in a predictable and measurable way. Therefore, properties selected for sediment source fingerprinting should remain constant through sediment detachment, transportation and deposition processes, or vary in a predictable and measurable way. One approach to select conservative properties for sediment source fingerprinting is to identify targeted tracers, such as caesium-137, that provide specific source information (e.g. surface versus subsurface origins). A second approach is to use statistical tests to select an optimal suite of conservative properties capable of modelling sediment provenance. In general, statistical approaches use a combination of a discrimination (e.g. Kruskal Wallis H-test, Mann-Whitney U-test) and parameter selection statistics (e.g. Discriminant Function Analysis or Principle Component Analysis). The challenge is that modelling sediment provenance is often not straightforward and there is increasing debate in the literature surrounding the most appropriate approach to selecting elements for modelling. Moving forward, it would be beneficial if researchers test their results with multiple modelling approaches, artificial mixtures, and multiple lines of evidence to provide secondary support to their initial modelling results. Indeed, element selection can greatly impact modelling results and having multiple lines of evidence will help provide confidence when modelling sediment provenance.

  11. The Effects of Selection Strategies for Bivariate Loglinear Smoothing Models on NEAT Equating Functions

    ERIC Educational Resources Information Center

    Moses, Tim; Holland, Paul W.

    2010-01-01

    In this study, eight statistical strategies were evaluated for selecting the parameterizations of loglinear models for smoothing the bivariate test score distributions used in nonequivalent groups with anchor test (NEAT) equating. Four of the strategies were based on significance tests of chi-square statistics (Likelihood Ratio, Pearson,…

  12. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    PubMed

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  13. 'Chain pooling' model selection as developed for the statistical analysis of a rotor burst protection experiment

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1977-01-01

    A statistical decision procedure called chain pooling had been developed for model selection in fitting the results of a two-level fixed-effects full or fractional factorial experiment not having replication. The basic strategy included the use of one nominal level of significance for a preliminary test and a second nominal level of significance for the final test. The subject has been reexamined from the point of view of using as many as three successive statistical model deletion procedures in fitting the results of a single experiment. The investigation consisted of random number studies intended to simulate the results of a proposed aircraft turbine-engine rotor-burst-protection experiment. As a conservative approach, population model coefficients were chosen to represent a saturated 2 to the 4th power experiment with a distribution of parameter values unfavorable to the decision procedures. Three model selection strategies were developed.

  14. Image statistics underlying natural texture selectivity of neurons in macaque V4

    PubMed Central

    Okazawa, Gouki; Tajima, Satohiro; Komatsu, Hidehiko

    2015-01-01

    Our daily visual experiences are inevitably linked to recognizing the rich variety of textures. However, how the brain encodes and differentiates a plethora of natural textures remains poorly understood. Here, we show that many neurons in macaque V4 selectively encode sparse combinations of higher-order image statistics to represent natural textures. We systematically explored neural selectivity in a high-dimensional texture space by combining texture synthesis and efficient-sampling techniques. This yielded parameterized models for individual texture-selective neurons. The models provided parsimonious but powerful predictors for each neuron’s preferred textures using a sparse combination of image statistics. As a whole population, the neuronal tuning was distributed in a way suitable for categorizing textures and quantitatively predicts human ability to discriminate textures. Together, we suggest that the collective representation of visual image statistics in V4 plays a key role in organizing the natural texture perception. PMID:25535362

  15. Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models.

    PubMed Central

    Petersson, K M; Nichols, T E; Poline, J B; Holmes, A P

    1999-01-01

    Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions and limitations of the methods reviewed. There are several methods available to analyse FNI data indicating that none is optimal for all purposes. In order to make optimal use of the methods available it is important to know the limits of applicability. For the interpretation of FNI results it is also important to take into account the assumptions, approximations and inherent limitations of the methods used. This paper gives a brief overview over some non-inferential descriptive methods and common statistical models used in FNI. Issues relating to the complex problem of model selection are discussed. In general, proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference. The non-inferential section describes methods that, combined with inspection of parameter estimates and other simple measures, can aid in the process of model selection and verification of assumptions. The section on statistical models covers approaches to global normalization and some aspects of univariate, multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connectivity are discussed. In the companion paper we review issues related to signal detection and statistical inference. PMID:10466149

  16. An Update on Statistical Boosting in Biomedicine.

    PubMed

    Mayr, Andreas; Hofner, Benjamin; Waldmann, Elisabeth; Hepp, Tobias; Meyer, Sebastian; Gefeller, Olaf

    2017-01-01

    Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.

  17. Uniting statistical and individual-based approaches for animal movement modelling.

    PubMed

    Latombe, Guillaume; Parrott, Lael; Basille, Mathieu; Fortin, Daniel

    2014-01-01

    The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems.

  18. Uniting Statistical and Individual-Based Approaches for Animal Movement Modelling

    PubMed Central

    Latombe, Guillaume; Parrott, Lael; Basille, Mathieu; Fortin, Daniel

    2014-01-01

    The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems. PMID:24979047

  19. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation

    PubMed Central

    Finnerty, Justin John

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores. PMID:26460827

  20. VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA

    PubMed Central

    Garcia, Ramon I.; Ibrahim, Joseph G.; Zhu, Hongtu

    2009-01-01

    We consider the variable selection problem for a class of statistical models with missing data, including missing covariate and/or response data. We investigate the smoothly clipped absolute deviation penalty (SCAD) and adaptive LASSO and propose a unified model selection and estimation procedure for use in the presence of missing data. We develop a computationally attractive algorithm for simultaneously optimizing the penalized likelihood function and estimating the penalty parameters. Particularly, we propose to use a model selection criterion, called the ICQ statistic, for selecting the penalty parameters. We show that the variable selection procedure based on ICQ automatically and consistently selects the important covariates and leads to efficient estimates with oracle properties. The methodology is very general and can be applied to numerous situations involving missing data, from covariates missing at random in arbitrary regression models to nonignorably missing longitudinal responses and/or covariates. Simulations are given to demonstrate the methodology and examine the finite sample performance of the variable selection procedures. Melanoma data from a cancer clinical trial is presented to illustrate the proposed methodology. PMID:20336190

  1. Selecting the right statistical model for analysis of insect count data by using information theoretic measures.

    PubMed

    Sileshi, G

    2006-10-01

    Researchers and regulatory agencies often make statistical inferences from insect count data using modelling approaches that assume homogeneous variance. Such models do not allow for formal appraisal of variability which in its different forms is the subject of interest in ecology. Therefore, the objectives of this paper were to (i) compare models suitable for handling variance heterogeneity and (ii) select optimal models to ensure valid statistical inferences from insect count data. The log-normal, standard Poisson, Poisson corrected for overdispersion, zero-inflated Poisson, the negative binomial distribution and zero-inflated negative binomial models were compared using six count datasets on foliage-dwelling insects and five families of soil-dwelling insects. Akaike's and Schwarz Bayesian information criteria were used for comparing the various models. Over 50% of the counts were zeros even in locally abundant species such as Ootheca bennigseni Weise, Mesoplatys ochroptera Stål and Diaecoderus spp. The Poisson model after correction for overdispersion and the standard negative binomial distribution model provided better description of the probability distribution of seven out of the 11 insects than the log-normal, standard Poisson, zero-inflated Poisson or zero-inflated negative binomial models. It is concluded that excess zeros and variance heterogeneity are common data phenomena in insect counts. If not properly modelled, these properties can invalidate the normal distribution assumptions resulting in biased estimation of ecological effects and jeopardizing the integrity of the scientific inferences. Therefore, it is recommended that statistical models appropriate for handling these data properties be selected using objective criteria to ensure efficient statistical inference.

  2. A Selective Overview of Variable Selection in High Dimensional Feature Space

    PubMed Central

    Fan, Jianqing

    2010-01-01

    High dimensional statistical problems arise from diverse fields of scientific research and technological development. Variable selection plays a pivotal role in contemporary statistical learning and scientific discoveries. The traditional idea of best subset selection methods, which can be regarded as a specific form of penalized likelihood, is computationally too expensive for many modern statistical applications. Other forms of penalized likelihood methods have been successfully developed over the last decade to cope with high dimensionality. They have been widely applied for simultaneously selecting important variables and estimating their effects in high dimensional statistical inference. In this article, we present a brief account of the recent developments of theory, methods, and implementations for high dimensional variable selection. What limits of the dimensionality such methods can handle, what the role of penalty functions is, and what the statistical properties are rapidly drive the advances of the field. The properties of non-concave penalized likelihood and its roles in high dimensional statistical modeling are emphasized. We also review some recent advances in ultra-high dimensional variable selection, with emphasis on independence screening and two-scale methods. PMID:21572976

  3. Congruence analysis of geodetic networks - hypothesis tests versus model selection by information criteria

    NASA Astrophysics Data System (ADS)

    Lehmann, Rüdiger; Lösler, Michael

    2017-12-01

    Geodetic deformation analysis can be interpreted as a model selection problem. The null model indicates that no deformation has occurred. It is opposed to a number of alternative models, which stipulate different deformation patterns. A common way to select the right model is the usage of a statistical hypothesis test. However, since we have to test a series of deformation patterns, this must be a multiple test. As an alternative solution for the test problem, we propose the p-value approach. Another approach arises from information theory. Here, the Akaike information criterion (AIC) or some alternative is used to select an appropriate model for a given set of observations. Both approaches are discussed and applied to two test scenarios: A synthetic levelling network and the Delft test data set. It is demonstrated that they work but behave differently, sometimes even producing different results. Hypothesis tests are well-established in geodesy, but may suffer from an unfavourable choice of the decision error rates. The multiple test also suffers from statistical dependencies between the test statistics, which are neglected. Both problems are overcome by applying information criterions like AIC.

  4. Statistical Analysis of Big Data on Pharmacogenomics

    PubMed Central

    Fan, Jianqing; Liu, Han

    2013-01-01

    This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905

  5. Curve fitting and modeling with splines using statistical variable selection techniques

    NASA Technical Reports Server (NTRS)

    Smith, P. L.

    1982-01-01

    The successful application of statistical variable selection techniques to fit splines is demonstrated. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs, using the B-spline basis, were developed. The program for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.

  6. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    PubMed

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.

  7. Variability aware compact model characterization for statistical circuit design optimization

    NASA Astrophysics Data System (ADS)

    Qiao, Ying; Qian, Kun; Spanos, Costas J.

    2012-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.

  8. Parameter estimation and order selection for an empirical model of VO2 on-kinetics.

    PubMed

    Alata, O; Bernard, O

    2007-04-27

    In humans, VO2 on-kinetics are noisy numerical signals that reflect the pulmonary oxygen exchange kinetics at the onset of exercise. They are empirically modelled as a sum of an offset and delayed exponentials. The number of delayed exponentials; i.e. the order of the model, is commonly supposed to be 1 for low-intensity exercises and 2 for high-intensity exercises. As no ground truth has ever been provided to validate these postulates, physiologists still need statistical methods to verify their hypothesis about the number of exponentials of the VO2 on-kinetics especially in the case of high-intensity exercises. Our objectives are first to develop accurate methods for estimating the parameters of the model at a fixed order, and then, to propose statistical tests for selecting the appropriate order. In this paper, we provide, on simulated Data, performances of Simulated Annealing for estimating model parameters and performances of Information Criteria for selecting the order. These simulated Data are generated with both single-exponential and double-exponential models, and noised by white and Gaussian noise. The performances are given at various Signal to Noise Ratio (SNR). Considering parameter estimation, results show that the confidences of estimated parameters are improved by increasing the SNR of the response to be fitted. Considering model selection, results show that Information Criteria are adapted statistical criteria to select the number of exponentials.

  9. Duration on unemployment: geographic mobility and selectivity bias.

    PubMed

    Goss, E P; Paul, C; Wilhite, A

    1994-01-01

    Modeling the factors affecting the duration of unemployment was found to be influenced by the inclusion of migration factors. Traditional models which did not control for migration factors were found to underestimate movers' probability of finding an acceptable job. The empirical test of the theory, based on the analysis of data on US household heads unemployed in 1982 and employed in 1982 and 1983, found that the cumulative probability of reemployment in the traditional model was .422 and in the migration selectivity model was .624 after 30 weeks of searching. In addition, controlling for selectivity eliminated the significance of the relationship between race and job search duration in the model. The relationship between search duration and the county unemployment rate in 1982 became statistically significant, and the relationship between search duration and 1980 population per square mile in the 1982 county of residence became statistically insignificant. The finding that non-Whites have a longer duration of unemployment can better be understood as non-Whites' lower geographic mobility and lack of greater job contacts. The statistical significance of a high unemployment rate in the home labor market reducing the probability of finding employment was more in keeping with expectations. The findings assumed that the duration of employment accurately reflected the length of job search. The sample was redrawn to exclude discouraged workers and the analysis was repeated. The findings were similar to the full sample, with the coefficient for migration variable being negative and statistically significant and the coefficient for alpha remaining positive and statistically significant. Race in the selectivity model remained statistically insignificant. The findings supported the Schwartz model hypothesizing that the expansion of the radius of the search would reduce the duration of unemployment. The exclusion of the migration factor misspecified the equation for unemployment duration. Policy should be directed to the problems of geographic mobility, particularly among non-Whites.

  10. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A

    2012-03-15

    To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Patch-Based Generative Shape Model and MDL Model Selection for Statistical Analysis of Archipelagos

    NASA Astrophysics Data System (ADS)

    Ganz, Melanie; Nielsen, Mads; Brandt, Sami

    We propose a statistical generative shape model for archipelago-like structures. These kind of structures occur, for instance, in medical images, where our intention is to model the appearance and shapes of calcifications in x-ray radio graphs. The generative model is constructed by (1) learning a patch-based dictionary for possible shapes, (2) building up a time-homogeneous Markov model to model the neighbourhood correlations between the patches, and (3) automatic selection of the model complexity by the minimum description length principle. The generative shape model is proposed as a probability distribution of a binary image where the model is intended to facilitate sequential simulation. Our results show that a relatively simple model is able to generate structures visually similar to calcifications. Furthermore, we used the shape model as a shape prior in the statistical segmentation of calcifications, where the area overlap with the ground truth shapes improved significantly compared to the case where the prior was not used.

  12. Interpretation of the results of statistical measurements. [search for basic probability model

    NASA Technical Reports Server (NTRS)

    Olshevskiy, V. V.

    1973-01-01

    For random processes, the calculated probability characteristic, and the measured statistical estimate are used in a quality functional, which defines the difference between the two functions. Based on the assumption that the statistical measurement procedure is organized so that the parameters for a selected model are optimized, it is shown that the interpretation of experimental research is a search for a basic probability model.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin J; Scholten, Travis L.

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  14. Application of Bayesian methods to habitat selection modeling of the northern spotted owl in California: new statistical methods for wildlife research

    Treesearch

    Howard B. Stauffer; Cynthia J. Zabel; Jeffrey R. Dunk

    2005-01-01

    We compared a set of competing logistic regression habitat selection models for Northern Spotted Owls (Strix occidentalis caurina) in California. The habitat selection models were estimated, compared, evaluated, and tested using multiple sample datasets collected on federal forestlands in northern California. We used Bayesian methods in interpreting...

  15. Variability-aware compact modeling and statistical circuit validation on SRAM test array

    NASA Astrophysics Data System (ADS)

    Qiao, Ying; Spanos, Costas J.

    2016-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose a variability-aware compact model characterization methodology based on stepwise parameter selection. Transistor I-V measurements are obtained from bit transistor accessible SRAM test array fabricated using a collaborating foundry's 28nm FDSOI technology. Our in-house customized Monte Carlo simulation bench can incorporate these statistical compact models; and simulation results on SRAM writability performance are very close to measurements in distribution estimation. Our proposed statistical compact model parameter extraction methodology also has the potential of predicting non-Gaussian behavior in statistical circuit performances through mixtures of Gaussian distributions.

  16. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology

    EPA Science Inventory

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...

  17. Biological evolution and statistical physics

    NASA Astrophysics Data System (ADS)

    Drossel, Barbara

    2001-03-01

    This review is an introduction to theoretical models and mathematical calculations for biological evolution, aimed at physicists. The methods in the field are naturally very similar to those used in statistical physics, although the majority of publications have appeared in biology journals. The review has three parts, which can be read independently. The first part deals with evolution in fitness landscapes and includes Fisher's theorem, adaptive walks, quasispecies models, effects of finite population sizes, and neutral evolution. The second part studies models of coevolution, including evolutionary game theory, kin selection, group selection, sexual selection, speciation, and coevolution of hosts and parasites. The third part discusses models for networks of interacting species and their extinction avalanches. Throughout the review, attention is paid to giving the necessary biological information, and to pointing out the assumptions underlying the models, and their limits of validity.

  18. Data mining and statistical inference in selective laser melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, Chandrika

    Selective laser melting (SLM) is an additive manufacturing process that builds a complex three-dimensional part, layer-by-layer, using a laser beam to fuse fine metal powder together. The design freedom afforded by SLM comes associated with complexity. As the physical phenomena occur over a broad range of length and time scales, the computational cost of modeling the process is high. At the same time, the large number of parameters that control the quality of a part make experiments expensive. In this paper, we describe ways in which we can use data mining and statistical inference techniques to intelligently combine simulations andmore » experiments to build parts with desired properties. We start with a brief summary of prior work in finding process parameters for high-density parts. We then expand on this work to show how we can improve the approach by using feature selection techniques to identify important variables, data-driven surrogate models to reduce computational costs, improved sampling techniques to cover the design space adequately, and uncertainty analysis for statistical inference. Here, our results indicate that techniques from data mining and statistics can complement those from physical modeling to provide greater insight into complex processes such as selective laser melting.« less

  19. Data mining and statistical inference in selective laser melting

    DOE PAGES

    Kamath, Chandrika

    2016-01-11

    Selective laser melting (SLM) is an additive manufacturing process that builds a complex three-dimensional part, layer-by-layer, using a laser beam to fuse fine metal powder together. The design freedom afforded by SLM comes associated with complexity. As the physical phenomena occur over a broad range of length and time scales, the computational cost of modeling the process is high. At the same time, the large number of parameters that control the quality of a part make experiments expensive. In this paper, we describe ways in which we can use data mining and statistical inference techniques to intelligently combine simulations andmore » experiments to build parts with desired properties. We start with a brief summary of prior work in finding process parameters for high-density parts. We then expand on this work to show how we can improve the approach by using feature selection techniques to identify important variables, data-driven surrogate models to reduce computational costs, improved sampling techniques to cover the design space adequately, and uncertainty analysis for statistical inference. Here, our results indicate that techniques from data mining and statistics can complement those from physical modeling to provide greater insight into complex processes such as selective laser melting.« less

  20. Comparison of statistical methods for detection of serum lipid biomarkers for mesothelioma and asbestos exposure.

    PubMed

    Xu, Rengyi; Mesaros, Clementina; Weng, Liwei; Snyder, Nathaniel W; Vachani, Anil; Blair, Ian A; Hwang, Wei-Ting

    2017-07-01

    We compared three statistical methods in selecting a panel of serum lipid biomarkers for mesothelioma and asbestos exposure. Serum samples from mesothelioma, asbestos-exposed subjects and controls (40 per group) were analyzed. Three variable selection methods were considered: top-ranked predictors from univariate model, stepwise and least absolute shrinkage and selection operator. Crossed-validated area under the receiver operating characteristic curve was used to compare the prediction performance. Lipids with high crossed-validated area under the curve were identified. Lipid with mass-to-charge ratio of 372.31 was selected by all three methods comparing mesothelioma versus control. Lipids with mass-to-charge ratio of 1464.80 and 329.21 were selected by two models for asbestos exposure versus control. Different methods selected a similar set of serum lipids. Combining candidate biomarkers can improve prediction.

  1. Assessing risk factors for dental caries: a statistical modeling approach.

    PubMed

    Trottini, Mario; Bossù, Maurizio; Corridore, Denise; Ierardo, Gaetano; Luzzi, Valeria; Saccucci, Matteo; Polimeni, Antonella

    2015-01-01

    The problem of identifying potential determinants and predictors of dental caries is of key importance in caries research and it has received considerable attention in the scientific literature. From the methodological side, a broad range of statistical models is currently available to analyze dental caries indices (DMFT, dmfs, etc.). These models have been applied in several studies to investigate the impact of different risk factors on the cumulative severity of dental caries experience. However, in most of the cases (i) these studies focus on a very specific subset of risk factors; and (ii) in the statistical modeling only few candidate models are considered and model selection is at best only marginally addressed. As a result, our understanding of the robustness of the statistical inferences with respect to the choice of the model is very limited; the richness of the set of statistical models available for analysis in only marginally exploited; and inferences could be biased due the omission of potentially important confounding variables in the model's specification. In this paper we argue that these limitations can be overcome considering a general class of candidate models and carefully exploring the model space using standard model selection criteria and measures of global fit and predictive performance of the candidate models. Strengths and limitations of the proposed approach are illustrated with a real data set. In our illustration the model space contains more than 2.6 million models, which require inferences to be adjusted for 'optimism'.

  2. Chain Pooling modeling selection as developed for the statistical analysis of a rotor burst protection experiment

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1977-01-01

    As many as three iterated statistical model deletion procedures were considered for an experiment. Population model coefficients were chosen to simulate a saturated 2 to the 4th power experiment having an unfavorable distribution of parameter values. Using random number studies, three model selection strategies were developed, namely, (1) a strategy to be used in anticipation of large coefficients of variation, approximately 65 percent, (2) a strategy to be sued in anticipation of small coefficients of variation, 4 percent or less, and (3) a security regret strategy to be used in the absence of such prior knowledge.

  3. Development of LACIE CCEA-1 weather/wheat yield models. [regression analysis

    NASA Technical Reports Server (NTRS)

    Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.; Umberger, D. E. (Principal Investigator)

    1979-01-01

    The advantages and disadvantages of the casual (phenological, dynamic, physiological), statistical regression, and analog approaches to modeling for grain yield are examined. Given LACIE's primary goal of estimating wheat production for the large areas of eight major wheat-growing regions, the statistical regression approach of correlating historical yield and climate data offered the Center for Climatic and Environmental Assessment the greatest potential return within the constraints of time and data sources. The basic equation for the first generation wheat-yield model is given. Topics discussed include truncation, trend variable, selection of weather variables, episodic events, strata selection, operational data flow, weighting, and model results.

  4. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    DOE PAGES

    Garcia, Andres; Wang, Jing; Windus, Theresa L.; ...

    2016-05-20

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → B c or B t with concentration-dependent selectivity of the products, B c or B t, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.

  5. Theory of Alike Selectivity in Biological Channels

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry G.; Gibby, Will A. T.; Kaufman, Igor Kh.; Eisenberg, Robert S.; McClintock, Peter V. E.

    2016-01-01

    We introduce a statistical mechanical model of the selectivity filter that accounts for the interaction between ions within the channel and derive Eisenman equation of the filter selectivity directly from the condition of barrier-less conduction.

  6. Comparison of statistical and theoretical habitat models for conservation planning: the benefit of ensemble prediction

    Treesearch

    D. Todd Jones-Farrand; Todd M. Fearer; Wayne E. Thogmartin; Frank R. Thompson; Mark D. Nelson; John M. Tirpak

    2011-01-01

    Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and...

  7. 3D-QSAR and molecular docking study on bisarylmaleimide series as glycogen synthase kinase 3, cyclin dependent kinase 2 and cyclin dependent kinase 4 inhibitors: an insight into the criteria for selectivity.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2007-07-01

    Selective glycogen synthase kinase 3 (GSK3) inhibition over cyclin dependent kinases such as cyclin dependent kinase 2 (CDK2) and cyclin dependent kinase 4 (CDK4) is an important requirement for improved therapeutic profile of GSK3 inhibitors. The concepts of selectivity and additivity fields have been employed in developing selective CoMFA models for these related kinases. Initially, sets of three individual CoMFA models were developed, using 36 compounds of bisarylmaleimide series to correlate with the GSK3, CDK2 and CDK4 inhibitory potencies. These models showed a satisfactory statistical significance: CoMFA-GSK3 (r(2)(con), r(2)(cv): 0.931, 0.519), CoMFA-CDK2 (0.937, 0.563), and CoMFA-CDK4 (0.892, 0.725). Three different selective CoMFA models were then developed using differences in pIC(50) values. These three models showed a superior statistical significance: (i) CoMFA-Selective1 (r(2)(con), r(2)(cv): 0.969, 0.768), (ii) CoMFA-Selective 2 (0.974, 0.835) and (iii) CoMFA-Selective3 (0.963, 0.776). The selective models were found to outperform the individual models in terms of the quality of correlation and were found to be more informative in pinpointing the structural basis for the observed quantitative differences of kinase inhibition. An in-depth comparative investigation was carried out between the individual and selective models to gain an insight into the selectivity criterion. To further validate this approach, a set of new compounds were designed which show selectivity and were docked into the active site of GSK3, using FlexX based incremental construction algorithm.

  8. Statistical Selection of Biological Models for Genome-Wide Association Analyses.

    PubMed

    Bi, Wenjian; Kang, Guolian; Pounds, Stanley B

    2018-05-24

    Genome-wide association studies have discovered many biologically important associations of genes with phenotypes. Typically, genome-wide association analyses formally test the association of each genetic feature (SNP, CNV, etc) with the phenotype of interest and summarize the results with multiplicity-adjusted p-values. However, very small p-values only provide evidence against the null hypothesis of no association without indicating which biological model best explains the observed data. Correctly identifying a specific biological model may improve the scientific interpretation and can be used to more effectively select and design a follow-up validation study. Thus, statistical methodology to identify the correct biological model for a particular genotype-phenotype association can be very useful to investigators. Here, we propose a general statistical method to summarize how accurately each of five biological models (null, additive, dominant, recessive, co-dominant) represents the data observed for each variant in a GWAS study. We show that the new method stringently controls the false discovery rate and asymptotically selects the correct biological model. Simulations of two-stage discovery-validation studies show that the new method has these properties and that its validation power is similar to or exceeds that of simple methods that use the same statistical model for all SNPs. Example analyses of three data sets also highlight these advantages of the new method. An R package is freely available at www.stjuderesearch.org/site/depts/biostats/maew. Copyright © 2018. Published by Elsevier Inc.

  9. A Selective Review of Group Selection in High-Dimensional Models

    PubMed Central

    Huang, Jian; Breheny, Patrick; Ma, Shuangge

    2013-01-01

    Grouping structures arise naturally in many statistical modeling problems. Several methods have been proposed for variable selection that respect grouping structure in variables. Examples include the group LASSO and several concave group selection methods. In this article, we give a selective review of group selection concerning methodological developments, theoretical properties and computational algorithms. We pay particular attention to group selection methods involving concave penalties. We address both group selection and bi-level selection methods. We describe several applications of these methods in nonparametric additive models, semiparametric regression, seemingly unrelated regressions, genomic data analysis and genome wide association studies. We also highlight some issues that require further study. PMID:24174707

  10. Model selection as a science driver for dark energy surveys

    NASA Astrophysics Data System (ADS)

    Mukherjee, Pia; Parkinson, David; Corasaniti, Pier Stefano; Liddle, Andrew R.; Kunz, Martin

    2006-07-01

    A key science goal of upcoming dark energy surveys is to seek time-evolution of the dark energy. This problem is one of model selection, where the aim is to differentiate between cosmological models with different numbers of parameters. However, the power of these surveys is traditionally assessed by estimating their ability to constrain parameters, which is a different statistical problem. In this paper, we use Bayesian model selection techniques, specifically forecasting of the Bayes factors, to compare the abilities of different proposed surveys in discovering dark energy evolution. We consider six experiments - supernova luminosity measurements by the Supernova Legacy Survey, SNAP, JEDI and ALPACA, and baryon acoustic oscillation measurements by WFMOS and JEDI - and use Bayes factor plots to compare their statistical constraining power. The concept of Bayes factor forecasting has much broader applicability than dark energy surveys.

  11. A Statistical Decision Model for Periodical Selection for a Specialized Information Center

    ERIC Educational Resources Information Center

    Dym, Eleanor D.; Shirey, Donald L.

    1973-01-01

    An experiment is described which attempts to define a quantitative methodology for the identification and evaluation of all possibly relevant periodical titles containing toxicological-biological information. A statistical decision model was designed and employed, along with yes/no criteria questions, a training technique and a quality control…

  12. Climate Change Implications for Tropical Islands: Interpolating and Interpreting Statistically Downscaled GCM Projections for Management and Planning

    Treesearch

    Azad Henareh Khalyani; William A. Gould; Eric Harmsen; Adam Terando; Maya Quinones; Jaime A. Collazo

    2016-01-01

  13. Bureau of Labor Statistics Employment Projections: Detailed Analysis of Selected Occupations and Industries. Report to the Honorable Berkley Bedell, United States House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    To compile its projections of future employment levels, the Bureau of Labor Statistics (BLS) combines the following five interlinked models in a six-step process: a labor force model, an econometric model of the U.S. economy, an industry activity model, an industry labor demand model, and an occupational labor demand model. The BLS was asked to…

  14. Behavior of the maximum likelihood in quantum state tomography

    NASA Astrophysics Data System (ADS)

    Scholten, Travis L.; Blume-Kohout, Robin

    2018-02-01

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.

  15. Behavior of the maximum likelihood in quantum state tomography

    DOE PAGES

    Blume-Kohout, Robin J; Scholten, Travis L.

    2018-02-22

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  16. Behavior of the maximum likelihood in quantum state tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin J; Scholten, Travis L.

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  17. Statistical iterative material image reconstruction for spectral CT using a semi-empirical forward model

    NASA Astrophysics Data System (ADS)

    Mechlem, Korbinian; Ehn, Sebastian; Sellerer, Thorsten; Pfeiffer, Franz; Noël, Peter B.

    2017-03-01

    In spectral computed tomography (spectral CT), the additional information about the energy dependence of attenuation coefficients can be exploited to generate material selective images. These images have found applications in various areas such as artifact reduction, quantitative imaging or clinical diagnosis. However, significant noise amplification on material decomposed images remains a fundamental problem of spectral CT. Most spectral CT algorithms separate the process of material decomposition and image reconstruction. Separating these steps is suboptimal because the full statistical information contained in the spectral tomographic measurements cannot be exploited. Statistical iterative reconstruction (SIR) techniques provide an alternative, mathematically elegant approach to obtaining material selective images with improved tradeoffs between noise and resolution. Furthermore, image reconstruction and material decomposition can be performed jointly. This is accomplished by a forward model which directly connects the (expected) spectral projection measurements and the material selective images. To obtain this forward model, detailed knowledge of the different photon energy spectra and the detector response was assumed in previous work. However, accurately determining the spectrum is often difficult in practice. In this work, a new algorithm for statistical iterative material decomposition is presented. It uses a semi-empirical forward model which relies on simple calibration measurements. Furthermore, an efficient optimization algorithm based on separable surrogate functions is employed. This partially negates one of the major shortcomings of SIR, namely high computational cost and long reconstruction times. Numerical simulations and real experiments show strongly improved image quality and reduced statistical bias compared to projection-based material decomposition.

  18. Non-parametric model selection for subject-specific topological organization of resting-state functional connectivity.

    PubMed

    Ferrarini, Luca; Veer, Ilya M; van Lew, Baldur; Oei, Nicole Y L; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, J

    2011-06-01

    In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Modeling Cross-Situational Word–Referent Learning: Prior Questions

    PubMed Central

    Yu, Chen; Smith, Linda B.

    2013-01-01

    Both adults and young children possess powerful statistical computation capabilities—they can infer the referent of a word from highly ambiguous contexts involving many words and many referents by aggregating cross-situational statistical information across contexts. This ability has been explained by models of hypothesis testing and by models of associative learning. This article describes a series of simulation studies and analyses designed to understand the different learning mechanisms posited by the 2 classes of models and their relation to each other. Variants of a hypothesis-testing model and a simple or dumb associative mechanism were examined under different specifications of information selection, computation, and decision. Critically, these 3 components of the models interact in complex ways. The models illustrate a fundamental tradeoff between amount of data input and powerful computations: With the selection of more information, dumb associative models can mimic the powerful learning that is accomplished by hypothesis-testing models with fewer data. However, because of the interactions among the component parts of the models, the associative model can mimic various hypothesis-testing models, producing the same learning patterns but through different internal components. The simulations argue for the importance of a compositional approach to human statistical learning: the experimental decomposition of the processes that contribute to statistical learning in human learners and models with the internal components that can be evaluated independently and together. PMID:22229490

  20. Frequency-selective fading statistics of shallow-water acoustic communication channel with a few multipaths

    NASA Astrophysics Data System (ADS)

    Bae, Minja; Park, Jihyun; Kim, Jongju; Xue, Dandan; Park, Kyu-Chil; Yoon, Jong Rak

    2016-07-01

    The bit error rate of an underwater acoustic communication system is related to multipath fading statistics, which determine the signal-to-noise ratio. The amplitude and delay of each path depend on sea surface roughness, propagation medium properties, and source-to-receiver range as a function of frequency. Therefore, received signals will show frequency-dependent fading. A shallow-water acoustic communication channel generally shows a few strong multipaths that interfere with each other and the resulting interference affects the fading statistics model. In this study, frequency-selective fading statistics are modeled on the basis of the phasor representation of the complex path amplitude. The fading statistics distribution is parameterized by the frequency-dependent constructive or destructive interference of multipaths. At a 16 m depth with a muddy bottom, a wave height of 0.2 m, and source-to-receiver ranges of 100 and 400 m, fading statistics tend to show a Rayleigh distribution at a destructive interference frequency, but a Rice distribution at a constructive interference frequency. The theoretical fading statistics well matched the experimental ones.

  1. The discounting model selector: Statistical software for delay discounting applications.

    PubMed

    Gilroy, Shawn P; Franck, Christopher T; Hantula, Donald A

    2017-05-01

    Original, open-source computer software was developed and validated against established delay discounting methods in the literature. The software executed approximate Bayesian model selection methods from user-supplied temporal discounting data and computed the effective delay 50 (ED50) from the best performing model. Software was custom-designed to enable behavior analysts to conveniently apply recent statistical methods to temporal discounting data with the aid of a graphical user interface (GUI). The results of independent validation of the approximate Bayesian model selection methods indicated that the program provided results identical to that of the original source paper and its methods. Monte Carlo simulation (n = 50,000) confirmed that true model was selected most often in each setting. Simulation code and data for this study were posted to an online repository for use by other researchers. The model selection approach was applied to three existing delay discounting data sets from the literature in addition to the data from the source paper. Comparisons of model selected ED50 were consistent with traditional indices of discounting. Conceptual issues related to the development and use of computer software by behavior analysts and the opportunities afforded by free and open-sourced software are discussed and a review of possible expansions of this software are provided. © 2017 Society for the Experimental Analysis of Behavior.

  2. Assistive Technologies for Second-Year Statistics Students Who Are Blind

    ERIC Educational Resources Information Center

    Erhardt, Robert J.; Shuman, Michael P.

    2015-01-01

    At Wake Forest University, a student who is blind enrolled in a second course in statistics. The course covered simple and multiple regression, model diagnostics, model selection, data visualization, and elementary logistic regression. These topics required that the student both interpret and produce three sets of materials: mathematical writing,…

  3. Perturbation Selection and Local Influence Analysis for Nonlinear Structural Equation Model

    ERIC Educational Resources Information Center

    Chen, Fei; Zhu, Hong-Tu; Lee, Sik-Yum

    2009-01-01

    Local influence analysis is an important statistical method for studying the sensitivity of a proposed model to model inputs. One of its important issues is related to the appropriate choice of a perturbation vector. In this paper, we develop a general method to select an appropriate perturbation vector and a second-order local influence measure…

  4. Enhancing the mathematical properties of new haplotype homozygosity statistics for the detection of selective sweeps.

    PubMed

    Garud, Nandita R; Rosenberg, Noah A

    2015-06-01

    Soft selective sweeps represent an important form of adaptation in which multiple haplotypes bearing adaptive alleles rise to high frequency. Most statistical methods for detecting selective sweeps from genetic polymorphism data, however, have focused on identifying hard selective sweeps in which a favored allele appears on a single haplotypic background; these methods might be underpowered to detect soft sweeps. Among exceptions is the set of haplotype homozygosity statistics introduced for the detection of soft sweeps by Garud et al. (2015). These statistics, examining frequencies of multiple haplotypes in relation to each other, include H12, a statistic designed to identify both hard and soft selective sweeps, and H2/H1, a statistic that conditional on high H12 values seeks to distinguish between hard and soft sweeps. A challenge in the use of H2/H1 is that its range depends on the associated value of H12, so that equal H2/H1 values might provide different levels of support for a soft sweep model at different values of H12. Here, we enhance the H12 and H2/H1 haplotype homozygosity statistics for selective sweep detection by deriving the upper bound on H2/H1 as a function of H12, thereby generating a statistic that normalizes H2/H1 to lie between 0 and 1. Through a reanalysis of resequencing data from inbred lines of Drosophila, we show that the enhanced statistic both strengthens interpretations obtained with the unnormalized statistic and leads to empirical insights that are less readily apparent without the normalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Fully Bayesian tests of neutrality using genealogical summary statistics.

    PubMed

    Drummond, Alexei J; Suchard, Marc A

    2008-10-31

    Many data summary statistics have been developed to detect departures from neutral expectations of evolutionary models. However questions about the neutrality of the evolution of genetic loci within natural populations remain difficult to assess. One critical cause of this difficulty is that most methods for testing neutrality make simplifying assumptions simultaneously about the mutational model and the population size model. Consequentially, rejecting the null hypothesis of neutrality under these methods could result from violations of either or both assumptions, making interpretation troublesome. Here we harness posterior predictive simulation to exploit summary statistics of both the data and model parameters to test the goodness-of-fit of standard models of evolution. We apply the method to test the selective neutrality of molecular evolution in non-recombining gene genealogies and we demonstrate the utility of our method on four real data sets, identifying significant departures of neutrality in human influenza A virus, even after controlling for variation in population size. Importantly, by employing a full model-based Bayesian analysis, our method separates the effects of demography from the effects of selection. The method also allows multiple summary statistics to be used in concert, thus potentially increasing sensitivity. Furthermore, our method remains useful in situations where analytical expectations and variances of summary statistics are not available. This aspect has great potential for the analysis of temporally spaced data, an expanding area previously ignored for limited availability of theory and methods.

  6. Statistical learning and selective inference.

    PubMed

    Taylor, Jonathan; Tibshirani, Robert J

    2015-06-23

    We describe the problem of "selective inference." This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have "cherry-picked"--searched for the strongest associations--means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis.

  7. Analysis of model development strategies: predicting ventral hernia recurrence.

    PubMed

    Holihan, Julie L; Li, Linda T; Askenasy, Erik P; Greenberg, Jacob A; Keith, Jerrod N; Martindale, Robert G; Roth, J Scott; Liang, Mike K

    2016-11-01

    There have been many attempts to identify variables associated with ventral hernia recurrence; however, it is unclear which statistical modeling approach results in models with greatest internal and external validity. We aim to assess the predictive accuracy of models developed using five common variable selection strategies to determine variables associated with hernia recurrence. Two multicenter ventral hernia databases were used. Database 1 was randomly split into "development" and "internal validation" cohorts. Database 2 was designated "external validation". The dependent variable for model development was hernia recurrence. Five variable selection strategies were used: (1) "clinical"-variables considered clinically relevant, (2) "selective stepwise"-all variables with a P value <0.20 were assessed in a step-backward model, (3) "liberal stepwise"-all variables were included and step-backward regression was performed, (4) "restrictive internal resampling," and (5) "liberal internal resampling." Variables were included with P < 0.05 for the Restrictive model and P < 0.10 for the Liberal model. A time-to-event analysis using Cox regression was performed using these strategies. The predictive accuracy of the developed models was tested on the internal and external validation cohorts using Harrell's C-statistic where C > 0.70 was considered "reasonable". The recurrence rate was 32.9% (n = 173/526; median/range follow-up, 20/1-58 mo) for the development cohort, 36.0% (n = 95/264, median/range follow-up 20/1-61 mo) for the internal validation cohort, and 12.7% (n = 155/1224, median/range follow-up 9/1-50 mo) for the external validation cohort. Internal validation demonstrated reasonable predictive accuracy (C-statistics = 0.772, 0.760, 0.767, 0.757, 0.763), while on external validation, predictive accuracy dipped precipitously (C-statistic = 0.561, 0.557, 0.562, 0.553, 0.560). Predictive accuracy was equally adequate on internal validation among models; however, on external validation, all five models failed to demonstrate utility. Future studies should report multiple variable selection techniques and demonstrate predictive accuracy on external data sets for model validation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Selecting Summary Statistics in Approximate Bayesian Computation for Calibrating Stochastic Models

    PubMed Central

    Burr, Tom

    2013-01-01

    Approximate Bayesian computation (ABC) is an approach for using measurement data to calibrate stochastic computer models, which are common in biology applications. ABC is becoming the “go-to” option when the data and/or parameter dimension is large because it relies on user-chosen summary statistics rather than the full data and is therefore computationally feasible. One technical challenge with ABC is that the quality of the approximation to the posterior distribution of model parameters depends on the user-chosen summary statistics. In this paper, the user requirement to choose effective summary statistics in order to accurately estimate the posterior distribution of model parameters is investigated and illustrated by example, using a model and corresponding real data of mitochondrial DNA population dynamics. We show that for some choices of summary statistics, the posterior distribution of model parameters is closely approximated and for other choices of summary statistics, the posterior distribution is not closely approximated. A strategy to choose effective summary statistics is suggested in cases where the stochastic computer model can be run at many trial parameter settings, as in the example. PMID:24288668

  9. Selecting summary statistics in approximate Bayesian computation for calibrating stochastic models.

    PubMed

    Burr, Tom; Skurikhin, Alexei

    2013-01-01

    Approximate Bayesian computation (ABC) is an approach for using measurement data to calibrate stochastic computer models, which are common in biology applications. ABC is becoming the "go-to" option when the data and/or parameter dimension is large because it relies on user-chosen summary statistics rather than the full data and is therefore computationally feasible. One technical challenge with ABC is that the quality of the approximation to the posterior distribution of model parameters depends on the user-chosen summary statistics. In this paper, the user requirement to choose effective summary statistics in order to accurately estimate the posterior distribution of model parameters is investigated and illustrated by example, using a model and corresponding real data of mitochondrial DNA population dynamics. We show that for some choices of summary statistics, the posterior distribution of model parameters is closely approximated and for other choices of summary statistics, the posterior distribution is not closely approximated. A strategy to choose effective summary statistics is suggested in cases where the stochastic computer model can be run at many trial parameter settings, as in the example.

  10. The Role of Feature Selection and Statistical Weighting in Predicting In Vivo Toxicity Using In Vitro Assay and QSAR Data (SOT)

    EPA Science Inventory

    Our study assesses the value of both in vitro assay and quantitative structure activity relationship (QSAR) data in predicting in vivo toxicity using numerous statistical models and approaches to process the data. Our models are built on datasets of (i) 586 chemicals for which bo...

  11. Determining the Number of Component Clusters in the Standard Multivariate Normal Mixture Model Using Model-Selection Criteria.

    DTIC Science & Technology

    1983-06-16

    has been advocated by Gnanadesikan and 𔃾ilk (1969), and others in the literature. This suggests that, if we use the formal signficance test type...American Statistical Asso., 62, 1159-1178. Gnanadesikan , R., and Wilk, M..B. (1969). Data Analytic Methods in Multi- variate Statistical Analysis. In

  12. Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps.

    PubMed

    Jacobs, Guy S; Sluckin, Tim J; Kivisild, Toomas

    2016-08-01

    During a selective sweep, characteristic patterns of linkage disequilibrium can arise in the genomic region surrounding a selected locus. These have been used to infer past selective sweeps. However, the recombination rate is known to vary substantially along the genome for many species. We here investigate the effectiveness of current (Kelly's [Formula: see text] and [Formula: see text]) and novel statistics at inferring hard selective sweeps based on linkage disequilibrium distortions under different conditions, including a human-realistic demographic model and recombination rate variation. When the recombination rate is constant, Kelly's [Formula: see text] offers high power, but is outperformed by a novel statistic that we test, which we call [Formula: see text] We also find this statistic to be effective at detecting sweeps from standing variation. When recombination rate fluctuations are included, there is a considerable reduction in power for all linkage disequilibrium-based statistics. However, this can largely be reversed by appropriately controlling for expected linkage disequilibrium using a genetic map. To further test these different methods, we perform selection scans on well-characterized HapMap data, finding that all three statistics-[Formula: see text] Kelly's [Formula: see text] and [Formula: see text]-are able to replicate signals at regions previously identified as selection candidates based on population differentiation or the site frequency spectrum. While [Formula: see text] replicates most candidates when recombination map data are not available, the [Formula: see text] and [Formula: see text] statistics are more successful when recombination rate variation is controlled for. Given both this and their higher power in simulations of selective sweeps, these statistics are preferred when information on local recombination rate variation is available. Copyright © 2016 by the Genetics Society of America.

  13. Model Selection and Psychological Theory: A Discussion of the Differences between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

    ERIC Educational Resources Information Center

    Vrieze, Scott I.

    2012-01-01

    This article reviews the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in model selection and the appraisal of psychological theory. The focus is on latent variable models, given their growing use in theory testing and construction. Theoretical statistical results in regression are discussed, and more important…

  14. Empirical comparison study of approximate methods for structure selection in binary graphical models.

    PubMed

    Viallon, Vivian; Banerjee, Onureena; Jougla, Eric; Rey, Grégoire; Coste, Joel

    2014-03-01

    Looking for associations among multiple variables is a topical issue in statistics due to the increasing amount of data encountered in biology, medicine, and many other domains involving statistical applications. Graphical models have recently gained popularity for this purpose in the statistical literature. In the binary case, however, exact inference is generally very slow or even intractable because of the form of the so-called log-partition function. In this paper, we review various approximate methods for structure selection in binary graphical models that have recently been proposed in the literature and compare them through an extensive simulation study. We also propose a modification of one existing method, that is shown to achieve good performance and to be generally very fast. We conclude with an application in which we search for associations among causes of death recorded on French death certificates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Seismic activity prediction using computational intelligence techniques in northern Pakistan

    NASA Astrophysics Data System (ADS)

    Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat

    2017-10-01

    Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.

  16. Selecting statistical model and optimum maintenance policy: a case study of hydraulic pump.

    PubMed

    Ruhi, S; Karim, M R

    2016-01-01

    Proper maintenance policy can play a vital role for effective investigation of product reliability. Every engineered object such as product, plant or infrastructure needs preventive and corrective maintenance. In this paper we look at a real case study. It deals with the maintenance of hydraulic pumps used in excavators by a mining company. We obtain the data that the owner had collected and carry out an analysis and building models for pump failures. The data consist of both failure and censored lifetimes of the hydraulic pump. Different competitive mixture models are applied to analyze a set of maintenance data of a hydraulic pump. Various characteristics of the mixture models, such as the cumulative distribution function, reliability function, mean time to failure, etc. are estimated to assess the reliability of the pump. Akaike Information Criterion, adjusted Anderson-Darling test statistic, Kolmogrov-Smirnov test statistic and root mean square error are considered to select the suitable models among a set of competitive models. The maximum likelihood estimation method via the EM algorithm is applied mainly for estimating the parameters of the models and reliability related quantities. In this study, it is found that a threefold mixture model (Weibull-Normal-Exponential) fits well for the hydraulic pump failures data set. This paper also illustrates how a suitable statistical model can be applied to estimate the optimum maintenance period at a minimum cost of a hydraulic pump.

  17. The coalescent process in models with selection and recombination.

    PubMed

    Hudson, R R; Kaplan, N L

    1988-11-01

    The statistical properties of the process describing the genealogical history of a random sample of genes at a selectively neutral locus which is linked to a locus at which natural selection operates are investigated. It is found that the equations describing this process are simple modifications of the equations describing the process assuming that the two loci are completely linked. Thus, the statistical properties of the genealogical process for a random sample at a neutral locus linked to a locus with selection follow from the results obtained for the selected locus. Sequence data from the alcohol dehydrogenase (Adh) region of Drosophila melanogaster are examined and compared to predictions based on the theory. It is found that the spatial distribution of nucleotide differences between Fast and Slow alleles of Adh is very similar to the spatial distribution predicted if balancing selection operates to maintain the allozyme variation at the Adh locus. The spatial distribution of nucleotide differences between different Slow alleles of Adh do not match the predictions of this simple model very well.

  18. Unbiased split variable selection for random survival forests using maximally selected rank statistics.

    PubMed

    Wright, Marvin N; Dankowski, Theresa; Ziegler, Andreas

    2017-04-15

    The most popular approach for analyzing survival data is the Cox regression model. The Cox model may, however, be misspecified, and its proportionality assumption may not always be fulfilled. An alternative approach for survival prediction is random forests for survival outcomes. The standard split criterion for random survival forests is the log-rank test statistic, which favors splitting variables with many possible split points. Conditional inference forests avoid this split variable selection bias. However, linear rank statistics are utilized by default in conditional inference forests to select the optimal splitting variable, which cannot detect non-linear effects in the independent variables. An alternative is to use maximally selected rank statistics for the split point selection. As in conditional inference forests, splitting variables are compared on the p-value scale. However, instead of the conditional Monte-Carlo approach used in conditional inference forests, p-value approximations are employed. We describe several p-value approximations and the implementation of the proposed random forest approach. A simulation study demonstrates that unbiased split variable selection is possible. However, there is a trade-off between unbiased split variable selection and runtime. In benchmark studies of prediction performance on simulated and real datasets, the new method performs better than random survival forests if informative dichotomous variables are combined with uninformative variables with more categories and better than conditional inference forests if non-linear covariate effects are included. In a runtime comparison, the method proves to be computationally faster than both alternatives, if a simple p-value approximation is used. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Model selection bias and Freedman's paradox

    USGS Publications Warehouse

    Lukacs, P.M.; Burnham, K.P.; Anderson, D.R.

    2010-01-01

    In situations where limited knowledge of a system exists and the ratio of data points to variables is small, variable selection methods can often be misleading. Freedman (Am Stat 37:152-155, 1983) demonstrated how common it is to select completely unrelated variables as highly "significant" when the number of data points is similar in magnitude to the number of variables. A new type of model averaging estimator based on model selection with Akaike's AIC is used with linear regression to investigate the problems of likely inclusion of spurious effects and model selection bias, the bias introduced while using the data to select a single seemingly "best" model from a (often large) set of models employing many predictor variables. The new model averaging estimator helps reduce these problems and provides confidence interval coverage at the nominal level while traditional stepwise selection has poor inferential properties. ?? The Institute of Statistical Mathematics, Tokyo 2009.

  20. The Matching Relation and Situation-Specific Bias Modulation in Professional Football Play Selection

    PubMed Central

    Stilling, Stephanie T; Critchfield, Thomas S

    2010-01-01

    The utility of a quantitative model depends on the extent to which its fitted parameters vary systematically with environmental events of interest. Professional football statistics were analyzed to determine whether play selection (passing versus rushing plays) could be accounted for with the generalized matching equation, and in particular whether variations in play selection across game situations would manifest as changes in the equation's fitted parameters. Statistically significant changes in bias were found for each of five types of game situations; no systematic changes in sensitivity were observed. Further analyses suggested relationships between play selection bias and both turnover probability (which can be described in terms of punishment) and yards-gained variance (which can be described in terms of variable-magnitude reinforcement schedules). The present investigation provides a useful demonstration of association between face-valid, situation-specific effects in a domain of everyday interest, and a theoretically important term of a quantitative model of behavior. Such associations, we argue, are an essential focus in translational extensions of quantitative models. PMID:21119855

  1. The Assessment of Climatological Impacts on Agricultural Production and Residential Energy Demand

    NASA Astrophysics Data System (ADS)

    Cooter, Ellen Jean

    The assessment of climatological impacts on selected economic activities is presented as a multi-step, inter -disciplinary problem. The assessment process which is addressed explicitly in this report focuses on (1) user identification, (2) direct impact model selection, (3) methodological development, (4) product development and (5) product communication. Two user groups of major economic importance were selected for study; agriculture and gas utilities. The broad agricultural sector is further defined as U.S.A. corn production. The general category of utilities is narrowed to Oklahoma residential gas heating demand. The CERES physiological growth model was selected as the process model for corn production. The statistical analysis for corn production suggests that (1) although this is a statistically complex model, it can yield useful impact information, (2) as a result of output distributional biases, traditional statistical techniques are not adequate analytical tools, (3) the model yield distribution as a whole is probably non-Gausian, particularly in the tails and (4) there appears to be identifiable weekly patterns of forecasted yields throughout the growing season. Agricultural quantities developed include point yield impact estimates and distributional characteristics, geographic corn weather distributions, return period estimates, decision making criteria (confidence limits) and time series of indices. These products were communicated in economic terms through the use of a Bayesian decision example and an econometric model. The NBSLD energy load model was selected to represent residential gas heating consumption. A cursory statistical analysis suggests relationships among weather variables across the Oklahoma study sites. No linear trend in "technology -free" modeled energy demand or input weather variables which would correspond to that contained in observed state -level residential energy use was detected. It is suggested that this trend is largely the result of non-weather factors such as population and home usage patterns rather than regional climate change. Year-to-year changes in modeled residential heating demand on the order of 10('6) Btu's per household were determined and later related to state -level components of the Oklahoma economy. Products developed include the definition of regional forecast areas, likelihood estimates of extreme seasonal conditions and an energy/climate index. This information is communicated in economic terms through an input/output model which is used to estimate changes in Gross State Product and Household income attributable to weather variability.

  2. Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.

  3. An Interactive Tool For Semi-automated Statistical Prediction Using Earth Observations and Models

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Berhane, F.; Tadesse, T.

    2015-12-01

    We developed a semi-automated statistical prediction tool applicable to concurrent analysis or seasonal prediction of any time series variable in any geographic location. The tool was developed using Shiny, JavaScript, HTML and CSS. A user can extract a predictand by drawing a polygon over a region of interest on the provided user interface (global map). The user can select the Climatic Research Unit (CRU) precipitation or Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) as predictand. They can also upload their own predictand time series. Predictors can be extracted from sea surface temperature, sea level pressure, winds at different pressure levels, air temperature at various pressure levels, and geopotential height at different pressure levels. By default, reanalysis fields are applied as predictors, but the user can also upload their own predictors, including a wide range of compatible satellite-derived datasets. The package generates correlations of the variables selected with the predictand. The user also has the option to generate composites of the variables based on the predictand. Next, the user can extract predictors by drawing polygons over the regions that show strong correlations (composites). Then, the user can select some or all of the statistical prediction models provided. Provided models include Linear Regression models (GLM, SGLM), Tree-based models (bagging, random forest, boosting), Artificial Neural Network, and other non-linear models such as Generalized Additive Model (GAM) and Multivariate Adaptive Regression Splines (MARS). Finally, the user can download the analysis steps they used, such as the region they selected, the time period they specified, the predictand and predictors they chose and preprocessing options they used, and the model results in PDF or HTML format. Key words: Semi-automated prediction, Shiny, R, GLM, ANN, RF, GAM, MARS

  4. Normal probabilities for Vandenberg AFB wind components - monthly reference periods for all flight azimuths, 0- to 70-km altitudes

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1975-01-01

    Vandenberg Air Force Base (AFB), California, wind component statistics are presented to be used for aerospace engineering applications that require component wind probabilities for various flight azimuths and selected altitudes. The normal (Gaussian) distribution is presented as a statistical model to represent component winds at Vandenberg AFB. Head tail, and crosswind components are tabulated for all flight azimuths for altitudes from 0 to 70 km by monthly reference periods. Wind components are given for 11 selected percentiles ranging from 0.135 percent to 99.865 percent for each month. The results of statistical goodness-of-fit tests are presented to verify the use of the Gaussian distribution as an adequate model to represent component winds at Vandenberg AFB.

  5. Normal probabilities for Cape Kennedy wind components: Monthly reference periods for all flight azimuths. Altitudes 0 to 70 kilometers

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1973-01-01

    This document replaces Cape Kennedy empirical wind component statistics which are presently being used for aerospace engineering applications that require component wind probabilities for various flight azimuths and selected altitudes. The normal (Gaussian) distribution is presented as an adequate statistical model to represent component winds at Cape Kennedy. Head-, tail-, and crosswind components are tabulated for all flight azimuths for altitudes from 0 to 70 km by monthly reference periods. Wind components are given for 11 selected percentiles ranging from 0.135 percent to 99,865 percent for each month. Results of statistical goodness-of-fit tests are presented to verify the use of the Gaussian distribution as an adequate model to represent component winds at Cape Kennedy, Florida.

  6. Generalized linear and generalized additive models in studies of species distributions: Setting the scene

    USGS Publications Warehouse

    Guisan, Antoine; Edwards, T.C.; Hastie, T.

    2002-01-01

    An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001. We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Climate Projections from the NARCliM Project: Bayesian Model Averaging of Maximum Temperature Projections

    NASA Astrophysics Data System (ADS)

    Olson, R.; Evans, J. P.; Fan, Y.

    2015-12-01

    NARCliM (NSW/ACT Regional Climate Modelling Project) is a regional climate project for Australia and the surrounding region. It dynamically downscales 4 General Circulation Models (GCMs) using three Regional Climate Models (RCMs) to provide climate projections for the CORDEX-AustralAsia region at 50 km resolution, and for south-east Australia at 10 km resolution. The project differs from previous work in the level of sophistication of model selection. Specifically, the selection process for GCMs included (i) conducting literature review to evaluate model performance, (ii) analysing model independence, and (iii) selecting models that span future temperature and precipitation change space. RCMs for downscaling the GCMs were chosen based on their performance for several precipitation events over South-East Australia, and on model independence.Bayesian Model Averaging (BMA) provides a statistically consistent framework for weighing the models based on their likelihood given the available observations. These weights are used to provide probability distribution functions (pdfs) for model projections. We develop a BMA framework for constructing probabilistic climate projections for spatially-averaged variables from the NARCliM project. The first step in the procedure is smoothing model output in order to exclude the influence of internal climate variability. Our statistical model for model-observations residuals is a homoskedastic iid process. Comparing RCMs with Australian Water Availability Project (AWAP) observations is used to determine model weights through Monte Carlo integration. Posterior pdfs of statistical parameters of model-data residuals are obtained using Markov Chain Monte Carlo. The uncertainty in the properties of the model-data residuals is fully accounted for when constructing the projections. We present the preliminary results of the BMA analysis for yearly maximum temperature for New South Wales state planning regions for the period 2060-2079.

  8. A Meta-Meta-Analysis: Empirical Review of Statistical Power, Type I Error Rates, Effect Sizes, and Model Selection of Meta-Analyses Published in Psychology

    ERIC Educational Resources Information Center

    Cafri, Guy; Kromrey, Jeffrey D.; Brannick, Michael T.

    2010-01-01

    This article uses meta-analyses published in "Psychological Bulletin" from 1995 to 2005 to describe meta-analyses in psychology, including examination of statistical power, Type I errors resulting from multiple comparisons, and model choice. Retrospective power estimates indicated that univariate categorical and continuous moderators, individual…

  9. Statistical validation of normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.

  11. CoMFA analyses of C-2 position salvinorin A analogs at the kappa-opioid receptor provides insights into epimer selectivity.

    PubMed

    McGovern, Donna L; Mosier, Philip D; Roth, Bryan L; Westkaemper, Richard B

    2010-04-01

    The highly potent and kappa-opioid (KOP) receptor-selective hallucinogen Salvinorin A and selected analogs have been analyzed using the 3D quantitative structure-affinity relationship technique Comparative Molecular Field Analysis (CoMFA) in an effort to derive a statistically significant and predictive model of salvinorin affinity at the KOP receptor and to provide additional statistical support for the validity of previously proposed structure-based interaction models. Two CoMFA models of Salvinorin A analogs substituted at the C-2 position are presented. Separate models were developed based on the radioligand used in the kappa-opioid binding assay, [(3)H]diprenorphine or [(125)I]6 beta-iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5 alpha-epoxymorphinan ([(125)I]IOXY). For each dataset, three methods of alignment were employed: a receptor-docked alignment derived from the structure-based docking algorithm GOLD, another from the ligand-based alignment algorithm FlexS, and a rigid realignment of the poses from the receptor-docked alignment. The receptor-docked alignment produced statistically superior results compared to either the FlexS alignment or the realignment in both datasets. The [(125)I]IOXY set (Model 1) and [(3)H]diprenorphine set (Model 2) gave q(2) values of 0.592 and 0.620, respectively, using the receptor-docked alignment, and both models produced similar CoMFA contour maps that reflected the stereoelectronic features of the receptor model from which they were derived. Each model gave significantly predictive CoMFA statistics (Model 1 PSET r(2)=0.833; Model 2 PSET r(2)=0.813). Based on the CoMFA contour maps, a binding mode was proposed for amine-containing Salvinorin A analogs that provides a rationale for the observation that the beta-epimers (R-configuration) of protonated amines at the C-2 position have a higher affinity than the corresponding alpha-epimers (S-configuration). (c) 2010. Published by Elsevier Inc.

  12. Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater runoff best management practices (BMPs)

    USGS Publications Warehouse

    Granato, Gregory E.

    2014-01-01

    The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events. A database application and several spreadsheet tools are included in the digital media accompanying this report for further documentation of methods and for future use. In this study, analyses were done with data extracted from a modified copy of the January 2012 version of International Stormwater Best Management Practices Database, designated herein as the January 2012a version. Statistics for volume reduction, hydrograph extension, and water-quality treatment were developed with selected data. Sufficient data were available to estimate statistics for 5 to 10 BMP categories by using data from 40 to more than 165 monitoring sites. Water-quality treatment statistics were developed for 13 runoff-quality constituents commonly measured in highway and urban runoff studies including turbidity, sediment and solids; nutrients; total metals; organic carbon; and fecal coliforms. The medians of the best-fit statistics for each category were selected to construct generalized cumulative distribution functions for the three treatment variables. For volume reduction and hydrograph extension, interpretation of available data indicates that selection of a Spearman’s rho value that is the average of the median and maximum values for the BMP category may help generate realistic simulation results in SELDM. The median rho value may be selected to help generate realistic simulation results for water-quality treatment variables. MIC statistics were developed for 12 runoff-quality constituents commonly measured in highway and urban runoff studies by using data from 11 BMP categories and more than 167 monitoring sites. Four statistical techniques were applied for estimating MIC values with monitoring data from each site. These techniques produce a range of lower-bound estimates for each site. Four MIC estimators are proposed as alternatives for selecting a value from among the estimates from multiple sites. Correlation analysis indicates that the MIC estimates from multiple sites were weakly correlated with the geometric mean of inflow values, which indicates that there may be a qualitative or semiquantitative link between the inflow quality and the MIC. Correlations probably are weak because the MIC is influenced by the inflow water quality and the capability of each individual BMP site to reduce inflow concentrations.

  13. Faculty Salary Equity: Issues in Regression Model Selection. AIR 1992 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Moore, Nelle

    This paper discusses the determination of college faculty salary inequity and identifies the areas in which human judgment must be used in order to conduct a statistical analysis of salary equity. In addition, it provides some informed guidelines for making those judgments. The paper provides a framework for selecting salary equity models, based…

  14. Non-targeted 1H NMR fingerprinting and multivariate statistical analyses for the characterisation of the geographical origin of Italian sweet cherries.

    PubMed

    Longobardi, F; Ventrella, A; Bianco, A; Catucci, L; Cafagna, I; Gallo, V; Mastrorilli, P; Agostiano, A

    2013-12-01

    In this study, non-targeted (1)H NMR fingerprinting was used in combination with multivariate statistical techniques for the classification of Italian sweet cherries based on their different geographical origins (Emilia Romagna and Puglia). As classification techniques, Soft Independent Modelling of Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Linear Discriminant Analysis (LDA) were carried out and the results were compared. For LDA, before performing a refined selection of the number/combination of variables, two different strategies for a preliminary reduction of the variable number were tested. The best average recognition and CV prediction abilities (both 100.0%) were obtained for all the LDA models, although PLS-DA also showed remarkable performances (94.6%). All the statistical models were validated by observing the prediction abilities with respect to an external set of cherry samples. The best result (94.9%) was obtained with LDA by performing a best subset selection procedure on a set of 30 principal components previously selected by a stepwise decorrelation. The metabolites that mostly contributed to the classification performances of such LDA model, were found to be malate, glucose, fructose, glutamine and succinate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps

    PubMed Central

    Jacobs, Guy S.; Sluckin, Timothy J.; Kivisild, Toomas

    2016-01-01

    During a selective sweep, characteristic patterns of linkage disequilibrium can arise in the genomic region surrounding a selected locus. These have been used to infer past selective sweeps. However, the recombination rate is known to vary substantially along the genome for many species. We here investigate the effectiveness of current (Kelly’s ZnS and ωmax) and novel statistics at inferring hard selective sweeps based on linkage disequilibrium distortions under different conditions, including a human-realistic demographic model and recombination rate variation. When the recombination rate is constant, Kelly’s ZnS offers high power, but is outperformed by a novel statistic that we test, which we call Zα. We also find this statistic to be effective at detecting sweeps from standing variation. When recombination rate fluctuations are included, there is a considerable reduction in power for all linkage disequilibrium-based statistics. However, this can largely be reversed by appropriately controlling for expected linkage disequilibrium using a genetic map. To further test these different methods, we perform selection scans on well-characterized HapMap data, finding that all three statistics—ωmax, Kelly’s ZnS, and Zα—are able to replicate signals at regions previously identified as selection candidates based on population differentiation or the site frequency spectrum. While ωmax replicates most candidates when recombination map data are not available, the ZnS and Zα statistics are more successful when recombination rate variation is controlled for. Given both this and their higher power in simulations of selective sweeps, these statistics are preferred when information on local recombination rate variation is available. PMID:27516617

  16. Quantification of uncertainty in aerosol optical thickness retrieval arising from aerosol microphysical model and other sources, applied to Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2014-05-01

    Satellite instruments are nowadays successfully utilised for measuring atmospheric aerosol in many applications as well as in research. Therefore, there is a growing need for rigorous error characterisation of the measurements. Here, we introduce a methodology for quantifying the uncertainty in the retrieval of aerosol optical thickness (AOT). In particular, we concentrate on two aspects: uncertainty due to aerosol microphysical model selection and uncertainty due to imperfect forward modelling. We apply the introduced methodology for aerosol optical thickness retrieval of the Ozone Monitoring Instrument (OMI) on board NASA's Earth Observing System (EOS) Aura satellite, launched in 2004. We apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness retrieval by propagating aerosol microphysical model selection and forward model error more realistically. For the microphysical model selection problem, we utilise Bayesian model selection and model averaging methods. Gaussian processes are utilised to characterise the smooth systematic discrepancies between the measured and modelled reflectances (i.e. residuals). The spectral correlation is composed empirically by exploring a set of residuals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud-free, over-land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques introduced here. The method and improved uncertainty characterisation is demonstrated by several examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara desert dust. The statistical methodology presented is general; it is not restricted to this particular satellite retrieval application.

  17. Temporal variation and scale in movement-based resource selection functions

    USGS Publications Warehouse

    Hooten, M.B.; Hanks, E.M.; Johnson, D.S.; Alldredge, M.W.

    2013-01-01

    A common population characteristic of interest in animal ecology studies pertains to the selection of resources. That is, given the resources available to animals, what do they ultimately choose to use? A variety of statistical approaches have been employed to examine this question and each has advantages and disadvantages with respect to the form of available data and the properties of estimators given model assumptions. A wealth of high resolution telemetry data are now being collected to study animal population movement and space use and these data present both challenges and opportunities for statistical inference. We summarize traditional methods for resource selection and then describe several extensions to deal with measurement uncertainty and an explicit movement process that exists in studies involving high-resolution telemetry data. Our approach uses a correlated random walk movement model to obtain temporally varying use and availability distributions that are employed in a weighted distribution context to estimate selection coefficients. The temporally varying coefficients are then weighted by their contribution to selection and combined to provide inference at the population level. The result is an intuitive and accessible statistical procedure that uses readily available software and is computationally feasible for large datasets. These methods are demonstrated using data collected as part of a large-scale mountain lion monitoring study in Colorado, USA.

  18. Assessing the prediction accuracy of a cure model for censored survival data with long-term survivors: Application to breast cancer data.

    PubMed

    Asano, Junichi; Hirakawa, Akihiro

    2017-01-01

    The Cox proportional hazards cure model is a survival model incorporating a cure rate with the assumption that the population contains both uncured and cured individuals. It contains a logistic regression for the cure rate, and a Cox regression to estimate the hazard for uncured patients. A single predictive model for both the cure and hazard can be developed by using a cure model that simultaneously predicts the cure rate and hazards for uncured patients; however, model selection is a challenge because of the lack of a measure for quantifying the predictive accuracy of a cure model. Recently, we developed an area under the receiver operating characteristic curve (AUC) for determining the cure rate in a cure model (Asano et al., 2014), but the hazards measure for uncured patients was not resolved. In this article, we propose novel C-statistics that are weighted by the patients' cure status (i.e., cured, uncured, or censored cases) for the cure model. The operating characteristics of the proposed C-statistics and their confidence interval were examined by simulation analyses. We also illustrate methods for predictive model selection and for further interpretation of variables using the proposed AUCs and C-statistics via application to breast cancer data.

  19. Estimating Traffic Accidents in Turkey Using Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Akgüngör, Ali Payıdar; Korkmaz, Ersin

    2017-06-01

    Estimating traffic accidents play a vital role to apply road safety procedures. This study proposes Differential Evolution Algorithm (DEA) models to estimate the number of accidents in Turkey. In the model development, population (P) and the number of vehicles (N) are selected as model parameters. Three model forms, linear, exponential and semi-quadratic models, are developed using DEA with the data covering from 2000 to 2014. Developed models are statistically compared to select the best fit model. The results of the DE models show that the linear model form is suitable to estimate the number of accidents. The statistics of this form is better than other forms in terms of performance criteria which are the Mean Absolute Percentage Errors (MAPE) and the Root Mean Square Errors (RMSE). To investigate the performance of linear DE model for future estimations, a ten-year period from 2015 to 2024 is considered. The results obtained from future estimations reveal the suitability of DE method for road safety applications.

  20. The Coalescent Process in Models with Selection

    PubMed Central

    Kaplan, N. L.; Darden, T.; Hudson, R. R.

    1988-01-01

    Statistical properties of the process describing the genealogical history of a random sample of genes are obtained for a class of population genetics models with selection. For models with selection, in contrast to models without selection, the distribution of this process, the coalescent process, depends on the distribution of the frequencies of alleles in the ancestral generations. If the ancestral frequency process can be approximated by a diffusion, then the mean and the variance of the number of segregating sites due to selectively neutral mutations in random samples can be numerically calculated. The calculations are greatly simplified if the frequencies of the alleles are tightly regulated. If the mutation rates between alleles maintained by balancing selection are low, then the number of selectively neutral segregating sites in a random sample of genes is expected to substantially exceed the number predicted under a neutral model. PMID:3066685

  1. A QSAR study of integrase strand transfer inhibitors based on a large set of pyrimidine, pyrimidone, and pyridopyrazine carboxamide derivatives

    NASA Astrophysics Data System (ADS)

    de Campos, Luana Janaína; de Melo, Eduardo Borges

    2017-08-01

    In the present study, 199 compounds derived from pyrimidine, pyrimidone and pyridopyrazine carboxamides with inhibitory activity against HIV-1 integrase were modeled. Subsequently, a multivariate QSAR study was conducted with 54 molecules employed by Ordered Predictors Selection (OPS) and Partial Least Squares (PLS) for the selection of variables and model construction, respectively. Topological, electrotopological, geometric, and molecular descriptors were used. The selected real model was robust and free from chance correlation; in addition, it demonstrated favorable internal and external statistical quality. Once statistically validated, the training model was used to predict the activity of a second data set (n = 145). The root mean square deviation (RMSD) between observed and predicted values was 0.698. Although it is a value outside of the standards, only 15 (10.34%) of the samples exhibited higher residual values than 1 log unit, a result considered acceptable. Results of Williams and Euclidean applicability domains relative to the prediction showed that the predictions did not occur by extrapolation and that the model is representative of the chemical space of test compounds.

  2. A methodology to design heuristics for model selection based on the characteristics of data: Application to investigate when the Negative Binomial Lindley (NB-L) is preferred over the Negative Binomial (NB).

    PubMed

    Shirazi, Mohammadali; Dhavala, Soma Sekhar; Lord, Dominique; Geedipally, Srinivas Reddy

    2017-10-01

    Safety analysts usually use post-modeling methods, such as the Goodness-of-Fit statistics or the Likelihood Ratio Test, to decide between two or more competitive distributions or models. Such metrics require all competitive distributions to be fitted to the data before any comparisons can be accomplished. Given the continuous growth in introducing new statistical distributions, choosing the best one using such post-modeling methods is not a trivial task, in addition to all theoretical or numerical issues the analyst may face during the analysis. Furthermore, and most importantly, these measures or tests do not provide any intuitions into why a specific distribution (or model) is preferred over another (Goodness-of-Logic). This paper ponders into these issues by proposing a methodology to design heuristics for Model Selection based on the characteristics of data, in terms of descriptive summary statistics, before fitting the models. The proposed methodology employs two analytic tools: (1) Monte-Carlo Simulations and (2) Machine Learning Classifiers, to design easy heuristics to predict the label of the 'most-likely-true' distribution for analyzing data. The proposed methodology was applied to investigate when the recently introduced Negative Binomial Lindley (NB-L) distribution is preferred over the Negative Binomial (NB) distribution. Heuristics were designed to select the 'most-likely-true' distribution between these two distributions, given a set of prescribed summary statistics of data. The proposed heuristics were successfully compared against classical tests for several real or observed datasets. Not only they are easy to use and do not need any post-modeling inputs, but also, using these heuristics, the analyst can attain useful information about why the NB-L is preferred over the NB - or vice versa- when modeling data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Efficient use of historical data for genomic selection: a case study of rust resistance in wheat

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) is a new methodology that can improve wheat breeding efficiency. To implement GS, a training population (TP) with both phenotypic and genotypic data is required to train a statistical model used to predict genotyped selection candidates (SCs). Several factors impact prediction...

  4. An automated process for building reliable and optimal in vitro/in vivo correlation models based on Monte Carlo simulations.

    PubMed

    Sutton, Steven C; Hu, Mingxiu

    2006-05-05

    Many mathematical models have been proposed for establishing an in vitro/in vivo correlation (IVIVC). The traditional IVIVC model building process consists of 5 steps: deconvolution, model fitting, convolution, prediction error evaluation, and cross-validation. This is a time-consuming process and typically a few models at most are tested for any given data set. The objectives of this work were to (1) propose a statistical tool to screen models for further development of an IVIVC, (2) evaluate the performance of each model under different circumstances, and (3) investigate the effectiveness of common statistical model selection criteria for choosing IVIVC models. A computer program was developed to explore which model(s) would be most likely to work well with a random variation from the original formulation. The process used Monte Carlo simulation techniques to build IVIVC models. Data-based model selection criteria (Akaike Information Criteria [AIC], R2) and the probability of passing the Food and Drug Administration "prediction error" requirement was calculated. To illustrate this approach, several real data sets representing a broad range of release profiles are used to illustrate the process and to demonstrate the advantages of this automated process over the traditional approach. The Hixson-Crowell and Weibull models were often preferred over the linear. When evaluating whether a Level A IVIVC model was possible, the model selection criteria AIC generally selected the best model. We believe that the approach we proposed may be a rapid tool to determine which IVIVC model (if any) is the most applicable.

  5. Statistical model selection for better prediction and discovering science mechanisms that affect reliability

    DOE PAGES

    Anderson-Cook, Christine M.; Morzinski, Jerome; Blecker, Kenneth D.

    2015-08-19

    Understanding the impact of production, environmental exposure and age characteristics on the reliability of a population is frequently based on underlying science and empirical assessment. When there is incomplete science to prescribe which inputs should be included in a model of reliability to predict future trends, statistical model/variable selection techniques can be leveraged on a stockpile or population of units to improve reliability predictions as well as suggest new mechanisms affecting reliability to explore. We describe a five-step process for exploring relationships between available summaries of age, usage and environmental exposure and reliability. The process involves first identifying potential candidatemore » inputs, then second organizing data for the analysis. Third, a variety of models with different combinations of the inputs are estimated, and fourth, flexible metrics are used to compare them. As a result, plots of the predicted relationships are examined to distill leading model contenders into a prioritized list for subject matter experts to understand and compare. The complexity of the model, quality of prediction and cost of future data collection are all factors to be considered by the subject matter experts when selecting a final model.« less

  6. POOLMS: A computer program for fitting and model selection for two level factorial replication-free experiments

    NASA Technical Reports Server (NTRS)

    Amling, G. E.; Holms, A. G.

    1973-01-01

    A computer program is described that performs a statistical multiple-decision procedure called chain pooling. It uses a number of mean squares assigned to error variance that is conditioned on the relative magnitudes of the mean squares. The model selection is done according to user-specified levels of type 1 or type 2 error probabilities.

  7. Two-Year versus One-Year Head Start Program Impact: Addressing Selection Bias by Comparing Regression Modeling with Propensity Score Analysis

    ERIC Educational Resources Information Center

    Leow, Christine; Wen, Xiaoli; Korfmacher, Jon

    2015-01-01

    This article compares regression modeling and propensity score analysis as different types of statistical techniques used in addressing selection bias when estimating the impact of two-year versus one-year Head Start on children's school readiness. The analyses were based on the national Head Start secondary dataset. After controlling for…

  8. A re-evaluation of a case-control model with contaminated controls for resource selection studies

    Treesearch

    Christopher T. Rota; Joshua J. Millspaugh; Dylan C. Kesler; Chad P. Lehman; Mark A. Rumble; Catherine M. B. Jachowski

    2013-01-01

    A common sampling design in resource selection studies involves measuring resource attributes at sample units used by an animal and at sample units considered available for use. Few models can estimate the absolute probability of using a sample unit from such data, but such approaches are generally preferred over statistical methods that estimate a relative probability...

  9. The construction and assessment of a statistical model for the prediction of protein assay data.

    PubMed

    Pittman, J; Sacks, J; Young, S Stanley

    2002-01-01

    The focus of this work is the development of a statistical model for a bioinformatics database whose distinctive structure makes model assessment an interesting and challenging problem. The key components of the statistical methodology, including a fast approximation to the singular value decomposition and the use of adaptive spline modeling and tree-based methods, are described, and preliminary results are presented. These results are shown to compare favorably to selected results achieved using comparitive methods. An attempt to determine the predictive ability of the model through the use of cross-validation experiments is discussed. In conclusion a synopsis of the results of these experiments and their implications for the analysis of bioinformatic databases in general is presented.

  10. Forecasting volatility with neural regression: a contribution to model adequacy.

    PubMed

    Refenes, A N; Holt, W T

    2001-01-01

    Neural nets' usefulness for forecasting is limited by problems of overfitting and the lack of rigorous procedures for model identification, selection and adequacy testing. This paper describes a methodology for neural model misspecification testing. We introduce a generalization of the Durbin-Watson statistic for neural regression and discuss the general issues of misspecification testing using residual analysis. We derive a generalized influence matrix for neural estimators which enables us to evaluate the distribution of the statistic. We deploy Monte Carlo simulation to compare the power of the test for neural and linear regressors. While residual testing is not a sufficient condition for model adequacy, it is nevertheless a necessary condition to demonstrate that the model is a good approximation to the data generating process, particularly as neural-network estimation procedures are susceptible to partial convergence. The work is also an important step toward developing rigorous procedures for neural model identification, selection and adequacy testing which have started to appear in the literature. We demonstrate its applicability in the nontrivial problem of forecasting implied volatility innovations using high-frequency stock index options. Each step of the model building process is validated using statistical tests to verify variable significance and model adequacy with the results confirming the presence of nonlinear relationships in implied volatility innovations.

  11. A chain-retrieval model for voluntary task switching.

    PubMed

    Vandierendonck, André; Demanet, Jelle; Liefooghe, Baptist; Verbruggen, Frederick

    2012-09-01

    To account for the findings obtained in voluntary task switching, this article describes and tests the chain-retrieval model. This model postulates that voluntary task selection involves retrieval of task information from long-term memory, which is then used to guide task selection and task execution. The model assumes that the retrieved information consists of acquired sequences (or chains) of tasks, that selection may be biased towards chains containing more task repetitions and that bottom-up triggered repetitions may overrule the intended task. To test this model, four experiments are reported. In Studies 1 and 2, sequences of task choices and the corresponding transition sequences (task repetitions or switches) were analyzed with the help of dependency statistics. The free parameters of the chain-retrieval model were estimated on the observed task sequences and these estimates were used to predict autocorrelations of tasks and transitions. In Studies 3 and 4, sequences of hand choices and their transitions were analyzed similarly. In all studies, the chain-retrieval model yielded better fits and predictions than statistical models of event choice. In applications to voluntary task switching (Studies 1 and 2), all three parameters of the model were needed to account for the data. When no task switching was required (Studies 3 and 4), the chain-retrieval model could account for the data with one or two parameters clamped to a neutral value. Implications for our understanding of voluntary task selection and broader theoretical implications are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Toward statistical modeling of saccadic eye-movement and visual saliency.

    PubMed

    Sun, Xiaoshuai; Yao, Hongxun; Ji, Rongrong; Liu, Xian-Ming

    2014-11-01

    In this paper, we present a unified statistical framework for modeling both saccadic eye movements and visual saliency. By analyzing the statistical properties of human eye fixations on natural images, we found that human attention is sparsely distributed and usually deployed to locations with abundant structural information. This observations inspired us to model saccadic behavior and visual saliency based on super-Gaussian component (SGC) analysis. Our model sequentially obtains SGC using projection pursuit, and generates eye movements by selecting the location with maximum SGC response. Besides human saccadic behavior simulation, we also demonstrated our superior effectiveness and robustness over state-of-the-arts by carrying out dense experiments on synthetic patterns and human eye fixation benchmarks. Multiple key issues in saliency modeling research, such as individual differences, the effects of scale and blur, are explored in this paper. Based on extensive qualitative and quantitative experimental results, we show promising potentials of statistical approaches for human behavior research.

  13. Computationally efficient statistical differential equation modeling using homogenization

    USGS Publications Warehouse

    Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.

    2013-01-01

    Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.

  14. Evaluation of the 29-km Eta Model. Part 1; Objective Verification at Three Selected Stations

    NASA Technical Reports Server (NTRS)

    Nutter, Paul A.; Manobianco, John; Merceret, Francis J. (Technical Monitor)

    1998-01-01

    This paper describes an objective verification of the National Centers for Environmental Prediction (NCEP) 29-km eta model from May 1996 through January 1998. The evaluation was designed to assess the model's surface and upper-air point forecast accuracy at three selected locations during separate warm (May - August) and cool (October - January) season periods. In order to enhance sample sizes available for statistical calculations, the objective verification includes two consecutive warm and cool season periods. Systematic model deficiencies comprise the larger portion of the total error in most of the surface forecast variables that were evaluated. The error characteristics for both surface and upper-air forecasts vary widely by parameter, season, and station location. At upper levels, a few characteristic biases are identified. Overall however, the upper-level errors are more nonsystematic in nature and could be explained partly by observational measurement uncertainty. With a few exceptions, the upper-air results also indicate that 24-h model error growth is not statistically significant. In February and August 1997, NCEP implemented upgrades to the eta model's physical parameterizations that were designed to change some of the model's error characteristics near the surface. The results shown in this paper indicate that these upgrades led to identifiable and statistically significant changes in forecast accuracy for selected surface parameters. While some of the changes were expected, others were not consistent with the intent of the model updates and further emphasize the need for ongoing sensitivity studies and localized statistical verification efforts. Objective verification of point forecasts is a stringent measure of model performance, but when used alone, is not enough to quantify the overall value that model guidance may add to the forecast process. Therefore, results from a subjective verification of the meso-eta model over the Florida peninsula are discussed in the companion paper by Manobianco and Nutter. Overall verification results presented here and in part two should establish a reasonable benchmark from which model users and developers may pursue the ongoing eta model verification strategies in the future.

  15. Accounting for animal movement in estimation of resource selection functions: sampling and data analysis.

    PubMed

    Forester, James D; Im, Hae Kyung; Rathouz, Paul J

    2009-12-01

    Patterns of resource selection by animal populations emerge as a result of the behavior of many individuals. Statistical models that describe these population-level patterns of habitat use can miss important interactions between individual animals and characteristics of their local environment; however, identifying these interactions is difficult. One approach to this problem is to incorporate models of individual movement into resource selection models. To do this, we propose a model for step selection functions (SSF) that is composed of a resource-independent movement kernel and a resource selection function (RSF). We show that standard case-control logistic regression may be used to fit the SSF; however, the sampling scheme used to generate control points (i.e., the definition of availability) must be accommodated. We used three sampling schemes to analyze simulated movement data and found that ignoring sampling and the resource-independent movement kernel yielded biased estimates of selection. The level of bias depended on the method used to generate control locations, the strength of selection, and the spatial scale of the resource map. Using empirical or parametric methods to sample control locations produced biased estimates under stronger selection; however, we show that the addition of a distance function to the analysis substantially reduced that bias. Assuming a uniform availability within a fixed buffer yielded strongly biased selection estimates that could be corrected by including the distance function but remained inefficient relative to the empirical and parametric sampling methods. As a case study, we used location data collected from elk in Yellowstone National Park, USA, to show that selection and bias may be temporally variable. Because under constant selection the amount of bias depends on the scale at which a resource is distributed in the landscape, we suggest that distance always be included as a covariate in SSF analyses. This approach to modeling resource selection is easily implemented using common statistical tools and promises to provide deeper insight into the movement ecology of animals.

  16. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose volume outcome relationships

    NASA Astrophysics Data System (ADS)

    El Naqa, I.; Suneja, G.; Lindsay, P. E.; Hope, A. J.; Alaly, J. R.; Vicic, M.; Bradley, J. D.; Apte, A.; Deasy, J. O.

    2006-11-01

    Radiotherapy treatment outcome models are a complicated function of treatment, clinical and biological factors. Our objective is to provide clinicians and scientists with an accurate, flexible and user-friendly software tool to explore radiotherapy outcomes data and build statistical tumour control or normal tissue complications models. The software tool, called the dose response explorer system (DREES), is based on Matlab, and uses a named-field structure array data type. DREES/Matlab in combination with another open-source tool (CERR) provides an environment for analysing treatment outcomes. DREES provides many radiotherapy outcome modelling features, including (1) fitting of analytical normal tissue complication probability (NTCP) and tumour control probability (TCP) models, (2) combined modelling of multiple dose-volume variables (e.g., mean dose, max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term regression modelling, (3) manual or automated selection of logistic or actuarial model variables using bootstrap statistical resampling, (4) estimation of uncertainty in model parameters, (5) performance assessment of univariate and multivariate analyses using Spearman's rank correlation and chi-square statistics, boxplots, nomograms, Kaplan-Meier survival plots, and receiver operating characteristics curves, and (6) graphical capabilities to visualize NTCP or TCP prediction versus selected variable models using various plots. DREES provides clinical researchers with a tool customized for radiotherapy outcome modelling. DREES is freely distributed. We expect to continue developing DREES based on user feedback.

  17. The genealogy of sequences containing multiple sites subject to strong selection in a subdivided population.

    PubMed Central

    Nordborg, Magnus; Innan, Hideki

    2003-01-01

    A stochastic model for the genealogy of a sample of recombining sequences containing one or more sites subject to selection in a subdivided population is described. Selection is incorporated by dividing the population into allelic classes and then conditioning on the past sizes of these classes. The past allele frequencies at the selected sites are thus treated as parameters rather than as random variables. The purpose of the model is not to investigate the dynamics of selection, but to investigate effects of linkage to the selected sites on the genealogy of the surrounding chromosomal region. This approach is useful for modeling strong selection, when it is natural to parameterize the past allele frequencies at the selected sites. Several models of strong balancing selection are used as examples, and the effects on the pattern of neutral polymorphism in the chromosomal region are discussed. We focus in particular on the statistical power to detect balancing selection when it is present. PMID:12663556

  18. The genealogy of sequences containing multiple sites subject to strong selection in a subdivided population.

    PubMed

    Nordborg, Magnus; Innan, Hideki

    2003-03-01

    A stochastic model for the genealogy of a sample of recombining sequences containing one or more sites subject to selection in a subdivided population is described. Selection is incorporated by dividing the population into allelic classes and then conditioning on the past sizes of these classes. The past allele frequencies at the selected sites are thus treated as parameters rather than as random variables. The purpose of the model is not to investigate the dynamics of selection, but to investigate effects of linkage to the selected sites on the genealogy of the surrounding chromosomal region. This approach is useful for modeling strong selection, when it is natural to parameterize the past allele frequencies at the selected sites. Several models of strong balancing selection are used as examples, and the effects on the pattern of neutral polymorphism in the chromosomal region are discussed. We focus in particular on the statistical power to detect balancing selection when it is present.

  19. How well can we predict forage species occurrence and abundance?

    USDA-ARS?s Scientific Manuscript database

    As part of a larger effort focused on forage species production and management, we have been developing a statistical modeling approach to predict the probability of species occurrence and the abundance for Orchard Grass over the Northeast region of the United States using two selected statistical m...

  20. Robust model selection and the statistical classification of languages

    NASA Astrophysics Data System (ADS)

    García, J. E.; González-López, V. A.; Viola, M. L. L.

    2012-10-01

    In this paper we address the problem of model selection for the set of finite memory stochastic processes with finite alphabet, when the data is contaminated. We consider m independent samples, with more than half of them being realizations of the same stochastic process with law Q, which is the one we want to retrieve. We devise a model selection procedure such that for a sample size large enough, the selected process is the one with law Q. Our model selection strategy is based on estimating relative entropies to select a subset of samples that are realizations of the same law. Although the procedure is valid for any family of finite order Markov models, we will focus on the family of variable length Markov chain models, which include the fixed order Markov chain model family. We define the asymptotic breakdown point (ABDP) for a model selection procedure, and we show the ABDP for our procedure. This means that if the proportion of contaminated samples is smaller than the ABDP, then, as the sample size grows our procedure selects a model for the process with law Q. We also use our procedure in a setting where we have one sample conformed by the concatenation of sub-samples of two or more stochastic processes, with most of the subsamples having law Q. We conducted a simulation study. In the application section we address the question of the statistical classification of languages according to their rhythmic features using speech samples. This is an important open problem in phonology. A persistent difficulty on this problem is that the speech samples correspond to several sentences produced by diverse speakers, corresponding to a mixture of distributions. The usual procedure to deal with this problem has been to choose a subset of the original sample which seems to best represent each language. The selection is made by listening to the samples. In our application we use the full dataset without any preselection of samples. We apply our robust methodology estimating a model which represent the main law for each language. Our findings agree with the linguistic conjecture, related to the rhythm of the languages included on our dataset.

  1. Bayesian Model Selection under Time Constraints

    NASA Astrophysics Data System (ADS)

    Hoege, M.; Nowak, W.; Illman, W. A.

    2017-12-01

    Bayesian model selection (BMS) provides a consistent framework for rating and comparing models in multi-model inference. In cases where models of vastly different complexity compete with each other, we also face vastly different computational runtimes of such models. For instance, time series of a quantity of interest can be simulated by an autoregressive process model that takes even less than a second for one run, or by a partial differential equations-based model with runtimes up to several hours or even days. The classical BMS is based on a quantity called Bayesian model evidence (BME). It determines the model weights in the selection process and resembles a trade-off between bias of a model and its complexity. However, in practice, the runtime of models is another weight relevant factor for model selection. Hence, we believe that it should be included, leading to an overall trade-off problem between bias, variance and computing effort. We approach this triple trade-off from the viewpoint of our ability to generate realizations of the models under a given computational budget. One way to obtain BME values is through sampling-based integration techniques. We argue with the fact that more expensive models can be sampled much less under time constraints than faster models (in straight proportion to their runtime). The computed evidence in favor of a more expensive model is statistically less significant than the evidence computed in favor of a faster model, since sampling-based strategies are always subject to statistical sampling error. We present a straightforward way to include this misbalance into the model weights that are the basis for model selection. Our approach follows directly from the idea of insufficient significance. It is based on a computationally cheap bootstrapping error estimate of model evidence and is easy to implement. The approach is illustrated in a small synthetic modeling study.

  2. Application of two-dimensional binary fingerprinting methods for the design of selective Tankyrase I inhibitors.

    PubMed

    Muddukrishna, B S; Pai, Vasudev; Lobo, Richard; Pai, Aravinda

    2017-11-22

    In the present study, five important binary fingerprinting techniques were used to model novel flavones for the selective inhibition of Tankyrase I. From the fingerprints used: the fingerprint atom pairs resulted in a statistically significant 2D QSAR model using a kernel-based partial least square regression method. This model indicates that the presence of electron-donating groups positively contributes to activity, whereas the presence of electron withdrawing groups negatively contributes to activity. This model could be used to develop more potent as well as selective analogues for the inhibition of Tankyrase I. Schematic representation of 2D QSAR work flow.

  3. Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology

    PubMed Central

    Murakami, Yohei

    2014-01-01

    Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor. PMID:25089832

  4. Importance of regional variation in conservation planning: A rangewide example of the Greater Sage-Grouse

    USGS Publications Warehouse

    Doherty, Kevin E.; Evans, Jeffrey S.; Coates, Peter S.; Juliusson, Lara; Fedy, Bradley C.

    2016-01-01

    We developed rangewide population and habitat models for Greater Sage-Grouse (Centrocercus urophasianus) that account for regional variation in habitat selection and relative densities of birds for use in conservation planning and risk assessments. We developed a probabilistic model of occupied breeding habitat by statistically linking habitat characteristics within 4 miles of an occupied lek using a nonlinear machine learning technique (Random Forests). Habitat characteristics used were quantified in GIS and represent standard abiotic and biotic variables related to sage-grouse biology. Statistical model fit was high (mean correctly classified = 82.0%, range = 75.4–88.0%) as were cross-validation statistics (mean = 80.9%, range = 75.1–85.8%). We also developed a spatially explicit model to quantify the relative density of breeding birds across each Greater Sage-Grouse management zone. The models demonstrate distinct clustering of relative abundance of sage-grouse populations across all management zones. On average, approximately half of the breeding population is predicted to be within 10% of the occupied range. We also found that 80% of sage-grouse populations were contained in 25–34% of the occupied range within each management zone. Our rangewide population and habitat models account for regional variation in habitat selection and the relative densities of birds, and thus, they can serve as a consistent and common currency to assess how sage-grouse habitat and populations overlap with conservation actions or threats over the entire sage-grouse range. We also quantified differences in functional habitat responses and disturbance thresholds across the Western Association of Fish and Wildlife Agencies (WAFWA) management zones using statistical relationships identified during habitat modeling. Even for a species as specialized as Greater Sage-Grouse, our results show that ecological context matters in both the strength of habitat selection (i.e., functional response curves) and response to disturbance.

  5. A Parameter Subset Selection Algorithm for Mixed-Effects Models

    DOE PAGES

    Schmidt, Kathleen L.; Smith, Ralph C.

    2016-01-01

    Mixed-effects models are commonly used to statistically model phenomena that include attributes associated with a population or general underlying mechanism as well as effects specific to individuals or components of the general mechanism. This can include individual effects associated with data from multiple experiments. However, the parameterizations used to incorporate the population and individual effects are often unidentifiable in the sense that parameters are not uniquely specified by the data. As a result, the current literature focuses on model selection, by which insensitive parameters are fixed or removed from the model. Model selection methods that employ information criteria are applicablemore » to both linear and nonlinear mixed-effects models, but such techniques are limited in that they are computationally prohibitive for large problems due to the number of possible models that must be tested. To limit the scope of possible models for model selection via information criteria, we introduce a parameter subset selection (PSS) algorithm for mixed-effects models, which orders the parameters by their significance. In conclusion, we provide examples to verify the effectiveness of the PSS algorithm and to test the performance of mixed-effects model selection that makes use of parameter subset selection.« less

  6. Journal selection decisions: a biomedical library operations research model. I. The framework.

    PubMed Central

    Kraft, D H; Polacsek, R A; Soergel, L; Burns, K; Klair, A

    1976-01-01

    The problem of deciding which journal titles to select for acquisition in a biomedical library is modeled. The approach taken is based on cost/benefit ratios. Measures of journal worth, methods of data collection, and journal cost data are considered. The emphasis is on the development of a practical process for selecting journal titles, based on the objectivity and rationality of the model; and on the collection of the approprate data and library statistics in a reasonable manner. The implications of this process towards an overall management information system (MIS) for biomedical serials handling are discussed. PMID:820391

  7. The Development of Statistical Models for Predicting Surgical Site Infections in Japan: Toward a Statistical Model-Based Standardized Infection Ratio.

    PubMed

    Fukuda, Haruhisa; Kuroki, Manabu

    2016-03-01

    To develop and internally validate a surgical site infection (SSI) prediction model for Japan. Retrospective observational cohort study. We analyzed surveillance data submitted to the Japan Nosocomial Infections Surveillance system for patients who had undergone target surgical procedures from January 1, 2010, through December 31, 2012. Logistic regression analyses were used to develop statistical models for predicting SSIs. An SSI prediction model was constructed for each of the procedure categories by statistically selecting the appropriate risk factors from among the collected surveillance data and determining their optimal categorization. Standard bootstrapping techniques were applied to assess potential overfitting. The C-index was used to compare the predictive performances of the new statistical models with those of models based on conventional risk index variables. The study sample comprised 349,987 cases from 428 participant hospitals throughout Japan, and the overall SSI incidence was 7.0%. The C-indices of the new statistical models were significantly higher than those of the conventional risk index models in 21 (67.7%) of the 31 procedure categories (P<.05). No significant overfitting was detected. Japan-specific SSI prediction models were shown to generally have higher accuracy than conventional risk index models. These new models may have applications in assessing hospital performance and identifying high-risk patients in specific procedure categories.

  8. Support Vector Feature Selection for Early Detection of Anastomosis Leakage From Bag-of-Words in Electronic Health Records.

    PubMed

    Soguero-Ruiz, Cristina; Hindberg, Kristian; Rojo-Alvarez, Jose Luis; Skrovseth, Stein Olav; Godtliebsen, Fred; Mortensen, Kim; Revhaug, Arthur; Lindsetmo, Rolv-Ole; Augestad, Knut Magne; Jenssen, Robert

    2016-09-01

    The free text in electronic health records (EHRs) conveys a huge amount of clinical information about health state and patient history. Despite a rapidly growing literature on the use of machine learning techniques for extracting this information, little effort has been invested toward feature selection and the features' corresponding medical interpretation. In this study, we focus on the task of early detection of anastomosis leakage (AL), a severe complication after elective surgery for colorectal cancer (CRC) surgery, using free text extracted from EHRs. We use a bag-of-words model to investigate the potential for feature selection strategies. The purpose is earlier detection of AL and prediction of AL with data generated in the EHR before the actual complication occur. Due to the high dimensionality of the data, we derive feature selection strategies using the robust support vector machine linear maximum margin classifier, by investigating: 1) a simple statistical criterion (leave-one-out-based test); 2) an intensive-computation statistical criterion (Bootstrap resampling); and 3) an advanced statistical criterion (kernel entropy). Results reveal a discriminatory power for early detection of complications after CRC (sensitivity 100%; specificity 72%). These results can be used to develop prediction models, based on EHR data, that can support surgeons and patients in the preoperative decision making phase.

  9. Application of a Fuzzy Verification Technique for Assessment of the Weather Running Estimate-Nowcast (WRE-N) Model

    DTIC Science & Technology

    2016-10-01

    comes when considering numerous scores and statistics during a preliminary evaluation of the applicability of the fuzzy- verification minimum coverage...The selection of thresholds with which to generate categorical-verification scores and statistics from the application of both traditional and...of statistically significant numbers of cases; the latter presents a challenge of limited application for assessment of the forecast models’ ability

  10. Hydrologic consistency as a basis for assessing complexity of monthly water balance models for the continental United States

    NASA Astrophysics Data System (ADS)

    Martinez, Guillermo F.; Gupta, Hoshin V.

    2011-12-01

    Methods to select parsimonious and hydrologically consistent model structures are useful for evaluating dominance of hydrologic processes and representativeness of data. While information criteria (appropriately constrained to obey underlying statistical assumptions) can provide a basis for evaluating appropriate model complexity, it is not sufficient to rely upon the principle of maximum likelihood (ML) alone. We suggest that one must also call upon a "principle of hydrologic consistency," meaning that selected ML structures and parameter estimates must be constrained (as well as possible) to reproduce desired hydrological characteristics of the processes under investigation. This argument is demonstrated in the context of evaluating the suitability of candidate model structures for lumped water balance modeling across the continental United States, using data from 307 snow-free catchments. The models are constrained to satisfy several tests of hydrologic consistency, a flow space transformation is used to ensure better consistency with underlying statistical assumptions, and information criteria are used to evaluate model complexity relative to the data. The results clearly demonstrate that the principle of consistency provides a sensible basis for guiding selection of model structures and indicate strong spatial persistence of certain model structures across the continental United States. Further work to untangle reasons for model structure predominance can help to relate conceptual model structures to physical characteristics of the catchments, facilitating the task of prediction in ungaged basins.

  11. Improving production efficiency through genetic selection

    USDA-ARS?s Scientific Manuscript database

    The goal of dairy cattle breeding is to increase productivity and efficiency by means of genetic selection. This is possible because related animals share some of their DNA in common, and we can use statistical models to predict the genetic merit animals based on the performance of their relatives. ...

  12. Effect of Professional Development on Classroom Practices in Some Selected Saudi Universities

    ERIC Educational Resources Information Center

    Alghamdi, AbdulKhaliq Hajjad; Bin Sihes, Ahmad Johari

    2016-01-01

    "Scientific studies found the impact of professional development on effective classroom practices in Higher Education." This paper hypothesizes no statistically significant effect of lecturers' professional development on classroom practices in some selected Saudi Universities not as highlighted in the model. Hierarchical multiple…

  13. The Global Error Assessment (GEA) model for the selection of differentially expressed genes in microarray data.

    PubMed

    Mansourian, Robert; Mutch, David M; Antille, Nicolas; Aubert, Jerome; Fogel, Paul; Le Goff, Jean-Marc; Moulin, Julie; Petrov, Anton; Rytz, Andreas; Voegel, Johannes J; Roberts, Matthew-Alan

    2004-11-01

    Microarray technology has become a powerful research tool in many fields of study; however, the cost of microarrays often results in the use of a low number of replicates (k). Under circumstances where k is low, it becomes difficult to perform standard statistical tests to extract the most biologically significant experimental results. Other more advanced statistical tests have been developed; however, their use and interpretation often remain difficult to implement in routine biological research. The present work outlines a method that achieves sufficient statistical power for selecting differentially expressed genes under conditions of low k, while remaining as an intuitive and computationally efficient procedure. The present study describes a Global Error Assessment (GEA) methodology to select differentially expressed genes in microarray datasets, and was developed using an in vitro experiment that compared control and interferon-gamma treated skin cells. In this experiment, up to nine replicates were used to confidently estimate error, thereby enabling methods of different statistical power to be compared. Gene expression results of a similar absolute expression are binned, so as to enable a highly accurate local estimate of the mean squared error within conditions. The model then relates variability of gene expression in each bin to absolute expression levels and uses this in a test derived from the classical ANOVA. The GEA selection method is compared with both the classical and permutational ANOVA tests, and demonstrates an increased stability, robustness and confidence in gene selection. A subset of the selected genes were validated by real-time reverse transcription-polymerase chain reaction (RT-PCR). All these results suggest that GEA methodology is (i) suitable for selection of differentially expressed genes in microarray data, (ii) intuitive and computationally efficient and (iii) especially advantageous under conditions of low k. The GEA code for R software is freely available upon request to authors.

  14. Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory.

    PubMed

    Lord, Dominique; Washington, Simon P; Ivan, John N

    2005-01-01

    There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states-perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of "excess" zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to "excess" zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed-and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros.

  15. Bayesian change point analysis of abundance trends for pelagic fishes in the upper San Francisco Estuary.

    PubMed

    Thomson, James R; Kimmerer, Wim J; Brown, Larry R; Newman, Ken B; Mac Nally, Ralph; Bennett, William A; Feyrer, Frederick; Fleishman, Erica

    2010-07-01

    We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, striped bass, and threadfin shad) in the upper San Francisco Estuary, California, USA, over 40 years using Bayesian change point models. Change point models identify times of abrupt or unusual changes in absolute abundance (step changes) or in rates of change in abundance (trend changes). We coupled Bayesian model selection with linear regression splines to identify biotic or abiotic covariates with the strongest associations with abundances of each species. We then refitted change point models conditional on the selected covariates to explore whether those covariates could explain statistical trends or change points in species abundances. We also fitted a multispecies change point model that identified change points common to all species. All models included hierarchical structures to model data uncertainties, including observation errors and missing covariate values. There were step declines in abundances of all four species in the early 2000s, with a likely common decline in 2002. Abiotic variables, including water clarity, position of the 2 per thousand isohaline (X2), and the volume of freshwater exported from the estuary, explained some variation in species' abundances over the time series, but no selected covariates could explain statistically the post-2000 change points for any species.

  16. Statistics and Style. Mathematical Linguistics and Automatic Language Processing No. 6.

    ERIC Educational Resources Information Center

    Dolezel, Lubomir, Ed.; Bailey, Richard W., Ed.

    This collection of 17 articles concerning the application of mathematical models and techniques to the study of literary style is an attempt to overcome the communication barriers that exist between scholars in the various fields that find their meeting ground in statistical stylistics. The articles selected were chosen to represent the best…

  17. Manipulating measurement scales in medical statistical analysis and data mining: A review of methodologies

    PubMed Central

    Marateb, Hamid Reza; Mansourian, Marjan; Adibi, Peyman; Farina, Dario

    2014-01-01

    Background: selecting the correct statistical test and data mining method depends highly on the measurement scale of data, type of variables, and purpose of the analysis. Different measurement scales are studied in details and statistical comparison, modeling, and data mining methods are studied based upon using several medical examples. We have presented two ordinal–variables clustering examples, as more challenging variable in analysis, using Wisconsin Breast Cancer Data (WBCD). Ordinal-to-Interval scale conversion example: a breast cancer database of nine 10-level ordinal variables for 683 patients was analyzed by two ordinal-scale clustering methods. The performance of the clustering methods was assessed by comparison with the gold standard groups of malignant and benign cases that had been identified by clinical tests. Results: the sensitivity and accuracy of the two clustering methods were 98% and 96%, respectively. Their specificity was comparable. Conclusion: by using appropriate clustering algorithm based on the measurement scale of the variables in the study, high performance is granted. Moreover, descriptive and inferential statistics in addition to modeling approach must be selected based on the scale of the variables. PMID:24672565

  18. Methods to Approach Velocity Data Reduction and Their Effects on Conformation Statistics in Viscoelastic Turbulent Channel Flows

    NASA Astrophysics Data System (ADS)

    Samanta, Gaurab; Beris, Antony; Handler, Robert; Housiadas, Kostas

    2009-03-01

    Karhunen-Loeve (KL) analysis of DNS data of viscoelastic turbulent channel flows helps us to reveal more information on the time-dependent dynamics of viscoelastic modification of turbulence [Samanta et. al., J. Turbulence (in press), 2008]. A selected set of KL modes can be used for a data reduction modeling of these flows. However, it is pertinent that verification be done against established DNS results. For this purpose, we did comparisons of velocity and conformations statistics and probability density functions (PDFs) of relevant quantities obtained from DNS and reconstructed fields using selected KL modes and time-dependent coefficients. While the velocity statistics show good agreement between results from DNS and KL reconstructions even with just hundreds of KL modes, tens of thousands of KL modes are required to adequately capture the trace of polymer conformation resulting from DNS. New modifications to KL method have therefore been attempted to account for the differences in conformation statistics. The applicability and impact of these new modified KL methods will be discussed in the perspective of data reduction modeling.

  19. Identifying taxonomic and functional surrogates for spring biodiversity conservation.

    PubMed

    Jyväsjärvi, Jussi; Virtanen, Risto; Ilmonen, Jari; Paasivirta, Lauri; Muotka, Timo

    2018-02-27

    Surrogate approaches are widely used to estimate overall taxonomic diversity for conservation planning. Surrogate taxa are frequently selected based on rarity or charisma, whereas selection through statistical modeling has been applied rarely. We used boosted-regression-tree models (BRT) fitted to biological data from 165 springs to identify bryophyte and invertebrate surrogates for taxonomic and functional diversity of boreal springs. We focused on these 2 groups because they are well known and abundant in most boreal springs. The best indicators of taxonomic versus functional diversity differed. The bryophyte Bryum weigelii and the chironomid larva Paratrichocladius skirwithensis best indicated taxonomic diversity, whereas the isopod Asellus aquaticus and the chironomid Macropelopia spp. were the best surrogates of functional diversity. In a scoring algorithm for priority-site selection, taxonomic surrogates performed only slightly better than random selection for all spring-dwelling taxa, but they were very effective in representing spring specialists, providing a distinct improvement over random solutions. However, the surrogates for taxonomic diversity represented functional diversity poorly and vice versa. When combined with cross-taxon complementarity analyses, surrogate selection based on statistical modeling provides a promising approach for identifying groundwater-dependent ecosystems of special conservation value, a key requirement of the EU Water Framework Directive. © 2018 Society for Conservation Biology.

  20. Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure

    PubMed Central

    Craig, Marlies H; Sharp, Brian L; Mabaso, Musawenkosi LH; Kleinschmidt, Immo

    2007-01-01

    Background Several malaria risk maps have been developed in recent years, many from the prevalence of infection data collated by the MARA (Mapping Malaria Risk in Africa) project, and using various environmental data sets as predictors. Variable selection is a major obstacle due to analytical problems caused by over-fitting, confounding and non-independence in the data. Testing and comparing every combination of explanatory variables in a Bayesian spatial framework remains unfeasible for most researchers. The aim of this study was to develop a malaria risk map using a systematic and practicable variable selection process for spatial analysis and mapping of historical malaria risk in Botswana. Results Of 50 potential explanatory variables from eight environmental data themes, 42 were significantly associated with malaria prevalence in univariate logistic regression and were ranked by the Akaike Information Criterion. Those correlated with higher-ranking relatives of the same environmental theme, were temporarily excluded. The remaining 14 candidates were ranked by selection frequency after running automated step-wise selection procedures on 1000 bootstrap samples drawn from the data. A non-spatial multiple-variable model was developed through step-wise inclusion in order of selection frequency. Previously excluded variables were then re-evaluated for inclusion, using further step-wise bootstrap procedures, resulting in the exclusion of another variable. Finally a Bayesian geo-statistical model using Markov Chain Monte Carlo simulation was fitted to the data, resulting in a final model of three predictor variables, namely summer rainfall, mean annual temperature and altitude. Each was independently and significantly associated with malaria prevalence after allowing for spatial correlation. This model was used to predict malaria prevalence at unobserved locations, producing a smooth risk map for the whole country. Conclusion We have produced a highly plausible and parsimonious model of historical malaria risk for Botswana from point-referenced data from a 1961/2 prevalence survey of malaria infection in 1–14 year old children. After starting with a list of 50 potential variables we ended with three highly plausible predictors, by applying a systematic and repeatable staged variable selection procedure that included a spatial analysis, which has application for other environmentally determined infectious diseases. All this was accomplished using general-purpose statistical software. PMID:17892584

  1. On the selection of ordinary differential equation models with application to predator-prey dynamical models.

    PubMed

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2015-03-01

    We consider model selection and estimation in a context where there are competing ordinary differential equation (ODE) models, and all the models are special cases of a "full" model. We propose a computationally inexpensive approach that employs statistical estimation of the full model, followed by a combination of a least squares approximation (LSA) and the adaptive Lasso. We show the resulting method, here called the LSA method, to be an (asymptotically) oracle model selection method. The finite sample performance of the proposed LSA method is investigated with Monte Carlo simulations, in which we examine the percentage of selecting true ODE models, the efficiency of the parameter estimation compared to simply using the full and true models, and coverage probabilities of the estimated confidence intervals for ODE parameters, all of which have satisfactory performances. Our method is also demonstrated by selecting the best predator-prey ODE to model a lynx and hare population dynamical system among some well-known and biologically interpretable ODE models. © 2014, The International Biometric Society.

  2. Visual analytics in cheminformatics: user-supervised descriptor selection for QSAR methods.

    PubMed

    Martínez, María Jimena; Ponzoni, Ignacio; Díaz, Mónica F; Vazquez, Gustavo E; Soto, Axel J

    2015-01-01

    The design of QSAR/QSPR models is a challenging problem, where the selection of the most relevant descriptors constitutes a key step of the process. Several feature selection methods that address this step are concentrated on statistical associations among descriptors and target properties, whereas the chemical knowledge is left out of the analysis. For this reason, the interpretability and generality of the QSAR/QSPR models obtained by these feature selection methods are drastically affected. Therefore, an approach for integrating domain expert's knowledge in the selection process is needed for increase the confidence in the final set of descriptors. In this paper a software tool, which we named Visual and Interactive DEscriptor ANalysis (VIDEAN), that combines statistical methods with interactive visualizations for choosing a set of descriptors for predicting a target property is proposed. Domain expertise can be added to the feature selection process by means of an interactive visual exploration of data, and aided by statistical tools and metrics based on information theory. Coordinated visual representations are presented for capturing different relationships and interactions among descriptors, target properties and candidate subsets of descriptors. The competencies of the proposed software were assessed through different scenarios. These scenarios reveal how an expert can use this tool to choose one subset of descriptors from a group of candidate subsets or how to modify existing descriptor subsets and even incorporate new descriptors according to his or her own knowledge of the target property. The reported experiences showed the suitability of our software for selecting sets of descriptors with low cardinality, high interpretability, low redundancy and high statistical performance in a visual exploratory way. Therefore, it is possible to conclude that the resulting tool allows the integration of a chemist's expertise in the descriptor selection process with a low cognitive effort in contrast with the alternative of using an ad-hoc manual analysis of the selected descriptors. Graphical abstractVIDEAN allows the visual analysis of candidate subsets of descriptors for QSAR/QSPR. In the two panels on the top, users can interactively explore numerical correlations as well as co-occurrences in the candidate subsets through two interactive graphs.

  3. Pitfalls in statistical landslide susceptibility modelling

    NASA Astrophysics Data System (ADS)

    Schröder, Boris; Vorpahl, Peter; Märker, Michael; Elsenbeer, Helmut

    2010-05-01

    The use of statistical methods is a well-established approach to predict landslide occurrence probabilities and to assess landslide susceptibility. This is achieved by applying statistical methods relating historical landslide inventories to topographic indices as predictor variables. In our contribution, we compare several new and powerful methods developed in machine learning and well-established in landscape ecology and macroecology for predicting the distribution of shallow landslides in tropical mountain rainforests in southern Ecuador (among others: boosted regression trees, multivariate adaptive regression splines, maximum entropy). Although these methods are powerful, we think it is necessary to follow a basic set of guidelines to avoid some pitfalls regarding data sampling, predictor selection, and model quality assessment, especially if a comparison of different models is contemplated. We therefore suggest to apply a novel toolbox to evaluate approaches to the statistical modelling of landslide susceptibility. Additionally, we propose some methods to open the "black box" as an inherent part of machine learning methods in order to achieve further explanatory insights into preparatory factors that control landslides. Sampling of training data should be guided by hypotheses regarding processes that lead to slope failure taking into account their respective spatial scales. This approach leads to the selection of a set of candidate predictor variables considered on adequate spatial scales. This set should be checked for multicollinearity in order to facilitate model response curve interpretation. Model quality assesses how well a model is able to reproduce independent observations of its response variable. This includes criteria to evaluate different aspects of model performance, i.e. model discrimination, model calibration, and model refinement. In order to assess a possible violation of the assumption of independency in the training samples or a possible lack of explanatory information in the chosen set of predictor variables, the model residuals need to be checked for spatial auto¬correlation. Therefore, we calculate spline correlograms. In addition to this, we investigate partial dependency plots and bivariate interactions plots considering possible interactions between predictors to improve model interpretation. Aiming at presenting this toolbox for model quality assessment, we investigate the influence of strategies in the construction of training datasets for statistical models on model quality.

  4. Sequential Markov chain Monte Carlo filter with simultaneous model selection for electrocardiogram signal modeling.

    PubMed

    Edla, Shwetha; Kovvali, Narayan; Papandreou-Suppappola, Antonia

    2012-01-01

    Constructing statistical models of electrocardiogram (ECG) signals, whose parameters can be used for automated disease classification, is of great importance in precluding manual annotation and providing prompt diagnosis of cardiac diseases. ECG signals consist of several segments with different morphologies (namely the P wave, QRS complex and the T wave) in a single heart beat, which can vary across individuals and diseases. Also, existing statistical ECG models exhibit a reliance upon obtaining a priori information from the ECG data by using preprocessing algorithms to initialize the filter parameters, or to define the user-specified model parameters. In this paper, we propose an ECG modeling technique using the sequential Markov chain Monte Carlo (SMCMC) filter that can perform simultaneous model selection, by adaptively choosing from different representations depending upon the nature of the data. Our results demonstrate the ability of the algorithm to track various types of ECG morphologies, including intermittently occurring ECG beats. In addition, we use the estimated model parameters as the feature set to classify between ECG signals with normal sinus rhythm and four different types of arrhythmia.

  5. Additive Genetic Variability and the Bayesian Alphabet

    PubMed Central

    Gianola, Daniel; de los Campos, Gustavo; Hill, William G.; Manfredi, Eduardo; Fernando, Rohan

    2009-01-01

    The use of all available molecular markers in statistical models for prediction of quantitative traits has led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This article provides a critical review of some theoretical and statistical concepts in the context of genomic-assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of marker effects in some regression models and additive genetic variance are examined under standard assumptions. Second, the connection between marker genotypes and resemblance between relatives is explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third, issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been proposed (called “Bayes A”) with respect to priors is illustrated with a simulation. Methods that can solve potential shortcomings of some of these Bayesian regression procedures are discussed briefly. PMID:19620397

  6. New robust statistical procedures for the polytomous logistic regression models.

    PubMed

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  7. Variable selection for marginal longitudinal generalized linear models.

    PubMed

    Cantoni, Eva; Flemming, Joanna Mills; Ronchetti, Elvezio

    2005-06-01

    Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with popular marginal longitudinal models (fitted using GEE) and contrast results with what is typically done in practice: variable selection based on Wald-type or score-type tests. An application to real data further demonstrates the merits of our approach while at the same time emphasizing some important robust features inherent to GC(p).

  8. The Evaluation and Selection of Adequate Causal Models: A Compensatory Education Example.

    ERIC Educational Resources Information Center

    Tanaka, Jeffrey S.

    1982-01-01

    Implications of model evaluation (using traditional chi square goodness of fit statistics, incremental fit indices for covariance structure models, and latent variable coefficients of determination) on substantive conclusions are illustrated with an example examining the effects of participation in a compensatory education program on posttreatment…

  9. A Decision Model for Evaluating Potential Change in Instructional Programs.

    ERIC Educational Resources Information Center

    Amor, J. P.; Dyer, J. S.

    A statistical model designed to assist elementary school principals in the process of selection educational areas which should receive additional emphasis is presented. For each educational area, the model produces an index number which represents the expected "value" per dollar spent on an instructional program appropriate for strengthening that…

  10. Relationship between Service Quality, Satisfaction, Motivation and Loyalty: A Multi-Dimensional Perspective

    ERIC Educational Resources Information Center

    Subrahmanyam, Annamdevula

    2017-01-01

    Purpose: This paper aims to identify and test four competing models with the interrelationships between students' perceived service quality, students' satisfaction, loyalty and motivation using structural equation modeling (SEM), and to select the best model using chi-square difference (??2) statistic test. Design/methodology/approach: The study…

  11. Cleanroom certification model

    NASA Technical Reports Server (NTRS)

    Currit, P. A.

    1983-01-01

    The Cleanroom software development methodology is designed to take the gamble out of product releases for both suppliers and receivers of the software. The ingredients of this procedure are a life cycle of executable product increments, representative statistical testing, and a standard estimate of the MTTF (Mean Time To Failure) of the product at the time of its release. A statistical approach to software product testing using randomly selected samples of test cases is considered. A statistical model is defined for the certification process which uses the timing data recorded during test. A reasonableness argument for this model is provided that uses previously published data on software product execution. Also included is a derivation of the certification model estimators and a comparison of the proposed least squares technique with the more commonly used maximum likelihood estimators.

  12. Analog-Based Postprocessing of Navigation-Related Hydrological Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Klein, B.

    2017-11-01

    Inland waterway transport benefits from probabilistic forecasts of water levels as they allow to optimize the ship load and, hence, to minimize the transport costs. Probabilistic state-of-the-art hydrologic ensemble forecasts inherit biases and dispersion errors from the atmospheric ensemble forecasts they are driven with. The use of statistical postprocessing techniques like ensemble model output statistics (EMOS) allows for a reduction of these systematic errors by fitting a statistical model based on training data. In this study, training periods for EMOS are selected based on forecast analogs, i.e., historical forecasts that are similar to the forecast to be verified. Due to the strong autocorrelation of water levels, forecast analogs have to be selected based on entire forecast hydrographs in order to guarantee similar hydrograph shapes. Custom-tailored measures of similarity for forecast hydrographs comprise hydrological series distance (SD), the hydrological matching algorithm (HMA), and dynamic time warping (DTW). Verification against observations reveals that EMOS forecasts for water level at three gauges along the river Rhine with training periods selected based on SD, HMA, and DTW compare favorably with reference EMOS forecasts, which are based on either seasonal training periods or on training periods obtained by dividing the hydrological forecast trajectories into runoff regimes.

  13. Model selection for multi-component frailty models.

    PubMed

    Ha, Il Do; Lee, Youngjo; MacKenzie, Gilbert

    2007-11-20

    Various frailty models have been developed and are now widely used for analysing multivariate survival data. It is therefore important to develop an information criterion for model selection. However, in frailty models there are several alternative ways of forming a criterion and the particular criterion chosen may not be uniformly best. In this paper, we study an Akaike information criterion (AIC) on selecting a frailty structure from a set of (possibly) non-nested frailty models. We propose two new AIC criteria, based on a conditional likelihood and an extended restricted likelihood (ERL) given by Lee and Nelder (J. R. Statist. Soc. B 1996; 58:619-678). We compare their performance using well-known practical examples and demonstrate that the two criteria may yield rather different results. A simulation study shows that the AIC based on the ERL is recommended, when attention is focussed on selecting the frailty structure rather than the fixed effects.

  14. Mapping landslide susceptibility using data-driven methods.

    PubMed

    Zêzere, J L; Pereira, S; Melo, R; Oliveira, S C; Garcia, R A C

    2017-07-01

    Most epistemic uncertainty within data-driven landslide susceptibility assessment results from errors in landslide inventories, difficulty in identifying and mapping landslide causes and decisions related with the modelling procedure. In this work we evaluate and discuss differences observed on landslide susceptibility maps resulting from: (i) the selection of the statistical method; (ii) the selection of the terrain mapping unit; and (iii) the selection of the feature type to represent landslides in the model (polygon versus point). The work is performed in a single study area (Silveira Basin - 18.2km 2 - Lisbon Region, Portugal) using a unique database of geo-environmental landslide predisposing factors and an inventory of 82 shallow translational slides. The logistic regression, the discriminant analysis and two versions of the information value were used and we conclude that multivariate statistical methods perform better when computed over heterogeneous terrain units and should be selected to assess landslide susceptibility based on slope terrain units, geo-hydrological terrain units or census terrain units. However, evidence was found that the chosen terrain mapping unit can produce greater differences on final susceptibility results than those resulting from the chosen statistical method for modelling. The landslide susceptibility should be assessed over grid cell terrain units whenever the spatial accuracy of landslide inventory is good. In addition, a single point per landslide proved to be efficient to generate accurate landslide susceptibility maps, providing the landslides are of small size, thus minimizing the possible existence of heterogeneities of predisposing factors within the landslide boundary. Although during last years the ROC curves have been preferred to evaluate the susceptibility model's performance, evidence was found that the model with the highest AUC ROC is not necessarily the best landslide susceptibility model, namely when terrain mapping units are heterogeneous in size and reduced in number. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. An Analysis of Selectivity Bias in the Medicare AAPCC

    PubMed Central

    Dowd, Bryan; Feldman, Roger; Moscovice, Ira; Wisner, Catherine; Bland, Pat; Finch, Mike

    1996-01-01

    Using econometric models of endogenous sample selection, we examine possible payment bias to Medicare Tax Equity and Fiscal Responsibility Act of 1982 (TEFRA)-risk health maintenance organizations (HMOs) in the Twin Cities in 1988. We do not find statistically significant evidence of favorable HMO selection. In fact, the sign of the selection term indicates adverse selection into HMOs. This finding is interesting, in view of the fact that three of the five risk HMOs in the study have since converted to non-risk contracts. PMID:10158735

  16. Does Breast Cancer Drive the Building of Survival Probability Models among States? An Assessment of Goodness of Fit for Patient Data from SEER Registries

    PubMed

    Khan, Hafiz; Saxena, Anshul; Perisetti, Abhilash; Rafiq, Aamrin; Gabbidon, Kemesha; Mende, Sarah; Lyuksyutova, Maria; Quesada, Kandi; Blakely, Summre; Torres, Tiffany; Afesse, Mahlet

    2016-12-01

    Background: Breast cancer is a worldwide public health concern and is the most prevalent type of cancer in women in the United States. This study concerned the best fit of statistical probability models on the basis of survival times for nine state cancer registries: California, Connecticut, Georgia, Hawaii, Iowa, Michigan, New Mexico, Utah, and Washington. Materials and Methods: A probability random sampling method was applied to select and extract records of 2,000 breast cancer patients from the Surveillance Epidemiology and End Results (SEER) database for each of the nine state cancer registries used in this study. EasyFit software was utilized to identify the best probability models by using goodness of fit tests, and to estimate parameters for various statistical probability distributions that fit survival data. Results: Statistical analysis for the summary of statistics is reported for each of the states for the years 1973 to 2012. Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared goodness of fit test values were used for survival data, the highest values of goodness of fit statistics being considered indicative of the best fit survival model for each state. Conclusions: It was found that California, Connecticut, Georgia, Iowa, New Mexico, and Washington followed the Burr probability distribution, while the Dagum probability distribution gave the best fit for Michigan and Utah, and Hawaii followed the Gamma probability distribution. These findings highlight differences between states through selected sociodemographic variables and also demonstrate probability modeling differences in breast cancer survival times. The results of this study can be used to guide healthcare providers and researchers for further investigations into social and environmental factors in order to reduce the occurrence of and mortality due to breast cancer. Creative Commons Attribution License

  17. Quantifying falsifiability of scientific theories

    NASA Astrophysics Data System (ADS)

    Nemenman, Ilya

    I argue that the notion of falsifiability, a key concept in defining a valid scientific theory, can be quantified using Bayesian Model Selection, which is a standard tool in modern statistics. This relates falsifiability to the quantitative version of the statistical Occam's razor, and allows transforming some long-running arguments about validity of scientific theories from philosophical discussions to rigorous mathematical calculations.

  18. Using Response-Time Constraints in Item Selection To Control for Differential Speededness in Computerized Adaptive Testing. LSAC Research Report Series.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Scrams, David J.; Schnipke, Deborah L.

    This paper proposes an item selection algorithm that can be used to neutralize the effect of time limits in computer adaptive testing. The method is based on a statistical model for the response-time distributions of the test takers on the items in the pool that is updated each time a new item has been administered. Predictions from the model are…

  19. Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation.

    PubMed

    Stephan, Wolfgang

    2016-01-01

    In the past 15 years, numerous methods have been developed to detect selective sweeps underlying adaptations. These methods are based on relatively simple population genetic models, including one or two loci at which positive directional selection occurs, and one or two marker loci at which the impact of selection on linked neutral variation is quantified. Information about the phenotype under selection is not included in these models (except for fitness). In contrast, in the quantitative genetic models of adaptation, selection acts on one or more phenotypic traits, such that a genotype-phenotype map is required to bridge the gap to population genetics theory. Here I describe the range of population genetic models from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and I also consider the case of polygenic selection characterized by subtle allele frequency shifts at many loci. Furthermore, I present an overview of the statistical tests that have been proposed based on these population genetics models to detect evidence for positive selection in the genome. © 2015 John Wiley & Sons Ltd.

  20. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Crump, Alex R.; Resch, Charles T.

    Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptualmore » model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.« less

  1. Statistical auditing and randomness test of lotto k/N-type games

    NASA Astrophysics Data System (ADS)

    Coronel-Brizio, H. F.; Hernández-Montoya, A. R.; Rapallo, F.; Scalas, E.

    2008-11-01

    One of the most popular lottery games worldwide is the so-called “lotto k/N”. It considers N numbers 1,2,…,N from which k are drawn randomly, without replacement. A player selects k or more numbers and the first prize is shared amongst those players whose selected numbers match all of the k randomly drawn. Exact rules may vary in different countries. In this paper, mean values and covariances for the random variables representing the numbers drawn from this kind of game are presented, with the aim of using them to audit statistically the consistency of a given sample of historical results with theoretical values coming from a hypergeometric statistical model. The method can be adapted to test pseudorandom number generators.

  2. Conservative Tests under Satisficing Models of Publication Bias.

    PubMed

    McCrary, Justin; Christensen, Garret; Fanelli, Daniele

    2016-01-01

    Publication bias leads consumers of research to observe a selected sample of statistical estimates calculated by producers of research. We calculate critical values for statistical significance that could help to adjust after the fact for the distortions created by this selection effect, assuming that the only source of publication bias is file drawer bias. These adjusted critical values are easy to calculate and differ from unadjusted critical values by approximately 50%-rather than rejecting a null hypothesis when the t-ratio exceeds 2, the analysis suggests rejecting a null hypothesis when the t-ratio exceeds 3. Samples of published social science research indicate that on average, across research fields, approximately 30% of published t-statistics fall between the standard and adjusted cutoffs.

  3. Conservative Tests under Satisficing Models of Publication Bias

    PubMed Central

    McCrary, Justin; Christensen, Garret; Fanelli, Daniele

    2016-01-01

    Publication bias leads consumers of research to observe a selected sample of statistical estimates calculated by producers of research. We calculate critical values for statistical significance that could help to adjust after the fact for the distortions created by this selection effect, assuming that the only source of publication bias is file drawer bias. These adjusted critical values are easy to calculate and differ from unadjusted critical values by approximately 50%—rather than rejecting a null hypothesis when the t-ratio exceeds 2, the analysis suggests rejecting a null hypothesis when the t-ratio exceeds 3. Samples of published social science research indicate that on average, across research fields, approximately 30% of published t-statistics fall between the standard and adjusted cutoffs. PMID:26901834

  4. Statistical model specification and power: recommendations on the use of test-qualified pooling in analysis of experimental data

    PubMed Central

    Colegrave, Nick

    2017-01-01

    A common approach to the analysis of experimental data across much of the biological sciences is test-qualified pooling. Here non-significant terms are dropped from a statistical model, effectively pooling the variation associated with each removed term with the error term used to test hypotheses (or estimate effect sizes). This pooling is only carried out if statistical testing on the basis of applying that data to a previous more complicated model provides motivation for this model simplification; hence the pooling is test-qualified. In pooling, the researcher increases the degrees of freedom of the error term with the aim of increasing statistical power to test their hypotheses of interest. Despite this approach being widely adopted and explicitly recommended by some of the most widely cited statistical textbooks aimed at biologists, here we argue that (except in highly specialized circumstances that we can identify) the hoped-for improvement in statistical power will be small or non-existent, and there is likely to be much reduced reliability of the statistical procedures through deviation of type I error rates from nominal levels. We thus call for greatly reduced use of test-qualified pooling across experimental biology, more careful justification of any use that continues, and a different philosophy for initial selection of statistical models in the light of this change in procedure. PMID:28330912

  5. AI-based (ANN and SVM) statistical downscaling methods for precipitation estimation under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Mehrvand, Masoud; Baghanam, Aida Hosseini; Razzaghzadeh, Zahra; Nourani, Vahid

    2017-04-01

    Since statistical downscaling methods are the most largely used models to study hydrologic impact studies under climate change scenarios, nonlinear regression models known as Artificial Intelligence (AI)-based models such as Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been used to spatially downscale the precipitation outputs of Global Climate Models (GCMs). The study has been carried out using GCM and station data over GCM grid points located around the Peace-Tampa Bay watershed weather stations. Before downscaling with AI-based model, correlation coefficient values have been computed between a few selected large-scale predictor variables and local scale predictands to select the most effective predictors. The selected predictors are then assessed considering grid location for the site in question. In order to increase AI-based downscaling model accuracy pre-processing has been developed on precipitation time series. In this way, the precipitation data derived from various GCM data analyzed thoroughly to find the highest value of correlation coefficient between GCM-based historical data and station precipitation data. Both GCM and station precipitation time series have been assessed by comparing mean and variances over specific intervals. Results indicated that there is similar trend between GCM and station precipitation data; however station data has non-stationary time series while GCM data does not. Finally AI-based downscaling model have been applied to several GCMs with selected predictors by targeting local precipitation time series as predictand. The consequences of recent step have been used to produce multiple ensembles of downscaled AI-based models.

  6. Optimal experimental designs for fMRI when the model matrix is uncertain.

    PubMed

    Kao, Ming-Hung; Zhou, Lin

    2017-07-15

    This study concerns optimal designs for functional magnetic resonance imaging (fMRI) experiments when the model matrix of the statistical model depends on both the selected stimulus sequence (fMRI design), and the subject's uncertain feedback (e.g. answer) to each mental stimulus (e.g. question) presented to her/him. While practically important, this design issue is challenging. This mainly is because that the information matrix cannot be fully determined at the design stage, making it difficult to evaluate the quality of the selected designs. To tackle this challenging issue, we propose an easy-to-use optimality criterion for evaluating the quality of designs, and an efficient approach for obtaining designs optimizing this criterion. Compared with a previously proposed method, our approach requires a much less computing time to achieve designs with high statistical efficiencies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    NASA Astrophysics Data System (ADS)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  8. Validation of statistical predictive models meant to select melanoma patients for sentinel lymph node biopsy.

    PubMed

    Sabel, Michael S; Rice, John D; Griffith, Kent A; Lowe, Lori; Wong, Sandra L; Chang, Alfred E; Johnson, Timothy M; Taylor, Jeremy M G

    2012-01-01

    To identify melanoma patients at sufficiently low risk of nodal metastases who could avoid sentinel lymph node biopsy (SLNB), several statistical models have been proposed based upon patient/tumor characteristics, including logistic regression, classification trees, random forests, and support vector machines. We sought to validate recently published models meant to predict sentinel node status. We queried our comprehensive, prospectively collected melanoma database for consecutive melanoma patients undergoing SLNB. Prediction values were estimated based upon four published models, calculating the same reported metrics: negative predictive value (NPV), rate of negative predictions (RNP), and false-negative rate (FNR). Logistic regression performed comparably with our data when considering NPV (89.4 versus 93.6%); however, the model's specificity was not high enough to significantly reduce the rate of biopsies (SLN reduction rate of 2.9%). When applied to our data, the classification tree produced NPV and reduction in biopsy rates that were lower (87.7 versus 94.1 and 29.8 versus 14.3, respectively). Two published models could not be applied to our data due to model complexity and the use of proprietary software. Published models meant to reduce the SLNB rate among patients with melanoma either underperformed when applied to our larger dataset, or could not be validated. Differences in selection criteria and histopathologic interpretation likely resulted in underperformance. Statistical predictive models must be developed in a clinically applicable manner to allow for both validation and ultimately clinical utility.

  9. Improving mass-univariate analysis of neuroimaging data by modelling important unknown covariates: Application to Epigenome-Wide Association Studies.

    PubMed

    Guillaume, Bryan; Wang, Changqing; Poh, Joann; Shen, Mo Jun; Ong, Mei Lyn; Tan, Pei Fang; Karnani, Neerja; Meaney, Michael; Qiu, Anqi

    2018-06-01

    Statistical inference on neuroimaging data is often conducted using a mass-univariate model, equivalent to fitting a linear model at every voxel with a known set of covariates. Due to the large number of linear models, it is challenging to check if the selection of covariates is appropriate and to modify this selection adequately. The use of standard diagnostics, such as residual plotting, is clearly not practical for neuroimaging data. However, the selection of covariates is crucial for linear regression to ensure valid statistical inference. In particular, the mean model of regression needs to be reasonably well specified. Unfortunately, this issue is often overlooked in the field of neuroimaging. This study aims to adopt the existing Confounder Adjusted Testing and Estimation (CATE) approach and to extend it for use with neuroimaging data. We propose a modification of CATE that can yield valid statistical inferences using Principal Component Analysis (PCA) estimators instead of Maximum Likelihood (ML) estimators. We then propose a non-parametric hypothesis testing procedure that can improve upon parametric testing. Monte Carlo simulations show that the modification of CATE allows for more accurate modelling of neuroimaging data and can in turn yield a better control of False Positive Rate (FPR) and Family-Wise Error Rate (FWER). We demonstrate its application to an Epigenome-Wide Association Study (EWAS) on neonatal brain imaging and umbilical cord DNA methylation data obtained as part of a longitudinal cohort study. Software for this CATE study is freely available at http://www.bioeng.nus.edu.sg/cfa/Imaging_Genetics2.html. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Statistical aspects of genetic association testing in small samples, based on selective DNA pooling data in the arctic fox.

    PubMed

    Szyda, Joanna; Liu, Zengting; Zatoń-Dobrowolska, Magdalena; Wierzbicki, Heliodor; Rzasa, Anna

    2008-01-01

    We analysed data from a selective DNA pooling experiment with 130 individuals of the arctic fox (Alopex lagopus), which originated from 2 different types regarding body size. The association between alleles of 6 selected unlinked molecular markers and body size was tested by using univariate and multinomial logistic regression models, applying odds ratio and test statistics from the power divergence family. Due to the small sample size and the resulting sparseness of the data table, in hypothesis testing we could not rely on the asymptotic distributions of the tests. Instead, we tried to account for data sparseness by (i) modifying confidence intervals of odds ratio; (ii) using a normal approximation of the asymptotic distribution of the power divergence tests with different approaches for calculating moments of the statistics; and (iii) assessing P values empirically, based on bootstrap samples. As a result, a significant association was observed for 3 markers. Furthermore, we used simulations to assess the validity of the normal approximation of the asymptotic distribution of the test statistics under the conditions of small and sparse samples.

  11. Using the Modification Index and Standardized Expected Parameter Change for Model Modification

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.

    2012-01-01

    Model modification is oftentimes conducted after discovering a badly fitting structural equation model. During the modification process, the modification index (MI) and the standardized expected parameter change (SEPC) are 2 statistics that may be used to aid in the selection of parameters to add to a model to improve the fit. The purpose of this…

  12. Methodological development for selection of significant predictors explaining fatal road accidents.

    PubMed

    Dadashova, Bahar; Arenas-Ramírez, Blanca; Mira-McWilliams, José; Aparicio-Izquierdo, Francisco

    2016-05-01

    Identification of the most relevant factors for explaining road accident occurrence is an important issue in road safety research, particularly for future decision-making processes in transport policy. However model selection for this particular purpose is still an ongoing research. In this paper we propose a methodological development for model selection which addresses both explanatory variable and adequate model selection issues. A variable selection procedure, TIM (two-input model) method is carried out by combining neural network design and statistical approaches. The error structure of the fitted model is assumed to follow an autoregressive process. All models are estimated using Markov Chain Monte Carlo method where the model parameters are assigned non-informative prior distributions. The final model is built using the results of the variable selection. For the application of the proposed methodology the number of fatal accidents in Spain during 2000-2011 was used. This indicator has experienced the maximum reduction internationally during the indicated years thus making it an interesting time series from a road safety policy perspective. Hence the identification of the variables that have affected this reduction is of particular interest for future decision making. The results of the variable selection process show that the selected variables are main subjects of road safety policy measures. Published by Elsevier Ltd.

  13. ON MODEL SELECTION STRATEGIES TO IDENTIFY GENES UNDERLYING BINARY TRAITS USING GENOME-WIDE ASSOCIATION DATA.

    PubMed

    Wu, Zheyang; Zhao, Hongyu

    2012-01-01

    For more fruitful discoveries of genetic variants associated with diseases in genome-wide association studies, it is important to know whether joint analysis of multiple markers is more powerful than the commonly used single-marker analysis, especially in the presence of gene-gene interactions. This article provides a statistical framework to rigorously address this question through analytical power calculations for common model search strategies to detect binary trait loci: marginal search, exhaustive search, forward search, and two-stage screening search. Our approach incorporates linkage disequilibrium, random genotypes, and correlations among score test statistics of logistic regressions. We derive analytical results under two power definitions: the power of finding all the associated markers and the power of finding at least one associated marker. We also consider two types of error controls: the discovery number control and the Bonferroni type I error rate control. After demonstrating the accuracy of our analytical results by simulations, we apply them to consider a broad genetic model space to investigate the relative performances of different model search strategies. Our analytical study provides rapid computation as well as insights into the statistical mechanism of capturing genetic signals under different genetic models including gene-gene interactions. Even though we focus on genetic association analysis, our results on the power of model selection procedures are clearly very general and applicable to other studies.

  14. ON MODEL SELECTION STRATEGIES TO IDENTIFY GENES UNDERLYING BINARY TRAITS USING GENOME-WIDE ASSOCIATION DATA

    PubMed Central

    Wu, Zheyang; Zhao, Hongyu

    2013-01-01

    For more fruitful discoveries of genetic variants associated with diseases in genome-wide association studies, it is important to know whether joint analysis of multiple markers is more powerful than the commonly used single-marker analysis, especially in the presence of gene-gene interactions. This article provides a statistical framework to rigorously address this question through analytical power calculations for common model search strategies to detect binary trait loci: marginal search, exhaustive search, forward search, and two-stage screening search. Our approach incorporates linkage disequilibrium, random genotypes, and correlations among score test statistics of logistic regressions. We derive analytical results under two power definitions: the power of finding all the associated markers and the power of finding at least one associated marker. We also consider two types of error controls: the discovery number control and the Bonferroni type I error rate control. After demonstrating the accuracy of our analytical results by simulations, we apply them to consider a broad genetic model space to investigate the relative performances of different model search strategies. Our analytical study provides rapid computation as well as insights into the statistical mechanism of capturing genetic signals under different genetic models including gene-gene interactions. Even though we focus on genetic association analysis, our results on the power of model selection procedures are clearly very general and applicable to other studies. PMID:23956610

  15. Variable Selection in the Presence of Missing Data: Imputation-based Methods.

    PubMed

    Zhao, Yize; Long, Qi

    2017-01-01

    Variable selection plays an essential role in regression analysis as it identifies important variables that associated with outcomes and is known to improve predictive accuracy of resulting models. Variable selection methods have been widely investigated for fully observed data. However, in the presence of missing data, methods for variable selection need to be carefully designed to account for missing data mechanisms and statistical techniques used for handling missing data. Since imputation is arguably the most popular method for handling missing data due to its ease of use, statistical methods for variable selection that are combined with imputation are of particular interest. These methods, valid used under the assumptions of missing at random (MAR) and missing completely at random (MCAR), largely fall into three general strategies. The first strategy applies existing variable selection methods to each imputed dataset and then combine variable selection results across all imputed datasets. The second strategy applies existing variable selection methods to stacked imputed datasets. The third variable selection strategy combines resampling techniques such as bootstrap with imputation. Despite recent advances, this area remains under-developed and offers fertile ground for further research.

  16. Quantifying soil profile change caused by land use in central Missouri loess hillslopes

    Treesearch

    Samuel J. Indorante; John M. Kabrick; Brad D. Lee; Jon M. Maatta

    2014-01-01

    Three major challenges are present when studying anthropogenic impacts on soil profile properties: (i) site selection; (ii) sampling and modeling native and cultivated soil-landscape relationships; and (iii) graphically and statistically comparing native and cultivated sites to model soil profile changes. This study addressed those challenges by measuring and modeling...

  17. Microgenetic Patterns of Children's Multiplication Learning: Confirming the Overlapping Waves Model by Latent Growth Modeling

    ERIC Educational Resources Information Center

    van der Ven, Sanne H. G.; Boom, Jan; Kroesbergen, Evelyn H.; Leseman, Paul P. M.

    2012-01-01

    Variability in strategy selection is an important characteristic of learning new skills such as mathematical skills. Strategies gradually come and go during this development. In 1996, Siegler described this phenomenon as ''overlapping waves.'' In the current microgenetic study, we attempted to model these overlapping waves statistically. In…

  18. On Lack of Robustness in Hydrological Model Development Due to Absence of Guidelines for Selecting Calibration and Evaluation Data: Demonstration for Data-Driven Models

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Maier, Holger R.; Wu, Wenyan; Dandy, Graeme C.; Gupta, Hoshin V.; Zhang, Tuqiao

    2018-02-01

    Hydrological models are used for a wide variety of engineering purposes, including streamflow forecasting and flood-risk estimation. To develop such models, it is common to allocate the available data to calibration and evaluation data subsets. Surprisingly, the issue of how this allocation can affect model evaluation performance has been largely ignored in the research literature. This paper discusses the evaluation performance bias that can arise from how available data are allocated to calibration and evaluation subsets. As a first step to assessing this issue in a statistically rigorous fashion, we present a comprehensive investigation of the influence of data allocation on the development of data-driven artificial neural network (ANN) models of streamflow. Four well-known formal data splitting methods are applied to 754 catchments from Australia and the U.S. to develop 902,483 ANN models. Results clearly show that the choice of the method used for data allocation has a significant impact on model performance, particularly for runoff data that are more highly skewed, highlighting the importance of considering the impact of data splitting when developing hydrological models. The statistical behavior of the data splitting methods investigated is discussed and guidance is offered on the selection of the most appropriate data splitting methods to achieve representative evaluation performance for streamflow data with different statistical properties. Although our results are obtained for data-driven models, they highlight the fact that this issue is likely to have a significant impact on all types of hydrological models, especially conceptual rainfall-runoff models.

  19. Statistical Development and Application of Cultural Consensus Theory

    DTIC Science & Technology

    2012-03-31

    Bulletin & Review , 17, 275-286. Schmittmann, V.D., Dolan, C.V., Raijmakers, M.E.J., and Batchelder, W.H. (2010). Parameter identification in...Wu, H., Myung, J.I., and Batchelder, W.H. (2010). Minimum description length model selection of multinomial processing tree models. Psychonomic

  20. Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils

    PubMed Central

    Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Fei, Teng; Wang, Junjie; Wu, Guofeng

    2017-01-01

    This study investigated the abilities of pre-processing, feature selection and machine-learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative scatter correction, standard normal variate, and mean centering. Principle component analysis (PCA) and the RELIEF algorithm were used to extract spectral features. Machine-learning methods, including random forests (RF), artificial neural network (ANN), radial basis function- and linear function- based support vector machine (RBF- and LF-SVM) were employed for establishing diagnosis models. The model accuracies were evaluated and compared by using overall accuracies (OAs). The statistical significance of the difference between models was evaluated by using McNemar’s test (Z value). The results showed that the OAs varied with the different combinations of pre-processing, feature selection, and classification methods. Feature selection methods could improve the modeling efficiencies and diagnosis accuracies, and RELIEF often outperformed PCA. The optimal models established by RF (OA = 86%), ANN (OA = 89%), RBF- (OA = 89%) and LF-SVM (OA = 87%) had no statistical difference in diagnosis accuracies (Z < 1.96, p < 0.05). These results indicated that it was feasible to diagnose soil arsenic contamination using reflectance spectroscopy. The appropriate combination of multivariate methods was important to improve diagnosis accuracies. PMID:28471412

  1. Validation of Statistical Predictive Models Meant to Select Melanoma Patients for Sentinel Lymph Node Biopsy

    PubMed Central

    Sabel, Michael S.; Rice, John D.; Griffith, Kent A.; Lowe, Lori; Wong, Sandra L.; Chang, Alfred E.; Johnson, Timothy M.; Taylor, Jeremy M.G.

    2013-01-01

    Introduction To identify melanoma patients at sufficiently low risk of nodal metastases who could avoid SLN biopsy (SLNB). Several statistical models have been proposed based upon patient/tumor characteristics, including logistic regression, classification trees, random forests and support vector machines. We sought to validate recently published models meant to predict sentinel node status. Methods We queried our comprehensive, prospectively-collected melanoma database for consecutive melanoma patients undergoing SLNB. Prediction values were estimated based upon 4 published models, calculating the same reported metrics: negative predictive value (NPV), rate of negative predictions (RNP), and false negative rate (FNR). Results Logistic regression performed comparably with our data when considering NPV (89.4% vs. 93.6%); however the model’s specificity was not high enough to significantly reduce the rate of biopsies (SLN reduction rate of 2.9%). When applied to our data, the classification tree produced NPV and reduction in biopsies rates that were lower 87.7% vs. 94.1% and 29.8% vs. 14.3%, respectively. Two published models could not be applied to our data due to model complexity and the use of proprietary software. Conclusions Published models meant to reduce the SLNB rate among patients with melanoma either underperformed when applied to our larger dataset, or could not be validated. Differences in selection criteria and histopathologic interpretation likely resulted in underperformance. Development of statistical predictive models must be created in a clinically applicable manner to allow for both validation and ultimately clinical utility. PMID:21822550

  2. Artificial neural network study on organ-targeting peptides

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Kim, Junhyoung; Choi, Seung-Hoon; Kim, Minkyoung; Rhee, Hokyoung; Shin, Jae-Min; Choi, Kihang; Kang, Sang-Kee; Lee, Nam Kyung; Choi, Yun-Jaie; Jung, Dong Hyun

    2010-01-01

    We report a new approach to studying organ targeting of peptides on the basis of peptide sequence information. The positive control data sets consist of organ-targeting peptide sequences identified by the peroral phage-display technique for four organs, and the negative control data are prepared from random sequences. The capacity of our models to make appropriate predictions is validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC) curve (the ROC score). VHSE descriptor produces statistically significant training models and the models with simple neural network architectures show slightly greater predictive power than those with complex ones. The training and test set statistics indicate that our models could discriminate between organ-targeting and random sequences. We anticipate that our models will be applicable to the selection of organ-targeting peptides for generating peptide drugs or peptidomimetics.

  3. A comparison of linear and nonlinear statistical techniques in performance attribution.

    PubMed

    Chan, N H; Genovese, C R

    2001-01-01

    Performance attribution is usually conducted under the linear framework of multifactor models. Although commonly used by practitioners in finance, linear multifactor models are known to be less than satisfactory in many situations. After a brief survey of nonlinear methods, nonlinear statistical techniques are applied to performance attribution of a portfolio constructed from a fixed universe of stocks using factors derived from some commonly used cross sectional linear multifactor models. By rebalancing this portfolio monthly, the cumulative returns for procedures based on standard linear multifactor model and three nonlinear techniques-model selection, additive models, and neural networks-are calculated and compared. It is found that the first two nonlinear techniques, especially in combination, outperform the standard linear model. The results in the neural-network case are inconclusive because of the great variety of possible models. Although these methods are more complicated and may require some tuning, toolboxes are developed and suggestions on calibration are proposed. This paper demonstrates the usefulness of modern nonlinear statistical techniques in performance attribution.

  4. Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization.

    PubMed

    Pashaei, Elnaz; Pashaei, Elham; Aydin, Nizamettin

    2018-04-14

    In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Web based health surveys: Using a Two Step Heckman model to examine their potential for population health analysis.

    PubMed

    Morrissey, Karyn; Kinderman, Peter; Pontin, Eleanor; Tai, Sara; Schwannauer, Mathias

    2016-08-01

    In June 2011 the BBC Lab UK carried out a web-based survey on the causes of mental distress. The 'Stress Test' was launched on 'All in the Mind' a BBC Radio 4 programme and the test's URL was publicised on radio and TV broadcasts, and made available via BBC web pages and social media. Given the large amount of data created, over 32,800 participants, with corresponding diagnosis, demographic and socioeconomic characteristics; the dataset are potentially an important source of data for population based research on depression and anxiety. However, as respondents self-selected to participate in the online survey, the survey may comprise a non-random sample. It may be only individuals that listen to BBC Radio 4 and/or use their website that participated in the survey. In this instance using the Stress Test data for wider population based research may create sample selection bias. Focusing on the depression component of the Stress Test, this paper presents an easy-to-use method, the Two Step Probit Selection Model, to detect and statistically correct selection bias in the Stress Test. Using a Two Step Probit Selection Model; this paper did not find a statistically significant selection on unobserved factors for participants of the Stress Test. That is, survey participants who accessed and completed an online survey are not systematically different from non-participants on the variables of substantive interest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. External model validation of binary clinical risk prediction models in cardiovascular and thoracic surgery.

    PubMed

    Hickey, Graeme L; Blackstone, Eugene H

    2016-08-01

    Clinical risk-prediction models serve an important role in healthcare. They are used for clinical decision-making and measuring the performance of healthcare providers. To establish confidence in a model, external model validation is imperative. When designing such an external model validation study, thought must be given to patient selection, risk factor and outcome definitions, missing data, and the transparent reporting of the analysis. In addition, there are a number of statistical methods available for external model validation. Execution of a rigorous external validation study rests in proper study design, application of suitable statistical methods, and transparent reporting. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  7. A statistical mechanics approach to autopoietic immune networks

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Agliari, Elena

    2010-07-01

    In this work we aim to bridge theoretical immunology and disordered statistical mechanics. We introduce a model for the behavior of B-cells which naturally merges the clonal selection theory and the autopoietic network theory as a whole. From the analysis of its features we recover several basic phenomena such as low-dose tolerance, dynamical memory of antigens and self/non-self discrimination.

  8. Population Pharmacokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  9. Statistical Models for the Analysis and Design of Digital Polymerase Chain Reaction (dPCR) Experiments.

    PubMed

    Dorazio, Robert M; Hunter, Margaret E

    2015-11-03

    Statistical methods for the analysis and design of experiments using digital PCR (dPCR) have received only limited attention and have been misused in many instances. To address this issue and to provide a more general approach to the analysis of dPCR data, we describe a class of statistical models for the analysis and design of experiments that require quantification of nucleic acids. These models are mathematically equivalent to generalized linear models of binomial responses that include a complementary, log-log link function and an offset that is dependent on the dPCR partition volume. These models are both versatile and easy to fit using conventional statistical software. Covariates can be used to specify different sources of variation in nucleic acid concentration, and a model's parameters can be used to quantify the effects of these covariates. For purposes of illustration, we analyzed dPCR data from different types of experiments, including serial dilution, evaluation of copy number variation, and quantification of gene expression. We also showed how these models can be used to help design dPCR experiments, as in selection of sample sizes needed to achieve desired levels of precision in estimates of nucleic acid concentration or to detect differences in concentration among treatments with prescribed levels of statistical power.

  10. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    PubMed

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R

    2015-02-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  11. Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines

    PubMed Central

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R.

    2015-01-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline. PMID:25689273

  12. Mathematical Modelling for Patient Selection in Proton Therapy.

    PubMed

    Mee, T; Kirkby, N F; Kirkby, K J

    2018-05-01

    Proton beam therapy (PBT) is still relatively new in cancer treatment and the clinical evidence base is relatively sparse. Mathematical modelling offers assistance when selecting patients for PBT and predicting the demand for service. Discrete event simulation, normal tissue complication probability, quality-adjusted life-years and Markov Chain models are all mathematical and statistical modelling techniques currently used but none is dominant. As new evidence and outcome data become available from PBT, comprehensive models will emerge that are less dependent on the specific technologies of radiotherapy planning and delivery. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Bayesian multimodel inference for dose-response studies

    USGS Publications Warehouse

    Link, W.A.; Albers, P.H.

    2007-01-01

    Statistical inference in dose?response studies is model-based: The analyst posits a mathematical model of the relation between exposure and response, estimates parameters of the model, and reports conclusions conditional on the model. Such analyses rarely include any accounting for the uncertainties associated with model selection. The Bayesian inferential system provides a convenient framework for model selection and multimodel inference. In this paper we briefly describe the Bayesian paradigm and Bayesian multimodel inference. We then present a family of models for multinomial dose?response data and apply Bayesian multimodel inferential methods to the analysis of data on the reproductive success of American kestrels (Falco sparveriuss) exposed to various sublethal dietary concentrations of methylmercury.

  14. Equivalence between Step Selection Functions and Biased Correlated Random Walks for Statistical Inference on Animal Movement.

    PubMed

    Duchesne, Thierry; Fortin, Daniel; Rivest, Louis-Paul

    2015-01-01

    Animal movement has a fundamental impact on population and community structure and dynamics. Biased correlated random walks (BCRW) and step selection functions (SSF) are commonly used to study movements. Because no studies have contrasted the parameters and the statistical properties of their estimators for models constructed under these two Lagrangian approaches, it remains unclear whether or not they allow for similar inference. First, we used the Weak Law of Large Numbers to demonstrate that the log-likelihood function for estimating the parameters of BCRW models can be approximated by the log-likelihood of SSFs. Second, we illustrated the link between the two approaches by fitting BCRW with maximum likelihood and with SSF to simulated movement data in virtual environments and to the trajectory of bison (Bison bison L.) trails in natural landscapes. Using simulated and empirical data, we found that the parameters of a BCRW estimated directly from maximum likelihood and by fitting an SSF were remarkably similar. Movement analysis is increasingly used as a tool for understanding the influence of landscape properties on animal distribution. In the rapidly developing field of movement ecology, management and conservation biologists must decide which method they should implement to accurately assess the determinants of animal movement. We showed that BCRW and SSF can provide similar insights into the environmental features influencing animal movements. Both techniques have advantages. BCRW has already been extended to allow for multi-state modeling. Unlike BCRW, however, SSF can be estimated using most statistical packages, it can simultaneously evaluate habitat selection and movement biases, and can easily integrate a large number of movement taxes at multiple scales. SSF thus offers a simple, yet effective, statistical technique to identify movement taxis.

  15. Depth-Duration Frequency of Precipitation for Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.; Rea, Alan; Asquith, William H.

    1999-01-01

    A regional frequency analysis was conducted to estimate the depth-duration frequency of precipitation for 12 durations in Oklahoma (15, 30, and 60 minutes; 1, 2, 3, 6, 12, and 24 hours; and 1, 3, and 7 days). Seven selected frequencies, expressed as recurrence intervals, were investigated (2, 5, 10, 25, 50, 100, and 500 years). L-moment statistics were used to summarize depth-duration data and to determine the appropriate statistical distributions. Three different rain-gage networks provided the data (15minute, 1-hour, and 1-day). The 60-minute, and 1-hour; and the 24-hour, and 1-day durations were analyzed separately. Data were used from rain-gage stations with at least 10-years of record and within Oklahoma or about 50 kilometers into bordering states. Precipitation annual maxima (depths) were determined from the data for 110 15-minute, 141 hourly, and 413 daily stations. The L-moment statistics for depths for all durations were calculated for each station using unbiased L-mo-ment estimators for the mean, L-scale, L-coefficient of variation, L-skew, and L-kur-tosis. The relation between L-skew and L-kurtosis (L-moment ratio diagram) and goodness-of-fit measures were used to select the frequency distributions. The three-parameter generalized logistic distribution was selected to model the frequencies of 15-, 30-, and 60-minute annual maxima; and the three-parameter generalized extreme-value distribution was selected to model the frequencies of 1-hour to 7-day annual maxima. The mean for each station and duration was corrected for the bias associated with fixed interval recording of precipitation amounts. The L-scale and spatially averaged L-skew statistics were used to compute the location, scale, and shape parameters of the selected distribution for each station and duration. The three parameters were used to calculate the depth-duration-frequency relations for each station. The precipitation depths for selected frequencies were contoured from weighted depth surfaces to produce maps from which the precipitation depth-duration-frequency curve for selected storm durations can be determined for any site in Oklahoma.

  16. A statistical mechanics model for free-for-all airplane passenger boarding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen, Jason H.; /Fermilab

    2008-08-01

    I discuss a model for free-for-all passenger boarding which is employed by some discount air carriers. The model is based on the principles of statistical mechanics where each seat in the aircraft has an associated energy which reflects the preferences of travelers. As each passenger enters the airplane they select their seats using Boltzmann statistics, proceed to that location, load their luggage, sit down, and the partition function seen by remaining passengers is modified to reflect this fact. I discuss the various model parameters and make qualitative comparisons of this passenger boarding model with those that involve assigned seats. Themore » model can be used to predict the probability that certain seats will be occupied at different times during the boarding process. These results might provide a useful description of this boarding method. The model is a relatively unusual application of undergraduate level physics and describes a situation familiar to many students and faculty.« less

  17. The role of selection on evolutionary rescue

    NASA Astrophysics Data System (ADS)

    Amirjanov, Adil

    The paper investigates the role of selection on evolutionary rescue of population. The statistical mechanics technique is used to model dynamics of a population experiencing a natural selection and an abrupt change in the environment. The paper assesses the selective pressure produced by two different mechanisms: by strength of resistance and by strength of selection (by intraspecific competition). It is shown that both mechanisms are capable of providing an evolutionary rescue of population in particular conditions. However, for a small level of an extinction rate, the population cannot be rescued without intraspecific competition.

  18. Restenosis of the CYPHER-Select, TAXUS-Express, and Polyzene-F Nanocoated Cobalt-Chromium Stents in the Minipig Coronary Artery Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radeleff, Boris, E-mail: Boris.radeleff@med.uni-heidelberg.de; Thierjung, Heidi; Stampfl, Ulrike

    2008-09-15

    PurposeTo date no direct experimental comparison between the CYPHER-Select and TAXUS-Express stents is available. Therefore, we investigated late in-stent stenosis, thrombogenicity, and inflammation, comparing the CYPHER-Select, TAXUS-Express, and custom-made cobalt chromium Polyzene-F nanocoated stents (CCPS) in the minipig coronary artery model.MethodsThe three stent types were implanted in the right coronary artery of 30 minipigs. The primary endpoint was in-stent stenosis assessed by quantitative angiography and microscopy. Secondary endpoints were inflammation and thrombogenicity evaluated by scores for inflammation and immunoreactivity (C-reactive protein and transforming growth factor beta). Follow-up was at 4 and 12 weeks.ResultsStent placement was successful in all animals; nomore » thrombus deposition occurred. Quantitative angiography did not depict statistically significant differences between the three stent types after 4 and 12 weeks. Quantitative microscopy at 4 weeks showed a statistically significant thicker neointima (p = 0.0431) for the CYPHER (105.034 {+-} 62.52 {mu}m) versus the TAXUS (74.864 {+-} 66.03 {mu}m) and versus the CCPS (63.542 {+-} 39.57 {mu}m). At 12 weeks there were no statistically significant differences. Inflammation scores at 4 weeks were significantly lower for the CCPS and CYPHER compared with the TAXUS stent (p = 0.0431). After 12 weeks statistical significance was only found for the CYPHER versus the TAXUS stent (p = 0.0431). The semiquantitative immunoreactivity scores for C-reactive protein and transforming growth factor beta showed no statistically significant differences between the three stent types after 4 and 12 weeks.ConclusionsThe CCPS provided effective control of late in-stent stenosis and thrombogenicity in this porcine model compared with the two drug-eluting stents. Its low inflammation score underscores its noninflammatory potential and might explain its equivalence to the two DES.« less

  19. Endometrial cancer risk prediction including serum-based biomarkers: results from the EPIC cohort.

    PubMed

    Fortner, Renée T; Hüsing, Anika; Kühn, Tilman; Konar, Meric; Overvad, Kim; Tjønneland, Anne; Hansen, Louise; Boutron-Ruault, Marie-Christine; Severi, Gianluca; Fournier, Agnès; Boeing, Heiner; Trichopoulou, Antonia; Benetou, Vasiliki; Orfanos, Philippos; Masala, Giovanna; Agnoli, Claudia; Mattiello, Amalia; Tumino, Rosario; Sacerdote, Carlotta; Bueno-de-Mesquita, H B As; Peeters, Petra H M; Weiderpass, Elisabete; Gram, Inger T; Gavrilyuk, Oxana; Quirós, J Ramón; Maria Huerta, José; Ardanaz, Eva; Larrañaga, Nerea; Lujan-Barroso, Leila; Sánchez-Cantalejo, Emilio; Butt, Salma Tunå; Borgquist, Signe; Idahl, Annika; Lundin, Eva; Khaw, Kay-Tee; Allen, Naomi E; Rinaldi, Sabina; Dossus, Laure; Gunter, Marc; Merritt, Melissa A; Tzoulaki, Ioanna; Riboli, Elio; Kaaks, Rudolf

    2017-03-15

    Endometrial cancer risk prediction models including lifestyle, anthropometric and reproductive factors have limited discrimination. Adding biomarker data to these models may improve predictive capacity; to our knowledge, this has not been investigated for endometrial cancer. Using a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, we investigated the improvement in discrimination gained by adding serum biomarker concentrations to risk estimates derived from an existing risk prediction model based on epidemiologic factors. Serum concentrations of sex steroid hormones, metabolic markers, growth factors, adipokines and cytokines were evaluated in a step-wise backward selection process; biomarkers were retained at p < 0.157 indicating improvement in the Akaike information criterion (AIC). Improvement in discrimination was assessed using the C-statistic for all biomarkers alone, and change in C-statistic from addition of biomarkers to preexisting absolute risk estimates. We used internal validation with bootstrapping (1000-fold) to adjust for over-fitting. Adiponectin, estrone, interleukin-1 receptor antagonist, tumor necrosis factor-alpha and triglycerides were selected into the model. After accounting for over-fitting, discrimination was improved by 2.0 percentage points when all evaluated biomarkers were included and 1.7 percentage points in the model including the selected biomarkers. Models including etiologic markers on independent pathways and genetic markers may further improve discrimination. © 2016 UICC.

  20. Properties of different selection signature statistics and a new strategy for combining them.

    PubMed

    Ma, Y; Ding, X; Qanbari, S; Weigend, S; Zhang, Q; Simianer, H

    2015-11-01

    Identifying signatures of recent or ongoing selection is of high relevance in livestock population genomics. From a statistical perspective, determining a proper testing procedure and combining various test statistics is challenging. On the basis of extensive simulations in this study, we discuss the statistical properties of eight different established selection signature statistics. In the considered scenario, we show that a reasonable power to detect selection signatures is achieved with high marker density (>1 SNP/kb) as obtained from sequencing, while rather small sample sizes (~15 diploid individuals) appear to be sufficient. Most selection signature statistics such as composite likelihood ratio and cross population extended haplotype homozogysity have the highest power when fixation of the selected allele is reached, while integrated haplotype score has the highest power when selection is ongoing. We suggest a novel strategy, called de-correlated composite of multiple signals (DCMS) to combine different statistics for detecting selection signatures while accounting for the correlation between the different selection signature statistics. When examined with simulated data, DCMS consistently has a higher power than most of the single statistics and shows a reliable positional resolution. We illustrate the new statistic to the established selective sweep around the lactase gene in human HapMap data providing further evidence of the reliability of this new statistic. Then, we apply it to scan selection signatures in two chicken samples with diverse skin color. Our analysis suggests that a set of well-known genes such as BCO2, MC1R, ASIP and TYR were involved in the divergent selection for this trait.

  1. Identification of reliable gridded reference data for statistical downscaling methods in Alberta

    NASA Astrophysics Data System (ADS)

    Eum, H. I.; Gupta, A.

    2017-12-01

    Climate models provide essential information to assess impacts of climate change at regional and global scales. However, statistical downscaling methods have been applied to prepare climate model data for various applications such as hydrologic and ecologic modelling at a watershed scale. As the reliability and (spatial and temporal) resolution of statistically downscaled climate data mainly depend on a reference data, identifying the most reliable reference data is crucial for statistical downscaling. A growing number of gridded climate products are available for key climate variables which are main input data to regional modelling systems. However, inconsistencies in these climate products, for example, different combinations of climate variables, varying data domains and data lengths and data accuracy varying with physiographic characteristics of the landscape, have caused significant challenges in selecting the most suitable reference climate data for various environmental studies and modelling. Employing various observation-based daily gridded climate products available in public domain, i.e. thin plate spline regression products (ANUSPLIN and TPS), inverse distance method (Alberta Townships), and numerical climate model (North American Regional Reanalysis) and an optimum interpolation technique (Canadian Precipitation Analysis), this study evaluates the accuracy of the climate products at each grid point by comparing with the Adjusted and Homogenized Canadian Climate Data (AHCCD) observations for precipitation, minimum and maximum temperature over the province of Alberta. Based on the performance of climate products at AHCCD stations, we ranked the reliability of these publically available climate products corresponding to the elevations of stations discretized into several classes. According to the rank of climate products for each elevation class, we identified the most reliable climate products based on the elevation of target points. A web-based system was developed to allow users to easily select the most reliable reference climate data at each target point based on the elevation of grid cell. By constructing the best combination of reference data for the study domain, the accurate and reliable statistically downscaled climate projections could be significantly improved.

  2. Chlorophyll a and inorganic suspended solids in backwaters of the upper Mississippi River system: Backwater lake effects and their associations with selected environmental predictors

    USGS Publications Warehouse

    Rogala, James T.; Gray, Brian R.

    2006-01-01

    The Long Term Resource Monitoring Program (LTRMP) uses a stratified random sampling design to obtain water quality statistics within selected study reaches of the Upper Mississippi River System (UMRS). LTRMP sampling strata are based on aquatic area types generally found in large rivers (e.g., main channel, side channel, backwater, and impounded areas). For hydrologically well-mixed strata (i.e., main channel), variance associated with spatial scales smaller than the strata scale is a relatively minor issue for many water quality parameters. However, analysis of LTRMP water quality data has shown that within-strata variability at the strata scale is high in off-channel areas (i.e., backwaters). A portion of that variability may be associated with differences among individual backwater lakes (i.e., small and large backwater regions separated by channels) that cumulatively make up the backwater stratum. The objective of the statistical modeling presented here is to determine if differences among backwater lakes account for a large portion of the variance observed in the backwater stratum for selected parameters. If variance associated with backwater lakes is high, then inclusion of backwater lake effects within statistical models is warranted. Further, lakes themselves may represent natural experimental units where associations of interest to management may be estimated.

  3. Genomic selection & association mapping in rice: effect of trait genetic architecture, training population composition, marker number & statistical model on accuracy of rice genomic selection in elite, tropical rice breeding

    USDA-ARS?s Scientific Manuscript database

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its ef...

  4. Statistical models for the analysis and design of digital polymerase chain (dPCR) experiments

    USGS Publications Warehouse

    Dorazio, Robert; Hunter, Margaret

    2015-01-01

    Statistical methods for the analysis and design of experiments using digital PCR (dPCR) have received only limited attention and have been misused in many instances. To address this issue and to provide a more general approach to the analysis of dPCR data, we describe a class of statistical models for the analysis and design of experiments that require quantification of nucleic acids. These models are mathematically equivalent to generalized linear models of binomial responses that include a complementary, log–log link function and an offset that is dependent on the dPCR partition volume. These models are both versatile and easy to fit using conventional statistical software. Covariates can be used to specify different sources of variation in nucleic acid concentration, and a model’s parameters can be used to quantify the effects of these covariates. For purposes of illustration, we analyzed dPCR data from different types of experiments, including serial dilution, evaluation of copy number variation, and quantification of gene expression. We also showed how these models can be used to help design dPCR experiments, as in selection of sample sizes needed to achieve desired levels of precision in estimates of nucleic acid concentration or to detect differences in concentration among treatments with prescribed levels of statistical power.

  5. Selection of climate change scenario data for impact modelling.

    PubMed

    Sloth Madsen, M; Maule, C Fox; MacKellar, N; Olesen, J E; Christensen, J Hesselbjerg

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented in this paper, applied to relative humidity, but it could be adopted to other variables if needed.

  6. Modeling Selection and Extinction Mechanisms of Biological Systems

    NASA Astrophysics Data System (ADS)

    Amirjanov, Adil

    In this paper, the behavior of a genetic algorithm is modeled to enhance its applicability as a modeling tool of biological systems. A new description model for selection mechanism is introduced which operates on a portion of individuals of population. The extinction and recolonization mechanism is modeled, and solving the dynamics analytically shows that the genetic drift in the population with extinction/recolonization is doubled. The mathematical analysis of the interaction between selection and extinction/recolonization processes is carried out to assess the dynamics of motion of the macroscopic statistical properties of population. Computer simulations confirm that the theoretical predictions of described models are in good approximations. A mathematical model of GA dynamics was also examined, which describes the anti-predator vigilance in an animal group with respect to a known analytical solution of the problem, and showed a good agreement between them to find the evolutionarily stable strategies.

  7. A Developed Meta-model for Selection of Cotton Fabrics Using Design of Experiments and TOPSIS Method

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shankar; Chatterjee, Prasenjit

    2017-12-01

    Selection of cotton fabrics for providing optimal clothing comfort is often considered as a multi-criteria decision making problem consisting of an array of candidate alternatives to be evaluated based of several conflicting properties. In this paper, design of experiments and technique for order preference by similarity to ideal solution (TOPSIS) are integrated so as to develop regression meta-models for identifying the most suitable cotton fabrics with respect to the computed TOPSIS scores. The applicability of the adopted method is demonstrated using two real time examples. These developed models can also identify the statistically significant fabric properties and their interactions affecting the measured TOPSIS scores and final selection decisions. There exists good degree of congruence between the ranking patterns as derived using these meta-models and the existing methods for cotton fabric ranking and subsequent selection.

  8. Statistical density modification using local pattern matching

    DOEpatents

    Terwilliger, Thomas C.

    2007-01-23

    A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.

  9. The Role of Feature Selection and Statistical Weighting in ...

    EPA Pesticide Factsheets

    Our study assesses the value of both in vitro assay and quantitative structure activity relationship (QSAR) data in predicting in vivo toxicity using numerous statistical models and approaches to process the data. Our models are built on datasets of (i) 586 chemicals for which both in vitro and in vivo data are currently available in EPA’s Toxcast and ToxRefDB databases, respectively, and (ii) 769 chemicals for which both QSAR data and in vivo data exist. Similar to a previous study (based on just 309 chemicals, Thomas et al. 2012), after converting the continuous values from each dataset to binary values, the majority of more than 1,000 in vivo endpoints are poorly predicted. Even for the endpoints that are well predicted (about 40 with an F1 score of >0.75), imbalances in in vivo endpoint data or cytotoxicity across in vitro assays may be skewing results. In order to better account for these types of considerations, we examine best practices in data preprocessing and model fitting in real-world contexts where data are rife with imperfections. We discuss options for dealing with missing data, including omitting observations, aggregating variables, and imputing values. We also examine the impacts of feature selection (from both a statistical and biological perspective) on performance and efficiency, and we weight outcome data to reduce endpoint imbalances to account for potential chemical selection bias and assess revised performance. For example, initial weig

  10. Summer and winter habitat suitability of Marco Polo argali in southeastern Tajikistan: A modeling approach.

    PubMed

    Salas, Eric Ariel L; Valdez, Raul; Michel, Stefan

    2017-11-01

    We modeled summer and winter habitat suitability of Marco Polo argali in the Pamir Mountains in southeastern Tajikistan using these statistical algorithms: Generalized Linear Model, Random Forest, Boosted Regression Tree, Maxent, and Multivariate Adaptive Regression Splines. Using sheep occurrence data collected from 2009 to 2015 and a set of selected habitat predictors, we produced summer and winter habitat suitability maps and determined the important habitat suitability predictors for both seasons. Our results demonstrated that argali selected proximity to riparian areas and greenness as the two most relevant variables for summer, and the degree of slope (gentler slopes between 0° to 20°) and Landsat temperature band for winter. The terrain roughness was also among the most important variables in summer and winter models. Aspect was only significant for winter habitat, with argali preferring south-facing mountain slopes. We evaluated various measures of model performance such as the Area Under the Curve (AUC) and the True Skill Statistic (TSS). Comparing the five algorithms, the AUC scored highest for Boosted Regression Tree in summer (AUC = 0.94) and winter model runs (AUC = 0.94). In contrast, Random Forest underperformed in both model runs.

  11. Liver segmentation from CT images using a sparse priori statistical shape model (SP-SSM).

    PubMed

    Wang, Xuehu; Zheng, Yongchang; Gan, Lan; Wang, Xuan; Sang, Xinting; Kong, Xiangfeng; Zhao, Jie

    2017-01-01

    This study proposes a new liver segmentation method based on a sparse a priori statistical shape model (SP-SSM). First, mark points are selected in the liver a priori model and the original image. Then, the a priori shape and its mark points are used to obtain a dictionary for the liver boundary information. Second, the sparse coefficient is calculated based on the correspondence between mark points in the original image and those in the a priori model, and then the sparse statistical model is established by combining the sparse coefficients and the dictionary. Finally, the intensity energy and boundary energy models are built based on the intensity information and the specific boundary information of the original image. Then, the sparse matching constraint model is established based on the sparse coding theory. These models jointly drive the iterative deformation of the sparse statistical model to approximate and accurately extract the liver boundaries. This method can solve the problems of deformation model initialization and a priori method accuracy using the sparse dictionary. The SP-SSM can achieve a mean overlap error of 4.8% and a mean volume difference of 1.8%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 0.8 mm and 1.4 mm, respectively.

  12. Inferring the Mode of Selection from the Transient Response to Demographic Perturbations

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Do, Ron; Reich, David; Sunyaev, Shamil

    2014-03-01

    Despite substantial recent progress in theoretical population genetics, most models work under the assumption of a constant population size. Deviations from fixed population sizes are ubiquitous in natural populations, many of which experience population bottlenecks and re-expansions. The non-equilibrium dynamics introduced by a large perturbation in population size are generally viewed as a confounding factor. In the present work, we take advantage of the transient response to a population bottleneck to infer features of the mode of selection and the distribution of selective effects. We develop an analytic framework and a corresponding statistical test that qualitatively differentiates between alleles under additive and those under recessive or more general epistatic selection. This statistic can be used to bound the joint distribution of selective effects and dominance effects in any diploid sexual organism. We apply this technique to human population genetic data, and severely restrict the space of allowed selective coefficients in humans. Additionally, one can test a set of functionally or medically relevant alleles for the primary mode of selection, or determine the local regional variation in dominance coefficients along the genome.

  13. Visual search in scenes involves selective and non-selective pathways

    PubMed Central

    Wolfe, Jeremy M; Vo, Melissa L-H; Evans, Karla K; Greene, Michelle R

    2010-01-01

    How do we find objects in scenes? For decades, visual search models have been built on experiments in which observers search for targets, presented among distractor items, isolated and randomly arranged on blank backgrounds. Are these models relevant to search in continuous scenes? This paper argues that the mechanisms that govern artificial, laboratory search tasks do play a role in visual search in scenes. However, scene-based information is used to guide search in ways that had no place in earlier models. Search in scenes may be best explained by a dual-path model: A “selective” path in which candidate objects must be individually selected for recognition and a “non-selective” path in which information can be extracted from global / statistical information. PMID:21227734

  14. Distinguishing between Selective Sweeps from Standing Variation and from a De Novo Mutation

    PubMed Central

    Peter, Benjamin M.; Huerta-Sanchez, Emilia; Nielsen, Rasmus

    2012-01-01

    An outstanding question in human genetics has been the degree to which adaptation occurs from standing genetic variation or from de novo mutations. Here, we combine several common statistics used to detect selection in an Approximate Bayesian Computation (ABC) framework, with the goal of discriminating between models of selection and providing estimates of the age of selected alleles and the selection coefficients acting on them. We use simulations to assess the power and accuracy of our method and apply it to seven of the strongest sweeps currently known in humans. We identify two genes, ASPM and PSCA, that are most likely affected by selection on standing variation; and we find three genes, ADH1B, LCT, and EDAR, in which the adaptive alleles seem to have swept from a new mutation. We also confirm evidence of selection for one further gene, TRPV6. In one gene, G6PD, neither neutral models nor models of selective sweeps fit the data, presumably because this locus has been subject to balancing selection. PMID:23071458

  15. Emerging Techniques for Dose Optimization in Abdominal CT

    PubMed Central

    Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit

    2014-01-01

    Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277

  16. Natural Selection as Coarsening

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2017-11-01

    Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

  17. Natural Selection as Coarsening

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2018-07-01

    Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

  18. Measuring the Sensitivity of Single-locus “Neutrality Tests” Using a Direct Perturbation Approach

    PubMed Central

    Garrigan, Daniel; Lewontin, Richard; Wakeley, John

    2010-01-01

    A large number of statistical tests have been proposed to detect natural selection based on a sample of variation at a single genetic locus. These tests measure the deviation of the allelic frequency distribution observed within populations from the distribution expected under a set of assumptions that includes both neutral evolution and equilibrium population demography. The present study considers a new way to assess the statistical properties of these tests of selection, by their behavior in response to direct perturbations of the steady-state allelic frequency distribution, unconstrained by any particular nonequilibrium demographic scenario. Results from Monte Carlo computer simulations indicate that most tests of selection are more sensitive to perturbations of the allele frequency distribution that increase the variance in allele frequencies than to perturbations that decrease the variance. Simulations also demonstrate that it requires, on average, 4N generations (N is the diploid effective population size) for tests of selection to relax to their theoretical, steady-state distributions following different perturbations of the allele frequency distribution to its extremes. This relatively long relaxation time highlights the fact that these tests are not robust to violations of the other assumptions of the null model besides neutrality. Lastly, genetic variation arising under an example of a regularly cycling demographic scenario is simulated. Tests of selection performed on this last set of simulated data confirm the confounding nature of these tests for the inference of natural selection, under a demographic scenario that likely holds for many species. The utility of using empirical, genomic distributions of test statistics, instead of the theoretical steady-state distribution, is discussed as an alternative for improving the statistical inference of natural selection. PMID:19744997

  19. A comparison of linear interpolation models for iterative CT reconstruction.

    PubMed

    Hahn, Katharina; Schöndube, Harald; Stierstorfer, Karl; Hornegger, Joachim; Noo, Frédéric

    2016-12-01

    Recent reports indicate that model-based iterative reconstruction methods may improve image quality in computed tomography (CT). One difficulty with these methods is the number of options available to implement them, including the selection of the forward projection model and the penalty term. Currently, the literature is fairly scarce in terms of guidance regarding this selection step, whereas these options impact image quality. Here, the authors investigate the merits of three forward projection models that rely on linear interpolation: the distance-driven method, Joseph's method, and the bilinear method. The authors' selection is motivated by three factors: (1) in CT, linear interpolation is often seen as a suitable trade-off between discretization errors and computational cost, (2) the first two methods are popular with manufacturers, and (3) the third method enables assessing the importance of a key assumption in the other methods. One approach to evaluate forward projection models is to inspect their effect on discretized images, as well as the effect of their transpose on data sets, but significance of such studies is unclear since the matrix and its transpose are always jointly used in iterative reconstruction. Another approach is to investigate the models in the context they are used, i.e., together with statistical weights and a penalty term. Unfortunately, this approach requires the selection of a preferred objective function and does not provide clear information on features that are intrinsic to the model. The authors adopted the following two-stage methodology. First, the authors analyze images that progressively include components of the singular value decomposition of the model in a reconstructed image without statistical weights and penalty term. Next, the authors examine the impact of weights and penalty on observed differences. Image quality metrics were investigated for 16 different fan-beam imaging scenarios that enabled probing various aspects of all models. The metrics include a surrogate for computational cost, as well as bias, noise, and an estimation task, all at matched resolution. The analysis revealed fundamental differences in terms of both bias and noise. Task-based assessment appears to be required to appreciate the differences in noise; the estimation task the authors selected showed that these differences balance out to yield similar performance. Some scenarios highlighted merits for the distance-driven method in terms of bias but with an increase in computational cost. Three combinations of statistical weights and penalty term showed that the observed differences remain the same, but strong edge-preserving penalty can dramatically reduce the magnitude of these differences. In many scenarios, Joseph's method seems to offer an interesting compromise between cost and computational effort. The distance-driven method offers the possibility to reduce bias but with an increase in computational cost. The bilinear method indicated that a key assumption in the other two methods is highly robust. Last, strong edge-preserving penalty can act as a compensator for insufficiencies in the forward projection model, bringing all models to similar levels in the most challenging imaging scenarios. Also, the authors find that their evaluation methodology helps appreciating how model, statistical weights, and penalty term interplay together.

  20. Will genomic selection be a practical method for plant breeding?

    PubMed

    Nakaya, Akihiro; Isobe, Sachiko N

    2012-11-01

    Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory.

  1. Background noise spectra of global seismic stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefitsmore » those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.« less

  2. A method for deterministic statistical downscaling of daily precipitation at a monsoonal site in Eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Yonghe; Feng, Jinming; Liu, Xiu; Zhao, Yadi

    2017-12-01

    Statistical downscaling (SD) is a method that acquires the local information required for hydrological impact assessment from large-scale atmospheric variables. Very few statistical and deterministic downscaling models for daily precipitation have been conducted for local sites influenced by the East Asian monsoon. In this study, SD models were constructed by selecting the best predictors and using generalized linear models (GLMs) for Feixian, a site in the Yishu River Basin and Shandong Province. By calculating and mapping Spearman rank correlation coefficients between the gridded standardized values of five large-scale variables and daily observed precipitation, different cyclonic circulation patterns were found for monsoonal precipitation in summer (June-September) and winter (November-December and January-March); the values of the gridded boxes with the highest absolute correlations for observed precipitation were selected as predictors. Data for predictors and predictands covered the period 1979-2015, and different calibration and validation periods were divided when fitting and validating the models. Meanwhile, the bootstrap method was also used to fit the GLM. All the above thorough validations indicated that the models were robust and not sensitive to different samples or different periods. Pearson's correlations between downscaled and observed precipitation (logarithmically transformed) on a daily scale reached 0.54-0.57 in summer and 0.56-0.61 in winter, and the Nash-Sutcliffe efficiency between downscaled and observed precipitation reached 0.1 in summer and 0.41 in winter. The downscaled precipitation partially reflected exact variations in winter and main trends in summer for total interannual precipitation. For the number of wet days, both winter and summer models were able to reflect interannual variations. Other comparisons were also made in this study. These results demonstrated that when downscaling, it is appropriate to combine a correlation-based predictor selection across a spatial domain with GLM modeling.

  3. Statistical Considerations Concerning Dissimilar Regulatory Requirements for Dissolution Similarity Assessment. The Example of Immediate-Release Dosage Forms.

    PubMed

    Jasińska-Stroschein, Magdalena; Kurczewska, Urszula; Orszulak-Michalak, Daria

    2017-05-01

    When performing in vitro dissolution testing, especially in the area of biowaivers, it is necessary to follow regulatory guidelines to minimize the risk of an unsafe or ineffective product being approved. The present study examines model-independent and model-dependent methods of comparing dissolution profiles based on various compared and contrasted international guidelines. Dissolution profiles for immediate release solid oral dosage forms were generated. The test material comprised tablets containing several substances, with at least 85% of the labeled amount dissolved within 15 min, 20-30 min, or 45 min. Dissolution profile similarity can vary with regard to the following criteria: time point selection (including the last time point), coefficient of variation, and statistical method selection. Variation between regulatory guidance and statistical methods can raise methodological questions and result potentially in a different outcome when reporting dissolution profile testing. The harmonization of existing guidelines would address existing problems concerning the interpretation of regulatory recommendations and research findings. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Ecological statistics of Gestalt laws for the perceptual organization of contours.

    PubMed

    Elder, James H; Goldberg, Richard M

    2002-01-01

    Although numerous studies have measured the strength of visual grouping cues for controlled psychophysical stimuli, little is known about the statistical utility of these various cues for natural images. In this study, we conducted experiments in which human participants trace perceived contours in natural images. These contours are automatically mapped to sequences of discrete tangent elements detected in the image. By examining relational properties between pairs of successive tangents on these traced curves, and between randomly selected pairs of tangents, we are able to estimate the likelihood distributions required to construct an optimal Bayesian model for contour grouping. We employed this novel methodology to investigate the inferential power of three classical Gestalt cues for contour grouping: proximity, good continuation, and luminance similarity. The study yielded a number of important results: (1) these cues, when appropriately defined, are approximately uncorrelated, suggesting a simple factorial model for statistical inference; (2) moderate image-to-image variation of the statistics indicates the utility of general probabilistic models for perceptual organization; (3) these cues differ greatly in their inferential power, proximity being by far the most powerful; and (4) statistical modeling of the proximity cue indicates a scale-invariant power law in close agreement with prior psychophysics.

  5. Burglar Target Selection

    PubMed Central

    Townsley, Michael; Bernasco, Wim; Ruiter, Stijn; Johnson, Shane D.; White, Gentry; Baum, Scott

    2015-01-01

    Objectives: This study builds on research undertaken by Bernasco and Nieuwbeerta and explores the generalizability of a theoretically derived offender target selection model in three cross-national study regions. Methods: Taking a discrete spatial choice approach, we estimate the impact of both environment- and offender-level factors on residential burglary placement in the Netherlands, the United Kingdom, and Australia. Combining cleared burglary data from all study regions in a single statistical model, we make statistical comparisons between environments. Results: In all three study regions, the likelihood an offender selects an area for burglary is positively influenced by proximity to their home, the proportion of easily accessible targets, and the total number of targets available. Furthermore, in two of the three study regions, juvenile offenders under the legal driving age are significantly more influenced by target proximity than adult offenders. Post hoc tests indicate the magnitudes of these impacts vary significantly between study regions. Conclusions: While burglary target selection strategies are consistent with opportunity-based explanations of offending, the impact of environmental context is significant. As such, the approach undertaken in combining observations from multiple study regions may aid criminology scholars in assessing the generalizability of observed findings across multiple environments. PMID:25866418

  6. Model selection and parameter estimation in structural dynamics using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Ben Abdessalem, Anis; Dervilis, Nikolaos; Wagg, David; Worden, Keith

    2018-01-01

    This paper will introduce the use of the approximate Bayesian computation (ABC) algorithm for model selection and parameter estimation in structural dynamics. ABC is a likelihood-free method typically used when the likelihood function is either intractable or cannot be approached in a closed form. To circumvent the evaluation of the likelihood function, simulation from a forward model is at the core of the ABC algorithm. The algorithm offers the possibility to use different metrics and summary statistics representative of the data to carry out Bayesian inference. The efficacy of the algorithm in structural dynamics is demonstrated through three different illustrative examples of nonlinear system identification: cubic and cubic-quintic models, the Bouc-Wen model and the Duffing oscillator. The obtained results suggest that ABC is a promising alternative to deal with model selection and parameter estimation issues, specifically for systems with complex behaviours.

  7. Treatment Selection in Depression.

    PubMed

    Cohen, Zachary D; DeRubeis, Robert J

    2018-05-07

    Mental health researchers and clinicians have long sought answers to the question "What works for whom?" The goal of precision medicine is to provide evidence-based answers to this question. Treatment selection in depression aims to help each individual receive the treatment, among the available options, that is most likely to lead to a positive outcome for them. Although patient variables that are predictive of response to treatment have been identified, this knowledge has not yet translated into real-world treatment recommendations. The Personalized Advantage Index (PAI) and related approaches combine information obtained prior to the initiation of treatment into multivariable prediction models that can generate individualized predictions to help clinicians and patients select the right treatment. With increasing availability of advanced statistical modeling approaches, as well as novel predictive variables and big data, treatment selection models promise to contribute to improved outcomes in depression.

  8. Development of a statistical oil spill model for risk assessment.

    PubMed

    Guo, Weijun

    2017-11-01

    To gain a better understanding of the impacts from potential risk sources, we developed an oil spill model using probabilistic method, which simulates numerous oil spill trajectories under varying environmental conditions. The statistical results were quantified from hypothetical oil spills under multiple scenarios, including area affected probability, mean oil slick thickness, and duration of water surface exposed to floating oil. The three sub-indices together with marine area vulnerability are merged to compute the composite index, characterizing the spatial distribution of risk degree. Integral of the index can be used to identify the overall risk from an emission source. The developed model has been successfully applied in comparison to and selection of an appropriate oil port construction location adjacent to a marine protected area for Phoca largha in China. The results highlight the importance of selection of candidates before project construction, since that risk estimation from two adjacent potential sources may turn out to be significantly different regarding hydrodynamic conditions and eco-environmental sensitivity. Copyright © 2017. Published by Elsevier Ltd.

  9. A Bayesian Approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures.

    PubMed

    Tanner, Martin A.; Peng, Fengchun; Jacobs, Robert A.

    1997-03-01

    There does not exist a statistical model that shows good performance on all tasks. Consequently, the model selection problem is unavoidable; investigators must decide which model is best at summarizing the data for each task of interest. This article presents an approach to the model selection problem in hierarchical mixtures-of-experts architectures. These architectures combine aspects of generalized linear models with those of finite mixture models in order to perform tasks via a recursive "divide-and-conquer" strategy. Markov chain Monte Carlo methodology is used to estimate the distribution of the architectures' parameters. One part of our approach to model selection attempts to estimate the worth of each component of an architecture so that relatively unused components can be pruned from the architecture's structure. A second part of this approach uses a Bayesian hypothesis testing procedure in order to differentiate inputs that carry useful information from nuisance inputs. Simulation results suggest that the approach presented here adheres to the dictum of Occam's razor; simple architectures that are adequate for summarizing the data are favored over more complex structures. Copyright 1997 Elsevier Science Ltd. All Rights Reserved.

  10. How Reliable is Bayesian Model Averaging Under Noisy Data? Statistical Assessment and Implications for Robust Model Selection

    NASA Astrophysics Data System (ADS)

    Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang

    2014-05-01

    Bayesian model averaging ranks the predictive capabilities of alternative conceptual models based on Bayes' theorem. The individual models are weighted with their posterior probability to be the best one in the considered set of models. Finally, their predictions are combined into a robust weighted average and the predictive uncertainty can be quantified. This rigorous procedure does, however, not yet account for possible instabilities due to measurement noise in the calibration data set. This is a major drawback, since posterior model weights may suffer a lack of robustness related to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new statistical concept to account for measurement noise as source of uncertainty for the weights in Bayesian model averaging. Our suggested upgrade reflects the limited information content of data for the purpose of model selection. It allows us to assess the significance of the determined posterior model weights, the confidence in model selection, and the accuracy of the quantified predictive uncertainty. Our approach rests on a brute-force Monte Carlo framework. We determine the robustness of model weights against measurement noise by repeatedly perturbing the observed data with random realizations of measurement error. Then, we analyze the induced variability in posterior model weights and introduce this "weighting variance" as an additional term into the overall prediction uncertainty analysis scheme. We further determine the theoretical upper limit in performance of the model set which is imposed by measurement noise. As an extension to the merely relative model ranking, this analysis provides a measure of absolute model performance. To finally decide, whether better data or longer time series are needed to ensure a robust basis for model selection, we resample the measurement time series and assess the convergence of model weights for increasing time series length. We illustrate our suggested approach with an application to model selection between different soil-plant models following up on a study by Wöhling et al. (2013). Results show that measurement noise compromises the reliability of model ranking and causes a significant amount of weighting uncertainty, if the calibration data time series is not long enough to compensate for its noisiness. This additional contribution to the overall predictive uncertainty is neglected without our approach. Thus, we strongly advertise to include our suggested upgrade in the Bayesian model averaging routine.

  11. Consequences of Base Time for Redundant Signals Experiments

    PubMed Central

    Townsend, James T.; Honey, Christopher

    2007-01-01

    We report analytical and computational investigations into the effects of base time on the diagnosticity of two popular theoretical tools in the redundant signals literature: (1) the race model inequality and (2) the capacity coefficient. We show analytically and without distributional assumptions that the presence of base time decreases the sensitivity of both of these measures to model violations. We further use simulations to investigate the statistical power model selection tools based on the race model inequality, both with and without base time. Base time decreases statistical power, and biases the race model test toward conservatism. The magnitude of this biasing effect increases as we increase the proportion of total reaction time variance contributed by base time. We marshal empirical evidence to suggest that the proportion of reaction time variance contributed by base time is relatively small, and that the effects of base time on the diagnosticity of our model-selection tools are therefore likely to be minor. However, uncertainty remains concerning the magnitude and even the definition of base time. Experimentalists should continue to be alert to situations in which base time may contribute a large proportion of the total reaction time variance. PMID:18670591

  12. RANdom SAmple Consensus (RANSAC) algorithm for material-informatics: application to photovoltaic solar cells.

    PubMed

    Kaspi, Omer; Yosipof, Abraham; Senderowitz, Hanoch

    2017-06-06

    An important aspect of chemoinformatics and material-informatics is the usage of machine learning algorithms to build Quantitative Structure Activity Relationship (QSAR) models. The RANdom SAmple Consensus (RANSAC) algorithm is a predictive modeling tool widely used in the image processing field for cleaning datasets from noise. RANSAC could be used as a "one stop shop" algorithm for developing and validating QSAR models, performing outlier removal, descriptors selection, model development and predictions for test set samples using applicability domain. For "future" predictions (i.e., for samples not included in the original test set) RANSAC provides a statistical estimate for the probability of obtaining reliable predictions, i.e., predictions within a pre-defined number of standard deviations from the true values. In this work we describe the first application of RNASAC in material informatics, focusing on the analysis of solar cells. We demonstrate that for three datasets representing different metal oxide (MO) based solar cell libraries RANSAC-derived models select descriptors previously shown to correlate with key photovoltaic properties and lead to good predictive statistics for these properties. These models were subsequently used to predict the properties of virtual solar cells libraries highlighting interesting dependencies of PV properties on MO compositions.

  13. Global Sensitivity Analysis of Environmental Systems via Multiple Indices based on Statistical Moments of Model Outputs

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Riva, M.; Dell'Oca, A.

    2017-12-01

    We propose to ground sensitivity of uncertain parameters of environmental models on a set of indices based on the main (statistical) moments, i.e., mean, variance, skewness and kurtosis, of the probability density function (pdf) of a target model output. This enables us to perform Global Sensitivity Analysis (GSA) of a model in terms of multiple statistical moments and yields a quantification of the impact of model parameters on features driving the shape of the pdf of model output. Our GSA approach includes the possibility of being coupled with the construction of a reduced complexity model that allows approximating the full model response at a reduced computational cost. We demonstrate our approach through a variety of test cases. These include a commonly used analytical benchmark, a simplified model representing pumping in a coastal aquifer, a laboratory-scale tracer experiment, and the migration of fracturing fluid through a naturally fractured reservoir (source) to reach an overlying formation (target). Our strategy allows discriminating the relative importance of model parameters to the four statistical moments considered. We also provide an appraisal of the error associated with the evaluation of our sensitivity metrics by replacing the original system model through the selected surrogate model. Our results suggest that one might need to construct a surrogate model with increasing level of accuracy depending on the statistical moment considered in the GSA. The methodological framework we propose can assist the development of analysis techniques targeted to model calibration, design of experiment, uncertainty quantification and risk assessment.

  14. VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS

    PubMed Central

    Huang, Jian; Horowitz, Joel L.; Wei, Fengrong

    2010-01-01

    We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is “small” relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method. PMID:21127739

  15. Effects and detection of raw material variability on the performance of near-infrared calibration models for pharmaceutical products.

    PubMed

    Igne, Benoit; Shi, Zhenqi; Drennen, James K; Anderson, Carl A

    2014-02-01

    The impact of raw material variability on the prediction ability of a near-infrared calibration model was studied. Calibrations, developed from a quaternary mixture design comprising theophylline anhydrous, lactose monohydrate, microcrystalline cellulose, and soluble starch, were challenged by intentional variation of raw material properties. A design with two theophylline physical forms, three lactose particle sizes, and two starch manufacturers was created to test model robustness. Further challenges to the models were accomplished through environmental conditions. Along with full-spectrum partial least squares (PLS) modeling, variable selection by dynamic backward PLS and genetic algorithms was utilized in an effort to mitigate the effects of raw material variability. In addition to evaluating models based on their prediction statistics, prediction residuals were analyzed by analyses of variance and model diagnostics (Hotelling's T(2) and Q residuals). Full-spectrum models were significantly affected by lactose particle size. Models developed by selecting variables gave lower prediction errors and proved to be a good approach to limit the effect of changing raw material characteristics. Hotelling's T(2) and Q residuals provided valuable information that was not detectable when studying only prediction trends. Diagnostic statistics were demonstrated to be critical in the appropriate interpretation of the prediction of quality parameters. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany

    PubMed Central

    Wang, Zhu; Shuangge, Ma; Wang, Ching-Yun

    2017-01-01

    In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using an open-source R package mpath. PMID:26059498

  17. Conjoint Analysis: A Study of the Effects of Using Person Variables.

    ERIC Educational Resources Information Center

    Fraas, John W.; Newman, Isadore

    Three statistical techniques--conjoint analysis, a multiple linear regression model, and a multiple linear regression model with a surrogate person variable--were used to estimate the relative importance of five university attributes for students in the process of selecting a college. The five attributes include: availability and variety of…

  18. Minimizing bias in biomass allometry: Model selection and log transformation of data

    Treesearch

    Joseph Mascaro; undefined undefined; Flint Hughes; Amanda Uowolo; Stefan A. Schnitzer

    2011-01-01

    Nonlinear regression is increasingly used to develop allometric equations for forest biomass estimation (i.e., as opposed to the raditional approach of log-transformation followed by linear regression). Most statistical software packages, however, assume additive errors by default, violating a key assumption of allometric theory and possibly producing spurious models....

  19. An Empirical Comparison of Selected Two-Sample Hypothesis Testing Procedures Which Are Locally Most Powerful Under Certain Conditions.

    ERIC Educational Resources Information Center

    Hoover, H. D.; Plake, Barbara

    The relative power of the Mann-Whitney statistic, the t-statistic, the median test, a test based on exceedances (A,B), and two special cases of (A,B) the Tukey quick test and the revised Tukey quick test, was investigated via a Monte Carlo experiment. These procedures were compared across four population probability models: uniform, beta, normal,…

  20. Individualized statistical learning from medical image databases: application to identification of brain lesions.

    PubMed

    Erus, Guray; Zacharaki, Evangelia I; Davatzikos, Christos

    2014-04-01

    This paper presents a method for capturing statistical variation of normal imaging phenotypes, with emphasis on brain structure. The method aims to estimate the statistical variation of a normative set of images from healthy individuals, and identify abnormalities as deviations from normality. A direct estimation of the statistical variation of the entire volumetric image is challenged by the high-dimensionality of images relative to smaller sample sizes. To overcome this limitation, we iteratively sample a large number of lower dimensional subspaces that capture image characteristics ranging from fine and localized to coarser and more global. Within each subspace, a "target-specific" feature selection strategy is applied to further reduce the dimensionality, by considering only imaging characteristics present in a test subject's images. Marginal probability density functions of selected features are estimated through PCA models, in conjunction with an "estimability" criterion that limits the dimensionality of estimated probability densities according to available sample size and underlying anatomy variation. A test sample is iteratively projected to the subspaces of these marginals as determined by PCA models, and its trajectory delineates potential abnormalities. The method is applied to segmentation of various brain lesion types, and to simulated data on which superiority of the iterative method over straight PCA is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Individualized Statistical Learning from Medical Image Databases: Application to Identification of Brain Lesions

    PubMed Central

    Erus, Guray; Zacharaki, Evangelia I.; Davatzikos, Christos

    2014-01-01

    This paper presents a method for capturing statistical variation of normal imaging phenotypes, with emphasis on brain structure. The method aims to estimate the statistical variation of a normative set of images from healthy individuals, and identify abnormalities as deviations from normality. A direct estimation of the statistical variation of the entire volumetric image is challenged by the high-dimensionality of images relative to smaller sample sizes. To overcome this limitation, we iteratively sample a large number of lower dimensional subspaces that capture image characteristics ranging from fine and localized to coarser and more global. Within each subspace, a “target-specific” feature selection strategy is applied to further reduce the dimensionality, by considering only imaging characteristics present in a test subject’s images. Marginal probability density functions of selected features are estimated through PCA models, in conjunction with an “estimability” criterion that limits the dimensionality of estimated probability densities according to available sample size and underlying anatomy variation. A test sample is iteratively projected to the subspaces of these marginals as determined by PCA models, and its trajectory delineates potential abnormalities. The method is applied to segmentation of various brain lesion types, and to simulated data on which superiority of the iterative method over straight PCA is demonstrated. PMID:24607564

  2. Optimizing DNA assembly based on statistical language modelling.

    PubMed

    Fang, Gang; Zhang, Shemin; Dong, Yafei

    2017-12-15

    By successively assembling genetic parts such as BioBrick according to grammatical models, complex genetic constructs composed of dozens of functional blocks can be built. However, usually every category of genetic parts includes a few or many parts. With increasing quantity of genetic parts, the process of assembling more than a few sets of these parts can be expensive, time consuming and error prone. At the last step of assembling it is somewhat difficult to decide which part should be selected. Based on statistical language model, which is a probability distribution P(s) over strings S that attempts to reflect how frequently a string S occurs as a sentence, the most commonly used parts will be selected. Then, a dynamic programming algorithm was designed to figure out the solution of maximum probability. The algorithm optimizes the results of a genetic design based on a grammatical model and finds an optimal solution. In this way, redundant operations can be reduced and the time and cost required for conducting biological experiments can be minimized. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. A statistical inference for concentrations of benzo[a]pyrene partially measured in the ambient air of an industrial city in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Yongku; Seo, Young-Kyo; Baek, Sung-Ok

    2013-12-01

    Although large quantities of air pollutants are released into the atmosphere, they are partially monitored and routinely assessed for their health implications. This paper proposes a statistical model describing the temporal behavior of hazardous air pollutants (HAPs), which can have negative effects on human health. Benzo[a]pyrene (BaP) is selected for statistical modeling. The proposed model incorporates the linkage between BaP and meteorology and is specifically formulated to identify meteorological effects and allow for seasonal trends. The model is used to estimate and forecast temporal fields of BaP conditional on observed (or forecasted) meteorological conditions, including temperature, precipitation, wind speed, and air quality. The effects of BaP on human health are examined by characterizing health indicators, namely the cancer risk and the hazard quotient. The model provides useful information for the optimal monitoring period and projection of future BaP concentrations for both industrial and residential areas in Korea.

  4. [Quantitative structure-gas chromatographic retention relationship of polycyclic aromatic sulfur heterocycles using molecular electronegativity-distance vector].

    PubMed

    Li, Zhenghua; Cheng, Fansheng; Xia, Zhining

    2011-01-01

    The chemical structures of 114 polycyclic aromatic sulfur heterocycles (PASHs) have been studied by molecular electronegativity-distance vector (MEDV). The linear relationships between gas chromatographic retention index and the MEDV have been established by a multiple linear regression (MLR) model. The results of variable selection by stepwise multiple regression (SMR) and the powerful predictive abilities of the optimization model appraised by leave-one-out cross-validation showed that the optimization model with the correlation coefficient (R) of 0.994 7 and the cross-validated correlation coefficient (Rcv) of 0.994 0 possessed the best statistical quality. Furthermore, when the 114 PASHs compounds were divided into calibration and test sets in the ratio of 2:1, the statistical analysis showed our models possesses almost equal statistical quality, the very similar regression coefficients and the good robustness. The quantitative structure-retention relationship (QSRR) model established may provide a convenient and powerful method for predicting the gas chromatographic retention of PASHs.

  5. Effect of heating rate and kinetic model selection on activation energy of nonisothermal crystallization of amorphous felodipine.

    PubMed

    Chattoraj, Sayantan; Bhugra, Chandan; Li, Zheng Jane; Sun, Changquan Calvin

    2014-12-01

    The nonisothermal crystallization kinetics of amorphous materials is routinely analyzed by statistically fitting the crystallization data to kinetic models. In this work, we systematically evaluate how the model-dependent crystallization kinetics is impacted by variations in the heating rate and the selection of the kinetic model, two key factors that can lead to significant differences in the crystallization activation energy (Ea ) of an amorphous material. Using amorphous felodipine, we show that the Ea decreases with increase in the heating rate, irrespective of the kinetic model evaluated in this work. The model that best describes the crystallization phenomenon cannot be identified readily through the statistical fitting approach because several kinetic models yield comparable R(2) . Here, we propose an alternate paired model-fitting model-free (PMFMF) approach for identifying the most suitable kinetic model, where Ea obtained from model-dependent kinetics is compared with those obtained from model-free kinetics. The most suitable kinetic model is identified as the one that yields Ea values comparable with the model-free kinetics. Through this PMFMF approach, nucleation and growth is identified as the main mechanism that controls the crystallization kinetics of felodipine. Using this PMFMF approach, we further demonstrate that crystallization mechanism from amorphous phase varies with heating rate. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Model selection and assessment for multi­-species occupancy models

    USGS Publications Warehouse

    Broms, Kristin M.; Hooten, Mevin B.; Fitzpatrick, Ryan M.

    2016-01-01

    While multi-species occupancy models (MSOMs) are emerging as a popular method for analyzing biodiversity data, formal checking and validation approaches for this class of models have lagged behind. Concurrent with the rise in application of MSOMs among ecologists, a quiet regime shift is occurring in Bayesian statistics where predictive model comparison approaches are experiencing a resurgence. Unlike single-species occupancy models that use integrated likelihoods, MSOMs are usually couched in a Bayesian framework and contain multiple levels. Standard model checking and selection methods are often unreliable in this setting and there is only limited guidance in the ecological literature for this class of models. We examined several different contemporary Bayesian hierarchical approaches for checking and validating MSOMs and applied these methods to a freshwater aquatic study system in Colorado, USA, to better understand the diversity and distributions of plains fishes. Our findings indicated distinct differences among model selection approaches, with cross-validation techniques performing the best in terms of prediction.

  7. Patterns of medicinal plant use: an examination of the Ecuadorian Shuar medicinal flora using contingency table and binomial analyses.

    PubMed

    Bennett, Bradley C; Husby, Chad E

    2008-03-28

    Botanical pharmacopoeias are non-random subsets of floras, with some taxonomic groups over- or under-represented. Moerman [Moerman, D.E., 1979. Symbols and selectivity: a statistical analysis of Native American medical ethnobotany, Journal of Ethnopharmacology 1, 111-119] introduced linear regression/residual analysis to examine these patterns. However, regression, the commonly-employed analysis, suffers from several statistical flaws. We use contingency table and binomial analyses to examine patterns of Shuar medicinal plant use (from Amazonian Ecuador). We first analyzed the Shuar data using Moerman's approach, modified to better meet requirements of linear regression analysis. Second, we assessed the exact randomization contingency table test for goodness of fit. Third, we developed a binomial model to test for non-random selection of plants in individual families. Modified regression models (which accommodated assumptions of linear regression) reduced R(2) to from 0.59 to 0.38, but did not eliminate all problems associated with regression analyses. Contingency table analyses revealed that the entire flora departs from the null model of equal proportions of medicinal plants in all families. In the binomial analysis, only 10 angiosperm families (of 115) differed significantly from the null model. These 10 families are largely responsible for patterns seen at higher taxonomic levels. Contingency table and binomial analyses offer an easy and statistically valid alternative to the regression approach.

  8. Whole-genome sequence analyses of Western Central African Pygmy hunter-gatherers reveal a complex demographic history and identify candidate genes under positive natural selection

    PubMed Central

    Hsieh, PingHsun; Veeramah, Krishna R.; Lachance, Joseph; Tishkoff, Sarah A.; Wall, Jeffrey D.; Hammer, Michael F.; Gutenkunst, Ryan N.

    2016-01-01

    African Pygmies practicing a mobile hunter-gatherer lifestyle are phenotypically and genetically diverged from other anatomically modern humans, and they likely experienced strong selective pressures due to their unique lifestyle in the Central African rainforest. To identify genomic targets of adaptation, we sequenced the genomes of four Biaka Pygmies from the Central African Republic and jointly analyzed these data with the genome sequences of three Baka Pygmies from Cameroon and nine Yoruba famers. To account for the complex demographic history of these populations that includes both isolation and gene flow, we fit models using the joint allele frequency spectrum and validated them using independent approaches. Our two best-fit models both suggest ancient divergence between the ancestors of the farmers and Pygmies, 90,000 or 150,000 yr ago. We also find that bidirectional asymmetric gene flow is statistically better supported than a single pulse of unidirectional gene flow from farmers to Pygmies, as previously suggested. We then applied complementary statistics to scan the genome for evidence of selective sweeps and polygenic selection. We found that conventional statistical outlier approaches were biased toward identifying candidates in regions of high mutation or low recombination rate. To avoid this bias, we assigned P-values for candidates using whole-genome simulations incorporating demography and variation in both recombination and mutation rates. We found that genes and gene sets involved in muscle development, bone synthesis, immunity, reproduction, cell signaling and development, and energy metabolism are likely to be targets of positive natural selection in Western African Pygmies or their recent ancestors. PMID:26888263

  9. Selection of appropriate training and validation set chemicals for modelling dermal permeability by U-optimal design.

    PubMed

    Xu, G; Hughes-Oliver, J M; Brooks, J D; Yeatts, J L; Baynes, R E

    2013-01-01

    Quantitative structure-activity relationship (QSAR) models are being used increasingly in skin permeation studies. The main idea of QSAR modelling is to quantify the relationship between biological activities and chemical properties, and thus to predict the activity of chemical solutes. As a key step, the selection of a representative and structurally diverse training set is critical to the prediction power of a QSAR model. Early QSAR models selected training sets in a subjective way and solutes in the training set were relatively homogenous. More recently, statistical methods such as D-optimal design or space-filling design have been applied but such methods are not always ideal. This paper describes a comprehensive procedure to select training sets from a large candidate set of 4534 solutes. A newly proposed 'Baynes' rule', which is a modification of Lipinski's 'rule of five', was used to screen out solutes that were not qualified for the study. U-optimality was used as the selection criterion. A principal component analysis showed that the selected training set was representative of the chemical space. Gas chromatograph amenability was verified. A model built using the training set was shown to have greater predictive power than a model built using a previous dataset [1].

  10. Statistical Comparisons of watershed scale response to climate change in selected basins across the United States

    USGS Publications Warehouse

    Risley, John; Moradkhani, Hamid; Hay, Lauren E.; Markstrom, Steve

    2011-01-01

    In an earlier global climate-change study, air temperature and precipitation data for the entire twenty-first century simulated from five general circulation models were used as input to precalibrated watershed models for 14 selected basins across the United States. Simulated daily streamflow and energy output from the watershed models were used to compute a range of statistics. With a side-by-side comparison of the statistical analyses for the 14 basins, regional climatic and hydrologic trends over the twenty-first century could be qualitatively identified. Low-flow statistics (95% exceedance, 7-day mean annual minimum, and summer mean monthly streamflow) decreased for almost all basins. Annual maximum daily streamflow also decreased in all the basins, except for all four basins in California and the Pacific Northwest. An analysis of the supply of available energy and water for the basins indicated that ratios of evaporation to precipitation and potential evapotranspiration to precipitation for most of the basins will increase. Probability density functions (PDFs) were developed to assess the uncertainty and multimodality in the impact of climate change on mean annual streamflow variability. Kolmogorov?Smirnov tests showed significant differences between the beginning and ending twenty-first-century PDFs for most of the basins, with the exception of four basins that are located in the western United States. Almost none of the basin PDFs were normally distributed, and two basins in the upper Midwest had PDFs that were extremely dispersed and skewed.

  11. Assessing the accuracy and stability of variable selection ...

    EPA Pesticide Factsheets

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used, or stepwise procedures are employed which iteratively add/remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating dataset consists of the good/poor condition of n=1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p=212) of landscape features from the StreamCat dataset. Two types of RF models are compared: a full variable set model with all 212 predictors, and a reduced variable set model selected using a backwards elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors, and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substanti

  12. Analyzing Responses of Chemical Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Zhou, Hanying

    2007-01-01

    NASA is developing a third-generation electronic nose (ENose) capable of continuous monitoring of the International Space Station s cabin atmosphere for specific, harmful airborne contaminants. Previous generations of the ENose have been described in prior NASA Tech Briefs issues. Sensor selection is critical in both (prefabrication) sensor material selection and (post-fabrication) data analysis of the ENose, which detects several analytes that are difficult to detect, or that are at very low concentration ranges. Existing sensor selection approaches usually include limited statistical measures, where selectivity is more important but reliability and sensitivity are not of concern. When reliability and sensitivity can be major limiting factors in detecting target compounds reliably, the existing approach is not able to provide meaningful selection that will actually improve data analysis results. The approach and software reported here consider more statistical measures (factors) than existing approaches for a similar purpose. The result is a more balanced and robust sensor selection from a less than ideal sensor array. The software offers quick, flexible, optimal sensor selection and weighting for a variety of purposes without a time-consuming, iterative search by performing sensor calibrations to a known linear or nonlinear model, evaluating the individual sensor s statistics, scoring the individual sensor s overall performance, finding the best sensor array size to maximize class separation, finding optimal weights for the remaining sensor array, estimating limits of detection for the target compounds, evaluating fingerprint distance between group pairs, and finding the best event-detecting sensors.

  13. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.

  14. Stochastic cycle selection in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  15. Stochastic cycle selection in active flow networks

    PubMed Central

    Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn

    2016-01-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  16. Predictive models reduce talent development costs in female gymnastics.

    PubMed

    Pion, Johan; Hohmann, Andreas; Liu, Tianbiao; Lenoir, Matthieu; Segers, Veerle

    2017-04-01

    This retrospective study focuses on the comparison of different predictive models based on the results of a talent identification test battery for female gymnasts. We studied to what extent these models have the potential to optimise selection procedures, and at the same time reduce talent development costs in female artistic gymnastics. The dropout rate of 243 female elite gymnasts was investigated, 5 years past talent selection, using linear (discriminant analysis) and non-linear predictive models (Kohonen feature maps and multilayer perceptron). The coaches classified 51.9% of the participants correct. Discriminant analysis improved the correct classification to 71.6% while the non-linear technique of Kohonen feature maps reached 73.7% correctness. Application of the multilayer perceptron even classified 79.8% of the gymnasts correctly. The combination of different predictive models for talent selection can avoid deselection of high-potential female gymnasts. The selection procedure based upon the different statistical analyses results in decrease of 33.3% of cost because the pool of selected athletes can be reduced to 92 instead of 138 gymnasts (as selected by the coaches). Reduction of the costs allows the limited resources to be fully invested in the high-potential athletes.

  17. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core.

    PubMed

    Bruna-Larenas, Tamara; Gómez-Jeria, Juan S

    2012-01-01

    We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  18. Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models

    PubMed Central

    Fuchs, Peter; Nussbeck, Fridtjof W.; Meuwly, Nathalie; Bodenmann, Guy

    2017-01-01

    The analysis of observational data is often seen as a key approach to understanding dynamics in romantic relationships but also in dyadic systems in general. Statistical models for the analysis of dyadic observational data are not commonly known or applied. In this contribution, selected approaches to dyadic sequence data will be presented with a focus on models that can be applied when sample sizes are of medium size (N = 100 couples or less). Each of the statistical models is motivated by an underlying potential research question, the most important model results are presented and linked to the research question. The following research questions and models are compared with respect to their applicability using a hands on approach: (I) Is there an association between a particular behavior by one and the reaction by the other partner? (Pearson Correlation); (II) Does the behavior of one member trigger an immediate reaction by the other? (aggregated logit models; multi-level approach; basic Markov model); (III) Is there an underlying dyadic process, which might account for the observed behavior? (hidden Markov model); and (IV) Are there latent groups of dyads, which might account for observing different reaction patterns? (mixture Markov; optimal matching). Finally, recommendations for researchers to choose among the different models, issues of data handling, and advises to apply the statistical models in empirical research properly are given (e.g., in a new r-package “DySeq”). PMID:28443037

  19. Statistical Methodology for the Analysis of Repeated Duration Data in Behavioral Studies.

    PubMed

    Letué, Frédérique; Martinez, Marie-José; Samson, Adeline; Vilain, Anne; Vilain, Coriandre

    2018-03-15

    Repeated duration data are frequently used in behavioral studies. Classical linear or log-linear mixed models are often inadequate to analyze such data, because they usually consist of nonnegative and skew-distributed variables. Therefore, we recommend use of a statistical methodology specific to duration data. We propose a methodology based on Cox mixed models and written under the R language. This semiparametric model is indeed flexible enough to fit duration data. To compare log-linear and Cox mixed models in terms of goodness-of-fit on real data sets, we also provide a procedure based on simulations and quantile-quantile plots. We present two examples from a data set of speech and gesture interactions, which illustrate the limitations of linear and log-linear mixed models, as compared to Cox models. The linear models are not validated on our data, whereas Cox models are. Moreover, in the second example, the Cox model exhibits a significant effect that the linear model does not. We provide methods to select the best-fitting models for repeated duration data and to compare statistical methodologies. In this study, we show that Cox models are best suited to the analysis of our data set.

  20. Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications

    PubMed Central

    Qian, Guoqi; Wu, Yuehua; Ferrari, Davide; Qiao, Puxue; Hollande, Frédéric

    2016-01-01

    Regression clustering is a mixture of unsupervised and supervised statistical learning and data mining method which is found in a wide range of applications including artificial intelligence and neuroscience. It performs unsupervised learning when it clusters the data according to their respective unobserved regression hyperplanes. The method also performs supervised learning when it fits regression hyperplanes to the corresponding data clusters. Applying regression clustering in practice requires means of determining the underlying number of clusters in the data, finding the cluster label of each data point, and estimating the regression coefficients of the model. In this paper, we review the estimation and selection issues in regression clustering with regard to the least squares and robust statistical methods. We also provide a model selection based technique to determine the number of regression clusters underlying the data. We further develop a computing procedure for regression clustering estimation and selection. Finally, simulation studies are presented for assessing the procedure, together with analyzing a real data set on RGB cell marking in neuroscience to illustrate and interpret the method. PMID:27212939

  1. Statistical modelling for recurrent events: an application to sports injuries

    PubMed Central

    Ullah, Shahid; Gabbett, Tim J; Finch, Caroline F

    2014-01-01

    Background Injuries are often recurrent, with subsequent injuries influenced by previous occurrences and hence correlation between events needs to be taken into account when analysing such data. Objective This paper compares five different survival models (Cox proportional hazards (CoxPH) model and the following generalisations to recurrent event data: Andersen-Gill (A-G), frailty, Wei-Lin-Weissfeld total time (WLW-TT) marginal, Prentice-Williams-Peterson gap time (PWP-GT) conditional models) for the analysis of recurrent injury data. Methods Empirical evaluation and comparison of different models were performed using model selection criteria and goodness-of-fit statistics. Simulation studies assessed the size and power of each model fit. Results The modelling approach is demonstrated through direct application to Australian National Rugby League recurrent injury data collected over the 2008 playing season. Of the 35 players analysed, 14 (40%) players had more than 1 injury and 47 contact injuries were sustained over 29 matches. The CoxPH model provided the poorest fit to the recurrent sports injury data. The fit was improved with the A-G and frailty models, compared to WLW-TT and PWP-GT models. Conclusions Despite little difference in model fit between the A-G and frailty models, in the interest of fewer statistical assumptions it is recommended that, where relevant, future studies involving modelling of recurrent sports injury data use the frailty model in preference to the CoxPH model or its other generalisations. The paper provides a rationale for future statistical modelling approaches for recurrent sports injury. PMID:22872683

  2. Discrimination of dynamical system models for biological and chemical processes.

    PubMed

    Lorenz, Sönke; Diederichs, Elmar; Telgmann, Regina; Schütte, Christof

    2007-06-01

    In technical chemistry, systems biology and biotechnology, the construction of predictive models has become an essential step in process design and product optimization. Accurate modelling of the reactions requires detailed knowledge about the processes involved. However, when concerned with the development of new products and production techniques for example, this knowledge often is not available due to the lack of experimental data. Thus, when one has to work with a selection of proposed models, the main tasks of early development is to discriminate these models. In this article, a new statistical approach to model discrimination is described that ranks models wrt. the probability with which they reproduce the given data. The article introduces the new approach, discusses its statistical background, presents numerical techniques for its implementation and illustrates the application to examples from biokinetics.

  3. Evaluation of cancer mortality in a cohort of workers exposed to low-level radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lea, C.S.

    1995-12-01

    The purpose of this dissertation was to re-analyze existing data to explore methodologic approaches that may determine whether excess cancer mortality in the ORNL cohort can be explained by time-related factors not previously considered; grouping of cancer outcomes; selection bias due to choice of method selected to incorporate an empirical induction period; or the type of statistical model chosen.

  4. A bootstrap based Neyman-Pearson test for identifying variable importance.

    PubMed

    Ditzler, Gregory; Polikar, Robi; Rosen, Gail

    2015-04-01

    Selection of most informative features that leads to a small loss on future data are arguably one of the most important steps in classification, data analysis and model selection. Several feature selection (FS) algorithms are available; however, due to noise present in any data set, FS algorithms are typically accompanied by an appropriate cross-validation scheme. In this brief, we propose a statistical hypothesis test derived from the Neyman-Pearson lemma for determining if a feature is statistically relevant. The proposed approach can be applied as a wrapper to any FS algorithm, regardless of the FS criteria used by that algorithm, to determine whether a feature belongs in the relevant set. Perhaps more importantly, this procedure efficiently determines the number of relevant features given an initial starting point. We provide freely available software implementations of the proposed methodology.

  5. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 1: Theoretical development and application to yearly predictions for selected cities in the United States

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1986-01-01

    A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.

  6. A Preliminary Bayesian Analysis of Incomplete Longitudinal Data from a Small Sample: Methodological Advances in an International Comparative Study of Educational Inequality

    ERIC Educational Resources Information Center

    Hsieh, Chueh-An; Maier, Kimberly S.

    2009-01-01

    The capacity of Bayesian methods in estimating complex statistical models is undeniable. Bayesian data analysis is seen as having a range of advantages, such as an intuitive probabilistic interpretation of the parameters of interest, the efficient incorporation of prior information to empirical data analysis, model averaging and model selection.…

  7. GAPIT: genome association and prediction integrated tool.

    PubMed

    Lipka, Alexander E; Tian, Feng; Wang, Qishan; Peiffer, Jason; Li, Meng; Bradbury, Peter J; Gore, Michael A; Buckler, Edward S; Zhang, Zhiwu

    2012-09-15

    Software programs that conduct genome-wide association studies and genomic prediction and selection need to use methodologies that maximize statistical power, provide high prediction accuracy and run in a computationally efficient manner. We developed an R package called Genome Association and Prediction Integrated Tool (GAPIT) that implements advanced statistical methods including the compressed mixed linear model (CMLM) and CMLM-based genomic prediction and selection. The GAPIT package can handle large datasets in excess of 10 000 individuals and 1 million single-nucleotide polymorphisms with minimal computational time, while providing user-friendly access and concise tables and graphs to interpret results. http://www.maizegenetics.net/GAPIT. zhiwu.zhang@cornell.edu Supplementary data are available at Bioinformatics online.

  8. The Fifth Calibration/Data Product Validation Panel Meeting

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The minutes and associated documents prepared from presentations and meetings at the Fifth Calibration/Data Product Validation Panel meeting in Boulder, Colorado, April 8 - 10, 1992, are presented. Key issues include (1) statistical characterization of data sets: finding statistics that characterize key attributes of the data sets, and defining ways to characterize the comparisons among data sets; (2) selection of specific intercomparison exercises: selecting characteristic spatial and temporal regions for intercomparisons, and impact of validation exercises on the logistics of current and planned field campaigns and model runs; and (3) preparation of data sets for intercomparisons: characterization of assumptions, transportable data formats, labeling data files, content of data sets, and data storage and distribution (EOSDIS interface).

  9. Three-dimensional quantitative structure-activity relationship (3D QSAR) and pharmacophore elucidation of tetrahydropyran derivatives as serotonin and norepinephrine transporter inhibitors

    NASA Astrophysics Data System (ADS)

    Kharkar, Prashant S.; Reith, Maarten E. A.; Dutta, Aloke K.

    2008-01-01

    Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of -OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.

  10. Intercomparison of four regional climate models for the German State of Saxonia

    NASA Astrophysics Data System (ADS)

    Kreienkamp, F.; Spekat, A.; Enke, W.

    2009-09-01

    Results from four regional climate models which focus on Central Europe are presented: CCLM, the climate version of the German Weather Service's Local Model - REMO, the regional dynamic model from the Max Planck Institute for Meteorology in Hamburg - STAR, the statistical model developed at the PIK Potsdam Institute and WETTREG, the statistic-dynamic model developed by the company CEC Potsdam. For the area of the German State of Saxonia a host of properties and indicators were analyzed aiming to show the models' abilities to reconstruct the current climate and compare climate model scenarios. These include a group of thermal indicators, such as the number of ice, frost, summer and hot days, the number of tropical nights; then there are hydrometeorological indicators such as the exceedance of low and high precipitation thresholds; humidity, cloudiness and wind indicators complement the array. A selection of them showing similarities and differences of the models investigated will be presented.

  11. Measured, modeled, and causal conceptions of fitness

    PubMed Central

    Abrams, Marshall

    2012-01-01

    This paper proposes partial answers to the following questions: in what senses can fitness differences plausibly be considered causes of evolution?What relationships are there between fitness concepts used in empirical research, modeling, and abstract theoretical proposals? How does the relevance of different fitness concepts depend on research questions and methodological constraints? The paper develops a novel taxonomy of fitness concepts, beginning with type fitness (a property of a genotype or phenotype), token fitness (a property of a particular individual), and purely mathematical fitness. Type fitness includes statistical type fitness, which can be measured from population data, and parametric type fitness, which is an underlying property estimated by statistical type fitnesses. Token fitness includes measurable token fitness, which can be measured on an individual, and tendential token fitness, which is assumed to be an underlying property of the individual in its environmental circumstances. Some of the paper's conclusions can be outlined as follows: claims that fitness differences do not cause evolution are reasonable when fitness is treated as statistical type fitness, measurable token fitness, or purely mathematical fitness. Some of the ways in which statistical methods are used in population genetics suggest that what natural selection involves are differences in parametric type fitnesses. Further, it's reasonable to think that differences in parametric type fitness can cause evolution. Tendential token fitnesses, however, are not themselves sufficient for natural selection. Though parametric type fitnesses are typically not directly measurable, they can be modeled with purely mathematical fitnesses and estimated by statistical type fitnesses, which in turn are defined in terms of measurable token fitnesses. The paper clarifies the ways in which fitnesses depend on pragmatic choices made by researchers. PMID:23112804

  12. Recent development of risk-prediction models for incident hypertension: An updated systematic review

    PubMed Central

    Xiao, Lei; Liu, Ya; Wang, Zuoguang; Li, Chuang; Jin, Yongxin; Zhao, Qiong

    2017-01-01

    Background Hypertension is a leading global health threat and a major cardiovascular disease. Since clinical interventions are effective in delaying the disease progression from prehypertension to hypertension, diagnostic prediction models to identify patient populations at high risk for hypertension are imperative. Methods Both PubMed and Embase databases were searched for eligible reports of either prediction models or risk scores of hypertension. The study data were collected, including risk factors, statistic methods, characteristics of study design and participants, performance measurement, etc. Results From the searched literature, 26 studies reporting 48 prediction models were selected. Among them, 20 reports studied the established models using traditional risk factors, such as body mass index (BMI), age, smoking, blood pressure (BP) level, parental history of hypertension, and biochemical factors, whereas 6 reports used genetic risk score (GRS) as the prediction factor. AUC ranged from 0.64 to 0.97, and C-statistic ranged from 60% to 90%. Conclusions The traditional models are still the predominant risk prediction models for hypertension, but recently, more models have begun to incorporate genetic factors as part of their model predictors. However, these genetic predictors need to be well selected. The current reported models have acceptable to good discrimination and calibration ability, but whether the models can be applied in clinical practice still needs more validation and adjustment. PMID:29084293

  13. Statistical power in parallel group point exposure studies with time-to-event outcomes: an empirical comparison of the performance of randomized controlled trials and the inverse probability of treatment weighting (IPTW) approach.

    PubMed

    Austin, Peter C; Schuster, Tibor; Platt, Robert W

    2015-10-15

    Estimating statistical power is an important component of the design of both randomized controlled trials (RCTs) and observational studies. Methods for estimating statistical power in RCTs have been well described and can be implemented simply. In observational studies, statistical methods must be used to remove the effects of confounding that can occur due to non-random treatment assignment. Inverse probability of treatment weighting (IPTW) using the propensity score is an attractive method for estimating the effects of treatment using observational data. However, sample size and power calculations have not been adequately described for these methods. We used an extensive series of Monte Carlo simulations to compare the statistical power of an IPTW analysis of an observational study with time-to-event outcomes with that of an analysis of a similarly-structured RCT. We examined the impact of four factors on the statistical power function: number of observed events, prevalence of treatment, the marginal hazard ratio, and the strength of the treatment-selection process. We found that, on average, an IPTW analysis had lower statistical power compared to an analysis of a similarly-structured RCT. The difference in statistical power increased as the magnitude of the treatment-selection model increased. The statistical power of an IPTW analysis tended to be lower than the statistical power of a similarly-structured RCT.

  14. Statistical prediction of dynamic distortion of inlet flow using minimum dynamic measurement. An application to the Melick statistical method and inlet flow dynamic distortion prediction without RMS measurements

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Chen, Y. S.

    1986-01-01

    The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main variables are identified by matching the theoretical total pressure rms ratio with the measured total pressure rms ratio. Data comparisons, using the HiMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the the number of dynamic probes can be reduced to as few as two and still retain good accuracy.

  15. Statistical modelling of growth using a mixed model with orthogonal polynomials.

    PubMed

    Suchocki, T; Szyda, J

    2011-02-01

    In statistical modelling, the effects of single-nucleotide polymorphisms (SNPs) are often regarded as time-independent. However, for traits recorded repeatedly, it is very interesting to investigate the behaviour of gene effects over time. In the analysis, simulated data from the 13th QTL-MAS Workshop (Wageningen, The Netherlands, April 2009) was used and the major goal was the modelling of genetic effects as time-dependent. For this purpose, a mixed model which describes each effect using the third-order Legendre orthogonal polynomials, in order to account for the correlation between consecutive measurements, is fitted. In this model, SNPs are modelled as fixed, while the environment is modelled as random effects. The maximum likelihood estimates of model parameters are obtained by the expectation-maximisation (EM) algorithm and the significance of the additive SNP effects is based on the likelihood ratio test, with p-values corrected for multiple testing. For each significant SNP, the percentage of the total variance contributed by this SNP is calculated. Moreover, by using a model which simultaneously incorporates effects of all of the SNPs, the prediction of future yields is conducted. As a result, 179 from the total of 453 SNPs covering 16 out of 18 true quantitative trait loci (QTL) were selected. The correlation between predicted and true breeding values was 0.73 for the data set with all SNPs and 0.84 for the data set with selected SNPs. In conclusion, we showed that a longitudinal approach allows for estimating changes of the variance contributed by each SNP over time and demonstrated that, for prediction, the pre-selection of SNPs plays an important role.

  16. Continuous-time discrete-space models for animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.

    2015-01-01

    The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.

  17. Estimation and model selection of semiparametric multivariate survival functions under general censorship.

    PubMed

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2010-07-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.

  18. Estimation and model selection of semiparametric multivariate survival functions under general censorship

    PubMed Central

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2013-01-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286

  19. Conducting field studies for testing pesticide leaching models

    USGS Publications Warehouse

    Smith, Charles N.; Parrish, Rudolph S.; Brown, David S.

    1990-01-01

    A variety of predictive models are being applied to evaluate the transport and transformation of pesticides in the environment. These include well known models such as the Pesticide Root Zone Model (PRZM), the Risk of Unsaturated-Saturated Transport and Transformation Interactions for Chemical Concentrations Model (RUSTIC) and the Groundwater Loading Effects of Agricultural Management Systems Model (GLEAMS). The potentially large impacts of using these models as tools for developing pesticide management strategies and regulatory decisions necessitates development of sound model validation protocols. This paper offers guidance on many of the theoretical and practical problems encountered in the design and implementation of field-scale model validation studies. Recommendations are provided for site selection and characterization, test compound selection, data needs, measurement techniques, statistical design considerations and sampling techniques. A strategy is provided for quantitatively testing models using field measurements.

  20. CAPSAS: Computer Assisted Program for the Selection of Appropriate Statistics.

    ERIC Educational Resources Information Center

    Shermis, Mark D.; Albert, Susan L.

    A computer-assisted program has been developed for the selection of statistics or statistical techniques by both students and researchers. Based on Andrews, Klem, Davidson, O'Malley and Rodgers "A Guide for Selecting Statistical Techniques for Analyzing Social Science Data," this FORTRAN-compiled interactive computer program was…

  1. Maximum likelihood-based analysis of single-molecule photon arrival trajectories

    NASA Astrophysics Data System (ADS)

    Hajdziona, Marta; Molski, Andrzej

    2011-02-01

    In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 103 photons. When the intensity levels are well-separated and 104 photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.

  2. Personalised news filtering and recommendation system using Chi-square statistics-based K-nearest neighbour (χ2SB-KNN) model

    NASA Astrophysics Data System (ADS)

    Adeniyi, D. A.; Wei, Z.; Yang, Y.

    2017-10-01

    Recommendation problem has been extensively studied by researchers in the field of data mining, database and information retrieval. This study presents the design and realisation of an automated, personalised news recommendations system based on Chi-square statistics-based K-nearest neighbour (χ2SB-KNN) model. The proposed χ2SB-KNN model has the potential to overcome computational complexity and information overloading problems, reduces runtime and speeds up execution process through the use of critical value of χ2 distribution. The proposed recommendation engine can alleviate scalability challenges through combined online pattern discovery and pattern matching for real-time recommendations. This work also showcases the development of a novel method of feature selection referred to as Data Discretisation-Based feature selection method. This is used for selecting the best features for the proposed χ2SB-KNN algorithm at the preprocessing stage of the classification procedures. The implementation of the proposed χ2SB-KNN model is achieved through the use of a developed in-house Java program on an experimental website called OUC newsreaders' website. Finally, we compared the performance of our system with two baseline methods which are traditional Euclidean distance K-nearest neighbour and Naive Bayesian techniques. The result shows a significant improvement of our method over the baseline methods studied.

  3. Exploring and accounting for publication bias in mental health: a brief overview of methods.

    PubMed

    Mavridis, Dimitris; Salanti, Georgia

    2014-02-01

    OBJECTIVE Publication bias undermines the integrity of published research. The aim of this paper is to present a synopsis of methods for exploring and accounting for publication bias. METHODS We discussed the main features of the following methods to assess publication bias: funnel plot analysis; trim-and-fill methods; regression techniques and selection models. We applied these methods to a well-known example of antidepressants trials that compared trials submitted to the Food and Drug Administration (FDA) for regulatory approval. RESULTS The funnel plot-related methods (visual inspection, trim-and-fill, regression models) revealed an association between effect size and SE. Contours of statistical significance showed that asymmetry in the funnel plot is probably due to publication bias. Selection model found a significant correlation between effect size and propensity for publication. CONCLUSIONS Researchers should always consider the possible impact of publication bias. Funnel plot-related methods should be seen as a means of examining for small-study effects and not be directly equated with publication bias. Possible causes for funnel plot asymmetry should be explored. Contours of statistical significance may help disentangle whether asymmetry in a funnel plot is caused by publication bias or not. Selection models, although underused, could be useful resource when publication bias and heterogeneity are suspected because they address directly the problem of publication bias and not that of small-study effects.

  4. Walking through the statistical black boxes of plant breeding.

    PubMed

    Xavier, Alencar; Muir, William M; Craig, Bruce; Rainey, Katy Martin

    2016-10-01

    The main statistical procedures in plant breeding are based on Gaussian process and can be computed through mixed linear models. Intelligent decision making relies on our ability to extract useful information from data to help us achieve our goals more efficiently. Many plant breeders and geneticists perform statistical analyses without understanding the underlying assumptions of the methods or their strengths and pitfalls. In other words, they treat these statistical methods (software and programs) like black boxes. Black boxes represent complex pieces of machinery with contents that are not fully understood by the user. The user sees the inputs and outputs without knowing how the outputs are generated. By providing a general background on statistical methodologies, this review aims (1) to introduce basic concepts of machine learning and its applications to plant breeding; (2) to link classical selection theory to current statistical approaches; (3) to show how to solve mixed models and extend their application to pedigree-based and genomic-based prediction; and (4) to clarify how the algorithms of genome-wide association studies work, including their assumptions and limitations.

  5. Meta-analysis of diagnostic test data: a bivariate Bayesian modeling approach.

    PubMed

    Verde, Pablo E

    2010-12-30

    In the last decades, the amount of published results on clinical diagnostic tests has expanded very rapidly. The counterpart to this development has been the formal evaluation and synthesis of diagnostic results. However, published results present substantial heterogeneity and they can be regarded as so far removed from the classical domain of meta-analysis, that they can provide a rather severe test of classical statistical methods. Recently, bivariate random effects meta-analytic methods, which model the pairs of sensitivities and specificities, have been presented from the classical point of view. In this work a bivariate Bayesian modeling approach is presented. This approach substantially extends the scope of classical bivariate methods by allowing the structural distribution of the random effects to depend on multiple sources of variability. Meta-analysis is summarized by the predictive posterior distributions for sensitivity and specificity. This new approach allows, also, to perform substantial model checking, model diagnostic and model selection. Statistical computations are implemented in the public domain statistical software (WinBUGS and R) and illustrated with real data examples. Copyright © 2010 John Wiley & Sons, Ltd.

  6. Statistical description of non-Gaussian samples in the F2 layer of the ionosphere during heliogeophysical disturbances

    NASA Astrophysics Data System (ADS)

    Sergeenko, N. P.

    2017-11-01

    An adequate statistical method should be developed in order to predict probabilistically the range of ionospheric parameters. This problem is solved in this paper. The time series of the critical frequency of the layer F2- foF2( t) were subjected to statistical processing. For the obtained samples {δ foF2}, statistical distributions and invariants up to the fourth order are calculated. The analysis shows that the distributions differ from the Gaussian law during the disturbances. At levels of sufficiently small probability distributions, there are arbitrarily large deviations from the model of the normal process. Therefore, it is attempted to describe statistical samples {δ foF2} based on the Poisson model. For the studied samples, the exponential characteristic function is selected under the assumption that time series are a superposition of some deterministic and random processes. Using the Fourier transform, the characteristic function is transformed into a nonholomorphic excessive-asymmetric probability-density function. The statistical distributions of the samples {δ foF2} calculated for the disturbed periods are compared with the obtained model distribution function. According to the Kolmogorov's criterion, the probabilities of the coincidence of a posteriori distributions with the theoretical ones are P 0.7-0.9. The conducted analysis makes it possible to draw a conclusion about the applicability of a model based on the Poisson random process for the statistical description and probabilistic variation estimates during heliogeophysical disturbances of the variations {δ foF2}.

  7. Statistical Optimization of 1,3-Propanediol (1,3-PD) Production from Crude Glycerol by Considering Four Objectives: 1,3-PD Concentration, Yield, Selectivity, and Productivity.

    PubMed

    Supaporn, Pansuwan; Yeom, Sung Ho

    2018-04-30

    This study investigated the biological conversion of crude glycerol generated from a commercial biodiesel production plant as a by-product to 1,3-propanediol (1,3-PD). Statistical analysis was employed to derive a statistical model for the individual and interactive effects of glycerol, (NH 4 ) 2 SO 4 , trace elements, pH, and cultivation time on the four objectives: 1,3-PD concentration, yield, selectivity, and productivity. Optimum conditions for each objective with its maximum value were predicted by statistical optimization, and experiments under the optimum conditions verified the predictions. In addition, by systematic analysis of the values of four objectives, optimum conditions for 1,3-PD concentration (49.8 g/L initial glycerol, 4.0 g/L of (NH 4 ) 2 SO 4 , 2.0 mL/L of trace element, pH 7.5, and 11.2 h of cultivation time) were determined to be the global optimum culture conditions for 1,3-PD production. Under these conditions, we could achieve high 1,3-PD yield (47.4%), 1,3-PD selectivity (88.8%), and 1,3-PD productivity (2.1/g/L/h) as well as high 1,3-PD concentration (23.6 g/L).

  8. Will genomic selection be a practical method for plant breeding?

    PubMed Central

    Nakaya, Akihiro; Isobe, Sachiko N.

    2012-01-01

    Background Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. Scope In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Conclusions Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory. PMID:22645117

  9. A model for field toxicity tests

    USGS Publications Warehouse

    Kaiser, Mark S.; Finger, Susan E.

    1996-01-01

    Toxicity tests conducted under field conditions present an interesting challenge for statistical modelling. In contrast to laboratory tests, the concentrations of potential toxicants are not held constant over the test. In addition, the number and identity of toxicants that belong in a model as explanatory factors are not known and must be determined through a model selection process. We present one model to deal with these needs. This model takes the record of mortalities to form a multinomial distribution in which parameters are modelled as products of conditional daily survival probabilities. These conditional probabilities are in turn modelled as logistic functions of the explanatory factors. The model incorporates lagged values of the explanatory factors to deal with changes in the pattern of mortalities over time. The issue of model selection and assessment is approached through the use of generalized information criteria and power divergence goodness-of-fit tests. These model selection criteria are applied in a cross-validation scheme designed to assess the ability of a model to both fit data used in estimation and predict data deleted from the estimation data set. The example presented demonstrates the need for inclusion of lagged values of the explanatory factors and suggests that penalized likelihood criteria may not provide adequate protection against overparameterized models in model selection.

  10. MPTinR: analysis of multinomial processing tree models in R.

    PubMed

    Singmann, Henrik; Kellen, David

    2013-06-01

    We introduce MPTinR, a software package developed for the analysis of multinomial processing tree (MPT) models. MPT models represent a prominent class of cognitive measurement models for categorical data with applications in a wide variety of fields. MPTinR is the first software for the analysis of MPT models in the statistical programming language R, providing a modeling framework that is more flexible than standalone software packages. MPTinR also introduces important features such as (1) the ability to calculate the Fisher information approximation measure of model complexity for MPT models, (2) the ability to fit models for categorical data outside the MPT model class, such as signal detection models, (3) a function for model selection across a set of nested and nonnested candidate models (using several model selection indices), and (4) multicore fitting. MPTinR is available from the Comprehensive R Archive Network at http://cran.r-project.org/web/packages/MPTinR/ .

  11. Towards an automatic statistical model for seasonal precipitation prediction and its application to Central and South Asian headwater catchments

    NASA Astrophysics Data System (ADS)

    Gerlitz, Lars; Gafurov, Abror; Apel, Heiko; Unger-Sayesteh, Katy; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    Statistical climate forecast applications typically utilize a small set of large scale SST or climate indices, such as ENSO, PDO or AMO as predictor variables. If the predictive skill of these large scale modes is insufficient, specific predictor variables such as customized SST patterns are frequently included. Hence statistically based climate forecast models are either based on a fixed number of climate indices (and thus might not consider important predictor variables) or are highly site specific and barely transferable to other regions. With the aim of developing an operational seasonal forecast model, which is easily transferable to any region in the world, we present a generic data mining approach which automatically selects potential predictors from gridded SST observations and reanalysis derived large scale atmospheric circulation patterns and generates robust statistical relationships with posterior precipitation anomalies for user selected target regions. Potential predictor variables are derived by means of a cellwise correlation analysis of precipitation anomalies with gridded global climate variables under consideration of varying lead times. Significantly correlated grid cells are subsequently aggregated to predictor regions by means of a variability based cluster analysis. Finally for every month and lead time, an individual random forest based forecast model is automatically calibrated and evaluated by means of the preliminary generated predictor variables. The model is exemplarily applied and evaluated for selected headwater catchments in Central and South Asia. Particularly the for winter and spring precipitation (which is associated with westerly disturbances in the entire target domain) the model shows solid results with correlation coefficients up to 0.7, although the variability of precipitation rates is highly underestimated. Likewise for the monsoonal precipitation amounts in the South Asian target areas a certain skill of the model could be detected. The skill of the model for the dry summer season in Central Asia and the transition seasons over South Asia is found to be low. A sensitivity analysis by means on well known climate indices reveals the major large scale controlling mechanisms for the seasonal precipitation climate of each target area. For the Central Asian target areas, both, the El Nino Southern Oscillation and the North Atlantic Oscillation are identified as important controlling factors for precipitation totals during moist spring season. Drought conditions are found to be triggered by a warm ENSO phase in combination with a positive phase of the NAO. For the monsoonal summer precipitation amounts over Southern Asia, the model suggests a distinct negative response to El Nino events.

  12. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Hao, Zengchao; Singh, Vijay P.; Xia, Youlong

    2018-03-01

    Drought prediction is of critical importance to early warning for drought managements. This review provides a synthesis of drought prediction based on statistical, dynamical, and hybrid methods. Statistical drought prediction is achieved by modeling the relationship between drought indices of interest and a suite of potential predictors, including large-scale climate indices, local climate variables, and land initial conditions. Dynamical meteorological drought prediction relies on seasonal climate forecast from general circulation models (GCMs), which can be employed to drive hydrological models for agricultural and hydrological drought prediction with the predictability determined by both climate forcings and initial conditions. Challenges still exist in drought prediction at long lead time and under a changing environment resulting from natural and anthropogenic factors. Future research prospects to improve drought prediction include, but are not limited to, high-quality data assimilation, improved model development with key processes related to drought occurrence, optimal ensemble forecast to select or weight ensembles, and hybrid drought prediction to merge statistical and dynamical forecasts.

  13. Hyperspectral Imaging in Tandem with R Statistics and Image Processing for Detection and Visualization of pH in Japanese Big Sausages Under Different Storage Conditions.

    PubMed

    Feng, Chao-Hui; Makino, Yoshio; Yoshimura, Masatoshi; Thuyet, Dang Quoc; García-Martín, Juan Francisco

    2018-02-01

    The potential of hyperspectral imaging with wavelengths of 380 to 1000 nm was used to determine the pH of cooked sausages after different storage conditions (4 °C for 1 d, 35 °C for 1, 3, and 5 d). The mean spectra of the sausages were extracted from the hyperspectral images and partial least squares regression (PLSR) model was developed to relate spectral profiles with the pH of the cooked sausages. Eleven important wavelengths were selected based on the regression coefficient values. The PLSR model established using the optimal wavelengths showed good precision being the prediction coefficient of determination (R p 2 ) 0.909 and the root mean square error of prediction 0.035. The prediction map for illustrating pH indices in sausages was for the first time developed by R statistics. The overall results suggested that hyperspectral imaging combined with PLSR and R statistics are capable to quantify and visualize the sausages pH evolution under different storage conditions. In this paper, hyperspectral imaging is for the first time used to detect pH in cooked sausages using R statistics, which provides another useful information for the researchers who do not have the access to Matlab. Eleven optimal wavelengths were successfully selected, which were used for simplifying the PLSR model established based on the full wavelengths. This simplified model achieved a high R p 2 (0.909) and a low root mean square error of prediction (0.035), which can be useful for the design of multispectral imaging systems. © 2017 Institute of Food Technologists®.

  14. Physics-based statistical learning approach to mesoscopic model selection.

    PubMed

    Taverniers, Søren; Haut, Terry S; Barros, Kipton; Alexander, Francis J; Lookman, Turab

    2015-11-01

    In materials science and many other research areas, models are frequently inferred without considering their generalization to unseen data. We apply statistical learning using cross-validation to obtain an optimally predictive coarse-grained description of a two-dimensional kinetic nearest-neighbor Ising model with Glauber dynamics (GD) based on the stochastic Ginzburg-Landau equation (sGLE). The latter is learned from GD "training" data using a log-likelihood analysis, and its predictive ability for various complexities of the model is tested on GD "test" data independent of the data used to train the model on. Using two different error metrics, we perform a detailed analysis of the error between magnetization time trajectories simulated using the learned sGLE coarse-grained description and those obtained using the GD model. We show that both for equilibrium and out-of-equilibrium GD training trajectories, the standard phenomenological description using a quartic free energy does not always yield the most predictive coarse-grained model. Moreover, increasing the amount of training data can shift the optimal model complexity to higher values. Our results are promising in that they pave the way for the use of statistical learning as a general tool for materials modeling and discovery.

  15. Assessing the Impact of Climate Change on Stream Temperatures in the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, S.; Caldwell, R. J.; Lai, Y.; Bountry, J.

    2011-12-01

    The Methow River in Washington offers prime spawning habitat for salmon and other cold-water fishes. During the summer months, low streamflows on the Methow result in cutoff side channels that limit the habitat available to these fishes. Future climate scenarios of increasing air temperature and decreasing precipitation suggest the potential for increasing loss of habitat and fish mortality as stream temperatures rise in response to lower flows and additional heating. To assess the impacts of climate change on stream temperature in the Methow River, the US Bureau of Reclamation is developing an hourly time-step, two-dimensional hydraulic model of the confluence of the Methow and Chewuch Rivers above Winthrop. The model will be coupled with a physical stream temperature model to generate spatial representations of stream conditions conducive for fish habitat. In this study, we develop a statistical framework for generating stream temperature time series from global climate model (GCM) and hydrologic model outputs. Regional observations of stream temperature and hydrometeorological conditions are used to develop statistical models of daily mean stream temperature for the Methow River at Winthrop, WA. Temperature and precipitation projections from 10 global climate models (GCMs) are coupled with the streamflow generated using the University of Washington Variable Infiltration Capacity model. The projections serve as input to the statistical models to generate daily time series of mean daily stream temperature. Since the output from the GCM, VIC, and statistical models offer only daily data, a k-nearest neighbor (k-nn) resampling technique is employed to select appropriate proportion vectors for disaggregating the Winthrop daily flow and temperature to an upstream location on each of the rivers above the confluence. Hourly proportion vectors are then used to disaggregate the daily flow and temperature to hourly values to be used in the hydraulic model. Historical meteorological variables are also selected using the k-nn method. We present the statistical modeling framework using Generalized Linear Models (GLMs), along with diagnostics and measurements of skill. We will also provide a comparison of the stream temperature projections from the future years of 2020, 2040, and 2080 and discuss the potential implications on fish habitat in the Methow River. Future integration of the hourly climate scenarios in the hydraulic model will provide the ability to assess the spatial extent of habitat impacts and allow the USBR to evaluate the effectiveness of various river restoration projects in maintaining or improving habitat in a changing climate.

  16. Inference on the Strength of Balancing Selection for Epistatically Interacting Loci

    PubMed Central

    Buzbas, Erkan Ozge; Joyce, Paul; Rosenberg, Noah A.

    2011-01-01

    Existing inference methods for estimating the strength of balancing selection in multi-locus genotypes rely on the assumption that there are no epistatic interactions between loci. Complex systems in which balancing selection is prevalent, such as sets of human immune system genes, are known to contain components that interact epistatically. Therefore, current methods may not produce reliable inference on the strength of selection at these loci. In this paper, we address this problem by presenting statistical methods that can account for epistatic interactions in making inference about balancing selection. A theoretical result due to Fearnhead (2006) is used to build a multi-locus Wright-Fisher model of balancing selection, allowing for epistatic interactions among loci. Antagonistic and synergistic types of interactions are examined. The joint posterior distribution of the selection and mutation parameters is sampled by Markov chain Monte Carlo methods, and the plausibility of models is assessed via Bayes factors. As a component of the inference process, an algorithm to generate multi-locus allele frequencies under balancing selection models with epistasis is also presented. Recent evidence on interactions among a set of human immune system genes is introduced as a motivating biological system for the epistatic model, and data on these genes are used to demonstrate the methods. PMID:21277883

  17. Variable selection in a flexible parametric mixture cure model with interval-censored data.

    PubMed

    Scolas, Sylvie; El Ghouch, Anouar; Legrand, Catherine; Oulhaj, Abderrahim

    2016-03-30

    In standard survival analysis, it is generally assumed that every individual will experience someday the event of interest. However, this is not always the case, as some individuals may not be susceptible to this event. Also, in medical studies, it is frequent that patients come to scheduled interviews and that the time to the event is only known to occur between two visits. That is, the data are interval-censored with a cure fraction. Variable selection in such a setting is of outstanding interest. Covariates impacting the survival are not necessarily the same as those impacting the probability to experience the event. The objective of this paper is to develop a parametric but flexible statistical model to analyze data that are interval-censored and include a fraction of cured individuals when the number of potential covariates may be large. We use the parametric mixture cure model with an accelerated failure time regression model for the survival, along with the extended generalized gamma for the error term. To overcome the issue of non-stable and non-continuous variable selection procedures, we extend the adaptive LASSO to our model. By means of simulation studies, we show good performance of our method and discuss the behavior of estimates with varying cure and censoring proportion. Lastly, our proposed method is illustrated with a real dataset studying the time until conversion to mild cognitive impairment, a possible precursor of Alzheimer's disease. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  18. A Pre-Screening Questionnaire to Predict Non-24-Hour Sleep-Wake Rhythm Disorder (N24HSWD) among the Blind

    PubMed Central

    Flynn-Evans, Erin E.; Lockley, Steven W.

    2016-01-01

    Study Objectives: There is currently no questionnaire-based pre-screening tool available to detect non-24-hour sleep-wake rhythm disorder (N24HSWD) among blind patients. Our goal was to develop such a tool, derived from gold standard, objective hormonal measures of circadian entrainment status, for the detection of N24HSWD among those with visual impairment. Methods: We evaluated the contribution of 40 variables in their ability to predict N24HSWD among 127 blind women, classified using urinary 6-sulfatoxymelatonin period, an objective marker of circadian entrainment status in this population. We subjected the 40 candidate predictors to 1,000 bootstrapped iterations of a logistic regression forward selection model to predict N24HSWD, with model inclusion set at the p < 0.05 level. We removed any predictors that were not selected at least 1% of the time in the 1,000 bootstrapped models and applied a second round of 1,000 bootstrapped logistic regression forward selection models to the remaining 23 candidate predictors. We included all questions that were selected at least 10% of the time in the final model. We subjected the selected predictors to a final logistic regression model to predict N24SWD over 1,000 bootstrapped models to calculate the concordance statistic and adjusted optimism of the final model. We used this information to generate a predictive model and determined the sensitivity and specificity of the model. Finally, we applied the model to a cohort of 1,262 blind women who completed the survey, but did not collect urine samples. Results: The final model consisted of eight questions. The concordance statistic, adjusted for bootstrapping, was 0.85. The positive predictive value was 88%, the negative predictive value was 79%. Applying this model to our larger dataset of women, we found that 61% of those without light perception, and 27% with some degree of light perception, would be referred for further screening for N24HSWD. Conclusions: Our model has predictive utility sufficient to serve as a pre-screening questionnaire for N24HSWD among the blind. Citation: Flynn-Evans EE, Lockley SW. A pre-screening questionnaire to predict non-24-hour sleep-wake rhythm disorder (N24HSWD) among the blind. J Clin Sleep Med 2016;12(5):703–710. PMID:26951421

  19. Analyzing the effect of selected control policy measures and sociodemographic factors on alcoholic beverage consumption in Europe within the AMPHORA project: statistical methods.

    PubMed

    Baccini, Michela; Carreras, Giulia

    2014-10-01

    This paper describes the methods used to investigate variations in total alcoholic beverage consumption as related to selected control intervention policies and other socioeconomic factors (unplanned factors) within 12 European countries involved in the AMPHORA project. The analysis presented several critical points: presence of missing values, strong correlation among the unplanned factors, long-term waves or trends in both the time series of alcohol consumption and the time series of the main explanatory variables. These difficulties were addressed by implementing a multiple imputation procedure for filling in missing values, then specifying for each country a multiple regression model which accounted for time trend, policy measures and a limited set of unplanned factors, selected in advance on the basis of sociological and statistical considerations are addressed. This approach allowed estimating the "net" effect of the selected control policies on alcohol consumption, but not the association between each unplanned factor and the outcome.

  20. Model weights and the foundations of multimodel inference

    USGS Publications Warehouse

    Link, W.A.; Barker, R.J.

    2006-01-01

    Statistical thinking in wildlife biology and ecology has been profoundly influenced by the introduction of AIC (Akaike?s information criterion) as a tool for model selection and as a basis for model averaging. In this paper, we advocate the Bayesian paradigm as a broader framework for multimodel inference, one in which model averaging and model selection are naturally linked, and in which the performance of AIC-based tools is naturally evaluated. Prior model weights implicitly associated with the use of AIC are seen to highly favor complex models: in some cases, all but the most highly parameterized models in the model set are virtually ignored a priori. We suggest the usefulness of the weighted BIC (Bayesian information criterion) as a computationally simple alternative to AIC, based on explicit selection of prior model probabilities rather than acceptance of default priors associated with AIC. We note, however, that both procedures are only approximate to the use of exact Bayes factors. We discuss and illustrate technical difficulties associated with Bayes factors, and suggest approaches to avoiding these difficulties in the context of model selection for a logistic regression. Our example highlights the predisposition of AIC weighting to favor complex models and suggests a need for caution in using the BIC for computing approximate posterior model weights.

  1. The optimal hormonal replacement modality selection for multiple organ procurement from brain-dead organ donors

    PubMed Central

    Mi, Zhibao; Novitzky, Dimitri; Collins, Joseph F; Cooper, David KC

    2015-01-01

    The management of brain-dead organ donors is complex. The use of inotropic agents and replacement of depleted hormones (hormonal replacement therapy) is crucial for successful multiple organ procurement, yet the optimal hormonal replacement has not been identified, and the statistical adjustment to determine the best selection is not trivial. Traditional pair-wise comparisons between every pair of treatments, and multiple comparisons to all (MCA), are statistically conservative. Hsu’s multiple comparisons with the best (MCB) – adapted from the Dunnett’s multiple comparisons with control (MCC) – has been used for selecting the best treatment based on continuous variables. We selected the best hormonal replacement modality for successful multiple organ procurement using a two-step approach. First, we estimated the predicted margins by constructing generalized linear models (GLM) or generalized linear mixed models (GLMM), and then we applied the multiple comparison methods to identify the best hormonal replacement modality given that the testing of hormonal replacement modalities is independent. Based on 10-year data from the United Network for Organ Sharing (UNOS), among 16 hormonal replacement modalities, and using the 95% simultaneous confidence intervals, we found that the combination of thyroid hormone, a corticosteroid, antidiuretic hormone, and insulin was the best modality for multiple organ procurement for transplantation. PMID:25565890

  2. Genetic demixing and evolution in linear stepping stone models

    NASA Astrophysics Data System (ADS)

    Korolev, K. S.; Avlund, Mikkel; Hallatschek, Oskar; Nelson, David R.

    2010-04-01

    Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous population are reviewed and extended. The population is described by a continuous limit of the stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation with additional terms describing mutations. Although the stepping stone model was first proposed for population genetics, it is closely related to “voter models” of interest in nonequilibrium statistical mechanics. The stepping stone model can also be regarded as an approximation to the dynamics of a thin layer of actively growing pioneers at the frontier of a colony of micro-organisms undergoing a range expansion on a Petri dish. The population tends to segregate into monoallelic domains. This segregation slows down genetic drift and selection because these two evolutionary forces can only act at the boundaries between the domains; the effects of mutation, however, are not significantly affected by the segregation. Although fixation in the neutral well-mixed (or “zero-dimensional”) model occurs exponentially in time, it occurs only algebraically fast in the one-dimensional model. An unusual sublinear increase is also found in the variance of the spatially averaged allele frequency with time. If selection is weak, selective sweeps occur exponentially fast in both well-mixed and one-dimensional populations, but the time constants are different. The relatively unexplored problem of evolutionary dynamics at the edge of an expanding circular colony is studied as well. Also reviewed are how the observed patterns of genetic diversity can be used for statistical inference and the differences are highlighted between the well-mixed and one-dimensional models. Although the focus is on two alleles or variants, q -allele Potts-like models of gene segregation are considered as well. Most of the analytical results are checked with simulations and could be tested against recent spatial experiments on range expansions of inoculations of Escherichia coli and Saccharomyces cerevisiae.

  3. Quantitative trait nucleotide analysis using Bayesian model selection.

    PubMed

    Blangero, John; Goring, Harald H H; Kent, Jack W; Williams, Jeff T; Peterson, Charles P; Almasy, Laura; Dyer, Thomas D

    2005-10-01

    Although much attention has been given to statistical genetic methods for the initial localization and fine mapping of quantitative trait loci (QTLs), little methodological work has been done to date on the problem of statistically identifying the most likely functional polymorphisms using sequence data. In this paper we provide a general statistical genetic framework, called Bayesian quantitative trait nucleotide (BQTN) analysis, for assessing the likely functional status of genetic variants. The approach requires the initial enumeration of all genetic variants in a set of resequenced individuals. These polymorphisms are then typed in a large number of individuals (potentially in families), and marker variation is related to quantitative phenotypic variation using Bayesian model selection and averaging. For each sequence variant a posterior probability of effect is obtained and can be used to prioritize additional molecular functional experiments. An example of this quantitative nucleotide analysis is provided using the GAW12 simulated data. The results show that the BQTN method may be useful for choosing the most likely functional variants within a gene (or set of genes). We also include instructions on how to use our computer program, SOLAR, for association analysis and BQTN analysis.

  4. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.

    PubMed

    Teo, Guoshou; Kim, Sinae; Tsou, Chih-Chiang; Collins, Ben; Gingras, Anne-Claude; Nesvizhskii, Alexey I; Choi, Hyungwon

    2015-11-03

    Data independent acquisition (DIA) mass spectrometry is an emerging technique that offers more complete detection and quantification of peptides and proteins across multiple samples. DIA allows fragment-level quantification, which can be considered as repeated measurements of the abundance of the corresponding peptides and proteins in the downstream statistical analysis. However, few statistical approaches are available for aggregating these complex fragment-level data into peptide- or protein-level statistical summaries. In this work, we describe a software package, mapDIA, for statistical analysis of differential protein expression using DIA fragment-level intensities. The workflow consists of three major steps: intensity normalization, peptide/fragment selection, and statistical analysis. First, mapDIA offers normalization of fragment-level intensities by total intensity sums as well as a novel alternative normalization by local intensity sums in retention time space. Second, mapDIA removes outlier observations and selects peptides/fragments that preserve the major quantitative patterns across all samples for each protein. Last, using the selected fragments and peptides, mapDIA performs model-based statistical significance analysis of protein-level differential expression between specified groups of samples. Using a comprehensive set of simulation datasets, we show that mapDIA detects differentially expressed proteins with accurate control of the false discovery rates. We also describe the analysis procedure in detail using two recently published DIA datasets generated for 14-3-3β dynamic interaction network and prostate cancer glycoproteome. The software was written in C++ language and the source code is available for free through SourceForge website http://sourceforge.net/projects/mapdia/.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany.

    PubMed

    Wang, Zhu; Ma, Shuangge; Wang, Ching-Yun

    2015-09-01

    In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD), and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, but also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using the open-source R package mpath. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Science and Facebook: The same popularity law!

    PubMed

    Néda, Zoltán; Varga, Levente; Biró, Tamás S

    2017-01-01

    The distribution of scientific citations for publications selected with different rules (author, topic, institution, country, journal, etc…) collapse on a single curve if one plots the citations relative to their mean value. We find that the distribution of "shares" for the Facebook posts rescale in the same manner to the very same curve with scientific citations. This finding suggests that citations are subjected to the same growth mechanism with Facebook popularity measures, being influenced by a statistically similar social environment and selection mechanism. In a simple master-equation approach the exponential growth of the number of publications and a preferential selection mechanism leads to a Tsallis-Pareto distribution offering an excellent description for the observed statistics. Based on our model and on the data derived from PubMed we predict that according to the present trend the average citations per scientific publications exponentially relaxes to about 4.

  7. Science and Facebook: The same popularity law!

    PubMed Central

    Varga, Levente; Biró, Tamás S.

    2017-01-01

    The distribution of scientific citations for publications selected with different rules (author, topic, institution, country, journal, etc…) collapse on a single curve if one plots the citations relative to their mean value. We find that the distribution of “shares” for the Facebook posts rescale in the same manner to the very same curve with scientific citations. This finding suggests that citations are subjected to the same growth mechanism with Facebook popularity measures, being influenced by a statistically similar social environment and selection mechanism. In a simple master-equation approach the exponential growth of the number of publications and a preferential selection mechanism leads to a Tsallis-Pareto distribution offering an excellent description for the observed statistics. Based on our model and on the data derived from PubMed we predict that according to the present trend the average citations per scientific publications exponentially relaxes to about 4. PMID:28678796

  8. Using A New Model for Main Sequence Turnoff Absolute Magnitudes to Measure Stellar Streams in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Weiss, Jake; Newberg, Heidi Jo; Arsenault, Matthew; Bechtel, Torrin; Desell, Travis; Newby, Matthew; Thompson, Jeffery M.

    2016-01-01

    Statistical photometric parallax is a method for using the distribution of absolute magnitudes of stellar tracers to statistically recover the underlying density distribution of these tracers. In previous work, statistical photometric parallax was used to trace the Sagittarius Dwarf tidal stream, the so-called bifurcated piece of the Sagittaritus stream, and the Virgo Overdensity through the Milky Way. We use an improved knowledge of this distribution in a new algorithm that accounts for the changes in the stellar population of color-selected stars near the photometric limit of the Sloan Digital Sky Survey (SDSS). Although we select bluer main sequence turnoff stars (MSTO) as tracers, large color errors near the survey limit cause many stars to be scattered out of our selection box and many fainter, redder stars to be scattered into our selection box. We show that we are able to recover parameters for analogues of these streams in simulated data using a maximum likelihood optimization on MilkyWay@home. We also present the preliminary results of fitting the density distribution of major Milky Way tidal streams in SDSS data. This research is supported by generous gifts from the Marvin Clan, Babette Josephs, Manit Limlamai, and the MilkyWay@home volunteers.

  9. A three-layer model of natural image statistics.

    PubMed

    Gutmann, Michael U; Hyvärinen, Aapo

    2013-11-01

    An important property of visual systems is to be simultaneously both selective to specific patterns found in the sensory input and invariant to possible variations. Selectivity and invariance (tolerance) are opposing requirements. It has been suggested that they could be joined by iterating a sequence of elementary selectivity and tolerance computations. It is, however, unknown what should be selected or tolerated at each level of the hierarchy. We approach this issue by learning the computations from natural images. We propose and estimate a probabilistic model of natural images that consists of three processing layers. Two natural image data sets are considered: image patches, and complete visual scenes downsampled to the size of small patches. For both data sets, we find that in the first two layers, simple and complex cell-like computations are performed. In the third layer, we mainly find selectivity to longer contours; for patch data, we further find some selectivity to texture, while for the downsampled complete scenes, some selectivity to curvature is observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The possibilities of using scale-selective polarization cartography in diagnostics of myocardium pathologies

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Wanchuliak, O. Y.

    2013-06-01

    The optical model of polycrystalline networks of myocardium protein fibrils is presented. The technique of determining the coordinate distribution of polarization azimuth of the points of laser images of myocardium histological sections is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented which characterize distributions of wavelet-coefficients polarization maps of myocardium layers and death reasons.

  11. A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study.

    PubMed

    AbdelRahman, Samir E; Zhang, Mingyuan; Bray, Bruce E; Kawamoto, Kensaku

    2014-05-27

    The aim of this study was to propose an analytical approach to develop high-performing predictive models for congestive heart failure (CHF) readmission using an operational dataset with incomplete records and changing data over time. Our analytical approach involves three steps: pre-processing, systematic model development, and risk factor analysis. For pre-processing, variables that were absent in >50% of records were removed. Moreover, the dataset was divided into a validation dataset and derivation datasets which were separated into three temporal subsets based on changes to the data over time. For systematic model development, using the different temporal datasets and the remaining explanatory variables, the models were developed by combining the use of various (i) statistical analyses to explore the relationships between the validation and the derivation datasets; (ii) adjustment methods for handling missing values; (iii) classifiers; (iv) feature selection methods; and (iv) discretization methods. We then selected the best derivation dataset and the models with the highest predictive performance. For risk factor analysis, factors in the highest-performing predictive models were analyzed and ranked using (i) statistical analyses of the best derivation dataset, (ii) feature rankers, and (iii) a newly developed algorithm to categorize risk factors as being strong, regular, or weak. The analysis dataset consisted of 2,787 CHF hospitalizations at University of Utah Health Care from January 2003 to June 2013. In this study, we used the complete-case analysis and mean-based imputation adjustment methods; the wrapper subset feature selection method; and four ranking strategies based on information gain, gain ratio, symmetrical uncertainty, and wrapper subset feature evaluators. The best-performing models resulted from the use of a complete-case analysis derivation dataset combined with the Class-Attribute Contingency Coefficient discretization method and a voting classifier which averaged the results of multi-nominal logistic regression and voting feature intervals classifiers. Of 42 final model risk factors, discharge disposition, discretized age, and indicators of anemia were the most significant. This model achieved a c-statistic of 86.8%. The proposed three-step analytical approach enhanced predictive model performance for CHF readmissions. It could potentially be leveraged to improve predictive model performance in other areas of clinical medicine.

  12. Statistical Analysis of Complexity Generators for Cost Estimation

    NASA Technical Reports Server (NTRS)

    Rowell, Ginger Holmes

    1999-01-01

    Predicting the cost of cutting edge new technologies involved with spacecraft hardware can be quite complicated. A new feature of the NASA Air Force Cost Model (NAFCOM), called the Complexity Generator, is being developed to model the complexity factors that drive the cost of space hardware. This parametric approach is also designed to account for the differences in cost, based on factors that are unique to each system and subsystem. The cost driver categories included in this model are weight, inheritance from previous missions, technical complexity, and management factors. This paper explains the Complexity Generator framework, the statistical methods used to select the best model within this framework, and the procedures used to find the region of predictability and the prediction intervals for the cost of a mission.

  13. Methodological approaches in analysing observational data: A practical example on how to address clustering and selection bias.

    PubMed

    Trutschel, Diana; Palm, Rebecca; Holle, Bernhard; Simon, Michael

    2017-11-01

    Because not every scientific question on effectiveness can be answered with randomised controlled trials, research methods that minimise bias in observational studies are required. Two major concerns influence the internal validity of effect estimates: selection bias and clustering. Hence, to reduce the bias of the effect estimates, more sophisticated statistical methods are needed. To introduce statistical approaches such as propensity score matching and mixed models into representative real-world analysis and to conduct the implementation in statistical software R to reproduce the results. Additionally, the implementation in R is presented to allow the results to be reproduced. We perform a two-level analytic strategy to address the problems of bias and clustering: (i) generalised models with different abilities to adjust for dependencies are used to analyse binary data and (ii) the genetic matching and covariate adjustment methods are used to adjust for selection bias. Hence, we analyse the data from two population samples, the sample produced by the matching method and the full sample. The different analysis methods in this article present different results but still point in the same direction. In our example, the estimate of the probability of receiving a case conference is higher in the treatment group than in the control group. Both strategies, genetic matching and covariate adjustment, have their limitations but complement each other to provide the whole picture. The statistical approaches were feasible for reducing bias but were nevertheless limited by the sample used. For each study and obtained sample, the pros and cons of the different methods have to be weighted. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Some challenges with statistical inference in adaptive designs.

    PubMed

    Hung, H M James; Wang, Sue-Jane; Yang, Peiling

    2014-01-01

    Adaptive designs have generated a great deal of attention to clinical trial communities. The literature contains many statistical methods to deal with added statistical uncertainties concerning the adaptations. Increasingly encountered in regulatory applications are adaptive statistical information designs that allow modification of sample size or related statistical information and adaptive selection designs that allow selection of doses or patient populations during the course of a clinical trial. For adaptive statistical information designs, a few statistical testing methods are mathematically equivalent, as a number of articles have stipulated, but arguably there are large differences in their practical ramifications. We pinpoint some undesirable features of these methods in this work. For adaptive selection designs, the selection based on biomarker data for testing the correlated clinical endpoints may increase statistical uncertainty in terms of type I error probability, and most importantly the increased statistical uncertainty may be impossible to assess.

  15. Educational Leadership as Best Practice in Highly Effective Schools in the Autonomous Region of the Basque County (Spain)

    ERIC Educational Resources Information Center

    Intxausti, Nahia; Joaristi, Luis; Lizasoain, Luis

    2016-01-01

    This study presents part of a research project currently underway which aims to characterise the best practices of highly effective schools in the Autonomous Region of the Basque Country (Spain). Multilevel statistical modelling and hierarchical linear models were used to select 32 highly effective schools, with highly effective being taken to…

  16. A reduced-order adaptive neuro-fuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand

    NASA Astrophysics Data System (ADS)

    Noori, Roohollah; Safavi, Salman; Nateghi Shahrokni, Seyyed Afshin

    2013-07-01

    The five-day biochemical oxygen demand (BOD5) is one of the key parameters in water quality management. In this study, a novel approach, i.e., reduced-order adaptive neuro-fuzzy inference system (ROANFIS) model was developed for rapid estimation of BOD5. In addition, an uncertainty analysis of adaptive neuro-fuzzy inference system (ANFIS) and ROANFIS models was carried out based on Monte-Carlo simulation. Accuracy analysis of ANFIS and ROANFIS models based on both developed discrepancy ratio and threshold statistics revealed that the selected ROANFIS model was superior. Pearson correlation coefficient (R) and root mean square error for the best fitted ROANFIS model were 0.96 and 7.12, respectively. Furthermore, uncertainty analysis of the developed models indicated that the selected ROANFIS had less uncertainty than the ANFIS model and accurately forecasted BOD5 in the Sefidrood River Basin. Besides, the uncertainty analysis also showed that bracketed predictions by 95% confidence bound and d-factor in the testing steps for the selected ROANFIS model were 94% and 0.83, respectively.

  17. Halo models of HI selected galaxies

    NASA Astrophysics Data System (ADS)

    Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem

    2018-06-01

    Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.

  18. Efficient exploration of pan-cancer networks by generalized covariance selection and interactive web content

    PubMed Central

    Kling, Teresia; Johansson, Patrik; Sanchez, José; Marinescu, Voichita D.; Jörnsten, Rebecka; Nelander, Sven

    2015-01-01

    Statistical network modeling techniques are increasingly important tools to analyze cancer genomics data. However, current tools and resources are not designed to work across multiple diagnoses and technical platforms, thus limiting their applicability to comprehensive pan-cancer datasets such as The Cancer Genome Atlas (TCGA). To address this, we describe a new data driven modeling method, based on generalized Sparse Inverse Covariance Selection (SICS). The method integrates genetic, epigenetic and transcriptional data from multiple cancers, to define links that are present in multiple cancers, a subset of cancers, or a single cancer. It is shown to be statistically robust and effective at detecting direct pathway links in data from TCGA. To facilitate interpretation of the results, we introduce a publicly accessible tool (cancerlandscapes.org), in which the derived networks are explored as interactive web content, linked to several pathway and pharmacological databases. To evaluate the performance of the method, we constructed a model for eight TCGA cancers, using data from 3900 patients. The model rediscovered known mechanisms and contained interesting predictions. Possible applications include prediction of regulatory relationships, comparison of network modules across multiple forms of cancer and identification of drug targets. PMID:25953855

  19. Statistical Analysis of the Uncertainty in Pre-Flight Aerodynamic Database of a Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Huh, Lynn

    The objective of the present research was to develop a new method to derive the aerodynamic coefficients and the associated uncertainties for flight vehicles via post- flight inertial navigation analysis using data from the inertial measurement unit. Statistical estimates of vehicle state and aerodynamic coefficients are derived using Monte Carlo simulation. Trajectory reconstruction using the inertial navigation system (INS) is a simple and well used method. However, deriving realistic uncertainties in the reconstructed state and any associated parameters is not so straight forward. Extended Kalman filters, batch minimum variance estimation and other approaches have been used. However, these methods generally depend on assumed physical models, assumed statistical distributions (usually Gaussian) or have convergence issues for non-linear problems. The approach here assumes no physical models, is applicable to any statistical distribution, and does not have any convergence issues. The new approach obtains the statistics directly from a sufficient number of Monte Carlo samples using only the generally well known gyro and accelerometer specifications and could be applied to the systems of non-linear form and non-Gaussian distribution. When redundant data are available, the set of Monte Carlo simulations are constrained to satisfy the redundant data within the uncertainties specified for the additional data. The proposed method was applied to validate the uncertainty in the pre-flight aerodynamic database of the X-43A Hyper-X research vehicle. In addition to gyro and acceleration data, the actual flight data include redundant measurements of position and velocity from the global positioning system (GPS). The criteria derived from the blend of the GPS and INS accuracy was used to select valid trajectories for statistical analysis. The aerodynamic coefficients were derived from the selected trajectories by either direct extraction method based on the equations in dynamics, or by the inquiry of the pre-flight aerodynamic database. After the application of the proposed method to the case of the X-43A Hyper-X research vehicle, it was found that 1) there were consistent differences in the aerodynamic coefficients from the pre-flight aerodynamic database and post-flight analysis, 2) the pre-flight estimation of the pitching moment coefficients was significantly different from the post-flight analysis, 3) the type of distribution of the states from the Monte Carlo simulation were affected by that of the perturbation parameters, 4) the uncertainties in the pre-flight model were overestimated, 5) the range where the aerodynamic coefficients from the pre-flight aerodynamic database and post-flight analysis are in closest agreement is between Mach *.* and *.* and more data points may be needed between Mach * and ** in the pre-flight aerodynamic database, 6) selection criterion for valid trajectories from the Monte Carlo simulations was mostly driven by the horizontal velocity error, 7) the selection criterion must be based on reasonable model to ensure the validity of the statistics from the proposed method, and 8) the results from the proposed method applied to the two different flights with the identical geometry and similar flight profile were consistent.

  20. Detection of Erroneous Payments Utilizing Supervised And Unsupervised Data Mining Techniques

    DTIC Science & Technology

    2004-09-01

    will look at which statistical analysis technique will work best in developing and enhancing existing erroneous payment models . Chapter I and II... payment models that are used for selection of records to be audited. The models are set up such that if two or more records have the same payment...Identification Number, Invoice Number and Delivery Order Number are not compared. The DM0102 Duplicate Payment Model will be analyzed in this thesis

  1. A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress

    PubMed Central

    2018-01-01

    The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i) the proposed model is different from the previous models lacking the concept of time series; (ii) the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii) the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies. PMID:29765399

  2. A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress.

    PubMed

    Cheng, Ching-Hsue; Chan, Chia-Pang; Yang, Jun-He

    2018-01-01

    The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i) the proposed model is different from the previous models lacking the concept of time series; (ii) the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii) the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies.

  3. Fisher's method of combining dependent statistics using generalizations of the gamma distribution with applications to genetic pleiotropic associations.

    PubMed

    Li, Qizhai; Hu, Jiyuan; Ding, Juan; Zheng, Gang

    2014-04-01

    A classical approach to combine independent test statistics is Fisher's combination of $p$-values, which follows the $\\chi ^2$ distribution. When the test statistics are dependent, the gamma distribution (GD) is commonly used for the Fisher's combination test (FCT). We propose to use two generalizations of the GD: the generalized and the exponentiated GDs. We study some properties of mis-using the GD for the FCT to combine dependent statistics when one of the two proposed distributions are true. Our results show that both generalizations have better control of type I error rates than the GD, which tends to have inflated type I error rates at more extreme tails. In practice, common model selection criteria (e.g. Akaike information criterion/Bayesian information criterion) can be used to help select a better distribution to use for the FCT. A simple strategy of the two generalizations of the GD in genome-wide association studies is discussed. Applications of the results to genetic pleiotrophic associations are described, where multiple traits are tested for association with a single marker.

  4. Record statistics of financial time series and geometric random walks

    NASA Astrophysics Data System (ADS)

    Sabir, Behlool; Santhanam, M. S.

    2014-09-01

    The study of record statistics of correlated series in physics, such as random walks, is gaining momentum, and several analytical results have been obtained in the past few years. In this work, we study the record statistics of correlated empirical data for which random walk models have relevance. We obtain results for the records statistics of select stock market data and the geometric random walk, primarily through simulations. We show that the distribution of the age of records is a power law with the exponent α lying in the range 1.5≤α≤1.8. Further, the longest record ages follow the Fréchet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that obtained from empirical stock data.

  5. Framework for adaptive multiscale analysis of nonhomogeneous point processes.

    PubMed

    Helgason, Hannes; Bartroff, Jay; Abry, Patrice

    2011-01-01

    We develop the methodology for hypothesis testing and model selection in nonhomogeneous Poisson processes, with an eye toward the application of modeling and variability detection in heart beat data. Modeling the process' non-constant rate function using templates of simple basis functions, we develop the generalized likelihood ratio statistic for a given template and a multiple testing scheme to model-select from a family of templates. A dynamic programming algorithm inspired by network flows is used to compute the maximum likelihood template in a multiscale manner. In a numerical example, the proposed procedure is nearly as powerful as the super-optimal procedures that know the true template size and true partition, respectively. Extensions to general history-dependent point processes is discussed.

  6. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2017-01-01

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.

  7. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.

    PubMed

    Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K

    2017-11-01

    Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Assessment of NDE reliability data

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Couchman, J. C.; Chang, F. H.; Packman, D. F.

    1975-01-01

    Twenty sets of relevant nondestructive test (NDT) reliability data were identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations was formulated, and a model to grade the quality and validity of the data sets was developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, were formulated for each NDE method. A comprehensive computer program was written and debugged to calculate the probability of flaw detection at several confidence limits by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. An example of the calculated reliability of crack detection in bolt holes by an automatic eddy current method is presented.

  9. Adapting regional watershed management to climate change in Bavaria and Québec

    NASA Astrophysics Data System (ADS)

    Ludwig, Ralf; Muerth, Markus; Schmid, Josef; Jobst, Andreas; Caya, Daniel; Gauvin St-Denis, Blaise; Chaumont, Diane; Velazquez, Juan-Alberto; Turcotte, Richard; Ricard, Simon

    2013-04-01

    The international research project QBic3 (Quebec-Bavarian Collaboration on Climate Change) aims at investigating the potential impacts of climate change on the hydrology of regional scale catchments in Southern Quebec (Canada) and Bavaria (Germany). For this purpose, a hydro-meteorological modeling chain has been established, applying climatic forcing from both dynamical and statistical climate model data to an ensemble of hydrological models of varying complexity. The selection of input data, process descriptions and scenarios allows for the inter-comparison of the uncertainty ranges on selected runoff indicators; a methodology to display the relative importance of each source of uncertainty is developed and results for past runoff (1971-2000) and potential future changes (2041-2070) are obtained. Finally, the impact of hydrological changes on the operational management of dams, reservoirs and transfer systems is investigated and shown for the Bavarian case studies, namely the potential change in i) hydro-power production for the Upper Isar watershed and ii) low flow augmentation and water transfer rates at the Donau-Main transfer system in Central Franconia. Two overall findings will be presented and discussed in detail: a) the climate change response of selected hydrological indicators, especially those related to low flows, is strongly affected by the choice of the hydrological model. It can be shown that an assessment of the changes in the hydrological cycle is best represented by a complex physically based hydrological model, computationally less demanding models (usually simple, lumped and conceptual) can give a significant level of trust for selected indicators. b) the major differences in the projected climate forcing stemming from the ensemble of dynamic climate models (GCM/RCM) versus the statistical-stochastical WETTREG2010 approach. While the dynamic ensemble reveals a moderate modification of the hydrological processes in the investigated catchments, the WETTREG2010 driven runs show a severe detraction for all water operations, mainly related to a strong decline in projected precipitation in all seasons (except winter).

  10. Linking Statistically- and Physically-Based Models for Improved Streamflow Simulation in Gaged and Ungaged Areas

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Archfield, S. A.; Farmer, W. H.; Kiang, J. E.

    2014-12-01

    The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is being used to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models. The GCPO LCC covers part or all of 12 states and 5 sub-geographies, totaling approximately 726,000 km2, and is centered on the lower Mississippi Alluvial Valley. A total of 346 USGS streamgages in the GCPO LCC region were selected to evaluate the performance of this new calibration methodology for the period 1980 to 2013. Initially, the physically-based models are calibrated to measured streamflow data to provide a baseline for comparison. An enhanced calibration procedure then is used to calibrate the physically-based models in the gaged and ungaged areas of the GCPO LCC using statistically-based estimates of streamflow. For this application, the calibration procedure is adjusted to address the limitations of the statistically generated time series to reproduce measured streamflow in gaged basins, primarily by incorporating error and bias estimates. As part of this effort, estimates of uncertainty in the model simulations are also computed for the gaged and ungaged watersheds.

  11. A statistical forecast model using the time-scale decomposition technique to predict rainfall during flood period over the middle and lower reaches of the Yangtze River Valley

    NASA Astrophysics Data System (ADS)

    Hu, Yijia; Zhong, Zhong; Zhu, Yimin; Ha, Yao

    2018-04-01

    In this paper, a statistical forecast model using the time-scale decomposition method is established to do the seasonal prediction of the rainfall during flood period (FPR) over the middle and lower reaches of the Yangtze River Valley (MLYRV). This method decomposites the rainfall over the MLYRV into three time-scale components, namely, the interannual component with the period less than 8 years, the interdecadal component with the period from 8 to 30 years, and the interdecadal component with the period larger than 30 years. Then, the predictors are selected for the three time-scale components of FPR through the correlation analysis. At last, a statistical forecast model is established using the multiple linear regression technique to predict the three time-scale components of the FPR, respectively. The results show that this forecast model can capture the interannual and interdecadal variation of FPR. The hindcast of FPR during 14 years from 2001 to 2014 shows that the FPR can be predicted successfully in 11 out of the 14 years. This forecast model performs better than the model using traditional scheme without time-scale decomposition. Therefore, the statistical forecast model using the time-scale decomposition technique has good skills and application value in the operational prediction of FPR over the MLYRV.

  12. A mathematical model for HIV and hepatitis C co-infection and its assessment from a statistical perspective.

    PubMed

    Castro Sanchez, Amparo Yovanna; Aerts, Marc; Shkedy, Ziv; Vickerman, Peter; Faggiano, Fabrizio; Salamina, Guiseppe; Hens, Niel

    2013-03-01

    The hepatitis C virus (HCV) and the human immunodeficiency virus (HIV) are a clear threat for public health, with high prevalences especially in high risk groups such as injecting drug users. People with HIV infection who are also infected by HCV suffer from a more rapid progression to HCV-related liver disease and have an increased risk for cirrhosis and liver cancer. Quantifying the impact of HIV and HCV co-infection is therefore of great importance. We propose a new joint mathematical model accounting for co-infection with the two viruses in the context of injecting drug users (IDUs). Statistical concepts and methods are used to assess the model from a statistical perspective, in order to get further insights in: (i) the comparison and selection of optional model components, (ii) the unknown values of the numerous model parameters, (iii) the parameters to which the model is most 'sensitive' and (iv) the combinations or patterns of values in the high-dimensional parameter space which are most supported by the data. Data from a longitudinal study of heroin users in Italy are used to illustrate the application of the proposed joint model and its statistical assessment. The parameters associated with contact rates (sharing syringes) and the transmission rates per syringe-sharing event are shown to play a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  14. Efficient Generation and Selection of Virtual Populations in Quantitative Systems Pharmacology Models.

    PubMed

    Allen, R J; Rieger, T R; Musante, C J

    2016-03-01

    Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed "virtual patients." In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations.

  15. Right-Sizing Statistical Models for Longitudinal Data

    PubMed Central

    Wood, Phillip K.; Steinley, Douglas; Jackson, Kristina M.

    2015-01-01

    Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to “right-size” the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting overly parsimonious models to more complex better fitting alternatives, and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically under-identified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A three-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation/covariation patterns. The orthogonal, free-curve slope-intercept (FCSI) growth model is considered as a general model which includes, as special cases, many models including the Factor Mean model (FM, McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, Hierarchical Linear Models (HLM), Repeated Measures MANOVA, and the Linear Slope Intercept (LinearSI) Growth Model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparison of several candidate parametric growth and chronometric models in a Monte Carlo study. PMID:26237507

  16. Right-sizing statistical models for longitudinal data.

    PubMed

    Wood, Phillip K; Steinley, Douglas; Jackson, Kristina M

    2015-12-01

    Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study. (c) 2015 APA, all rights reserved).

  17. Bayesian model selection techniques as decision support for shaping a statistical analysis plan of a clinical trial: An example from a vertigo phase III study with longitudinal count data as primary endpoint

    PubMed Central

    2012-01-01

    Background A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. Methods We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). Results The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. Conclusions The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint. PMID:22962944

  18. Bayesian model selection techniques as decision support for shaping a statistical analysis plan of a clinical trial: an example from a vertigo phase III study with longitudinal count data as primary endpoint.

    PubMed

    Adrion, Christine; Mansmann, Ulrich

    2012-09-10

    A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). The instruments under study provide excellent tools for preparing decisions within the SAP in a transparent way when structuring the primary analysis, sensitivity or ancillary analyses, and specific analyses for secondary endpoints. The mean logarithmic score and DIC discriminate well between different model scenarios. It becomes obvious that the naive choice of a conventional random effects Poisson model is often inappropriate for real-life count data. The findings are used to specify an appropriate mixed model employed in the sensitivity analyses of an ongoing phase III trial. The proposed Bayesian methods are not only appealing for inference but notably provide a sophisticated insight into different aspects of model performance, such as forecast verification or calibration checks, and can be applied within the model selection process. The mean of the logarithmic score is a robust tool for model ranking and is not sensitive to sample size. Therefore, these Bayesian model selection techniques offer helpful decision support for shaping sensitivity and ancillary analyses in a statistical analysis plan of a clinical trial with longitudinal count data as the primary endpoint.

  19. Kepler AutoRegressive Planet Search: Motivation & Methodology

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian

    2015-08-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. We also illustrate the efficient coding in R.

  20. A Transionospheric Communication Channel Model

    DTIC Science & Technology

    1977-07-01

    F30602-75-C-0236 Anne R. Hessing V. Elaine Hatfield 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT , PROJECT, TASK AREA & WORK UNIT...34* ables from a user-selected set of ionospheric state parameters. Mode II of IONSCNT extends the Mode-I results to second-order statistics for cases...describes only representative conditions for the set of input parameters selected by the user. Night-to-night departures from the calcu- :". lated "mean

  1. Selecting the most appropriate inferential statistical test for your quantitative research study.

    PubMed

    Bettany-Saltikov, Josette; Whittaker, Victoria Jane

    2014-06-01

    To discuss the issues and processes relating to the selection of the most appropriate statistical test. A review of the basic research concepts together with a number of clinical scenarios is used to illustrate this. Quantitative nursing research generally features the use of empirical data which necessitates the selection of both descriptive and statistical tests. Different types of research questions can be answered by different types of research designs, which in turn need to be matched to a specific statistical test(s). Discursive paper. This paper discusses the issues relating to the selection of the most appropriate statistical test and makes some recommendations as to how these might be dealt with. When conducting empirical quantitative studies, a number of key issues need to be considered. Considerations for selecting the most appropriate statistical tests are discussed and flow charts provided to facilitate this process. When nursing clinicians and researchers conduct quantitative research studies, it is crucial that the most appropriate statistical test is selected to enable valid conclusions to be made. © 2013 John Wiley & Sons Ltd.

  2. Multipath modeling for aeronautical communications.

    NASA Technical Reports Server (NTRS)

    Painter, J. H.; Gupta, S. C.; Wilson, L. R.

    1973-01-01

    One of the fundamental technical problems in aeronautical digital communications is that of multipath propagation between aircraft and ground terminal. This paper examines in detail a model of the received multipath signal that is useful for application of modern detection and estimation theories. The model treats arbitrary modulation and covers the selective and nonselective cases. The necessarily nonstationary statistics of the received signal are determined from the link geometry and the surface roughness parameters via a Kirchhoff solution.

  3. A new scoring system in Cystic Fibrosis: statistical tools for database analysis - a preliminary report.

    PubMed

    Hafen, G M; Hurst, C; Yearwood, J; Smith, J; Dzalilov, Z; Robinson, P J

    2008-10-05

    Cystic fibrosis is the most common fatal genetic disorder in the Caucasian population. Scoring systems for assessment of Cystic fibrosis disease severity have been used for almost 50 years, without being adapted to the milder phenotype of the disease in the 21st century. The aim of this current project is to develop a new scoring system using a database and employing various statistical tools. This study protocol reports the development of the statistical tools in order to create such a scoring system. The evaluation is based on the Cystic Fibrosis database from the cohort at the Royal Children's Hospital in Melbourne. Initially, unsupervised clustering of the all data records was performed using a range of clustering algorithms. In particular incremental clustering algorithms were used. The clusters obtained were characterised using rules from decision trees and the results examined by clinicians. In order to obtain a clearer definition of classes expert opinion of each individual's clinical severity was sought. After data preparation including expert-opinion of an individual's clinical severity on a 3 point-scale (mild, moderate and severe disease), two multivariate techniques were used throughout the analysis to establish a method that would have a better success in feature selection and model derivation: 'Canonical Analysis of Principal Coordinates' and 'Linear Discriminant Analysis'. A 3-step procedure was performed with (1) selection of features, (2) extracting 5 severity classes out of a 3 severity class as defined per expert-opinion and (3) establishment of calibration datasets. (1) Feature selection: CAP has a more effective "modelling" focus than DA.(2) Extraction of 5 severity classes: after variables were identified as important in discriminating contiguous CF severity groups on the 3-point scale as mild/moderate and moderate/severe, Discriminant Function (DF) was used to determine the new groups mild, intermediate moderate, moderate, intermediate severe and severe disease. (3) Generated confusion tables showed a misclassification rate of 19.1% for males and 16.5% for females, with a majority of misallocations into adjacent severity classes particularly for males. Our preliminary data show that using CAP for detection of selection features and Linear DA to derive the actual model in a CF database might be helpful in developing a scoring system. However, there are several limitations, particularly more data entry points are needed to finalize a score and the statistical tools have further to be refined and validated, with re-running the statistical methods in the larger dataset.

  4. Using Patient Demographics and Statistical Modeling to Predict Knee Tibia Component Sizing in Total Knee Arthroplasty.

    PubMed

    Ren, Anna N; Neher, Robert E; Bell, Tyler; Grimm, James

    2018-06-01

    Preoperative planning is important to achieve successful implantation in primary total knee arthroplasty (TKA). However, traditional TKA templating techniques are not accurate enough to predict the component size to a very close range. With the goal of developing a general predictive statistical model using patient demographic information, ordinal logistic regression was applied to build a proportional odds model to predict the tibia component size. The study retrospectively collected the data of 1992 primary Persona Knee System TKA procedures. Of them, 199 procedures were randomly selected as testing data and the rest of the data were randomly partitioned between model training data and model evaluation data with a ratio of 7:3. Different models were trained and evaluated on the training and validation data sets after data exploration. The final model had patient gender, age, weight, and height as independent variables and predicted the tibia size within 1 size difference 96% of the time on the validation data, 94% of the time on the testing data, and 92% on a prospective cadaver data set. The study results indicated the statistical model built by ordinal logistic regression can increase the accuracy of tibia sizing information for Persona Knee preoperative templating. This research shows statistical modeling may be used with radiographs to dramatically enhance the templating accuracy, efficiency, and quality. In general, this methodology can be applied to other TKA products when the data are applicable. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Identifying trends in climate: an application to the cenozoic

    NASA Astrophysics Data System (ADS)

    Richards, Gordon R.

    1998-05-01

    The recent literature on trending in climate has raised several issues, whether trends should be modeled as deterministic or stochastic, whether trends are nonlinear, and the relative merits of statistical models versus models based on physics. This article models trending since the late Cretaceous. This 68 million-year interval is selected because the reliability of tests for trending is critically dependent on the length of time spanned by the data. Two main hypotheses are tested, that the trend has been caused primarily by CO2 forcing, and that it reflects a variety of forcing factors which can be approximated by statistical methods. The CO2 data is obtained from model simulations. Several widely-used statistical models are found to be inadequate. ARIMA methods parameterize too much of the short-term variation, and do not identify low frequency movements. Further, the unit root in the ARIMA process does not predict the long-term path of temperature. Spectral methods also have little ability to predict temperature at long horizons. Instead, the statistical trend is estimated using a nonlinear smoothing filter. Both of these paradigms make it possible to model climate as a cointegrated process, in which temperature can wander quite far from the trend path in the intermediate term, but converges back over longer horizons. Comparing the forecasting properties of the two trend models demonstrates that the optimal forecasting model includes CO2 forcing and a parametric representation of the nonlinear variability in climate.

  6. The impact on midlevel vision of statistically optimal divisive normalization in V1.

    PubMed

    Coen-Cagli, Ruben; Schwartz, Odelia

    2013-07-15

    The first two areas of the primate visual cortex (V1, V2) provide a paradigmatic example of hierarchical computation in the brain. However, neither the functional properties of V2 nor the interactions between the two areas are well understood. One key aspect is that the statistics of the inputs received by V2 depend on the nonlinear response properties of V1. Here, we focused on divisive normalization, a canonical nonlinear computation that is observed in many neural areas and modalities. We simulated V1 responses with (and without) different forms of surround normalization derived from statistical models of natural scenes, including canonical normalization and a statistically optimal extension that accounted for image nonhomogeneities. The statistics of the V1 population responses differed markedly across models. We then addressed how V2 receptive fields pool the responses of V1 model units with different tuning. We assumed this is achieved by learning without supervision a linear representation that removes correlations, which could be accomplished with principal component analysis. This approach revealed V2-like feature selectivity when we used the optimal normalization and, to a lesser extent, the canonical one but not in the absence of both. We compared the resulting two-stage models on two perceptual tasks; while models encompassing V1 surround normalization performed better at object recognition, only statistically optimal normalization provided systematic advantages in a task more closely matched to midlevel vision, namely figure/ground judgment. Our results suggest that experiments probing midlevel areas might benefit from using stimuli designed to engage the computations that characterize V1 optimality.

  7. A Robust Adaptive Autonomous Approach to Optimal Experimental Design

    NASA Astrophysics Data System (ADS)

    Gu, Hairong

    Experimentation is the fundamental tool of scientific inquiries to understand the laws governing the nature and human behaviors. Many complex real-world experimental scenarios, particularly in quest of prediction accuracy, often encounter difficulties to conduct experiments using an existing experimental procedure for the following two reasons. First, the existing experimental procedures require a parametric model to serve as the proxy of the latent data structure or data-generating mechanism at the beginning of an experiment. However, for those experimental scenarios of concern, a sound model is often unavailable before an experiment. Second, those experimental scenarios usually contain a large number of design variables, which potentially leads to a lengthy and costly data collection cycle. Incompetently, the existing experimental procedures are unable to optimize large-scale experiments so as to minimize the experimental length and cost. Facing the two challenges in those experimental scenarios, the aim of the present study is to develop a new experimental procedure that allows an experiment to be conducted without the assumption of a parametric model while still achieving satisfactory prediction, and performs optimization of experimental designs to improve the efficiency of an experiment. The new experimental procedure developed in the present study is named robust adaptive autonomous system (RAAS). RAAS is a procedure for sequential experiments composed of multiple experimental trials, which performs function estimation, variable selection, reverse prediction and design optimization on each trial. Directly addressing the challenges in those experimental scenarios of concern, function estimation and variable selection are performed by data-driven modeling methods to generate a predictive model from data collected during the course of an experiment, thus exempting the requirement of a parametric model at the beginning of an experiment; design optimization is performed to select experimental designs on the fly of an experiment based on their usefulness so that fewest designs are needed to reach useful inferential conclusions. Technically, function estimation is realized by Bayesian P-splines, variable selection is realized by Bayesian spike-and-slab prior, reverse prediction is realized by grid-search and design optimization is realized by the concepts of active learning. The present study demonstrated that RAAS achieves statistical robustness by making accurate predictions without the assumption of a parametric model serving as the proxy of latent data structure while the existing procedures can draw poor statistical inferences if a misspecified model is assumed; RAAS also achieves inferential efficiency by taking fewer designs to acquire useful statistical inferences than non-optimal procedures. Thus, RAAS is expected to be a principled solution to real-world experimental scenarios pursuing robust prediction and efficient experimentation.

  8. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  9. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias

    With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less

  10. Multimodel predictive system for carbon dioxide solubility in saline formation waters.

    PubMed

    Wang, Zan; Small, Mitchell J; Karamalidis, Athanasios K

    2013-02-05

    The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO(2) solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304-433 K, pressure range 74-500 bar, and salt concentration range 0-7 m (NaCl equivalent), using 173 published CO(2) solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO(2) solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO(2) solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.

  11. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  12. Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework

    NASA Astrophysics Data System (ADS)

    Achieng, K. O.; Zhu, J.

    2017-12-01

    There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?

  13. Propensity score to detect baseline imbalance in cluster randomized trials: the role of the c-statistic.

    PubMed

    Leyrat, Clémence; Caille, Agnès; Foucher, Yohann; Giraudeau, Bruno

    2016-01-22

    Despite randomization, baseline imbalance and confounding bias may occur in cluster randomized trials (CRTs). Covariate imbalance may jeopardize the validity of statistical inferences if they occur on prognostic factors. Thus, the diagnosis of a such imbalance is essential to adjust statistical analysis if required. We developed a tool based on the c-statistic of the propensity score (PS) model to detect global baseline covariate imbalance in CRTs and assess the risk of confounding bias. We performed a simulation study to assess the performance of the proposed tool and applied this method to analyze the data from 2 published CRTs. The proposed method had good performance for large sample sizes (n =500 per arm) and when the number of unbalanced covariates was not too small as compared with the total number of baseline covariates (≥40% of unbalanced covariates). We also provide a strategy for pre selection of the covariates needed to be included in the PS model to enhance imbalance detection. The proposed tool could be useful in deciding whether covariate adjustment is required before performing statistical analyses of CRTs.

  14. How Many Separable Sources? Model Selection In Independent Components Analysis

    PubMed Central

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  15. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef

    Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less

  16. Two statistics for evaluating parameter identifiability and error reduction

    USGS Publications Warehouse

    Doherty, John; Hunt, Randall J.

    2009-01-01

    Two statistics are presented that can be used to rank input parameters utilized by a model in terms of their relative identifiability based on a given or possible future calibration dataset. Identifiability is defined here as the capability of model calibration to constrain parameters used by a model. Both statistics require that the sensitivity of each model parameter be calculated for each model output for which there are actual or presumed field measurements. Singular value decomposition (SVD) of the weighted sensitivity matrix is then undertaken to quantify the relation between the parameters and observations that, in turn, allows selection of calibration solution and null spaces spanned by unit orthogonal vectors. The first statistic presented, "parameter identifiability", is quantitatively defined as the direction cosine between a parameter and its projection onto the calibration solution space. This varies between zero and one, with zero indicating complete non-identifiability and one indicating complete identifiability. The second statistic, "relative error reduction", indicates the extent to which the calibration process reduces error in estimation of a parameter from its pre-calibration level where its value must be assigned purely on the basis of prior expert knowledge. This is more sophisticated than identifiability, in that it takes greater account of the noise associated with the calibration dataset. Like identifiability, it has a maximum value of one (which can only be achieved if there is no measurement noise). Conceptually it can fall to zero; and even below zero if a calibration problem is poorly posed. An example, based on a coupled groundwater/surface-water model, is included that demonstrates the utility of the statistics. ?? 2009 Elsevier B.V.

  17. Computer-aided auditing of prescription drug claims.

    PubMed

    Iyengar, Vijay S; Hermiz, Keith B; Natarajan, Ramesh

    2014-09-01

    We describe a methodology for identifying and ranking candidate audit targets from a database of prescription drug claims. The relevant audit targets may include various entities such as prescribers, patients and pharmacies, who exhibit certain statistical behavior indicative of potential fraud and abuse over the prescription claims during a specified period of interest. Our overall approach is consistent with related work in statistical methods for detection of fraud and abuse, but has a relative emphasis on three specific aspects: first, based on the assessment of domain experts, certain focus areas are selected and data elements pertinent to the audit analysis in each focus area are identified; second, specialized statistical models are developed to characterize the normalized baseline behavior in each focus area; and third, statistical hypothesis testing is used to identify entities that diverge significantly from their expected behavior according to the relevant baseline model. The application of this overall methodology to a prescription claims database from a large health plan is considered in detail.

  18. Sparse High Dimensional Models in Economics

    PubMed Central

    Fan, Jianqing; Lv, Jinchi; Qi, Lei

    2010-01-01

    This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635

  19. A statistical approach for generating synthetic tip stress data from limited CPT soundings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basalams, M.K.

    CPT tip stress data obtained from a Uranium mill tailings impoundment are treated as time series. A statistical class of models that was developed to model time series is explored to investigate its applicability in modeling the tip stress series. These models were developed by Box and Jenkins (1970) and are known as Autoregressive Moving Average (ARMA) models. This research demonstrates how to apply the ARMA models to tip stress series. Generation of synthetic tip stress series that preserve the main statistical characteristics of the measured series is also investigated. Multiple regression analysis is used to model the regional variationmore » of the ARMA model parameters as well as the regional variation of the mean and the standard deviation of the measured tip stress series. The reliability of the generated series is investigated from a geotechnical point of view as well as from a statistical point of view. Estimation of the total settlement using the measured and the generated series subjected to the same loading condition are performed. The variation of friction angle with depth of the impoundment materials is also investigated. This research shows that these series can be modeled by the Box and Jenkins ARMA models. A third degree Autoregressive model AR(3) is selected to represent these series. A theoretical double exponential density function is fitted to the AR(3) model residuals. Synthetic tip stress series are generated at nearby locations. The generated series are shown to be reliable in estimating the total settlement and the friction angle variation with depth for this particular site.« less

  20. Detecting Selection on Protein Stability through Statistical Mechanical Models of Folding and Evolution

    PubMed Central

    Bastolla, Ugo

    2014-01-01

    The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217

  1. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models.

    PubMed

    Mulder, Han A; Rönnegård, Lars; Fikse, W Freddy; Veerkamp, Roel F; Strandberg, Erling

    2013-07-04

    Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike's information criterion using h-likelihood to select the best fitting model. We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike's information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike's information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.

  2. Strong Selection at MHC in Mexicans since Admixture

    PubMed Central

    Zhou, Quan; Zhao, Liang; Guan, Yongtao

    2016-01-01

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans. PMID:26863142

  3. Spatiotemporal Variation in Distance Dependent Animal Movement Contacts: One Size Doesn’t Fit All

    PubMed Central

    Brommesson, Peter; Wennergren, Uno; Lindström, Tom

    2016-01-01

    The structure of contacts that mediate transmission has a pronounced effect on the outbreak dynamics of infectious disease and simulation models are powerful tools to inform policy decisions. Most simulation models of livestock disease spread rely to some degree on predictions of animal movement between holdings. Typically, movements are more common between nearby farms than between those located far away from each other. Here, we assessed spatiotemporal variation in such distance dependence of animal movement contacts from an epidemiological perspective. We evaluated and compared nine statistical models, applied to Swedish movement data from 2008. The models differed in at what level (if at all), they accounted for regional and/or seasonal heterogeneities in the distance dependence of the contacts. Using a kernel approach to describe how probability of contacts between farms changes with distance, we developed a hierarchical Bayesian framework and estimated parameters by using Markov Chain Monte Carlo techniques. We evaluated models by three different approaches of model selection. First, we used Deviance Information Criterion to evaluate their performance relative to each other. Secondly, we estimated the log predictive posterior distribution, this was also used to evaluate their relative performance. Thirdly, we performed posterior predictive checks by simulating movements with each of the parameterized models and evaluated their ability to recapture relevant summary statistics. Independent of selection criteria, we found that accounting for regional heterogeneity improved model accuracy. We also found that accounting for seasonal heterogeneity was beneficial, in terms of model accuracy, according to two of three methods used for model selection. Our results have important implications for livestock disease spread models where movement is an important risk factor for between farm transmission. We argue that modelers should refrain from using methods to simulate animal movements that assume the same pattern across all regions and seasons without explicitly testing for spatiotemporal variation. PMID:27760155

  4. Maximum likelihood-based analysis of single-molecule photon arrival trajectories.

    PubMed

    Hajdziona, Marta; Molski, Andrzej

    2011-02-07

    In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 10(3) photons. When the intensity levels are well-separated and 10(4) photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.

  5. Stochastic isotropic hyperelastic materials: constitutive calibration and model selection

    NASA Astrophysics Data System (ADS)

    Mihai, L. Angela; Woolley, Thomas E.; Goriely, Alain

    2018-03-01

    Biological and synthetic materials often exhibit intrinsic variability in their elastic responses under large strains, owing to microstructural inhomogeneity or when elastic data are extracted from viscoelastic mechanical tests. For these materials, although hyperelastic models calibrated to mean data are useful, stochastic representations accounting also for data dispersion carry extra information about the variability of material properties found in practical applications. We combine finite elasticity and information theories to construct homogeneous isotropic hyperelastic models with random field parameters calibrated to discrete mean values and standard deviations of either the stress-strain function or the nonlinear shear modulus, which is a function of the deformation, estimated from experimental tests. These quantities can take on different values, corresponding to possible outcomes of the experiments. As multiple models can be derived that adequately represent the observed phenomena, we apply Occam's razor by providing an explicit criterion for model selection based on Bayesian statistics. We then employ this criterion to select a model among competing models calibrated to experimental data for rubber and brain tissue under single or multiaxial loads.

  6. Dynamics of Markets

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2009-09-01

    Preface; 1. Econophysics: why and what; 2. Neo-classical economic theory; 3. Probability and stochastic processes; 4. Introduction to financial economics; 5. Introduction to portfolio selection theory; 6. Scaling, pair correlations, and conditional densities; 7. Statistical ensembles: deducing dynamics from time series; 8. Martingale option pricing; 9. FX market globalization: evolution of the dollar to worldwide reserve currency; 10. Macroeconomics and econometrics: regression models vs. empirically based modeling; 11. Complexity; Index.

  7. Improving the Power of GWAS and Avoiding Confounding from Population Stratification with PC-Select

    PubMed Central

    Tucker, George; Price, Alkes L.; Berger, Bonnie

    2014-01-01

    Using a reduced subset of SNPs in a linear mixed model can improve power for genome-wide association studies, yet this can result in insufficient correction for population stratification. We propose a hybrid approach using principal components that does not inflate statistics in the presence of population stratification and improves power over standard linear mixed models. PMID:24788602

  8. Fukunaga-Koontz feature transformation for statistical structural damage detection and hierarchical neuro-fuzzy damage localisation

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2017-07-01

    Considering jointly damage sensitive features (DSFs) of signals recorded by multiple sensors, applying advanced transformations to these DSFs and assessing systematically their contribution to damage detectability and localisation can significantly enhance the performance of structural health monitoring systems. This philosophy is explored here for partial autocorrelation coefficients (PACCs) of acceleration responses. They are interrogated with the help of the linear discriminant analysis based on the Fukunaga-Koontz transformation using datasets of the healthy and selected reference damage states. Then, a simple but efficient fast forward selection procedure is applied to rank the DSF components with respect to statistical distance measures specialised for either damage detection or localisation. For the damage detection task, the optimal feature subsets are identified based on the statistical hypothesis testing. For damage localisation, a hierarchical neuro-fuzzy tool is developed that uses the DSF ranking to establish its own optimal architecture. The proposed approaches are evaluated experimentally on data from non-destructively simulated damage in a laboratory scale wind turbine blade. The results support our claim of being able to enhance damage detectability and localisation performance by transforming and optimally selecting DSFs. It is demonstrated that the optimally selected PACCs from multiple sensors or their Fukunaga-Koontz transformed versions can not only improve the detectability of damage via statistical hypothesis testing but also increase the accuracy of damage localisation when used as inputs into a hierarchical neuro-fuzzy network. Furthermore, the computational effort of employing these advanced soft computing models for damage localisation can be significantly reduced by using transformed DSFs.

  9. Identifying Node Role in Social Network Based on Multiple Indicators

    PubMed Central

    Huang, Shaobin; Lv, Tianyang; Zhang, Xizhe; Yang, Yange; Zheng, Weimin; Wen, Chao

    2014-01-01

    It is a classic topic of social network analysis to evaluate the importance of nodes and identify the node that takes on the role of core or bridge in a network. Because a single indicator is not sufficient to analyze multiple characteristics of a node, it is a natural solution to apply multiple indicators that should be selected carefully. An intuitive idea is to select some indicators with weak correlations to efficiently assess different characteristics of a node. However, this paper shows that it is much better to select the indicators with strong correlations. Because indicator correlation is based on the statistical analysis of a large number of nodes, the particularity of an important node will be outlined if its indicator relationship doesn't comply with the statistical correlation. Therefore, the paper selects the multiple indicators including degree, ego-betweenness centrality and eigenvector centrality to evaluate the importance and the role of a node. The importance of a node is equal to the normalized sum of its three indicators. A candidate for core or bridge is selected from the great degree nodes or the nodes with great ego-betweenness centrality respectively. Then, the role of a candidate is determined according to the difference between its indicators' relationship with the statistical correlation of the overall network. Based on 18 real networks and 3 kinds of model networks, the experimental results show that the proposed methods perform quite well in evaluating the importance of nodes and in identifying the node role. PMID:25089823

  10. Nowcasting of Low-Visibility Procedure States with Ordered Logistic Regression at Vienna International Airport

    NASA Astrophysics Data System (ADS)

    Kneringer, Philipp; Dietz, Sebastian; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Low-visibility conditions have a large impact on aviation safety and economic efficiency of airports and airlines. To support decision makers, we develop a statistical probabilistic nowcasting tool for the occurrence of capacity-reducing operations related to low visibility. The probabilities of four different low visibility classes are predicted with an ordered logistic regression model based on time series of meteorological point measurements. Potential predictor variables for the statistical models are visibility, humidity, temperature and wind measurements at several measurement sites. A stepwise variable selection method indicates that visibility and humidity measurements are the most important model inputs. The forecasts are tested with a 30 minute forecast interval up to two hours, which is a sufficient time span for tactical planning at Vienna Airport. The ordered logistic regression models outperform persistence and are competitive with human forecasters.

  11. Data-Driven Learning of Q-Matrix

    PubMed Central

    Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang

    2013-01-01

    The recent surge of interests in cognitive assessment has led to developments of novel statistical models for diagnostic classification. Central to many such models is the well-known Q-matrix, which specifies the item–attribute relationships. This article proposes a data-driven approach to identification of the Q-matrix and estimation of related model parameters. A key ingredient is a flexible T-matrix that relates the Q-matrix to response patterns. The flexibility of the T-matrix allows the construction of a natural criterion function as well as a computationally amenable algorithm. Simulations results are presented to demonstrate usefulness and applicability of the proposed method. Extension to handling of the Q-matrix with partial information is presented. The proposed method also provides a platform on which important statistical issues, such as hypothesis testing and model selection, may be formally addressed. PMID:23926363

  12. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism.

    PubMed

    Graham, Emily B; Crump, Alex R; Resch, Charles T; Fansler, Sarah; Arntzen, Evan; Kennedy, David W; Fredrickson, Jim K; Stegen, James C

    2016-01-01

    Community assembly processes generate shifts in species abundances that influence ecosystem cycling of carbon and nutrients, yet our understanding of assembly remains largely separate from ecosystem-level functioning. Here, we investigate relationships between assembly and changes in microbial metabolism across space and time in hyporheic microbial communities. We pair sampling of two habitat types (i.e., attached and planktonic) through seasonal and sub-hourly hydrologic fluctuation with null modeling and temporally explicit multivariate statistics. We demonstrate that multiple selective pressures-imposed by sediment and porewater physicochemistry-integrate to generate changes in microbial community composition at distinct timescales among habitat types. These changes in composition are reflective of contrasting associations of Betaproteobacteria and Thaumarchaeota with ecological selection and with seasonal changes in microbial metabolism. We present a conceptual model based on our results in which metabolism increases when oscillating selective pressures oppose temporally stable selective pressures. Our conceptual model is pertinent to both macrobial and microbial systems experiencing multiple selective pressures and presents an avenue for assimilating community assembly processes into predictions of ecosystem-level functioning.

  13. Inflated Uncertainty in Multimodel-Based Regional Climate Projections.

    PubMed

    Madsen, Marianne Sloth; Langen, Peter L; Boberg, Fredrik; Christensen, Jens Hesselbjerg

    2017-11-28

    Multimodel ensembles are widely analyzed to estimate the range of future regional climate change projections. For an ensemble of climate models, the result is often portrayed by showing maps of the geographical distribution of the multimodel mean results and associated uncertainties represented by model spread at the grid point scale. Here we use a set of CMIP5 models to show that presenting statistics this way results in an overestimation of the projected range leading to physically implausible patterns of change on global but also on regional scales. We point out that similar inconsistencies occur in impact analyses relying on multimodel information extracted using statistics at the regional scale, for example, when a subset of CMIP models is selected to represent regional model spread. Consequently, the risk of unwanted impacts may be overestimated at larger scales as climate change impacts will never be realized as the worst (or best) case everywhere.

  14. Predicting perceptual quality of images in realistic scenario using deep filter banks

    NASA Astrophysics Data System (ADS)

    Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang

    2018-03-01

    Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.

  15. 49 CFR Schedule G to Subpart B of... - Selected Statistical Data

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Selected Statistical Data G Schedule G to Subpart... Statistical Data [Dollars in thousands] () Greyhound Lines, Inc. () Trailways combined () All study carriers... purpose of Schedule G is to develop selected property, labor and operational data for use in evaluating...

  16. Calibration model maintenance in melamine resin production: Integrating drift detection, smart sample selection and model adaptation.

    PubMed

    Nikzad-Langerodi, Ramin; Lughofer, Edwin; Cernuda, Carlos; Reischer, Thomas; Kantner, Wolfgang; Pawliczek, Marcin; Brandstetter, Markus

    2018-07-12

    The physico-chemical properties of Melamine Formaldehyde (MF) based thermosets are largely influenced by the degree of polymerization (DP) in the underlying resin. On-line supervision of the turbidity point by means of vibrational spectroscopy has recently emerged as a promising technique to monitor the DP of MF resins. However, spectroscopic determination of the DP relies on chemometric models, which are usually sensitive to drifts caused by instrumental and/or sample-associated changes occurring over time. In order to detect the time point when drifts start causing prediction bias, we here explore a universal drift detector based on a faded version of the Page-Hinkley (PH) statistic, which we test in three data streams from an industrial MF resin production process. We employ committee disagreement (CD), computed as the variance of model predictions from an ensemble of partial least squares (PLS) models, as a measure for sample-wise prediction uncertainty and use the PH statistic to detect changes in this quantity. We further explore supervised and unsupervised strategies for (semi-)automatic model adaptation upon detection of a drift. For the former, manual reference measurements are requested whenever statistical thresholds on Hotelling's T 2 and/or Q-Residuals are violated. Models are subsequently re-calibrated using weighted partial least squares in order to increase the influence of newer samples, which increases the flexibility when adapting to new (drifted) states. Unsupervised model adaptation is carried out exploiting the dual antecedent-consequent structure of a recently developed fuzzy systems variant of PLS termed FLEXFIS-PLS. In particular, antecedent parts are updated while maintaining the internal structure of the local linear predictors (i.e. the consequents). We found improved drift detection capability of the CD compared to Hotelling's T 2 and Q-Residuals when used in combination with the proposed PH test. Furthermore, we found that active selection of samples by active learning (AL) used for subsequent model adaptation is advantageous compared to passive (random) selection in case that a drift leads to persistent prediction bias allowing more rapid adaptation at lower reference measurement rates. Fully unsupervised adaptation using FLEXFIS-PLS could improve predictive accuracy significantly for light drifts but was not able to fully compensate for prediction bias in case of significant lack of fit w.r.t. the latent variable space. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Cognitive Components Underpinning the Development of Model-Based Learning

    PubMed Central

    Potter, Tracey C.S.; Bryce, Nessa V.; Hartley, Catherine A.

    2016-01-01

    Reinforcement learning theory distinguishes “model-free” learning, which fosters reflexive repetition of previously rewarded actions, from “model-based” learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9–25, we examined whether the abilities to infer sequential regularities in the environment (“statistical learning”), maintain information in an active state (“working memory”) and integrate distant concepts to solve problems (“fluid reasoning”) predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. PMID:27825732

  18. Cognitive components underpinning the development of model-based learning.

    PubMed

    Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A

    2017-06-01

    Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Obtaining the variance of gametic diversity with genomic models

    USDA-ARS?s Scientific Manuscript database

    It may be possible to use information about the variability among gametes (spermatozoa and ova) to select parents that are more likely than average to produce offspring with extremely high or low breeding values. In this study, statistical formulae were developed to calculate variability among gamet...

  20. Three Tier Unified Process Model for Requirement Negotiations and Stakeholder Collaborations

    NASA Astrophysics Data System (ADS)

    Niazi, Muhammad Ashraf Khan; Abbas, Muhammad; Shahzad, Muhammad

    2012-11-01

    This research paper is focused towards carrying out a pragmatic qualitative analysis of various models and approaches of requirements negotiations (a sub process of requirements management plan which is an output of scope managementís collect requirements process) and studies stakeholder collaborations methodologies (i.e. from within communication management knowledge area). Experiential analysis encompass two tiers; first tier refers to the weighted scoring model while second tier focuses on development of SWOT matrices on the basis of findings of weighted scoring model for selecting an appropriate requirements negotiation model. Finally the results are simulated with the help of statistical pie charts. On the basis of simulated results of prevalent models and approaches of negotiations, a unified approach for requirements negotiations and stakeholder collaborations is proposed where the collaboration methodologies are embeded into selected requirements negotiation model as internal parameters of the proposed process alongside some external required parameters like MBTI, opportunity analysis etc.

  1. A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims

    PubMed Central

    Scheel, Ida; Ferkingstad, Egil; Frigessi, Arnoldo; Haug, Ola; Hinnerichsen, Mikkel; Meze-Hausken, Elisabeth

    2013-01-01

    Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models. PMID:23396890

  2. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology.

    PubMed

    Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H

    2017-07-01

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in using RF to develop predictive models with large environmental data sets.

  3. Learning planar Ising models

    DOE PAGES

    Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael; ...

    2016-12-01

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less

  4. Learning planar Ising models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less

  5. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2017-01-05

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Combining super-ensembles and statistical emulation to improve a regional climate and vegetation model

    NASA Astrophysics Data System (ADS)

    Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.

    2017-12-01

    Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.

  7. The effect of stochiastic technique on estimates of population viability from transition matrix models

    USGS Publications Warehouse

    Kaye, T.N.; Pyke, David A.

    2003-01-01

    Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.

  8. The Birth-Death-Mutation Process: A New Paradigm for Fat Tailed Distributions

    PubMed Central

    Maruvka, Yosef E.; Kessler, David A.; Shnerb, Nadav M.

    2011-01-01

    Fat tailed statistics and power-laws are ubiquitous in many complex systems. Usually the appearance of of a few anomalously successful individuals (bio-species, investors, websites) is interpreted as reflecting some inherent “quality” (fitness, talent, giftedness) as in Darwin's theory of natural selection. Here we adopt the opposite, “neutral”, outlook, suggesting that the main factor explaining success is merely luck. The statistics emerging from the neutral birth-death-mutation (BDM) process is shown to fit marvelously many empirical distributions. While previous neutral theories have focused on the power-law tail, our theory economically and accurately explains the entire distribution. We thus suggest the BDM distribution as a standard neutral model: effects of fitness and selection are to be identified by substantial deviations from it. PMID:22069453

  9. Modelling multiple sources of dissemination bias in meta-analysis.

    PubMed

    Bowden, Jack; Jackson, Dan; Thompson, Simon G

    2010-03-30

    Asymmetry in the funnel plot for a meta-analysis suggests the presence of dissemination bias. This may be caused by publication bias through the decisions of journal editors, by selective reporting of research results by authors or by a combination of both. Typically, study results that are statistically significant or have larger estimated effect sizes are more likely to appear in the published literature, hence giving a biased picture of the evidence-base. Previous statistical approaches for addressing dissemination bias have assumed only a single selection mechanism. Here we consider a more realistic scenario in which multiple dissemination processes, involving both the publishing authors and journals, are operating. In practical applications, the methods can be used to provide sensitivity analyses for the potential effects of multiple dissemination biases operating in meta-analysis.

  10. Statistically Based Approach to Broadband Liner Design and Assessment

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Nark, Douglas M. (Inventor)

    2016-01-01

    A broadband liner design optimization includes utilizing in-duct attenuation predictions with a statistical fan source model to obtain optimum impedance spectra over a number of flow conditions for one or more liner locations in a bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners having impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increasing weighting to specific frequencies and/or operating conditions. One or more broadband design approaches are utilized to produce a broadband liner that targets a full range of frequencies and operating conditions.

  11. Efficient Generation and Selection of Virtual Populations in Quantitative Systems Pharmacology Models

    PubMed Central

    Rieger, TR; Musante, CJ

    2016-01-01

    Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed “virtual patients.” In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations. PMID:27069777

  12. Multilocus approaches for the measurement of selection on correlated genetic loci.

    PubMed

    Gompert, Zachariah; Egan, Scott P; Barrett, Rowan D H; Feder, Jeffrey L; Nosil, Patrik

    2017-01-01

    The study of ecological speciation is inherently linked to the study of selection. Methods for estimating phenotypic selection within a generation based on associations between trait values and fitness (e.g. survival) of individuals are established. These methods attempt to disentangle selection acting directly on a trait from indirect selection caused by correlations with other traits via multivariate statistical approaches (i.e. inference of selection gradients). The estimation of selection on genotypic or genomic variation could also benefit from disentangling direct and indirect selection on genetic loci. However, achieving this goal is difficult with genomic data because the number of potentially correlated genetic loci (p) is very large relative to the number of individuals sampled (n). In other words, the number of model parameters exceeds the number of observations (p ≫ n). We present simulations examining the utility of whole-genome regression approaches (i.e. Bayesian sparse linear mixed models) for quantifying direct selection in cases where p ≫ n. Such models have been used for genome-wide association mapping and are common in artificial breeding. Our results show they hold promise for studies of natural selection in the wild and thus of ecological speciation. But we also demonstrate important limitations to the approach and discuss study designs required for more robust inferences. © 2016 John Wiley & Sons Ltd.

  13. Designing Intervention Studies: Selected Populations, Range Restrictions, and Statistical Power

    ERIC Educational Resources Information Center

    Miciak, Jeremy; Taylor, W. Pat; Stuebing, Karla K.; Fletcher, Jack M.; Vaughn, Sharon

    2016-01-01

    An appropriate estimate of statistical power is critical for the design of intervention studies. Although the inclusion of a pretest covariate in the test of the primary outcome can increase statistical power, samples selected on the basis of pretest performance may demonstrate range restriction on the selection measure and other correlated…

  14. Designing Intervention Studies: Selected Populations, Range Restrictions, and Statistical Power

    PubMed Central

    Miciak, Jeremy; Taylor, W. Pat; Stuebing, Karla K.; Fletcher, Jack M.; Vaughn, Sharon

    2016-01-01

    An appropriate estimate of statistical power is critical for the design of intervention studies. Although the inclusion of a pretest covariate in the test of the primary outcome can increase statistical power, samples selected on the basis of pretest performance may demonstrate range restriction on the selection measure and other correlated measures. This can result in attenuated pretest-posttest correlations, reducing the variance explained by the pretest covariate. We investigated the implications of two potential range restriction scenarios: direct truncation on a selection measure and indirect range restriction on correlated measures. Empirical and simulated data indicated direct range restriction on the pretest covariate greatly reduced statistical power and necessitated sample size increases of 82%–155% (dependent on selection criteria) to achieve equivalent statistical power to parameters with unrestricted samples. However, measures demonstrating indirect range restriction required much smaller sample size increases (32%–71%) under equivalent scenarios. Additional analyses manipulated the correlations between measures and pretest-posttest correlations to guide planning experiments. Results highlight the need to differentiate between selection measures and potential covariates and to investigate range restriction as a factor impacting statistical power. PMID:28479943

  15. Designing Intervention Studies: Selected Populations, Range Restrictions, and Statistical Power.

    PubMed

    Miciak, Jeremy; Taylor, W Pat; Stuebing, Karla K; Fletcher, Jack M; Vaughn, Sharon

    2016-01-01

    An appropriate estimate of statistical power is critical for the design of intervention studies. Although the inclusion of a pretest covariate in the test of the primary outcome can increase statistical power, samples selected on the basis of pretest performance may demonstrate range restriction on the selection measure and other correlated measures. This can result in attenuated pretest-posttest correlations, reducing the variance explained by the pretest covariate. We investigated the implications of two potential range restriction scenarios: direct truncation on a selection measure and indirect range restriction on correlated measures. Empirical and simulated data indicated direct range restriction on the pretest covariate greatly reduced statistical power and necessitated sample size increases of 82%-155% (dependent on selection criteria) to achieve equivalent statistical power to parameters with unrestricted samples. However, measures demonstrating indirect range restriction required much smaller sample size increases (32%-71%) under equivalent scenarios. Additional analyses manipulated the correlations between measures and pretest-posttest correlations to guide planning experiments. Results highlight the need to differentiate between selection measures and potential covariates and to investigate range restriction as a factor impacting statistical power.

  16. The evolution of autodigestion in the mushroom family Psathyrellaceae (Agaricales) inferred from Maximum Likelihood and Bayesian methods.

    PubMed

    Nagy, László G; Urban, Alexander; Orstadius, Leif; Papp, Tamás; Larsson, Ellen; Vágvölgyi, Csaba

    2010-12-01

    Recently developed comparative phylogenetic methods offer a wide spectrum of applications in evolutionary biology, although it is generally accepted that their statistical properties are incompletely known. Here, we examine and compare the statistical power of the ML and Bayesian methods with regard to selection of best-fit models of fruiting-body evolution and hypothesis testing of ancestral states on a real-life data set of a physiological trait (autodigestion) in the family Psathyrellaceae. Our phylogenies are based on the first multigene data set generated for the family. Two different coding regimes (binary and multistate) and two data sets differing in taxon sampling density are examined. The Bayesian method outperformed Maximum Likelihood with regard to statistical power in all analyses. This is particularly evident if the signal in the data is weak, i.e. in cases when the ML approach does not provide support to choose among competing hypotheses. Results based on binary and multistate coding differed only modestly, although it was evident that multistate analyses were less conclusive in all cases. It seems that increased taxon sampling density has favourable effects on inference of ancestral states, while model parameters are influenced to a smaller extent. The model best fitting our data implies that the rate of losses of deliquescence equals zero, although model selection in ML does not provide proper support to reject three of the four candidate models. The results also support the hypothesis that non-deliquescence (lack of autodigestion) has been ancestral in Psathyrellaceae, and that deliquescent fruiting bodies represent the preferred state, having evolved independently several times during evolution. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Bayesian Group Bridge for Bi-level Variable Selection.

    PubMed

    Mallick, Himel; Yi, Nengjun

    2017-06-01

    A Bayesian bi-level variable selection method (BAGB: Bayesian Analysis of Group Bridge) is developed for regularized regression and classification. This new development is motivated by grouped data, where generic variables can be divided into multiple groups, with variables in the same group being mechanistically related or statistically correlated. As an alternative to frequentist group variable selection methods, BAGB incorporates structural information among predictors through a group-wise shrinkage prior. Posterior computation proceeds via an efficient MCMC algorithm. In addition to the usual ease-of-interpretation of hierarchical linear models, the Bayesian formulation produces valid standard errors, a feature that is notably absent in the frequentist framework. Empirical evidence of the attractiveness of the method is illustrated by extensive Monte Carlo simulations and real data analysis. Finally, several extensions of this new approach are presented, providing a unified framework for bi-level variable selection in general models with flexible penalties.

  18. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    PubMed

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  19. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.

    PubMed

    Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy

    2015-10-15

    The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii) assessment of modelling the onset of transient and compression settling. Furthermore, the optimal level of model discretization both in 2-D and 1-D was undertaken. Results suggest that the iCFD model developed for the SST through the proposed methodology is able to predict solid distribution with high accuracy - taking a reasonable computational effort - when compared to multi-dimensional numerical experiments, under a wide range of flow and design conditions. iCFD tools could play a crucial role in reliably predicting systems' performance under normal and shock events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia

    NASA Astrophysics Data System (ADS)

    Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.

    2013-10-01

    Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.

  1. A unifying framework for quantifying the nature of animal interactions.

    PubMed

    Potts, Jonathan R; Mokross, Karl; Lewis, Mark A

    2014-07-06

    Collective phenomena, whereby agent-agent interactions determine spatial patterns, are ubiquitous in the animal kingdom. On the other hand, movement and space use are also greatly influenced by the interactions between animals and their environment. Despite both types of interaction fundamentally influencing animal behaviour, there has hitherto been no unifying framework for the models proposed in both areas. Here, we construct a general method for inferring population-level spatial patterns from underlying individual movement and interaction processes, a key ingredient in building a statistical mechanics for ecological systems. We show that resource selection functions, as well as several examples of collective motion models, arise as special cases of our framework, thus bringing together resource selection analysis and collective animal behaviour into a single theory. In particular, we focus on combining the various mechanistic models of territorial interactions in the literature with step selection functions, by incorporating interactions into the step selection framework and demonstrating how to derive territorial patterns from the resulting models. We demonstrate the efficacy of our model by application to a population of insectivore birds in the Amazon rainforest. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm.

    PubMed

    de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Héctor Casimiro; Galvão, Roberto Kawakami Harrop; Araújo, Mario Cesar Ugulino

    2018-05-01

    This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions. Published by Elsevier B.V.

  3. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity

    PubMed Central

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2014-01-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes. PMID:22684587

  4. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.

    PubMed

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2012-12-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

  5. Molecular vibrational energy flow

    NASA Astrophysics Data System (ADS)

    Gruebele, M.; Bigwood, R.

    This article reviews some recent work in molecular vibrational energy flow (IVR), with emphasis on our own computational and experimental studies. We consider the problem in various representations, and use these to develop a family of simple models which combine specific molecular properties (e.g. size, vibrational frequencies) with statistical properties of the potential energy surface and wavefunctions. This marriage of molecular detail and statistical simplification captures trends of IVR mechanisms and survival probabilities beyond the abilities of purely statistical models or the computational limitations of full ab initio approaches. Of particular interest is IVR in the intermediate time regime, where heavy-atom skeletal modes take over the IVR process from hydrogenic motions even upon X H bond excitation. Experiments and calculations on prototype heavy-atom systems show that intermediate time IVR differs in many aspects from the early stages of hydrogenic mode IVR. As a result, IVR can be coherently frozen, with potential applications to selective chemistry.

  6. The application of the statistical classifying models for signal evaluation of the gas sensors analyzing mold contamination of the building materials

    NASA Astrophysics Data System (ADS)

    Majerek, Dariusz; Guz, Łukasz; Suchorab, Zbigniew; Łagód, Grzegorz; Sobczuk, Henryk

    2017-07-01

    Mold that develops on moistened building barriers is a major cause of the Sick Building Syndrome (SBS). Fungal contamination is normally evaluated using standard biological methods which are time-consuming and require a lot of manual labor. Fungi emit Volatile Organic Compounds (VOC) that can be detected in the indoor air using several techniques of detection e.g. chromatography. VOCs can be also detected using gas sensors arrays. All array sensors generate particular voltage signals that ought to be analyzed using properly selected statistical methods of interpretation. This work is focused on the attempt to apply statistical classifying models in evaluation of signals from gas sensors matrix to analyze the air sampled from the headspace of various types of the building materials at different level of contamination but also clean reference materials.

  7. Rigorous force field optimization principles based on statistical distance minimization

    DOE PAGES

    Vlcek, Lukas; Chialvo, Ariel A.

    2015-10-12

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. Here we exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of themore » approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.« less

  8. An Interinstitutional Analysis of Faculty Teaching Load.

    ERIC Educational Resources Information Center

    Ahrens, Stephen W.

    A two-year interinstitutional study among 15 cooperating universities was conducted to determine whether significant differences exist in teaching loads among the selected universities as measured by student credit hours produced by full-time equivalent faculty. The statistical model was a multivariate analysis of variance with fixed effects and…

  9. Independent review : statistical analyses of relationship between vehicle curb weight, track width, wheelbase and fatality rates.

    DOT National Transportation Integrated Search

    2011-03-01

    "NHTSA selected the vehicle footprint (the measure of a vehicles wheelbase multiplied by its average track width) as the attribute upon which to base the CAFE standards for model year 2012-2016 passenger cars and light trucks. These standards are ...

  10. A study of finite mixture model: Bayesian approach on financial time series data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-07-01

    Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.

  11. Efficient design based on perturbed parameter ensembles to identify plausible and diverse variants of a model for climate change projections

    NASA Astrophysics Data System (ADS)

    Karmalkar, A.; Sexton, D.; Murphy, J.

    2017-12-01

    We present exploratory work towards developing an efficient strategy to select variants of a state-of-the-art but expensive climate model suitable for climate projection studies. The strategy combines information from a set of idealized perturbed parameter ensemble (PPE) and CMIP5 multi-model ensemble (MME) experiments, and uses two criteria as basis to select model variants for a PPE suitable for future projections: a) acceptable model performance at two different timescales, and b) maintaining diversity in model response to climate change. We demonstrate that there is a strong relationship between model errors at weather and climate timescales for a variety of key variables. This relationship is used to filter out parts of parameter space that do not give credible simulations of historical climate, while minimizing the impact on ranges in forcings and feedbacks that drive model responses to climate change. We use statistical emulation to explore the parameter space thoroughly, and demonstrate that about 90% can be filtered out without affecting diversity in global-scale climate change responses. This leads to identification of plausible parts of parameter space from which model variants can be selected for projection studies.

  12. 47 CFR 54.807 - Interstate access universal service support.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Common Carrier Bureau Report, Statistics of Communications Common Carriers, Table 6.10—Selected Operating Statistics. Interested parties may obtain this report from the U.S. Government Printing Office or by... Bureau Report, Statistics of Communications Common Carriers, Table 6.10—Selected Operating Statistics...

  13. Visual attention based bag-of-words model for image classification

    NASA Astrophysics Data System (ADS)

    Wang, Qiwei; Wan, Shouhong; Yue, Lihua; Wang, Che

    2014-04-01

    Bag-of-words is a classical method for image classification. The core problem is how to count the frequency of the visual words and what visual words to select. In this paper, we propose a visual attention based bag-of-words model (VABOW model) for image classification task. The VABOW model utilizes visual attention method to generate a saliency map, and uses the saliency map as a weighted matrix to instruct the statistic process for the frequency of the visual words. On the other hand, the VABOW model combines shape, color and texture cues and uses L1 regularization logistic regression method to select the most relevant and most efficient features. We compare our approach with traditional bag-of-words based method on two datasets, and the result shows that our VABOW model outperforms the state-of-the-art method for image classification.

  14. Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data.

    PubMed

    Tong, Dong Ling; Schierz, Amanda C

    2011-09-01

    Suitable techniques for microarray analysis have been widely researched, particularly for the study of marker genes expressed to a specific type of cancer. Most of the machine learning methods that have been applied to significant gene selection focus on the classification ability rather than the selection ability of the method. These methods also require the microarray data to be preprocessed before analysis takes place. The objective of this study is to develop a hybrid genetic algorithm-neural network (GANN) model that emphasises feature selection and can operate on unpreprocessed microarray data. The GANN is a hybrid model where the fitness value of the genetic algorithm (GA) is based upon the number of samples correctly labelled by a standard feedforward artificial neural network (ANN). The model is evaluated by using two benchmark microarray datasets with different array platforms and differing number of classes (a 2-class oligonucleotide microarray data for acute leukaemia and a 4-class complementary DNA (cDNA) microarray dataset for SRBCTs (small round blue cell tumours)). The underlying concept of the GANN algorithm is to select highly informative genes by co-evolving both the GA fitness function and the ANN weights at the same time. The novel GANN selected approximately 50% of the same genes as the original studies. This may indicate that these common genes are more biologically significant than other genes in the datasets. The remaining 50% of the significant genes identified were used to build predictive models and for both datasets, the models based on the set of genes extracted by the GANN method produced more accurate results. The results also suggest that the GANN method not only can detect genes that are exclusively associated with a single cancer type but can also explore the genes that are differentially expressed in multiple cancer types. The results show that the GANN model has successfully extracted statistically significant genes from the unpreprocessed microarray data as well as extracting known biologically significant genes. We also show that assessing the biological significance of genes based on classification accuracy may be misleading and though the GANN's set of extra genes prove to be more statistically significant than those selected by other methods, a biological assessment of these genes is highly recommended to confirm their functionality. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. A Performance Comparison on the Probability Plot Correlation Coefficient Test using Several Plotting Positions for GEV Distribution.

    NASA Astrophysics Data System (ADS)

    Ahn, Hyunjun; Jung, Younghun; Om, Ju-Seong; Heo, Jun-Haeng

    2014-05-01

    It is very important to select the probability distribution in Statistical hydrology. Goodness of fit test is a statistical method that selects an appropriate probability model for a given data. The probability plot correlation coefficient (PPCC) test as one of the goodness of fit tests was originally developed for normal distribution. Since then, this test has been widely applied to other probability models. The PPCC test is known as one of the best goodness of fit test because it shows higher rejection powers among them. In this study, we focus on the PPCC tests for the GEV distribution which is widely used in the world. For the GEV model, several plotting position formulas are suggested. However, the PPCC statistics are derived only for the plotting position formulas (Goel and De, In-na and Nguyen, and Kim et al.) in which the skewness coefficient (or shape parameter) are included. And then the regression equations are derived as a function of the shape parameter and sample size for a given significance level. In addition, the rejection powers of these formulas are compared using Monte-Carlo simulation. Keywords: Goodness-of-fit test, Probability plot correlation coefficient test, Plotting position, Monte-Carlo Simulation ACKNOWLEDGEMENTS This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-12-NH-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  16. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    NASA Astrophysics Data System (ADS)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.

  17. The impact on midlevel vision of statistically optimal divisive normalization in V1

    PubMed Central

    Coen-Cagli, Ruben; Schwartz, Odelia

    2013-01-01

    The first two areas of the primate visual cortex (V1, V2) provide a paradigmatic example of hierarchical computation in the brain. However, neither the functional properties of V2 nor the interactions between the two areas are well understood. One key aspect is that the statistics of the inputs received by V2 depend on the nonlinear response properties of V1. Here, we focused on divisive normalization, a canonical nonlinear computation that is observed in many neural areas and modalities. We simulated V1 responses with (and without) different forms of surround normalization derived from statistical models of natural scenes, including canonical normalization and a statistically optimal extension that accounted for image nonhomogeneities. The statistics of the V1 population responses differed markedly across models. We then addressed how V2 receptive fields pool the responses of V1 model units with different tuning. We assumed this is achieved by learning without supervision a linear representation that removes correlations, which could be accomplished with principal component analysis. This approach revealed V2-like feature selectivity when we used the optimal normalization and, to a lesser extent, the canonical one but not in the absence of both. We compared the resulting two-stage models on two perceptual tasks; while models encompassing V1 surround normalization performed better at object recognition, only statistically optimal normalization provided systematic advantages in a task more closely matched to midlevel vision, namely figure/ground judgment. Our results suggest that experiments probing midlevel areas might benefit from using stimuli designed to engage the computations that characterize V1 optimality. PMID:23857950

  18. Computer program to minimize prediction error in models from experiments with 16 hypercube points and 0 to 6 center points

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1982-01-01

    A previous report described a backward deletion procedure of model selection that was optimized for minimum prediction error and which used a multiparameter combination of the F - distribution and an order statistics distribution of Cochran's. A computer program is described that applies the previously optimized procedure to real data. The use of the program is illustrated by examples.

  19. Specificity and timescales of cortical adaptation as inferences about natural movie statistics.

    PubMed

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-10-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation.

  20. Specificity and timescales of cortical adaptation as inferences about natural movie statistics

    PubMed Central

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-01-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation. PMID:27699416

  1. A quick method based on SIMPLISMA-KPLS for simultaneously selecting outlier samples and informative samples for model standardization in near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li-Na; Ma, Chang-Ming; Chang, Ming; Zhang, Ren-Cheng

    2017-12-01

    A novel method based on SIMPLe-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) and Kernel Partial Least Square (KPLS), named as SIMPLISMA-KPLS, is proposed in this paper for selection of outlier samples and informative samples simultaneously. It is a quick algorithm used to model standardization (or named as model transfer) in near infrared (NIR) spectroscopy. The NIR experiment data of the corn for analysis of the protein content is introduced to evaluate the proposed method. Piecewise direct standardization (PDS) is employed in model transfer. And the comparison of SIMPLISMA-PDS-KPLS and KS-PDS-KPLS is given in this research by discussion of the prediction accuracy of protein content and calculation speed of each algorithm. The conclusions include that SIMPLISMA-KPLS can be utilized as an alternative sample selection method for model transfer. Although it has similar accuracy to Kennard-Stone (KS), it is different from KS as it employs concentration information in selection program. This means that it ensures analyte information is involved in analysis, and the spectra (X) of the selected samples is interrelated with concentration (y). And it can be used for outlier sample elimination simultaneously by validation of calibration. According to the statistical data results of running time, it is clear that the sample selection process is more rapid when using KPLS. The quick algorithm of SIMPLISMA-KPLS is beneficial to improve the speed of online measurement using NIR spectroscopy.

  2. Construction of multiple linear regression models using blood biomarkers for selecting against abdominal fat traits in broilers.

    PubMed

    Dong, J Q; Zhang, X Y; Wang, S Z; Jiang, X F; Zhang, K; Ma, G W; Wu, M Q; Li, H; Zhang, H

    2018-01-01

    Plasma very low-density lipoprotein (VLDL) can be used to select for low body fat or abdominal fat (AF) in broilers, but its correlation with AF is limited. We investigated whether any other biochemical indicator can be used in combination with VLDL for a better selective effect. Nineteen plasma biochemical indicators were measured in male chickens from the Northeast Agricultural University broiler lines divergently selected for AF content (NEAUHLF) in the fed state at 46 and 48 d of age. The average concentration of every parameter for the 2 d was used for statistical analysis. Levels of these 19 plasma biochemical parameters were compared between the lean and fat lines. The phenotypic correlations between these plasma biochemical indicators and AF traits were analyzed. Then, multiple linear regression models were constructed to select the best model used for selecting against AF content. and the heritabilities of plasma indicators contained in the best models were estimated. The results showed that 11 plasma biochemical indicators (triglycerides, total bile acid, total protein, globulin, albumin/globulin, aspartate transaminase, alanine transaminase, gamma-glutamyl transpeptidase, uric acid, creatinine, and VLDL) differed significantly between the lean and fat lines (P < 0.01), and correlated significantly with AF traits (P < 0.05). The best multiple linear regression models based on albumin/globulin, VLDL, triglycerides, globulin, total bile acid, and uric acid, had higher R2 (0.73) than the model based only on VLDL (0.21). The plasma parameters included in the best models had moderate heritability estimates (0.21 ≤ h2 ≤ 0.43). These results indicate that these multiple linear regression models can be used to select for lean broiler chickens. © 2017 Poultry Science Association Inc.

  3. Understanding regulatory networks requires more than computing a multitude of graph statistics. Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin et al.

    NASA Astrophysics Data System (ADS)

    Tkačik, Gašper

    2016-07-01

    The article by O. Martin and colleagues provides a much needed systematic review of a body of work that relates the topological structure of genetic regulatory networks to evolutionary selection for function. This connection is very important. Using the current wealth of genomic data, statistical features of regulatory networks (e.g., degree distributions, motif composition, etc.) can be quantified rather easily; it is, however, often unclear how to interpret the results. On a graph theoretic level the statistical significance of the results can be evaluated by comparing observed graphs to ;randomized; ones (bravely ignoring the issue of how precisely to randomize!) and comparing the frequency of appearance of a particular network structure relative to a randomized null expectation. While this is a convenient operational test for statistical significance, its biological meaning is questionable. In contrast, an in-silico genotype-to-phenotype model makes explicit the assumptions about the network function, and thus clearly defines the expected network structures that can be compared to the case of no selection for function and, ultimately, to data.

  4. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    PubMed

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Direction dependence analysis: A framework to test the direction of effects in linear models with an implementation in SPSS.

    PubMed

    Wiedermann, Wolfgang; Li, Xintong

    2018-04-16

    In nonexperimental data, at least three possible explanations exist for the association of two variables x and y: (1) x is the cause of y, (2) y is the cause of x, or (3) an unmeasured confounder is present. Statistical tests that identify which of the three explanatory models fits best would be a useful adjunct to the use of theory alone. The present article introduces one such statistical method, direction dependence analysis (DDA), which assesses the relative plausibility of the three explanatory models on the basis of higher-moment information about the variables (i.e., skewness and kurtosis). DDA involves the evaluation of three properties of the data: (1) the observed distributions of the variables, (2) the residual distributions of the competing models, and (3) the independence properties of the predictors and residuals of the competing models. When the observed variables are nonnormally distributed, we show that DDA components can be used to uniquely identify each explanatory model. Statistical inference methods for model selection are presented, and macros to implement DDA in SPSS are provided. An empirical example is given to illustrate the approach. Conceptual and empirical considerations are discussed for best-practice applications in psychological data, and sample size recommendations based on previous simulation studies are provided.

  6. 49 CFR Schedule G to Subpart B of... - Selected Statistical Data

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Selected Statistical Data G Schedule G to Subpart... Statistical Data [Dollars in thousands] () Greyhound Lines, Inc. () Trailways combined () All study carriers.... 9002, L. 9, col. (b) Other Statistics: 25Number of regulator route intercity passenger miles Sch. 9002...

  7. Meta-markers for the differential diagnosis of lung cancer and lung disease.

    PubMed

    Kim, Yong-In; Ahn, Jung-Mo; Sung, Hye-Jin; Na, Sang-Su; Hwang, Jaesung; Kim, Yongdai; Cho, Je-Yoel

    2016-10-04

    Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients. Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.

    2017-12-01

    The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.

  9. Feature and Statistical Model Development in Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Inho

    All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network, are trained and utilized to interpret nonlinear far-field wave patterns. Next, a novel bridge scour estimation approach that comprises advantages of both empirical and data-driven models is developed. Two field datasets from the literature are used, and a Support Vector Machine (SVM), a machine-learning algorithm, is used to fuse the field data samples and classify the data with physical phenomena. The Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) is evaluated on the model performance objective functions to search for Pareto optimal fronts.

  10. Cox process representation and inference for stochastic reaction-diffusion processes

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Grima, Ramon; Sanguinetti, Guido

    2016-05-01

    Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.

  11. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  12. A new item response theory model to adjust data allowing examinee choice

    PubMed Central

    Costa, Marcelo Azevedo; Braga Oliveira, Rivert Paulo

    2018-01-01

    In a typical questionnaire testing situation, examinees are not allowed to choose which items they answer because of a technical issue in obtaining satisfactory statistical estimates of examinee ability and item difficulty. This paper introduces a new item response theory (IRT) model that incorporates information from a novel representation of questionnaire data using network analysis. Three scenarios in which examinees select a subset of items were simulated. In the first scenario, the assumptions required to apply the standard Rasch model are met, thus establishing a reference for parameter accuracy. The second and third scenarios include five increasing levels of violating those assumptions. The results show substantial improvements over the standard model in item parameter recovery. Furthermore, the accuracy was closer to the reference in almost every evaluated scenario. To the best of our knowledge, this is the first proposal to obtain satisfactory IRT statistical estimates in the last two scenarios. PMID:29389996

  13. The landscape of W± and Z bosons produced in pp collisions up to LHC energies

    NASA Astrophysics Data System (ADS)

    Basso, Eduardo; Bourrely, Claude; Pasechnik, Roman; Soffer, Jacques

    2017-10-01

    We consider a selection of recent experimental results on electroweak W± , Z gauge boson production in pp collisions at BNL RHIC and CERN LHC energies in comparison to prediction of perturbative QCD calculations based on different sets of NLO parton distribution functions including the statistical PDF model known from fits to the DIS data. We show that the current statistical PDF parametrization (fitted to the DIS data only) underestimates the LHC data on W± , Z gauge boson production cross sections at the NLO by about 20%. This suggests that there is a need to refit the parameters of the statistical PDF including the latest LHC data.

  14. Statistical procedures for analyzing mental health services data.

    PubMed

    Elhai, Jon D; Calhoun, Patrick S; Ford, Julian D

    2008-08-15

    In mental health services research, analyzing service utilization data often poses serious problems, given the presence of substantially skewed data distributions. This article presents a non-technical introduction to statistical methods specifically designed to handle the complexly distributed datasets that represent mental health service use, including Poisson, negative binomial, zero-inflated, and zero-truncated regression models. A flowchart is provided to assist the investigator in selecting the most appropriate method. Finally, a dataset of mental health service use reported by medical patients is described, and a comparison of results across several different statistical methods is presented. Implications of matching data analytic techniques appropriately with the often complexly distributed datasets of mental health services utilization variables are discussed.

  15. Application of random effects to the study of resource selection by animals

    USGS Publications Warehouse

    Gillies, C.S.; Hebblewhite, M.; Nielsen, S.E.; Krawchuk, M.A.; Aldridge, Cameron L.; Frair, J.L.; Saher, D.J.; Stevens, C.E.; Jerde, C.L.

    2006-01-01

    1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence.2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability.3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed.4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects.5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection.6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.

  16. Application of random effects to the study of resource selection by animals.

    PubMed

    Gillies, Cameron S; Hebblewhite, Mark; Nielsen, Scott E; Krawchuk, Meg A; Aldridge, Cameron L; Frair, Jacqueline L; Saher, D Joanne; Stevens, Cameron E; Jerde, Christopher L

    2006-07-01

    1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence. 2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability. 3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed. 4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects. 5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection. 6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.

  17. Properties of a memory network in psychology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wedemann, Roseli S.; Donangelo, Raul; Carvalho, Luis A. V. de

    We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.

  18. Spectral characteristics and the extent of paleosols of the Palouse formation

    NASA Technical Reports Server (NTRS)

    Frazier, B. E.; Busacca, Alan; Cheng, Yaan; Wherry, David; Hart, Judy; Gill, Steve

    1987-01-01

    Three spectral models defining the spatial distribution of soil areas by levels of amorphous iron, organic carbon, and the ratio of amorphous iron to organic carbon were developed and field verification studies were conducted. The models used particular Thematic Mapper band ratios selected by statistical correlation with soil chemical data. The ability of the models to indicate erosion severity and to differentiate between iron enriched and carbonate paleosols is discussed. In addition, the effect of vegetation cover on paleosols is addressed.

  19. Properties of a memory network in psychology

    NASA Astrophysics Data System (ADS)

    Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.

    2007-12-01

    We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.

  20. A Review of the Statistical and Quantitative Methods Used to Study Alcohol-Attributable Crime.

    PubMed

    Fitterer, Jessica L; Nelson, Trisalyn A

    2015-01-01

    Modelling the relationship between alcohol consumption and crime generates new knowledge for crime prevention strategies. Advances in data, particularly data with spatial and temporal attributes, have led to a growing suite of applied methods for modelling. In support of alcohol and crime researchers we synthesized and critiqued existing methods of spatially and quantitatively modelling the effects of alcohol exposure on crime to aid method selection, and identify new opportunities for analysis strategies. We searched the alcohol-crime literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the association between alcohol and crime were included. For modelling purposes, crime data were most often derived from generalized police reports, aggregated to large spatial units such as census tracts or postal codes, and standardized by residential population data. Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sectional datasets. Regression was the prominent modelling choice (n = 78) though dependent on data many variations existed. There are opportunities to improve information for alcohol-attributable crime prevention by using alternative population data to standardize crime rates, sourcing crime information from non-traditional platforms (social media), increasing the number of panel studies, and conducting analysis at the local level (neighbourhood, block, or point). Due to the spatio-temporal advances in crime data, we expect a continued uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal point pattern analysis, and shift toward prospective (forecast) modelling over small areas (e.g., blocks).

  1. A Review of the Statistical and Quantitative Methods Used to Study Alcohol-Attributable Crime

    PubMed Central

    Fitterer, Jessica L.; Nelson, Trisalyn A.

    2015-01-01

    Modelling the relationship between alcohol consumption and crime generates new knowledge for crime prevention strategies. Advances in data, particularly data with spatial and temporal attributes, have led to a growing suite of applied methods for modelling. In support of alcohol and crime researchers we synthesized and critiqued existing methods of spatially and quantitatively modelling the effects of alcohol exposure on crime to aid method selection, and identify new opportunities for analysis strategies. We searched the alcohol-crime literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the association between alcohol and crime were included. For modelling purposes, crime data were most often derived from generalized police reports, aggregated to large spatial units such as census tracts or postal codes, and standardized by residential population data. Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sectional datasets. Regression was the prominent modelling choice (n = 78) though dependent on data many variations existed. There are opportunities to improve information for alcohol-attributable crime prevention by using alternative population data to standardize crime rates, sourcing crime information from non-traditional platforms (social media), increasing the number of panel studies, and conducting analysis at the local level (neighbourhood, block, or point). Due to the spatio-temporal advances in crime data, we expect a continued uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal point pattern analysis, and shift toward prospective (forecast) modelling over small areas (e.g., blocks). PMID:26418016

  2. Modeling treatment couches in the Pinnacle treatment planning system: Especially important for arc therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duggar, William Neil, E-mail: wduggar@umc.edu; Nguyen, Alex; Stanford, Jason

    This study is to demonstrate the importance and a method of properly modeling the treatment couch for dose calculation in patient treatment using arc therapy. The 2 treatment couch tops—Aktina AK550 and Elekta iBEAM evo—of Elekta LINACs were scanned using Philips Brilliance Big Bore CT Simulator. Various parts of the couch tops were contoured, and their densities were measured and recorded on the Pinnacle treatment planning system (TPS) using the established computed tomography density table. These contours were saved as organ models to be placed beneath the patient during planning. Relative attenuation measurements were performed following procedures outlined by TG-176more » as well as absolute dose comparison of static fields of 10 × 10 cm{sup 2} that were delivered through the couch tops with that calculated in the TPS with the couch models. A total of 10 random arc therapy treatment plans (5 volumetric-modulated arc therapy [VMAT] and 5 stereotactic body radiation therapy [SBRT]), using 24 beams, were selected for this study. All selected plans were calculated with and without couch modeling. Each beam was evaluated using the Delta{sup 4} dosimetry system (Delta{sup 4}). The Student t-test was used to determine statistical significance. Independent reviews were exploited as per the Imaging and Radiation Oncology Core head and neck credentialing phantom. The selected plans were calculated on the actual patient anatomies with and without couch modeling to determine potential clinical effects. Large relative beam attenuations were noted dependent on which part of the couch top beams were passing through. Substantial improvements were also noted for static fields both calculated with the TPS and delivered physically when the couch models were included in the calculation. A statistically significant increase in agreement was noted for dose difference, distance to agreement, and γ-analysis with the Delta{sup 4} on VMAT and SBRT plans. A credentialing review showed improvement in treatment delivery after couch modeling with both thermoluminescent dosimeter doses and film analysis. Furthermore, analysis of treatment plans with and without using the couch model showed a statistically significant reduction in planning target volume coverage and increase in skin dose. In conclusion, ignoring the treatment couch, a common practice when generating a patient treatment plan, can overestimate the dose delivered especially for arc therapy. This work shows that explicitly modeling the couch during planning can meaningfully improve the agreement between calculated and measured dose distributions. Because of this project, we have implemented the couch models clinically across all treatment plans.« less

  3. Multivariate statistical assessment of predictors of firefighters' muscular and aerobic work capacity.

    PubMed

    Lindberg, Ann-Sofie; Oksa, Juha; Antti, Henrik; Malm, Christer

    2015-01-01

    Physical capacity has previously been deemed important for firefighters physical work capacity, and aerobic fitness, muscular strength, and muscular endurance are the most frequently investigated parameters of importance. Traditionally, bivariate and multivariate linear regression statistics have been used to study relationships between physical capacities and work capacities among firefighters. An alternative way to handle datasets consisting of numerous correlated variables is to use multivariate projection analyses, such as Orthogonal Projection to Latent Structures. The first aim of the present study was to evaluate the prediction and predictive power of field and laboratory tests, respectively, on firefighters' physical work capacity on selected work tasks. Also, to study if valid predictions could be achieved without anthropometric data. The second aim was to externally validate selected models. The third aim was to validate selected models on firefighters' and on civilians'. A total of 38 (26 men and 12 women) + 90 (38 men and 52 women) subjects were included in the models and the external validation, respectively. The best prediction (R2) and predictive power (Q2) of Stairs, Pulling, Demolition, Terrain, and Rescue work capacities included field tests (R2 = 0.73 to 0.84, Q2 = 0.68 to 0.82). The best external validation was for Stairs work capacity (R2 = 0.80) and worst for Demolition work capacity (R2 = 0.40). In conclusion, field and laboratory tests could equally well predict physical work capacities for firefighting work tasks, and models excluding anthropometric data were valid. The predictive power was satisfactory for all included work tasks except Demolition.

  4. Bayesian transformation cure frailty models with multivariate failure time data.

    PubMed

    Yin, Guosheng

    2008-12-10

    We propose a class of transformation cure frailty models to accommodate a survival fraction in multivariate failure time data. Established through a general power transformation, this family of cure frailty models includes the proportional hazards and the proportional odds modeling structures as two special cases. Within the Bayesian paradigm, we obtain the joint posterior distribution and the corresponding full conditional distributions of the model parameters for the implementation of Gibbs sampling. Model selection is based on the conditional predictive ordinate statistic and deviance information criterion. As an illustration, we apply the proposed method to a real data set from dentistry.

  5. Reward maximization justifies the transition from sensory selection at childhood to sensory integration at adulthood.

    PubMed

    Daee, Pedram; Mirian, Maryam S; Ahmadabadi, Majid Nili

    2014-01-01

    In a multisensory task, human adults integrate information from different sensory modalities--behaviorally in an optimal Bayesian fashion--while children mostly rely on a single sensor modality for decision making. The reason behind this change of behavior over age and the process behind learning the required statistics for optimal integration are still unclear and have not been justified by the conventional Bayesian modeling. We propose an interactive multisensory learning framework without making any prior assumptions about the sensory models. In this framework, learning in every modality and in their joint space is done in parallel using a single-step reinforcement learning method. A simple statistical test on confidence intervals on the mean of reward distributions is used to select the most informative source of information among the individual modalities and the joint space. Analyses of the method and the simulation results on a multimodal localization task show that the learning system autonomously starts with sensory selection and gradually switches to sensory integration. This is because, relying more on modalities--i.e. selection--at early learning steps (childhood) is more rewarding than favoring decisions learned in the joint space since, smaller state-space in modalities results in faster learning in every individual modality. In contrast, after gaining sufficient experiences (adulthood), the quality of learning in the joint space matures while learning in modalities suffers from insufficient accuracy due to perceptual aliasing. It results in tighter confidence interval for the joint space and consequently causes a smooth shift from selection to integration. It suggests that sensory selection and integration are emergent behavior and both are outputs of a single reward maximization process; i.e. the transition is not a preprogrammed phenomenon.

  6. Computational Analysis for Rocket-Based Combined-Cycle Systems During Rocket-Only Operation

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; Smith, T. D.; Yungster, S.; Keller, D. J.

    2000-01-01

    A series of Reynolds-averaged Navier-Stokes calculations were employed to study the performance of rocket-based combined-cycle systems operating in an all-rocket mode. This parametric series of calculations were executed within a statistical framework, commonly known as design of experiments. The parametric design space included four geometric and two flowfield variables set at three levels each, for a total of 729 possible combinations. A D-optimal design strategy was selected. It required that only 36 separate computational fluid dynamics (CFD) solutions be performed to develop a full response surface model, which quantified the linear, bilinear, and curvilinear effects of the six experimental variables. The axisymmetric, Reynolds-averaged Navier-Stokes simulations were executed with the NPARC v3.0 code. The response used in the statistical analysis was created from Isp efficiency data integrated from the 36 CFD simulations. The influence of turbulence modeling was analyzed by using both one- and two-equation models. Careful attention was also given to quantify the influence of mesh dependence, iterative convergence, and artificial viscosity upon the resulting statistical model. Thirteen statistically significant effects were observed to have an influence on rocket-based combined-cycle nozzle performance. It was apparent that the free-expansion process, directly downstream of the rocket nozzle, can influence the Isp efficiency. Numerical schlieren images and particle traces have been used to further understand the physical phenomena behind several of the statistically significant results.

  7. A New Scoring System to Predict the Risk for High-risk Adenoma and Comparison of Existing Risk Calculators.

    PubMed

    Murchie, Brent; Tandon, Kanwarpreet; Hakim, Seifeldin; Shah, Kinchit; O'Rourke, Colin; Castro, Fernando J

    2017-04-01

    Colorectal cancer (CRC) screening guidelines likely over-generalizes CRC risk, 35% of Americans are not up to date with screening, and there is growing incidence of CRC in younger patients. We developed a practical prediction model for high-risk colon adenomas in an average-risk population, including an expanded definition of high-risk polyps (≥3 nonadvanced adenomas), exposing higher than average-risk patients. We also compared results with previously created calculators. Patients aged 40 to 59 years, undergoing first-time average-risk screening or diagnostic colonoscopies were evaluated. Risk calculators for advanced adenomas and high-risk adenomas were created based on age, body mass index, sex, race, and smoking history. Previously established calculators with similar risk factors were selected for comparison of concordance statistic (c-statistic) and external validation. A total of 5063 patients were included. Advanced adenomas, and high-risk adenomas were seen in 5.7% and 7.4% of the patient population, respectively. The c-statistic for our calculator was 0.639 for the prediction of advanced adenomas, and 0.650 for high-risk adenomas. When applied to our population, all previous models had lower c-statistic results although one performed similarly. Our model compares favorably to previously established prediction models. Age and body mass index were used as continuous variables, likely improving the c-statistic. It also reports absolute predictive probabilities of advanced and high-risk polyps, allowing for more individualized risk assessment of CRC.

  8. Interactive classification and content-based retrieval of tissue images

    NASA Astrophysics Data System (ADS)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  9. A diagnostic model for chronic hypersensitivity pneumonitis

    PubMed Central

    Johannson, Kerri A; Elicker, Brett M; Vittinghoff, Eric; Assayag, Deborah; de Boer, Kaïssa; Golden, Jeffrey A; Jones, Kirk D; King, Talmadge E; Koth, Laura L; Lee, Joyce S; Ley, Brett; Wolters, Paul J; Collard, Harold R

    2017-01-01

    The objective of this study was to develop a diagnostic model that allows for a highly specific diagnosis of chronic hypersensitivity pneumonitis using clinical and radiological variables alone. Chronic hypersensitivity pneumonitis and other interstitial lung disease cases were retrospectively identified from a longitudinal database. High-resolution CT scans were blindly scored for radiographic features (eg, ground-glass opacity, mosaic perfusion) as well as the radiologist’s diagnostic impression. Candidate models were developed then evaluated using clinical and radiographic variables and assessed by the cross-validated C-statistic. Forty-four chronic hypersensitivity pneumonitis and eighty other interstitial lung disease cases were identified. Two models were selected based on their statistical performance, clinical applicability and face validity. Key model variables included age, down feather and/or bird exposure, radiographic presence of ground-glass opacity and mosaic perfusion and moderate or high confidence in the radiographic impression of chronic hypersensitivity pneumonitis. Models were internally validated with good performance, and cut-off values were established that resulted in high specificity for a diagnosis of chronic hypersensitivity pneumonitis. PMID:27245779

  10. Prediction of the presence of insulin resistance using general health checkup data in Japanese employees with metabolic risk factors.

    PubMed

    Takahara, Mitsuyoshi; Katakami, Naoto; Kaneto, Hideaki; Noguchi, Midori; Shimomura, Iichiro

    2014-01-01

    The aim of the current study was to develop a predictive model of insulin resistance using general health checkup data in Japanese employees with one or more metabolic risk factors. We used a database of 846 Japanese employees with one or more metabolic risk factors who underwent general health checkup and a 75-g oral glucose tolerance test (OGTT). Logistic regression models were developed to predict existing insulin resistance evaluated using the Matsuda index. The predictive performance of these models was assessed using the C statistic. The C statistics of body mass index (BMI), waist circumference and their combined use were 0.743, 0.732 and 0.749, with no significant differences. The multivariate backward selection model, in which BMI, the levels of plasma glucose, high-density lipoprotein (HDL) cholesterol, log-transformed triglycerides and log-transformed alanine aminotransferase and hypertension under treatment remained, had a C statistic of 0.816, with a significant difference compared to the combined use of BMI and waist circumference (p<0.01). The C statistic was not significantly reduced when the levels of log-transformed triglycerides and log-transformed alanine aminotransferase and hypertension under treatment were simultaneously excluded from the multivariate model (p=0.14). On the other hand, further exclusion of any of the remaining three variables significantly reduced the C statistic (all p<0.01). When predicting the presence of insulin resistance using general health checkup data in Japanese employees with metabolic risk factors, it is important to take into consideration the BMI and fasting plasma glucose and HDL cholesterol levels.

  11. Why the null matters: statistical tests, random walks and evolution.

    PubMed

    Sheets, H D; Mitchell, C E

    2001-01-01

    A number of statistical tests have been developed to determine what type of dynamics underlie observed changes in morphology in evolutionary time series, based on the pattern of change within the time series. The theory of the 'scaled maximum', the 'log-rate-interval' (LRI) method, and the Hurst exponent all operate on the same principle of comparing the maximum change, or rate of change, in the observed dataset to the maximum change expected of a random walk. Less change in a dataset than expected of a random walk has been interpreted as indicating stabilizing selection, while more change implies directional selection. The 'runs test' in contrast, operates on the sequencing of steps, rather than on excursion. Applications of these tests to computer generated, simulated time series of known dynamical form and various levels of additive noise indicate that there is a fundamental asymmetry in the rate of type II errors of the tests based on excursion: they are all highly sensitive to noise in models of directional selection that result in a linear trend within a time series, but are largely noise immune in the case of a simple model of stabilizing selection. Additionally, the LRI method has a lower sensitivity than originally claimed, due to the large range of LRI rates produced by random walks. Examination of the published results of these tests show that they have seldom produced a conclusion that an observed evolutionary time series was due to directional selection, a result which needs closer examination in light of the asymmetric response of these tests.

  12. Towards a web-based decision support tool for selecting appropriate statistical test in medical and biological sciences.

    PubMed

    Suner, Aslı; Karakülah, Gökhan; Dicle, Oğuz

    2014-01-01

    Statistical hypothesis testing is an essential component of biological and medical studies for making inferences and estimations from the collected data in the study; however, the misuse of statistical tests is widely common. In order to prevent possible errors in convenient statistical test selection, it is currently possible to consult available test selection algorithms developed for various purposes. However, the lack of an algorithm presenting the most common statistical tests used in biomedical research in a single flowchart causes several problems such as shifting users among the algorithms, poor decision support in test selection and lack of satisfaction of potential users. Herein, we demonstrated a unified flowchart; covers mostly used statistical tests in biomedical domain, to provide decision aid to non-statistician users while choosing the appropriate statistical test for testing their hypothesis. We also discuss some of the findings while we are integrating the flowcharts into each other to develop a single but more comprehensive decision algorithm.

  13. Selective percutaneous desiccation of the perforators with radiofrequency for strategic transfer of angiosomes in a sequential four-territory cutaneous island flap model.

    PubMed

    Demirtas, Yener; Ayhan, Suhan; Findikcioglu, Kemal; Yavuzer, Reha; Atabay, Kenan

    2007-05-01

    Research in prevention of partial flap necrosis has recently concentrated on extending the safe length of a flap by ligating vessels of known territories. To advance this approach one step further, the authors decided to reveal the least invasive surgical strategy for transfer of angiosomes. The study was arranged into three experiments. In the first experiment (n = 17 rabbits), a cutaneous island flap model spanning four adjacent vascular territories was developed. In the second experiment (n = 15 rabbits), the flap model was used to test the possibility of desiccating those vessels supplying the angiosomes to be captured percutaneously with radiofrequency. The delay procedures were performed by means of minimal skin incisions, and the flaps were elevated after a 2-week delay period. In the third experiment, the effectiveness of selective interference of these pedicles was compared to minimize the number of target vessels for successful transfer of angiosomes. The mean surviving area of the new flap model was 63 +/- 2 percent. The mean surviving flap area was 97 +/- 3 percent for the endoscopy equivalent technique and 94 +/- 4 percent for radiofrequency delay. The results were statistically insignificant between these two groups. In experiment 3, comparison of the results yielded a statistically insignificant difference for flap survival area among all four of the groups. An alternative flap model is introduced for future investigation of the vascular delay process. Percutaneous desiccation of the perforators with radiofrequency was found to be a reliable method, and selective desiccation of the perforator(s) was as efficient as destruction of all vascular sources other than the pedicle.

  14. Effect of correlation on covariate selection in linear and nonlinear mixed effect models.

    PubMed

    Bonate, Peter L

    2017-01-01

    The effect of correlation among covariates on covariate selection was examined with linear and nonlinear mixed effect models. Demographic covariates were extracted from the National Health and Nutrition Examination Survey III database. Concentration-time profiles were Monte Carlo simulated where only one covariate affected apparent oral clearance (CL/F). A series of univariate covariate population pharmacokinetic models was fit to the data and compared with the reduced model without covariate. The "best" covariate was identified using either the likelihood ratio test statistic or AIC. Weight and body surface area (calculated using Gehan and George equation, 1970) were highly correlated (r = 0.98). Body surface area was often selected as a better covariate than weight, sometimes as high as 1 in 5 times, when weight was the covariate used in the data generating mechanism. In a second simulation, parent drug concentration and three metabolites were simulated from a thorough QT study and used as covariates in a series of univariate linear mixed effects models of ddQTc interval prolongation. The covariate with the largest significant LRT statistic was deemed the "best" predictor. When the metabolite was formation-rate limited and only parent concentrations affected ddQTc intervals the metabolite was chosen as a better predictor as often as 1 in 5 times depending on the slope of the relationship between parent concentrations and ddQTc intervals. A correlated covariate can be chosen as being a better predictor than another covariate in a linear or nonlinear population analysis by sheer correlation These results explain why for the same drug different covariates may be identified in different analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Comparing Methods for Item Analysis: The Impact of Different Item-Selection Statistics on Test Difficulty

    ERIC Educational Resources Information Center

    Jones, Andrew T.

    2011-01-01

    Practitioners often depend on item analysis to select items for exam forms and have a variety of options available to them. These include the point-biserial correlation, the agreement statistic, the B index, and the phi coefficient. Although research has demonstrated that these statistics can be useful for item selection, no research as of yet has…

  16. Selecting Statistical Quality Control Procedures for Limiting the Impact of Increases in Analytical Random Error on Patient Safety.

    PubMed

    Yago, Martín

    2017-05-01

    QC planning based on risk management concepts can reduce the probability of harming patients due to an undetected out-of-control error condition. It does this by selecting appropriate QC procedures to decrease the number of erroneous results reported. The selection can be easily made by using published nomograms for simple QC rules when the out-of-control condition results in increased systematic error. However, increases in random error also occur frequently and are difficult to detect, which can result in erroneously reported patient results. A statistical model was used to construct charts for the 1 ks and X /χ 2 rules. The charts relate the increase in the number of unacceptable patient results reported due to an increase in random error with the capability of the measurement procedure. They thus allow for QC planning based on the risk of patient harm due to the reporting of erroneous results. 1 ks Rules are simple, all-around rules. Their ability to deal with increases in within-run imprecision is minimally affected by the possible presence of significant, stable, between-run imprecision. X /χ 2 rules perform better when the number of controls analyzed during each QC event is increased to improve QC performance. Using nomograms simplifies the selection of statistical QC procedures to limit the number of erroneous patient results reported due to an increase in analytical random error. The selection largely depends on the presence or absence of stable between-run imprecision. © 2017 American Association for Clinical Chemistry.

  17. A Bayesian model averaging approach for estimating the relative risk of mortality associated with heat waves in 105 U.S. cities.

    PubMed

    Bobb, Jennifer F; Dominici, Francesca; Peng, Roger D

    2011-12-01

    Estimating the risks heat waves pose to human health is a critical part of assessing the future impact of climate change. In this article, we propose a flexible class of time series models to estimate the relative risk of mortality associated with heat waves and conduct Bayesian model averaging (BMA) to account for the multiplicity of potential models. Applying these methods to data from 105 U.S. cities for the period 1987-2005, we identify those cities having a high posterior probability of increased mortality risk during heat waves, examine the heterogeneity of the posterior distributions of mortality risk across cities, assess sensitivity of the results to the selection of prior distributions, and compare our BMA results to a model selection approach. Our results show that no single model best predicts risk across the majority of cities, and that for some cities heat-wave risk estimation is sensitive to model choice. Although model averaging leads to posterior distributions with increased variance as compared to statistical inference conditional on a model obtained through model selection, we find that the posterior mean of heat wave mortality risk is robust to accounting for model uncertainty over a broad class of models. © 2011, The International Biometric Society.

  18. K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: Revisited

    NASA Astrophysics Data System (ADS)

    Wang, Dong

    2016-03-01

    Gears are the most commonly used components in mechanical transmission systems. Their failures may cause transmission system breakdown and result in economic loss. Identification of different gear crack levels is important to prevent any unexpected gear failure because gear cracks lead to gear tooth breakage. Signal processing based methods mainly require expertize to explain gear fault signatures which is usually not easy to be achieved by ordinary users. In order to automatically identify different gear crack levels, intelligent gear crack identification methods should be developed. The previous case studies experimentally proved that K-nearest neighbors based methods exhibit high prediction accuracies for identification of 3 different gear crack levels under different motor speeds and loads. In this short communication, to further enhance prediction accuracies of existing K-nearest neighbors based methods and extend identification of 3 different gear crack levels to identification of 5 different gear crack levels, redundant statistical features are constructed by using Daubechies 44 (db44) binary wavelet packet transform at different wavelet decomposition levels, prior to the use of a K-nearest neighbors method. The dimensionality of redundant statistical features is 620, which provides richer gear fault signatures. Since many of these statistical features are redundant and highly correlated with each other, dimensionality reduction of redundant statistical features is conducted to obtain new significant statistical features. At last, the K-nearest neighbors method is used to identify 5 different gear crack levels under different motor speeds and loads. A case study including 3 experiments is investigated to demonstrate that the developed method provides higher prediction accuracies than the existing K-nearest neighbors based methods for recognizing different gear crack levels under different motor speeds and loads. Based on the new significant statistical features, some other popular statistical models including linear discriminant analysis, quadratic discriminant analysis, classification and regression tree and naive Bayes classifier, are compared with the developed method. The results show that the developed method has the highest prediction accuracies among these statistical models. Additionally, selection of the number of new significant features and parameter selection of K-nearest neighbors are thoroughly investigated.

  19. Nevada's Children, 1996. Selected Educational and Social Statistics--Nevada and National.

    ERIC Educational Resources Information Center

    Horner, Mary P., Comp.

    This report presents selected 1996 educational and social statistics that provide information about the status of children in Nevada. State statistics are in some cases compared to national statistics. The first part presents facts about education in Nevada with regard to student characteristics, enrollment, racial and ethnic populations, high…

  20. Judging Statistical Models of Individual Decision Making under Risk Using In- and Out-of-Sample Criteria

    PubMed Central

    Drichoutis, Andreas C.; Lusk, Jayson L.

    2014-01-01

    Despite the fact that conceptual models of individual decision making under risk are deterministic, attempts to econometrically estimate risk preferences require some assumption about the stochastic nature of choice. Unfortunately, the consequences of making different assumptions are, at present, unclear. In this paper, we compare three popular error specifications (Fechner, contextual utility, and Luce error) for three different preference functionals (expected utility, rank-dependent utility, and a mixture of those two) using in- and out-of-sample selection criteria. We find drastically different inferences about structural risk preferences across the competing functionals and error specifications. Expected utility theory is least affected by the selection of the error specification. A mixture model combining the two conceptual models assuming contextual utility provides the best fit of the data both in- and out-of-sample. PMID:25029467

  1. Judging statistical models of individual decision making under risk using in- and out-of-sample criteria.

    PubMed

    Drichoutis, Andreas C; Lusk, Jayson L

    2014-01-01

    Despite the fact that conceptual models of individual decision making under risk are deterministic, attempts to econometrically estimate risk preferences require some assumption about the stochastic nature of choice. Unfortunately, the consequences of making different assumptions are, at present, unclear. In this paper, we compare three popular error specifications (Fechner, contextual utility, and Luce error) for three different preference functionals (expected utility, rank-dependent utility, and a mixture of those two) using in- and out-of-sample selection criteria. We find drastically different inferences about structural risk preferences across the competing functionals and error specifications. Expected utility theory is least affected by the selection of the error specification. A mixture model combining the two conceptual models assuming contextual utility provides the best fit of the data both in- and out-of-sample.

  2. Composite Load Spectra for Select Space Propulsion Structural Components

    NASA Technical Reports Server (NTRS)

    Ho, Hing W.; Newell, James F.

    1994-01-01

    Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.

  3. Path analysis and multi-criteria decision making: an approach for multivariate model selection and analysis in health.

    PubMed

    Vasconcelos, A G; Almeida, R M; Nobre, F F

    2001-08-01

    This paper introduces an approach that includes non-quantitative factors for the selection and assessment of multivariate complex models in health. A goodness-of-fit based methodology combined with fuzzy multi-criteria decision-making approach is proposed for model selection. Models were obtained using the Path Analysis (PA) methodology in order to explain the interrelationship between health determinants and the post-neonatal component of infant mortality in 59 municipalities of Brazil in the year 1991. Socioeconomic and demographic factors were used as exogenous variables, and environmental, health service and agglomeration as endogenous variables. Five PA models were developed and accepted by statistical criteria of goodness-of fit. These models were then submitted to a group of experts, seeking to characterize their preferences, according to predefined criteria that tried to evaluate model relevance and plausibility. Fuzzy set techniques were used to rank the alternative models according to the number of times a model was superior to ("dominated") the others. The best-ranked model explained above 90% of the endogenous variables variation, and showed the favorable influences of income and education levels on post-neonatal mortality. It also showed the unfavorable effect on mortality of fast population growth, through precarious dwelling conditions and decreased access to sanitation. It was possible to aggregate expert opinions in model evaluation. The proposed procedure for model selection allowed the inclusion of subjective information in a clear and systematic manner.

  4. Evaluating model structure adequacy: The case of the Maggia Valley groundwater system, southern Switzerland

    USGS Publications Warehouse

    Hill, Mary C.; L. Foglia,; S. W. Mehl,; P. Burlando,

    2013-01-01

    Model adequacy is evaluated with alternative models rated using model selection criteria (AICc, BIC, and KIC) and three other statistics. Model selection criteria are tested with cross-validation experiments and insights for using alternative models to evaluate model structural adequacy are provided. The study is conducted using the computer codes UCODE_2005 and MMA (MultiModel Analysis). One recharge alternative is simulated using the TOPKAPI hydrological model. The predictions evaluated include eight heads and three flows located where ecological consequences and model precision are of concern. Cross-validation is used to obtain measures of prediction accuracy. Sixty-four models were designed deterministically and differ in representation of river, recharge, bedrock topography, and hydraulic conductivity. Results include: (1) What may seem like inconsequential choices in model construction may be important to predictions. Analysis of predictions from alternative models is advised. (2) None of the model selection criteria consistently identified models with more accurate predictions. This is a disturbing result that suggests to reconsider the utility of model selection criteria, and/or the cross-validation measures used in this work to measure model accuracy. (3) KIC displayed poor performance for the present regression problems; theoretical considerations suggest that difficulties are associated with wide variations in the sensitivity term of KIC resulting from the models being nonlinear and the problems being ill-posed due to parameter correlations and insensitivity. The other criteria performed somewhat better, and similarly to each other. (4) Quantities with high leverage are more difficult to predict. The results are expected to be generally applicable to models of environmental systems.

  5. Assessment of NDE Reliability Data

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Chang, F. H.; Couchman, J. C.; Lemon, G. H.; Packman, P. F.

    1976-01-01

    Twenty sets of relevant Nondestructive Evaluation (NDE) reliability data have been identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations has been formulated. A model to grade the quality and validity of the data sets has been developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, have been formulated for each NDE method. A comprehensive computer program has been written to calculate the probability of flaw detection at several confidence levels by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. Probability of detection curves at 95 and 50 percent confidence levels have been plotted for individual sets of relevant data as well as for several sets of merged data with common sets of NDE parameters.

  6. A Systematic Comparison of Data Selection Criteria for SMT Domain Adaptation

    PubMed Central

    Chao, Lidia S.; Lu, Yi; Xing, Junwen

    2014-01-01

    Data selection has shown significant improvements in effective use of training data by extracting sentences from large general-domain corpora to adapt statistical machine translation (SMT) systems to in-domain data. This paper performs an in-depth analysis of three different sentence selection techniques. The first one is cosine tf-idf, which comes from the realm of information retrieval (IR). The second is perplexity-based approach, which can be found in the field of language modeling. These two data selection techniques applied to SMT have been already presented in the literature. However, edit distance for this task is proposed in this paper for the first time. After investigating the individual model, a combination of all three techniques is proposed at both corpus level and model level. Comparative experiments are conducted on Hong Kong law Chinese-English corpus and the results indicate the following: (i) the constraint degree of similarity measuring is not monotonically related to domain-specific translation quality; (ii) the individual selection models fail to perform effectively and robustly; but (iii) bilingual resources and combination methods are helpful to balance out-of-vocabulary (OOV) and irrelevant data; (iv) finally, our method achieves the goal to consistently boost the overall translation performance that can ensure optimal quality of a real-life SMT system. PMID:24683356

  7. Methods for selecting fixed-effect models for heterogeneous codon evolution, with comments on their application to gene and genome data.

    PubMed

    Bao, Le; Gu, Hong; Dunn, Katherine A; Bielawski, Joseph P

    2007-02-08

    Models of codon evolution have proven useful for investigating the strength and direction of natural selection. In some cases, a priori biological knowledge has been used successfully to model heterogeneous evolutionary dynamics among codon sites. These are called fixed-effect models, and they require that all codon sites are assigned to one of several partitions which are permitted to have independent parameters for selection pressure, evolutionary rate, transition to transversion ratio or codon frequencies. For single gene analysis, partitions might be defined according to protein tertiary structure, and for multiple gene analysis partitions might be defined according to a gene's functional category. Given a set of related fixed-effect models, the task of selecting the model that best fits the data is not trivial. In this study, we implement a set of fixed-effect codon models which allow for different levels of heterogeneity among partitions in the substitution process. We describe strategies for selecting among these models by a backward elimination procedure, Akaike information criterion (AIC) or a corrected Akaike information criterion (AICc). We evaluate the performance of these model selection methods via a simulation study, and make several recommendations for real data analysis. Our simulation study indicates that the backward elimination procedure can provide a reliable method for model selection in this setting. We also demonstrate the utility of these models by application to a single-gene dataset partitioned according to tertiary structure (abalone sperm lysin), and a multi-gene dataset partitioned according to the functional category of the gene (flagellar-related proteins of Listeria). Fixed-effect models have advantages and disadvantages. Fixed-effect models are desirable when data partitions are known to exhibit significant heterogeneity or when a statistical test of such heterogeneity is desired. They have the disadvantage of requiring a priori knowledge for partitioning sites. We recommend: (i) selection of models by using backward elimination rather than AIC or AICc, (ii) use a stringent cut-off, e.g., p = 0.0001, and (iii) conduct sensitivity analysis of results. With thoughtful application, fixed-effect codon models should provide a useful tool for large scale multi-gene analyses.

  8. College Choice in America.

    ERIC Educational Resources Information Center

    Manski, Charles F.; And Others

    The processes of choosing a college and being accepted by a college are analyzed, based on data on nearly 23,000 seniors from more than 1,300 high schools from the National Longitudinal Study of the Class of 1972. Econometric modeling and descriptive statistics are provided on: student behavior in selecting a college, choosing school/nonschool…

  9. Effects of Presentation Mode and Computer Familiarity on Summarization of Extended Texts

    ERIC Educational Resources Information Center

    Yu, Guoxing

    2010-01-01

    Comparability studies on computer- and paper-based reading tests have focused on short texts and selected-response items via almost exclusively statistical modeling of test performance. The psychological effects of presentation mode and computer familiarity on individual students are under-researched. In this study, 157 students read extended…

  10. The Association of Selected Conative Variables to Field-Dependence with Inferences for Reasoning Characteristics in Marketing Education.

    ERIC Educational Resources Information Center

    Fritz, Robert L.

    A study examined the association between field-dependence and its related information processing characteristics, and educational cognitive style as a model of conative influence. Data were collected from 145 secondary marketing education students in nothern Georgia during spring 1991. Descriptive statistics, Pearson product moment correlations,…

  11. Perceptions of Financial Aid: Black Students at a Predominantly White Institution

    ERIC Educational Resources Information Center

    Tichavakunda, Antar A.

    2017-01-01

    This study provides qualitative context for statistics concerning Black college students and financial aid. Using the financial nexus model as a framework, this research draws upon interviews with 29 Black juniors and seniors at a selective, -private, and predominantly White university. The data suggest that students -generally exhibited high…

  12. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Legitimate Techniques for Improving the R-Square and Related Statistics of a Multiple Regression Model

    DTIC Science & Technology

    1981-01-01

    explanatory variable has been ommitted. Ramsey (1974) has developed a rather interesting test for detecting specification errors using estimates of the...Peter. (1979) A Guide to Econometrics , Cambridge, MA: The MIT Press. Ramsey , J.B. (1974), "Classical Model Selection Through Specification Error... Tests ," in P. Zarembka, Ed. Frontiers in Econometrics , New York: Academia Press. Theil, Henri. (1971), Principles of Econometrics , New York: John Wiley

  14. Inverse probability weighting for covariate adjustment in randomized studies

    PubMed Central

    Li, Xiaochun; Li, Lingling

    2013-01-01

    SUMMARY Covariate adjustment in randomized clinical trials has the potential benefit of precision gain. It also has the potential pitfall of reduced objectivity as it opens the possibility of selecting “favorable” model that yields strong treatment benefit estimate. Although there is a large volume of statistical literature targeting on the first aspect, realistic solutions to enforce objective inference and improve precision are rare. As a typical randomized trial needs to accommodate many implementation issues beyond statistical considerations, maintaining the objectivity is at least as important as precision gain if not more, particularly from the perspective of the regulatory agencies. In this article, we propose a two-stage estimation procedure based on inverse probability weighting to achieve better precision without compromising objectivity. The procedure is designed in a way such that the covariate adjustment is performed before seeing the outcome, effectively reducing the possibility of selecting a “favorable” model that yields a strong intervention effect. Both theoretical and numerical properties of the estimation procedure are presented. Application of the proposed method to a real data example is presented. PMID:24038458

  15. Inverse probability weighting for covariate adjustment in randomized studies.

    PubMed

    Shen, Changyu; Li, Xiaochun; Li, Lingling

    2014-02-20

    Covariate adjustment in randomized clinical trials has the potential benefit of precision gain. It also has the potential pitfall of reduced objectivity as it opens the possibility of selecting a 'favorable' model that yields strong treatment benefit estimate. Although there is a large volume of statistical literature targeting on the first aspect, realistic solutions to enforce objective inference and improve precision are rare. As a typical randomized trial needs to accommodate many implementation issues beyond statistical considerations, maintaining the objectivity is at least as important as precision gain if not more, particularly from the perspective of the regulatory agencies. In this article, we propose a two-stage estimation procedure based on inverse probability weighting to achieve better precision without compromising objectivity. The procedure is designed in a way such that the covariate adjustment is performed before seeing the outcome, effectively reducing the possibility of selecting a 'favorable' model that yields a strong intervention effect. Both theoretical and numerical properties of the estimation procedure are presented. Application of the proposed method to a real data example is presented. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.

    PubMed

    Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula

    2011-01-01

    Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.

  17. Statistical classification of drug incidents due to look-alike sound-alike mix-ups.

    PubMed

    Wong, Zoie Shui Yee

    2016-06-01

    It has been recognised that medication names that look or sound similar are a cause of medication errors. This study builds statistical classifiers for identifying medication incidents due to look-alike sound-alike mix-ups. A total of 227 patient safety incident advisories related to medication were obtained from the Canadian Patient Safety Institute's Global Patient Safety Alerts system. Eight feature selection strategies based on frequent terms, frequent drug terms and constituent terms were performed. Statistical text classifiers based on logistic regression, support vector machines with linear, polynomial, radial-basis and sigmoid kernels and decision tree were trained and tested. The models developed achieved an average accuracy of above 0.8 across all the model settings. The receiver operating characteristic curves indicated the classifiers performed reasonably well. The results obtained in this study suggest that statistical text classification can be a feasible method for identifying medication incidents due to look-alike sound-alike mix-ups based on a database of advisories from Global Patient Safety Alerts. © The Author(s) 2014.

  18. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic.

    PubMed

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.

  19. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic

    PubMed Central

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set–proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters. PMID:26820646

  20. What You Learn is What You See: Using Eye Movements to Study Infant Cross-Situational Word Learning

    PubMed Central

    Smith, Linda

    2016-01-01

    Recent studies show that both adults and young children possess powerful statistical learning capabilities to solve the word-to-world mapping problem. However, the underlying mechanisms that make statistical learning possible and powerful are not yet known. With the goal of providing new insights into this issue, the research reported in this paper used an eye tracker to record the moment-by-moment eye movement data of 14-month-old babies in statistical learning tasks. Various measures are applied to such fine-grained temporal data, such as looking duration and shift rate (the number of shifts in gaze from one visual object to the other) trial by trial, showing different eye movement patterns between strong and weak statistical learners. Moreover, an information-theoretic measure is developed and applied to gaze data to quantify the degree of learning uncertainty trial by trial. Next, a simple associative statistical learning model is applied to eye movement data and these simulation results are compared with empirical results from young children, showing strong correlations between these two. This suggests that an associative learning mechanism with selective attention can provide a cognitively plausible model of cross-situational statistical learning. The work represents the first steps to use eye movement data to infer underlying real-time processes in statistical word learning. PMID:22213894

  1. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  2. Impact of Genomics Platform and Statistical Filtering on Transcriptional Benchmark Doses (BMD) and Multiple Approaches for Selection of Chemical Point of Departure (PoD)

    PubMed Central

    Webster, A. Francina; Chepelev, Nikolai; Gagné, Rémi; Kuo, Byron; Recio, Leslie; Williams, Andrew; Yauk, Carole L.

    2015-01-01

    Many regulatory agencies are exploring ways to integrate toxicogenomic data into their chemical risk assessments. The major challenge lies in determining how to distill the complex data produced by high-content, multi-dose gene expression studies into quantitative information. It has been proposed that benchmark dose (BMD) values derived from toxicogenomics data be used as point of departure (PoD) values in chemical risk assessments. However, there is limited information regarding which genomics platforms are most suitable and how to select appropriate PoD values. In this study, we compared BMD values modeled from RNA sequencing-, microarray-, and qPCR-derived gene expression data from a single study, and explored multiple approaches for selecting a single PoD from these data. The strategies evaluated include several that do not require prior mechanistic knowledge of the compound for selection of the PoD, thus providing approaches for assessing data-poor chemicals. We used RNA extracted from the livers of female mice exposed to non-carcinogenic (0, 2 mg/kg/day, mkd) and carcinogenic (4, 8 mkd) doses of furan for 21 days. We show that transcriptional BMD values were consistent across technologies and highly predictive of the two-year cancer bioassay-based PoD. We also demonstrate that filtering data based on statistically significant changes in gene expression prior to BMD modeling creates more conservative BMD values. Taken together, this case study on mice exposed to furan demonstrates that high-content toxicogenomics studies produce robust data for BMD modelling that are minimally affected by inter-technology variability and highly predictive of cancer-based PoD doses. PMID:26313361

  3. Population genetics inference for longitudinally-sampled mutants under strong selection.

    PubMed

    Lacerda, Miguel; Seoighe, Cathal

    2014-11-01

    Longitudinal allele frequency data are becoming increasingly prevalent. Such samples permit statistical inference of the population genetics parameters that influence the fate of mutant variants. To infer these parameters by maximum likelihood, the mutant frequency is often assumed to evolve according to the Wright-Fisher model. For computational reasons, this discrete model is commonly approximated by a diffusion process that requires the assumption that the forces of natural selection and mutation are weak. This assumption is not always appropriate. For example, mutations that impart drug resistance in pathogens may evolve under strong selective pressure. Here, we present an alternative approximation to the mutant-frequency distribution that does not make any assumptions about the magnitude of selection or mutation and is much more computationally efficient than the standard diffusion approximation. Simulation studies are used to compare the performance of our method to that of the Wright-Fisher and Gaussian diffusion approximations. For large populations, our method is found to provide a much better approximation to the mutant-frequency distribution when selection is strong, while all three methods perform comparably when selection is weak. Importantly, maximum-likelihood estimates of the selection coefficient are severely attenuated when selection is strong under the two diffusion models, but not when our method is used. This is further demonstrated with an application to mutant-frequency data from an experimental study of bacteriophage evolution. We therefore recommend our method for estimating the selection coefficient when the effective population size is too large to utilize the discrete Wright-Fisher model. Copyright © 2014 by the Genetics Society of America.

  4. A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2012-04-01

    Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.

  5. Plurality of Type A evaluations of uncertainty

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Pintar, Adam L.

    2017-10-01

    The evaluations of measurement uncertainty involving the application of statistical methods to measurement data (Type A evaluations as specified in the Guide to the Expression of Uncertainty in Measurement, GUM) comprise the following three main steps: (i) developing a statistical model that captures the pattern of dispersion or variability in the experimental data, and that relates the data either to the measurand directly or to some intermediate quantity (input quantity) that the measurand depends on; (ii) selecting a procedure for data reduction that is consistent with this model and that is fit for the purpose that the results are intended to serve; (iii) producing estimates of the model parameters, or predictions based on the fitted model, and evaluations of uncertainty that qualify either those estimates or these predictions, and that are suitable for use in subsequent uncertainty propagation exercises. We illustrate these steps in uncertainty evaluations related to the measurement of the mass fraction of vanadium in a bituminous coal reference material, including the assessment of the homogeneity of the material, and to the calibration and measurement of the amount-of-substance fraction of a hydrochlorofluorocarbon in air, and of the age of a meteorite. Our goal is to expose the plurality of choices that can reasonably be made when taking each of the three steps outlined above, and to show that different choices typically lead to different estimates of the quantities of interest, and to different evaluations of the associated uncertainty. In all the examples, the several alternatives considered represent choices that comparably competent statisticians might make, but who differ in the assumptions that they are prepared to rely on, and in their selection of approach to statistical inference. They represent also alternative treatments that the same statistician might give to the same data when the results are intended for different purposes.

  6. Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis

    PubMed Central

    Lee, Byeong-Ju; Zhou, Yaoyao; Lee, Jae Soung; Shin, Byeung Kon; Seo, Jeong-Ah; Lee, Doyup; Kim, Young-Suk

    2018-01-01

    The ability to determine the origin of soybeans is an important issue following the inclusion of this information in the labeling of agricultural food products becoming mandatory in South Korea in 2017. This study was carried out to construct a prediction model for discriminating Chinese and Korean soybeans using Fourier-transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. The optimal prediction models for discriminating soybean samples were obtained by selecting appropriate scaling methods, normalization methods, variable influence on projection (VIP) cutoff values, and wave-number regions. The factors for constructing the optimal partial-least-squares regression (PLSR) prediction model were using second derivatives, vector normalization, unit variance scaling, and the 4000–400 cm–1 region (excluding water vapor and carbon dioxide). The PLSR model for discriminating Chinese and Korean soybean samples had the best predictability when a VIP cutoff value was not applied. When Chinese soybean samples were identified, a PLSR model that has the lowest root-mean-square error of the prediction value was obtained using a VIP cutoff value of 1.5. The optimal PLSR prediction model for discriminating Korean soybean samples was also obtained using a VIP cutoff value of 1.5. This is the first study that has combined FT-IR spectroscopy with normalization methods, VIP cutoff values, and selected wave-number regions for discriminating Chinese and Korean soybeans. PMID:29689113

  7. It's Only a Phase: Applying the 5 Phases of Clinical Trials to the NSCR Model Improvement Process

    NASA Technical Reports Server (NTRS)

    Elgart, S. R.; Milder, C. M.; Chappell, L. J.; Semones, E. J.

    2017-01-01

    NASA limits astronaut radiation exposures to a 3% risk of exposure-induced death from cancer (REID) at the upper 95% confidence level. Since astronauts approach this limit, it is important that the estimate of REID be as accurate as possible. The NASA Space Cancer Risk 2012 (NSCR-2012) model has been the standard for NASA's space radiation protection guidelines since its publication in 2013. The model incorporates elements from U.S. baseline statistics, Japanese atomic bomb survivor research, animal models, cellular studies, and radiation transport to calculate astronaut baseline risk of cancer and REID. The NSCR model is under constant revision to ensure emerging research is incorporated into radiation protection standards. It is important to develop guidelines, however, to determine what new research is appropriate for integration. Certain standards of transparency are necessary in order to assess data quality, statistical quality, and analytical quality. To this effect, all original source code and any raw data used to develop the code are required to confirm there are no errors which significantly change reported outcomes. It is possible to apply a clinical trials approach to select and assess the improvement concepts that will be incorporated into future iterations of NSCR. This poster describes the five phases of clinical trials research, pre-clinical research, and clinical research phases I-IV, explaining how each step can be translated into an appropriate NSCR model selection guideline.

  8. Empirical-statistical downscaling of reanalysis data to high-resolution air temperature and specific humidity above a glacier surface (Cordillera Blanca, Peru)

    NASA Astrophysics Data System (ADS)

    Hofer, Marlis; MöLg, Thomas; Marzeion, Ben; Kaser, Georg

    2010-06-01

    Recently initiated observation networks in the Cordillera Blanca (Peru) provide temporally high-resolution, yet short-term, atmospheric data. The aim of this study is to extend the existing time series into the past. We present an empirical-statistical downscaling (ESD) model that links 6-hourly National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data to air temperature and specific humidity, measured at the tropical glacier Artesonraju (northern Cordillera Blanca). The ESD modeling procedure includes combined empirical orthogonal function and multiple regression analyses and a double cross-validation scheme for model evaluation. Apart from the selection of predictor fields, the modeling procedure is automated and does not include subjective choices. We assess the ESD model sensitivity to the predictor choice using both single-field and mixed-field predictors. Statistical transfer functions are derived individually for different months and times of day. The forecast skill largely depends on month and time of day, ranging from 0 to 0.8. The mixed-field predictors perform better than the single-field predictors. The ESD model shows added value, at all time scales, against simpler reference models (e.g., the direct use of reanalysis grid point values). The ESD model forecast 1960-2008 clearly reflects interannual variability related to the El Niño/Southern Oscillation but is sensitive to the chosen predictor type.

  9. Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model

    USGS Publications Warehouse

    Granato, Gregory; Jones, Susan Cheung

    2017-01-01

    The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.

  10. Statistical method evaluation for differentially methylated CpGs in base resolution next-generation DNA sequencing data.

    PubMed

    Zhang, Yun; Baheti, Saurabh; Sun, Zhifu

    2018-05-01

    High-throughput bisulfite methylation sequencing such as reduced representation bisulfite sequencing (RRBS), Agilent SureSelect Human Methyl-Seq (Methyl-seq) or whole-genome bisulfite sequencing is commonly used for base resolution methylome research. These data are represented either by the ratio of methylated cytosine versus total coverage at a CpG site or numbers of methylated and unmethylated cytosines. Multiple statistical methods can be used to detect differentially methylated CpGs (DMCs) between conditions, and these methods are often the base for the next step of differentially methylated region identification. The ratio data have a flexibility of fitting to many linear models, but the raw count data take consideration of coverage information. There is an array of options in each datatype for DMC detection; however, it is not clear which is an optimal statistical method. In this study, we systematically evaluated four statistic methods on methylation ratio data and four methods on count-based data and compared their performances with regard to type I error control, sensitivity and specificity of DMC detection and computational resource demands using real RRBS data along with simulation. Our results show that the ratio-based tests are generally more conservative (less sensitive) than the count-based tests. However, some count-based methods have high false-positive rates and should be avoided. The beta-binomial model gives a good balance between sensitivity and specificity and is preferred method. Selection of methods in different settings, signal versus noise and sample size estimation are also discussed.

  11. Competing Thermodynamic and Dynamic Factors Select Molecular Assemblies on a Gold Surface

    NASA Astrophysics Data System (ADS)

    Haxton, Thomas K.; Zhou, Hui; Tamblyn, Isaac; Eom, Daejin; Hu, Zonghai; Neaton, Jeffrey B.; Heinz, Tony F.; Whitelam, Stephen

    2013-12-01

    Controlling the self-assembly of surface-adsorbed molecules into nanostructures requires understanding physical mechanisms that act across multiple length and time scales. By combining scanning tunneling microscopy with hierarchical ab initio and statistical mechanical modeling of 1,4-substituted benzenediamine (BDA) molecules adsorbed on a gold (111) surface, we demonstrate that apparently simple nanostructures are selected by a subtle competition of thermodynamics and dynamics. Of the collection of possible BDA nanostructures mechanically stabilized by hydrogen bonding, the interplay of intermolecular forces, surface modulation, and assembly dynamics select at low temperature a particular subset: low free energy oriented linear chains of monomers and high free energy branched chains.

  12. Acute Diarrheal Syndromic Surveillance

    PubMed Central

    Kam, H.J.; Choi, S.; Cho, J.P.; Min, Y.G.; Park, R.W.

    2010-01-01

    Objective In an effort to identify and characterize the environmental factors that affect the number of patients with acute diarrheal (AD) syndrome, we developed and tested two regional surveillance models including holiday and weather information in addition to visitor records, at emergency medical facilities in the Seoul metropolitan area of Korea. Methods With 1,328,686 emergency department visitor records from the National Emergency Department Information system (NEDIS) and the holiday and weather information, two seasonal ARIMA models were constructed: (1) The simple model (only with total patient number), (2) the environmental factor-added model. The stationary R-squared was utilized as an in-sample model goodness-of-fit statistic for the constructed models, and the cumulative mean of the Mean Absolute Percentage Error (MAPE) was used to measure post-sample forecast accuracy over the next 1 month. Results The (1,0,1)(0,1,1)7 ARIMA model resulted in an adequate model fit for the daily number of AD patient visits over 12 months for both cases. Among various features, the total number of patient visits was selected as a commonly influential independent variable. Additionally, for the environmental factor-added model, holidays and daily precipitation were selected as features that statistically significantly affected model fitting. Stationary R-squared values were changed in a range of 0.651-0.828 (simple), and 0.805-0.844 (environmental factor-added) with p<0.05. In terms of prediction, the MAPE values changed within 0.090-0.120 and 0.089-0.114, respectively. Conclusion The environmental factor-added model yielded better MAPE values. Holiday and weather information appear to be crucial for the construction of an accurate syndromic surveillance model for AD, in addition to the visitor and assessment records. PMID:23616829

  13. Introgression of a Block of Genome Under Infinitesimal Selection.

    PubMed

    Sachdeva, Himani; Barton, Nicholas H

    2018-06-12

    Adaptive introgression is common in nature and can be driven by selection acting on multiple, linked genes. We explore the effects of polygenic selection on introgression under the infinitesimal model with linkage. This model assumes that the introgressing block has an effectively infinite number of loci, each with an infinitesimal effect on the trait under selection. The block is assumed to introgress under directional selection within a native population that is genetically homogeneous. We use individual-based simulations and a branching process approximation to compute various statistics of the introgressing block, and explore how these depend on parameters such as the map length and initial trait value associated with the introgressing block, the genetic variability along the block, and the strength of selection. Our results show that the introgression dynamics of a block under infinitesimal selection are qualitatively different from the dynamics of neutral introgression. We also find that in the long run, surviving descendant blocks are likely to have intermediate lengths, and clarify how their length is shaped by the interplay between linkage and infinitesimal selection. Our results suggest that it may be difficult to distinguish the long-term introgression of a block of genome with a single strongly selected locus from the introgression of a block with multiple, tightly linked and weakly selected loci. Copyright © 2018, Genetics.

  14. SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *

    PubMed Central

    Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.

    2014-01-01

    The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844

  15. Statistical estimation of femur micro-architecture using optimal shape and density predictors.

    PubMed

    Lekadir, Karim; Hazrati-Marangalou, Javad; Hoogendoorn, Corné; Taylor, Zeike; van Rietbergen, Bert; Frangi, Alejandro F

    2015-02-26

    The personalization of trabecular micro-architecture has been recently shown to be important in patient-specific biomechanical models of the femur. However, high-resolution in vivo imaging of bone micro-architecture using existing modalities is still infeasible in practice due to the associated acquisition times, costs, and X-ray radiation exposure. In this study, we describe a statistical approach for the prediction of the femur micro-architecture based on the more easily extracted subject-specific bone shape and mineral density information. To this end, a training sample of ex vivo micro-CT images is used to learn the existing statistical relationships within the low and high resolution image data. More specifically, optimal bone shape and mineral density features are selected based on their predictive power and used within a partial least square regression model to estimate the unknown trabecular micro-architecture within the anatomical models of new subjects. The experimental results demonstrate the accuracy of the proposed approach, with average errors of 0.07 for both the degree of anisotropy and tensor norms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Variable selection for confounder control, flexible modeling and Collaborative Targeted Minimum Loss-based Estimation in causal inference

    PubMed Central

    Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan

    2015-01-01

    This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129

  17. Variable Selection for Confounder Control, Flexible Modeling and Collaborative Targeted Minimum Loss-Based Estimation in Causal Inference.

    PubMed

    Schnitzer, Mireille E; Lok, Judith J; Gruber, Susan

    2016-05-01

    This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010 [27]) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low- and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios.

  18. Selecting the "Best" Factor Structure and Moving Measurement Validation Forward: An Illustration.

    PubMed

    Schmitt, Thomas A; Sass, Daniel A; Chappelle, Wayne; Thompson, William

    2018-04-09

    Despite the broad literature base on factor analysis best practices, research seeking to evaluate a measure's psychometric properties frequently fails to consider or follow these recommendations. This leads to incorrect factor structures, numerous and often overly complex competing factor models and, perhaps most harmful, biased model results. Our goal is to demonstrate a practical and actionable process for factor analysis through (a) an overview of six statistical and psychometric issues and approaches to be aware of, investigate, and report when engaging in factor structure validation, along with a flowchart for recommended procedures to understand latent factor structures; (b) demonstrating these issues to provide a summary of the updated Posttraumatic Stress Disorder Checklist (PCL-5) factor models and a rationale for validation; and (c) conducting a comprehensive statistical and psychometric validation of the PCL-5 factor structure to demonstrate all the issues we described earlier. Considering previous research, the PCL-5 was evaluated using a sample of 1,403 U.S. Air Force remotely piloted aircraft operators with high levels of battlefield exposure. Previously proposed PCL-5 factor structures were not supported by the data, but instead a bifactor model is arguably more statistically appropriate.

  19. Multivariate normality

    NASA Technical Reports Server (NTRS)

    Crutcher, H. L.; Falls, L. W.

    1976-01-01

    Sets of experimentally determined or routinely observed data provide information about the past, present and, hopefully, future sets of similarly produced data. An infinite set of statistical models exists which may be used to describe the data sets. The normal distribution is one model. If it serves at all, it serves well. If a data set, or a transformation of the set, representative of a larger population can be described by the normal distribution, then valid statistical inferences can be drawn. There are several tests which may be applied to a data set to determine whether the univariate normal model adequately describes the set. The chi-square test based on Pearson's work in the late nineteenth and early twentieth centuries is often used. Like all tests, it has some weaknesses which are discussed in elementary texts. Extension of the chi-square test to the multivariate normal model is provided. Tables and graphs permit easier application of the test in the higher dimensions. Several examples, using recorded data, illustrate the procedures. Tests of maximum absolute differences, mean sum of squares of residuals, runs and changes of sign are included in these tests. Dimensions one through five with selected sample sizes 11 to 101 are used to illustrate the statistical tests developed.

  20. Cognitive niches: an ecological model of strategy selection.

    PubMed

    Marewski, Julian N; Schooler, Lael J

    2011-07-01

    How do people select among different strategies to accomplish a given task? Across disciplines, the strategy selection problem represents a major challenge. We propose a quantitative model that predicts how selection emerges through the interplay among strategies, cognitive capacities, and the environment. This interplay carves out for each strategy a cognitive niche, that is, a limited number of situations in which the strategy can be applied, simplifying strategy selection. To illustrate our proposal, we consider selection in the context of 2 theories: the simple heuristics framework and the ACT-R (adaptive control of thought-rational) architecture of cognition. From the heuristics framework, we adopt the thesis that people make decisions by selecting from a repertoire of simple decision strategies that exploit regularities in the environment and draw on cognitive capacities, such as memory and time perception. ACT-R provides a quantitative theory of how these capacities adapt to the environment. In 14 simulations and 10 experiments, we consider the choice between strategies that operate on the accessibility of memories and those that depend on elaborate knowledge about the world. Based on Internet statistics, our model quantitatively predicts people's familiarity with and knowledge of real-world objects, the distributional characteristics of the associated speed of memory retrieval, and the cognitive niches of classic decision strategies, including those of the fluency, recognition, integration, lexicographic, and sequential-sampling heuristics. In doing so, the model specifies when people will be able to apply different strategies and how accurate, fast, and effortless people's decisions will be.

Top