Multifragmentation: New dynamics or old statistics?
Moretto, L.G.; Delis, D.N.; Wozniak, G.J.
1993-10-01
The understanding of the fission process as it has developed over the last fifty years has been applied to multifragmentation. Two salient aspects have been discovered: 1) a strong decoupling of the entrance and exit channels with the formation of well-characterized sources: 2) a statistical competition between two-, three-, four-, five-, ... n-body decays.
The statistical multifragmentation model: Origins and recent advances
NASA Astrophysics Data System (ADS)
Donangelo, R.; Souza, S. R.
2016-07-01
We review the Statistical Multifragmentation Model (SMM) which considers a generalization of the liquid-drop model for hot nuclei and allows one to calculate thermodynamic quantities characterizing the nuclear ensemble at the disassembly stage. We show how to determine probabilities of definite partitions of finite nuclei and how to determine, through Monte Carlo calculations, observables such as the caloric curve, multiplicity distributions, heat capacity, among others. Some experimental measurements of the caloric curve confirmed the SMM predictions of over 10 years before, leading to a surge in the interest in the model. However, the experimental determination of the fragmentation temperatures relies on the yields of different isotopic species, which were not correctly calculated in the schematic, liquid-drop picture, employed in the SMM. This led to a series of improvements in the SMM, in particular to the more careful choice of nuclear masses and energy densities, specially for the lighter nuclei. With these improvements the SMM is able to make quantitative determinations of isotope production. We show the application of SMM to the production of exotic nuclei through multifragmentation. These preliminary calculations demonstrate the need for a careful choice of the system size and excitation energy to attain maximum yields.
NASA Astrophysics Data System (ADS)
Mustafa, M. G.; Blann, M.; Peilert, G.; Botvina, A.
1994-05-01
We consider the reaction 36Ar+197Au at incident 36Ar energies of 35, 50, 80, and 110A MeV, comparing calculations of precompound decay using the Boltzmann master equation (BME) and quantum molecular dynamics (QMD) models. We then estimate quasiequilibrated nuclei and excitations using the BME, and use these values as input into statistical multifragmentation models. For the latter we compare sequential binary decay as an extension of the Weisskopf-Ewing evaporation model, and a simultaneous multifragmentation for an expanded low density gas. The exclusive multiplicities predicted by these models are compared with experimental results.
Qian, D B; Ma, X; Chen, Z; Li, B; Zhang, D C; Zhu, X L; Wen, W Q; Liu, H P
2014-08-01
Previous experimental work has shown that a phase transition in C60 multifragmentation induced by nanosecond laser occurs at almost constant temperature covering a wide range of laser fluency. Here the relative yields of ionic fragments (IFs) C(n)(+) (n = 1-20) resulting from the multifragmentation are measured within the phase transition region. By excluding two small IFs and magic IFs due to their abnormal behavior, the data for residual IFs are used to estimate the size distributions of primary intermediate-mass IFs in the multifragmentation regime. The distributions are found to obey power laws n(-τ). Furthermore, the exponent τ values have sensitive dependence on lower laser fluency and converge to a constant of about 2.4 ± 0.2 for larger fluencies. These observations are in good agreement with an explanation based on the Fisher droplet model, offering the tantalizing possibility of a liquid-to-gas phase transition in C60 systems. PMID:25106587
Nuclear multifragmentation: Antiprotons versus photons and heavy ions
Cugnon, J.
1994-09-01
Nuclear multifragmentation is the phenomenon by which a nucleus breaks into many pieces of intermediate size. It occurs in the excitation-energy regime, between the spallation + evaporation regime and the explosive fragmentation regime. The various models of multifragmentation are briefly reviewed and the possibility of critical behavior in the multifragmentation process is underlined. Unanswered problems are stated. It is shown, by model calculations, that antiproton annihilation is, in many respects, better suited than proton-nucleus and heavy-ion collisions for studying multifragmentation and, in other respects, complementary to these other tools. 36 refs., 17 figs., 1 tab.
Statistical regimes of random laser fluctuations
Lepri, Stefano; Cavalieri, Stefano; Oppo, Gian-Luca; Wiersma, Diederik S.
2007-06-15
Statistical fluctuations of the light emitted from amplifying random media are studied theoretically and numerically. The characteristic scales of the diffusive motion of light lead to Gaussian or power-law (Levy) distributed fluctuations depending on external control parameters. In the Levy regime, the output pulse is highly irregular leading to huge deviations from a mean-field description. Monte Carlo simulations of a simplified model which includes the population of the medium demonstrate the two statistical regimes and provide a comparison with dynamical rate equations. Different statistics of the fluctuations helps to explain recent experimental observations reported in the literature.
Shear viscosity to entropy density ratio in nuclear multifragmentation
Pal, Subrata
2010-05-15
Nuclear multifragmentation in intermediate-energy heavy-ion collisions has long been associated with liquid-gas phase transition. We calculate the shear viscosity to entropy density ratio eta/s for an equilibrated system of nucleons and fragments produced in multifragmentation within an extended statistical multifragmentation model. The temperature dependence of eta/s exhibits behavior surprisingly similar to that of H{sub 2}O. In the coexistence phase of fragments and light particles, the ratio eta/s reaches a minimum of depth comparable to that for water in the vicinity of the critical temperature for liquid-gas phase transition. The effects of freeze-out volume and surface symmetry energy on eta/s in multifragmentation are studied.
Zipf's law in multifragmentation
Campi, X.; Krivine, H.
2005-11-01
We discuss the meaning of Zipf's law in nuclear multifragmentation. We remark that Zipf's law is a consequence of a power-law fragment size distribution with exponent {tau}{approx_equal}2. We also recall why the presence of such a distribution is not a reliable signal of a liquid-gas phase transition.
Statistical instability of barrier microdischarges operating in townsend regime
Nagorny, V. P.
2007-01-15
The dynamics of barrier microdischarges operating in a Townsend regime is studied analytically and via kinetic particle-in-cell/Monte Carlo simulations. It is shown that statistical fluctuations of the number of charged particles in the discharge gap strongly influence the dynamics of natural oscillations of the discharge current and may even lead to a disruption of the discharge. Analysis of the statistical effects based on a simple model is suggested. The role of external sources in stabilizing microdischarges is clarified.
Detector noise statistics in the non-linear regime
NASA Technical Reports Server (NTRS)
Shopbell, P. L.; Bland-Hawthorn, J.
1992-01-01
The statistical behavior of an idealized linear detector in the presence of threshold and saturation levels is examined. It is assumed that the noise is governed by the statistical fluctuations in the number of photons emitted by the source during an exposure. Since physical detectors cannot have infinite dynamic range, our model illustrates that all devices have non-linear regimes, particularly at high count rates. The primary effect is a decrease in the statistical variance about the mean signal due to a portion of the expected noise distribution being removed via clipping. Higher order statistical moments are also examined, in particular, skewness and kurtosis. In principle, the expected distortion in the detector noise characteristics can be calibrated using flatfield observations with count rates matched to the observations. For this purpose, some basic statistical methods that utilize Fourier analysis techniques are described.
IDENTIFICATION OF REGIME SHIFTS IN TIME SERIES USING NEIGHBORHOOD STATISTICS
The identification of alternative dynamic regimes in ecological systems requires several lines of evidence. Previous work on time series analysis of dynamic regimes includes mainly model-fitting methods. We introduce two methods that do not use models. These approaches use state-...
Karnaukhov, V. A.; Oeschler, H.; Budzanowski, A.; Avdeyev, S. P.; Botvina, A. S.; Cherepanov, E. A.; Karcz, W.; Kirakosyan, V. V.; Rukoyatkin, P. A.; Skwirczynska, I.; Norbeck, E.
2008-12-15
Critical temperature T{sub c} for the nuclear liquid-gas phase transition is estimated from both the multifragmentation and fission data. In the first case, the critical temperature is obtained by analysis of the intermediate-mass-fragment yields in p(8.1 GeV) + Au collisions within the statistical model of multifragmentation. In the second case, the experimental fission probability for excited {sup 188}Os is compared with the calculated one with T{sub c} as a free parameter. It is concluded for both cases that the critical temperature is higher than 15 MeV.
Mass and Isospin Effects in Multifragmentation
NASA Astrophysics Data System (ADS)
Sfienti, C.; Adrich, P.; Aumann, T.; Bacri, C. O.; Barczyk, T.; Bassini, R.; Boiano, C.; Botvina, A. S.; Boudard, A.; Brzychczyk, J.; Chbihi, A.; Cibor, J.; Czech, B.; De Napoli, M.; Ducret, J.-E.; Emling, H.; Frankland, J.; Hellström, M.; Henzlova, D.; Kezzar, K.; Immé, G.; Iori, I.; Johansson, H.; Lafriakh, A.; Le Fèvre, A.; Le Gentil, E.; Leifels, Y.; Lynch, W. G.; Lühning, J.; Łukasik, J.; Lynen, U.; Majka, Z.; Mocko, M.; Müller, W. F. J.; Mykulyak, A.; Orth, H.; Otte, A. N.; Palit, R.; Pullia, A.; Raciti, G.; Rapisarda, E.; Sann, H.; Schwarz, C.; Simon, H.; Sokolov, A.; Sümmerer, K.; Trautmann, W.; Tsang, M. B.; Verde, G.; Volant, C.; Wallace, M.; Weick, H.; Wiechula, J.; Wieloch, A.; Zwieglinski, B.
2005-03-01
A systematic study of isospin effects in the breakup of projectile spectators at relativistic energies has been performed with the ALADiN spectrometer at the GSI laboratory (Darmstadt). Four different projectiles 197Au, 124La, 124Sn and 107Sn, all with an incident energy of 600 AMeV, have been used, thus allowing a study of various combinations of masses and N/Z ratios in the entrance channel. The measurement of the momentum vector and of the charge of all projectile fragments with Z > 1 entering the acceptance of the ALADiN magnet has been performed with the high efficiency and resolution achieved with the TP-MUSIC IV detector. The Rise and Fall behavior of the mean multiplicity of IMFs as a function of Zbound and its dependence on the isotopic composition has been determined for the studied systems. Other observables investigated so far include mean N/Z values of the emitted light fragments and neutron multiplicities. Qualitative agreement has been obtained between the observed gross properties and the predictions of the Statistical Multifragmentation Model.
A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes
Tokunaga, S.; Jhang, Hogun; Kim, S. S.; Diamond, P. H.
2012-09-15
We present a statistical analysis of heat transport in stationary enhanced confinement regimes obtained from flux-driven gyrofluid simulations. The probability density functions of heat flux in improved confinement regimes, characterized by the Nusselt number, show significant deviation from Gaussian, with a markedly fat tail, implying the existence of heat avalanches. Two types of avalanching transport are found to be relevant to stationary states, depending on the degree of turbulence suppression. In the weakly suppressed regime, heat avalanches occur in the form of quasi-periodic (QP) heat pulses. Collisional relaxation of zonal flow is likely to be the origin of these QP heat pulses. This phenomenon is similar to transient limit cycle oscillations observed prior to edge pedestal formation in recent experiments. On the other hand, a spectral analysis of heat flux in the strongly suppressed regime shows the emergence of a 1/f (f is the frequency) band, suggesting the presence of self-organized criticality (SOC)-like episodic heat avalanches. This episodic 1/f heat avalanches have a long temporal correlation and constitute the dominant transport process in this regime.
Zipf's law in nuclear multifragmentation and percolation theory
Paech, Kerstin; Bauer, Wolfgang; Pratt, Scott
2007-11-15
We investigate the average sizes of the n largest fragments in nuclear multifragmentation events near the critical point of the nuclear matter phase diagram. We perform analytic calculations employing Poisson statistics as well as Monte Carlo simulations of the percolation type. We find that previous claims of manifestations of Zipf's Law in the rank-ordered fragment size distributions are not borne out in our result, in neither finite nor infinite systems. Instead, we find that Zipf-Mandelbrot distributions are needed to describe the results, and we show how one can derive them in the infinite size limit. However, we agree with previous authors that the investigation of rank-ordered fragment size distributions is an alternative way of looking for the critical point in the nuclear matter diagram.
Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble
Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.
2014-07-28
As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF{sub 6} sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.
The modification of wind turbine performance by statistically distinct atmospheric regimes
NASA Astrophysics Data System (ADS)
Vanderwende, B. J.; Lundquist, J. K.
2012-09-01
Power production from wind turbines can deviate from the manufacturer’s specifications due to variability in atmospheric inflow characteristics, including stability, wind shear and turbulence. The practice of insufficient data at many operational wind farms has made it difficult to characterize this meteorological forcing. In this study, nacelle wind measurements from a wind farm in the high plains of central North America were examined along with meteorological tower data to quantify the effects of atmospheric stability regimes in the boundary layer on turbine power generation. The wind power law coefficient and the bulk Richardson number were used to segregate time periods by stability to generate regime-dependent power curves. Results indicated underperformance during stable regimes and overperformance during convective regimes at moderate wind speeds (8-12 m s-1). Statistical testing using the Monte Carlo approach demonstrated that these results were robust, despite potential deviations of the nacelle wind speeds from free-stream inflow values due to momentum loss from the turbine structure and spinning rotor. A hypothetical stability dependence between free-stream and nacelle wind speeds was generated that can be evaluated in future analyses. The low instrumentation requirement of our power analysis technique should enable similar studies at many wind sites formerly considered inappropriate.
Insights into the Large-Scale Organization of Convection Through Statistical Models of Cloud Regimes
NASA Astrophysics Data System (ADS)
Tan, J.; Jakob, C.; Lane, T. P.
2013-12-01
Tropical convection is a critical process in the climate system, one that cannot be explicitly resolved in global-scale climate models. As a consequence parametrization schemes are employed that use the resolved large-scale variables of the model to drive the sub-grid scale behavior of ensembles of convective clouds. The representation of convection in models in this way has had only limited success and many model shortcomings, ranging from the mean distribution of tropical precipitation to errors in major modes of tropical variability, have been ascribed to limitations in the parametrization of convection. The exact reasons as to why convection parametrizations fail in some of their basic tasks remain unclear, thereby hindering the development of improvements. In this study we develop and apply simple statistical models of tropical convection based on observations at a resolution comparable to global models to explore the implications of some of the assumptions made in model representations of tropical convection. In particular, we investigate the potential consequences of the commonly-used diagnostic approach to cumulus parametrization, i.e., one where the existence and behavior of convection in one grid box at one model time step is diagnosed without information from previous time steps or neighboring grid boxes. We exploit the relationships between large-scale variables and cloud regimes, which are proxies for different states of convection, to design statistical models of tropical convection with various degrees of sophistication. In particular, we vary the model from a purely diagnostic approach to one adding memory in time to one that also adds information from surrounding points. All models rely on probabilistic rules in which the regimes are assigned based on the large-scale environment. We find that the statistical models fail to reproduce the observed spatiotemporal coherence of the convective regimes. In the purely diagnostic approach the model regimes
Multifragmentation: Surface and Coulomb instabilities of sheets, bubbles, and donuts
Moretto, L.G.; Tso, Kin; Wozniak, G.J.
1993-08-01
Disks, bubbles, and donuts have been observed in dynamical calculations of heavy ion collisions. These shapes are subject to a variety of surface and Coulomb instabilities. These instabilities are identified and analyzed in terms of their relevance to multifragmentation.
Gritsun, A
2013-05-28
The theory of chaotic dynamical systems gives many tools that can be used in climate studies. The widely used ones are the Lyapunov exponents, the Kolmogorov entropy and the attractor dimension characterizing global quantities of a system. Another potentially useful tool from dynamical system theory arises from the fact that the local analysis of a system probability distribution function (PDF) can be accomplished by using a procedure that involves an expansion in terms of unstable periodic orbits (UPOs). The system measure (or its statistical characteristics) is approximated as a weighted sum over the orbits. The weights are inversely proportional to the orbit instability characteristics so that the least unstable orbits make larger contributions to the PDF. Consequently, one can expect some relationship between the least unstable orbits and the local maxima of the system PDF. As a result, the most probable system trajectories (or 'circulation regimes' in some sense) may be explained in terms of orbits. For the special classes of chaotic dynamical systems, there is a strict theory guaranteeing the accuracy of this approach. However, a typical atmospheric model may not qualify for these theorems. In our study, we will try to apply the idea of UPO expansion to the simple atmospheric system based on the barotropic vorticity equation of the sphere. We will check how well orbits approximate the system attractor, its statistical characteristics and PDF. The connection of the most probable states of the system with the least unstable periodic orbits will also be analysed.
Weather regime dependence of extreme value statistics for summer temperature and precipitation
NASA Astrophysics Data System (ADS)
Yiou, P.; Goubanova, K.; Li, Z. X.; Nogaj, M.
2008-05-01
Extreme Value Theory (EVT) is a useful tool to describe the statistical properties of extreme events. Its underlying assumptions include some form of temporal stationarity in the data. Previous studies have been able to treat long-term trends in datasets, to obtain the time dependence of EVT parameters in a parametric form. Since there is also a dependence of surface temperature and precipitation to weather patterns obtained from pressure data, we determine the EVT parameters of those meteorological variables over France conditional to the occurrence of North Atlantic weather patterns in the summer. We use a clustering algorithm on geopotential height data over the North Atlantic to obtain those patterns. This approach refines the straightforward application of EVT on climate data by allowing us to assess the role of atmospheric variability on temperature and precipitation extreme parameters. This study also investigates the statistical robustness of this relation. Our results show how weather regimes can modulate the different behavior of mean climate variables and their extremes. Such a modulation can be very different for the mean and extreme precipitation.
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2016-02-01
We describe statistical and coherence properties of the radiation from X-ray free-electron lasers (XFEL) operating in the post-saturation regime. We consider the practical case of the SASE3 FEL at the European XFEL. We perform comparison of the main characteristics of the X-ray FEL operating in the post-saturation regime with and without undulator tapering: efficiency, coherence time, and degree of transverse coherence.
NASA Astrophysics Data System (ADS)
Shen, Samuel S. P.; Wied, Olaf; Weithmann, Alexander; Regele, Tobias; Bailey, Barbara A.; Lawrimore, Jay H.
2016-07-01
This paper describes six different temporal climate regimes of the contiguous United States (CONUS) according to interdecadal variations of surface air temperature (SAT) and precipitation using the United States Historical Climatology Network (USHCN) monthly data (Tmax, Tmin, Tmean, and precipitation) from 1895 to 2010. Our analysis is based on the probability distribution, mean, standard deviation, skewness, kurtosis, Kolmogorov-Smirnov (KS) test, and Welch's t test. The relevant statistical parameters are computed from gridded monthly SAT and precipitation data. SAT variations lead to classification of four regimes: 1895-1930 (cool), 1931-1960 (warm), 1961-1985 (cool), and 1986-2010 (warm), while precipitation variations lead to a classification of two regimes: 1895-1975 (dry) and 1976-2010 (wet). The KS test shows that any two regimes of the above six are statistically significantly different from each other due to clear shifts of the probability density functions. Extremes of SAT and precipitation identify the ten hottest, coldest, driest, and wettest years. Welch's t test is used to discern significant differences among these extremes. The spatial patterns of the six climate regimes and some years of extreme climate are analyzed. Although the recent two decades are the warmest among the other decades since 1895 and many hottest years measured by CONUS Tmin and Tmean are in these two decades, the hottest year according to the CONUS Tmax anomalies is 1934 (1.37 °C), which is very close to the second Tmax hottest year 2006 (1.35 °C).
NASA Astrophysics Data System (ADS)
Schubert, David; Reyers, Mark; Pinto, Joaquim; Fink, Andreas; Massmeyer, Klaus
2016-04-01
Southeast Asia has been identified as one of the hot-spots of climate change. While the projected changes in annual precipitation are comparatively small, there is a clear tendency towards more rainfall in the dry season and an increase in extreme precipitation events. In this study, a statistical dynamical downscaling (SDD) approach is applied to obtain higher resolution and more robust regional climate change projections for tropical Southeast Asia with focus on Vietnam. First, a recent climate (RC) simulation with the regional climate model COSMO-CLM with a spatial resolution of ~50 km driven by ERA-Interim (1979-2008) is performed for the tropical region of Southeast Asia. For the SDD, six weather types (WTs) are selected for Vietnam during the wet season (April - October) using a k-means cluster analysis of daily zonal wind component in 850 hPa and 200 hPa from the RC run. For each calculated weather type, simulated representatives are selected from the RC run and are then further dynamically downscaled to a resolution of 0.0625° (7 km). By using historical WT frequencies, the simulated representatives are recombined to a high resolution rainfall climatology for the recent climate. It is shown that the SDD is generally able to capture the present day climatology and that the employment of the higher resolved simulated representatives enhances the performance of the SDD. However, an overestimation of rainfall at higher altitudes is found. To obtain future climate projections, an ensemble of eight CMIP5 model members are selected to study precipitation changes. For these projections, WT frequencies of future scenarios under two representative Concentration Pathways (RCP4.5 and RCP8.5) are taken into account for the mid-term scenario (2046-2065) and the long-term scenario (2081-2100). The strongest precipitation changes are found for the RCP8.5 scenario. Most of the models indicate a generally increase in precipitation amount in the wet period over Southeast
NASA Astrophysics Data System (ADS)
Müller, M. F.; Thompson, S. E.
2016-02-01
The prediction of flow duration curves (FDCs) in ungauged basins remains an important task for hydrologists given the practical relevance of FDCs for water management and infrastructure design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or model parameters. This task is complicated if climate becomes non-stationary, as the prediction challenge now also requires extrapolation through time. In this context, process-based models for FDCs that mechanistically link the streamflow distribution to climate and landscape factors may have an advantage over purely statistical methods to predict FDCs. This study compares a stochastic (process-based) and statistical method for FDC prediction in both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary conditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80 in 75 % of the tested catchments. The main drivers of uncertainty differ between the models: parameter interpolation was the main source of error for the statistical model, while violations of the assumptions of the process-based model represented the main source of its error. The process-based approach performed better than the statistical approach in numerical simulations with non-stationary climate drivers. The predictions of the statistical method under non-stationary rainfall conditions were poor if (i) local runoff coefficients were not accurately determined from the gauge network, or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analysis shows that the streamflow regimes in catchments characterized by frequent wet-season runoff and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall statistics. In these cases, process-based prediction approaches are favored over statistical models.
Hsi, W.; Kwiatkowski, K.; Wang, G.; Bracken, D.S.; Cornell, E.; Ginger, D.S.; Viola, V.E.; Yoder, N.R.; Korteling, R.G.; Gimeno-Nogues, F.; Ramakrishnan, E.; Rowland, D.; Yennello, S.J.; Huang, R.; Lynch, W.G.; Tsang, M.B.; Xi, H.; Breuer, H.; Morley, K.B.; Gushue, S.; Remsberg, L.P.; Friedman, W.A.; Botvina, A.
1998-07-01
Exclusive studies of sideways-peaked angular distributions for intermediate-mass fragments (IMFs) produced in hadron-induced reactions have been performed with the Indiana silicon sphere (ISiS) detector array. The effect becomes prominent for beam momenta above about 10thinspGeV/c. Both the magnitude of the effect and the peak angle increase as a function of fragment multiplicity and charge. When gated on IMF kinetic energy, the angular distributions evolve from forward peaked to nearly isotropic as the fragment energy decreases. Fragment-fragment correlation studies show no evidence for a preferred angle that might signal a fast dynamic breakup mechanism. Moving-source and intranuclear cascade simulations suggest a possible kinematic origin arising from significant transverse momentum imparted to the recoil nucleus during the fast cascade. A two-step cascade and statistical multifragmentation calculation is consistent with the data. {copyright} {ital 1998} {ital The American Physical Society}
Statistics of the inverse-cascade regime in two-dimensional magnetohydrodynamic turbulence.
Banerjee, Debarghya; Pandit, Rahul
2014-07-01
We present a detailed direct numerical simulation of statistically steady, homogeneous, isotropic, two-dimensional magnetohydrodynamic turbulence. Our study concentrates on the inverse cascade of the magnetic vector potential. We examine the dependence of the statistical properties of such turbulence on dissipation and friction coefficients. We extend earlier work significantly by calculating fluid and magnetic spectra, probability distribution functions (PDFs) of the velocity, magnetic, vorticity, current, stream-function, and magnetic-vector-potential fields, and their increments. We quantify the deviations of these PDFs from Gaussian ones by computing their flatnesses and hyperflatnesses. We also present PDFs of the Okubo-Weiss parameter, which distinguishes between vortical and extensional flow regions, and its magnetic analog. We show that the hyperflatnesses of PDFs of the increments of the stream function and the magnetic vector potential exhibit significant scale dependence and we examine the implication of this for the multiscaling of structure functions. We compare our results with those of earlier studies.
Lecarpentier, Yves; Claes, Victor; Hébert, Jean-Louis; Krokidis, Xénophon; Blanc, François-Xavier; Michel, Francine; Timbely, Oumar
2015-01-01
All near-equilibrium systems under linear regime evolve to stationary states in which there is constant entropy production rate. In an open chemical system that exchanges matter and energy with the exterior, we can identify both the energy and entropy flows associated with the exchange of matter and energy. This can be achieved by applying statistical mechanics (SM), which links the microscopic properties of a system to its bulk properties. In the case of contractile tissues such as human placenta, Huxley's equations offer a phenomenological formalism for applying SM. SM was investigated in human placental stem villi (PSV) (n = 40). PSV were stimulated by means of KCl exposure (n = 20) and tetanic electrical stimulation (n = 20). This made it possible to determine statistical entropy (S), internal energy (E), affinity (A), thermodynamic force (A / T) (T: temperature), thermodynamic flow (v) and entropy production rate (A / T x v). We found that PSV operated near equilibrium, i.e., A ≺≺ 2500 J/mol and in a stationary linear regime, i.e., (A / T) varied linearly with v. As v was dramatically low, entropy production rate which quantified irreversibility of chemical processes appeared to be the lowest ever observed in any contractile system.
Lecarpentier, Yves; Claes, Victor; Hébert, Jean-Louis; Krokidis, Xénophon; Blanc, François-Xavier; Michel, Francine; Timbely, Oumar
2015-01-01
All near-equilibrium systems under linear regime evolve to stationary states in which there is constant entropy production rate. In an open chemical system that exchanges matter and energy with the exterior, we can identify both the energy and entropy flows associated with the exchange of matter and energy. This can be achieved by applying statistical mechanics (SM), which links the microscopic properties of a system to its bulk properties. In the case of contractile tissues such as human placenta, Huxley's equations offer a phenomenological formalism for applying SM. SM was investigated in human placental stem villi (PSV) (n = 40). PSV were stimulated by means of KCl exposure (n = 20) and tetanic electrical stimulation (n = 20). This made it possible to determine statistical entropy (S), internal energy (E), affinity (A), thermodynamic force (A / T) (T: temperature), thermodynamic flow (v) and entropy production rate (A / T x v). We found that PSV operated near equilibrium, i.e., A ≺≺ 2500 J/mol and in a stationary linear regime, i.e., (A / T) varied linearly with v. As v was dramatically low, entropy production rate which quantified irreversibility of chemical processes appeared to be the lowest ever observed in any contractile system. PMID:26569482
Lecarpentier, Yves; Claes, Victor; Hébert, Jean-Louis; Krokidis, Xénophon; Blanc, François-Xavier; Michel, Francine; Timbely, Oumar
2015-01-01
All near-equilibrium systems under linear regime evolve to stationary states in which there is constant entropy production rate. In an open chemical system that exchanges matter and energy with the exterior, we can identify both the energy and entropy flows associated with the exchange of matter and energy. This can be achieved by applying statistical mechanics (SM), which links the microscopic properties of a system to its bulk properties. In the case of contractile tissues such as human placenta, Huxley’s equations offer a phenomenological formalism for applying SM. SM was investigated in human placental stem villi (PSV) (n = 40). PSV were stimulated by means of KCl exposure (n = 20) and tetanic electrical stimulation (n = 20). This made it possible to determine statistical entropy (S), internal energy (E), affinity (A), thermodynamic force (A / T) (T: temperature), thermodynamic flow (v) and entropy production rate (A / T x v). We found that PSV operated near equilibrium, i.e., A ≺≺ 2500 J/mol and in a stationary linear regime, i.e., (A / T) varied linearly with v. As v was dramatically low, entropy production rate which quantified irreversibility of chemical processes appeared to be the lowest ever observed in any contractile system. PMID:26569482
NASA Astrophysics Data System (ADS)
Sharma, Arun; Bharti, Arun
2016-03-01
We concurrently study the isospin effects via Coulomb forces and the nuclear equation of state and its momentum dependence on the onset of multifragmentation, i.e., critical energy point, in the light and heavily charged reactions of 40Ar + 45Sc and 84Kr + 197Au , respectively, using the isospin-dependent quantum molecular dynamics model. We find that Coulomb forces influence the onset of multifragmentation and result in the shift of the critical energy point towards lower and higher incident energies with and without their presence, respectively. Also, we observe that the critical energy point is sharper for the heavily charged system of 84Kr + 197Au when compared with the light charged system of 40Ar + 45Sc , where a small dip is observed and thus leads to the dependence of onset of multifragmentation, i.e., the critical energy point, on the reaction asymmetry as well as on the Coulomb forces.
NASA Astrophysics Data System (ADS)
Bernstein, Victor; Kolodney, Eli
2016-07-01
Postcollision multifragmentation which we have recently observed experimentally in C60 - -surface impact is the phenomenon of a delayed multiparticle breakup of a highly collisionally vibrationally excited large molecule/cluster (the precursor species) into several polyatomic fragments, after leaving the surface. In this paper, we show that the molecular dynamics simulations of near-grazing C60 collisions with a gold surface at 300 eV impact energy (very similar to the experimental conditions) successfully reproduce the experimentally observed characteristics of the postcollision multifragmentation process. The calculated mass resolved kinetic energy distributions and the time dependent yield curves of the Cn fragments revealed a precursor mediated, velocity correlated, delayed fragmentation event along the outgoing trajectory, far away from the surface. Most of the large fragments (n ≥ 5) are formed within a time window of 2-20 ps after leaving the surface, corresponding to the vertical distances of 3-30 nm from the surface. Analysis of delay times and actual time duration for multifragmentation reveal that a large part can be described as simultaneous postcollision (delayed) multifragmentation events. The delayed nature of the event seems to be due to an early sequence of structural transformations of the precursor.
Bernstein, Victor; Kolodney, Eli
2016-07-28
Postcollision multifragmentation which we have recently observed experimentally in C60 (-)-surface impact is the phenomenon of a delayed multiparticle breakup of a highly collisionally vibrationally excited large molecule/cluster (the precursor species) into several polyatomic fragments, after leaving the surface. In this paper, we show that the molecular dynamics simulations of near-grazing C60 collisions with a gold surface at 300 eV impact energy (very similar to the experimental conditions) successfully reproduce the experimentally observed characteristics of the postcollision multifragmentation process. The calculated mass resolved kinetic energy distributions and the time dependent yield curves of the Cn fragments revealed a precursor mediated, velocity correlated, delayed fragmentation event along the outgoing trajectory, far away from the surface. Most of the large fragments (n ≥ 5) are formed within a time window of 2-20 ps after leaving the surface, corresponding to the vertical distances of 3-30 nm from the surface. Analysis of delay times and actual time duration for multifragmentation reveal that a large part can be described as simultaneous postcollision (delayed) multifragmentation events. The delayed nature of the event seems to be due to an early sequence of structural transformations of the precursor. PMID:27475357
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
NASA Astrophysics Data System (ADS)
Evans, Mark
2016-10-01
A new parametric approach, termed the Wilshire equations, offers the realistic potential of being able to accurately lift materials operating at in-service conditions from accelerated test results lasting no more than 5000 hours. The success of this approach can be attributed to a well-defined linear relationship that appears to exist between various creep properties and a log transformation of the normalized stress. However, these linear trends are subject to discontinuities, the number of which appears to differ from material to material. These discontinuities have until now been (1) treated as abrupt in nature and (2) identified by eye from an inspection of simple graphical plots of the data. This article puts forward a statistical test for determining the correct number of discontinuities present within a creep data set and a method for allowing these discontinuities to occur more gradually, so that the methodology is more in line with the accepted view as to how creep mechanisms evolve with changing test conditions. These two developments are fully illustrated using creep data sets on two steel alloys. When these new procedures are applied to these steel alloys, not only do they produce more accurate and realistic looking long-term predictions of the minimum creep rate, but they also lead to different conclusions about the mechanisms determining the rates of creep from those originally put forward by Wilshire.
Nuclear multifragmentation by 700–1500 MeV photons: New data of GRAAL experiment
Nedorezov, V. G. Lapik, A. M.; Collaboration: GRAAL Collaboration
2015-12-15
The cross sections of carbon nucleus photodisintegration into protons and neutrons with high multiplicity for photon energies from 700 to 1500 MeV were measured. The experiment was performed at the tagged photon beam of the GRAAL setup using the wide-aperture detector LAGRANγE. It was shown that multifragmentation up to complete disintegration into separate nucleons is initiated by elementary reactions of meson photoproduction with a subsequent intranuclear cascade.
NASA Astrophysics Data System (ADS)
González-Lezana, Tomás; Honvault, Pascal; Scribano, Yohann
2013-08-01
The D+ +H2(v = 0, j = 0, 1) → HD+H+ reaction has been investigated at the low energy regime by means of a statistical quantum mechanical (SQM) method. Reaction probabilities and integral cross sections (ICSs) between a collisional energy of 10-4 eV and 0.1 eV have been calculated and compared with previously reported results of a time independent quantum mechanical (TIQM) approach. The TIQM results exhibit a dense profile with numerous narrow resonances down to Ec ˜ 10-2 eV and for the case of H2(v = 0, j = 0) a prominent peak is found at ˜2.5 × 10-4 eV. The analysis at the state-to-state level reveals that this feature is originated in those processes which yield the formation of rotationally excited HD(v' = 0, j' > 0). The statistical predictions reproduce reasonably well the overall behaviour of the TIQM ICSs at the larger energy range (Ec ⩾ 10-3 eV). Thermal rate constants are in qualitative agreement for the whole range of temperatures investigated in this work, 10-100 K, although the SQM values remain above the TIQM results for both initial H2 rotational states, j = 0 and 1. The enlargement of the asymptotic region for the statistical approach is crucial for a proper description at low energies. In particular, we find that the SQM method leads to rate coefficients in terms of the energy in perfect agreement with previously reported measurements if the maximum distance at which the calculation is performed increases noticeably with respect to the value employed to reproduce the TIQM results.
González-Lezana, Tomás; Honvault, Pascal; Scribano, Yohann
2013-08-01
The D(+) +H2(v = 0, j = 0, 1) → HD+H(+) reaction has been investigated at the low energy regime by means of a statistical quantum mechanical (SQM) method. Reaction probabilities and integral cross sections (ICSs) between a collisional energy of 10(-4) eV and 0.1 eV have been calculated and compared with previously reported results of a time independent quantum mechanical (TIQM) approach. The TIQM results exhibit a dense profile with numerous narrow resonances down to Ec ~ 10(-2) eV and for the case of H2(v = 0, j = 0) a prominent peak is found at ~2.5 × 10(-4) eV. The analysis at the state-to-state level reveals that this feature is originated in those processes which yield the formation of rotationally excited HD(v' = 0, j' > 0). The statistical predictions reproduce reasonably well the overall behaviour of the TIQM ICSs at the larger energy range (Ec ≥ 10(-3) eV). Thermal rate constants are in qualitative agreement for the whole range of temperatures investigated in this work, 10-100 K, although the SQM values remain above the TIQM results for both initial H2 rotational states, j = 0 and 1. The enlargement of the asymptotic region for the statistical approach is crucial for a proper description at low energies. In particular, we find that the SQM method leads to rate coefficients in terms of the energy in perfect agreement with previously reported measurements if the maximum distance at which the calculation is performed increases noticeably with respect to the value employed to reproduce the TIQM results. PMID:23927256
Multifragmentation in intermediate energy {sup 129}Xe-induced heavy-ion reactions
Tso, Kin
1996-05-01
The {sup 129}Xe-induced reactions on {sup nat}Cu, {sup 89}Y, {sup 165}Ho, and {sup 197}Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the {sup 129}Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.
Pilat, Joseph F.; Budlong-Sylvester, K. W.
2004-01-01
Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?
NASA Astrophysics Data System (ADS)
Schreier, M. M.; Kahn, B. H.; Sušelj, K.; Karlsson, J.; Ou, S. C.; Yue, Q.; Nasiri, S. L.
2014-04-01
Cloud occurrence, microphysical and optical properties, and atmospheric profiles within a subtropical cloud regime transition in the northeastern Pacific Ocean are obtained from a synergistic combination of the Atmospheric Infrared Sounder (AIRS) and the MODerate resolution Imaging Spectroradiometer (MODIS). The observed cloud parameters and atmospheric thermodynamic profile retrievals are binned by cloud type and analyzed based on their probability density functions (PDFs). Comparison of the PDFs to data from the European Centre for Medium Range Weather Forecasting reanalysis (ERA-Interim) shows a strong difference in the occurrence of the different cloud types compared to clear sky. An increasing non-Gaussian behavior is observed in cloud optical thickness (τc), effective radius (re) and cloud-top temperature (Tc) distributions from stratocumulus to trade cumulus, while decreasing values of lower-tropospheric stability are seen. However, variations in the mean, width and shape of the distributions are found. The AIRS potential temperature (θ) and water vapor (q) profiles in the presence of varying marine boundary layer (MBL) cloud types show overall similarities to the ERA-Interim in the mean profiles, but differences arise in the higher moments at some altitudes. The differences between the PDFs from AIRS+MODIS and ERA-Interim make it possible to pinpoint systematic errors in both systems and help to understand joint PDFs of cloud properties and coincident thermodynamic profiles from satellite observations.
NASA Astrophysics Data System (ADS)
Schreier, M. M.; Kahn, B. H.; Sušelj, K.; Karlsson, J.; Ou, S. C.; Yue, Q.; Nasiri, S. L.
2013-09-01
Cloud occurrence, microphysical and optical properties and atmospheric profiles within a subtropical cloud regime transition in the northeastern Pacific Ocean are obtained from a synergistic combination of the Atmospheric Infrared Sounder (AIRS) and the MODerate resolution Imaging Spectroradiometer (MODIS). The observed cloud parameters and atmospheric thermodynamic profile retrievals are binned by cloud type and analyzed based on their probability density functions (PDFs). Comparison of the PDFs to data from the European Center for Medium Range Weather Forecasting Re-analysis (ERA-Interim) shows a strong difference in the occurrence of the different cloud types compared to clear sky. An increasing non-Gaussian behavior is observed in cloud optical thickness (τc), effective radius (re) and cloud top temperature (Tc) distributions from Stratocumulus to Trade Cumulus, while decreasing values of lower tropospheric stability are seen. However, variations in the mean, width and shape of the distributions are found. The AIRS potential temperature (θ) and water vapor (q) profiles in the presence of varying marine boundary layer (MBL) cloud types show overall similarities to the ERA-Interim in the mean profiles, but differences arise in the higher moments at some altitudes. The differences between the PDFs from AIRS+MODIS and ERA-Interim make it possible to pinpoint systematic errors in both systems and helps to understand joint PDFs of cloud properties and coincident thermodynamic profiles from satellite observations.
Dynamical and Statistical Aspects in Nucleus--Nucleus Collisions Around the Fermi Energy
NASA Astrophysics Data System (ADS)
Tamain, B.; Assenard, M.; Auger, G.; Bacri, C. O.; Benlliure, J.; Bisquer, E.; Bocage, F.; Borderie, B.; Bougault, R.; Buchet, P.; Charvet, J. L.; Chbihi, A.; Colin, J.; Cussol, D.; Dayras, R.; Demeyer, A.; Dore, D.; Durand, D.; Eudes, P.; Frankland, J.; Galichet, E.; Genouin-Duhamel, E.; Gerlic, E.; Germain, M.; Gourio, D.; Guinet, D.; Gulminelli, F.; Lautesse, P.; Laville, J. L.; Lebrun, C.; Lecolley, J. F.; Lefevre, A.; Lefort, T.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Lukasik, J.; Marie, N.; Maskay, M.; Metivier, V.; Nalpas, L.; Nguyen, A.; Parlog, M.; Peter, J.; Plagnol, E.; Rahmani, A.; Reposeur, T.; Rivet, M. F.; Rosato, E.; Saint-Laurent, F.; Salou, S.; Squalli, M.; Steckmeyer, J. C.; Stern, M.; Tabacaru, T.; Tassan-Got, L.; Tirel, O.; Vient, E.; Volan, C.; Wieleczko, J. P.
1998-01-01
This contribution is devoted to two important aspects of intermediate energy nucleus-nucleus collisions: the competition of dynamical and statistical features, and the origin of the multifragmentation process. These two questions are discussed in focusing on Indra data. It turns out that most of collisions are binary and reminiscent of deep inelastic collisions observed at low energy. However, intermediate velocity emission is a clear signature of dynamical emission and establishes a link with the participant-spectator picture which applies at high bombarding energies. Multifragmentation is observed when the dissipated energy is large and it turns out that expansion occurs at least for central collisions, as it is expected if this phenomenum has a dynamical origin.
Chakraborty, Bibhas; Murphy, Susan A.
2014-01-01
A dynamic treatment regime consists of a sequence of decision rules, one per stage of intervention, that dictate how to individualize treatments to patients based on evolving treatment and covariate history. These regimes are particularly useful for managing chronic disorders, and fit well into the larger paradigm of personalized medicine. They provide one way to operationalize a clinical decision support system. Statistics plays a key role in the construction of evidence-based dynamic treatment regimes – informing best study design as well as efficient estimation and valid inference. Due to the many novel methodological challenges it offers, this area has been growing in popularity among statisticians in recent years. In this article, we review the key developments in this exciting field of research. In particular, we discuss the sequential multiple assignment randomized trial designs, estimation techniques like Q-learning and marginal structural models, and several inference techniques designed to address the associated non-standard asymptotics. We reference software, whenever available. We also outline some important future directions. PMID:25401119
Cloud regimes as phase transitions
NASA Astrophysics Data System (ADS)
Stechmann, Samuel N.; Hottovy, Scott
2016-06-01
Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.
Identifying natural flow regimes using fish communities
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.
2011-10-01
SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.
Cosmic statistics of statistics
NASA Astrophysics Data System (ADS)
Szapudi, István; Colombi, Stéphane; Bernardeau, Francis
1999-12-01
The errors on statistics measured in finite galaxy catalogues are exhaustively investigated. The theory of errors on factorial moments by Szapudi & Colombi is applied to cumulants via a series expansion method. All results are subsequently extended to the weakly non-linear regime. Together with previous investigations this yields an analytic theory of the errors for moments and connected moments of counts in cells from highly non-linear to weakly non-linear scales. For non-linear functions of unbiased estimators, such as the cumulants, the phenomenon of cosmic bias is identified and computed. Since it is subdued by the cosmic errors in the range of applicability of the theory, correction for it is inconsequential. In addition, the method of Colombi, Szapudi & Szalay concerning sampling effects is generalized, adapting the theory for inhomogeneous galaxy catalogues. While previous work focused on the variance only, the present article calculates the cross-correlations between moments and connected moments as well for a statistically complete description. The final analytic formulae representing the full theory are explicit but somewhat complicated. Therefore we have made available a fortran program capable of calculating the described quantities numerically (for further details e-mail SC at colombi@iap.fr). An important special case is the evaluation of the errors on the two-point correlation function, for which this should be more accurate than any method put forward previously. This tool will be immensely useful in the future for assessing the precision of measurements from existing catalogues, as well as aiding the design of new galaxy surveys. To illustrate the applicability of the results and to explore the numerical aspects of the theory qualitatively and quantitatively, the errors and cross-correlations are predicted under a wide range of assumptions for the future Sloan Digital Sky Survey. The principal results concerning the cumulants ξ, Q3 and Q4 is that
NASA Astrophysics Data System (ADS)
Francalanza, L.; Abbondanno, U.; Amorini, F.; Barlini, S.; Bini, M.; Bougault, R.; Bruno, M.; Cardella, G.; Casini, G.; D'Agostino, M.; De Filippo, E.; De Sanctis, J.; Geraci, E.; Giussani, A.; Gramegna, F.; Guiot, B.; Kravchuk, V.; La Guidara, E.; Lanzalone, G.; Le Neindre, N.; Maiolino, C.; Marini, P.; Morelli, L.; Olmi, A.; Pagano, A.; Papa, M.; Piantelli, S.; Pirrone, S.; Politi, G.; Poggi, G.; Porto, F.; Russotto, P.; Rizzo, F.; Vannini, G.; Vannucci, L.
2013-03-01
The experimental data concerning the 58Ni+48Ca reaction at Elab(Ni)=25A MeV, collected by the CHIMERA 4π device, have been analyzed in order to investigate the competition among different reaction mechanisms for central collisions in the Fermi energy domain. The method adopted to select such central collisions, by means of construction of the kinetic energy tensor and, consequently, the evaluation of the "flow angle" event by event is presented. Some global variables, able to characterize the pattern of central collisions, have been constructed, and the main features of the reaction products are analyzed in terms of some observable, like mass and velocity distributions, as well as their correlations. Much emphasis was devoted to the competition between fusion-evaporation processes with consequent identification of a heavy residue and multifragmentation of a well defined (if any) transient nuclear system formed in central collisions.
Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L
2015-10-13
Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536
Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.
2015-01-01
Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536
Breus, Dimitry Eugene
2005-05-16
In Part 1, geometric clusters of the Ising model are studied as possible model clusters for nuclear multifragmentation. These clusters may not be considered as non-interacting (ideal gas) due to excluded volume effect which predominantly is the artifact of the cluster's finite size. Interaction significantly complicates the use of clusters in the analysis of thermodynamic systems. Stillinger's theory is used as a basis for the analysis, which within the RFL (Reiss, Frisch, Lebowitz) fluid-of-spheres approximation produces a prediction for cluster concentrations well obeyed by geometric clusters of the Ising model. If thermodynamic condition of phase coexistence is met, these concentrations can be incorporated into a differential equation procedure of moderate complexity to elucidate the liquid-vapor phase diagram of the system with cluster interaction included. The drawback of increased complexity is outweighted by the reward of greater accuracy of the phase diagram, as it is demonstrated by the Ising model. A novel nuclear-cluster analysis procedure is developed by modifying Fisher's model to contain cluster interaction and employing the differential equation procedure to obtain thermodynamic variables. With this procedure applied to geometric clusters, the guidelines are developed to look for excluded volume effect in nuclear multifragmentation. In part 2, an explanation is offered for the recently observed oscillations in the energy spectra of α-particles emitted from hot compound nuclei. Contrary to what was previously expected, the oscillations are assumed to be caused by the multiple-chance nature of α-evaporation. In a semi-empirical fashion this assumption is successfully confirmed by a technique of two-spectra decomposition which treats experimental α-spectra has having contributions from at least two independent emitters. Building upon the success of the multiple-chance explanation of the oscillations, Moretto's single-chance evaporation theory is
Guidance for evaluating and recommending temperature regimes to protect fish
Armour, Carl L.
1991-01-01
Procedures are presented for evaluating temperature regimes for fish. Although examples pertain to spring chinook salmon (Oncorhynchus tshawytscha), the principles apply to other species. Basic temperature tolerance relationships for fish are explained and three options are described for comparing alternative temperature regimes. The options are to base comparisons on experimental temperature tolerance results, suitability of a simulated temperature regime for key life stages, or population statistics and predicated responses to simulated temperatures.
Prolonged Instability Prior to a Regime Shift
Spanbauer, Trisha L.; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.
2014-01-01
Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia. PMID:25280010
Using decision lists to construct interpretable and parsimonious treatment regimes.
Zhang, Yichi; Laber, Eric B; Tsiatis, Anastasios; Davidian, Marie
2015-12-01
A treatment regime formalizes personalized medicine as a function from individual patient characteristics to a recommended treatment. A high-quality treatment regime can improve patient outcomes while reducing cost, resource consumption, and treatment burden. Thus, there is tremendous interest in estimating treatment regimes from observational and randomized studies. However, the development of treatment regimes for application in clinical practice requires the long-term, joint effort of statisticians and clinical scientists. In this collaborative process, the statistician must integrate clinical science into the statistical models underlying a treatment regime and the clinician must scrutinize the estimated treatment regime for scientific validity. To facilitate meaningful information exchange, it is important that estimated treatment regimes be interpretable in a subject-matter context. We propose a simple, yet flexible class of treatment regimes whose members are representable as a short list of if-then statements. Regimes in this class are immediately interpretable and are therefore an appealing choice for broad application in practice. We derive a robust estimator of the optimal regime within this class and demonstrate its finite sample performance using simulation experiments. The proposed method is illustrated with data from two clinical trials. PMID:26193819
Using Decision Lists to Construct Interpretable and Parsimonious Treatment Regimes
Zhang, Yichi; Laber, Eric B.; Tsiatis, Anastasios; Davidian, Marie
2015-01-01
Summary A treatment regime formalizes personalized medicine as a function from individual patient characteristics to a recommended treatment. A high-quality treatment regime can improve patient outcomes while reducing cost, resource consumption, and treatment burden. Thus, there is tremendous interest in estimating treatment regimes from observational and randomized studies. However, the development of treatment regimes for application in clinical practice requires the long-term, joint effort of statisticians and clinical scientists. In this collaborative process, the statistician must integrate clinical science into the statistical models underlying a treatment regime and the clinician must scrutinize the estimated treatment regime for scientific validity. To facilitate meaningful information exchange, it is important that estimated treatment regimes be interpretable in a subject-matter context. We propose a simple, yet flexible class of treatment regimes whose members are representable as a short list of if-then statements. Regimes in this class are immediately interpretable and are therefore an appealing choice for broad application in practice. We derive a robust estimator of the optimal regime within this class and demonstrate its finite sample performance using simulation experiments. The proposed method is illustrated with data from two clinical trials. PMID:26193819
Rheological equations in asymptotic regimes of granular flow
Chen, C.-L.; Ling, C.-H.
1998-01-01
This paper assesses the validity of the generalized viscoplastic fluid (GVF) model in light of the established constitutive relations in two asymptotic flow regimes, namely, the macroviscous and grain-inertia regimes. A comprehensive review of the literature on constitutive relations in both regimes reveals that except for some material constants, such as the coefficient of restitution, the normalized shear stress in both regimes varies only with the grain concentration, C. It is found that Krieger-Dougherty's relative viscosity, ??*(C), is sufficiently coherent among the monotonically nondecreasing functions of C used in describing the variation of the shear stress with C in both regimes. It not only accurately represents the C-dependent relative viscosity of a suspension in the macroviscous regime, but also plays a role of the radial distribution function that describes the statistics of particle collisions in the grain-inertia regime. Use of ??*(C) alone, however, cannot link the two regimes. Another parameter, the shear-rate number, N, is needed in modelling the rheology of neutrally buoyant granular flows in transition between the two asymptotic regimes. The GVF model proves compatible with most established relations in both regimes.
Speckle statistics of entangled photons
NASA Astrophysics Data System (ADS)
Klein, Avraham; Agam, Oded; Spivak, Boris
2016-07-01
We consider the propagation of several entangled photons through an elastically scattering medium and study statistical properties of their speckle patterns. We find the spatial correlations of multiphoton speckles and their sensitivity to changes of system parameters. Our analysis covers both the directed-wave regime, where rays propagate almost ballistically while experiencing small-angle diffusion, and the real-space diffusive regime. We demonstrate that long-range correlations of the speckle patterns dominate experimental signatures for large-aperture photon detectors. We also show that speckle sensitivity depends strongly on the number of photons N in the incoming beam, increasing as √{N } in the directed-wave regime and as N in the diffusive regime.
Water use regimes: Characterizing direct human interaction with hydrologic systems
Weiskel, P.K.; Vogel, R.M.; Steeves, P.A.; Zarriello, P.J.; DeSimone, L.A.; Ries, Kernell G.
2007-01-01
[1] The sustainability of human water use practices is a rapidly growing concern in the United States and around the world. To better characterize direct human interaction with hydrologic systems (stream basins and aquifers), we introduce the concept of the water use regime. Unlike scalar indicators of anthropogenic hydrologic stress in the literature, the water use regime is a two-dimensional, vector indicator that can be depicted on simple x-y plots of normalized human withdrawals (hout) versus normalized human return flows (hin). Four end-member regimes, natural-flow-dominated (undeveloped), human-flow-dominated (churned), withdrawal-dominated (depleted), and return-flow-dominated (surcharged), are defined in relation to limiting values of hout and hin. For illustration, the water use regimes of 19 diverse hydrologic systems are plotted and interpreted. Several of these systems, including the Yellow River Basin, China, and the California Central Valley Aquifer, are shown to approach particular end-member regimes. Spatial and temporal regime variations, both seasonal and long-term, are depicted. Practical issues of data availability and regime uncertainty are addressed in relation to the statistical properties of the ratio estimators hout and hin. The water use regime is shown to be a useful tool for comparative water resources assessment and for describing both historic and alternative future pathways of water resource development at a range of scales. Copyright 2007 by the American Geophysical Union.
Smith, Alwyn
1969-01-01
This paper is based on an analysis of questionnaires sent to the health ministries of Member States of WHO asking for information about the extent, nature, and scope of morbidity statistical information. It is clear that most countries collect some statistics of morbidity and many countries collect extensive data. However, few countries relate their collection to the needs of health administrators for information, and many countries collect statistics principally for publication in annual volumes which may appear anything up to 3 years after the year to which they refer. The desiderata of morbidity statistics may be summarized as reliability, representativeness, and relevance to current health problems. PMID:5306722
Examination Regimes and Student Achievement
ERIC Educational Resources Information Center
Cosentino de Cohen, Clemencia
2010-01-01
Examination regimes at the end of secondary school vary greatly intra- and cross-nationally, and in recent years have undergone important reforms often geared towards increasing student achievement. This research presents a comparative analysis of the relationship between examination regimes and student achievement in the OECD. Using a micro…
Scharenberg, R.; Hirsch, A.; Tincknell, M.
1993-09-15
This report discusses the Fermilab experiment E735 which is dedicated to the search for the quark-gluon plasma from proton-antiproton interactions; multifragmentation using the EOS-TPC; STAR R&D; silicon avalanche diodes as direct time-of-flight detectors; and soft photons at the AGS-E855.
ERIC Educational Resources Information Center
Petocz, Peter; Sowey, Eric
2012-01-01
The term "data snooping" refers to the practice of choosing which statistical analyses to apply to a set of data after having first looked at those data. Data snooping contradicts a fundamental precept of applied statistics, that the scheme of analysis is to be planned in advance. In this column, the authors shall elucidate the statistical…
Constructing an interdisciplinary flow regime recommendation
Bartholow, J.M.
2010-01-01
It is generally agreed that river rehabilitation most often relies on restoring a more natural flow regime, but credibly defining the desired regime can be problematic. I combined four distinct methods to develop and refine month-by-month and event-based flow recommendations to protect and partially restore the ecological integrity of the Cache la Poudre River through Fort Collins, Colorado. A statistical hydrologic approach was used to summarize the river's natural flow regime and set provisional monthly flow targets at levels that were historically exceeded 75% of the time. These preliminary monthly targets were supplemented using results from three Poudre-specific disciplinary studies. A substrate maintenance flow model was used to better define the high flows needed to flush accumulated sediment from the river's channel and help sustain the riparian zone in this snowmelt-dominated river. A hydraulic/habitat model and a water temperature model were both used to better define the minimum flows necessary to maintain a thriving cool water fishery. The result is a range of recommended monthly flows and daily flow guidance illustrating the advantage of combining a wide range of available disciplinary information, supplemented by judgment based on ecological principles and a general understanding of river ecosystems, in a highly altered, working river. ?? 2010 American Water Resources Association.
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James
2014-01-01
Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.
The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute works to provide information on cancer statistics in an effort to reduce the burden of cancer among the U.S. population.
... cancer statistics across the world. U.S. Cancer Mortality Trends The best indicator of progress against cancer is ... the number of cancer survivors has increased. These trends show that progress is being made against the ...
NASA Astrophysics Data System (ADS)
Hermann, Claudine
Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies - such as semiconductors or lasers - are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.
Great Lakes' regional climate regimes
NASA Astrophysics Data System (ADS)
Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul
2016-04-01
We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.
NASA Astrophysics Data System (ADS)
Goodman, Joseph W.
2000-07-01
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
Regime Changes in California Temperature Trends
NASA Astrophysics Data System (ADS)
Cordero, E. C.; Kessomkiat, W.; Mauget, S.
2008-12-01
Annual and seasonal temperature trends are analyzed for California using surface data from the US Historical Climate Network and the larger COOP network. While trends in Tmax and Tmin both show warming over the last 50 years, the temporal and spatial structure of these trends is quite different. An analysis using Mann Whitney U statistics reveals that the patterns of warming and cooling from individual stations have a distinct temporal signature that differs between Tmax and Tmin. Significant cooling trends in Tmin are found between 1920-1958, while significant warming only starts after the 1970s. In contrast, Tmax trends show a more variable pattern of warming and cooling between 1920-1980, with California wide warming only occurring after 1980. These results suggest regime changes in California temperature trends that could only occur through large scale forcing. A discussion of the various forcing mechanisms contributing to California trends and their spatial and temporal variability will be presented.
A Regime Diagram for Subduction
NASA Astrophysics Data System (ADS)
Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.
2009-12-01
Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction
1986-01-01
Official population data for the USSR are presented for 1985 and 1986. Part 1 (pp. 65-72) contains data on capitals of union republics and cities with over one million inhabitants, including population estimates for 1986 and vital statistics for 1985. Part 2 (p. 72) presents population estimates by sex and union republic, 1986. Part 3 (pp. 73-6) presents data on population growth, including birth, death, and natural increase rates, 1984-1985; seasonal distribution of births and deaths; birth order; age-specific birth rates in urban and rural areas and by union republic; marriages; age at marriage; and divorces. PMID:12178831
NASA Technical Reports Server (NTRS)
Stephens, J. B.; Sloan, J. C.
1976-01-01
A method is described for developing a statistical air quality assessment for the launch of an aerospace vehicle from the Kennedy Space Center in terms of existing climatological data sets. The procedure can be refined as developing meteorological conditions are identified for use with the NASA-Marshall Space Flight Center Rocket Exhaust Effluent Diffusion (REED) description. Classical climatological regimes for the long range analysis can be narrowed as the synoptic and mesoscale structure is identified. Only broad synoptic regimes are identified at this stage of analysis. As the statistical data matrix is developed, synoptic regimes will be refined in terms of the resulting eigenvectors as applicable to aerospace air quality predictions.
Vegetation management with fire modifies peatland soil thermal regime.
Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph
2015-05-01
Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from <2 to 15 + years post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (<2-4 years) showed higher mean, maximum and range of soil temperatures, and lower minima. Statistical models (generalised least square regression) were developed to predict daily mean and maximum soil temperature in plots burned 15 + years prior to the study. These models were then applied to predict temperatures of plots burned 2, 4 and 7 years previously, with significant deviations from predicted temperatures illustrating the magnitude of burn management effects. Temperatures measured in soil plots burned <2 years previously showed significant statistical disturbances from model predictions, reaching +6.2 °C for daily mean temperatures and +19.6 °C for daily maxima. Soil temperatures in plots burnt 7 years previously were most similar to plots burned 15 + years ago indicating the potential for soil temperatures to recover as vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime
NASA Astrophysics Data System (ADS)
Boessenkool, Berry; Bronstert, Axel; Bürger, Gerd
2016-04-01
The Rhine flow regime is changing: (a) in the alpine nival regime, snow melt floods occur earlier in the year and (b) in the pluvial middle-Rhine regime, rainfall induced flood magnitudes rise. The seasonality of each is currently separated in time, but it is conceivable that this may shift due to climate change. If extremes of both flood types coincide, this would create a new type of hydrologic extreme with disastrous consequences. Quantifying the probability for a future overlap of pluvial and nival floods is therefore of high relevance to society and particularly to reinsurance companies. In order to investigate possible changes in magnitude and timing of flood types, we are developing a chain of physical models for spatio-temporal combination of flood probabilities. As input, we aim to use stochastically downscaled temperature and rainfall extremes from climate model weather projections. Preliminary research shows a six-week forward-shift of peak discharge at the nival gauge Maxau in the past century. The aim of presenting our early-stage work as a poster is to induce an exchange of ideas with fellow scientists in close research disciplines.
Characterization of fire regime in Sardinia (Italy)
NASA Astrophysics Data System (ADS)
Bacciu, V. M.; Salis, M.; Mastinu, S.; Masala, F.; Sirca, C.; Spano, D.
2012-12-01
In the last decades, a number of Authors highlighted the crucial role of forest fires within Mediterranean ecosystems, with impacts both negative and positive on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In Sardinia (Italy), the second largest island of the Mediterranean Basin, forest fires are perceived as one of the main environmental and social problems, and data are showing that the situation is worsening especially within the rural-urban peripheries and the increasing number of very large forest fires. The need for information concerning forest fire regime has been pointed out by several Authors (e.g. Rollins et al., 2002), who also emphasized the importance of understanding the factors (such as weather/climate, socio-economic, and land use) that determine spatial and temporal fire patterns. These would be used not only as a baseline to predict the climate change effect on forest fires, but also as a fire management and mitigation strategy. The main aim of this paper is, thus, to analyze the temporal and spatial patterns of fire occurrence in Sardinia (Italy) during the last three decades (1980-2010). For the analyzed period, fire statistics were provided by the Sardinian Forest Service (CFVA - Corpo Forestale e di Vigilanza Ambientale), while weather data for eight weather stations were obtained from the web site www.tutiempo.it. For each station, daily series of precipitation, mean, maximum and minimum temperature, relative humidity and wind speed were available. The present study firstly analyzed fire statistics (burned area and number of fires) according to the main fire regime characteristics (seasonality, fire return interval, fire incidence, fire size distribution). Then, fire and weather daily values were averaged to obtain monthly, seasonal and annual values, and
Hydrological minimal model for fire regime assessment in Mediterranean ecosystem
NASA Astrophysics Data System (ADS)
Ursino, N.; Rulli, M. C.
2012-04-01
A new model for Mediterranean forest fire regime assessment is presented and discussed. The model is based on the experimental evidence that fire is due to both hydrological and ecological processes and the relative role of fuel load versus fuel moisture is an important driver in fire ecology. Diverse scenarios are analyzed where either the hydrological forcing or the feedback between fire and hydrological characterization of the site is changed. The model outcome demonstrates that the two way interaction between hydrological processes, biology and fire regime drives the ecosystem toward a typical fire regime that may be altered either by an evolution of the biological characterization of the site or by a change of the hydrological forcing. This tenet implies that not every fire regime is compatible with the ecohydrological characterization of the site under study. This means that natural (non antropogenic) fire cannot be modeled as an arbitrary external forcing because the coupled hydrological and biological processes determines its statistical characterization, and conversely, the fire regime affects the soil moisture availability and the outcome of different species competition under possible water stress. The new modelling approach presented here, when provided by a proper model parameterization, can advance the capability in predicting and managing fires in ecosystems influenced by climate and land use changes.
Deterministic-random separation in nonstationary regime
NASA Astrophysics Data System (ADS)
Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.
2016-02-01
In rotating machinery vibration analysis, the synchronous average is perhaps the most widely used technique for extracting periodic components. Periodic components are typically related to gear vibrations, misalignments, unbalances, blade rotations, reciprocating forces, etc. Their separation from other random components is essential in vibration-based diagnosis in order to discriminate useful information from masking noise. However, synchronous averaging theoretically requires the machine to operate under stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise jeopardized by the presence of amplitude and phase modulations. A first object of this paper is to investigate the nature of the nonstationarity induced by the response of a linear time-invariant system subjected to speed varying excitation. For this purpose, the concept of a cyclo-non-stationary signal is introduced, which extends the class of cyclostationary signals to speed-varying regimes. Next, a "generalized synchronous average'' is designed to extract the deterministic part of a cyclo-non-stationary vibration signal-i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of the GSA have been proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the "quality" of the estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific trajectory dictated by the speed profile (assumed to be known a priori).The proposed method is validated first on synthetic signals and then on actual industrial signals. The usefulness of the approach is demonstrated on envelope-based diagnosis of bearings in variable
Solomatov, V.S.; Zharkov, V.N. )
1990-04-01
In the present numerical modeling study of the thermal evolution of Venus, the mantle is taken to be composed of independently convecting upper and lower mantles. A novel parameterization is used which takes into account recent numerical investigations in media with complex rheology. The parameters of the convecting planet in the asymptotic regime do not depend on initial conditions, and are ascertained analytically. Convection in the lower part of the crust is demonstrated to be involved in regions having specific crustal composition; heat transfer to the surface is primarily via advection by magmas that are produced by melting of the lower layers of the crust. 50 refs.
Breddin's graph for tectonic regimes
NASA Astrophysics Data System (ADS)
Célérier, Bernard; Séranne, Michel
2001-05-01
A simple graphical method is proposed to infer the tectonic regime from a fault and slip data set. An abacus is overlaid on a plot of the rake versus strike of the data. This yields the horizontal principal stress directions and a constraint on the stress tensor aspect ratio, in a manner similar to Breddin's graph for two-dimensional strain analysis. The main requirement is that one of the principal stress directions is close to the vertical. This method is illustrated on monophase synthetic and natural data, but is also expected to help sort out multiphase data sets.
The New English Quality Assurance Regime
ERIC Educational Resources Information Center
Brown, Roger
2011-01-01
England is developing a new quality assurance regime that will come into effect in October 2011. A new funding regime will operate from the following year, together with new rules to ease the participation of private higher education providers. This article describes and analyses the new quality and funding regimes. It argues that the greater…
NASA Astrophysics Data System (ADS)
Cunderlik, Juraj M.; Burn, Donald H.
2002-04-01
Improving techniques of flood frequency estimation at ungauged sites is one of the foremost goals of contemporary hydrology. River flood regime is a resultant reflection of a composite catchment hydrologic response to flood producing processes. In this sense the process of identifying homogeneous pooling groups can be plausibly based on catchment similarity in flood regime. Unfortunately the application of any pooling approach that is based on flood regime is restricted to gauged sites. Because flood regime can be markedly determined by rainfall regime, catchment similarity in rainfall regime can be an alternative option for identifying flood frequency pooling groups. An advantage of such a pooling approach is that rainfall data are usually spatially and temporary more abundant than flood data and the approach can also be applied at ungauged sites. Therefore in this study we have quantified the linkage between rainfall and flood regime and explored the appropriateness of substituting rainfall regime for flood regime in regional pooling schemes. Two different approaches to describing rainfall regime similarity using tools of directional statistics have been tested and used for evaluation of the potential of rainfall regime for identification of hydrologically homogeneous pooling groups. The outputs were compared to an existing pooling framework adopted in the Flood Estimation Handbook. The results demonstrate that regional pooling based on rainfall regime information leads to a high number of initially homogeneous groups and seems to be a sound pooling alternative for catchments with a close linkage between rain and flood regimes.
Adaptation in Collaborative Governance Regimes
NASA Astrophysics Data System (ADS)
Emerson, Kirk; Gerlak, Andrea K.
2014-10-01
Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.
Different regimes of dynamic wetting
NASA Astrophysics Data System (ADS)
Gustav, Amberg; Wang, Jiayu; Do-Quang, Minh; Shiomi, Junichiro; Physiochemical fluid mechanics Team; Maruyama-Chiashi Laboratory Team
2014-11-01
Dynamic wetting, as observed when a droplet contacts a dry solid surface, is important in various engineering processes, such as printing, coating, and lubrication. Our overall aim is to investigate if and how the detailed properties of the solid surface influence the dynamics of wetting. Here we discuss how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. This is complemented by matching numerical simulations. We present a parameter map, based on the properties of the liquid and the solid surface, which identifies qualitatively different spreading regimes, where the spreading speed is limited by either the liquid viscosity, the surface properties, or the liquid inertia. The peculiarities of the different spreading regimes are studied by detailed numerical simulations, in conjuction with experiments. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W. and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A).
Adaptation in collaborative governance regimes.
Emerson, Kirk; Gerlak, Andrea K
2014-10-01
Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.
Permafrost and the geothermal regime
NASA Astrophysics Data System (ADS)
Lachenbruch, A. H.; Marshall, B. V.
Permafrost is the region in the solid earth where the temperature is below 0 C summer and winter. Within this region, water usually occurs as ice, often in massive segregated forms, although capillary water, brines, and gas hydrates also occur. The frozen condition renders permafrost impermeable to water flow, subject to brittle fracture under seasonally induced thermal stress, and subject to mechanical failure and flow when thawed by natural processes or disturbed by man. Hence an understanding of the factors controlling the geothermal regime is necessary for an understanding of geomorphic processes and for successful design of engineering structures such as roadways, heated buildings, pipelines, and oil wells in permafrost terrains. Studies of these factors are greatly simplified by the general absence of heat transfer by flowing ground water; temperatures are estimated with confidence from heat-conduction theory if the ground surface temperature, regional heat flow, and thermal properties are known.
Random nanolasing in the Anderson localized regime
NASA Astrophysics Data System (ADS)
Liu, J.; Garcia, P. D.; Ek, S.; Gregersen, N.; Suhr, T.; Schubert, M.; Mørk, J.; Stobbe, S.; Lodahl, P.
2014-04-01
The development of nanoscale optical devices for classical and quantum photonics is affected by unavoidable fabrication imperfections that often impose performance limitations. However, disorder may also enable new functionalities, for example in random lasers, where lasing relies on random multiple scattering. The applicability of random lasers has been limited due to multidirectional emission, lack of tunability, and strong mode competition with chaotic fluctuations due to a weak mode confinement. The regime of Anderson localization of light has been proposed for obtaining stable multimode random lasing, and initial work concerned macroscopic one-dimensional layered media. Here, we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder. The strong confinement achieved by Anderson localization reduces the spatial overlap between lasing modes, thus preventing mode competition and improving stability. This enables highly efficient, stable and broadband wavelength-controlled lasers with very small mode volumes. Furthermore, the complex interplay between gain, dispersion-controlled slow light, and disorder is demonstrated experimentally for a non-conservative random medium. The statistical analysis shows a way towards optimizing random-lasing performance by reducing the localization length, a universal parameter.
Characterizing wildfire regimes in the United States
Malamud, Bruce D.; Millington, James D. A.; Perry, George L. W.
2005-01-01
Wildfires statistics for the conterminous United States (U.S.) are examined in a spatially and temporally explicit manner. We use a high-resolution data set consisting of 88,916 U.S. Department of Agriculture Forest Service wildfires over the time period 1970-2000 and consider wildfire occurrence as a function of ecoregion (land units classified by climate, vegetation, and topography), ignition source (anthropogenic vs. lightning), and decade. For the conterminous U.S., we (i) find that wildfires exhibit robust frequency-area power-law behavior in 18 different ecoregions; (ii) use normalized power-law exponents to compare the scaling of wildfire-burned areas between ecoregions, finding a systematic change from east to west; (iii) find that wildfires in the eastern third of the U.S. have higher power-law exponents for anthropogenic vs. lightning ignition sources; and (iv) calculate recurrence intervals for wildfires of a given burned area or larger for each ecoregion, allowing for the classification of wildfire regimes for probabilistic hazard estimation in the same vein as is now used for earthquakes. PMID:15781868
Dynamic Financial Constraints: Distinguishing Mechanism Design from Exogenously Incomplete Regimes.
Karaivanov, Alexander; Townsend, Robert M
2014-05-01
We formulate and solve a range of dynamic models of constrained credit/insurance that allow for moral hazard and limited commitment. We compare them to full insurance and exogenously incomplete financial regimes (autarky, saving only, borrowing and lending in a single asset). We develop computational methods based on mechanism design, linear programming, and maximum likelihood to estimate, compare, and statistically test these alternative dynamic models with financial/information constraints. Our methods can use both cross-sectional and panel data and allow for measurement error and unobserved heterogeneity. We estimate the models using data on Thai households running small businesses from two separate samples. We find that in the rural sample, the exogenously incomplete saving only and borrowing regimes provide the best fit using data on consumption, business assets, investment, and income. Family and other networks help consumption smoothing there, as in a moral hazard constrained regime. In contrast, in urban areas, we find mechanism design financial/information regimes that are decidedly less constrained, with the moral hazard model fitting best combined business and consumption data. We perform numerous robustness checks in both the Thai data and in Monte Carlo simulations and compare our maximum likelihood criterion with results from other metrics and data not used in the estimation. A prototypical counterfactual policy evaluation exercise using the estimation results is also featured.
Dynamic Financial Constraints: Distinguishing Mechanism Design from Exogenously Incomplete Regimes.
Karaivanov, Alexander; Townsend, Robert M
2014-05-01
We formulate and solve a range of dynamic models of constrained credit/insurance that allow for moral hazard and limited commitment. We compare them to full insurance and exogenously incomplete financial regimes (autarky, saving only, borrowing and lending in a single asset). We develop computational methods based on mechanism design, linear programming, and maximum likelihood to estimate, compare, and statistically test these alternative dynamic models with financial/information constraints. Our methods can use both cross-sectional and panel data and allow for measurement error and unobserved heterogeneity. We estimate the models using data on Thai households running small businesses from two separate samples. We find that in the rural sample, the exogenously incomplete saving only and borrowing regimes provide the best fit using data on consumption, business assets, investment, and income. Family and other networks help consumption smoothing there, as in a moral hazard constrained regime. In contrast, in urban areas, we find mechanism design financial/information regimes that are decidedly less constrained, with the moral hazard model fitting best combined business and consumption data. We perform numerous robustness checks in both the Thai data and in Monte Carlo simulations and compare our maximum likelihood criterion with results from other metrics and data not used in the estimation. A prototypical counterfactual policy evaluation exercise using the estimation results is also featured. PMID:25246710
Transport processes in magnetically confined plasmas in the nonlinear regime
Sonnino, Giorgio
2006-06-15
A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schlueter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schlueter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.
Dynamic Financial Constraints: Distinguishing Mechanism Design from Exogenously Incomplete Regimes*
Karaivanov, Alexander; Townsend, Robert M.
2014-01-01
We formulate and solve a range of dynamic models of constrained credit/insurance that allow for moral hazard and limited commitment. We compare them to full insurance and exogenously incomplete financial regimes (autarky, saving only, borrowing and lending in a single asset). We develop computational methods based on mechanism design, linear programming, and maximum likelihood to estimate, compare, and statistically test these alternative dynamic models with financial/information constraints. Our methods can use both cross-sectional and panel data and allow for measurement error and unobserved heterogeneity. We estimate the models using data on Thai households running small businesses from two separate samples. We find that in the rural sample, the exogenously incomplete saving only and borrowing regimes provide the best fit using data on consumption, business assets, investment, and income. Family and other networks help consumption smoothing there, as in a moral hazard constrained regime. In contrast, in urban areas, we find mechanism design financial/information regimes that are decidedly less constrained, with the moral hazard model fitting best combined business and consumption data. We perform numerous robustness checks in both the Thai data and in Monte Carlo simulations and compare our maximum likelihood criterion with results from other metrics and data not used in the estimation. A prototypical counterfactual policy evaluation exercise using the estimation results is also featured. PMID:25246710
Cosmetic Plastic Surgery Statistics
2014 Cosmetic Plastic Surgery Statistics Cosmetic Procedure Trends 2014 Plastic Surgery Statistics Report Please credit the AMERICAN SOCIETY OF PLASTIC SURGEONS when citing statistical data or using ...
Using Clustering to Establish Climate Regimes from PCM Output
NASA Technical Reports Server (NTRS)
Oglesby, Robert; Arnold, James E. (Technical Monitor); Hoffman, Forrest; Hargrove, W. W.; Erickson, D.
2002-01-01
A multivariate statistical clustering technique--based on the k-means algorithm of Hartigan has been used to extract patterns of climatological significance from 200 years of general circulation model (GCM) output. Originally developed and implemented on a Beowulf-style parallel computer constructed by Hoffman and Hargrove from surplus commodity desktop PCs, the high performance parallel clustering algorithm was previously applied to the derivation of ecoregions from map stacks of 9 and 25 geophysical conditions or variables for the conterminous U.S. at a resolution of 1 sq km. Now applied both across space and through time, the clustering technique yields temporally-varying climate regimes predicted by transient runs of the Parallel Climate Model (PCM). Using a business-as-usual (BAU) scenario and clustering four fields of significance to the global water cycle (surface temperature, precipitation, soil moisture, and snow depth) from 1871 through 2098, the authors' analysis shows an increase in spatial area occupied by the cluster or climate regime which typifies desert regions (i.e., an increase in desertification) and a decrease in the spatial area occupied by the climate regime typifying winter-time high latitude perma-frost regions. The patterns of cluster changes have been analyzed to understand the predicted variability in the water cycle on global and continental scales. In addition, representative climate regimes were determined by taking three 10-year averages of the fields 100 years apart for northern hemisphere winter (December, January, and February) and summer (June, July, and August). The result is global maps of typical seasonal climate regimes for 100 years in the past, for the present, and for 100 years into the future. Using three-dimensional data or phase space representations of these climate regimes (i.e., the cluster centroids), the authors demonstrate the portion of this phase space occupied by the land surface at all points in space and time
Using Clustering to Establish Climate Regimes from PCM Output
NASA Astrophysics Data System (ADS)
Hoffman, F.; Oglesby, R.; Hargrove, W. W.; Erickson, D.
2002-12-01
A multivariate statistical clustering technique--based on the k-means algorithm of Hartigan--has been used to extract patterns of climatological significance from 200 years of general circulation model (GCM) output. Originally developed and implemented on a Beowulf-style parallel computer constructed by Hoffman and Hargrove from surplus commodity desktop PCs, the high performance parallel clustering algorithm was previously applied to the derivation of ecoregions from map stacks of 9 and 25 geophysical conditions or variables for the conterminous U.S. at a resolution of 1 sq km. Now applied both across space and through time, the clustering technique yields temporally-varying climate regimes predicted by transient runs of the Parallel Climate Model (PCM). Using a business-as-usual (BAU) scenario and clustering four fields of significance to the global water cycle (surface temperature, precipitation, soil moisture, and snow depth) from 1871 through 2098, the authors' analysis shows an increase in spatial area occupied by the cluster or climate regime which typifies desert regions (i.e., an increase in desertification) and a decrease in the spatial area occupied by the climate regime typifying winter-time high latitude perma-frost regions. The patterns of cluster changes have been analyzed to understand the predicted variability in the water cycle on global and continental scales. In addition, representative climate regimes were determined by taking three 10-year averages of the fields 100 years apart for northern hemisphere winter (December, January, and February) and summer (June, July, and August). The result is global maps of typical seasonal climate regimes for 100 years in the past, for the present, and for 100 years into the future. Using three-dimensional data or phase space representations of these climate regimes (i.e., the cluster centroids), the authors demonstrate the portion of this phase space occupied by the land surface at all points in space and
NASA Astrophysics Data System (ADS)
Fang, N. F.; Shi, Z. H.
2014-12-01
This paper analyzes runoff and soil loss in relation to the rainfall regimes and land use changes in a small mountainous watershed in the Three Gorges Area (TGA) of China. Based on 10 years of rainfall measurements and K-means clustering, 152 rainfall events were classified into three rainfall regimes. The mean statistical features of different rainfall regimes display a marked difference. Rainfall Regime I is events of medium amounts (31.8 mm) and medium duration (1371 min). Rainfall Regime II is events with high amounts (54.0 mm), long duration (2548 min), and an infrequent occurrence. Rainfall Regime III is events of low amount (22.2 mm), short duration (494 min) and high frequency. Each rainfall regime results in differing levels of runoff and erosion and Rainfall Regime I causes the greatest proportion of accumulated discharge (368.7 mm) and soil loss (4283 t). In the different rainfall regimes, the values of the mean runoff coefficient and the mean sediment load were ordered as follows: Rainfall Regime II > Rainfall Regime I > Rainfall Regime III. These results suggest that greater attention should be paid to Rainfall Regimes I and II because they had the most erosive effect. In the Wangjiaqiao watershed, the changes in land use primarily affected the paddy fields, where the cropland decreased significantly and the forest and orchards increased by 9.9% and 7.7%, respectively, during 1995-2004. The ANOVA shows land use changes caused significant decreasing trends in the runoff coefficients (P<0.01) and sediment loads (P<0.01). In order, the most sensitive response of runoff and erosion to land use was Rainfall Regime II > Rainfall Regime > Rainfall Regime III. Rainfall characteristics are decisive for the relative importance of different storm runoff generation mechanisms. The land use changes in the study watershed have considerably decreased runoff and soil loss.
Disorder-assisted quantum transport in suboptimal decoherence regimes
NASA Astrophysics Data System (ADS)
Novo, Leonardo; Mohseni, Masoud; Omar, Yasser
2016-01-01
We investigate quantum transport in binary tree structures and in hypercubes for the disordered Frenkel-exciton Hamiltonian under pure dephasing noise. We compute the energy transport efficiency as a function of disorder and dephasing rates. We demonstrate that dephasing improves transport efficiency not only in the disordered case, but also in the ordered one. The maximal transport efficiency is obtained when the dephasing timescale matches the hopping timescale, which represent new examples of the Goldilocks principle at the quantum scale. Remarkably, we find that in weak dephasing regimes, away from optimal levels of environmental fluctuations, the average effect of increasing disorder is to improve the transport efficiency until an optimal value for disorder is reached. Our results suggest that rational design of the site energies statistical distributions could lead to better performances in transport systems at nanoscale when their natural environments are far from the optimal dephasing regime.
Couette flow regimes with heat transfer in rarefied gas
Abramov, A. A. Butkovskii, A. V.
2013-06-15
Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.
Disorder-assisted quantum transport in suboptimal decoherence regimes
Novo, Leonardo; Mohseni, Masoud; Omar, Yasser
2016-01-01
We investigate quantum transport in binary tree structures and in hypercubes for the disordered Frenkel-exciton Hamiltonian under pure dephasing noise. We compute the energy transport efficiency as a function of disorder and dephasing rates. We demonstrate that dephasing improves transport efficiency not only in the disordered case, but also in the ordered one. The maximal transport efficiency is obtained when the dephasing timescale matches the hopping timescale, which represent new examples of the Goldilocks principle at the quantum scale. Remarkably, we find that in weak dephasing regimes, away from optimal levels of environmental fluctuations, the average effect of increasing disorder is to improve the transport efficiency until an optimal value for disorder is reached. Our results suggest that rational design of the site energies statistical distributions could lead to better performances in transport systems at nanoscale when their natural environments are far from the optimal dephasing regime. PMID:26726133
The single-channel regime of transport through random media
Peña, A.; Girschik, A.; Libisch, F.; Rotter, S.; Chabanov, A. A.
2014-01-01
The propagation of light through samples with random inhomogeneities can be described by way of transmission eigenchannels, which connect incoming and outgoing external propagating modes. Although the detailed structure of a disordered sample can generally not be fully specified, these transmission eigenchannels can nonetheless be successfully controlled and used for focusing and imaging light through random media. Here we demonstrate that in deeply localized quasi-1D systems, the single dominant transmission eigenchannel is formed by an individual Anderson-localized mode or by a ‘necklace state’. In this single-channel regime, the disordered sample can be treated as an effective 1D system with a renormalized localization length, coupled through all the external modes to its surroundings. Using statistical criteria of the single-channel regime and pulsed excitations of the disordered samples allows us to identify long-lived localized modes and short-lived necklace states at long and short time delays, respectively. PMID:24663028
Propagation Regime of Iron Dust Flames
NASA Technical Reports Server (NTRS)
Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.
2012-01-01
A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.
Discriminatory Proofreading Regimes in Nonequilibrium Systems
NASA Astrophysics Data System (ADS)
Murugan, Arvind; Huse, David A.; Leibler, Stanislas
2014-04-01
We use ideas from kinetic proofreading, an error-correcting mechanism in biology, to identify new kinetic regimes in nonequilibrium systems. These regimes are defined by the sensitivity of the occupancy of a state of the system to a change in its energy. In biological contexts, higher sensitivity corresponds to stronger discrimination between molecular substrates with different energetics competing in the same reaction. We study this discriminatory ability in systems with discrete states that are connected by a general network of transitions. We find multiple regimes of different discriminatory ability when the energy of a given state of the network is varied. Interestingly, the occupancy of the state can even increase with its energy, corresponding to an "antiproofreading" regime. The number and properties of such discriminatory regimes are limited by the topology of the network. Finally, we find that discriminatory regimes can be changed without modifying any "hard-wired" structural aspects of the system but rather by simply changing external chemical potentials.
Regimes of suprathermal electron transport
Glinsky, M.E.
1995-07-01
Regimes of the one-dimensional (1-D) transport of suprathermal electrons into a cold background plasma are delineated. A well ordered temporal progression is found through eras where {ital J}{center_dot}{ital E} heating, hot electron--cold electron collisional heating, and diffusive heat flow dominate the cold electron energy equation. Scaling relations for how important quantities such as the width and temperature of the heated layer of cold electrons evolve with time are presented. These scaling relations are extracted from a simple 1-D model of the transport which can be written in dimensionless form with one free parameter. The parameter is shown to be the suprathermal electron velocity divided by the drift velocity of cold electrons which balances the suprathermal current. Special attention is paid to the assumptions which allow the reduction from the collisional Vlasov equation, using a Fokker--Planck collision operator, to this simple model. These model equations are numerically solved and compared to both the scaling relations and a more complete multigroup electron diffusion transport. Implications of the scaling relations on fast ion generation, magnetic field generation, and electric field inhibition of electron transport are examined as they apply to laser heated plasmas. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Multistability of synchronous regimes in rotator ensembles.
Kryukov, A K; Petrov, V S; Osipov, G V; Kurths, J
2015-12-01
We study collective dynamics in rotator ensembles and focus on the multistability of synchronous regimes in a chain of coupled rotators. We provide a detailed analysis of the number of coexisting regimes and estimate in particular, the synchronization boundary for different types of individual frequency distribution. The number of wave-based regimes coexisting for the same parameters and its dependence on the chain length are estimated. We give an analytical estimation for the synchronization frequency of the in-phase regime for a uniform individual frequency distribution. PMID:26723160
Geographical factors affecting variability of precipitation regime in Iran
NASA Astrophysics Data System (ADS)
Sabziparvar, A. A.; Movahedi, S.; Asakereh, H.; Maryanaji, Z.; Masoodian, S. A.
2015-04-01
This study compares the precipitation regimes by using harmonic analysis during the last four decades (1965-2004). We used the measured precipitation data from 428 rain-gauge sites and weather stations distributed across Iran by applying 15 × 15 km spatial grids to generate the interpolated data. Data validations were carried out by statistical tests. In this study, first three harmonics of precipitation variances were evaluated. Variability of precipitation regime was explored by using three harmonic analysis methods. In addition, the effect of geographical factors (GF) (site elevation, latitude, and longitude) affecting the precipitation regime (P) was verified by multivariate regression method. The resulted regression equation between P and GF for spring showed the highest correlation coefficient ( r = 0.79). For other seasons, r was lower than for spring and varied between 0.26 (summer) to 0.58 (autumn). Analysis of the first harmonic proved that the main precipitation regime in Iran tends to concentrate in one specific season (winter) as a result of large-scale Mediterranean systems passing over the country. In other words, the first harmonic is able to explain most of the precipitation variations which are caused by large-scale atmospheric circulation. For all the three harmonics, variances of precipitation were mainly a function of the geographical factors. This effect was more evident in the third harmonic; in such a way that increasing the latitudes caused higher precipitation variance. This means that the precipitation regime in northern sites is more sensitive to the local factors than those of southern sites. The results of this research can be used for reliable estimation of precipitation in ungauged sites.
Marine ecosystem regime shifts: challenges and opportunities for ecosystem-based management
Levin, Phillip S.; Möllmann, Christian
2015-01-01
Regime shifts have been observed in marine ecosystems around the globe. These phenomena can result in dramatic changes in the provision of ecosystem services to coastal communities. Accounting for regime shifts in management clearly requires integrative, ecosystem-based management (EBM) approaches. EBM has emerged as an accepted paradigm for ocean management worldwide, yet, despite the rapid and intense development of EBM theory, implementation has languished, and many implemented or proposed EBM schemes largely ignore the special characteristics of regime shifts. Here, we first explore key aspects of regime shifts that are of critical importance to EBM, and then suggest how regime shifts can be better incorporated into EBM using the concept of integrated ecosystem assessment (IEA). An IEA uses approaches that determine the likelihood that ecological or socio-economic properties of systems will move beyond or return to acceptable bounds as defined by resource managers and policy makers. We suggest an approach for implementing IEAs for cases of regime shifts where the objectives are either avoiding an undesired state or returning to a desired condition. We discuss the suitability and short-comings of methods summarizing the status of ecosystem components, screening and prioritizing potential risks, and evaluating alternative management strategies. IEAs are evolving as an EBM approach that can address regime shifts; however, advances in statistical, analytical and simulation modelling are needed before IEAs can robustly inform tactical management in systems characterized by regime shifts.
Predict! Teaching Statistics Using Informational Statistical Inference
ERIC Educational Resources Information Center
Makar, Katie
2013-01-01
Statistics is one of the most widely used topics for everyday life in the school mathematics curriculum. Unfortunately, the statistics taught in schools focuses on calculations and procedures before students have a chance to see it as a useful and powerful tool. Researchers have found that a dominant view of statistics is as an assortment of tools…
Regimes of DNA confined in a nanochannel
NASA Astrophysics Data System (ADS)
Dai, Liang; Doyle, Patrick
2014-03-01
Scaling regimes for polymers confined to tubular channels are well established when the channel cross-sectional dimension is either very small (Odjik regime) or large (classic de Gennes regime) relative to the polymer Kuhn length. In the literature, there is no clear consensus regarding the intermediate region and if subregimes even exist to connect these two classic bounding regimes. The confluence of emerging single DNA mapping technologies and a resurged interest in the fundamental properties of confined polymers has led to extensive research in this area using DNA as a model system. Due to the DNA molecule's properties and limitations of nanofabrication, most experiments are performed in this intermediate regime with channel dimensions of a few Kuhn lengths. Here we use simulations and theory to reconcile conflicting theories and show that there are indeed extended de Gennes, partial alignment and hairpin regimes located between the two classic regimes. Simulations results for both chain extension and free energy support the existence of these regimes. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (CBET-1335938).
FISHER INFORMATION AND ECOSYSTEM REGIME CHANGES
Following Fisher’s work, we propose two different expressions for the Fisher Information along with Shannon Information as a means of detecting and assessing shifts between alternative ecosystem regimes. Regime shifts are a consequence of bifurcations in the dynamics of an ecosys...
Capacitance densitometer for flow regime identification
Shipp, Jr., Roy L.
1978-01-01
This invention relates to a capacitance densitometer for determining the flow regime of a two-phase flow system. A two-element capacitance densitometer is used in conjunction with a conventional single-beam gamma densitometer to unambiguously identify the prevailing flow regime and the average density of a flowing fluid.
Discrete fluorescent saturation regimes in multilevel systems
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1988-01-01
Using models of multilevel atoms, the fluorescent process was examined for the ratio of the photooxidation rate, Pij, to the collisional oxidation rate, Cij, in the pumped resonance transition i-j. It is shown that, in the full range of the parameter Pij/Cij, there exist three distinct regimes (I, II, and III) which may be usefully exploited. These regimes are defined, respectively, by the following conditions: Pij/Cij smaller than about 1; Pij/Cij much greater than 1 and Pij much lower than Cki; and Pij/Cij much greater than 1 and Pij much higher than Cki, where Cki is the collisional rate populating the source level i. The only regime which is characterized by the sensitivity of fluorescent-fluorescent line intensity ratios to Pij is regime I. If regime III is reached, even fluorescent-nonfluorescent line ratios become independent of Pij. The analysis is applied to the resonant photoexcitation of a carbonlike ion.
Snowpack regimes of the Western United States
NASA Astrophysics Data System (ADS)
Trujillo, Ernesto; Molotch, Noah P.
2014-07-01
Snow accumulation and melt patterns play a significant role in the water, energy, carbon, and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at 766 snow pillow stations in the Western United States, focusing on several metrics of the yearly SWE curves and the relationships between the different metrics. The metrics are the initial snow accumulation and snow disappearance dates, the peak snow accumulation and date of peak, the length of the snow accumulation season, the length of the snowmelt season, and the snow accumulation and snowmelt slopes. Three snow regimes emerge from these results: a maritime, an intermountain, and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days. Conversely, the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intermountain regime lies in between. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intermountain regime includes the Eastern Cascades slopes and foothills, the Blue Mountains, Northern and Central basins and ranges, the Columbia Mountains/Northern Rockies, the Idaho Batholith, and the Canadian Rockies. Lastly, the continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The implications of snow regime
Globalization, marine regime shifts and the Soviet Union
Österblom, Henrik; Folke, Carl
2015-01-01
Regime shifts have been observed in marine ecosystems around the world, with climate and fishing suggested as major drivers of such shifts. The global and regional dynamics of the climate system have been studied in this context, and efforts to develop an analogous understanding of fishing activities are developing. Here, we investigate the timing of pelagic marine regime shifts in relation to the emergence of regional and global fishing activities of the Soviet Union. Our investigation of official catch statistics reflects that the Soviet Union was a major fishing actor in all large marine ecosystems where regime shifts have been documented, including in ecosystems where overfishing has been established as a key driver of these changes (in the Baltic and Black Seas and the Scotian Shelf). Globalization of Soviet Union fishing activities pushed exploitation to radically new levels and triggered regional and global governance responses for improved management. Since then, exploitation levels have remained and increased with new actors involved. Based on our exploratory work, we propose that a deeper understanding of the role of global fishing actors is central for improved management of marine ecosystems.
Global impacts of the 1980s regime shift.
Reid, Philip C; Hari, Renata E; Beaugrand, Grégory; Livingstone, David M; Marty, Christoph; Straile, Dietmar; Barichivich, Jonathan; Goberville, Eric; Adrian, Rita; Aono, Yasuyuki; Brown, Ross; Foster, James; Groisman, Pavel; Hélaouët, Pierre; Hsu, Huang-Hsiung; Kirby, Richard; Knight, Jeff; Kraberg, Alexandra; Li, Jianping; Lo, Tzu-Ting; Myneni, Ranga B; North, Ryan P; Pounds, J Alan; Sparks, Tim; Stübi, René; Tian, Yongjun; Wiltshire, Karen H; Xiao, Dong; Zhu, Zaichun
2016-02-01
Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.
Characterization of diffusion processes: Normal and anomalous regimes
NASA Astrophysics Data System (ADS)
Alves, Samuel B.; de Oliveira, Gilson F.; de Oliveira, Luimar C.; Passerat de Silans, Thierry; Chevrollier, Martine; Oriá, Marcos; de S. Cavalcante, Hugo L. D.
2016-04-01
Many man-made and natural processes involve the diffusion of microscopic particles subject to random or chaotic, random-like movements. Besides the normal diffusion characterized by a Gaussian probability density function, whose variance increases linearly in time, so-called anomalous-diffusion regimes can also take place. They are characterized by a variance growing slower (subdiffusive) or faster (superdiffusive) than normal. In fact, many different underlying processes can lead to anomalous diffusion, with qualitative differences between mechanisms producing subdiffusion and mechanisms resulting in superdiffusion. Thus, a general description, encompassing all three regimes and where the specific mechanisms of each system are not explicit, is desirable. Here, our goal is to present a simple method of data analysis that enables one to characterize a model-less diffusion process from data observation, by observing the temporal evolution of the particle spread. To generate diffusive processes in different regimes, we use a Monte-Carlo routine in which both the step-size and the time-delay of the diffusing particles follow Pareto (inverse-power law) distributions, with either finite or diverging statistical momenta. We discuss on the application of this method to real systems.
Global impacts of the 1980s regime shift.
Reid, Philip C; Hari, Renata E; Beaugrand, Grégory; Livingstone, David M; Marty, Christoph; Straile, Dietmar; Barichivich, Jonathan; Goberville, Eric; Adrian, Rita; Aono, Yasuyuki; Brown, Ross; Foster, James; Groisman, Pavel; Hélaouët, Pierre; Hsu, Huang-Hsiung; Kirby, Richard; Knight, Jeff; Kraberg, Alexandra; Li, Jianping; Lo, Tzu-Ting; Myneni, Ranga B; North, Ryan P; Pounds, J Alan; Sparks, Tim; Stübi, René; Tian, Yongjun; Wiltshire, Karen H; Xiao, Dong; Zhu, Zaichun
2016-02-01
Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur. PMID:26598217
Abrupt climate-independent fire regime changes
Pausas, Juli G.; Keeley, Jon E.
2014-01-01
Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.
Akhter, Saeed; Khan, Muhammad; Ali, Syed Shahzad; Soomro, Rabial Rani
2014-11-01
To evaluate the role of manual therapy with exercise regime versus exercise regime alone in the management of non-specific chronic neck pain. In this 62 subjects randomized controlled trial 31 subjects in group A received manual therapy (manipulation) with supervised exercise regime whilst 31 subjects in group B performed only supervised exercise regime for the period of 3 weeks. Both groups had a home exercise program consisted of strengthening exercises for neck/scapuluar stability, stretching and general range of motion exercises for neck with advice regarding posture awareness and correction for 3 months. The results suggested significant reduction in pain intensity level in both groups; over 3 weeks and 12 weeks' time period in relation to baseline on visual analog scale (p=0.001). Similarly, statistically significant improvements noticed in Neck Disability Index (NDI) (p=0.0001) in both groups while looking at baseline data with reference to 12 weeks' time period. On closer inspection, the manual therapy (manipulation) with exercise regime appeared as a favorable treatment preference compared with exercise regime alone. PMID:25410083
Cumulative Hazard Ratio Estimation for Treatment Regimes in Sequentially Randomized Clinical Trials
Tang, Xinyu; Wahed, Abdus S.
2014-01-01
The proportional hazards model is widely used in survival analysis to allow adjustment for baseline covariates. The proportional hazard assumption may not be valid for treatment regimes that depend on intermediate responses to prior treatments received, and it is not clear how such a model can be adapted to clinical trials employing more than one randomization. Besides, since treatment is modified post-baseline, the hazards are unlikely to be proportional across treatment regimes. Although Lokhnygina and Helterbrand (Biometrics 63: 422–428, 2007) introduced the Cox regression method for two-stage randomization designs, their method can only be applied to test the equality of two treatment regimes that share the same maintenance therapy. Moreover, their method does not allow auxiliary variables to be included in the model nor does it account for treatment effects that are not constant over time. In this article, we propose a model that assumes proportionality across covariates within each treatment regime but not across treatment regimes. Comparisons among treatment regimes are performed by testing the log ratio of the estimated cumulative hazards. The ratio of the cumulative hazard across treatment regimes is estimated using a weighted Breslow-type statistic. A simulation study was conducted to evaluate the performance of the estimators and proposed tests. PMID:26085847
Regimes of validity for balanced models
NASA Astrophysics Data System (ADS)
Gent, Peter R.; McWilliams, James C.
1983-07-01
Scaling analyses are presented which delineate the atmospheric and oceanic regimes of validity for the family of balanced models described in Gent and McWilliams (1983a). The analyses follow and extend the classical work of Charney (1948) and others. The analyses use three non-dimensional parameters which represent the flow scale relative to the Earth's radius, the dominance of turbulent or wave-like processes, and the dominant component of the potential vorticity. For each regime, the models that are accurate both at leading order and through at least one higher order of accuracy in the appropriate small parameter are then identified. In particular, it is found that members of the balanced family are the appropriate models of higher-order accuracy over a broad range of parameter regimes. Examples are also given of particular atmospheric and oceanic phenomena which are in the regimes of validity for the different balanced models.
Earth Regime Network Evolution Study (ERNESt)
NASA Technical Reports Server (NTRS)
Menrad, Bob
2016-01-01
Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).
Historical fire regime in southern California
Keeley, Jon E.; Fotheringham, Connie J.
2003-01-01
The historical variability in fire regime is a conservative indicator of ecosystem sustainability. Understanding the natural role of fire in chaparral ecosystems is therefore necessary for effective fire management.
Snowpack Regimes of the Western United States
NASA Astrophysics Data System (ADS)
Trujillo, E.; Molotch, N. P.
2011-12-01
Snow accumulation and melt patterns play a significant role in the water, energy, carbon and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments, and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here, we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at over seven hundred snow pillow stations in the Western U.S., focusing on several metrics of the yearly SWE curves and the cross relationships between the different metrics. The metrics include the initial snow accumulation and meltout dates, the peak accumulation and date of peak, the time from initial accumulation to peak, the time from peak to meltout, the accumulation and melt slopes, and the daily rates of accumulation and melt. Three distinct regimes emerge from these results: a maritime, an intermediate (intercontinental), and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days, while on the other hand; the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intercontinental regime lies in between. Several other differences are identified between the metrics of the SWE curve in these regimes. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intercontinental regime includes the Northern and Central basins and ranges, the Idaho Batholith, the Northern Rockies and the Blue Mountains. Lastly, the Continental regime includes the Middle and Southern
Electron transport fluxes in potato plateau regime
Shaing, K.C.; Hazeltine, R.D.
1997-12-01
Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}
Statistical Reference Datasets
National Institute of Standards and Technology Data Gateway
Statistical Reference Datasets (Web, free access) The Statistical Reference Datasets is also supported by the Standard Reference Data Program. The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software.
Explorations in statistics: statistical facets of reproducibility.
Curran-Everett, Douglas
2016-06-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This eleventh installment of Explorations in Statistics explores statistical facets of reproducibility. If we obtain an experimental result that is scientifically meaningful and statistically unusual, we would like to know that our result reflects a general biological phenomenon that another researcher could reproduce if (s)he repeated our experiment. But more often than not, we may learn this researcher cannot replicate our result. The National Institutes of Health and the Federation of American Societies for Experimental Biology have created training modules and outlined strategies to help improve the reproducibility of research. These particular approaches are necessary, but they are not sufficient. The principles of hypothesis testing and estimation are inherent to the notion of reproducibility in science. If we want to improve the reproducibility of our research, then we need to rethink how we apply fundamental concepts of statistics to our science.
A holistic view of marine regime shifts
Conversi, Alessandra; Dakos, Vasilis; Gårdmark, Anna; Ling, Scott; Folke, Carl; Mumby, Peter J.; Greene, Charles; Edwards, Martin; Blenckner, Thorsten; Casini, Michele; Pershing, Andrew; Möllmann, Christian
2015-01-01
Understanding marine regime shifts is important not only for ecology but also for developing marine management that assures the provision of ecosystem services to humanity. While regime shift theory is well developed, there is still no common understanding on drivers, mechanisms and characteristic of abrupt changes in real marine ecosystems. Based on contributions to the present theme issue, we highlight some general issues that need to be overcome for developing a more comprehensive understanding of marine ecosystem regime shifts. We find a great divide between benthic reef and pelagic ocean systems in how regime shift theory is linked to observed abrupt changes. Furthermore, we suggest that the long-lasting discussion on the prevalence of top-down trophic or bottom-up physical drivers in inducing regime shifts may be overcome by taking into consideration the synergistic interactions of multiple stressors, and the special characteristics of different ecosystem types. We present a framework for the holistic investigation of marine regime shifts that considers multiple exogenous drivers that interact with endogenous mechanisms to cause abrupt, catastrophic change. This framework takes into account the time-delayed synergies of these stressors, which erode the resilience of the ecosystem and eventually enable the crossing of ecological thresholds. Finally, considering that increased pressures in the marine environment are predicted by the current climate change assessments, in order to avoid major losses of ecosystem services, we suggest that marine management approaches should incorporate knowledge on environmental thresholds and develop tools that consider regime shift dynamics and characteristics. This grand challenge can only be achieved through a holistic view of marine ecosystem dynamics as evidenced by this theme issue.
Learning Flow Regimes from Snapshot Data
NASA Astrophysics Data System (ADS)
Hemati, Maziar
2015-11-01
Fluid flow regimes are often categorized based on the qualitative patterns observed by visual inspection of the flow field. For example, bluff body wakes are traditionally classified based on the number and groupings of vortices shed per cycle (e.g., 2S, 2P, P+S), as seen in snapshots of the vorticity field. Subsequently, the existence and nature of these identified flow regimes can be explained through dynamical analyses of the fluid mechanics. Unfortunately, due to the need for manual inspection, the approach described above can be impractical for studies that seek to learn flow regimes from large volumes of numerical and/or experimental snapshot data. Here, we appeal to established techniques from machine learning and data-driven dynamical systems analysis to automate the task of learning flow regimes from snapshot data. Moreover, by appealing to the dynamical structure of the fluid flow, this approach also offers the potential to reveal flow regimes that may be overlooked by visual inspection alone. Here, we will introduce the methodology and demonstrate its capabilities and limitations in the context of several model flows.
Stochastic Parametrisations and Regime Behaviour of Atmospheric Models
NASA Astrophysics Data System (ADS)
Arnold, Hannah; Moroz, Irene; Palmer, Tim
2013-04-01
The presence of regimes is a characteristic of non-linear, chaotic systems (Lorenz, 2006). In the atmosphere, regimes emerge as familiar circulation patterns such as the El-Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and Scandinavian Blocking events. In recent years there has been much interest in the problem of identifying and studying atmospheric regimes (Solomon et al, 2007). In particular, how do these regimes respond to an external forcing such as anthropogenic greenhouse gas emissions? The importance of regimes in observed trends over the past 50-100 years indicates that in order to predict anthropogenic climate change, our climate models must be able to represent accurately natural circulation regimes, their statistics and variability. It is well established that representing model uncertainty as well as initial condition uncertainty is important for reliable weather forecasts (Palmer, 2001). In particular, stochastic parametrisation schemes have been shown to improve the skill of weather forecast models (e.g. Berner et al., 2009; Frenkel et al., 2012; Palmer et al., 2009). It is possible that including stochastic physics as a representation of model uncertainty could also be beneficial in climate modelling, enabling the simulator to explore larger regions of the climate attractor including other flow regimes. An alternative representation of model uncertainty is a perturbed parameter scheme, whereby physical parameters in subgrid parametrisation schemes are perturbed about their optimal value. Perturbing parameters gives a greater control over the ensemble than multi-model or multiparametrisation ensembles, and has been used as a representation of model uncertainty in climate prediction (Stainforth et al., 2005; Rougier et al., 2009). We investigate the effect of including representations of model uncertainty on the regime behaviour of a simulator. A simple chaotic model of the atmosphere, the Lorenz '96 system, is used to study
Gradual regime shifts in fairy circles
Zelnik, Yuval R.; Meron, Ehud; Bel, Golan
2015-01-01
Large responses of ecosystems to small changes in the conditions—regime shifts—are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water–vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts. PMID:26362787
Massive superstring scatterings in the Regge regime
He Song; Lee, Jen-Chi; Takahashi, Keijiro; Yang Yi
2011-03-15
We calculate four classes of high-energy massive string scattering amplitudes of fermionic string theory at arbitrary mass levels in the Regge regime (RR). We show that all four leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. Based on the summation algorithm of a set of extended signed Stirling number identities, we show that all four ratios calculated previously by the method of decoupling of zero-norm states among scattering amplitudes in the Gross regime can be extracted from this Kummer function in the RR. Finally, we conjecture and give evidence that the existence of these four Gross regime ratios in the RR persists to subleading orders in the Regge expansion of all high-energy fermionic string scattering amplitudes.
Gradual regime shifts in fairy circles.
Zelnik, Yuval R; Meron, Ehud; Bel, Golan
2015-10-01
Large responses of ecosystems to small changes in the conditions--regime shifts--are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water-vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts. PMID:26362787
Spin glasses in the nonextensive regime
NASA Astrophysics Data System (ADS)
Wittmann, Matthew; Young, A. P.
2012-04-01
Spin systems with long-range interactions are “nonextensive” if the strength of the interactions falls off sufficiently slowly with distance. It has been conjectured for ferromagnets and, more recently, for spin glasses that, everywhere in the nonextensive regime, the free energy is exactly equal to that for the infinite range model in which the characteristic strength of the interaction is independent of distance. In this paper we present the results of Monte Carlo simulations of the one-dimensional long-range spin glasses in the nonextensive regime. Using finite-size scaling, our results for the transition temperatures are consistent with this prediction. We also propose and provide numerical evidence for an analogous result for diluted long-range spin glasses in which the coordination number is finite, namely, that the transition temperature throughout the nonextensive regime is equal to that of the infinite-range model known as the Viana-Bray model.
Mental hospital regime in England and Wales.
Andoh, B
1996-01-01
Although non-private conventional mental hospitals in England and Wales have been in existence for about two centuries, the literature on the actual regimes in those hospitals is not enormous. Since Goffman's Asylums, things have changed in North America, the United Kingdom and elsewhere. However, not much has been written about the present position. This article (based on qualitative data collected over 12 months) describes the regimes in three conventional mental hospitals in S.E. England. It covers hospital policy on the admission of a patient, daily ward routine, the open-door policy, fire precautions, close observation, seclusion, search of patients and their belongings and the handling of patients' correspondence. It concludes that the regimes are reasonable.
Gradual regime shifts in fairy circles.
Zelnik, Yuval R; Meron, Ehud; Bel, Golan
2015-10-01
Large responses of ecosystems to small changes in the conditions--regime shifts--are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water-vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts.
Massive superstring scatterings in the Regge regime
NASA Astrophysics Data System (ADS)
He, Song; Lee, Jen-Chi; Takahashi, Keijiro; Yang, Yi
2011-03-01
We calculate four classes of high-energy massive string scattering amplitudes of fermionic string theory at arbitrary mass levels in the Regge regime (RR). We show that all four leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. Based on the summation algorithm of a set of extended signed Stirling number identities, we show that all four ratios calculated previously by the method of decoupling of zero-norm states among scattering amplitudes in the Gross regime can be extracted from this Kummer function in the RR. Finally, we conjecture and give evidence that the existence of these four Gross regime ratios in the RR persists to subleading orders in the Regge expansion of all high-energy fermionic string scattering amplitudes.
Developments in Statistical Education.
ERIC Educational Resources Information Center
Kapadia, Ramesh
1980-01-01
The current status of statistics education at the secondary level is reviewed, with particular attention focused on the various instructional programs in England. A description and preliminary evaluation of the Schools Council Project on Statistical Education is included. (MP)
Mathematical and statistical analysis
NASA Technical Reports Server (NTRS)
Houston, A. Glen
1988-01-01
The goal of the mathematical and statistical analysis component of RICIS is to research, develop, and evaluate mathematical and statistical techniques for aerospace technology applications. Specific research areas of interest include modeling, simulation, experiment design, reliability assessment, and numerical analysis.
Synchronization regimes in conjugate coupled chaotic oscillators.
Karnatak, Rajat; Ramaswamy, Ram; Prasad, Awadhesh
2009-09-01
Nonlinear oscillators that are mutually coupled via dissimilar (or conjugate) variables display distinct regimes of synchronous behavior. In identical chaotic oscillators diffusively coupled in this manner, complete synchronization occurs only by chaos suppression when the coupled subsystems drive each other into a regime of periodic dynamics. Furthermore, the coupling does not vanish but acts as an "internal" drive. When the oscillators are mismatched, phase synchronization occurs, while in a master slave configuration, generalized synchrony results. These effects are demonstrated in a system of coupled chaotic Rossler oscillators.
Anomalous Hall effect in localization regime
NASA Astrophysics Data System (ADS)
Wu, Lin; Zhu, Kai; Yue, Di; Tian, Yuan; Jin, Xiaofeng
2016-06-01
The anomalous Hall effect in the ultrathin film regime is investigated in Fe(001)(1-3 nm) films epitaxial on MgO(001). The logarithmic localization correction to longitudinal resistivity and anomalous Hall resistivity are observed at low temperature. We identify that the coefficient of skew scattering has a reduction from metallic to localized regime, while the contribution of side jump has inconspicuous change except for a small drop below 10 K. Furthermore, we discover that the intrinsic anomalous Hall conductivity decreases with the reduction of thickness below 2 nm. Our results provide unambiguous experimental evidence to clarify the problem of localization correction to the anomalous Hall effect.
Collective working regimes for coupled heat engines.
Jiménez de Cisneros, B; Hernández, A Calvo
2007-03-30
Arrays of coupled heat engines are proposed as a paradigmatic model to study the trade-off between individual and collective behavior in linear irreversible thermodynamics. The analysis reveals the existence of a control parameter which selects different operation regimes of the whole array. In particular, the regimes of maximum efficiency and maximum power are considered, giving for the latter a general derivation of the Curzon-Ahlborn efficiency which surprisingly does not depend on whether or not the individual engines in the array work at maximum power.
Supercurrent in the quantum Hall regime
NASA Astrophysics Data System (ADS)
Amet, F.; Ke, C. T.; Borzenets, I. V.; Wang, J.; Watanabe, K.; Taniguchi, T.; Deacon, R. S.; Yamamoto, M.; Bomze, Y.; Tarucha, S.; Finkelstein, G.
2016-05-01
A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing.
Supercurrent in the quantum Hall regime.
Amet, F; Ke, C T; Borzenets, I V; Wang, J; Watanabe, K; Taniguchi, T; Deacon, R S; Yamamoto, M; Bomze, Y; Tarucha, S; Finkelstein, G
2016-05-20
A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing. PMID:27199424
Convective Regimes in Crystallizing Basaltic Magma Chambers
NASA Astrophysics Data System (ADS)
Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.
2015-12-01
Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a
ERIC Educational Resources Information Center
Bopp, Richard E.; Van Der Laan, Sharon J.
1985-01-01
Presents a search strategy for locating time-series or cross-sectional statistical data in published sources which was designed for undergraduate students who require 30 units of data for five separate variables in a statistical model. Instructional context and the broader applicability of the search strategy for general statistical research is…
ERIC Educational Resources Information Center
Strasser, Nora
2007-01-01
Avoiding statistical mistakes is important for educators at all levels. Basic concepts will help you to avoid making mistakes using statistics and to look at data with a critical eye. Statistical data is used at educational institutions for many purposes. It can be used to support budget requests, changes in educational philosophy, changes to…
ERIC Educational Resources Information Center
Lenard, Christopher; McCarthy, Sally; Mills, Terence
2014-01-01
There are many different aspects of statistics. Statistics involves mathematics, computing, and applications to almost every field of endeavour. Each aspect provides an opportunity to spark someone's interest in the subject. In this paper we discuss some ethical aspects of statistics, and describe how an introduction to ethics has been…
Statistical quality management
NASA Astrophysics Data System (ADS)
Vanderlaan, Paul
1992-10-01
Some aspects of statistical quality management are discussed. Quality has to be defined as a concrete, measurable quantity. The concepts of Total Quality Management (TQM), Statistical Process Control (SPC), and inspection are explained. In most cases SPC is better than inspection. It can be concluded that statistics has great possibilities in the field of TQM.
What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.
Kobayashi, Kensuke
2016-01-01
Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics. PMID:27477456
NASA Astrophysics Data System (ADS)
Pierini, Jorge O.; Restrepo, Juan C.; Lovallo, Michele; Telesca, Luciano
2014-12-01
The Fisher-Shannon (FS) information plane, defined by the Fisher information measure (FIM) and the Shannon entropy power (N X ), was robustly used to investigate the complex dynamics of eight monthly streamflow time series in Colombia. In the FS plane the streamflow series seem to aggregate into two different clusters corresponding to two different climatological regimes in Colombia. Our findings suggest the use of the statistical quantity defined by the FS information plane as a tool to discriminate among different hydrological regimes.
NASA Astrophysics Data System (ADS)
Pierini, Jorge O.; Restrepo, Juan C.; Lovallo, Michele; Telesca, Luciano
2015-04-01
The Fisher-Shannon (FS) information plane, defined by the Fisher information measure (FIM) and the Shannon entropy power (NX), was robustly used to investigate the complex dynamics of eight monthly streamflow time series in Colombia. In the FS plane the streamflow series seem to aggregate into two different clusters corresponding to two different climatological regimes in Colombia. Our findings suggest the use of the statistical quantity defined by the FS information plane as a tool to discriminate among different hydrological regimes.
Open strings on D-branes and Hagedorn regime in string gas cosmology
Arslanargin, Ayse; Kaya, Ali
2009-03-15
We consider early time cosmic evolution in string gas cosmology dominated by open strings attached to D-branes. After reviewing statistical properties of open strings in D-brane backgrounds, we use dilaton-gravity equations to determine the string frame fields. Although, there are distinctions in the Hagedorn regime thermodynamics and dilaton coupling as compared to closed strings, it seems difficult to avoid Jeans instability and assume thermal equilibrium simultaneously, which is already a known problem for closed strings. We also examine characteristics of a possible subsequent large radius regime in this setup.
Delinating Thermohaline Double-Diffusive Rayleigh Regimes
NASA Astrophysics Data System (ADS)
Graf, T.; Walther, M.; Kolditz, O.; Liedl, R.
2013-12-01
In natural systems, convective flow induced from density differences may occur in near-coastal aquifers, atmospheric boundary layers, oceanic streams or within the earth crust. Whether an initially stable, diffusive regime evolves into a convective (stable or chaotic) regime, or vice versa, depends on the system's framing boundary conditions. A conventional parameter to express the relation between diffusive and convective forces of such a density-driven regime is Rayleigh number (Ra). While most systems are mainly dominated by only a single significant driving force (i.e. only temperature or salinity), some systems need to consider two boundary processes (e.g. deep, thus warm, haline flow in porous media). In that case, a two-dimensional, 'double-diffusive' Rayleigh system can be defined. Nield (1998) postulated a boundary between diffusive and convective regime at RaT + RaC = 4pi^2 in the first quadrant (Q1), with Rayleigh numbers for temperature and concentration respectively. The boundary in the forth quadrant (Q4) could not exactly be determined, yet the approximate position estimated. Simulations with HydroGeoSphere (Therrien, 2010) using a vertical, quadratic, homogeneous, isotropic setup confirmed the existence of the 4pi^2-boundary and revealed additional regimes (diffusive, single-roll, double-roll, chaotic) in Q1. Also, non-chaotic, oscillating patterns could be identified in Q4. More detailed investigations with OpenGeoSys (Kolditz, 2012) confirmed the preceding HGS results, and, using a 1:10-scaled domain (height:length), uncovered even more distinctive regimes (diffusive, minimum ten roles, supposely up to 25 roles, and chaotic?) in Q1, while again, oscillating patterns were found in the transition zone between diffusive and chaotic regimes in Q4. Output of numerical simulations from Q1 and Q4 show the mentioned regimes (diffusive, stable-convective, stable-oscillatory, chaotic) while results are displayed in context of a possible delination between
Variations in earthquake-size distribution across different stress regimes.
Schorlemmer, Danijel; Wiemer, Stefan; Wyss, Max
2005-09-22
The earthquake size distribution follows, in most instances, a power law, with the slope of this power law, the 'b value', commonly used to describe the relative occurrence of large and small events (a high b value indicates a larger proportion of small earthquakes, and vice versa). Statistically significant variations of b values have been measured in laboratory experiments, mines and various tectonic regimes such as subducting slabs, near magma chambers, along fault zones and in aftershock zones. However, it has remained uncertain whether these differences are due to differing stress regimes, as it was questionable that samples in small volumes (such as in laboratory specimens, mines and the shallow Earth's crust) are representative of earthquakes in general. Given the lack of physical understanding of these differences, the observation that b values approach the constant 1 if large volumes are sampled was interpreted to indicate that b = 1 is a universal constant for earthquakes in general. Here we show that the b value varies systematically for different styles of faulting. We find that normal faulting events have the highest b values, thrust events the lowest and strike-slip events intermediate values. Given that thrust faults tend to be under higher stress than normal faults we infer that the b value acts as a stress meter that depends inversely on differential stress.
Regional temperature models are needed for characterizing and mapping stream thermal regimes, establishing reference conditions, predicting future impacts and identifying critical thermal refugia. Spatial statistical models have been developed to improve regression modeling techn...
NASA Astrophysics Data System (ADS)
Zhang, Le-Tao; Li, Zhan-Bin; Wang, He; Xiao, Jun-Bo
2016-07-01
The pluvial erosion process is significantly affected by tempo-spatial patterns of flood flows. However, despite their importance, only a few studies have investigated the sediment flow behavior that is driven by different flood regimes. The study aims to investigate the effect of intra-event-based flood regimes on the dynamics of sediment exports at Tuanshangou catchment, a typical agricultural catchment (unmanaged) in the hilly loess region on the Chinese Loess Plateau. Measurements of 193 flood events and 158 sediment-producing events were collected from Tuanshangou station between 1961 and 1969. The combined methods of hierarchical clustering approach, discriminant analysis and One-Way ANOVA were used to classify the flood events in terms of their event-based flood characteristics, including flood duration, peak discharge, and event flood runoff depth. The 193 flood events were classified into five regimes, and the mean statistical features of each regime significantly differed. Regime A includes flood events with the shortest duration (76 min), minimum flood crest (0.045 m s-1), least runoff depth (0.2 mm), and highest frequency. Regime B includes flood events with a medium duration (274 min), medium flood crest (0.206 m s-1), and minor runoff depth (0.7 mm). Regime C includes flood events with the longest duration (822 min), medium flood crest (0.236 m s-1), and medium runoff depth (1.7 mm). Regime D includes flood events with a medium duration (239 min), large flood crest (4.21 m s-1), and large runoff depth (10 mm). Regime E includes flood events with a medium duration (304 min), maximum flood crest (8.62 m s-1), and largest runoff depth (25.9 mm). The sediment yield by different flood regimes is ranked as follows: Regime E > Regime D > Regime B > Regime C > Regime A. In terms of event-based average and maximum suspended sediment concentration, these regimes are ordered as follows: Regime E > Regime D > Regime C > Regime B > Regime A. Regimes D and E
Two competing species in super-diffusive dynamical regimes
NASA Astrophysics Data System (ADS)
La Cognata, A.; Valenti, D.; Spagnolo, B.; Dubkov, A. A.
2010-09-01
The dynamics of two competing species within the framework of the generalized Lotka-Volterra equations, in the presence of multiplicative α-stable Lévy noise sources and a random time dependent interaction parameter, is studied. The species dynamics is characterized by two different dynamical regimes, exclusion of one species and coexistence of both, depending on the values of the interaction parameter, which obeys a Langevin equation with a periodically fluctuating bistable potential and an additive α-stable Lévy noise. The stochastic resonance phenomenon is analyzed for noise sources asymmetrically distributed. Finally, the effects of statistical dependence between multiplicative noise and additive noise on the dynamics of the two species are studied.
Intermediate scaling regime for multilayer epitaxial growth
NASA Astrophysics Data System (ADS)
Ross, Richard S.; Gyure, Mark F.
2000-04-01
We explore the layer-by-layer (Frank-van der Merwe) growth regime within the context of a discrete solid-on-solid kinetic Monte Carlo model. Our results demonstrate a nontrivial scaling of the lattice step edge density, a quantity that oscillates about a nominally constant value prior to the onset of kinetic roughening. This value varies with the ratio of the surface diffusivity to the deposition flux, R≡D/F, as a nearly perfect power law over a wide range of R. This ``intermediate'' scaling regime extends in coverage from one to at least a few tens of monolayers, which is exactly the regime of most importance to the growth of device-quality semiconductor quantum heterostructures. Comparison with lowest-order linear theories for height fluctuations demonstrates the validity of the Wolf-Villain mean-field theory for the description of lattice step density and ``in-plane'' structure for all coverages down to the first monolayer of growth. However, the mean-field theory does not fully account for the surface width in this regime and consequently does not quantitatively predict the observed step density scaling.
Forest damage and snow avalanche flow regime
NASA Astrophysics Data System (ADS)
Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.
2015-06-01
Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. First we show that in the powder regime, although the applied impact pressures can be small, large bending moments in the tree stem can be produced due to the torque action of the blast. The impact area of the blast extends over the entire tree crown. We find that, powder clouds with velocities over 20 m s-1 can break tree stems. Second we demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. The intermittent regime seldom controls tree breakage. Third we calculate quasi-static pressures of wet snow avalanches and show that they can be much higher than pressures calculated using dynamic pressure formulas. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree.
Forest damage and snow avalanche flow regime
NASA Astrophysics Data System (ADS)
Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.
2015-01-01
Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. In the powder regime, the blast of the cloud can produce large bending moments in the tree stem because of the impact area extending over the entire tree crown. We demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. In the wet snow case, avalanche pressure is calculated using a quasi-static model accounting for the motion of plug-like wet snow flows. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. We find (1) powder clouds with velocities over 20 m s-1 can break tree stems, (2) the intermittent regime seldom controls tree breakage and (3) quasi-static pressures of wet snow avalanches can be much higher than pressures calculated using dynamic pressure formulas.
Knowledge Regimes and Contradictions in Education Reforms
ERIC Educational Resources Information Center
Aasen, Petter; Prøitz, Tine Sophie; Sandberg, Nina
2014-01-01
The article outlines a theoretical framework for understanding education policy and education reforms based on the concept of knowledge regimes. The concept refers to understandings and definitions of governance and procedural aspects, manners of governing and curriculum issues, thus it comprises contents, structures, and processes of education…
Two limiting regimes of interacting Bessel processes
NASA Astrophysics Data System (ADS)
Andraus, Sergio; Katori, Makoto; Miyashita, Seiji
2014-06-01
We consider the interacting Bessel processes, a family of multiple-particle systems in one dimension where particles evolve as individual Bessel processes and repel each other via a log-potential. We consider two limiting regimes for this family on its two main parameters: the inverse temperature β and the Bessel index ν. We obtain the time-scaled steady-state distributions of the processes for the cases where β or ν are large but finite. In particular, for large β we show that the steady-state distribution of the system corresponds to the eigenvalue distribution of the β-Laguerre ensembles of random matrices. We also estimate the relaxation time to the steady state in both cases. We find that in the freezing regime β → ∞, the scaled final positions of the particles are locked at the square root of the zeroes of the Laguerre polynomial of parameter ν - 1/2 for any initial configuration, while in the regime ν → ∞, we prove that the scaled final positions of the particles converge to a single point. In order to obtain our results, we use the theory of Dunkl operators, in particular the intertwining operator of type B. We derive a previously unknown expression for this operator and study its behaviour in both limiting regimes. By using these limiting forms of the intertwining operator, we derive the steady-state distributions, the estimations of the relaxation times and the limiting behaviour of the processes.
A Global Classification of Contemporary Fire Regimes
NASA Astrophysics Data System (ADS)
Norman, S. P.; Kumar, J.; Hargrove, W. W.; Hoffman, F. M.
2014-12-01
Fire regimes provide a sensitive indicator of changes in climate and human use as the concept includes fire extent, season, frequency, and intensity. Fires that occur outside the distribution of one or more aspects of a fire regime may affect ecosystem resilience. However, global scale data related to these varied aspects of fire regimes are highly inconsistent due to incomplete or inconsistent reporting. In this study, we derive a globally applicable approach to characterizing similar fire regimes using long geophysical time series, namely MODIS hotspots since 2000. K-means non-hierarchical clustering was used to generate empirically based groups that minimized within-cluster variability. Satellite-based fire detections are known to have shortcomings, including under-detection from obscuring smoke, clouds or dense canopy cover and rapid spread rates, as often occurs with flashy fuels or during extreme weather. Such regions are free from preconceptions, and the empirical, data-mining approach used on this relatively uniform data source allows the region structures to emerge from the data themselves. Comparing such an empirical classification to expectations from climate, phenology, land use or development-based models can help us interpret the similarities and differences among places and how they provide different indicators of changes of concern. Classifications can help identify where large infrequent mega-fires are likely to occur ahead of time such as in the boreal forest and portions of the Interior US West, and where fire reports are incomplete such as in less industrial countries.
Taxonomy of potential international safeguards regimes
Lemley, J.R.; Allentuck, J.
1994-08-01
Since the International Atomic Energy Agency`s (IAEA) search for the components of Iraq`s nuclear weapons program under the auspices of the United Nations Security Council, a consensus for enhancing, strengthening or expanding the scope of international safeguards has developed. Some of the enhanced safeguards concepts which have been suggested include the following: short-notice, challenge, and random inspections; effluent monitoring in onsite, near site, and fly-by modes; local and wide-area environmental monitoring; and utilization of data from space-platform sensors. Potential safeguards regimes can be classified according to the functional and technical criteria which would be necessary for implementation of various enhanced safeguards concepts. While the nature of the regime which will emerge cannot be predicted, the classification of possible regimes according to major characteristics can be useful for identifying functional criteria and implementation challenges, focusing development efforts on the functional criteria, and planning for efficient use of safeguards resources. Precedents established in previously negotiated treaties -- the Chemical Weapons Convention, the Treaty on Conventional Forces in Europe, START, and Open Skies -- are examined with regard to enhancement of the international safeguards regime for nuclear and other weapons of mass destruction. Bilateral, multilateral and regional integration of enhanced safeguards elements is considered.
The future of the nuclear nonproliferation regime.
Pilat, Joseph F.
2004-01-01
Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?
Regimes of turbulence without an energy cascade
Barenghi, C. F.; Sergeev, Y. A.; Baggaley, A. W.
2016-01-01
Experiments and numerical simulations of turbulent 4He and 3He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics. PMID:27761005
Statistics of energy dissipation in a quantum dot operating in the cotunneling regime
NASA Astrophysics Data System (ADS)
Dinaii, Yehuda; Shnirman, Alexander; Gefen, Yuval
2014-11-01
At Coulomb blockade valleys inelastic cotunneling processes generate particle-hole excitations in quantum dots (QDs), and lead to energy dissipation. We have analyzed the probability distribution function (PDF) of energy dissipated in a QD due to such processes during a given time interval. We obtained analytically the cumulant generating function, and extracted the average, variance, and Fano factor. The latter diverges as T3/(eV ) 2 at bias e V smaller than the temperature T , and reaches the value 3 e V /5 in the opposite limit. The PDF is further studied numerically. As expected, the Crooks fluctuation relation is not fulfilled by the PDF. Our results can be verified experimentally utilizing transport measurements of charge.
Regime Shifts in the Anthropocene: Drivers, Risks, and Resilience
Rocha, Juan Carlos; Peterson, Garry D.; Biggs, Reinette
2015-01-01
Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers. PMID:26267896
Regime shifts in the anthropocene: drivers, risks, and resilience.
Rocha, Juan Carlos; Peterson, Garry D; Biggs, Reinette
2015-01-01
Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers.
Regime shifts in the anthropocene: drivers, risks, and resilience.
Rocha, Juan Carlos; Peterson, Garry D; Biggs, Reinette
2015-01-01
Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers. PMID:26267896
Tannery, Nancy Hrinya; Silverman, Deborah L; Epstein, Barbara A
2002-01-01
Online use statistics can provide libraries with a tool to be used when developing an online collection of resources. Statistics can provide information on overall use of a collection, individual print and electronic journal use, and collection use by specific user populations. They can also be used to determine the number of user licenses to purchase. This paper focuses on the issue of use statistics made available for one collection of online resources.
Statistical distribution sampling
NASA Technical Reports Server (NTRS)
Johnson, E. S.
1975-01-01
Determining the distribution of statistics by sampling was investigated. Characteristic functions, the quadratic regression problem, and the differential equations for the characteristic functions are analyzed.
Statistical simulation of the magnetorotational dynamo
Squire, J.; Bhattacharjee, A.
2014-08-01
We analyze turbulence and dynamo induced by the magnetorotational instability (MRI) using quasi-linear statistical simulation methods. We find that homogenous turbulence is unstable to a large scale dynamo instability, which saturates to an inhomogenous equilibrium with a very strong dependence on the magnetic Prandtl number (Pm). Despite its enormously reduced nonlinearity, the quasi-linear model exhibits the same qualitative scaling of angular momentum transport with Pm as fully nonlinear turbulence. This demonstrates the relationship of recent convergence problems to the large scale dynamo and suggests possible methods for studying astrophysically relevant regimes at very low or high Pm.
Dominant takeover regimes for genetic algorithms
NASA Technical Reports Server (NTRS)
Noever, David; Baskaran, Subbiah
1995-01-01
The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.
The change of resurfacing regimes on Venus
NASA Astrophysics Data System (ADS)
Ivanov, M. A.
2015-01-01
The change of volcanic resurfacing regimes on Venus is discussed. The frequency-size distribution of the regional and lobate plains fields suggest that regional plains had likely been formed due to lava flooding. The geological ratios of impact craters with plains units of different ages are analyzed. Only 3% of the craters located on the older regional plains are found to be embayed by plains material. About 50% of the craters located on the younger lobate plains are found to be embayed by plains lavas. Both the frequency-size distribution of the regional plains fields and the number of embayed craters indicate their catastrophic formation. For lobate plains, these parameters indicate a gradual and time-stretched accumulation of their material. Thus, the volcanic resurfacing regimes must have been changing radically throughout the observable portion of the geological history of Venus.
Steady and transient regimes in hydropower plants
NASA Astrophysics Data System (ADS)
Gajic, A.
2013-12-01
Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock.
Marginal Mean Models for Dynamic Regimes
Murphy, S. A.; van der Laan, M. J.; Robins, J. M.
2009-01-01
A dynamic treatment regime is a list of rules for how the level of treatment will be tailored through time to an individual’s changing severity. In general, individuals who receive the highest level of treatment are the individuals with the greatest severity and need for treatment. Thus there is planned selection of the treatment dose. In addition to the planned selection mandated by the treatment rules, the use of staff judgment results in unplanned selection of the treatment level. Given observational longitudinal data or data in which there is unplanned selection, of the treatment level, the methodology proposed here allows the estimation of a mean response to a dynamic treatment regime under the assumption of sequential randomization. PMID:20019887
The optomechanical instability in the quantum regime
NASA Astrophysics Data System (ADS)
Ludwig, Max; Kubala, Björn; Marquardt, Florian
2008-09-01
We consider a generic optomechanical system, consisting of a driven optical cavity and a movable mirror attached to a cantilever. Systems of this kind (and analogues) have been realized in many recent experiments. It is well known that these systems can exhibit an instability towards a regime where the cantilever settles into self-sustained oscillations. In this paper, we briefly review the classical theory of the optomechanical instability, and then discuss the features arising in the quantum regime. We solve numerically a full quantum master equation for the coupled system, and use it to analyze the photon number, the cantilever's mechanical energy, the phonon probability distribution and the mechanical Wigner density, as a function of experimentally accessible control parameters. When a suitable dimensionless 'quantum parameter' is sent to zero, the results of the quantum mechanical model converge towards the classical predictions. We discuss this quantum-to-classical transition in some detail.
Bose polarons in the strongly interacting regime
NASA Astrophysics Data System (ADS)
Kedar, Dhruv; Hu, Ming-Guang; van de Graaff, Michael; Corson, John; Cornell, Eric; Jin, Deborah
2016-05-01
Impurities immersed in and interacting with a Bose-Einstein condensate (BEC) are predicted to form quasiparticle excitations called Bose polarons. I will present experimental evidence of Bose polarons in cold atoms obtained using radio-frequency spectroscopy to measure the excitation spectrum of fermionic K-40 impurities interacting with a BEC of Rb-87 atoms. We use an interspecies Feshbach resonance to tune the interactions between the impurities and the bosons, and we take data in the strongly interacting regime.
The kinetic regime of the Vicsek model
NASA Astrophysics Data System (ADS)
Chepizhko, A. A.; Kulinskii, V. L.
2009-12-01
We consider the dynamics of the system of self-propelling particles modeled via the Vicsek algorithm in continuum time limit. It is shown that the alignment process for the velocities can be subdivided into two regimes: "fast" kinetic and "slow" hydrodynamic ones. In fast kinetic regime the alignment of the particle velocity to the local neighborhood takes place with characteristic relaxation time. So, that the bigger regions arise with the velocity alignment. These regions align their velocities thus giving rise to hydrodynamic regime of the dynamics. We propose the mean-field-like approach in which we take into account the correlations between density and velocity. The comparison of the theoretical predictions with the numerical simulations is given. The relation between Vicsek model in the zero velocity limit and the Kuramoto model is stated. The mean-field approach accounting for the dynamic change of the neighborhood is proposed. The nature of the discontinuity of the dependence of the order parameter in case of vectorial noise revealed in Gregorie and Chaite, Phys. Rev. Lett., 92, 025702 (2004) is discussed and the explanation of it is proposed.
Understanding the Early Regime of Drop Spreading.
Mitra, Surjyasish; Mitra, Sushanta K
2016-09-01
We present experimental data to characterize the spreading of a liquid drop on a substrate kept submerged in another liquid medium. They reveal that drop spreading always begins in a regime dominated by drop viscosity where the spreading radius scales as r ∼ t with a nonuniversal prefactor. This initial viscous regime either lasts in its entirety or switches to an intermediate inertial regime where the spreading radius grows with time following the well-established inertial scaling of r ∼ t(1/2). This latter case depends on the characteristic viscous length scale of the problem. In either case, the final stage of spreading, close to equilibrium, follows Tanner's law. Further experiments performed on the same substrate kept in ambient air reveal a similar trend, albeit with limited spatiotemporal resolution, showing the universal nature of the spreading behavior. It is also found that, for early times of spreading, the process is similar to coalescence of two freely suspended liquid drops, making the presence of the substrate and consequently the three-phase contact line insignificant. PMID:27513708
Lubrication regimes in lumbar total disc arthroplasty.
Shaheen, A; Shepherd, D E T
2007-08-01
A number of total disc arthroplasty devices have been developed. Some concern has been expressed that wear may be a potential failure mode for these devices, as has been seen with hip arthroplasty. The aim of this paper was to investigate the lubrication regimes that occur in lumbar total disc arthroplasty devices. The disc arthroplasty was modelled as a ball-and-socket joint. Elastohydrodynamic lubrication theory was used to calculate the minimum film thickness of the fluid between the bearing surfaces. The lubrication regime was then determined for different material combinations, size of implant, and trunk velocity. Disc arthroplasties with a metal-polymer or metal-metal material combination operate with a boundary lubrication regime. A ceramic-ceramic material combination has the potential to operate with fluid-film lubrication. Disc arthroplasties with a metal-polymer or metal-metal material combination are likely to generate wear debris. In future, it is worth considering a ceramic-ceramic material combination as this is likely to reduce wear.
Three-dimensional null point reconnection regimes
Priest, E. R.; Pontin, D. I.
2009-12-15
Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.
Multidimensional Visual Statistical Learning
ERIC Educational Resources Information Center
Turk-Browne, Nicholas B.; Isola, Phillip J.; Scholl, Brian J.; Treat, Teresa A.
2008-01-01
Recent studies of visual statistical learning (VSL) have demonstrated that statistical regularities in sequences of visual stimuli can be automatically extracted, even without intent or awareness. Despite much work on this topic, however, several fundamental questions remain about the nature of VSL. In particular, previous experiments have not…
Croarkin, M. Carroll
2001-01-01
For more than 50 years, the Statistical Engineering Division (SED) has been instrumental in the success of a broad spectrum of metrology projects at NBS/NIST. This paper highlights fundamental contributions of NBS/NIST statisticians to statistics and to measurement science and technology. Published methods developed by SED staff, especially during the early years, endure as cornerstones of statistics not only in metrology and standards applications, but as data-analytic resources used across all disciplines. The history of statistics at NBS/NIST began with the formation of what is now the SED. Examples from the first five decades of the SED illustrate the critical role of the division in the successful resolution of a few of the highly visible, and sometimes controversial, statistical studies of national importance. A review of the history of major early publications of the division on statistical methods, design of experiments, and error analysis and uncertainty is followed by a survey of several thematic areas. The accompanying examples illustrate the importance of SED in the history of statistics, measurements and standards: calibration and measurement assurance, interlaboratory tests, development of measurement methods, Standard Reference Materials, statistical computing, and dissemination of measurement technology. A brief look forward sketches the expanding opportunity and demand for SED statisticians created by current trends in research and development at NIST. PMID:27500023
Explorations in Statistics: Regression
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2011-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This seventh installment of "Explorations in Statistics" explores regression, a technique that estimates the nature of the relationship between two things for which we may only surmise a mechanistic or predictive connection.…
ERIC Educational Resources Information Center
Huberty, Carl J.
An approach to statistical testing, which combines Neyman-Pearson hypothesis testing and Fisher significance testing, is recommended. The use of P-values in this approach is discussed in some detail. The author also discusses some problems which are often found in introductory statistics textbooks. The problems involve the definitions of…
Reform in Statistical Education
ERIC Educational Resources Information Center
Huck, Schuyler W.
2007-01-01
Two questions are considered in this article: (a) What should professionals in school psychology do in an effort to stay current with developments in applied statistics? (b) What should they do with their existing knowledge to move from surface understanding of statistics to deep understanding? Written for school psychologists who have completed…
Demonstrating Poisson Statistics.
ERIC Educational Resources Information Center
Vetterling, William T.
1980-01-01
Describes an apparatus that offers a very lucid demonstration of Poisson statistics as applied to electrical currents, and the manner in which such statistics account for shot noise when applied to macroscopic currents. The experiment described is intended for undergraduate physics students. (HM)
Statistical Summaries: Public Institutions.
ERIC Educational Resources Information Center
Virginia State Council of Higher Education, Richmond.
This document, presents a statistical portrait of the Virginia's 17 public higher education institutions. Data provided include: enrollment figures (broken down in categories such as sex, residency, full- and part-time status, residence, ethnicity, age, and level of postsecondary education); FTE figures; admissions statistics (such as number…
Statistics 101 for Radiologists.
Anvari, Arash; Halpern, Elkan F; Samir, Anthony E
2015-10-01
Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. PMID:26466186
Explorations in Statistics: Power
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2010-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fifth installment of "Explorations in Statistics" revisits power, a concept fundamental to the test of a null hypothesis. Power is the probability that we reject the null hypothesis when it is false. Four things affect…
ERIC Educational Resources Information Center
Huizingh, Eelko K. R. E.
2007-01-01
Accessibly written and easy to use, "Applied Statistics Using SPSS" is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. What is unique about Eelko Huizingh's approach is that this book is based around the needs of undergraduate students embarking on their own research project, and its self-help style is designed to…
ERIC Educational Resources Information Center
Council of Ontario Universities, Toronto.
Summary statistics on application and registration patterns of applicants wishing to pursue full-time study in first-year places in Ontario universities (for the fall of 1987) are given. Data on registrations were received indirectly from the universities as part of their annual submission of USIS/UAR enrollment data to Statistics Canada and MCU.…
Introduction to Statistical Physics
NASA Astrophysics Data System (ADS)
Casquilho, João Paulo; Ivo Cortez Teixeira, Paulo
2014-12-01
Preface; 1. Random walks; 2. Review of thermodynamics; 3. The postulates of statistical physics. Thermodynamic equilibrium; 4. Statistical thermodynamics – developments and applications; 5. The classical ideal gas; 6. The quantum ideal gas; 7. Magnetism; 8. The Ising model; 9. Liquid crystals; 10. Phase transitions and critical phenomena; 11. Irreversible processes; Appendixes; Index.
Deconstructing Statistical Analysis
ERIC Educational Resources Information Center
Snell, Joel
2014-01-01
Using a very complex statistical analysis and research method for the sake of enhancing the prestige of an article or making a new product or service legitimate needs to be monitored and questioned for accuracy. 1) The more complicated the statistical analysis, and research the fewer the number of learned readers can understand it. This adds a…
ERIC Educational Resources Information Center
Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain
2004-01-01
Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…
Statistics 101 for Radiologists.
Anvari, Arash; Halpern, Elkan F; Samir, Anthony E
2015-10-01
Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced.
Understanding Undergraduate Statistical Anxiety
ERIC Educational Resources Information Center
McKim, Courtney
2014-01-01
The purpose of this study was to understand undergraduate students' views of statistics. Results reveal that students with less anxiety have a higher interest in statistics and also believe in their ability to perform well in the course. Also students who have a more positive attitude about the class tend to have a higher belief in their…
Explorations in Statistics: Correlation
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2010-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This sixth installment of "Explorations in Statistics" explores correlation, a familiar technique that estimates the magnitude of a straight-line relationship between two variables. Correlation is meaningful only when the…
Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew
2013-01-01
Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and
Nonlinear Landau damping in nonextensive statistics
Valentini, Francesco
2005-07-15
The evolution of electrostatic waves, in unmagnetized collisionless plasmas, is numerically investigated by using a semi-Lagrangian Vlasov-Poisson code, in the fully nonlinear regime and in the context of the nonextensive statistics proposed by Tsallis [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. The effect of the Landau damping saturation, due to the nonlinear wave-particle interaction, is analyzed as a function of different values of the nonextensive parameter q, which quantifies the degree of nonextensivity of the system. A preliminary linear study is performed in order to compare the analytical results for the frequency and the damping rate of the electric oscillations, with the quantities obtained from the numerical simulations. In the nonlinear regime, the time evolution of the electric field amplitude shows how the non-Maxwellian shape of the equilibrium distribution function drastically modifies the energy exchange between wave and resonant particles and determines the saturation level of the electric field amplitude, in the long-time oscillating regime. A broad spectrum for the electrostatic oscillations is obtained in the case of the initial distribution functions with q<1, while in the case q>1 just a monochromatic component is visible.
Fragmentation statistics from Eulerian hydrocode calculations
Trucano, T.G.; Grady, D.E.; McGlaun, J.M.
1989-01-01
In this paper, we discuss a procedure for computing discrete fragmentation information for terminal ballistics events from the continuum data that emerges from two-dimensional Eulerian hydrocode simulations of these events. The present examples deal with the normal impact of lead cylinders on lead plates at velocities below 1600 m/s. In this regime, the resulting debris is almost exclusively solid lead fragments. We have experimental data of sufficient accuracy to evaluate the extraction of such fragmentation information from code simulations. The problem is interesting because the observed distribution of fragment size would require extreme subgrid resolution in the hydrocode if the statistics were computed directly. Our approach is different. We ask whether or not the general continuum description predicted by the code contains enough information to allow coupling of an analytic fragmentation theory that successfully predicts fragmentation statistics. We believe that this approach is valid, and discuss our current success in matching experimental data. 10 refs., 7 figs., 5 tabs.
LED champing: statistically blessed?
Wang, Zhuo
2015-06-10
LED champing (smart mixing of individual LEDs to match the desired color and lumens) and color mixing strategies have been widely used to maintain the color consistency of light engines. Light engines with champed LEDs can easily achieve the color consistency of a couple MacAdam steps with widely distributed LEDs to begin with. From a statistical point of view, the distributions for the color coordinates and the flux after champing are studied. The related statistical parameters are derived, which facilitate process improvements such as Six Sigma and are instrumental to statistical quality control for mass productions. PMID:26192863
Winters, Ryan; Winters, Andrew; Amedee, Ronald G.
2010-01-01
The Accreditation Council for Graduate Medical Education sets forth a number of required educational topics that must be addressed in residency and fellowship programs. We sought to provide a primer on some of the important basic statistical concepts to consider when examining the medical literature. It is not essential to understand the exact workings and methodology of every statistical test encountered, but it is necessary to understand selected concepts such as parametric and nonparametric tests, correlation, and numerical versus categorical data. This working knowledge will allow you to spot obvious irregularities in statistical analyses that you encounter. PMID:21603381
NASA Technical Reports Server (NTRS)
Young, M.; Koslovsky, M.; Schaefer, Caroline M.; Feiveson, A. H.
2017-01-01
Back by popular demand, the JSC Biostatistics Laboratory and LSAH statisticians are offering an opportunity to discuss your statistical challenges and needs. Take the opportunity to meet the individuals offering expert statistical support to the JSC community. Join us for an informal conversation about any questions you may have encountered with issues of experimental design, analysis, or data visualization. Get answers to common questions about sample size, repeated measures, statistical assumptions, missing data, multiple testing, time-to-event data, and when to trust the results of your analyses.
Landscape-scale forest disturbance regimes in southern Peruvian Amazonia.
Boyd, Doreen S; Hill, Ross A; Hopkinson, Chris; Baker, Timothy R
2013-10-01
Landscape-scale gap-size frequency distributions in tropical forests are a poorly studied but key ecological variable. Currently, a scale gap currently exists between local-scale field-based studies and those employing regional-scale medium-resolution satellite data. Data at landscape scales but of fine resolution would, however, facilitate investigation into a range of ecological questions relating to gap dynamics. These include whether canopy disturbances captured in permanent sample plots (PSPs) are representative of those in their surrounding landscape, and whether disturbance regimes vary with forest type. Here, therefore, we employ airborne LiDAR data captured over 142.5 km2 of mature, swamp, and regenerating forests in southeast Peru to assess the landscape-scale disturbance at a sampling resolution of up to 2 m. We find that this landscape is characterized by large numbers of small gaps; large disturbance events are insignificant and infrequent. Of the total number of gaps that are 2 m2 or larger in area, just 0.45% were larger than 100 m2, with a power-law exponent (alpha) value of the gap-size frequency distribution of 2.22. However, differences in disturbance regimes are seen among different forest types, with a significant difference in the alpha value of the gap-size frequency distribution observed for the swamp/regenerating forests compared with the mature forests at higher elevations. Although a relatively small area of the total forest of this region was investigated here, this study presents an unprecedented assessment of this landscape with respect to its gap dynamics. This is particularly pertinent given the range of forest types present in the landscape and the differences observed. The coupling of detailed insights into forest properties and growth provided by PSPs with the broader statistics of disturbance events using remote sensing is recommended as a strong basis for scaling-up estimates of landscape and regional-scale carbon balance.
THE DYNAMIC REGIME CONCEPT FOR ECOSYSTEM MANAGEMENT AND RESTORATION
Dynamic regimes of ecosystems are multidimensional basis of attraction, characterized by particular species communities and ecosystems processes. Ecosystem patterns and processes rarely respond linerarly to disturbances, and the nonlinear cynamic regime concept offers a more real...
FISHER INFORMATION OF DYNAMIC REGIME TRANSITIONS IN ECOLOGICAL SYSTEMS
Ecosystems often exhibit transitions between multiple dynamic regimes (or steady states). As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neighborhood of the current regime, or ?flip? into the neighborhood ...
NASA Astrophysics Data System (ADS)
Richfield, Jon; bookfeller
2016-07-01
In reply to Ralph Kenna and Pádraig Mac Carron's feature article “Maths meets myths” in which they describe how they are using techniques from statistical physics to characterize the societies depicted in ancient Icelandic sagas.
... facts and statistics here include brain and central nervous system tumors (including spinal cord, pituitary and pineal gland ... U.S. living with a primary brain and central nervous system tumor. This year, nearly 17,000 people will ...
Titanic: A Statistical Exploration.
ERIC Educational Resources Information Center
Takis, Sandra L.
1999-01-01
Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)
NASA Astrophysics Data System (ADS)
Grégoire, G.
2016-05-01
This chapter is devoted to two objectives. The first one is to answer the request expressed by attendees of the first Astrostatistics School (Annecy, October 2013) to be provided with an elementary vademecum of statistics that would facilitate understanding of the given courses. In this spirit we recall very basic notions, that is definitions and properties that we think sufficient to benefit from courses given in the Astrostatistical School. Thus we give briefly definitions and elementary properties on random variables and vectors, distributions, estimation and tests, maximum likelihood methodology. We intend to present basic ideas in a hopefully comprehensible way. We do not try to give a rigorous presentation, and due to the place devoted to this chapter, can cover only a rather limited field of statistics. The second aim is to focus on some statistical tools that are useful in classification: basic introduction to Bayesian statistics, maximum likelihood methodology, Gaussian vectors and Gaussian mixture models.
... and Statistics Recommend on Facebook Tweet Share Compartir Plague in the United States Plague was first introduced ... per year in the United States: 1900-2012. Plague Worldwide Plague epidemics have occurred in Africa, Asia, ...
Cooperative Learning in Statistics.
ERIC Educational Resources Information Center
Keeler, Carolyn M.; And Others
1994-01-01
Formal use of cooperative learning techniques proved effective in improving student performance and retention in a freshman level statistics course. Lectures interspersed with group activities proved effective in increasing conceptual understanding and overall class performance. (11 references) (Author)
Purposeful Statistical Investigations
ERIC Educational Resources Information Center
Day, Lorraine
2014-01-01
Lorraine Day provides us with a great range of statistical investigations using various resources such as maths300 and TinkerPlots. Each of the investigations link mathematics to students' lives and provide engaging and meaningful contexts for mathematical inquiry.
Tuberculosis Data and Statistics
... Organization Chart Advisory Groups Federal TB Task Force Data and Statistics Language: English Español (Spanish) Recommend on ... United States publication. PDF [6 MB] Interactive TB Data Tool Online Tuberculosis Information System (OTIS) OTIS is ...
Understanding Solar Flare Statistics
NASA Astrophysics Data System (ADS)
Wheatland, M. S.
2005-12-01
A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.
The discrete regime of flame propagation
NASA Astrophysics Data System (ADS)
Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew
The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment
River Flow Regimes and Effective Discharge
NASA Astrophysics Data System (ADS)
Basso, S.; Sprocati, R.; Frascati, A.; Marani, M.; Schirmer, M.; Botter, G.
2015-12-01
The concept of effective discharge is widespread in geomorphology and river engineering and restoration. For example, it is used to design the most stable channel configuration, to estimate sedimentation rate and lifespan of reservoirs and to characterize the hydrologic forcing in models studying long-term evolution of rivers. Accordingly, the effective discharge has been the focus of countless empirical, theoretical and numerical studies, which found it to vary among catchments as a function of climate, landscape and river morphology, type of transport (dissolved, suspended or bedload), and of streamflow variability. The heterogeneity of the effective discharge values observed in different catchments challenges a thorough understanding of its pivotal drivers, and a consistent framework which explains observations carried out in different geographic areas is still lacking. In the present work, the observed diversity is explained in terms of the underlying heterogeneity of river flow regimes, by linking effective discharge to attributes of the sediment rating curve and to streamflow variability, as resulting from climatic and landscape drivers. An analytic expression of the effective ratio (i.e. the ratio between effective discharge and mean streamflow) is provided, which captures observed values of effective discharge for suspended sediment transport in a set of catchments of the continental United States. The framework disentangles hydrologic and landscape controls on effective discharge, and highlights distinct effective ratios of persistent and erratic hydrologic regimes (respectively characterized by low and high flow variability), attributable to intrinsically different streamflow dynamics. Clusters of river catchments characterized by similar streamflow dynamics can be identified. The framework provides an opportunity for first-order estimates of effective discharge in rivers belonging to different areas, based on the type of flow regime.
Oakland, J.S.
1986-01-01
Addressing the increasing importance for firms to have a thorough knowledge of statistically based quality control procedures, this book presents the fundamentals of statistical process control (SPC) in a non-mathematical, practical way. It provides real-life examples and data drawn from a wide variety of industries. The foundations of good quality management and process control, and control of conformance and consistency during production are given. Offers clear guidance to those who wish to understand and implement modern SPC techniques.
Bose Polarons in the Strongly Interacting Regime.
Hu, Ming-Guang; Van de Graaff, Michael J; Kedar, Dhruv; Corson, John P; Cornell, Eric A; Jin, Deborah S
2016-07-29
When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of ^{87}Rb with a much lower density gas of fermionic ^{40}K impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges. PMID:27517776
Efficiency of Rectification: Reversible vs. Irreversible Regimes
NASA Astrophysics Data System (ADS)
Sokolov, I. M.
2002-11-01
Both man-made locomotive devices and molecular motors use gears to transform a reciprocating motion into a directed one. One of the most common gears is a rectifier, a mechanically irreversible appliance. The maximal energetic efficiency of an isothermic gear is bounded by unity, as a consequence of the Second Law. However, approaching this ideal efficiency does not imply approaching reversibility. We discuss what properties of a rectifier mostly influence the transduction efficiency and show that an appliance which locks under backward force is just the one which can approach the ideal efficiency either in the reversible or in the irreversible regime.
Bose Polarons in the Strongly Interacting Regime
NASA Astrophysics Data System (ADS)
Hu, Ming-Guang; Van de Graaff, Michael J.; Kedar, Dhruv; Corson, John P.; Cornell, Eric A.; Jin, Deborah S.
2016-07-01
When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of 87Rb with a much lower density gas of fermionic 40 impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges.
Imperfect relativistic mirrors in the quantum regime
Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.
2014-05-15
The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.
NASA Astrophysics Data System (ADS)
Kardar, Mehran
2006-06-01
While many scientists are familiar with fractals, fewer are familiar with the concepts of scale-invariance and universality which underly the ubiquity of their shapes. These properties may emerge from the collective behaviour of simple fundamental constituents, and are studied using statistical field theories. Based on lectures for a course in statistical mechanics taught by Professor Kardar at Massachusetts Institute of Technology, this textbook demonstrates how such theories are formulated and studied. Perturbation theory, exact solutions, renormalization groups, and other tools are employed to demonstrate the emergence of scale invariance and universality, and the non-equilibrium dynamics of interfaces and directed paths in random media are discussed. Ideal for advanced graduate courses in statistical physics, it contains an integrated set of problems, with solutions to selected problems at the end of the book. A complete set of solutions is available to lecturers on a password protected website at www.cambridge.org/9780521873413. Based on lecture notes from a course on Statistical Mechanics taught by the author at MIT Contains 65 exercises, with solutions to selected problems Features a thorough introduction to the methods of Statistical Field theory Ideal for graduate courses in Statistical Physics
Statistical Physics of Particles
NASA Astrophysics Data System (ADS)
Kardar, Mehran
2006-06-01
Statistical physics has its origins in attempts to describe the thermal properties of matter in terms of its constituent particles, and has played a fundamental role in the development of quantum mechanics. Based on lectures for a course in statistical mechanics taught by Professor Kardar at Massachusetts Institute of Technology, this textbook introduces the central concepts and tools of statistical physics. It contains a chapter on probability and related issues such as the central limit theorem and information theory, and covers interacting particles, with an extensive description of the van der Waals equation and its derivation by mean field approximation. It also contains an integrated set of problems, with solutions to selected problems at the end of the book. It will be invaluable for graduate and advanced undergraduate courses in statistical physics. A complete set of solutions is available to lecturers on a password protected website at www.cambridge.org/9780521873420. Based on lecture notes from a course on Statistical Mechanics taught by the author at MIT Contains 89 exercises, with solutions to selected problems Contains chapters on probability and interacting particles Ideal for graduate courses in Statistical Mechanics
22 CFR 120.29 - Missile Technology Control Regime.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Missile Technology Control Regime. 120.29... DEFINITIONS § 120.29 Missile Technology Control Regime. (a) For purposes of this subchapter, Missile Technology Control Regime (MTCR) means the policy statement between the United States, the United...
22 CFR 120.29 - Missile Technology Control Regime.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Missile Technology Control Regime. 120.29... DEFINITIONS § 120.29 Missile Technology Control Regime. (a) For purposes of this subchapter, Missile Technology Control Regime (MTCR) means the policy statement between the United States, the United...
22 CFR 120.29 - Missile Technology Control Regime.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Missile Technology Control Regime. 120.29... DEFINITIONS § 120.29 Missile Technology Control Regime. (a) For purposes of this subchapter, Missile Technology Control Regime (MTCR) means the policy statement between the United States, the United...
22 CFR 120.29 - Missile Technology Control Regime.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Missile Technology Control Regime. 120.29... DEFINITIONS § 120.29 Missile Technology Control Regime. (a) For purposes of this subchapter, Missile Technology Control Regime (MTCR) means the policy statement between the United States, the United...
22 CFR 120.29 - Missile Technology Control Regime.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Missile Technology Control Regime. 120.29... DEFINITIONS § 120.29 Missile Technology Control Regime. (a) For purposes of this subchapter, Missile Technology Control Regime (MTCR) means the policy statement among the United States, the United Kingdom,...
The relationship between void waves and flow regime transition
Lahey, R.T. Jr.; Drew, D.A.; Kalkach-Navarro, S.; Park, J.W.
1992-12-31
The results of an extensive experimental and analytical study on the relationship between void waves and flow regime transition are presented, in particular, the bubbly/slug flow regime transition. It is shown that void wave instability signals a flow regime transition.
Statistics of dislocation pinning at localized obstacles
NASA Astrophysics Data System (ADS)
Dutta, A.; Bhattacharya, M.; Barat, P.
2014-10-01
Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.
Statistics of dislocation pinning at localized obstacles
Dutta, A.; Bhattacharya, M. Barat, P.
2014-10-14
Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.
Evolution of the rainfall regime in the United Arab Emirates
NASA Astrophysics Data System (ADS)
Ouarda, T. B. M. J.; Charron, C.; Niranjan Kumar, K.; Marpu, P. R.; Ghedira, H.; Molini, A.; Khayal, I.
2014-06-01
Arid and semiarid climates occupy more than 1/4 of the land surface of our planet, and are characterized by a strongly intermittent hydrologic regime, posing a major threat to the development of these regions. Despite this fact, a limited number of studies have focused on the climatic dynamics of precipitation in desert environments, assuming the rainfall input - and their temporal trends - as marginal compared with the evaporative component. Rainfall series at four meteorological stations in the United Arab Emirates (UAE) were analyzed for assessment of trends and detection of change points. The considered variables were total annual, seasonal and monthly rainfall; annual, seasonal and monthly maximum rainfall; and the number of rainy days per year, season and month. For the assessment of the significance of trends, the modified Mann-Kendall test and Theil-Sen’s test were applied. Results show that most annual series present decreasing trends, although not statistically significant at the 5% level. The analysis of monthly time series reveals strong decreasing trends mainly occurring in February and March. Many trends for these months are statistically significant at the 10% level and some trends are significant at the 5% level. These two months account for most of the total annual rainfall in the UAE. To investigate the presence of sudden changes in rainfall time-series, the cumulative sum method and a Bayesian multiple change point detection procedure were applied to annual rainfall series. Results indicate that a change point happened around 1999 at all stations. Analyses were performed to evaluate the evolution of characteristics before and after 1999. Student’s t-test and Levene’s test were applied to determine if a change in the mean and/or in the variance occurred at the change point. Results show that a decreasing shift in the mean has occurred in the total annual rainfall and the number of rainy days at all four stations, and that the variance has
Elastic regimes of subisostatic athermal fiber networks.
Licup, A J; Sharma, A; MacKintosh, F C
2016-01-01
Athermal models of disordered fibrous networks are highly useful for studying the mechanics of elastic networks composed of stiff biopolymers. The underlying network architecture is a key aspect that can affect the elastic properties of these systems, which include rich linear and nonlinear elasticity. Existing computational approaches have focused on both lattice-based and off-lattice networks obtained from the random placement of rods. It is not obvious, a priori, whether the two architectures have fundamentally similar or different mechanics. If they are different, it is not clear which of these represents a better model for biological networks. Here, we show that both approaches are essentially equivalent for the same network connectivity, provided the networks are subisostatic with respect to central force interactions. Moreover, for a given subisostatic connectivity, we even find that lattice-based networks in both two and three dimensions exhibit nearly identical nonlinear elastic response. We provide a description of the linear mechanics for both architectures in terms of a scaling function. We also show that the nonlinear regime is dominated by fiber bending and that stiffening originates from the stabilization of subisostatic networks by stress. We propose a generalized relation for this regime in terms of the self-generated normal stresses that develop under deformation. Different network architectures have different susceptibilities to the normal stress but essentially exhibit the same nonlinear mechanics. Such a stiffening mechanism has been shown to successfully capture the nonlinear mechanics of collagen networks. PMID:26871101
Revealing the quantum regime in tunnelling plasmonics.
Savage, Kevin J; Hawkeye, Matthew M; Esteban, Rubén; Borisov, Andrei G; Aizpurua, Javier; Baumberg, Jeremy J
2012-11-22
When two metal nanostructures are placed nanometres apart, their optically driven free electrons couple electrically across the gap. The resulting plasmons have enhanced optical fields of a specific colour tightly confined inside the gap. Many emerging nanophotonic technologies depend on the careful control of this plasmonic coupling, including optical nanoantennas for high-sensitivity chemical and biological sensors, nanoscale control of active devices, and improved photovoltaic devices. But for subnanometre gaps, coherent quantum tunnelling becomes possible and the system enters a regime of extreme non-locality in which previous classical treatments fail. Electron correlations across the gap that are driven by quantum tunnelling require a new description of non-local transport, which is crucial in nanoscale optoelectronics and single-molecule electronics. Here, by simultaneously measuring both the electrical and optical properties of two gold nanostructures with controllable subnanometre separation, we reveal the quantum regime of tunnelling plasmonics in unprecedented detail. All observed phenomena are in good agreement with recent quantum-based models of plasmonic systems, which eliminate the singularities predicted by classical theories. These findings imply that tunnelling establishes a quantum limit for plasmonic field confinement of about 10(-8)λ(3) for visible light (of wavelength λ). Our work thus prompts new theoretical and experimental investigations into quantum-domain plasmonic systems, and will affect the future of nanoplasmonic device engineering and nanoscale photochemistry.
Variety of synchronous regimes in neuronal ensembles
NASA Astrophysics Data System (ADS)
Komarov, M. A.; Osipov, G. V.; Suykens, J. A. K.
2008-09-01
We consider a Hodgkin-Huxley-type model of oscillatory activity in neurons of the snail Helix pomatia. This model has a distinctive feature: It demonstrates multistability in oscillatory and silent modes that is typical for the thalamocortical neurons. A single neuron cell can demonstrate a variety of oscillatory activity: Regular and chaotic spiking and bursting behavior. We study collective phenomena in small and large arrays of nonidentical cells coupled by models of electrical and chemical synapses. Two single elements coupled by electrical coupling show different types of synchronous behavior, in particular in-phase and antiphase synchronous regimes. In an ensemble of three inhibitory synaptically coupled elements, the phenomenon of sequential synchronous dynamics is observed. We study the synchronization phenomena in the chain of nonidentical neurons at different oscillatory behavior coupled with electrical and chemical synapses. Various regimes of phase synchronization are observed: (i) Synchronous regular and chaotic spiking; (ii) synchronous regular and chaotic bursting; and (iii) synchronous regular and chaotic bursting with different numbers of spikes inside the bursts. We detect and study the effect of collective synchronous burst generation due to the cluster formation and the oscillatory death.
Statistical Physics of Fracture
Alava, Mikko; Nukala, Phani K; Zapperi, Stefano
2006-05-01
Disorder and long-range interactions are two of the key components that make material failure an interesting playfield for the application of statistical mechanics. The cornerstone in this respect has been lattice models of the fracture in which a network of elastic beams, bonds, or electrical fuses with random failure thresholds are subject to an increasing external load. These models describe on a qualitative level the failure processes of real, brittle, or quasi-brittle materials. This has been particularly important in solving the classical engineering problems of material strength: the size dependence of maximum stress and its sample-to-sample statistical fluctuations. At the same time, lattice models pose many new fundamental questions in statistical physics, such as the relation between fracture and phase transitions. Experimental results point out to the existence of an intriguing crackling noise in the acoustic emission and of self-affine fractals in the crack surface morphology. Recent advances in computer power have enabled considerable progress in the understanding of such models. Among these partly still controversial issues, are the scaling and size-effects in material strength and accumulated damage, the statistics of avalanches or bursts of microfailures, and the morphology of the crack surface. Here we present an overview of the results obtained with lattice models for fracture, highlighting the relations with statistical physics theories and more conventional fracture mechanics approaches.
Option pricing with regime switching by trinomial tree method
NASA Astrophysics Data System (ADS)
Yuen, Fei Lung; Yang, Hailiang
2010-02-01
We present a fast and simple tree model to price simple and exotic options in Markov Regime Switching Model (MRSM) with multi-regime. We modify the trinomial tree model of Boyle (1986) [12] by controlling the risk neutral probability measure in different regime states to ensure that the tree model can accommodate the data of all different regimes at the same time preserving its combining tree structure. In MRSM, the market might not be complete, therefore we provide some ideas and discussions on managing the regime switching risk in support of our results.
Distinct Transport Regimes for Two Elastically Coupled Molecular Motors
NASA Astrophysics Data System (ADS)
Berger, Florian; Keller, Corina; Klumpp, Stefan; Lipowsky, Reinhard
2012-05-01
Cooperative cargo transport by two molecular motors involves an elastic motor-motor coupling, which can reduce the motors’ velocity and/or enhance their unbinding from the filament. We show theoretically that these interference effects lead, in general, to four distinct transport regimes. In addition to a weak coupling regime, kinesin and dynein motors are found to exhibit a strong coupling and an enhanced unbinding regime, whereas myosin motors are predicted to attain a reduced velocity regime. All of these regimes, which we derive by explicit calculations and general time scale arguments, can be explored experimentally by varying the elastic coupling strength.
Helping Alleviate Statistical Anxiety with Computer Aided Statistical Classes
ERIC Educational Resources Information Center
Stickels, John W.; Dobbs, Rhonda R.
2007-01-01
This study, Helping Alleviate Statistical Anxiety with Computer Aided Statistics Classes, investigated whether undergraduate students' anxiety about statistics changed when statistics is taught using computers compared to the traditional method. Two groups of students were questioned concerning their anxiety about statistics. One group was taught…
Suite versus composite statistics
Balsillie, J.H.; Tanner, W.F.
1999-01-01
Suite and composite methodologies, two statistically valid approaches for producing statistical descriptive measures, are investigated for sample groups representing a probability distribution where, in addition, each sample is probability distribution. Suite and composite means (first moment measures) are always equivalent. Composite standard deviations (second moment measures) are always larger than suite standard deviations. Suite and composite values for higher moment measures have more complex relationships. Very seldom, however, are they equivalent, and they normally yield statistically significant but different results. Multiple samples are preferable to single samples (including composites) because they permit the investigator to examine sample-to-sample variability. These and other relationships for suite and composite probability distribution analyses are investigated and reported using granulometric data.
Candidate Assembly Statistical Evaluation
1998-07-15
The Savannah River Site (SRS) receives aluminum clad spent Material Test Reactor (MTR) fuel from all over the world for storage and eventual reprocessing. There are hundreds of different kinds of MTR fuels and these fuels will continue to be received at SRS for approximately ten more years. SRS''s current criticality evaluation methodology requires the modeling of all MTR fuels utilizing Monte Carlo codes, which is extremely time consuming and resource intensive. Now that amore » significant number of MTR calculations have been conducted it is feasible to consider building statistical models that will provide reasonable estimations of MTR behavior. These statistical models can be incorporated into a standardized model homogenization spreadsheet package to provide analysts with a means of performing routine MTR fuel analyses with a minimal commitment of time and resources. This became the purpose for development of the Candidate Assembly Statistical Evaluation (CASE) program at SRS.« less
Perception in statistical graphics
NASA Astrophysics Data System (ADS)
VanderPlas, Susan Ruth
There has been quite a bit of research on statistical graphics and visualization, generally focused on new types of graphics, new software to create graphics, interactivity, and usability studies. Our ability to interpret and use statistical graphics hinges on the interface between the graph itself and the brain that perceives and interprets it, and there is substantially less research on the interplay between graph, eye, brain, and mind than is sufficient to understand the nature of these relationships. The goal of the work presented here is to further explore the interplay between a static graph, the translation of that graph from paper to mental representation (the journey from eye to brain), and the mental processes that operate on that graph once it is transferred into memory (mind). Understanding the perception of statistical graphics should allow researchers to create more effective graphs which produce fewer distortions and viewer errors while reducing the cognitive load necessary to understand the information presented in the graph. Taken together, these experiments should lay a foundation for exploring the perception of statistical graphics. There has been considerable research into the accuracy of numerical judgments viewers make from graphs, and these studies are useful, but it is more effective to understand how errors in these judgments occur so that the root cause of the error can be addressed directly. Understanding how visual reasoning relates to the ability to make judgments from graphs allows us to tailor graphics to particular target audiences. In addition, understanding the hierarchy of salient features in statistical graphics allows us to clearly communicate the important message from data or statistical models by constructing graphics which are designed specifically for the perceptual system.
NASA Astrophysics Data System (ADS)
Inomata, Akira
1997-03-01
To understand possible physical consequences of quantum deformation, we investigate statistical behaviors of a quon gas. The quon is an object which obeys the minimally deformed commutator (or q-mutator): a a† - q a†a=1 with -1≤ q≤ 1. Although q=1 and q=-1 appear to correspond respectively to boson and fermion statistics, it is not easy to create a gas which unifies the boson gas and the fermion gas. We present a model which is able to interpolates between the two limits. The quon gas shows the Bose-Einstein condensation near the Boson limit in two dimensions.
The statistical upper mantle assemblage
NASA Astrophysics Data System (ADS)
Meibom, Anders; Anderson, Don L.
2004-01-01
participation of distinct (e.g. lower mantle) reservoirs to explain OIB compositions. The complementary methods outlined in this work and in e.g. Kellogg et al. and Helffrich and Wood, provide a strong link between geochemical data and potential geophysical observables, such as the degree of partial melting, size of the melting regime, the characteristic length scales of the chemical heterogeneity and bathymetry, seismic scattering and anisotropy. We support the view that statistical distributions of lithologic components and sampling theory should replace the concept of distinct, isolated geochemical reservoirs, and extensive convective stirring prior to sampling.
Orellana, Liliana; Rotnitzky, Andrea; Robins, James M
2010-01-01
Dynamic treatment regimes are set rules for sequential decision making based on patient covariate history. Observational studies are well suited for the investigation of the effects of dynamic treatment regimes because of the variability in treatment decisions found in them. This variability exists because different physicians make different decisions in the face of similar patient histories. In this article we describe an approach to estimate the optimal dynamic treatment regime among a set of enforceable regimes. This set is comprised by regimes defined by simple rules based on a subset of past information. The regimes in the set are indexed by a Euclidean vector. The optimal regime is the one that maximizes the expected counterfactual utility over all regimes in the set. We discuss assumptions under which it is possible to identify the optimal regime from observational longitudinal data. Murphy et al. (2001) developed efficient augmented inverse probability weighted estimators of the expected utility of one fixed regime. Our methods are based on an extension of the marginal structural mean model of Robins (1998, 1999) which incorporate the estimation ideas of Murphy et al. (2001). Our models, which we call dynamic regime marginal structural mean models, are specially suitable for estimating the optimal treatment regime in a moderately small class of enforceable regimes of interest. We consider both parametric and semiparametric dynamic regime marginal structural models. We discuss locally efficient, double-robust estimation of the model parameters and of the index of the optimal treatment regime in the set. In a companion paper in this issue of the journal we provide proofs of the main results.
A Novel Method for Analyzing and Interpreting GCM Results Using Clustered Climate Regimes
NASA Astrophysics Data System (ADS)
Hoffman, F. M.; Hargrove, W. W.; Erickson, D. J.; Oglesby, R. J.
2003-12-01
A high-performance parallel clustering algorithm has been developed for analyzing and comparing climate model results and long time series climate measurements. Designed to identify biases and detect trends in disparate climate change data sets, this tool combines and simplifies large temporally-varying data sets from atmospheric measurements to multi-century climate model output. Clustering is a statistical procedure which provides an objective method for grouping multivariate conditions into a set of states or regimes within a given level of statistical tolerance. The groups or clusters--statistically defined across space and through time--possess centroids which represent the synoptic conditions of observations or model results contained in each state no matter when or where they occurred. The clustering technique was applied to five business-as-usual (BAU) scenarios from the Parallel Climate Model (PCM). Three fields of significance (surface temperature, precipitation, and soil moisture) were clustered from 2000 through 2098. Our analysis shows an increase in spatial area occupied by the cluster or climate regime which typifies desert regions (i.e., an increase in desertification) and a decrease in the spatial area occupied by the climate regime typifying winter-time high latitude perma-frost regions. The same analysis subsequently applied to the ensemble as a whole demonstrates the consistency and variability of trends from each ensemble member. The patterns of cluster changes can be used to show predicted variability in climate on global and continental scales. Novel three-dimensional phase space representations of these climate regimes show the portion of this phase space occupied by the land surface at all points in space and time. Any single spot on the globe will exist in one of these climate regimes at any single point in time, and by incrementing time, that same spot will trace out a trajectory or orbit among these climate regimes in phase space. When a
Stable operating regime for traveling wave devices
Carlsten, Bruce E.
2000-01-01
Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.
Nonlinear regimes of forced magnetic reconnection
Vekstein, G.; Kusano, K.
2015-09-15
This letter presents a self-consistent description of nonlinear forced magnetic reconnection in Taylor's model of this process. If external boundary perturbation is strong enough, nonlinearity in the current sheet evolution becomes important before resistive effects come into play. This terminates the current sheet shrinking that takes place at the linear stage and brings about its nonlinear equilibrium with a finite thickness. Then, in theory, this equilibrium is destroyed by a finite plasma resistivity during the skin-time, and further reconnection proceeds in the Rutherford regime. However, realization of such a scenario is unlikely because of the plasmoid instability, which is fast enough to develop before the transition to the Rutherford phase occurs. The suggested analytical theory is entirely different from all previous studies and provides proper interpretation of the presently available numerical simulations of nonlinear forced magnetic reconnection.
Supercurrent in the quantum Hall regime
NASA Astrophysics Data System (ADS)
Wei, Ming-Tso; Amet, François; Ke, Chung-Ting; Borzenets, Ivan; Wang, Jiyingmei; Watanabe, Keji; Taniguchi, Takashi; Deacon, Russell; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb
Combining superconductivity and the quantum Hall (QH) effect is a promising route for creating new types of topological excitations. Despite this potential, signatures of superconductivity in the quantum Hall regime remain scarce, and a superconducting current through a QH weak link has so far eluded experimental observation. Here we demonstrate the existence of a novel type of Josephson coupling through a QH region at magnetic fields as high as 2 Tesla. The supercurrent is mediated by states encompassing QH edge channels, which are flowing on opposite sides of the sample. The edges are coupled together by the hybrid electron-hole modes at the interfaces between the QH region and the superconducting contacts. These chiral modes, which share some features with Majorana modes, are formed when electron and hole edge states are mixed by the superconductor.
Environment Flow Assessment with Flow Regime Transition
NASA Astrophysics Data System (ADS)
Su, J.; Ho, C. C.; Chang, L. C.
2015-12-01
To avoid worsen river and estuarine ecosystems cause by overusing water resources, environmental flows conservation is applied to reduce the impact of river environment. Environmental flows refer to water provided within a river, wetland or coastal zone to sustain ecosystems and benefits to human wellbeing. Environment flow assessment is now widely accepted that a naturally variable flow regime, rather than just a minimum low flow. In this study, we propose four methods, experience method, Tenant method, hydraulic method and habitat method to assess the environmental flow of base flow, flush flow and overbank flow with different discharge, frequency and occurrence period. Dahan River has been chosen as a case to demonstrate the assessment mechanism. The alternatives impact analysis of environment and human water used provides a reference for stakeholders when holding an environmental flow consultative meeting.
Alumina strength degradation in the elastic regime
Furnish, M.D.; Chhabildas, L.C.
1997-08-01
Measurements of Kanel et. al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic limit (HEL) relax over a time span of microseconds after initial loading. Failure (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study the authors have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime.
Different spreading regimes of spray-flames
NASA Astrophysics Data System (ADS)
Suard, Sylvain; Haldenwang, Pierre; Nicoli, Colette
2004-05-01
We present a minimal model of spray combustion to investigate a flame front propagating through a fuel-lean mixture of fuel vapor, droplets and air. The model relies on a main control parameter, Da, named the Damkoehler number, which allows us to take into account a large variety of fuel sprays. Numerical results reveal, as a function of Da, a wide range of spray-flame structures, including the classical gaseous premixed flame, a specific regime controlled by vaporisation, and a pulsating mode of propagation. The latter appears when the vaporisation is smaller than (or equal to) the reaction time, and it occurs even with a unit Lewis number. To cite this article: S. Suard et al., C. R. Mecanique 332 (2004).
Evolution of the water regime of Phobos
Fanale, F.P.; Salvail, J.R. )
1990-12-01
In the present model of Phobos water regime evolution, a time-dependent solar insolation is influenced by both decreasing solar output over geologic time and the Mars and Phobos cycles of eccentricity and obliquity, which vary over 100,000-1,000,000 year time scales. The results presented address model cases which assume (1) a homogeneous distribution of water ice, and (2) a driving of water ice toward the surface by the internal thermal gradient near the poles. A two-dimensional model is used to compute temperatures, heat and vapor fluxes, and ice removal/deposition rates, for the case of uniform ice distribution throughout Phobos. The results obtained indicate that a substantial amount of vapor is produced within 1 km of the surface. 15 refs.
Late Quaternary fire regimes of Australasia
NASA Astrophysics Data System (ADS)
Mooney, S. D.; Harrison, S. P.; Bartlein, P. J.; Daniau, A.-L.; Stevenson, J.; Brownlie, K. C.; Buckman, S.; Cupper, M.; Luly, J.; Black, M.; Colhoun, E.; D'Costa, D.; Dodson, J.; Haberle, S.; Hope, G. S.; Kershaw, P.; Kenyon, C.; McKenzie, M.; Williams, N.
2011-01-01
We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5-14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard-Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.
Precipitation Efficiency in the Tropical Deep Convective Regime
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K.-M.; Lau, William K. M. (Technical Monitor)
2001-01-01
Precipitation efficiency in the tropical deep convective regime is analyzed based on a 2-D cloud resolving simulation. The cloud resolving model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. Precipitation efficiency may be defined as a ratio of surface rain rate to sum of surface evaporation and moisture convergence (LSPE) or a ratio of surface rain rate to sum of condensation and deposition rates of supersaturated vapor (CMPE). Moisture budget shows that the atmosphere is moistened (dryed) when the LSPE is less (more) than 100 %. The LSPE could be larger than 100 % for strong convection. This indicates that the drying processes should be included in cumulus parameterization to avoid moisture bias. Statistical analysis shows that the sum of the condensation and deposition rates is bout 80 % of the sum of the surface evaporation rate and moisture convergence, which ads to proportional relation between the two efficiencies when both efficiencies are less han 100 %. The CMPE increases with increasing mass-weighted mean temperature and creasing surface rain rate. This suggests that precipitation is more efficient for warm environment and strong convection. Approximate balance of rates among the condensation, deposition, rain, and the raindrop evaporation is used to derive an analytical solution of the CMPE.
Social mobility and health in European countries: Does welfare regime type matter?
Campos-Matos, Inês; Kawachi, Ichiro
2015-10-01
Health inequalities pose an important public health challenge in European countries, for which increased social mobility has been suggested as a cause. We sought to describe how the relationship between health inequalities and social mobility varies among welfare regime types in the European region. Data from six rounds of the European Social Survey was analyzed using multilevel statistical techniques, stratified by welfare regime type, including 237,535 individuals from 136 countries. Social mobility among individuals was defined according to the discrepancy between parental and offspring educational attainment. For each welfare regime type, the association between social mobility and self-rated health was examined using odds ratios and risk differences, controlling for parental education. Upwardly mobile individuals had between 23 and 44% lower odds of reporting bad or very bad self-rated health when compared to those who remained stable. On an absolute scale, former USSR countries showed the biggest and only significant differences for upward movement, while Scandinavian countries showed the smallest. Downward social mobility tended to be associated with worse health, but the results were less consistent. Upward social mobility is associated with worse health in all European welfare regime types. However, in Scandinavian countries the association of upward mobility was smaller, suggesting that the Nordic model is more effective in mitigating the impact of social mobility on health and/or of health on mobility. PMID:26318213
Critical slowing down associated with regime shifts in the US housing market
NASA Astrophysics Data System (ADS)
Tan, James Peng Lung; Cheong, Siew Siew Ann
2014-02-01
Complex systems are described by a large number of variables with strong and nonlinear interactions. Such systems frequently undergo regime shifts. Combining insights from bifurcation theory in nonlinear dynamics and the theory of critical transitions in statistical physics, we know that critical slowing down and critical fluctuations occur close to such regime shifts. In this paper, we show how universal precursors expected from such critical transitions can be used to forecast regime shifts in the US housing market. In the housing permit, volume of homes sold and percentage of homes sold for gain data, we detected strong early warning signals associated with a sequence of coupled regime shifts, starting from a Subprime Mortgage Loans transition in 2003-2004 and ending with the Subprime Crisis in 2007-2008. Weaker signals of critical slowing down were also detected in the US housing market data during the 1997-1998 Asian Financial Crisis and the 2000-2001 Technology Bubble Crisis. Backed by various macroeconomic data, we propose a scenario whereby hot money flowing back into the US during the Asian Financial Crisis fueled the Technology Bubble. When the Technology Bubble collapsed in 2000-2001, the hot money then flowed into the US housing market, triggering the Subprime Mortgage Loans transition in 2003-2004 and an ensuing sequence of transitions. We showed how this sequence of couple transitions unfolded in space and in time over the whole of US.
Spontaneous quasi single helicity regimes in EXTRAP T2R reversed-field pinch
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Menmuir, S.; Cecconello, M.
2007-11-01
In recent years, good progress toward a better understanding and control of the plasma performance in reversed-field pinch devices has been made. These improvements consist both of the discovery of spontaneous plasma regimes, termed the quasi single helicity (QSH) regime, in which part of the plasma core is no longer stochastic, and of the development of techniques for active control of plasma instabilities. In this paper, a systematic study of spontaneous QSH in the EXTRAP T2R device [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] is presented. In this device, QSH states can occur spontaneously and it is associated with magnetic and thermal structures. A statistical analysis to determine the most favorable experimental conditions to have a transition to the QSH regime will be presented. The results described here are useful to understand the underlying properties of QSH regimes in view of future applications of the QSH active control in EXTRAP T2R; they are also important to have a comparison with the QSH studied in other devices.
Social mobility and health in European countries: Does welfare regime type matter?
Campos-Matos, Inês; Kawachi, Ichiro
2015-10-01
Health inequalities pose an important public health challenge in European countries, for which increased social mobility has been suggested as a cause. We sought to describe how the relationship between health inequalities and social mobility varies among welfare regime types in the European region. Data from six rounds of the European Social Survey was analyzed using multilevel statistical techniques, stratified by welfare regime type, including 237,535 individuals from 136 countries. Social mobility among individuals was defined according to the discrepancy between parental and offspring educational attainment. For each welfare regime type, the association between social mobility and self-rated health was examined using odds ratios and risk differences, controlling for parental education. Upwardly mobile individuals had between 23 and 44% lower odds of reporting bad or very bad self-rated health when compared to those who remained stable. On an absolute scale, former USSR countries showed the biggest and only significant differences for upward movement, while Scandinavian countries showed the smallest. Downward social mobility tended to be associated with worse health, but the results were less consistent. Upward social mobility is associated with worse health in all European welfare regime types. However, in Scandinavian countries the association of upward mobility was smaller, suggesting that the Nordic model is more effective in mitigating the impact of social mobility on health and/or of health on mobility.
Statistical insight: a review.
Vardell, Emily; Garcia-Barcena, Yanira
2012-01-01
Statistical Insight is a database that offers the ability to search across multiple sources of data, including the federal government, private organizations, research centers, and international intergovernmental organizations in one search. Two sample searches on the same topic, a basic and an advanced, were conducted to evaluate the database.
Pilot Class Testing: Statistics.
ERIC Educational Resources Information Center
Washington Univ., Seattle. Washington Foreign Language Program.
Statistics derived from test score data from the pilot classes participating in the Washington Foreign Language Program are presented in tables in this report. An index accompanies the tables, itemizing the classes by level (FLES, middle, and high school), grade test, language skill, and school. MLA-Coop test performances for each class were…
Statistical Reasoning over Lunch
ERIC Educational Resources Information Center
Selmer, Sarah J.; Bolyard, Johnna J.; Rye, James A.
2011-01-01
Students in the 21st century are exposed daily to a staggering amount of numerically infused media. In this era of abundant numeric data, students must be able to engage in sound statistical reasoning when making life decisions after exposure to varied information. The context of nutrition can be used to engage upper elementary and middle school…
Selected Outdoor Recreation Statistics.
ERIC Educational Resources Information Center
Bureau of Outdoor Recreation (Dept. of Interior), Washington, DC.
In this recreational information report, 96 tables are compiled from Bureau of Outdoor Recreation programs and surveys, other governmental agencies, and private sources. Eight sections comprise the document: (1) The Bureau of Outdoor Recreation, (2) Federal Assistance to Recreation, (3) Recreation Surveys for Planning, (4) Selected Statistics of…
ASURV: Astronomical SURVival Statistics
NASA Astrophysics Data System (ADS)
Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.
2014-06-01
ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.
Statistics for Learning Genetics
ERIC Educational Resources Information Center
Charles, Abigail Sheena
2012-01-01
This study investigated the knowledge and skills that biology students may need to help them understand statistics/mathematics as it applies to genetics. The data are based on analyses of current representative genetics texts, practicing genetics professors' perspectives, and more directly, students' perceptions of, and performance in,…
Spitball Scatterplots in Statistics
ERIC Educational Resources Information Center
Wagaman, John C.
2012-01-01
This paper describes an active learning idea that I have used in my applied statistics class as a first lesson in correlation and regression. Students propel spitballs from various standing distances from the target and use the recorded data to determine if the spitball accuracy is associated with standing distance and review the algebra of lines…
Geopositional Statistical Methods
NASA Technical Reports Server (NTRS)
Ross, Kenton
2006-01-01
RMSE based methods distort circular error estimates (up to 50% overestimation). The empirical approach is the only statistically unbiased estimator offered. Ager modification to Shultz approach is nearly unbiased, but cumbersome. All methods hover around 20% uncertainty (@ 95% confidence) for low geopositional bias error estimates. This requires careful consideration in assessment of higher accuracy products.
ERIC Educational Resources Information Center
Akram, Muhammad; Siddiqui, Asim Jamal; Yasmeen, Farah
2004-01-01
In order to learn the concept of statistical techniques one needs to run real experiments that generate reliable data. In practice, the data from some well-defined process or system is very costly and time consuming. It is difficult to run real experiments during the teaching period in the university. To overcome these difficulties, statisticians…
Education Statistics Quarterly, 2003.
ERIC Educational Resources Information Center
Marenus, Barbara; Burns, Shelley; Fowler, William; Greene, Wilma; Knepper, Paula; Kolstad, Andrew; McMillen Seastrom, Marilyn; Scott, Leslie
2003-01-01
This publication provides a comprehensive overview of work done across all parts of the National Center for Education Statistics (NCES). Each issue contains short publications, summaries, and descriptions that cover all NCES publications and data products released in a 3-month period. Each issue also contains a message from the NCES on a timely…
Analogies for Understanding Statistics
ERIC Educational Resources Information Center
Hocquette, Jean-Francois
2004-01-01
This article describes a simple way to explain the limitations of statistics to scientists and students to avoid the publication of misleading conclusions. Biologists examine their results extremely critically and carefully choose the appropriate analytic methods depending on their scientific objectives. However, no such close attention is usually…
Statistical Significance Testing.
ERIC Educational Resources Information Center
McLean, James E., Ed.; Kaufman, Alan S., Ed.
1998-01-01
The controversy about the use or misuse of statistical significance testing has become the major methodological issue in educational research. This special issue contains three articles that explore the controversy, three commentaries on these articles, an overall response, and three rejoinders by the first three authors. They are: (1)…
Statistical Mechanics of Infinite Gravitating Systems
NASA Astrophysics Data System (ADS)
Saslaw, William C.
2008-01-01
The cosmological many-body problem was stated over 300 years ago, but its solution is quite recent and still incomplete. Imagine an infinite expanding universe essentially containing a very large number of objects moving in response to their mutual gravitational forces. What will be the spatial and velocity distributions of these objects and how will they evolve? This question fascinates on many levels. Though inherently non-linear, it turns out to be one of the few analytically solvable problems of statistical mechanics with long range forces. The partition function can be calculated. From this all the thermodynamic properties of the system can be obtained for the grand canonical ensemble. They confirm results derived independently directly from the first and second laws of thermodynamics. The behavior of infinite gravitating systems is quite different from their finite relations such as star clusters. Infinite gravitating systems have regimes of negative specific heat, an unusual type of phase transition, and a very close relation to the observed large-scale structure of our universe. This last feature provides an additional astronomical motivation, especially since the statistical mechanics may be generalized to include effects of dark matter haloes around galaxies. Previously the cosmological many-body problem has mostly been studied using the BBGKY hierarchy (not so suitable in the non-linear regime) and by direct computer integrations of the objects' orbits. The statistical mechanics agrees with and substantially extends these earlier results. Most astrophysicists had previously thought that a statistical thermodynamic approach would not be applicable because: a) many-body gravitational systems have no rigorous equilibrium state, b) the unshielded nature of the long-range force would cause the partition function to diverge on large scales, and c) point masses would produce divergences on small scales. However, deeper considerations show that these are not
NASA Astrophysics Data System (ADS)
Maccone, C.
In this paper is provided the statistical generalization of the Fermi paradox. The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book Habitable planets for man (1964). The statistical generalization of the original and by now too simplistic Dole equation is provided by replacing a product of ten positive numbers by the product of ten positive random variables. This is denoted the SEH, an acronym standing for “Statistical Equation for Habitables”. The proof in this paper is based on the Central Limit Theorem (CLT) of Statistics, stating that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable (Lyapunov form of the CLT). It is then shown that: 1. The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the log- normal distribution. By construction, the mean value of this log-normal distribution is the total number of habitable planets as given by the statistical Dole equation. 2. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into the SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. 3. By applying the SEH it is shown that the (average) distance between any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. This distance is denoted by new random variable D. The relevant probability density function is derived, which was named the "Maccone distribution" by Paul Davies in
The Statistical Drake Equation
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2010-12-01
We provide the statistical generalization of the Drake equation. From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven positive random variables. We call this "the Statistical Drake Equation". The mathematical consequences of this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov Form of the CLT, or the Lindeberg Form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that: The new random variable N, yielding the number of communicating civilizations in the Galaxy, follows the LOGNORMAL distribution. Then, as a consequence, the mean value of this lognormal distribution is the ordinary N in the Drake equation. The standard deviation, mode, and all the moments of this lognormal N are also found. The seven factors in the ordinary Drake equation now become seven positive random variables. The probability distribution of each random variable may be ARBITRARY. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary probability distribution for each factor. This is both physically realistic and practically very useful, of course. An application of our statistical Drake equation then follows. The (average) DISTANCE between any two neighboring and communicating civilizations in the Galaxy may be shown to be inversely proportional to the cubic root of N. Then, in our approach, this distance becomes a new random variable. We derive the relevant probability density
Statistical properties of chaotic dynamical systems which exhibit strange attractors
Jensen, R.V.; Oberman, C.R.
1981-07-01
A path integral method is developed for the calculation of the statistical properties of turbulent dynamical systems. The method is applicable to conservative systems which exhibit a transition to stochasticity as well as dissipative systems which exhibit strange attractors. A specific dissipative mapping is considered in detail which models the dynamics of a Brownian particle in a wave field with a broad frequency spectrum. Results are presented for the low order statistical moments for three turbulent regimes which exhibit strange attractors corresponding to strong, intermediate, and weak collisional damping.
Nock, Richard; Nielsen, Frank
2004-11-01
This paper explores a statistical basis for a process often described in computer vision: image segmentation by region merging following a particular order in the choice of regions. We exhibit a particular blend of algorithmics and statistics whose segmentation error is, as we show, limited from both the qualitative and quantitative standpoints. This approach can be efficiently approximated in linear time/space, leading to a fast segmentation algorithm tailored to processing images described using most common numerical pixel attribute spaces. The conceptual simplicity of the approach makes it simple to modify and cope with hard noise corruption, handle occlusion, authorize the control of the segmentation scale, and process unconventional data such as spherical images. Experiments on gray-level and color images, obtained with a short readily available C-code, display the quality of the segmentations obtained.
Modeling cosmic void statistics
NASA Astrophysics Data System (ADS)
Hamaus, Nico; Sutter, P. M.; Wandelt, Benjamin D.
2016-10-01
Understanding the internal structure and spatial distribution of cosmic voids is crucial when considering them as probes of cosmology. We present recent advances in modeling void density- and velocity-profiles in real space, as well as void two-point statistics in redshift space, by examining voids identified via the watershed transform in state-of-the-art ΛCDM n-body simulations and mock galaxy catalogs. The simple and universal characteristics that emerge from these statistics indicate the self-similarity of large-scale structure and suggest cosmic voids to be among the most pristine objects to consider for future studies on the nature of dark energy, dark matter and modified gravity.
Statistical evaluation of forecasts
NASA Astrophysics Data System (ADS)
Mader, Malenka; Mader, Wolfgang; Gluckman, Bruce J.; Timmer, Jens; Schelter, Björn
2014-08-01
Reliable forecasts of extreme but rare events, such as earthquakes, financial crashes, and epileptic seizures, would render interventions and precautions possible. Therefore, forecasting methods have been developed which intend to raise an alarm if an extreme event is about to occur. In order to statistically validate the performance of a prediction system, it must be compared to the performance of a random predictor, which raises alarms independent of the events. Such a random predictor can be obtained by bootstrapping or analytically. We propose an analytic statistical framework which, in contrast to conventional methods, allows for validating independently the sensitivity and specificity of a forecasting method. Moreover, our method accounts for the periods during which an event has to remain absent or occur after a respective forecast.
Journey Through Statistical Mechanics
NASA Astrophysics Data System (ADS)
Yang, C. N.
2013-05-01
My first involvement with statistical mechanics and the many body problem was when I was a student at The National Southwest Associated University in Kunming during the war. At that time Professor Wang Zhu-Xi had just come back from Cambridge, England, where he was a student of Fowler, and his thesis was on phase transitions, a hot topic at that time, and still a very hot topic today...
Statistical Methods in Cosmology
NASA Astrophysics Data System (ADS)
Verde, L.
2010-03-01
The advent of large data-set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists rely on data where a host of useful information is enclosed, but is encoded in a non-trivial way. The challenges in extracting this information must be overcome to make the most of a large experimental effort. Even after having converged to a standard cosmological model (the LCDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from it, the number of parameters is even larger. Dealing with such a high dimensional parameter space and finding parameters constraints is a challenge on itself. Cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, cosmologists in many cases want to find out, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, sophisiticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those.
NASA Astrophysics Data System (ADS)
Talkner, Peter
2003-07-01
The statistical properties of the transitions of a discrete Markov process are investigated in terms of entrance times. A simple formula for their density is given and used to measure the synchronization of a process with a periodic driving force. For the McNamara-Wiesenfeld model of stochastic resonance we find parameter regions in which the transition frequency of the process is locked with the frequency of the external driving.
1979 DOE statistical symposium
Gardiner, D.A.; Truett T.
1980-09-01
The 1979 DOE Statistical Symposium was the fifth in the series of annual symposia designed to bring together statisticians and other interested parties who are actively engaged in helping to solve the nation's energy problems. The program included presentations of technical papers centered around exploration and disposal of nuclear fuel, general energy-related topics, and health-related issues, and workshops on model evaluation, risk analysis, analysis of large data sets, and resource estimation.
Guta, Madalin; Butucea, Cristina
2010-10-15
The notion of a U-statistic for an n-tuple of identical quantum systems is introduced in analogy to the classical (commutative) case: given a self-adjoint 'kernel' K acting on (C{sup d}){sup '}x{sup r} with r
Statistical Inference at Work: Statistical Process Control as an Example
ERIC Educational Resources Information Center
Bakker, Arthur; Kent, Phillip; Derry, Jan; Noss, Richard; Hoyles, Celia
2008-01-01
To characterise statistical inference in the workplace this paper compares a prototypical type of statistical inference at work, statistical process control (SPC), with a type of statistical inference that is better known in educational settings, hypothesis testing. Although there are some similarities between the reasoning structure involved in…
Chi-squared and C statistic minimization for low count per bin data. [sampling in X ray astronomy
NASA Technical Reports Server (NTRS)
Nousek, John A.; Shue, David R.
1989-01-01
Results are presented from a computer simulation comparing two statistical fitting techniques on data samples with large and small counts per bin; the results are then related specifically to X-ray astronomy. The Marquardt and Powell minimization techniques are compared by using both to minimize the chi-squared statistic. In addition, Cash's C statistic is applied, with Powell's method, and it is shown that the C statistic produces better fits in the low-count regime than chi-squared.
Statistical modeling approach for detecting generalized synchronization
NASA Astrophysics Data System (ADS)
Schumacher, Johannes; Haslinger, Robert; Pipa, Gordon
2012-05-01
Detecting nonlinear correlations between time series presents a hard problem for data analysis. We present a generative statistical modeling method for detecting nonlinear generalized synchronization. Truncated Volterra series are used to approximate functional interactions. The Volterra kernels are modeled as linear combinations of basis splines, whose coefficients are estimated via l1 and l2 regularized maximum likelihood regression. The regularization manages the high number of kernel coefficients and allows feature selection strategies yielding sparse models. The method's performance is evaluated on different coupled chaotic systems in various synchronization regimes and analytical results for detecting m:n phase synchrony are presented. Experimental applicability is demonstrated by detecting nonlinear interactions between neuronal local field potentials recorded in different parts of macaque visual cortex.
Level statistics for quantum Hall systems
NASA Astrophysics Data System (ADS)
Kagalovsky, V.; Horovitz, B.; Avishai, Y.
2005-03-01
Level statistics for two classes of disordered systems at criticality are analyzed in terms of different realizations of the Chalker-Coddington network model. These include: 1) Re-examination of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the quantum Hall effect, where it is shown that after proper local unfolding the nearest-neighbor spacing distribution (NNSD) at the critical energy follows the Wigner surmise for Gaussian unitary ensembles (GUE). 2) Quasi-particles in disordered superconductors with broken time reversal and spin rotation invariance (in the language of random matrix theory this system is a representative of symmetry class D in the classification scheme of Altland and Zirnbauer). Here again the NNSD obeys the Wigner surmise for GUE, reflecting therefore only "basic" discrete symmetries of the system (time reversal violation) and ignoring particle-hole symmetries and other finer details (criticality). In the localized regime level repulsion is suppressed.
Statistical Mechanics and Thermodynamics of Viral Evolution
NASA Astrophysics Data System (ADS)
Jones, Barbara; Kaufman, James
Using methods drawn from physics we study the life cycle of viruses. We analyze a model of viral infection and evolution using the ``grand canonical ensemble'' and formalisms from statistical mechanics and thermodynamics. Using this approach we determine possible genetic states of a model virus and host as a function of two independent pressures-immune response and system temperature. We show the system has a real thermodynamic temperature, and discover a new phase transition between a positive temperature regime of normal replication and a negative temperature ``disordered'' phase of the virus. We distinguish this from previous observations of a phase transition that arises as a function of mutation rate. From an evolutionary biology point of view, at steady state the viruses naturally evolve to distinct quasispecies. The approach used here could be refined to apply to real biological systems, perhaps providing insight into immune escape, the emergence of novel pathogens and other results of viral evolution.
CSDP: The seismology of continental thermal regimes
Aki, K.
1990-05-01
This is a progress report for the past one year of research (year 3 of 5-year project) under the project titled CSDP: Seismology of Continental Thermal Regime'', in which we proposed to develop seismological interpretation theory and methods applicable to complex structures encountered in continental geothermal areas and apply them to several candidate sites for the Continental Scientific Drilling Project. The past year has been extremely productive especially in the area of interpretation theory, including the following two major break-throughs. One is the derivation of an integral equation for time-dependent power spectra, which unified all the existing theories on seismic scattering (including the radiative transfer theory for total energy and single and multiple scattering theories based on the ray approach) and offers more complete and economical solutions to the problems of seismic scattering and attenuation. The other is the new formula for synthetic seismograms for layered media with irregular interfaces, combining the T-matrix method for an arbitrary shaped inclusion and the method of global generalized reflection/transmission coefficients for layered media. Both breakthroughs will enable us to deal with seismic observations in complex earth structures more efficiently and accurately. In the area of experimental studies, we discovered seismic guided waves trapped in the San Andreas fault near Parkfield, California. 54 refs., 14 figs.
Global fishery prospects under contrasting management regimes.
Costello, Christopher; Ovando, Daniel; Clavelle, Tyler; Strauss, C Kent; Hilborn, Ray; Melnychuk, Michael C; Branch, Trevor A; Gaines, Steven D; Szuwalski, Cody S; Cabral, Reniel B; Rader, Douglas N; Leland, Amanda
2016-05-01
Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous-the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world's fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch, $53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. Our results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits.
Global fishery prospects under contrasting management regimes
Costello, Christopher; Ovando, Daniel; Clavelle, Tyler; Strauss, C. Kent; Hilborn, Ray; Melnychuk, Michael C.; Branch, Trevor A.; Gaines, Steven D.; Szuwalski, Cody S.; Cabral, Reniel B.; Rader, Douglas N.; Leland, Amanda
2016-01-01
Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous—the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world’s fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch, $53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. Our results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits. PMID:27035953
RF Profile Control for Sustained Plasma Regimes
NASA Astrophysics Data System (ADS)
Hosea, J.; Bernabei, S.; Leblanc, B.; Majeski, R.; Menard, J.; Ono, M.; Phillips, C. K.; Schilling, G.; Wilson, J. R.
1999-11-01
For advancing plasma operation regimes for AT tokamaks and steady state concepts, as well as for forming and sustaining alternate concepts, it is necessary to provide control of the spatial profiles for the important plasma parameters - pressure, current, etc.. RF techniques offer considerable promise for providing this control and should be further developed as rapidly as possible within the well established tokamak program for forming a basis for application to all confinement concepts. Notably, IBW promises to provide internal transport barrier control if the coupling physics can be understood and efficient antenna coupling to the Bernstein wave can be developed. We will review the IBW experience and discuss possible explanations and solutions for the coupling problems encountered. In particular, the competing roles of parametric decay instability and surface mode excitation will be examined in order to elucidate the increase in surface power losses for the larger devices DIII-D and TFTR. Also, issues which need to be understood for employing ICRF and LH techniques to best advantage, such as antenna bombardment and energetic electron excitation, respectively, will be outlined.
Global fishery prospects under contrasting management regimes.
Costello, Christopher; Ovando, Daniel; Clavelle, Tyler; Strauss, C Kent; Hilborn, Ray; Melnychuk, Michael C; Branch, Trevor A; Gaines, Steven D; Szuwalski, Cody S; Cabral, Reniel B; Rader, Douglas N; Leland, Amanda
2016-05-01
Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous-the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world's fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch, $53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. Our results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits. PMID:27035953
Cluster analysis of multiple planetary flow regimes
NASA Technical Reports Server (NTRS)
Mo, Kingtse; Ghil, Michael
1987-01-01
A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.
Regime shifts in models of dryland vegetation.
Zelnik, Yuval R; Kinast, Shai; Yizhaq, Hezi; Bel, Golan; Meron, Ehud
2013-12-13
Drylands are pattern-forming systems showing self-organized vegetation patchiness, multiplicity of stable states and fronts separating domains of alternative stable states. Pattern dynamics, induced by droughts or disturbances, can result in desertification shifts from patterned vegetation to bare soil. Pattern formation theory suggests various scenarios for such dynamics: an abrupt global shift involving a fast collapse to bare soil, a gradual global shift involving the expansion and coalescence of bare-soil domains and an incipient shift to a hybrid state consisting of stationary bare-soil domains in an otherwise periodic pattern. Using models of dryland vegetation, we address the question of which of these scenarios can be realized. We found that the models can be split into two groups: models that exhibit multiplicity of periodic-pattern and bare-soil states, and models that exhibit, in addition, multiplicity of hybrid states. Furthermore, in all models, we could not identify parameter regimes in which bare-soil domains expand into vegetated domains. The significance of these findings is that, while models belonging to the first group can only exhibit abrupt shifts, models belonging to the second group can also exhibit gradual and incipient shifts. A discussion of open problems concludes the paper.
Regime shifts in models of dryland vegetation.
Zelnik, Yuval R; Kinast, Shai; Yizhaq, Hezi; Bel, Golan; Meron, Ehud
2013-01-01
Drylands are pattern-forming systems showing self-organized vegetation patchiness, multiplicity of stable states and fronts separating domains of alternative stable states. Pattern dynamics, induced by droughts or disturbances, can result in desertification shifts from patterned vegetation to bare soil. Pattern formation theory suggests various scenarios for such dynamics: an abrupt global shift involving a fast collapse to bare soil, a gradual global shift involving the expansion and coalescence of bare-soil domains and an incipient shift to a hybrid state consisting of stationary bare-soil domains in an otherwise periodic pattern. Using models of dryland vegetation, we address the question of which of these scenarios can be realized. We found that the models can be split into two groups: models that exhibit multiplicity of periodic-pattern and bare-soil states, and models that exhibit, in addition, multiplicity of hybrid states. Furthermore, in all models, we could not identify parameter regimes in which bare-soil domains expand into vegetated domains. The significance of these findings is that, while models belonging to the first group can only exhibit abrupt shifts, models belonging to the second group can also exhibit gradual and incipient shifts. A discussion of open problems concludes the paper.
Flow regimes in a trapped vortex cell
NASA Astrophysics Data System (ADS)
Lasagna, D.; Iuso, G.
2016-03-01
This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.
NASA Technical Reports Server (NTRS)
Taylor, Patrick C.; Kato, Seiji; Xu, Kuan-Man; Cai, Ming
2015-01-01
Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and mid-tropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.
NASA Astrophysics Data System (ADS)
Jucker Riva, Matteo; Schwilch, Gudrun; Liniger, Hanspeter
2015-04-01
Regime shifts, defined as a radical and persistent reconfiguration of an ecosystem following a disturbance, have been acknowledged by scientists as a very important aspect of the dynamic of ecosystems. However, their consideration in land management planning remains marginal and limited to specific processes and systems. Current research focuses on mathematical modeling and statistical analysis of spatio-temporal data for specific environmental variables. These methods do not fulfill the needs of land managers, who are confronted with a multitude of processes and pressure types and require clear and simple strategies to prevent regime shift or to increase the resilience of their environment. The EU-FP7 CASCADE project is looking at regime shifts of dryland ecosystems in southern Europe and specifically focuses on rangeland and forest systems which are prone to various land degradation threats. One of the aims of the project is to evaluate the impact of different management practices on the dynamic of the environment in a participatory manner, including a multi-stakeholder evaluation of the state of the environment and of the management potential. To achieve this objective we have organized several stakeholder meetings and we have compiled a review of management practices using the WOCAT methodology, which enables merging scientific and land users knowledge. We highlight here the main challenges we have encountered in applying the notion of regime shift to real world socio-ecological systems and in translating related concepts such as tipping points, stable states, hysteresis and resilience to land managers, using concrete examples from CASCADE study sites. Secondly, we explore the advantages of including land users' knowledge in the scientific understanding of regime shifts. Moreover, we discuss useful alternative concepts and lessons learnt that will allow us to build a participatory method for the assessment of resilient management practices in specific socio
Kato, Seiji; Xu, Kuan‐Man; Cai, Ming
2015-01-01
Abstract Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice‐cloud relationship in the Arctic using a satellite footprint‐level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A‐Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest‐magnitude cloud‐sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near‐surface static stability is found at larger sea ice concentrations.
NASA Astrophysics Data System (ADS)
Litzow, Michael A.; Hobday, Alistair J.; Frusher, Stewart D.; Dann, Peter; Tuck, Geoffrey N.
2016-02-01
The ability to detect ecological regime shifts in a data-limited setting was investigated, using southeast Australian ecosystems as a model. Community variability was summarized for 1968-2008 with the first two principal components (PCs) of recruitment estimates for six fish stocks and reproductive parameters for four seabird species; regional climate was summarized for 1953-2008 with the first two PCs for three parameters (sea surface temperature [SST], sea surface salinity, surface nitrate) measured at two stations; and basin-scale climate variability was summarized for 1950-2012 with mean South Pacific SST and the first two PCs of detrended South Pacific SST. The first two biology PCs explained 45% of total community variability. The first two PCs of basin-scale SST showed abrupt shifts similar to "regime" behavior observed in other ocean basins, and the first PC of basin-scale SST showed significant covariation with the first PC of regional climate. Together, these results are consistent with the strong community variability and decadal-scale red noise climatic variability associated with Northern Hemisphere regime shifts. However, statistical model selection showed that the first two PCs of regional climate and the first PC of biology time series all exhibited linear change, rather than abrupt shifts. This result is consistent with previous studies documenting rapid linear change in the climate and biology of southeast Australian shelf ecosystems, and we conclude that there is no evidence for regime shift behavior in the region's ecology. However, analysis of a large set of previously-published biological time series from the North Pacific (n = 64) suggests that studies using fewer than ∼30 biological time series, such as this one, may be unable to detect regime shifts. Thus we conclude that the nature of ecological variability in the region cannot be determined with available data. The development of additional long-term biological observations is needed
NASA Astrophysics Data System (ADS)
Bringi, V. N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W. L.; Schoenhuber, M.
2003-01-01
The application of polarimetric radar data to the retrieval of raindrop size distribution parameters and rain rate in samples of convective and stratiform rain types is presented. Data from the Colorado State University (CSU), CHILL, NCAR S-band polarimetric (S-Pol), and NASA Kwajalein radars are analyzed for the statistics and functional relation of these parameters with rain rate. Surface drop size distribution measurements using two different disdrometers (2D video and RD-69) from a number of climatic regimes are analyzed and compared with the radar retrievals in a statistical and functional approach. The composite statistics based on disdrometer and radar retrievals suggest that, on average, the two parameters (generalized intercept and median volume diameter) for stratiform rain distributions lie on a straight line with negative slope, which appears to be consistent with variations in the microphysics of stratiform precipitation (melting of larger, dry snow particles versus smaller, rimed ice particles). In convective rain, `maritime-like' and `continental-like' clusters could be identified in the same two-parameter space that are consistent with the different multiplicative coefficients in the Z = aR1.5 relations quoted in the literature for maritime and continental regimes.
Statistical design for microwave systems
NASA Technical Reports Server (NTRS)
Cooke, Roland; Purviance, John
1991-01-01
This paper presents an introduction to statistical system design. Basic ideas needed to understand statistical design and a method for implementing statistical design are presented. The nonlinear characteristics of the system amplifiers and mixers are accounted for in the given examples. The specification of group delay, signal-to-noise ratio and output power are considered in these statistical designs.
Experimental Mathematics and Computational Statistics
Bailey, David H.; Borwein, Jonathan M.
2009-04-30
The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.
Analysis of weather condition influencing fire regime in Italy
NASA Astrophysics Data System (ADS)
Bacciu, Valentina; Masala, Francesco; Salis, Michele; Sirca, Costantino; Spano, Donatella
2014-05-01
Fires have a crucial role within Mediterranean ecosystems, with both negative and positive impacts on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In addition, several authors are in agreement suggesting that, during the past decades, changes on fire patterns have occurred, especially in terms of fire-prone areas expansion and fire season lengthening. Climate and weather are two of the main controlling agents, directly and indirectly, of fire regime influencing vegetation productivity, causing water stress, igniting fires through lightning, or modulating fire behavior through wind. On the other hand, these relationships could be not warranted in areas where most ignitions are caused by people (Moreno et al. 2009). Specific analyses of the driving forces of fire regime across countries and scales are thus still required in order to better anticipate fire seasons and also to advance our knowledge of future fire regimes. The objective of this work was to improve our knowledge of the relative effects of several weather variables on forest fires in Italy for the period 1985-2008. Meteorological data were obtained through the MARS (Monitoring Agricultural Resources) database, interpolated at 25x25 km scale. Fire data were provided by the JRC (Join Research Center) and the CFVA (Corpo Forestale e di Vigilanza Ambientale, Sardinia). A hierarchical cluster analysis, based on fire and weather data, allowed the identification of six homogeneous areas in terms of fire occurrence and climate (pyro-climatic areas). Two statistical techniques (linear and non-parametric models) were applied in order to assess if inter-annual variability in weather pattern and fire events had a significant trend. Then, through correlation analysis and multi-linear regression modeling, we investigated the
NASA Technical Reports Server (NTRS)
1995-01-01
NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.
NASA Technical Reports Server (NTRS)
1994-01-01
Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.
NASA Technical Reports Server (NTRS)
1996-01-01
This booklet of pocket statistics includes the 1996 NASA Major Launch Record, NASA Procurement, Financial, and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Luanch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.
Who Needs Statistics? | Poster
You may know the feeling. You have collected a lot of new data on an important experiment. Now you are faced with multiple groups of data, a sea of numbers, and a deadline for submitting your paper to a peer-reviewed journal. And you are not sure which data are relevant, or even the best way to present them. The statisticians at Data Management Services (DMS) know how to help. This small group of experts provides a wide array of statistical and mathematical consulting services to the scientific community at NCI at Frederick and NCI-Bethesda.
Statistical physics and ecology
NASA Astrophysics Data System (ADS)
Volkov, Igor
This work addresses the applications of the methods of statistical physics to problems in population ecology. A theoretical framework based on stochastic Markov processes for the unified neutral theory of biodiversity is presented and an analytical solution for the distribution of the relative species abundance distribution both in the large meta-community and in the small local community is obtained. It is shown that the framework of the current neutral theory in ecology can be easily generalized to incorporate symmetric density dependence. An analytically tractable model is studied that provides an accurate description of beta-diversity and exhibits novel scaling behavior that leads to links between ecological measures such as relative species abundance and the species area relationship. We develop a simple framework that incorporates the Janzen-Connell, dispersal and immigration effects and leads to a description of the distribution of relative species abundance, the equilibrium species richness, beta-diversity and the species area relationship, in good accord with data. Also it is shown that an ecosystem can be mapped into an unconventional statistical ensemble and is quite generally tuned in the vicinity of a phase transition where bio-diversity and the use of resources are optimized. We also perform a detailed study of the unconventional statistical ensemble, in which, unlike in physics, the total number of particles and the energy are not fixed but bounded. We show that the temperature and the chemical potential play a dual role: they determine the average energy and the population of the levels in the system and at the same time they act as an imbalance between the energy and population ceilings and the corresponding average values. Different types of statistics (Boltzmann, Bose-Einstein, Fermi-Dirac and one corresponding to the description of a simple ecosystem) are considered. In all cases, we show that the systems may undergo a first or a second order
International petroleum statistics report
1995-10-01
The International Petroleum Statistics Report is a monthly publication that provides current international oil data. This report presents data on international oil production, demand, imports, exports and stocks. The report has four sections. Section 1 contains time series data on world oil production, and on oil demand and stocks in the Organization for Economic Cooperation and Development (OECD). Section 2 presents an oil supply/demand balance for the world, in quarterly intervals for the most recent two years. Section 3 presents data on oil imports by OECD countries. Section 4 presents annual time series data on world oil production and oil stocks, demand, and trade in OECD countries.
NASA Technical Reports Server (NTRS)
Freilich, M. H.; Pawka, S. S.
1987-01-01
The statistics of Sxy estimates derived from orthogonal-component measurements are examined. Based on results of Goodman (1957), the probability density function (pdf) for Sxy(f) estimates is derived, and a closed-form solution for arbitrary moments of the distribution is obtained. Characteristic functions are used to derive the exact pdf of Sxy(tot). In practice, a simple Gaussian approximation is found to be highly accurate even for relatively few degrees of freedom. Implications for experiment design are discussed, and a maximum-likelihood estimator for a posterior estimation is outlined.
Kumar, Sunil; Singh, S. V.; Pandey, Priyanka; Kumar, Narendra; Hooda, O. K.
2016-01-01
Aim: The objective of this study was designed to estimate the metabolic heat production and methane emission in Sahiwal and Karan Fries (Holstein-Friesian X Tharparkar) heifers under two different feeding regimes, i.e., feeding regime-1 as per the National Research Council (NRC) (2001) and feeding regime-2 having 15% higher energy (supplementation of molasses) than NRC (2001). Materials and Methods: Six (n = 6) healthy heifers of Sahiwal and Karan Fries with 18-24 months of age were selected from Indian Council of Agricultural Research-National Dairy Research Institute, Karnal. An initial 15 days was maintained under feeding regime-1 and feeding regime-2 as adaptation period; actual experiment was conducted from 16th day onward for next 15 days. At the end of feeding regimes (on day 15th and 16th), expired air and volume were collected in Douglas bag for two consecutive days (morning [6:00 am] and evening [4:00 pm]). The fraction of methane and expired air volume were measured by methane analyzer and wet test meter, respectively. The oxygen consumption and carbon dioxide production were measured by iWorx LabScribe2. Results: The heat production (kcal/day) was significantly (p<0.05) higher in feeding regime-2 as compared to feeding regimen-1 in both breeds. The heat production per unit metabolic body weight was numerically higher in feeding regime-1 than feeding regime-2; however, the values were found statistically non-significant (p>0.05). The energy loss as methane (%) from total heat production was significantly (p<0.05) higher in feeding regime-1. The body weight (kg), metabolic body weight (W0.75), and basal metabolic rate (kcal/kg0.75) were significantly (p<0.05) higher in feeding regime-2 in both breeds. Conclusions: This study indicates that higher energy diet by supplementing molasses may reduce energy loss as methane and enhance the growth of Sahiwal and Karan Fries heifers. PMID:27284226
The seismology of geothermal regimes. Final report
Aki, K.
1997-04-01
The authors have been developing seismological interpretation theory and methods applicable to complex structures encountered in geothermal areas for a better understanding of the earth`s geothermal regimes. The questions the y have addressed in their research may be summarized as ``What is going on in the earth`s crust under tectonically active regions; what are the structures and processes responsible for such activities as earthquakes and volcanic eruptions; and how can one capture their essence effectively by means of seismological studies?`` First, the authors found clear evidence for localization of scattered seismic energy in the deep magmatic system of the volcano on the island of Reunion in the Indian Ocean. The seismic coda of local earthquakes show concentrated energy in the intrusive zones as late as 30 to 40 seconds after the origin time. This offers a very effective method for defining a zone of strong heterogeneity on a regional scale, complementary to the high resolution study using trapped modes as pursued in the past project. Secondly, the authors identified about 700 long-period events with various frequencies and durations from the data collected during the past 5 years which included three episodes of eruption. They are applying a finite-element method to the simplest event with the longest period and the shortest duration in order to find the location, geometry and physical properties of their source deterministically. The preliminary result described here suggests that their sources may be a horizontally lying magma-filled crack at a shallow depth under the summit area. In addition to the above work on the Reunion data, they have continued the theoretical and observational studies of attenuation and scattering of seismic waves.
CSDP: Seismology of continental thermal regime
Aki, K.
1989-04-01
This is a progress report for the past one year of research (year 2 of 5-year project) under the project titled CSDP: Seismology of Continental Thermal Regime'', in which we proposed to develop seismological interpretation theory and methods applicable to complex structures encountered in continental geothermal areas and apply them to several candidate sites for the Continental Scientific Drilling Project. During the past year, two Ph.D. thesis works were completed under the present project. One is a USC thesis on seismic wave propagation in anisotropic media with application to defining fractures in the earth. The other is a MIT thesis on seismic Q and velocity structure for the magma-hydrothermal system of the Valles Caldera, New Mexico. The P.I. co-organized the first International Workshop on Volcanic Seismology at Capri, Italy in October 1988, and presented the keynote paper on the state-of-art of volcanic seismology''. We presented another paper at the workshop on Assorted Seismic Signals from Kilauea Volcano, Hawaii. Another international meeting, namely, the Chapman Conference on seismic anisotropy in the earth's crust at Berkeley, California in May 1988, was co-organized by the co-P.I. (P.C.L), and we presented our work on seismic waves in heterogeneous and anisotropic media. Adding the publications and presentations made in the past year to the list for the preceding year, the following table lists 21 papers published, submitted or presented in the past two years of the present project. 65 refs., 334 figs., 1 tab.
Fragile entanglement statistics
NASA Astrophysics Data System (ADS)
Brody, Dorje C.; Hughston, Lane P.; Meier, David M.
2015-10-01
If X and Y are independent, Y and Z are independent, and so are X and Z, one might be tempted to conclude that X, Y, and Z are independent. But it has long been known in classical probability theory that, intuitive as it may seem, this is not true in general. In quantum mechanics one can ask whether analogous statistics can emerge for configurations of particles in certain types of entangled states. The explicit construction of such states, along with the specification of suitable sets of observables that have the purported statistical properties, is not entirely straightforward. We show that an example of such a configuration arises in the case of an N-particle GHZ state, and we are able to identify a family of observables with the property that the associated measurement outcomes are independent for any choice of 2,3,\\ldots ,N-1 of the particles, even though the measurement outcomes for all N particles are not independent. Although such states are highly entangled, the entanglement turns out to be ‘fragile’, i.e. the associated density matrix has the property that if one traces out the freedom associated with even a single particle, the resulting reduced density matrix is separable.
Statistical clumped isotope signatures.
Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G
2016-08-18
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.
International petroleum statistics report
1997-05-01
The International Petroleum Statistics Report is a monthly publication that provides current international oil data. This report is published for the use of Members of Congress, Federal agencies, State agencies, industry, and the general public. Publication of this report is in keeping with responsibilities given the Energy Information Administration in Public Law 95-91. The International Petroleum Statistics Report presents data on international oil production, demand, imports, and stocks. The report has four sections. Section 1 contains time series data on world oil production, and on oil demand and stocks in the Organization for Economic Cooperation and Development (OECD). This section contains annual data beginning in 1985, and monthly data for the most recent two years. Section 2 presents an oil supply/demand balance for the world. This balance is presented in quarterly intervals for the most recent two years. Section 3 presents data on oil imports by OECD countries. This section contains annual data for the most recent year, quarterly data for the most recent two quarters, and monthly data for the most recent twelve months. Section 4 presents annual time series data on world oil production and oil stocks, demand, and trade in OECD countries. World oil production and OECD demand data are for the years 1970 through 1995; OECD stocks from 1973 through 1995; and OECD trade from 1985 through 1995.
Statistical clumped isotope signatures
Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
[Comment on] Statistical discrimination
NASA Astrophysics Data System (ADS)
Chinn, Douglas
In the December 8, 1981, issue of Eos, a news item reported the conclusion of a National Research Council study that sexual discrimination against women with Ph.D.'s exists in the field of geophysics. Basically, the item reported that even when allowances are made for motherhood the percentage of female Ph.D.'s holding high university and corporate positions is significantly lower than the percentage of male Ph.D.'s holding the same types of positions. The sexual discrimination conclusion, based only on these statistics, assumes that there are no basic psychological differences between men and women that might cause different populations in the employment group studied. Therefore, the reasoning goes, after taking into account possible effects from differences related to anatomy, such as women stopping their careers in order to bear and raise children, the statistical distributions of positions held by male and female Ph.D.'s ought to be very similar to one another. Any significant differences between the distributions must be caused primarily by sexual discrimination.
Statistical clumped isotope signatures
NASA Astrophysics Data System (ADS)
Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.
2016-08-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.
Statistical clumped isotope signatures.
Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
Sufficient Statistics: an Example
NASA Technical Reports Server (NTRS)
Quirein, J.
1973-01-01
The feature selection problem is considered resulting from the transformation x = Bz where B is a k by n matrix of rank k and k is or = to n. Such a transformation can be considered to reduce the dimension of each observation vector z, and in general, such a transformation results in a loss of information. In terms of the divergence, this information loss is expressed by the fact that the average divergence D sub B computed using variable x is less than or equal to the average divergence D computed using variable z. If D sub B = D, then B is said to be a sufficient statistic for the average divergence D. If B is a sufficient statistic for the average divergence, then it can be shown that the probability of misclassification computed using variable x (of dimension k is or = to n) is equal to the probability of misclassification computed using variable z. Also included is what is believed to be a new proof of the well known fact that D is or = to D sub B. Using the techniques necessary to prove the above fact, it is shown that the Brattacharyya distance as measured by variable x is less than or equal to the Brattacharyya distance as measured by variable z.
ERIC Educational Resources Information Center
Perepiczka, Michelle; Chandler, Nichelle; Becerra, Michael
2011-01-01
Statistics plays an integral role in graduate programs. However, numerous intra- and interpersonal factors may lead to successful completion of needed coursework in this area. The authors examined the extent of the relationship between self-efficacy to learn statistics and statistics anxiety, attitude towards statistics, and social support of 166…
Jones, M L
1989-11-01
Duplicates of six commonly used orthodontic instruments were allocated to four groups. One of the groups of instruments was stored as a control. The three other groups were exposed to different regimes of sterilization or cold disinfection over an extended period. Twenty characteristics of function, corrosion, and appearance were then judged by four observers twice using a visual analogue scale of 100 units. No statistical evidence was found of routine autoclaving causing more damage to pliers than cold disinfection; in fact, the data suggested the contrary. Chrome plated pliers appeared more resistant to damage and maintained their appearance better than stainless steel pliers.
Henri, P.; Califano, F.; Pegoraro, F.; Faganello, M.
2012-07-15
The understanding of the dynamics at play at the Earth's Magnetopause, the boundary separating the Earth's magnetosphere and the solar wind plasmas, is of primary importance for space plasma modeling. We focus our attention on the low latitude flank of the magnetosphere where the velocity shear between the magnetosheath and the magnetospheric plasmas is the energetic source of Kelvin-Helmholtz instability. On the shoulder of the resulting vortex chain, different secondary instabilities are at play depending on the local plasma parameters and compete with the vortex pairing process. Most important, secondary instabilities, among other magnetic reconnection, control the plasma mixing as well as the entry of solar wind plasma in the magnetosphere. We make use of a two-fluid model, including the Hall term and the electron mass in the generalized Ohm's law, to study the 2D non-linear evolution of the Kelvin-Helmholtz instability at the magnetosheath-magnetosphere interface, in the intermediate regime between subsonic and supersonic regimes. We study the saturation mechanisms, depending on the density jump across the shear layer and the magnetic field strength in the plane. In the presence of a weak in-plane magnetic field, the dynamics of the Kelvin-Helmholtz rolled-up vortices self-consistently generates thin current sheets where reconnection instability eventually enables fast reconnection to develop. Such a system enables to study guide field multiple-island collisionless magnetic reconnection as embedded in a large-scale dynamic system, unlike the classical static, ad hoc reconnection setups. In this regime, reconnection is shown to inhibit the vortex pairing process. This study provides a clear example of nonlinear, cross-scale, collisionless plasma dynamics.
FISHER INFORMATION AS A METRIC FOR SUSTAINABLE REGIMES
The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. We propose Fisher Information as a metric for the sustainability of dynamic regimes in complex systems. The quantity now known ...
A Tale of Two Regimes: Instrumentality and Commons Access
ERIC Educational Resources Information Center
Toly, Noah J.
2005-01-01
Technical developments have profound social and environmental impacts. Both are observed in the implications of regimes of instrumentality for commons access regimes. Establishing social, material, ecological, intellectual, and moral infrastructures, technologies are partly constitutive of commons access and may militate against governance…
Global regime shift dynamics of catastrophic sea urchin overgrazing
Ling, S. D.; Scheibling, R. E.; Rassweiler, A.; Johnson, C. R.; Shears, N.; Connell, S. D.; Salomon, A. K.; Norderhaug, K. M.; Pérez-Matus, A.; Hernández, J. C.; Clemente, S.; Blamey, L. K.; Hereu, B.; Ballesteros, E.; Sala, E.; Garrabou, J.; Cebrian, E.; Zabala, M.; Fujita, D.; Johnson, L. E.
2015-01-01
A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.
Extractive Regimes: Toward a Better Understanding of Indonesian Development
ERIC Educational Resources Information Center
Gellert, Paul K.
2010-01-01
This article proposes the concept of an extractive regime to understand Indonesia's developmental trajectory from 1966 to 1998. The concept contributes to world-systems, globalization, and commodity-based approaches to understanding peripheral development. An extractive regime is defined by its reliance on extraction of multiple natural resources…
Disciplinary Regimes of "Care" and Complementary Alternative Education
ERIC Educational Resources Information Center
Thomson, Pat; Pennacchia, Jodie
2016-01-01
In schools, the notion of "care" is often synonymous with welfare and disciplinary regimes. Drawing on Foucault, and a study of alternative education (AE) across the UK, and looking in depth at two cases of complementary AE, we identify three types of disciplinary regimes at work in schools: (1) dominant performative reward and…
FISHER INFORMATION AS A METRIC FOR SUSTAINABLE SYSTEM REGIMES
The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. We propose Fisher Information as a metric for the sustainability of dynamic regimes in complex systems. The quantity now known ...
Plasma Physics Regimes in Tokamaks with Li Walls
L.E. Zakharo; N.N. Gorelenkov; R.B. White; S.I. Krasheninnikov; G.V. Pereverzev
2003-08-21
Low recycling regimes with a plasma limited by a lithium wall surface suggest enhanced stability and energy confinement, both necessary for tokamak reactors. These regimes could make ignition feasible in compact tokamaks. Ignited Spherical Tokamaks (IST), self-sufficient in the bootstrap current, are introduced as a necessary step for development of the physics and technology of power reactors.
Detection and Assessment of Ecosystem Regime Shifts from Fisher Information
Ecosystem regime shifts, which are long-term system reorganizations, have profound implications for sustainability. There is a great need for indicators of regime shifts, particularly methods that are applicable to data from real systems. We have developed a form of Fisher info...
Bargaining among Nations: Culture, History, and Perceptions in Regime Formation.
ERIC Educational Resources Information Center
Lipschutz, Ronnie D.
1991-01-01
The formation of regimes (collective international schemes) for managing global problems depends on culture, history, and perceptions. The ways in which these elements affect bargaining among nations over issues of the global commons are discussed. Implications are reviewed for a regime to deal with atmospheric conditions and global warming. (SLD)
Identifying different regimes in eruptive activity: An application to Etna volcano
NASA Astrophysics Data System (ADS)
Mulargia, F.; Gasperini, P.; Tinti, S.
1987-12-01
The objective identification of different regimes in the eruptive time-history of a volcano is crucial to the understanding of its physics. While a problem well-known in statistical literature under the name of change-point or scan-point problem, no method of general applicability exists for the identification of different regimes in a time-series. In particular, the available techniques seem unsuitable to the volcanological case. We developed an original procedure based on two-sample Kolmogorov-Smirnov statistics which offers satisfactory accuracy in a broad range of conditions with a minimum of assumptions and is expressly tailored to the study of geophysical phenomena. Our procedure requires neither the a priori knowledge of the number of regimes nor of the statistical distributions governing the whole process, which can be of different type. The parent distribution of each regime is inferred through a goodness-of-fit test, and this in turn allows the confidence intervals for each of the change-points identified to be estimated by numerical simulation. This procedure is applied to the eruptive history of Mount Etna volcano. Available data allow the analysis of flank eruptions in the period 1600-1980, while the total output (summit and flank activity) can be studied only in the period 1971-1981. Information on eruptive history can be therefore obtained at two different timescales. Since no univocally accepted catalog exists except for the last few decades, we use two different sets of data, which practically exhaust all the available information. The results are interpreted by a stability analysis, and only stable results are retained. Our analysis yields that: - The inter-event times of flank eruptions in the period 1600-1980 follow two regimes before and after year 1865, while the eruptive activity in the period 1971-1981 follows four different regimes. In each regime eruptions occur according to a Poisson process and Etna behaves as a random nonstationary
Flow regimes in a single dimple on the channel surface
NASA Astrophysics Data System (ADS)
Kovalenko, G. V.; Terekhov, V. I.; Khalatov, A. A.
2010-12-01
The boundaries of the domains of existence of flow regimes past single dimples made as spherical segments on a flat plate are determined with the use of available experimental results. Regimes of a diffuser-confuser flow, a horseshoe vortex, and a tornado-like vortex in the dimple are considered. Neither a horseshoe vortex nor a tornado-like vortex is observed in dimples with the relative depth smaller than 0.1. Transformations from the diffuser-confuser flow regime to the horseshoe vortex regime and from the horseshoe vortex flow to the tornado-like vortex flow are found to depend not only on the Reynolds number, but also on the relative depth of the spherical segment. Dependences for determining the boundaries of the regime existence domains are proposed, and parameters at which the experimental results can be generalized are given.
Monitoring and diagnostics systems for nuclear power plant operating regimes
Abagyan, A.A.; Dmitriev, V.M.; Klebanov, L.A.; Kroshilin, A.E.; Larin, E.P.; Morozov, S.K.
1988-05-01
The development of new monitoring and diagnostics systems for Soviet reactors is discussed. An experimental test station is described where industrial operation of new experimental systems can be conducted for purposes of bringing their performance to the level of standard Soviet systems for monitoring reactor operation regimes and equipment resources. The requirements and parameters of the systems are described on a unit-by-unit basis, including the sensor reading monitoring unit, the vibroacoustic monitoring unit, the noise monitoring unit, the accident regime identification unit, and the nonstationary regime monitoring unit. Computer hardware and software requirements are discussed. The results of calculational and experimental research on two complex nonstationary regimes of reactor operation are given. The accident regimes identification unit for the VVER-1000 is analyzed in detail.
NASA Astrophysics Data System (ADS)
Talkner, Peter
2003-03-01
The statistical properties of discrete Markov processes are investigated in terms of entrance times. Simple relations are given for their density and higher order distributions. These quantities are used for introducing a generalized Rice phase and for characterizing the synchronization of a process with an external driving force. For the McNamara Wiesenfeld model of stochastic resonance parameter regions (spanned by the noise strength, driving frequency and strength) are identified in which the process is locked with the frequency of the external driving and in which the diffusion of the Rice phase becomes minimal. At the same time the Fano factor of the number of entrances per period of the driving force has a minimum.
Dienes, J.K.
1983-01-01
An alternative to the use of plasticity theory to characterize the inelastic behavior of solids is to represent the flaws by statistical methods. We have taken such an approach to study fragmentation because it offers a number of advantages. Foremost among these is that, by considering the effects of flaws, it becomes possible to address the underlying physics directly. For example, we have been able to explain why rocks exhibit large strain-rate effects (a consequence of the finite growth rate of cracks), why a spherical explosive imbedded in oil shale produces a cavity with a nearly square section (opening of bedding cracks) and why propellants may detonate following low-speed impact (a consequence of frictional hot spots).
Conditional statistical model building
NASA Astrophysics Data System (ADS)
Hansen, Mads Fogtmann; Hansen, Michael Sass; Larsen, Rasmus
2008-03-01
We present a new statistical deformation model suited for parameterized grids with different resolutions. Our method models the covariances between multiple grid levels explicitly, and allows for very efficient fitting of the model to data on multiple scales. The model is validated on a data set consisting of 62 annotated MR images of Corpus Callosum. One fifth of the data set was used as a training set, which was non-rigidly registered to each other without a shape prior. From the non-rigidly registered training set a shape prior was constructed by performing principal component analysis on each grid level and using the results to construct a conditional shape model, conditioning the finer parameters with the coarser grid levels. The remaining shapes were registered with the constructed shape prior. The dice measures for the registration without prior and the registration with a prior were 0.875 +/- 0.042 and 0.8615 +/- 0.051, respectively.
Statistical design controversy
Evans, L.S.; Hendrey, G.R.; Thompson, K.H.
1985-02-01
This article was in response to criticisms received by Evans, Hendrey, and Thompson that their article was biased because of omissions and misrepresentations. The authors contend that experimental designs having only one plot per treatment ''were, from the outset, not capable of differentiating between treatment effects and field-position effects,'' remains valid and is supported by decades of agronomic research. Several men, Irving, Troiano, and McCune thought of the article as a review of all studies of acidic rain effects on soybeans. It was not. The article was written over the concern of the comparisons which were being made among studies which purport to evaluate effects of acid deposition on field-grown crops, and implicitly assumes that all of the studies are of equal scientific value. They are not. Only experimental approaches that are well-focused and designed with appropriate agronomic and statistical procedures should be used for credible regional and national assessments of crop inventories. 12 references.
Rossell, David
2016-01-01
Big Data brings unprecedented power to address scientific, economic and societal issues, but also amplifies the possibility of certain pitfalls. These include using purely data-driven approaches that disregard understanding the phenomenon under study, aiming at a dynamically moving target, ignoring critical data collection issues, summarizing or preprocessing the data inadequately and mistaking noise for signal. We review some success stories and illustrate how statistical principles can help obtain more reliable information from data. We also touch upon current challenges that require active methodological research, such as strategies for efficient computation, integration of heterogeneous data, extending the underlying theory to increasingly complex questions and, perhaps most importantly, training a new generation of scientists to develop and deploy these strategies. PMID:27722040
Statistical physics ""Beyond equilibrium
Ecke, Robert E
2009-01-01
The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.
Human influence on California fire regimes
Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B.
2007-01-01
Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the
Human influence on California fire regimes.
Syphard, Alexandra D; Radeloff, Volker C; Keeley, Jon E; Hawbaker, Todd J; Clayton, Murray K; Stewart, Susan I; Hammer, Roger B
2007-07-01
Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the
Mercury's thermal evolution and core crystallization regime
NASA Astrophysics Data System (ADS)
Rivoldini, A.; Van Hoolst, T.; Dumberry, M.; Steinle-Neumann, G.
2015-10-01
Unlike the Earth, where the liquid core isentrope is shallower than the core liquidus, at the lower pressures inside Mercury's core the isentrope can be steeper than the melting temperature. As a consequence, upon cooling, the isentrope may first enter a solid stability field near the core mantle boundary and produce ironrich snow that sinks under gravity and produces buoyant upwellings of iron depleted fluid. Similar to bottom up crystallization, crystallization initiated near the top might generate sufficient buoyancy flux to drive magnetic field generation by compositional convection.In this study we model Mercury's thermal evolution by taking into account the formation of iron-rich snow to assess when the conditions for an internally magnetic field can be satisfied. We employ a thermodynamic consistent description of the iron high-pressure phase diagram and thermoelastic properties of iron alloys as well as the most recent data about the thermal conductivity of core materials. We use a 1-dimensional parametrized thermal evolution model in the stagnant lid regime for the mantle (e.g. [1]) that is coupled to the core. The model for the mantle takes into account the formation of the crust due to melting at depth. Mantle convection is driven by heat producing radioactive elements, heat loss from secular cooling and from the heat supplied by the core. The heat generated inside the core is mainly provided from secular cooling, from the latent heat released at iron freezing, and from gravitational energy resulting form the release of light elements at the inner core-outer core boundary as well as from the sinking of iron-rich snow and subsequent upwellings of light elements in the snow zone. If the heat flow out of the core is smaller than the heat transported along the core isentrope a thermal boundary will from at the top of the outer core. To determine the extension of the convecting region inside the liquid core we calculate the convective power [2]. Finally, we
NASA Astrophysics Data System (ADS)
Oueslati, Boutheina; Bellon, Gilles
2013-05-01
The atmospheric general circulation models ARPEGE-climate and LMDz are used in an aquaplanet configuration to study the response of a zonally symmetric atmosphere to a range of sea surface temperature (SST) forcing. We impose zonally-symmetric SST distributions that are also symmetric about the equator, with varying off-equatorial SST gradients. In both models, we obtain the characteristic inter-tropical convergence zone (ITCZ) splitting that separates two regimes of equilibrium (in terms of precipitations): one with one ITCZ over the equator for large SST gradients in the tropics, and one with a double ITCZ for small tropical SST gradients. Transition between these regimes is mainly driven by changes in the low-level convergence that are forced by the SST gradients. Model-dependent, dry and moist feedbacks intervene to reinforce or weaken the effect of the SST forcing. In ARPEGE, dry advective processes reinforce the SST forcing, while a competition between sensible heat flux and convective cooling provides a complex feedback on the SST forcing in the LMDz. It is suggested that these feedbacks influence the location of the transition in the parameter range.
Akbaba, Ugur; Sahin, Yusuf; Türkez, Hasan
2012-10-01
In this investigation, the elemental composition of various Antep pistachios (Pistacia vera L.) samples was determined using a sensitive method called wavelength dispersive x-ray fluorescence (WDXRF). A total of 27 elements, such as Al, As, Bi, Ca, Cd, Cu, Fe, Mn, Ni, P, S, Sr, Zn, Cl, Pb, K, Mg, Na, Ba, Rb, Si, Br, Sn, Au, La, Ti and Zr, were determined in pistachios samples (n = 10) grown under organic and conventional farming regimes. The obtained results from each group were analyzed statistically using SPSS statistic program. It was observed that the concentration and peak intensity values of Ca, Fe, Mn, P, Mg, Cl, Na and K elements were higher in the pistachios samples grown under organic farming regime. Similarly, Al was found in higher level in the samples grown under conventional farming regime. As, Bi, Cd, Pb, Ti, La, Sn and Zr contents were measured. Their contents were below the detection limits. Our findings clearly revealed that organic pistachios are likely to have higher nutritional mineral content. The pistachios samples grown under conventional farming regime could contain harmful metals like Al that might damage various systems and/or organs of humans and animals.
Wide Wide World of Statistics: International Statistics on the Internet.
ERIC Educational Resources Information Center
Foudy, Geraldine
2000-01-01
Explains how to find statistics on the Internet, especially international statistics. Discusses advantages over print sources, including convenience, currency of information, cost effectiveness, and value-added formatting; sources of international statistics; United Nations agencies; search engines and power searching; and evaluating sources. (LRW)
Understanding Statistics and Statistics Education: A Chinese Perspective
ERIC Educational Resources Information Center
Shi, Ning-Zhong; He, Xuming; Tao, Jian
2009-01-01
In recent years, statistics education in China has made great strides. However, there still exists a fairly large gap with the advanced levels of statistics education in more developed countries. In this paper, we identify some existing problems in statistics education in Chinese schools and make some proposals as to how they may be overcome. We…
Statistical Literacy: Developing a Youth and Adult Education Statistical Project
ERIC Educational Resources Information Center
Conti, Keli Cristina; Lucchesi de Carvalho, Dione
2014-01-01
This article focuses on the notion of literacy--general and statistical--in the analysis of data from a fieldwork research project carried out as part of a master's degree that investigated the teaching and learning of statistics in adult education mathematics classes. We describe the statistical context of the project that involved the…
Wella-Hewage, Chathurika Subhashini; Alankarage Hewa, Guna; Pezzaniti, David
2016-01-01
Increased stormwater runoff and pollutant loads due to catchment urbanisation bring inevitable impacts on the physical and ecological conditions of environmentally sensitive urban streams. Water sensitive urban design (WSUD) has been recognised as a possible means to minimise these negative impacts. This paper reports on a study that investigated the ability of infiltration-based WSUD systems to replicate the predevelopment channel-forming flow (CFF) regime in urban catchments. Catchment models were developed for the 'pre-urban', 'urban' and 'managed' conditions of a case study catchment and the hydrological effect on CFF regime was investigated using a number of flow indices. The results clearly show that changes to flow regime are apparent under urban catchment conditions and are even more severe under highly urbanised conditions. The use of WSUD systems was found to result in the replication of predevelopment flow regimes, particularly at low levels of urbanisation. Under highly urbanised conditions (of managed catchments) overcontrol of the CFF indices was observed as indicated by flow statistics below their pre-urban values. The overall results suggest that WSUD systems are highly effective in replicating the predevelopment CFF regime in urban streams and could be used as a means to protect environmentally sensitive urban streams.
Wella-Hewage, Chathurika Subhashini; Alankarage Hewa, Guna; Pezzaniti, David
2016-01-01
Increased stormwater runoff and pollutant loads due to catchment urbanisation bring inevitable impacts on the physical and ecological conditions of environmentally sensitive urban streams. Water sensitive urban design (WSUD) has been recognised as a possible means to minimise these negative impacts. This paper reports on a study that investigated the ability of infiltration-based WSUD systems to replicate the predevelopment channel-forming flow (CFF) regime in urban catchments. Catchment models were developed for the 'pre-urban', 'urban' and 'managed' conditions of a case study catchment and the hydrological effect on CFF regime was investigated using a number of flow indices. The results clearly show that changes to flow regime are apparent under urban catchment conditions and are even more severe under highly urbanised conditions. The use of WSUD systems was found to result in the replication of predevelopment flow regimes, particularly at low levels of urbanisation. Under highly urbanised conditions (of managed catchments) overcontrol of the CFF indices was observed as indicated by flow statistics below their pre-urban values. The overall results suggest that WSUD systems are highly effective in replicating the predevelopment CFF regime in urban streams and could be used as a means to protect environmentally sensitive urban streams. PMID:26744937
Continued warming could transform Greater Yellowstone fire regimes by mid-21st century.
Westerling, Anthony L; Turner, Monica G; Smithwick, Erica A H; Romme, William H; Ryan, Michael G
2011-08-01
Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated by conifer forests and characterized by infrequent, high-severity fire. We developed a suite of statistical models that related monthly climate data (1972-1999) to the occurrence and size of fires >200 ha in the northern Rocky Mountains; these models were cross-validated and then used with downscaled (~12 km × 12 km) climate projections from three global climate models to predict fire occurrence and area burned in the GYE through 2099. All models predicted substantial increases in fire by midcentury, with fire rotation (the time to burn an area equal to the landscape area) reduced to <30 y from the historical 100-300 y for most of the GYE. Years without large fires were common historically but are expected to become rare as annual area burned and the frequency of regionally synchronous fires increase. Our findings suggest a shift to novel fire-climate-vegetation relationships in Greater Yellowstone by midcentury because fire frequency and extent would be inconsistent with persistence of the current suite of conifer species. The predicted new fire regime would transform the flora, fauna, and ecosystem processes in this landscape and may indicate similar changes for other subalpine forests.
Continued warming could transform Greater Yellowstone fire regimes by mid-21st century.
Westerling, Anthony L; Turner, Monica G; Smithwick, Erica A H; Romme, William H; Ryan, Michael G
2011-08-01
Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated by conifer forests and characterized by infrequent, high-severity fire. We developed a suite of statistical models that related monthly climate data (1972-1999) to the occurrence and size of fires >200 ha in the northern Rocky Mountains; these models were cross-validated and then used with downscaled (~12 km × 12 km) climate projections from three global climate models to predict fire occurrence and area burned in the GYE through 2099. All models predicted substantial increases in fire by midcentury, with fire rotation (the time to burn an area equal to the landscape area) reduced to <30 y from the historical 100-300 y for most of the GYE. Years without large fires were common historically but are expected to become rare as annual area burned and the frequency of regionally synchronous fires increase. Our findings suggest a shift to novel fire-climate-vegetation relationships in Greater Yellowstone by midcentury because fire frequency and extent would be inconsistent with persistence of the current suite of conifer species. The predicted new fire regime would transform the flora, fauna, and ecosystem processes in this landscape and may indicate similar changes for other subalpine forests. PMID:21788495
Heart Disease and Stroke Statistics
... Nutrition (PDF) Obesity (PDF) Peripheral Artery Disease (PDF) ... statistics, please contact the American Heart Association National Center, Office of Science & Medicine at statistics@heart.org . Please direct all ...
Muscular Dystrophy: Data and Statistics
... Statistics Recommend on Facebook Tweet Share Compartir MD STAR net Data and Statistics The following data and ... research [ Read Article ] For more information on MD STAR net see Research and Tracking . Key Findings Feature ...
A robust method for estimating optimal treatment regimes.
Zhang, Baqun; Tsiatis, Anastasios A; Laber, Eric B; Davidian, Marie
2012-12-01
A treatment regime is a rule that assigns a treatment, among a set of possible treatments, to a patient as a function of his/her observed characteristics, hence "personalizing" treatment to the patient. The goal is to identify the optimal treatment regime that, if followed by the entire population of patients, would lead to the best outcome on average. Given data from a clinical trial or observational study, for a single treatment decision, the optimal regime can be found by assuming a regression model for the expected outcome conditional on treatment and covariates, where, for a given set of covariates, the optimal treatment is the one that yields the most favorable expected outcome. However, treatment assignment via such a regime is suspect if the regression model is incorrectly specified. Recognizing that, even if misspecified, such a regression model defines a class of regimes, we instead consider finding the optimal regime within such a class by finding the regime that optimizes an estimator of overall population mean outcome. To take into account possible confounding in an observational study and to increase precision, we use a doubly robust augmented inverse probability weighted estimator for this purpose. Simulations and application to data from a breast cancer clinical trial demonstrate the performance of the method. PMID:22550953
Estimating Optimal Treatment Regimes from a Classification Perspective
Tsiatis, Anastasios A.; Davidian, Marie; Zhang, Min; Laber, Eric
2013-01-01
A treatment regime maps observed patient characteristics to a recommended treatment. Recent technological advances have increased the quality, accessibility, and volume of patient-level data; consequently, there is a growing need for powerful and flexible estimators of an optimal treatment regime that can be used with either observational or randomized clinical trial data. We propose a novel and general framework that transforms the problem of estimating an optimal treatment regime into a classification problem wherein the optimal classifier corresponds to the optimal treatment regime. We show that commonly employed parametric and semi-parametric regression estimators, as well as recently proposed robust estimators of an optimal treatment regime can be represented as special cases within our framework. Furthermore, our approach allows any classification procedure that can accommodate case weights to be used without modification to estimate an optimal treatment regime. This introduces a wealth of new and powerful learning algorithms for use in estimating treatment regimes. We illustrate our approach using data from a breast cancer clinical trial. PMID:23645940
Estimating Optimal Treatment Regimes from a Classification Perspective.
Zhang, Baqun; Tsiatis, Anastasios A; Davidian, Marie; Zhang, Min; Laber, Eric
2012-01-01
A treatment regime maps observed patient characteristics to a recommended treatment. Recent technological advances have increased the quality, accessibility, and volume of patient-level data; consequently, there is a growing need for powerful and flexible estimators of an optimal treatment regime that can be used with either observational or randomized clinical trial data. We propose a novel and general framework that transforms the problem of estimating an optimal treatment regime into a classification problem wherein the optimal classifier corresponds to the optimal treatment regime. We show that commonly employed parametric and semi-parametric regression estimators, as well as recently proposed robust estimators of an optimal treatment regime can be represented as special cases within our framework. Furthermore, our approach allows any classification procedure that can accommodate case weights to be used without modification to estimate an optimal treatment regime. This introduces a wealth of new and powerful learning algorithms for use in estimating treatment regimes. We illustrate our approach using data from a breast cancer clinical trial. PMID:23645940
River flow regimes and vegetation dynamics along a river transect
NASA Astrophysics Data System (ADS)
Doulatyari, Behnam; Basso, Stefano; Schirmer, Mario; Botter, Gianluca
2014-11-01
Ecohydrological processes occurring within fluvial landscapes are strongly affected by natural streamflow variability. In this work the patterns of vegetation biomass in two rivers characterized by contrasting flow regimes were investigated by means of a comprehensive stochastic model which explicitly couples catchment-scale hydroclimatic processes, morphologic attributes of the river transect and in-stream bio-ecological features. The hydrologic forcing is characterized by the probability distribution (pdf) of streamflows and stages resulting from stochastic precipitation dynamics, rainfall-runoff transformation and reach scale morphologic attributes. The model proved able to reproduce the observed pdf of river flows and stages, as well as the pattern of exposure/inundation along the river transect in both regimes. Our results suggest that in persistent regimes characterized by reduced streamflow variability, mean vegetation biomass is chiefly controlled by the pattern of groundwater availability along the transect, leading to a marked transition between aquatic and terrestrial environments. Conversely, erratic regimes ensure wider aquatic-terrestrial zones in which optimal elevation ranges for species with different sensitivity to flooding and access to groundwater are separated. Patterns of mean biomass in erratic regimes were found to be more sensitive to changes in the underlying hydroclimatic conditions, notwithstanding the reduced responsiveness of the corresponding flow regimes. The framework developed highlights the important role played by streamflow regimes in shaping riverine environments, and may eventually contribute to identifying the influence of landscape, climate and morphologic features on in-stream ecological dynamics.
An Examination of the Nature of Global MODIS Cloud Regimes
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.
2014-01-01
We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.
Marine regime shifts: drivers and impacts on ecosystems services
Rocha, J.; Yletyinen, J.; Biggs, R.; Blenckner, T.; Peterson, G.
2015-01-01
Marine ecosystems can experience regime shifts, in which they shift from being organized around one set of mutually reinforcing structures and processes to another. Anthropogenic global change has broadly increased a wide variety of processes that can drive regime shifts. To assess the vulnerability of marine ecosystems to such shifts and their potential consequences, we reviewed the scientific literature for 13 types of marine regime shifts and used networks to conduct an analysis of co-occurrence of drivers and ecosystem service impacts. We found that regime shifts are caused by multiple drivers and have multiple consequences that co-occur in a non-random pattern. Drivers related to food production, climate change and coastal development are the most common co-occurring causes of regime shifts, while cultural services, biodiversity and primary production are the most common cluster of ecosystem services affected. These clusters prioritize sets of drivers for management and highlight the need for coordinated actions across multiple drivers and scales to reduce the risk of marine regime shifts. Managerial strategies are likely to fail if they only address well-understood or data-rich variables, and international cooperation and polycentric institutions will be critical to implement and coordinate action across the scales at which different drivers operate. By better understanding these underlying patterns, we hope to inform the development of managerial strategies to reduce the risk of high-impact marine regime shifts, especially for areas of the world where data are not available or monitoring programmes are not in place.
Toward a Physical Characterization of Raindrop Collision Outcome Regimes
NASA Technical Reports Server (NTRS)
Testik, F. Y.; Barros, Ana P.; Bilven, Francis L.
2011-01-01
A comprehensive raindrop collision outcome regime diagram that delineates the physical conditions associated with the outcome regimes (i.e., bounce, coalescence, and different breakup types) of binary raindrop collisions is proposed. The proposed diagram builds on a theoretical regime diagram defined in the phase space of collision Weber numbers We and the drop diameter ratio p by including critical angle of impact considerations. In this study, the theoretical regime diagram is first evaluated against a comprehensive dataset for drop collision experiments representative of raindrop collisions in nature. Subsequently, the theoretical regime diagram is modified to explicitly describe the dominant regimes of raindrop interactions in (We, p) by delineating the physical conditions necessary for the occurrence of distinct types of collision-induced breakup (neck/filament, sheet, disk, and crown breakups) based on critical angle of impact consideration. Crown breakup is a subtype of disk breakup for lower collision kinetic energy that presents distinctive morphology. Finally, the experimental results are analyzed in the context of the comprehensive collision regime diagram, and conditional probabilities that can be used in the parameterization of breakup kernels in stochastic models of raindrop dynamics are provided.
A κ-generalized statistical mechanics approach to income analysis
NASA Astrophysics Data System (ADS)
Clementi, F.; Gallegati, M.; Kaniadakis, G.
2009-02-01
This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low-middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful.
NASA Astrophysics Data System (ADS)
Verdoolaege, Geert; Van Oost, Guido
2012-10-01
Pattern recognition is becoming an important tool in fusion data analysis. However, fusion diagnostic measurements are often affected by considerable statistical uncertainties, rendering the extraction of useful patterns a significant challenge. Therefore, we assume a probabilistic model for the data and perform pattern recognition in the space of probability distributions. We show the considerable advantage of our method for identifying confinement regimes and edge localized mode behavior, and we discuss the potential for scaling laws.
Verdoolaege, Geert; Van Oost, Guido
2012-10-15
Pattern recognition is becoming an important tool in fusion data analysis. However, fusion diagnostic measurements are often affected by considerable statistical uncertainties, rendering the extraction of useful patterns a significant challenge. Therefore, we assume a probabilistic model for the data and perform pattern recognition in the space of probability distributions. We show the considerable advantage of our method for identifying confinement regimes and edge localized mode behavior, and we discuss the potential for scaling laws.
Thoughts About Theories and Statistics.
Fawcett, Jacqueline
2015-07-01
The purpose of this essay is to share my ideas about the connection between theories and statistics. The essay content reflects my concerns about some researchers' and readers' apparent lack of clarity about what constitutes appropriate statistical testing and conclusions about the empirical adequacy of theories. The reciprocal relation between theories and statistics is emphasized and the conclusion is that statistics without direction from theory is no more than a hobby.
Past and Future Drought Regimes in Turkey
NASA Astrophysics Data System (ADS)
Sen, Burak; Topcu, Sevilay; Turkes, Murat; Sen, Baha
2010-05-01
Climate variability in the 20th century was characterized by apparent precipitation variability at both temporal and spatial scales. In addition to the well-known characteristic seasonal and year-to-year variability, some marked and long-term changes in precipitation occurred in Turkey, particularly after the early 1970s. Drought, originating from a deficiency of precipitation over an extended time period (which is usually a season or more) has become a recurring phenomenon in Turkey in the past few decades. Spatially coherent with the significant drought events since early 1970s, water stress and shortages for all water user sectors have also reached their critical points in Turkey. Analyzing the historical occurrence of drought provides an understanding of the range of climate possibilities for a country, resulting in more informed management decision-making. However, future projections about spatial and temporal changes in drought characteristics such as frequency, intensity and duration can be challenging for developing appropriate mitigation and adaptation strategies. Hence, the objectives of this study are (i) to analyze the spatial and temporal dimensions of historical droughts in Turkey, (2) to predict potential intensity, frequency and duration of droughts in Turkey for the future (2070-2100). The Standardized Precipitation Index (SPI) and the Percent to Normal Index (PNI) have been used to assess the drought characteristics. Rainfall datasets for the reference period, 1960-1990, were acquired from 52 stations (representative of all kinds of regions with different rainfall regimes in the country) of the Turkish State Meteorological Service (TSMS). The future rainfall series for the 2070-2100 period were simulated using a regional climate model (RegCM3) for IPCC's SRESS-A2 scenario conditions. For verification of RegCM3 simulations, the model was performed for the reference period and simulated rainfall data were used for computing two drought indices (SPI
Springer Handbook of Engineering Statistics
NASA Astrophysics Data System (ADS)
Pham, Hoang
The Springer Handbook of Engineering Statistics gathers together the full range of statistical techniques required by engineers from all fields to gain sensible statistical feedback on how their processes or products are functioning and to give them realistic predictions of how these could be improved.
Statistical log analysis made practical
Mitchell, W.K.; Nelson, R.J. )
1991-06-01
This paper discusses the advantages of a statistical approach to log analysis. Statistical techniques use inverse methods to calculate formation parameters. The use of statistical techniques has been limited, however, by the complexity of the mathematics and lengthy computer time required to minimize traditionally used nonlinear equations.
Invention Activities Support Statistical Reasoning
ERIC Educational Resources Information Center
Smith, Carmen Petrick; Kenlan, Kris
2016-01-01
Students' experiences with statistics and data analysis in middle school are often limited to little more than making and interpreting graphs. Although students may develop fluency in statistical procedures and vocabulary, they frequently lack the skills necessary to apply statistical reasoning in situations other than clear-cut textbook examples.…
Explorations in Statistics: the Bootstrap
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2009-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fourth installment of Explorations in Statistics explores the bootstrap. The bootstrap gives us an empirical approach to estimate the theoretical variability among possible values of a sample statistic such as the…
Teaching Statistics Online Using "Excel"
ERIC Educational Resources Information Center
Jerome, Lawrence
2011-01-01
As anyone who has taught or taken a statistics course knows, statistical calculations can be tedious and error-prone, with the details of a calculation sometimes distracting students from understanding the larger concepts. Traditional statistics courses typically use scientific calculators, which can relieve some of the tedium and errors but…
Statistics Anxiety and Instructor Immediacy
ERIC Educational Resources Information Center
Williams, Amanda S.
2010-01-01
The purpose of this study was to investigate the relationship between instructor immediacy and statistics anxiety. It was predicted that students receiving immediacy would report lower levels of statistics anxiety. Using a pretest-posttest-control group design, immediacy was measured using the Instructor Immediacy scale. Statistics anxiety was…
Statistics: It's in the Numbers!
ERIC Educational Resources Information Center
Deal, Mary M.; Deal, Walter F., III
2007-01-01
Mathematics and statistics play important roles in peoples' lives today. A day hardly passes that they are not bombarded with many different kinds of statistics. As consumers they see statistical information as they surf the web, watch television, listen to their satellite radios, or even read the nutrition facts panel on a cereal box in the…
Statistics of indistinguishable particles.
Wittig, Curt
2009-07-01
The wave function of a system containing identical particles takes into account the relationship between a particle's intrinsic spin and its statistical property. Specifically, the exchange of two identical particles having odd-half-integer spin results in the wave function changing sign, whereas the exchange of two identical particles having integer spin is accompanied by no such sign change. This is embodied in a term (-1)(2s), which has the value +1 for integer s (bosons), and -1 for odd-half-integer s (fermions), where s is the particle spin. All of this is well-known. In the nonrelativistic limit, a detailed consideration of the exchange of two identical particles shows that exchange is accompanied by a 2pi reorientation that yields the (-1)(2s) term. The same bookkeeping is applicable to the relativistic case described by the proper orthochronous Lorentz group, because any proper orthochronous Lorentz transformation can be expressed as the product of spatial rotations and a boost along the direction of motion. PMID:19552474
International petroleum statistics report
1996-05-01
The International Petroleum Statistics Report presents data on international oil production, demand, imports, exports, and stocks. The report has four sections. Section 1 contains time series data on world oil production, and on oil demand and stocks in the Organization for Economic Cooperation and Development (OECD). This section contains annual data beginning in 1985, and monthly data for the most recent two years. Section 2 presents an oil supply/demand balance for the world. This balance is presented in quarterly intervals for the most recent two years. Section 3 presents data on oil imports by OECD countries. This section contains annual data for the most recent year, quarterly data for the most recent two quarters, and monthly data for the most recent twelve months. Section 4 presents annual time series data on world oil production and oil stocks, demand, and trade in OECD countries. World oil production and OECD demand data are for the years 1970 through 1995; OECD stocks from 1973 through 1995; and OECD trade from 1084 through 1994.
International petroleum statistics report
1995-11-01
The International Petroleum Statistics Report presents data on international oil production, demand, imports, exports, and stocks. The report has four sections. Section 1 contains time series data on world oil production, and on oil demand and stocks in the Organization for Economic Cooperation and Development (OECD). This section contains annual data beginning in 1985, and monthly data for the most recent two years. Section 2 presents an oil supply/demand balance for the world. This balance is presented in quarterly intervals for the most recent two years. Section 3 presents data on oil imports by OECD countries. This section contains annual data for the most recent year, quarterly data for the most recent two quarters, and monthly data for the most recent twelve months. Section 4 presents annual time series data on world oil production and oil stocks, demand, and trade in OECD countries. World oil production and OECD demand data are for the years 1970 through 1994; OECD stocks from 1973 through 1994; and OECD trade from 1984 through 1994.
International petroleum statistics report
1995-07-27
The International Petroleum Statistics Report presents data on international oil production, demand, imports, and exports, and stocks. The report has four sections. Section 1 contains time series data on world oil production, and on oil demand and stocks in the Organization for Economic Cooperation and Development (OECD). This section contains annual data beginning in 1985, and monthly data for the most recent two years. Section 2 presents an oil supply/demand balance for the world. This balance is presented in quarterly intervals for the most recent two years. Section 3 presents data on oil imports by OECD countries. This section contains annual data for the most recent year, quarterly data for the most recent two quarters, and monthly data for the most recent twelve months. Section 4 presents annual time series data on world oil production and oil stocks, demand, and trade in OECD countries. World oil production and OECD demand data are for the years 1970 through 1994; OECD stocks from 1973 through 1994; and OECD trade from 1984 through 1994.
Topics in statistical mechanics
Elser, V.
1984-05-01
This thesis deals with four independent topics in statistical mechanics: (1) the dimer problem is solved exactly for a hexagonal lattice with general boundary using a known generating function from the theory of partitions. It is shown that the leading term in the entropy depends on the shape of the boundary; (2) continuum models of percolation and self-avoiding walks are introduced with the property that their series expansions are sums over linear graphs with intrinsic combinatorial weights and explicit dimension dependence; (3) a constrained SOS model is used to describe the edge of a simple cubic crystal. Low and high temperature results are derived as well as the detailed behavior near the crystal facet; (4) the microscopic model of the lambda-transition involving atomic permutation cycles is reexamined. In particular, a new derivation of the two-component field theory model of the critical behavior is presented. Results for a lattice model originally proposed by Kikuchi are extended with a high temperature series expansion and Monte Carlo simulation. 30 references.
Statistical mechanics of nucleosomes
NASA Astrophysics Data System (ADS)
Chereji, Razvan V.
Eukaryotic cells contain long DNA molecules (about two meters for a human cell) which are tightly packed inside the micrometric nuclei. Nucleosomes are the basic packaging unit of the DNA which allows this millionfold compactification. A longstanding puzzle is to understand the principles which allow cells to both organize their genomes into chromatin fibers in the crowded space of their nuclei, and also to keep the DNA accessible to many factors and enzymes. With the nucleosomes covering about three quarters of the DNA, their positions are essential because these influence which genes can be regulated by the transcription factors and which cannot. We study physical models which predict the genome-wide organization of the nucleosomes and also the relevant energies which dictate this organization. In the last five years, the study of chromatin knew many important advances. In particular, in the field of nucleosome positioning, new techniques of identifying nucleosomes and the competing DNA-binding factors appeared, as chemical mapping with hydroxyl radicals, ChIP-exo, among others, the resolution of the nucleosome maps increased by using paired-end sequencing, and the price of sequencing an entire genome decreased. We present a rigorous statistical mechanics model which is able to explain the recent experimental results by taking into account nucleosome unwrapping, competition between different DNA-binding proteins, and both the interaction between histones and DNA, and between neighboring histones. We show a series of predictions of our new model, all in agreement with the experimental observations.
International petroleum statistics report
1997-07-01
The International Petroleum Statistics Report is a monthly publication that provides current international data. The report presents data on international oil production, demand, imports, and stocks. The report has four sections. Section 1 contains time series data on world oil production, and on oil demand and stocks in the Organization for Economic Cooperation and Development (OECD). This section contains annual data beginning in 1985, and monthly data for the most recent two years. Section 2 presents an oil supply/demand balance for the world. This balance is presented in quarterly intervals for the most recent two years. Section 3 presents data on oil imports by OECD countries. This section contains annual data for the most recent year, quarterly data for the most recent two quarters, and monthly data for the most recent 12 months. Section 4 presents annual time series data on world oil production and oil stocks, demand, and trade in OECD countries. World oil production and OECD demand data are for the years 1970 through 1996; OECD stocks from 1973 through 1996; and OECD trade from 1986 through 1996.
International petroleum statistics report
1996-10-01
The International Petroleum Statistics Report presents data on international oil production, demand, imports, and stocks. The report has four sections. Section 1 contains time series data on world oil production, and on oil demand and stocks in the Organization for Economic Cooperation and Development (OECD). This section contains annual data beginning in 1985, and monthly data for the most recent two years. Section 2 presents an oil supply/demand balance for the world. This balance is presented in quarterly intervals for the most recent two years. Section 3 presents data on oil imports by OECD countries. This section contains annual data for the most recent year, quarterly data for the most recent two quarters, and monthly data for the most recent twelve months. Section 4 presents annual time series data on world oil production and oil stocks, demand, and trade in OECD countries. Word oil production and OECD demand data are for the years 1970 through 1995; OECD stocks from 1973 through 1995; and OECD trade from 1985 through 1995.
A statistical mechanical problem?
Costa, Tommaso; Ferraro, Mario
2014-01-01
The problem of deriving the processes of perception and cognition or the modes of behavior from states of the brain appears to be unsolvable in view of the huge numbers of elements involved. However, neural activities are not random, nor independent, but constrained to form spatio-temporal patterns, and thanks to these restrictions, which in turn are due to connections among neurons, the problem can at least be approached. The situation is similar to what happens in large physical ensembles, where global behaviors are derived by microscopic properties. Despite the obvious differences between neural and physical systems a statistical mechanics approach is almost inescapable, since dynamics of the brain as a whole are clearly determined by the outputs of single neurons. In this paper it will be shown how, starting from very simple systems, connectivity engenders levels of increasing complexity in the functions of the brain depending on specific constraints. Correspondingly levels of explanations must take into account the fundamental role of constraints and assign at each level proper model structures and variables, that, on one hand, emerge from outputs of the lower levels, and yet are specific, in that they ignore irrelevant details. PMID:25228891
Statistical Mechanics of Zooplankton.
Hinow, Peter; Nihongi, Ai; Strickler, J Rudi
2015-01-01
Statistical mechanics provides the link between microscopic properties of many-particle systems and macroscopic properties such as pressure and temperature. Observations of similar "microscopic" quantities exist for the motion of zooplankton, as well as many species of other social animals. Herein, we propose to take average squared velocities as the definition of the "ecological temperature" of a population under different conditions on nutrients, light, oxygen and others. We test the usefulness of this definition on observations of the crustacean zooplankton Daphnia pulicaria. In one set of experiments, D. pulicaria is infested with the pathogen Vibrio cholerae, the causative agent of cholera. We find that infested D. pulicaria under light exposure have a significantly greater ecological temperature, which puts them at a greater risk of detection by visual predators. In a second set of experiments, we observe D. pulicaria in cold and warm water, and in darkness and under light exposure. Overall, our ecological temperature is a good discriminator of the crustacean's swimming behavior.
Statistical Mechanics of Zooplankton
Hinow, Peter; Nihongi, Ai; Strickler, J. Rudi
2015-01-01
Statistical mechanics provides the link between microscopic properties of many-particle systems and macroscopic properties such as pressure and temperature. Observations of similar “microscopic” quantities exist for the motion of zooplankton, as well as many species of other social animals. Herein, we propose to take average squared velocities as the definition of the “ecological temperature” of a population under different conditions on nutrients, light, oxygen and others. We test the usefulness of this definition on observations of the crustacean zooplankton Daphnia pulicaria. In one set of experiments, D. pulicaria is infested with the pathogen Vibrio cholerae, the causative agent of cholera. We find that infested D. pulicaria under light exposure have a significantly greater ecological temperature, which puts them at a greater risk of detection by visual predators. In a second set of experiments, we observe D. pulicaria in cold and warm water, and in darkness and under light exposure. Overall, our ecological temperature is a good discriminator of the crustacean’s swimming behavior. PMID:26270537
On chaotic flow regimes in a rotating spherical layer
NASA Astrophysics Data System (ADS)
Zhilenko, D. Yu.; Krivonosova, O. É.; Nikitin, N. V.
2008-12-01
We present results of an experimental investigation and numerical simulations of chaotic flow regimes in a layer of a viscous incompressible fluid confined between counter-rotating spherical boundaries. The turbulent flow velocity pulsation profiles obtained by straightforward calculations are qualitatively similar to the analogous profiles known for a flat mixing layer. At the boundaries of their formation, chaotic flow regimes are characterized by a continuous spectrum of velocity pulsations and a high correlation dimension ( D > 8), in contrast to the chaotic regimes observed in an analogous layer with one (inner) rotating boundary.
Multiple planetary flow regimes in the Southern Hemisphere
NASA Technical Reports Server (NTRS)
Yoden, Shigeo; Shiotani, Masato; Hirota, Isamu
1987-01-01
Low-frequency variations in the general circulation of the Southern Hemisphere during 1983 were studied using daily geopotential height and temperature analyses for 12 pressure levels from 1000 mb up to 50 mb, performed by the National Meteorological Center of Japan. Results disclosed the presence, in the Southern Hemisphere troposphere, of an irregular fluctuation of two zonal mean geostrophic wind patterns (named single-jet and double-jet regimes) during wintertime. The fluctuation is characterized by the persistence of one geostrophic wind regime, with characteristic duration of a month, followed by a rather rapid transition to another regime.
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D. C.; Kiem, A. S.
2015-12-01
Rainfall intensity-frequency-duration (IFD) relationships are commonly required for the design and planning of water supply and management systems around the world. Currently, IFD information is based on the "stationary climate assumption" that weather at any point in time will vary randomly and that the underlying climate statistics (including both averages and extremes) will remain constant irrespective of the period of record. However, the validity of this assumption has been questioned over the last 15 years, particularly in Australia, following an improved understanding of the significant impact of climate variability and change occurring on interannual to multidecadal timescales. This paper provides evidence of regime shifts in annual maximum rainfall time series (between 1913-2010) using 96 daily rainfall stations and 66 sub-daily rainfall stations across Australia. Furthermore, the effect of these regime shifts on the resulting IFD estimates are explored for three long-term (1913-2010) sub-daily rainfall records (Brisbane, Sydney, and Melbourne) utilizing insights into multidecadal climate variability. It is demonstrated that IFD relationships may under- or over-estimate the design rainfall depending on the length and time period spanned by the rainfall data used to develop the IFD information. It is recommended that regime shifts in annual maximum rainfall be explicitly considered and appropriately treated in the ongoing revisions of the Engineers Australia guide to estimating and utilizing IFD information, Australian Rainfall and Runoff (ARR), and that clear guidance needs to be provided on how to deal with the issue of regime shifts in extreme events (irrespective of whether this is due to natural or anthropogenic climate change). The findings of our study also have important implications for other regions of the world that exhibit considerable hydroclimatic variability and where IFD information is based on relatively short data sets.
Assessment of land use and water management induced changes in flow regime of the Upper Narew
NASA Astrophysics Data System (ADS)
Romanowicz, Renata J.; Osuch, Marzena
Previous studies have shown that it is very difficult to distinguish human-induced changes from those caused by natural forcing. In this paper we try to quantify the influence of land use and water management on flows of the Upper Narew River in north-east Poland. Apart from climatic and land use changes, the Upper Narew catchment was changed by the construction of a storage reservoir at Siemianówka, near Bondary, on the upstream reach of the river. We apply four different approaches to analysing the changes in flow regime and catchment response for the periods before and after reservoir construction. First we estimate the cumulative distribution functions for low and high flow events. The second approach is a time series analysis of flow variation over the whole length of available data and the derivation of cumulative distribution functions for the flows and 0.25-0.75 quantiles followed by a statistical analysis of the number of events below and above the thresholds and their duration. The third approach consists of the application of the Wittenberg baseflow separation method and tests for changes in baseflow indices. In the fourth approach an analysis of changes in flow regime is performed by studying the changes in transfer function-based flow model parameters. Long-term changes in land use are assessed using previous studies of the catchment and the analysis of Corine land cover data and government yearbooks. The results show that different methods explain different aspects of changes in the catchment and flow regime due to climatic changes and changes in land use and water management practices. The analysis of cumulative distribution functions gave evidence of the influence of Siemianówka reservoir on low flows which was also confirmed by the low flow analysis using the Wittenberg approach. The STF analysis of flows indicates the existence of changes in flow regime that can be attributed to the roughness changes in the channel.
Boundary between stable and unstable regimes of accretion. Ordered and chaotic unstable regimes
NASA Astrophysics Data System (ADS)
Blinova, A. A.; Romanova, M. M.; Lovelace, R. V. E.
2016-07-01
We present a new study of the Rayleigh-Taylor unstable regime of accretion on to rotating magnetized stars in a set of high grid resolution three-dimensional magnetohydrodynamic simulations performed in low-viscosity discs. We find that the boundary between the stable and unstable regimes is determined almost entirely by the fastness parameter ωs = Ω⋆/ΩK(rm), where Ω⋆ is the angular velocity of the star and ΩK(rm) is the angular velocity of the Keplerian disc at the disc-magnetosphere boundary r = rm. We found that accretion is unstable if ωs ≲ 0.6. Accretion through instabilities is present in stars with different magnetospheric sizes. However, only in stars with relatively small magnetospheres, rm/R⋆ ≲ 7, do the unstable tongues produce chaotic hotspots on the stellar surface and irregular light curves. At even smaller values of the fastness parameter, ωs ≲ 0.45, multiple irregular tongues merge, forming one or two ordered unstable tongues that rotate with the angular frequency of the inner disc. This transition occurs in stars with even smaller magnetospheres, rm/R⋆ ≲ 4.2. Most of our simulations were performed at a small tilt of the dipole magnetosphere, Θ = 5°, and a small viscosity parameter α = 0.02. Test simulations at higher α values show that many more cases become unstable, and the light curves become even more irregular. Test simulations at larger tilts of the dipole Θ show that instability is present, however, accretion in two funnel streams dominates if Θ ≳ 15°. The results of these simulations can be applied to accreting magnetized stars with relatively small magnetospheres: Classical T Tauri stars, accreting millisecond X-ray pulsars, and cataclysmic variables.
Bed load transport over a broad range of timescales: Determination of three regimes of fluctuations
NASA Astrophysics Data System (ADS)
Ma, Hongbo; Heyman, Joris; Fu, Xudong; Mettra, Francois; Ancey, Christophe; Parker, Gary
2014-12-01
This paper describes the relationship between the statistics of bed load transport flux and the timescale over which it is sampled. A stochastic formulation is developed for the probability distribution function of bed load transport flux, based on the Ancey et al. (2008) theory. An analytical solution for the variance of bed load transport flux over differing sampling timescales is presented. The solution demonstrates that the timescale dependence of the variance of bed load transport flux reduces to a three-regime relation demarcated by an intermittency timescale (tI) and a memory timescale (tc). As the sampling timescale increases, this variance passes through an intermittent stage (≪tI), an invariant stage (tI < t < tc), and a memoryless stage (≫ tc). We propose a dimensionless number (Ra) to represent the relative strength of fluctuation, which provides a common ground for comparison of fluctuation strength among different experiments, as well as different sampling timescales for each experiment. Our analysis indicates that correlated motion and the discrete nature of bed load particles are responsible for this three-regime behavior. We use the data from three experiments with high temporal resolution of bed load transport flux to validate the proposed three-regime behavior. The theoretical solution for the variance agrees well with all three sets of experimental data. Our findings contribute to the understanding of the observed fluctuations of bed load transport flux over monosize/multiple-size grain beds, to the characterization of an inherent connection between short-term measurements and long-term statistics, and to the design of appropriate sampling strategies for bed load transport flux.
Petroleum statistics in France
De Saint Germain, H.; Lamiraux, C.
1995-08-01
33 oil companies, including Elf, Exxon, Agip, Conoco as well as Coparex, Enron, Hadson, Midland, Hunt, Canyon and Union Texas are present in oil and gas exploration and production in France. The production of oil and gas in France amounts to some 60,000 bopd of oil and 350 MMcfpd of marketed natural gas each year, which still accounts for 3.5% and 10% for French domestic needs, respectively. To date, 166 fields have been discovered, representing a total reserve of 3 billion bbl of crude oil and 13 trillion cf of raw gas. These fields are concentrated in two major onshore sedimentary basins of Mesozoic age, which are the Aquitaine basin and the Paris basin. The Aquitaine basin should be subdivided into two distinct domains: The Parentis basin where the largest field Parentis was discovered in 1954 with still production of about 3700 bopd of oil and where Les Arbouslers field, discovered at the end of 1991, is currently producing about 10,000 bopd of oil. The northern Pyrenees and their foreland, where the Lacq field, discovered in 1951, has produced about 7.7 tcf of gas since 1957, and is still producing 138 MMcfpd. In the Paris basin, the two large oil fields are Villeperclue discovered in 1982 by Triton and Total, and Chaunoy, discovered in 1983 by Essorep, which are still producing about 10,000 and 15,000 bopd, respectively. The last significantly sized discovery occurred in 1990 with Itteville by Elf Aquitaine which is currently producing 4,200 bopd. The poster shows statistical data related to the past 20 years of oil and gas exploration and production in France.
Ideal statistically quasi Cauchy sequences
NASA Astrophysics Data System (ADS)
Savas, Ekrem; Cakalli, Huseyin
2016-08-01
An ideal I is a family of subsets of N, the set of positive integers which is closed under taking finite unions and subsets of its elements. A sequence (xk) of real numbers is said to be S(I)-statistically convergent to a real number L, if for each ɛ > 0 and for each δ > 0 the set { n ∈N :1/n | { k ≤n :| xk-L | ≥ɛ } | ≥δ } belongs to I. We introduce S(I)-statistically ward compactness of a subset of R, the set of real numbers, and S(I)-statistically ward continuity of a real function in the senses that a subset E of R is S(I)-statistically ward compact if any sequence of points in E has an S(I)-statistically quasi-Cauchy subsequence, and a real function is S(I)-statistically ward continuous if it preserves S(I)-statistically quasi-Cauchy sequences where a sequence (xk) is called to be S(I)-statistically quasi-Cauchy when (Δxk) is S(I)-statistically convergent to 0. We obtain results related to S(I)-statistically ward continuity, S(I)-statistically ward compactness, Nθ-ward continuity, and slowly oscillating continuity.
Basic statistics in cell biology.
Vaux, David L
2014-01-01
The physicist Ernest Rutherford said, "If your experiment needs statistics, you ought to have done a better experiment." Although this aphorism remains true for much of today's research in cell biology, a basic understanding of statistics can be useful to cell biologists to help in monitoring the conduct of their experiments, in interpreting the results, in presenting them in publications, and when critically evaluating research by others. However, training in statistics is often focused on the sophisticated needs of clinical researchers, psychologists, and epidemiologists, whose conclusions depend wholly on statistics, rather than the practical needs of cell biologists, whose experiments often provide evidence that is not statistical in nature. This review describes some of the basic statistical principles that may be of use to experimental biologists, but it does not cover the sophisticated statistics needed for papers that contain evidence of no other kind.
van der Wel, Kjetil A; Dahl, Espen; Thielen, Karsten
2012-01-01
In comparative studies of health inequalities, public health researchers have usually studied only disease and illness. Recent studies have also examined the sickness dimension of health, that is, the extent to which ill health is accompanied by joblessness, and how this association varies by education within different welfare contexts. This research has used either a limited number of countries or quantitative welfare state measures in studies of many countries. In this study, the authors expand on this knowledge by investigating whether a regime approach to the welfare state produces consistent results. They analyze data from the European Union Statistics on Income and Living Conditions (EU-SILC); health was measured by limiting longstanding illness (LLSI). Results show that for both men and women reporting LLSI in combination with low educational level, the probabilities of non-employment were particularly high in the Anglo-Saxon and Eastern welfare regimes, and lowest in the Scandinavian regime. For men, absolute and relative social inequalities in sickness were lowest in the Southern regime; for women, inequalities were lowest in the Scandinavian regime. The authors conclude that the Scandinavian welfare regime is more able than other regimes to protect against non-employment in the face of illness, especially for individuals with low educational level.
Regime shifts and resilience in China's coastal ecosystems.
Zhang, Ke
2016-02-01
Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.
Fixed points, stable manifolds, weather regimes, and their predictability
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-10-27
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemble forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.
Stochastic regimes in very-low-frequency fluidic oscillator
NASA Astrophysics Data System (ADS)
Tesař, Václav
2016-03-01
Paper discusses interesting unexpected stochastic regimes discovered in a fluidic oscillator designed for operation at very low oscillation frequencies - without the inconvenience of the long feedback loops needed in standard low-frequency oscillator designs. The new oscillator contains a pair of bistable turn-down active valves operating in anti-parallel — essentially analogous to Abraham & Bloch electric "multibrateur" invented in 1919. Three different self-excited oscillation regimes were found. In the order of increasing supplied flow rate, these regimes are characterised by: (A) generation of stochastic-duration multi-pulse packs, (B) generation of individual pulses with a degree of periodicity, and (C) regime with randomly appearing flow pulses separated by intervals of the order of seconds.
The role of transients in weather regimes and transitions
Reinhold, B.; Yang, Shuting )
1993-05-01
Transition of weather regimes is examined in a highly simplified model. Two completely distinct internal methods of transition are identified. The first is a synoptically triggered large-scale instability, while the second is an energy inconsistency between the large-scale and synoptic scales that does not allow the two scales to equilibrate. In the atmosphere, the first case appears as a sudden propagation and damping (or vice versa) of the large-scale pattern with no obvious warning, while the second is consistent with the synoptician's description of a regime being disrupted by a single catastrophic event such as explosive cyclogenesis. The first method is always fast (on a synoptic time scale), while the second does not have to be, though often is. By examining what causes the regimes to fail, one can better understand the role of the transients during all phases of weather regimes. 27 refs., 5 figs.
Fixed points, stable manifolds, weather regimes, and their predictability.
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-12-01
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model's fixed points in phase space. The model dynamics is characterized by the coexistence of multiple "weather regimes." To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, "bred vectors" and singular vectors. These results are then verified in the framework of ensemble forecasts issued from "clouds" (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.
Regime shifts and resilience in China's coastal ecosystems.
Zhang, Ke
2016-02-01
Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services. PMID:26286204
The effect of refrigerants in the mixed lubrication regime
Mizuhara, Kazuyuki; Tomimoto, Makoto
1997-12-31
Because of environmental concerns, CFC (chlorofluorocarbon) refrigerants must be replaced with HFCs (hydrofluorocarbons). As a result, many tribological problems are caused especially in rotary piston compressors. To solve the problem, the effects of refrigerants on friction and wear characteristics of the oil and refrigerant mixtures at the mixed lubrication regime are investigated. The difference in refrigerants are clearly observed not only in boundary but also in the mixed lubrication regime. The effects of operating conditions on sliding conditions and experimental results are also discussed. It is concluded that for practical application where long life is essential, experiments must be conducted under the mixed lubrication regime. Also, the importance of defining the lubrication regime in terms of film parameter is emphasized.
Diffusion dependent focusing regimes in peak mode counterflow isotachophoresis
NASA Astrophysics Data System (ADS)
GanOr, Nethanel; Rubin, Shimon; Bercovici, Moran
2015-07-01
We present an analytical, numerical, and experimental study of pressure driven counterflow isotachophoresis (ITP). We study solutions to the Nernst-Planck equations in the axi-symmetric and radially dependent case, in the leading order of negligible body forces. We provide a simple model that describes the ITP interface shape for Poiseuille-type counterflows, and an asymptotic model which captures two distinct sample focusing regimes of peak mode ITP. We validate the existence of these regimes using numerical simulations and map the conditions under which each of the focal regions dominates. In particular, we demonstrate numerically that a species diffusivity is a key parameter determining its focusing regime. We experimentally show that this allows spatial separation of co-focusing species having distinctly different diffusivities. We further demonstrate that while dispersion associated with counterflow is typically considered to reduce peak concentrations, certain focusing regimes allow a net gain in sample concentration over the non-dispersed case.
Fixed points, stable manifolds, weather regimes, and their predictability
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-10-27
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less
FISHER INFORMATION AND DYNAMIC REGIME CHANGES IN ECOLOGICAL SYTEMS
Ecosystems often exhibit transitions between dynamic regimes (or steady states), such as the conversion of oligotrophic to eutrophic conditions and associated aquatic ecological communities, due to natural (or increasingly) anthropogenic disturbances. As ecosystems experience per...
AN APPROACH FOR CLASSIFYING TIDAL REGIMES BASED ON TIDAL CONSTITUENTS
Tidal fluctuations can be one of the dominant physical processes in estuaries. This paper presents a numerical classification of tidal regimes that can be used to summarize local conditions and facilitate comparisons among locations. Tide predictions are customarily calculated ...
A New Statistical Parameter for Identifying the Main Transition Velocities in Bubble Columns*
Nedeltchev, Stoyan; Rabha, Swapna; Hampel, Uwe; Schubert, Markus
2015-01-01
The identification of the main flow regime boundaries in bubble columns is essential since the degrees of mixing and mass and heat transfer vary with the flow regime. In this work, a new statistical parameter was extracted from the time series of the cross-sectional averaged gas holdup. The measurements were performed in bubble columns by means of conductivity wire-mesh sensors at very high sampling frequency. The columns were operated with an air/deionized water system under ambient conditions. As a flow regime indicator, a new dimensionless statistical parameter called “relative maximum number of visits in a region” was introduced. This new parameter is a function of the difference between the maximum numbers of visits in a region, calculated from two different division schemes of the signal range. PMID:27570374
Brownian colloids in underdamped and overdamped regimes with nonhomogeneous temperature
NASA Astrophysics Data System (ADS)
Sancho, J. M.
2015-12-01
The motion of Brownian particles when temperature is spatially dependent is studied by stochastic simulations and theoretical analysis. Nonequilibrium steady probability distributions Ps t(z ,v ) for both underdamped and overdamped regimes are analyzed. The existence of local kinetic energy equipartition theorem is also discussed. The transition between both regimes is characterized by a dimensionless friction parameter. This study is applied to three physical systems of colloidal particles.
Synchronous marine pelagic regime shifts in the Northern Hemisphere
Beaugrand, G.; Conversi, A.; Chiba, S.; Edwards, M.; Fonda-Umani, S.; Greene, C.; Mantua, N.; Otto, S. A.; Reid, P. C.; Stachura, M. M.; Stemmann, L.; Sugisaki, H.
2015-01-01
Regime shifts are characterized by sudden, substantial and temporally persistent changes in the state of an ecosystem. They involve major biological modifications and often have important implications for exploited living resources. In this study, we examine whether regime shifts observed in 11 marine systems from two oceans and three regional seas in the Northern Hemisphere (NH) are synchronous, applying the same methodology to all. We primarily infer marine pelagic regime shifts from abrupt shifts in zooplankton assemblages, with the exception of the East Pacific where ecosystem changes are inferred from fish. Our analyses provide evidence for quasi-synchronicity of marine pelagic regime shifts both within and between ocean basins, although these shifts lie embedded within considerable regional variability at both year-to-year and lower-frequency time scales. In particular, a regime shift was detected in the late 1980s in many studied marine regions, although the exact year of the observed shift varied somewhat from one basin to another. Another regime shift was also identified in the mid- to late 1970s but concerned less marine regions. We subsequently analyse the main biological signals in relation to changes in NH temperature and pressure anomalies. The results suggest that the main factor synchronizing regime shifts on large scales is NH temperature; however, changes in atmospheric circulation also appear important. We propose that this quasi-synchronous shift could represent the variably lagged biological response in each ecosystem to a large-scale, NH change of the climatic system, involving both an increase in NH temperature and a strongly positive phase of the Arctic Oscillation. Further investigation is needed to determine the relative roles of changes in temperature and atmospheric pressure patterns and their resultant teleconnections in synchronizing regime shifts at large scales.
Laboratory experiment on boundaries of upper stage plane bed regime
NASA Astrophysics Data System (ADS)
Zrostlík, Štěpán; Matoušek, Václav
2016-04-01
Results are discussed of laboratory experiments on criteria determining the transition between the regime of dunes and the upper stage plane bed (UPB) regime and the transition between the UPB regime and the regime of wavy flow. The experiments were carried for 3 fractions of plastic material and two fractions of glass beads in a broad range of flow conditions (different discharges of water and solids and longitudinal bed slopes) in a tilting flume. The experiments reveal that, contrary to expectations, a constant value of the Shields parameter is not an appropriate criterion for the transition between the dune regime and the UPB regime. Furthermore, the transition appears to be insensitive to the total discharge of solids and water. Instead, the criterion seems to be well represented by a constant value of the average transport concentration of sediment (the ratio of volumetric discharge of solids and volumetric discharge of mixture). The experimental results exhibit a very tight correlation between the transport concentration and the longitudinal bed slope. Hence, a constant value of the bed slope can be considered an appropriate criterion for the transition. The transition between the UPB regime and the wavy regime (significant waves develop but they are not always standing waves) is found at a constant value of Froude number, which is in agreement with literature, although it is found at a higher value than the literature usually suggests (Fr = 1.2 instead of 1.0). Hence, the transition occurs in the super-critical flow but it is not necessarily associated with the critical flow.
Ignition Regime for Fusion in a Degenerate Plasma
Son, S.; Fisch, N.J.
2005-12-01
We identify relevant parameter regimes in which aneutronic fuels can undergo fusion ignition in hot-ion degenerate plasma. Because of relativistic effects and partial degeneracy, the self-sustained burning regime is considerably larger than previously calculated. Inverse bremsstrahlung plays a major role in containing the reactor energy. We solve the radiation transfer equation and obtain the contribution to the heat conductivity from inverse bremsstrahlung.
Equatorial atmospheric weather regimes: Their structure and role
Connors, V.S.
1991-01-01
Infrared radiance measurements by the Geostationary Operational Environmental Satellite (GOES-6) from April 1986 through April 1987 are used to characterize and identify distinct regimes of persistent, large-scale cloudiness patterns over the Amazon Basin. These tropical weather regimes are responsible for the continental-scale atmospheric processes that transport air, trace gases, and heat from the Amazon Basin. The cloud patterns are represented by both scene-scale parameters, such as the cloud-free area and the value of the 'clear sky peak' in a histogram, and textural measures, such as contrast of cloudy area and homogeneity or cloudy area. Correlation analyses of the attribute arrays determined that only 9 of the original 15 cloud pattern descriptors are required for the cluster analyses. Seventy-six percent of the satellite images are classified into 1 of 14 weather regimes which persist for periods that range from 3 to 15 days each. The dominant weather regimes are described by the recurrence and duration of the events, by the rainfall produced and energy released to the tropical atmosphere, and by the composite kinematic and thermodynamic analyses. While the classification analyses identified a range of organized weather conditions in the Amazon Basin, two weather regimes, each occurring in separate seasons, dominate the year. The prominent dry season regime (A) occurs 11 times, persists for 25 percent of the year, produces 81 percent of the dry season rainfall, and 7 percent of the energy export necessary to balance the global heat budget. The prominent wet season regime (B) occurs 8 times, persists for 18 percent of the year, delivers about 30 percent of the wet season rainfall, and 16 percent of the energy export requirement. Because the dry season regime (A) draws nearly half of its water vapor supply from local sources, a vital link may exist between the rainforest ecosystem and the dry season rainfall.
Sensitivity of streamflows to hydroclimatic fluctuations: resilience and regime shifts
NASA Astrophysics Data System (ADS)
Botter, Gianluca; Basso, Stefano; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2016-04-01
Landscape and climate alterations foreshadow global-scale shifts of river flow regimes. However, a theory that identifies the range of foreseen impacts on streamflows resulting from inhomogeneous forcings and sensitivity gradients across diverse regimes is lacking. In this contribution, we use a dimensionless index embedding simple climate and landscape attributes (the ratio of the mean interarrival of streamflow-producing rainfall events and the mean catchment response time) to discriminate erratic regimes with enhanced intra-seasonal streamflow variability from persistent regimes endowed with regular flow patterns. The proposed classification is successfully applied to 110 seasonal streamflow distributions observed in 44 catchments of the Alps and the United States, allowing the identification of emerging patterns in space and time. In the same framework, the impact of multi-scale fluctuations of the underlying climatic drivers (temperature, precipitation) on the streamflow distributions can be analyzed. Theoretical and empirical data show that erratic regimes, typical of rivers with low mean discharges, are highly resilient in that they hold a reduced sensitivity to variations in the external forcing. Specific temporal trajectories of streamflow distributions and flow regime shifts driven by land-cover change and rainfall patterns can be also evidenced. The approach developed offers an objective basis for the analysis and prediction of the impact of climate/landscape change on water resources.
Triggered dynamics in a model of different fault creep regimes
Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina
2014-01-01
The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397
Modeling of a Two-Regime Crystallization in a Multicomponent
Mazzanti, G.; Marangoni, A; Idziak, S
2008-01-01
The kinetics of phase transitions of milk fat triacylglycerols, as model multicomponent lipid systems, were studied under shear in a Couette cell at 17 C, 17.5 C and 20 C under shear rates ranging from 0 to 2880s-1 using synchrotron X-ray diffraction. Two-dimensional diffraction patterns were captured during the crystallization process. No effect of shear on onset time for phase a from the liquid was observed. Afterwards a two-regime crystallization process was observed. During the first regime, as observed in other systems, shear reduced the onset time of the phase transition from phase a to 2880s-. The model previously developed for palm oil (ODE model) worked well to describe this regime, confirming the general value of the proposed ODE model. However, the ODE model did not satisfactorily describe the second regime. We found that, as the system gets closer to equilibrium, the growth regime becomes controlled by diffusion, manifested by the kinetics following a {radical}t dependence. This regime was found to be consistent with a mechanism combining step growth at a kink with progressive selection of the crystallizing moieties. This mechanism is in agreement with the displacement of the diffraction peak positions, which revealed how increased shear rate promotes the crystallization of the higher melting fraction affecting the composition of the crystallites.
Regimes of the magnetized Rayleigh{endash}Taylor instability
Winske, D.
1996-11-01
Hybrid simulations with kinetic ions and massless fluid electrons are used to investigate the linear and nonlinear behavior of the magnetized Rayleigh{endash}Taylor instability in slab geometry with the plasma subject to a constant gravity. Three regimes are found, which are determined by the magnitude of the complex frequency {omega}={omega}{sub {ital r}}+{ital i}{gamma}. For {vert_bar}{omega}{vert_bar}{lt}{Omega}{sub {ital i}}({Omega}{sub {ital i}}= ion gyrofrequency), one finds the typical behavior of the usual fluid regime, namely the development of {open_quote}{open_quote}mushroom-head{close_quote}{close_quote} spikes and bubbles in the density and a strongly convoluted boundary between the plasma and magnetic field, where the initial gradient is not relaxed much. A second regime, where {vert_bar}{omega}{vert_bar}{approximately}0.1{Omega}{sub {ital i}}, is characterized by the importance of the Hall term. Linearly, the developing flute modes are more finger-like and tilted along the interface; nonlinearly, clump-like structures form, leading to a significant broadening of the interface. The third regime is characterized by unmagnetized ion behavior, with {vert_bar}{omega}{vert_bar}{approximately}{Omega}{sub {ital i}}. Density clumps, rather than flutes, form in the linear stage, while nonlinearly, longer-wavelength modes that resemble those in fluid regime dominate. Finite Larmor radius stabilization of short-wavelength modes is observed in each regime. {copyright} {ital 1996 American Institute of Physics.}
Do family policy regimes matter for children's well-being?
Engster, Daniel; Stensöta, Helena Olofsdotter
2011-01-01
Researchers have studied the impact of different welfare state regimes, and particularly family policy regimes, on gender equality. Very little research has been conducted, however, on the association between different family policy regimes and children's well-being. This article explores how the different family policy regimes of twenty OECD countries relate to children's well-being in the areas of child poverty, child mortality, and educational attainment and achievement. We focus specifically on three family policies: family cash and tax benefits, paid parenting leaves, and public child care support. Using panel data for the years 1995, 2000, and 2005, we test the association between these policies and child well-being while holding constant for a number of structural and policy variables. Our analysis shows that the dual-earner regimes, combining high levels of support for paid parenting leaves and public child care, are strongly associated with low levels of child poverty and child mortality. We find little long-term effect of family policies on educational achievement, but a significant positive correlation between high family policy support and higher educational attainment. We conclude that family policies have a significant impact on improving children's well-being, and that dual-earner regimes represent the best practice for promoting children's health and development. PMID:21692245
O-regime dynamics and modeling in Tore Supra
Turco, F.; Giruzzi, G.; Imbeaux, F.; Udintsev, V. S.; Artaud, J. F.; Barana, O.; Dumont, R.; Mazon, D.; Segui, J.-L.
2009-06-15
The regime of nonlinear temperature oscillations (O-regime), characteristic of noninductive discharges on Tore Supra [Equipe Tore Supra, Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, France, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 1, p. 9], is investigated in its triggering and suppressing mechanism. This regime can be described by two nonlinearly coupled equations for the current density j(r) and the electron temperature T{sub e}(r) where the equation coefficients are functions of j and T{sub e} themselves. Both the integrated modeling code CRONOS[V. Basiuk et al., Nucl. Fusion 43, 822 (2003)] and a two-patch predator-prey system with diffusion and noise have been used and results have been compared to the experimental observations of the O-regime. A database of discharges is analyzed which features monotonic, flat, and reversed safety factor (q) profiles in order to characterize the action of external actuators on the regime dynamics with the widest generality. Electron cyclotron current drive and neutral beam injections have been used in order to induce localized perturbations in the total current profile j(r) as well as to change the plasma confinement conditions in the central region. Magnetic shear perturbations and modifications of the heat transport turn out to be the central parameters governing the dynamics of the O-regime.
Assessing the Institution of the Nuclear Nonproliferation Regime
Toomey, Christopher
2010-05-14
The nuclear nonproliferation regime is facing a crisis of effectiveness. During the Cold War, the regime was relatively effective in stemming the proliferation of nuclear weapons and building an institutional structure that could, under certain conditions, ensure continued success. However, in the evolving global context, the traditional approaches are becoming less appropriate. Globalization has introduced new sets of stresses on the nonproliferation regime, such as the rise of non-state actors, broadening extensity and intensity of supply chains, and the multipolarization of power. This evolving global context demands an analytical and political flexibility in order to meet future threats. Current institutional capabilities established during the Cold War are now insufficient to meet the nonproliferation regime’s current and future needs. The research was based on information gathered through interviews and reviews of the relevant literature, and two dominant themes emerged. First, that human security should be integrated into the regime to account for the rise of non-state actors and networked violence. Second, confidence in the regime’s overall effectiveness has eroded at a time where verification-based confidence is becoming more essential. The research postulates that a critical analysis of the regime that fully utilizes institutional theory, with its focus on rules, normative structures, and procedures will be essential to adapting the regime to the current global context, building mechanisms for generating trust, creating better enforcement, and providing flexibility for the future.
Oscillations of a highly discrete breather with a critical regime
Coquet; Remoissenet; Dinda
2000-10-01
We analyze carefully the essential features of the dynamics of a stationary discrete breather in the ultimate degree of energy localization in a nonlinear Klein-Gordon lattice with an on-site double-well potential. We demonstrate the existence of three different regimes of oscillatory motion in the breather dynamics, which are closely related to the motion of the central particle in an effective potential having two nondegenerate wells. In given parameter regions, we observe an untrapped regime, in which the central particle executes large-amplitude oscillations from one to the other side of the potential barrier. In other parameter regions, we find the trapped regime, in which the central particle oscillates in one of the two wells of the effective potential. Between these two regimes we find a critical regime in which the central particle undergoes several temporary trappings within an untrapped regime. Importantly, our study reveals that in the presence of purely anharmonic coupling forces, the breather compactifies, i.e., the energy becomes abruptly localized within the breather.
How Good Are Statistical Models at Approximating Complex Fitness Landscapes?
du Plessis, Louis; Leventhal, Gabriel E.; Bonhoeffer, Sebastian
2016-01-01
Fitness landscapes determine the course of adaptation by constraining and shaping evolutionary trajectories. Knowledge of the structure of a fitness landscape can thus predict evolutionary outcomes. Empirical fitness landscapes, however, have so far only offered limited insight into real-world questions, as the high dimensionality of sequence spaces makes it impossible to exhaustively measure the fitness of all variants of biologically meaningful sequences. We must therefore revert to statistical descriptions of fitness landscapes that are based on a sparse sample of fitness measurements. It remains unclear, however, how much data are required for such statistical descriptions to be useful. Here, we assess the ability of regression models accounting for single and pairwise mutations to correctly approximate a complex quasi-empirical fitness landscape. We compare approximations based on various sampling regimes of an RNA landscape and find that the sampling regime strongly influences the quality of the regression. On the one hand it is generally impossible to generate sufficient samples to achieve a good approximation of the complete fitness landscape, and on the other hand systematic sampling schemes can only provide a good description of the immediate neighborhood of a sequence of interest. Nevertheless, we obtain a remarkably good and unbiased fit to the local landscape when using sequences from a population that has evolved under strong selection. Thus, current statistical methods can provide a good approximation to the landscape of naturally evolving populations. PMID:27189564
How Good Are Statistical Models at Approximating Complex Fitness Landscapes?
du Plessis, Louis; Leventhal, Gabriel E; Bonhoeffer, Sebastian
2016-09-01
Fitness landscapes determine the course of adaptation by constraining and shaping evolutionary trajectories. Knowledge of the structure of a fitness landscape can thus predict evolutionary outcomes. Empirical fitness landscapes, however, have so far only offered limited insight into real-world questions, as the high dimensionality of sequence spaces makes it impossible to exhaustively measure the fitness of all variants of biologically meaningful sequences. We must therefore revert to statistical descriptions of fitness landscapes that are based on a sparse sample of fitness measurements. It remains unclear, however, how much data are required for such statistical descriptions to be useful. Here, we assess the ability of regression models accounting for single and pairwise mutations to correctly approximate a complex quasi-empirical fitness landscape. We compare approximations based on various sampling regimes of an RNA landscape and find that the sampling regime strongly influences the quality of the regression. On the one hand it is generally impossible to generate sufficient samples to achieve a good approximation of the complete fitness landscape, and on the other hand systematic sampling schemes can only provide a good description of the immediate neighborhood of a sequence of interest. Nevertheless, we obtain a remarkably good and unbiased fit to the local landscape when using sequences from a population that has evolved under strong selection. Thus, current statistical methods can provide a good approximation to the landscape of naturally evolving populations.
NASA Astrophysics Data System (ADS)
Holmes, Jon L.
2000-06-01
IP-number access. Current subscriptions can be upgraded to IP-number access at little additional cost. We are pleased to be able to offer to institutions and libraries this convenient mode of access to subscriber only resources at JCE Online. JCE Online Usage Statistics We are continually amazed by the activity at JCE Online. So far, the year 2000 has shown a marked increase. Given the phenomenal overall growth of the Internet, perhaps our surprise is not warranted. However, during the months of January and February 2000, over 38,000 visitors requested over 275,000 pages. This is a monthly increase of over 33% from the October-December 1999 levels. It is good to know that people are visiting, but we would very much like to know what you would most like to see at JCE Online. Please send your suggestions to JCEOnline@chem.wisc.edu. For those who are interested, JCE Online year-to-date statistics are available. Biographical Snapshots of Famous Chemists: Mission Statement Feature Editor: Barbara Burke Chemistry Department, California State Polytechnic University-Pomona, Pomona, CA 91768 phone: 909/869-3664 fax: 909/869-4616 email: baburke@csupomona.edu The primary goal of this JCE Internet column is to provide information about chemists who have made important contributions to chemistry. For each chemist, there is a short biographical "snapshot" that provides basic information about the person's chemical work, gender, ethnicity, and cultural background. Each snapshot includes links to related websites and to a biobibliographic database. The database provides references for the individual and can be searched through key words listed at the end of each snapshot. All students, not just science majors, need to understand science as it really is: an exciting, challenging, human, and creative way of learning about our natural world. Investigating the life experiences of chemists can provide a means for students to gain a more realistic view of chemistry. In addition students
Machtay; Glatstein
1998-01-01
On returning from a medical meeting, we learned that sadly a patient, "Mr. B.," had passed away. His death was a completely unexpected surprise. He had been doing well nine months after a course of intensive radiotherapy for a locally advanced head and neck cancer; in his most recent follow-up notes, he was described as a "complete remission." Nonetheless, he apparently died peacefully in his sleep from a cardiac arrest one night and was found the next day by a concerned neighbor. In our absence, after Mr. B. expired, his death certificate was filled out by a physician who didn't know him in detail, but did know why he recently was treated in our department. The cause of death was listed as head and neck cancer. It wasn't long after his death before we began to receive those notorious "requests for additional information," letters from the statistical office of a well-known cooperative group. Mr. B., as it turns out, was on a clinical trial, and it was "vital" to know further details of the circumstances of his passing. Perhaps this very large cancer had been controlled and Mr. B. succumbed to old age (helped along by the tobacco industry). On the other hand, maybe the residual "fibrosis" in his neck was actually packed with active tumor and his left carotid artery was finally 100% pinched off, or maybe he suffered a massive pulmonary embolism from cancer-related hypercoagulability. The forms and requests were completed with a succinct "cause of death uncertain," adding, "please have the Study Chairs call to discuss this difficult case." Often clinical reports of outcomes utilize and emphasize the endpoint "disease specific survival" (DSS). Like overall survival (OS), the DSS can be calculated by actuarial methods, with patients who have incomplete follow-up "censored" at the time of last follow-up pending further information. In the DSS, however, deaths unrelated to the index cancer of interest are censored at the time of death; thus, a death from intercurrent
Orellana, Liliana; Rotnitzky, Andrea; Robins, James M
2010-03-03
In this companion article to "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content" [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption.
Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies
Bevelhimer, Mark S.; McManamay, Ryan A.; O'Connor, B.
2014-05-26
Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run-of-river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub-daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub-daily flow variation and use these metrics to evaluate general trends amongmore » streams affected by peaking hydroelectric projects, run-of-river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub-daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub-daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub-daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run-of-river streams. The sub-daily statistics were largely uncorrelated with daily statistics of similar scope. Furthermore, on short temporal scales, sub-daily statistics reveal the relatively constant nature of unaltered streamreaches and the highly variable nature of hydropower-affected streams, whereas daily statistics show just the opposite over longer temporal scales.« less
Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies
Bevelhimer, Mark S.; McManamay, Ryan A.; O'Connor, B.
2014-05-26
Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run-of-river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub-daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub-daily flow variation and use these metrics to evaluate general trends among streams affected by peaking hydroelectric projects, run-of-river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub-daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub-daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub-daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run-of-river streams. The sub-daily statistics were largely uncorrelated with daily statistics of similar scope. Furthermore, on short temporal scales, sub-daily statistics reveal the relatively constant nature of unaltered streamreaches and the highly variable nature of hydropower-affected streams, whereas daily statistics show just the opposite over longer temporal scales.
North Sea wind climate in changing weather regimes
NASA Astrophysics Data System (ADS)
Anders, Ivonne; Rockel, Burkhardt
2015-04-01
Results from regional climate models (RCMs) are getting more and more important in future wind climate assessment. From RCMs often only the daily wind speed is available, but no information on prevailing wind direction of each day. Weather regime classification can close this gap and models ability of simulating surface wind speed can be analysed in detail. Several objective regime classifications have been investigated to be a sufficient diagnostic tool to evaluate the present wind climate at the German and Dutch coastal area of the North Sea. The classification by Jenkinson and Collison (1977) uses values for mean sea level pressure at 16 locations centered over the North Sea. Beside the predefined 8 prevailed wind directions and the two possibilities on cyclonic or anticyclonic turbulence, 2x8 hybrid weather types can be defined. In this way 27 different regimes can be distinguished including a class of non-classifiable cases. The 27 regimes could be reduced to a number of 11 by allotting the hybrid types to the directional or the centered types. As the classification is carried out for the North Sea based on ERA40 mean sea level pressure the different regimes clearly reflect the mean wind characteristics at the stations. Comparing the wind roses for the individual observations leads to the assumption that the regime classification described before fits the requirements to carry out the regime dependent evaluation of the RCMs with a focus on the German and Dutch coast. Trends in the occurrence of the regimes in the winter period of 1961 to 2000 show an increase of the regimes with Western and Southwestern wind directions and a decrease of wind events from Eastern directions in the North Sea. The trend is dominated by the strong positive phase of the NAO especially in the months January to March starting in the beginning of the 1980s. Due to the applied method ERA40 and the RCMs do not necessarily show the same regime at each day. The agreement among the RCM
Liu, Zhihua; Wimberly, Michael C
2016-01-15
We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales.
Statistics without Tears: Complex Statistics with Simple Arithmetic
ERIC Educational Resources Information Center
Smith, Brian
2011-01-01
One of the often overlooked aspects of modern statistics is the analysis of time series data. Modern introductory statistics courses tend to rush to probabilistic applications involving risk and confidence. Rarely does the first level course linger on such useful and fascinating topics as time series decomposition, with its practical applications…
SOCR: Statistics Online Computational Resource
Dinov, Ivo D.
2011-01-01
The need for hands-on computer laboratory experience in undergraduate and graduate statistics education has been firmly established in the past decade. As a result a number of attempts have been undertaken to develop novel approaches for problem-driven statistical thinking, data analysis and result interpretation. In this paper we describe an integrated educational web-based framework for: interactive distribution modeling, virtual online probability experimentation, statistical data analysis, visualization and integration. Following years of experience in statistical teaching at all college levels using established licensed statistical software packages, like STATA, S-PLUS, R, SPSS, SAS, Systat, etc., we have attempted to engineer a new statistics education environment, the Statistics Online Computational Resource (SOCR). This resource performs many of the standard types of statistical analysis, much like other classical tools. In addition, it is designed in a plug-in object-oriented architecture and is completely platform independent, web-based, interactive, extensible and secure. Over the past 4 years we have tested, fine-tuned and reanalyzed the SOCR framework in many of our undergraduate and graduate probability and statistics courses and have evidence that SOCR resources build student’s intuition and enhance their learning. PMID:21451741
Characterizations of linear sufficient statistics
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Redner, R.; Decell, H. P., Jr.
1976-01-01
A necessary and sufficient condition is developed such that there exists a continous linear sufficient statistic T for a dominated collection of totally finite measures defined on the Borel field generated by the open sets of a Banach space X. In particular, corollary necessary and sufficient conditions are given so that there exists a rank K linear sufficient statistic T for any finite collection of probability measures having n-variate normal densities. In this case a simple calculation, involving only the population means and covariances, determines the smallest integer K for which there exists a rank K linear sufficient statistic T (as well as an associated statistic T itself).
Hyperbranched polymer stars with Gaussian chain statistics revisited.
Polińska, P; Gillig, C; Wittmer, J P; Baschnagel, J
2014-02-01
Conformational properties of regular dendrimers and more general hyperbranched polymer stars with Gaussian statistics for the spacer chains between branching points are revisited numerically. We investigate the scaling for asymptotically long chains especially for fractal dimensions df = 3 (marginally compact) and df = 2.5 (diffusion limited aggregation). Power-law stars obtained by imposing the number of additional arms per generation are compared to truly self-similar stars. We discuss effects of weak excluded-volume interactions and sketch the regime where the Gaussian approximation should hold in dense solutions and melts for sufficiently large spacer chains. PMID:24574057
Full Current Statistics in Diffusive Normal-Superconductor Structures
Belzig, W.; Nazarov, Yu. V.
2001-08-06
We study the current statistics in normal diffusive conductors in contact with a superconductor. Using an extension of the Keldysh Green's function method we are able to find the full distribution of charge transfers for all temperatures and voltages. For the non-Gaussian regime, we show that the equilibrium current fluctuations are enhanced by the presence of the superconductor. We predict an enhancement of the nonequilibrium current noise for temperatures below and voltages of the order of the Thouless energy E{sub Th}=D/L{sup 2} . Our calculation fully accounts for the proximity effect in the normal metal and agrees with experimental data.
Statistical mechanics of 'negative temperature' states. [for plasma
NASA Technical Reports Server (NTRS)
Montgomery, D.; Joyce, G.
1974-01-01
Consideration of the dynamics of a two-dimensional guiding center plasma, recently shown by Taylor and McNamara (1971) to be identical to the dynamics of the discrete vortex model of Onsager (1949). A semirigorous application of the methods of equilibrium statistical mechanics to the guiding center plasma (or equivalently, the line vortex system) is presented. An adaptation of the apparatus of the theory of probability is attempted, in the form given by Khinchin (1949) to obtain ensemble-average predictions for the states of the guiding center plasma. Interest focuses primarily on the regime in which the interaction energy is high enough to be above the Onsager 'negative temperature' threshold.
AN INDEX TO DETECT EXTERNALLY-FORCED DYNAMIC REGIME SHIFTS IN ECOSYSTEMS
The concept of dynamic regimes, and nonlinear shifts between regimes, has gained acceptance and importance in ecosystem research. Regimes in ecosystems are identified as states with characteristic species abundances and abiotic conditions. Ecosystems are maintained in particular ...
USING FISHER INFORMATION TO DETECT GRADUAL AND RAPID ECOSYSTEM REGIME SHIFTS
As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neighborhood of the current regime, or "flip" into the neighborhood of a regime with different characteristics. Although the possibility of such regime shifts...
Regime shifts in North Sea and Baltic Sea: A comparison
NASA Astrophysics Data System (ADS)
Dippner, Joachim W.; Möller, Caroline; Hänninen, Jari
2012-12-01
The ICES subdivisions in the North Sea (SD IIIa, SD IVa, and SD IVb) and the subdivisions in the Baltic Sea (SD 29, SD 27/28-2, and SD 25/26) are selected to compare the response in long term monitoring data (1970-2000) with respect to climate regime shifts. A modified AMOEBA model is applied to the data sets to identify the status and development of the North Sea and Baltic Sea system during two recent regime shifts. Biological regime shifts can be identified 1989/1990 in SD IIIa in the North Sea and in SD 25/26 in the Baltic Sea. A synchronous appearance of regime shifts could only be identified in the central and southern Baltic Sea for both regime shifts 1975/76 and 1989/90 where the AMOEBA model indicated a high similarity in ecosystem response. A clear difference was identified in the response of the North Sea and the Baltic Sea. Inter-annual and inter-decadal variability as well as regime shifts are driven in the Baltic Sea by direct atmospheric forcing only. In contrast, the changes in the North Sea are influenced by both the direct atmospheric forcing and the indirect forcing from the changes in North Atlantic. The fact that regime shifts as well as their synchronous appearance can be identified with the AMOEBA model might be of major interest for the management of sustainable use of ecosystem goods and services, the development of ecosystem approach to management and the implementation of the Marine Strategy Framework Directive (MSFD) of the European Union (EU).
Transient response of Salix cuttings to changing water level regimes
NASA Astrophysics Data System (ADS)
Gorla, L.; Signarbieux, C.; Turberg, P.; Buttler, A.; Perona, P.
2015-03-01
Sustainable water management requires an understanding of the effects of flow regulation on riparian ecomorphological processes. We investigated the transient response of Salix viminalis by examining the effect of water-level regimes on its above-ground and below-ground biomass. Four sets of Salix cuttings, three juveniles (in the first growing season) and one mature (1 year old), were planted and initially grown under the same water-level regime for 1 month. We imposed three different water-level regime treatments representing natural variability, a seasonal trend with no peaks, and minimal flow (characteristic of hydropower) consisting of a constant water level and natural flood peaks. We measured sap flux, stem water potential, photosynthesis, growth parameters, and final root architecture. The mature cuttings were not affected by water table dynamics, but the juveniles displayed causal relationships between the changing water regime, plant growth, and root distribution during a 2 month transient period. For example, a 50% drop in mean sap flux corresponded with a -1.5 Mpa decrease in leaf water potential during the first day after the water regime was changed. In agreement with published field observations, the cuttings concentrated their roots close to the mean water table of the corresponding treatment, allowing survival under altered conditions and resilience to successive stress events. Juvenile development was strongly impacted by the minimum flow regime, leading to more than 60% reduction of both above-ground and below-ground biomass, with respect to the other treatments. Hence, we suggest avoiding minimum flow regimes where Salix restoration is prioritized.
Statistical concepts in metrology with a postscript on statistical graphics
NASA Astrophysics Data System (ADS)
Ku, Harry H.
1988-08-01
Statistical Concepts in Metrology was originally written as Chapter 2 for the Handbook of Industrial Metrology published by the American Society of Tool and Manufacturing Engineers, 1967. It was reprinted as one of 40 papers in NBS Special Publication 300, Volume 1, Precision Measurement and Calibration; Statistical Concepts and Procedures, 1969. Since then this chapter has been used as basic text in statistics in Bureau-sponsored courses and seminars, including those for Electricity, Electronics, and Analytical Chemistry. While concepts and techniques introduced in the original chapter remain valid and appropriate, some additions on recent development of graphical methods for the treatment of data would be useful. Graphical methods can be used effectively to explore information in data sets prior to the application of classical statistical procedures. For this reason additional sections on statistical graphics are added as a postscript.
Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions
NASA Astrophysics Data System (ADS)
Le Corre, Jean-Marie
Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate
Online recognition of the multiphase flow regime and study of slug flow in pipeline
NASA Astrophysics Data System (ADS)
Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu
2009-02-01
Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of
Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.
2009-09-01
SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.
Regime switching model for financial data: Empirical risk analysis
NASA Astrophysics Data System (ADS)
Salhi, Khaled; Deaconu, Madalina; Lejay, Antoine; Champagnat, Nicolas; Navet, Nicolas
2016-11-01
This paper constructs a regime switching model for the univariate Value-at-Risk estimation. Extreme value theory (EVT) and hidden Markov models (HMM) are combined to estimate a hybrid model that takes volatility clustering into account. In the first stage, HMM is used to classify data in crisis and steady periods, while in the second stage, EVT is applied to the previously classified data to rub out the delay between regime switching and their detection. This new model is applied to prices of numerous stocks exchanged on NYSE Euronext Paris over the period 2001-2011. We focus on daily returns for which calibration has to be done on a small dataset. The relative performance of the regime switching model is benchmarked against other well-known modeling techniques, such as stable, power laws and GARCH models. The empirical results show that the regime switching model increases predictive performance of financial forecasting according to the number of violations and tail-loss tests. This suggests that the regime switching model is a robust forecasting variant of power laws model while remaining practical to implement the VaR measurement.
Early regimes of water capillary flow in slit silica nanochannels.
Oyarzua, Elton; Walther, Jens H; Mejía, Andrés; Zambrano, Harvey A
2015-06-14
Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes: an initial regime where the capillary force is balanced only by the inertial drag and characterized by a constant velocity and a plug flow profile. In this regime, the meniscus formation process plays a central role in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance has significant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscous forces dominate the capillary force balance is attained. Flow velocity profiles identify the passage from an inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicate a transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling rates computed for higher air pressures reveal a significant retarding effect of the gas displaced by the advancing meniscus.
Shear Capacity as Prognostic of Nocturnal Boundary Layer Regimes
NASA Astrophysics Data System (ADS)
van Hooijdonk, Ivo; Donda, Judith; Bosveld, Fred; Moene, Arnold; Clercx, Herman; van de Wiel, Bas
2015-04-01
After sunset the surface temperature can drop rapidly in some nights and may lead to ground frost. This sudden drop is closely related to the occurrence of fundamentally different behaviour of turbulence in the nocturnal boundary layer. Recent theoretical findings predict the appearance of two different regimes: the continuously turbulent (weakly stable) boundary layer and the relatively 'quiet' (very stable) boundary layer. Field observations from a large number of nights (approx. 4500 in total) are analysed using an ensemble averaging technique. The observations support the existence of these two fundamentally different regimes: weakly stable (turbulent) nights rapidly reach a steady state (within 2-3 hours). In contrast, very stable nights reach a steady state much later after a transition period (2-6 hours). During this period turbulence is weak and non-stationary. To characterise the regime a new parameter is introduced: the Shear Capacity. This parameter compares the actual shear after sunset with the minimum shear needed to sustain continuous turbulence. In turn, the minimum shear is dictated by the heat flux demand at the surface (net radiative cooling), so that the Shear Capacity combines flow information with knowledge on the boundary condition. It is shown that the Shear Capacity enables prediction of the flow regimes. The prognostic strength of this non-dimensional parameter appears to outperform the traditional ones like z/L and Ri as regime indicator.
Burning plasma regime for Fussion-Fission Research Facility
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.
2010-11-01
The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.
THE IMPACT OF THE GLOBAL NUCLEAR SAFETY REGIME IN BRAZIL
Almeida, C.
2004-10-06
A turning point of the world nuclear industry with respect to safety occurred due to the accident at Chernobyl, in 1986. A side from the tragic personal losses and the enormous financial damage, the Chernobyl accident has literally demonstrated that ''a nuclear accident anywhere is an accident everywhere''. The impact was felt immediately by the nuclear industry, with plant cancellations (e.g. Austria), elimination of national programs (e.g. Italy) and general construction delays. However, the reaction of the nuclear industry was equally immediate, which led to the proposal and establishment of a Global Nuclear Safety Regime. This regime is composed of biding international safety conventions, globally accepted safety standard, and a voluntary peer review system. In a previous work, the author has presented in detail the components of this Regime, and briefly discussed its impact in the Brazilian nuclear power organizations, including the Regulatory Body. This work, on the opposite, briefly reviews the Global Nuclear Safety Regime, and concentrates in detail in the discussion of its impact in Brazil, showing how it has produced some changes, and where the peer pressure regime has failed to produce real results.
Non-Markovian full counting statistics in quantum dot molecules.
Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming
2015-03-10
Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules.
Research Design and Statistical Design.
ERIC Educational Resources Information Center
Szymanski, Edna Mora
1993-01-01
Presents fourth editorial in series, this one describing research design and explaining its relationship to statistical design. Research design, validity, and research approaches are examined, quantitative research designs and hypothesis testing are described, and control and statistical designs are discussed. Concludes with section on the art of…
Explorations in Statistics: Confidence Intervals
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2009-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This third installment of "Explorations in Statistics" investigates confidence intervals. A confidence interval is a range that we expect, with some level of confidence, to include the true value of a population parameter…
Book Trade Research and Statistics.
ERIC Educational Resources Information Center
Bosch, Stephen; Ink, Gary; Lofquist, William S.
1998-01-01
Provides data on prices of U.S. and foreign materials; book title output and average prices, 1996 final and 1997 preliminary figures; book sales statistics, 1997--AAP preliminary estimates; U.S. trade in books, 1997; international book title output, 1990-95; book review media statistics; and number of book outlets in the U.S. and Canada. (PEN)
Representational Versatility in Learning Statistics
ERIC Educational Resources Information Center
Graham, Alan T.; Thomas, Michael O. J.
2005-01-01
Statistical data can be represented in a number of qualitatively different ways, the choice depending on the following three conditions: the concepts to be investigated; the nature of the data; and the purpose for which they were collected. This paper begins by setting out frameworks that describe the nature of statistical thinking in schools, and…
Statistics Anxiety among Postgraduate Students
ERIC Educational Resources Information Center
Koh, Denise; Zawi, Mohd Khairi
2014-01-01
Most postgraduate programmes, that have research components, require students to take at least one course of research statistics. Not all postgraduate programmes are science based, there are a significant number of postgraduate students who are from the social sciences that will be taking statistics courses, as they try to complete their…
Motivating Play Using Statistical Reasoning
ERIC Educational Resources Information Center
Cross Francis, Dionne I.; Hudson, Rick A.; Lee, Mi Yeon; Rapacki, Lauren; Vesperman, Crystal Marie
2014-01-01
Statistical literacy is essential in everyone's personal lives as consumers, citizens, and professionals. To make informed life and professional decisions, students are required to read, understand, and interpret vast amounts of information, much of which is quantitative. To develop statistical literacy so students are able to make sense of…
Statistical Methods in Psychology Journals.
ERIC Educational Resources Information Center
Willkinson, Leland
1999-01-01
Proposes guidelines for revising the American Psychological Association (APA) publication manual or other APA materials to clarify the application of statistics in research reports. The guidelines are intended to induce authors and editors to recognize the thoughtless application of statistical methods. Contains 54 references. (SLD)
Computing contingency statistics in parallel.
Bennett, Janine Camille; Thompson, David; Pebay, Philippe Pierre
2010-09-01
Statistical analysis is typically used to reduce the dimensionality of and infer meaning from data. A key challenge of any statistical analysis package aimed at large-scale, distributed data is to address the orthogonal issues of parallel scalability and numerical stability. Many statistical techniques, e.g., descriptive statistics or principal component analysis, are based on moments and co-moments and, using robust online update formulas, can be computed in an embarrassingly parallel manner, amenable to a map-reduce style implementation. In this paper we focus on contingency tables, through which numerous derived statistics such as joint and marginal probability, point-wise mutual information, information entropy, and {chi}{sup 2} independence statistics can be directly obtained. However, contingency tables can become large as data size increases, requiring a correspondingly large amount of communication between processors. This potential increase in communication prevents optimal parallel speedup and is the main difference with moment-based statistics where the amount of inter-processor communication is independent of data size. Here we present the design trade-offs which we made to implement the computation of contingency tables in parallel.We also study the parallel speedup and scalability properties of our open source implementation. In particular, we observe optimal speed-up and scalability when the contingency statistics are used in their appropriate context, namely, when the data input is not quasi-diffuse.
Education Statistics Quarterly, Spring 2001.
ERIC Educational Resources Information Center
Education Statistics Quarterly, 2001
2001-01-01
The "Education Statistics Quarterly" gives a comprehensive overview of work done across all parts of the National Center for Education Statistics (NCES). Each issue contains short publications, summaries, and descriptions that cover all NCES publications, data products and funding opportunities developed over a 3-month period. Each issue also…
SOCR: Statistics Online Computational Resource
ERIC Educational Resources Information Center
Dinov, Ivo D.
2006-01-01
The need for hands-on computer laboratory experience in undergraduate and graduate statistics education has been firmly established in the past decade. As a result a number of attempts have been undertaken to develop novel approaches for problem-driven statistical thinking, data analysis and result interpretation. In this paper we describe an…
Book Trade Research and Statistics.
ERIC Educational Resources Information Center
Bosch, Stephen; Ink, Gary; Greco, Albert N.
1999-01-01
Presents: "Prices of United States and Foreign Published Materials"; "Book Title Output and Average Prices"; "Book Sales Statistics, 1998"; "United States Book Exports and Imports: 1998"; "International Book Title Output: 1990-96"; "Number of Book Outlets in the United States and Canada"; and "Book Review Media Statistics". (AEF)
Book Trade Research and Statistics.
ERIC Educational Resources Information Center
Sullivan, Sharon G.; Ink, Gary; Grabois, Andrew; Barr, Catherine
2001-01-01
Includes six articles that discuss research and statistics relating to the book trade. Topics include prices of U.S. and foreign materials; book title output and average prices; book sales statistics; book exports and imports; book outlets in the U.S. and Canada; and books and other media reviewed. (LRW)
Book Trade Research and Statistics.
ERIC Educational Resources Information Center
Alexander, Adrian W.; And Others
1994-01-01
The six articles in this section examine prices of U.S. and foreign materials; book title output and average prices; book sales statistics; U.S. book exports and imports; number of book outlets in the United States and Canada; and book review media statistics. (LRW)
Education Statistics Quarterly, Fall 2000.
ERIC Educational Resources Information Center
Dillow, Sally, Ed.
2000-01-01
The "Education Statistics Quarterly" gives a comprehensive overview of work done across all parts of the National Center for Education Statistics (NCES). Each issue contains short publications, summaries, and descriptions that cover all NCES publications and data products released during a 3-month period. Each message also contains a message from…
Students' Attitudes toward Statistics (STATS).
ERIC Educational Resources Information Center
Sutarso, Toto
The purposes of this study were to develop an instrument to measure students' attitude toward statistics (STATS), and to define the underlying dimensions that comprise the STATS. The instrument consists of 24 items. The sample included 79 male and 97 female students from the statistics classes at the College of Education and the College of…
Statistical Factors in Complexation Reactions.
ERIC Educational Resources Information Center
Chung, Chung-Sun
1985-01-01
Four cases which illustrate statistical factors in complexation reactions (where two of the reactants are monodentate ligands) are presented. Included are tables showing statistical factors for the reactions of: (1) square-planar complexes; (2) tetrahedral complexes; and (3) octahedral complexes. (JN)
Statistical Mechanics and Thermodynamics of Viral Evolution
Jones, Barbara A.; Lessler, Justin; Bianco, Simone; Kaufman, James H.
2015-01-01
This paper uses methods drawn from physics to study the life cycle of viruses. The paper analyzes a model of viral infection and evolution using the "grand canonical ensemble" and formalisms from statistical mechanics and thermodynamics. Using this approach we enumerate all possible genetic states of a model virus and host as a function of two independent pressures–immune response and system temperature. We prove the system has a real thermodynamic temperature, and discover a new phase transition between a positive temperature regime of normal replication and a negative temperature “disordered” phase of the virus. We distinguish this from previous observations of a phase transition that arises as a function of mutation rate. From an evolutionary biology point of view, at steady state the viruses naturally evolve to distinct quasispecies. This paper also reveals a universal relationship that relates the order parameter (as a measure of mutational robustness) to evolvability in agreement with recent experimental and theoretical work. Given that real viruses have finite length RNA segments that encode proteins which determine virus fitness, the approach used here could be refined to apply to real biological systems, perhaps providing insight into immune escape, the emergence of novel pathogens and other results of viral evolution. PMID:26422205
Students' attitudes towards learning statistics
NASA Astrophysics Data System (ADS)
Ghulami, Hassan Rahnaward; Hamid, Mohd Rashid Ab; Zakaria, Roslinazairimah
2015-05-01
Positive attitude towards learning is vital in order to master the core content of the subject matters under study. This is unexceptional in learning statistics course especially at the university level. Therefore, this study investigates the students' attitude towards learning statistics. Six variables or constructs have been identified such as affect, cognitive competence, value, difficulty, interest, and effort. The instrument used for the study is questionnaire that was adopted and adapted from the reliable instrument of Survey of Attitudes towards Statistics(SATS©). This study is conducted to engineering undergraduate students in one of the university in the East Coast of Malaysia. The respondents consist of students who were taking the applied statistics course from different faculties. The results are analysed in terms of descriptive analysis and it contributes to the descriptive understanding of students' attitude towards the teaching and learning process of statistics.
Probability, Information and Statistical Physics
NASA Astrophysics Data System (ADS)
Kuzemsky, A. L.
2016-03-01
In this short survey review we discuss foundational issues of the probabilistic approach to information theory and statistical mechanics from a unified standpoint. Emphasis is on the inter-relations between theories. The basic aim is tutorial, i.e. to carry out a basic introduction to the analysis and applications of probabilistic concepts to the description of various aspects of complexity and stochasticity. We consider probability as a foundational concept in statistical mechanics and review selected advances in the theoretical understanding of interrelation of the probability, information and statistical description with regard to basic notions of statistical mechanics of complex systems. It includes also a synthesis of past and present researches and a survey of methodology. The purpose of this terse overview is to discuss and partially describe those probabilistic methods and approaches that are used in statistical mechanics with the purpose of making these ideas easier to understanding and to apply.
Statistical Thermodynamics and Microscale Thermophysics
NASA Astrophysics Data System (ADS)
Carey, Van P.
1999-08-01
Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.
Nursing student attitudes toward statistics.
Mathew, Lizy; Aktan, Nadine M
2014-04-01
Nursing is guided by evidence-based practice. To understand and apply research to practice, nurses must be knowledgeable in statistics; therefore, it is crucial to promote a positive attitude toward statistics among nursing students. The purpose of this quantitative cross-sectional study was to assess differences in attitudes toward statistics among undergraduate nursing, graduate nursing, and undergraduate non-nursing students. The Survey of Attitudes Toward Statistics Scale-36 (SATS-36) was used to measure student attitudes, with higher scores denoting more positive attitudes. The convenience sample was composed of 175 students from a public university in the northeastern United States. Statistically significant relationships were found among some of the key demographic variables. Graduate nursing students had a significantly lower score on the SATS-36, compared with baccalaureate nursing and non-nursing students. Therefore, an innovative nursing curriculum that incorporates knowledge of student attitudes and key demographic variables may result in favorable outcomes.
Wang, J.-S.; Grimley, D.A.; Xu, C.; Dawson, J.O.
2008-01-01
Flooded, saturated or poorly drained soils are frequently anaerobic, leading to dissolution of the strongly magnetic minerals, magnetite and maghemite, and a corresponding decrease in soil magnetic susceptibility (MS). In this study of five temperate deciduous forests in east-central Illinois, USA, mean surface soil MS was significantly higher adjacent to upland tree species (31 ?? 10-5 SI) than adjacent to floodplain or lowland tree species (17 ?? 10-5 SI), when comparing regional soils with similar parent material of loessal silt. Although the sites differ in average soil MS for each tree species, the relative order of soil MS means for associated tree species at different locations is similar. Lowland tree species, Celtis occidentalis L., Ulmus americana L., Acer saccharinum L., Carya laciniosa (Michx. f.) Loud., and Fraxinus pennsylvanica Marsh. were associated with the lowest measured soil MS mean values overall and at each site. Tree species' flood tolerance rankings increased significantly, as soil MS values declined, the published rankings having significant correlations with soil MS values for the same species groups. The three published classifications of tree species' flood tolerance were significantly correlated with associated soil MS values at all sites, but most strongly at Allerton Park, the site with the widest range of soil drainage classes and MS values. Using soil MS measurements in forests with soil parent material containing similar initial levels of strongly magnetic minerals can provide a simple, rapid and quantitative method to classify soils according to hydric regimes, including dry conditions, and associated plant composition. Soil MS values thus have the capacity to quantify the continuum of hydric tolerances of tree species and guide tree species selection for reforestation. ?? 2007 Elsevier B.V. All rights reserved.
Event-based approach of downstream Rhône River flood regimes variability since 1982
NASA Astrophysics Data System (ADS)
Hénaff, Quentin; Arnaud-Fassetta, Gilles; Beltrando, Gérard
2015-04-01
Numerous downstream Rhône River floods have been recorded as catastrophic by French inter-ministerial order since the creation of natural disaster state recognition in 1982. Downstream Rhône River flood regimes, influenced by Mediterranean climate, are fundamentally affected by the spatio-temporal variability of rainfall events, especially in case of widespread flooding. Event-based analysis of cumulative rainfall data should allow us to characterise downstream Rhône River flood regimes variability by applying data mining methods to a spatio-temporal hydro-meteorological database. The first objective of this study is to determine if extreme rainfall events could be considered as geographical events, in other words if rainfall distribution is related to spatial processes. The proposed method is based on the measure of rainfall distribution spatial auto-correlation through the calculation of (i) Global Moran's index and (ii) the significance evaluation of that index with a z-score statistical test and its associated p-value. Secondly, cumulative rainfall data are integrated into a geo-event two-dimensional matrix: (i) cumulative rainfall per sub-catchment in row (spatial base unit) and (ii) cumulative rainfall per catastrophic event in column (temporal base unit). This matrix was co-clustered which allows simultaneous clustering of the rows (sub-catchment) and columns (events) by hierarchical clustering on principal components (HCPC) using Ward's method applying Euclidean Distance as similarity measure. Computing the Global Moran's index demonstrated a spatial aggregation tendency of rainfall distribution and the associated statistical test (z-core and p-value) noted the improbability of statistical evidence of random spatial pattern. Spatial variability of rainfall distribution is the result of two factors: rainfall event structure and rainfall event scale. The co-clustering geo-event matrix provided two co-clustering maps on two different cumulative rainfall
Streamline segment statistics of premixed flames with nonunity Lewis numbers
NASA Astrophysics Data System (ADS)
Chakraborty, Nilanjan; Wang, Lipo; Klein, Markus
2014-03-01
The interaction of flame and surrounding fluid motion is of central importance in the fundamental understanding of turbulent combustion. It is demonstrated here that this interaction can be represented using streamline segment analysis, which was previously applied in nonreactive turbulence. The present work focuses on the effects of the global Lewis number (Le) on streamline segment statistics in premixed flames in the thin-reaction-zones regime. A direct numerical simulation database of freely propagating thin-reaction-zones regime flames with Le ranging from 0.34 to 1.2 is used to demonstrate that Le has significant influences on the characteristic features of the streamline segment, such as the curve length, the difference in the velocity magnitude at two extremal points, and their correlations with the local flame curvature. The strengthenings of the dilatation rate, flame normal acceleration, and flame-generated turbulence with decreasing Le are principally responsible for these observed effects. An expression for the probability density function (pdf) of the streamline segment length, originally developed for nonreacting turbulent flows, captures the qualitative behavior for turbulent premixed flames in the thin-reaction-zones regime for a wide range of Le values. The joint pdfs between the streamline length and the difference in the velocity magnitude at two extremal points for both unweighted and density-weighted velocity vectors are analyzed and compared. Detailed explanations are provided for the observed differences in the topological behaviors of the streamline segment in response to the global Le.
Influence of nonlinear effects on statistical properties of the radiation from SASE FEL
NASA Astrophysics Data System (ADS)
Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
1998-02-01
The paper presents analysis of statistical properties of the radiation from self-amplified spontaneous emission (SASE) free-electron laser operating in nonlinear mode. The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. It has been observed that the statistics of the instantaneous radiation power from SASE FEL operating in the nonlinear regime changes significantly with respect to the linear regime. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility under construction at DESY.
Shifts in fisheries management: adapting to regime shifts
King, Jacquelynne R.; McFarlane, Gordon A.; Punt, André E.
2015-01-01
For many years, fisheries management was based on optimizing yield and maintaining a target biomass, with little regard given to low-frequency environmental forcing. However, this policy was often unsuccessful. In the last two to three decades, fisheries science and management have undergone a shift towards balancing sustainable yield with conservation, with the goal of including ecosystem considerations in decision-making frameworks. Scientific understanding of low-frequency climate–ocean variability, which is manifested as ecosystem regime shifts and states, has led to attempts to incorporate these shifts and states into fisheries assessment and management. To date, operationalizing these attempts to provide tactical advice has met with limited success. We review efforts to incorporate regime shifts and states into the assessment and management of fisheries resources, propose directions for future investigation and outline a potential framework to include regime shifts and changes in ecosystem states into fisheries management.
Theoretical study of the crossover into hydrodynamic regime in graphene
NASA Astrophysics Data System (ADS)
Ho, Derek; Yudhistira, Indra; Hu, Ben Yu-Kuang; Adam, Shaffique
Experiments on graphene have recently succeeded in entering the hydrodynamic regime, as demonstrated by successful observations of strong violation of Wiedemann-Franz law, the Gurzhi effect and electronic Poiseuille flow. It is known that electronic systems enter the hydrodynamic regime when electron-electron scattering dominates over electron-impurity and electron-phonon scattering. However, a quantitative study of this transition from the Fermi liquid to hydrodynamic regime is still lacking. In view of this, we quantitatively analyze the electron-electron, electron-impurity and electron-phonon scattering rates as a function of temperature, charge doping and disorder (charge puddle) strength. This yields a quantitative understanding of the onset of hydrodynamic electronic behavior in graphene samples. This work is supported by the National Research Foundation of Singapore under its Fellowship program (NRF-NRFF2012-01) and by the Singapore Ministry of Education and Yale-NUS College through Grant No. R-607-265-01312.
Supercurrent in the quantum Hall regime, part II
NASA Astrophysics Data System (ADS)
Amet, Francois; Ke, Chung Ting; Borzenets, Ivan; Wang, Jiyingmei; Watanabe, Kenji; Taniguchi, Takashi; Deacon, Russel; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb
A novel promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall effect. Despite this potential, signatures of superconductivity in the quantum Hall regime remain scarce, and a superconducting current through a Landau-quantized two-dimensional electron gas has so far eluded experimental observation. High-mobility graphene/BN heterostructures exhibit the quantum Hall effect at relatively low field and are therefore particularly suitable to study the fate of the Josephson effect in that regime. Here, we report the observation of a superconducting current through graphene at fields as high as 2 Tesla. In that regime, the normal-state resistance is quantized but pockets of superconductivity still persist at small current bias. We will describe their bias and temperature dependence. Magnetic field interference patterns in the supercurrent inform on possible mechanisms mediating this supercurrent.
Living dangerously on borrowed time during slow, unrecognized regime shifts.
Hughes, Terry P; Linares, Cristina; Dakos, Vasilis; van de Leemput, Ingrid A; van Nes, Egbert H
2013-03-01
Regime shifts from one ecological state to another are often portrayed as sudden, dramatic, and difficult to reverse. Yet many regime shifts unfold slowly and imperceptibly after a tipping point has been exceeded, especially at regional and global scales. These long, smooth transitions between equilibrium states are easy to miss, ignore, or deny, confounding management and governance. However, slow responses by ecosystems after transgressing a dangerous threshold also affords borrowed time - a window of opportunity to return to safer conditions before the new state eventually locks in and equilibrates. In this context, the most important challenge is a social one: convincing enough people to confront business-as-usual before time runs out to reverse unwanted regime shifts even after they have already begun.
Nonlinear-optical frequency-doubling metareflector: pulsed regime
NASA Astrophysics Data System (ADS)
Popov, A. K.; Myslivets, S. A.
2016-01-01
The properties of backward-wave second-harmonic metareflector operating in pulse regime are investigated. It is made of metamaterial which enables phase matching of contra-propagating fundamental and second-harmonic waves. References are given to the works that prove such a possibility. Physical principles underlying differences in the proposed and standard settings as well as between continuous-wave and pulsed regimes are discussed. Pulsed regime is more practicable and has a broader scope of applications. A set of partial differential equations which describe such a reflector with the account for losses are solved numerically. It is shown that unlike second-harmonic generation in standard settings, contra-propagating pulse of second harmonic may become much longer than the incident fundamental one and the difference grows with decrease in the input pulse length as compared to thickness of the metaslab. The revealed properties are important for applications and may manifest themselves beyond the optical wavelength range.
Inhomogeneous stationary and oscillatory regimes in coupled chaotic oscillators.
Liu, Weiqing; Volkov, Evgeny; Xiao, Jinghua; Zou, Wei; Zhan, Meng; Yang, Junzhong
2012-09-01
The dynamics of linearly coupled identical Lorenz and Pikovsky-Rabinovich oscillators are explored numerically and theoretically. We concentrate on the study of inhomogeneous stable steady states ("oscillation death (OD)" phenomenon) and accompanying periodic and chaotic regimes that emerge at an appropriate choice of the coupling matrix. The parameters, for which OD occurs, are determined by stability analysis of the chosen steady state. Three model-specific types of transitions to and from OD are observed: (1) a sharp transition to OD from a nonsymmetric chaotic attractor containing random intervals of synchronous chaos; (2) transition to OD from the symmetry-breaking chaotic regime created by negative coupling; (3) supercritical bifurcation of OD into inhomogeneous limit cycles and further evolution of the system to inhomogeneous chaotic regimes that coexist with complete synchronous chaos. These results may fill a gap in the understanding of the mechanism of OD in coupled chaotic systems.
Laser-nucleus interactions: The quasi-adiabatic regime
NASA Astrophysics Data System (ADS)
Pálffy, Adriana; Buss, Oliver; Hoefer, Axel; Weidenmüller, Hans A.
2015-10-01
The interaction between nuclei and a strong zeptosecond laser pulse with coherent MeV photons is investigated theoretically. We provide a first semiquantitative study of the quasi-adiabatic regime where the photon absorption rate is comparable to the nuclear equilibration rate. In that regime, multiple photon absorption leads to the formation of a compound nucleus in the so-far unexplored regime of excitation energies several hundred MeV above the yrast line. The temporal dynamics of the process is investigated by means of a set of master equations that account for dipole absorption, stimulated dipole emission, neutron decay, and induced fission in a chain of nuclei. That set is solved numerically by means of state-of-the-art matrix exponential methods also used in nuclear fuel burn-up and radioactivity transport calculations. Our quantitative estimates predict the excitation path and range of nuclei reached by neutron decay and provide relevant information for the layout of future experiments.
Living dangerously on borrowed time during slow, unrecognized regime shifts.
Hughes, Terry P; Linares, Cristina; Dakos, Vasilis; van de Leemput, Ingrid A; van Nes, Egbert H
2013-03-01
Regime shifts from one ecological state to another are often portrayed as sudden, dramatic, and difficult to reverse. Yet many regime shifts unfold slowly and imperceptibly after a tipping point has been exceeded, especially at regional and global scales. These long, smooth transitions between equilibrium states are easy to miss, ignore, or deny, confounding management and governance. However, slow responses by ecosystems after transgressing a dangerous threshold also affords borrowed time - a window of opportunity to return to safer conditions before the new state eventually locks in and equilibrates. In this context, the most important challenge is a social one: convincing enough people to confront business-as-usual before time runs out to reverse unwanted regime shifts even after they have already begun. PMID:22995893
Challenges in Finding AGNs in the Low Luminosity Regime
NASA Astrophysics Data System (ADS)
Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara
2016-08-01
Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.
Temporal evolution of flow regimes in urbanizing basins
NASA Astrophysics Data System (ADS)
Mejia, A.; Rossel, F.; Gironas, J. A.; Jovanovic, T.
2014-12-01
We characterize the temporal evolution of the flow regime of urbanizing basins. By urbanizing basins, we mean basins that have experienced urban growth during their observation period. To represent the flow regime, we use flow duration curves (FDCs). We compute the FDCs using a stochastic model of daily streamflow for urban basins. In this case, the model aids in discerning the influence of key factors (e.g., climate, land use change, stormwater managenment conditions, and the slow and fast properties of the hydrologic response) on streamflow. To implement the model, we first divide the complete observation period of a given urban basin into intervals of equal duration, e.g. 5 years. Subsequently, we apply the model to each interval and this is how we capture the influence of land use changes and climatic fluctuations on the flow regime. We apply this modeling framework to 14 urbanizing basins in the Baltimore-Washington DC region. Results from this application indicate consistent changes in the temporal evolution of the altered flow regimes, which can largely be explained by the progressive redistribution with urban growth of water from slow subsurface runoff and evapotranspiration to fast urban runoff. We also use the modeling framework to determine indicators of ecohydrological alteration for urbanizing basins. The application of these indicators to our study area suggests that the flow regime is sensitive to alterations up to a certain level of urbanization after which sensitivity seems to level off. The flow regime also seems to be relatively more resistant to alterations for both the smaller and larger levels of urbanization considered. In the future, we would like to extend the application of the proposed modeling framework to other metropolitan areas.
Energy regimes and the development of the European Community
Hadjilambrinos, C.J.
1993-01-01
Energy policy has historically played an important role in the development of the European Community (EC). This study examines the reasons for the choice of coal and atomic energy as regimes of integration, analyzes their impact on the institutions and political traditions of the EC, and evaluates their consistency with the principles of democratic governance. Functionalist theory has provided the idealogical foundations for the European Coal and Steel Community and the European Atomic Energy Community. Functionalist theorists advocate technocracy as the means for overcoming the conflicts inherent in traditional political processes. Coal and atomic energy were chosen as regimes of integration because of their technocratic character and the importance attached to them as the dominant energy source of the time and the perceived source of energy abundance in the near future. Energy regimes could not be removed from the political context of national governance. Hard energy regimes, which include coal and atomic energy, are technocratic policies which exclude ordinary citizens from the exercise of power and intensify international conflict. An institutional analysis of the French and Danish electricity regimes demonstrates that their political characteristics are incompatible with the principles of democratic governance. It is also demonstrated that the characteristics of soft energy regimes (e.g., conservation and renewables) are compatible with these principles and are based on cooperation. An analysis of the EC's energy policy demonstrates that a soft energy path represents a concept of integration which distributes decision-making power among various levels of governance. A hard energy path would concentrate power in the hands of a technocratic elite. The pursuit of a soft energy path by the EC would enhance significantly the opportunities for political integration.
Regime independent coupled-wave equations in anisotropic photorefractive media
NASA Astrophysics Data System (ADS)
Daly, K. R.; D'Alessandro, G.; Kaczmarek, M.
2009-06-01
An extension to coupled wave theory suitable for all regimes of diffraction is presented. The model assumes that the refractive index grating has an arbitrary profile in one direction and is periodic (but not necessarily sinusoidal) in the other. Higher order diffracted terms are considered and appropriate mismatch terms dealt with. It is shown that this model is analytically equivalent to both the Bragg and Raman-Nath regime coupling models under an appropriate set of assumptions. This model is applied to cases such as optical coupling in liquid crystal cells with photoconductive layers. Its predictions are successfully compared to finite element simulations of the full Maxwell’s equations.
The transition between the niche and neutral regimes in ecology
Fisher, Charles K.; Mehta, Pankaj
2014-01-01
An ongoing debate in ecology concerns the impacts of ecological drift and selection on community assembly. Here, we show that there is a transition in diverse ecological communities between a selection-dominated regime (the niche phase) and a drift-dominated regime (the neutral phase). Simulations and analytic arguments show that the niche phase is favored in communities with large population sizes and relatively constant environments, whereas the neutral phase is favored in communities with small population sizes and fluctuating environments. Our results demonstrate how apparently neutral populations may arise even in communities inhabited by species with varying traits. PMID:25157131
Orbital magnetoconductance in the variable-range-hopping regime
NASA Technical Reports Server (NTRS)
Sivan, U.; Entin-Wohlman, O.; Imry, Y.
1988-01-01
The orbital magnetoconductance (MC) in the variable-range-hopping (VRH) regime is evaluated by use of a model which approximately takes into account the interference among random paths in the hopping process. Instead of logarithmic averaging the MC is obtained by the critical percolating resistor method. The small-field MC is quadratic in H; it is positive deep in the VRH regime and changes sign when the zero-field conductivity is high enough. This behavior (except for the sign change) and the relevant magnetic field scale are in agreement with recent experiments. The calculated MC is always positive for strong fields and is predicted to saturate at sufficiently large fields.
Strong and moderate nonlinear El Niño regimes
NASA Astrophysics Data System (ADS)
Takahashi, Ken; Dewitte, Boris
2016-03-01
It has been previously proposed that two El Niño (EN) regimes, strong and moderate, exist but the historical observational record is too short to establish this conclusively. Here, 1200 years of simulations with the GFDL CM2.1 model allowed us to demonstrate their existence in this model and, by showing that the relevant dynamics are also evident in observations, we present a stronger case for their existence in nature. In CM2.1, the robust bimodal probability distribution of equatorial Pacific sea surface temperature (SST) indices during EN peaks provides evidence for the existence of the regimes, which is also supported by a cluster analysis of these same indices. The observations agree with this distribution, with the EN of 1982-1983 and 1997-1998 corresponding to the strong EN regime and all the other observed EN to the moderate regime. The temporal evolution of various indices during the observed strong EN agrees very well with the events in CM2.1, providing further validation of this model as a proxy for nature. The two regimes differ strongly in the magnitude of the eastern Pacific warming but not much in the central Pacific. Observations and model agree in the existence of a finite positive threshold in the SST anomaly above which the zonal wind response to warming is strongly enhanced. Such nonlinearity in the Bjerknes feedback, which increases the growth rate of EN events if they reach sufficiently large amplitude, is very likely the essential mechanism that gives rise to the existence of the two EN regimes. Oceanic nonlinear advection does not appear essential for the onset of strong EN. The threshold nonlinearity could make the EN regimes very sensitive to stochastic forcing. Observations and model agree that the westerly wind stress anomaly in the central equatorial Pacific in late boreal summer has a substantial role determining the EN regime in the following winter and it is suggested that a stochastic component at this time was key for the
Champagne experiences various rhythmical bubbling regimes in a flute.
Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos
2006-09-20
Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.
Primary Thermometry in the Intermediate Coulomb Blockade Regime
NASA Astrophysics Data System (ADS)
Feshchenko, A. V.; Meschke, M.; Gunnarsson, D.; Prunnila, M.; Roschier, L.; Penttilä, J. S.; Pekola, J. P.
2013-10-01
We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.
Phase contrast and operation regimes in multifrequency atomic force microscopy
Santos, Sergio
2014-04-07
In amplitude modulation atomic force microscopy the attractive and the repulsive force regimes induce phase shifts above and below 90°, respectively. In the more recent multifrequency approach, however, multiple operation regimes have been reported and the theory should be revisited. Here, a theory of phase contrast in multifrequency atomic force microscopy is developed and discussed in terms of energy transfer between modes, energy dissipation and the kinetic energy and energy transfer associated with externally driven harmonics. The single frequency virial that controls the phase shift might undergo transitions in sign while the average force (modal virial) remains positive (negative)
Cool, high-density regime for poloidal divertors
Petravic, M.; Post, D.; Heifetz, D.; Schmidt, J.
1981-08-01
Calculations have been performed which demonstrate the possibility of operating poloidal divertors at high densities and low temperatures. This operating regime is caused primarily by ionization of recycling neutral gas near the divertor neutralizer plate which amplifies the input particle flux thereby raising the plasma density and lowering the plasma temperature. Low temperature, high density operation of poloidal divertors would ease the design requirements for future large tokamaks such as INTOR or FED by reducing the erosion rate in the divertor and reducing the neutral density and the associated charge exchange erosion near the main plasma. This regime may have already been observed on several divertor and limiter experiments.