Approximately Integrable Linear Statistical Models in Non-Parametric Estimation
1990-08-01
OTIC I EL COPY Lfl 0n Cf) NAPPROXIMATELY INTEGRABLE LINEAR STATISTICAL MODELS IN NON- PARAMETRIC ESTIMATION by B. Ya. Levit University of Maryland...Integrable Linear Statistical Models in Non- Parametric Estimation B. Ya. Levit Sumnmary / The notion of approximately integrable linear statistical models...models related to the study of the "next" order optimality in non- parametric estimation . It appears consistent to keep the exposition at present at the
A Comparison of Parametric versus Nonparametric Statistics.
ERIC Educational Resources Information Center
Royeen, Charlotte Brasic
In order to examine the possible effects of violation of assumptions using parametric procedures, this study is an exploratory investigation into the use of parametric versus nonparametric procedures using a multiple case study design. The case study investigation guidelines outlined by Yin served as the methodology. The following univariate…
Parametric vs. non-parametric statistics of low resolution electromagnetic tomography (LORETA).
Thatcher, R W; North, D; Biver, C
2005-01-01
This study compared the relative statistical sensitivity of non-parametric and parametric statistics of 3-dimensional current sources as estimated by the EEG inverse solution Low Resolution Electromagnetic Tomography (LORETA). One would expect approximately 5% false positives (classification of a normal as abnormal) at the P < .025 level of probability (two tailed test) and approximately 1% false positives at the P < .005 level. EEG digital samples (2 second intervals sampled 128 Hz, 1 to 2 minutes eyes closed) from 43 normal adult subjects were imported into the Key Institute's LORETA program. We then used the Key Institute's cross-spectrum and the Key Institute's LORETA output files (*.lor) as the 2,394 gray matter pixel representation of 3-dimensional currents at different frequencies. The mean and standard deviation *.lor files were computed for each of the 2,394 gray matter pixels for each of the 43 subjects. Tests of Gaussianity and different transforms were computed in order to best approximate a normal distribution for each frequency and gray matter pixel. The relative sensitivity of parametric vs. non-parametric statistics were compared using a "leave-one-out" cross validation method in which individual normal subjects were withdrawn and then statistically classified as being either normal or abnormal based on the remaining subjects. Log10 transforms approximated Gaussian distribution in the range of 95% to 99% accuracy. Parametric Z score tests at P < .05 cross-validation demonstrated an average misclassification rate of approximately 4.25%, and range over the 2,394 gray matter pixels was 27.66% to 0.11%. At P < .01 parametric Z score cross-validation false positives were 0.26% and ranged from 6.65% to 0% false positives. The non-parametric Key Institute's t-max statistic at P < .05 had an average misclassification error rate of 7.64% and ranged from 43.37% to 0.04% false positives. The nonparametric t-max at P < .01 had an average misclassification rate
Application of parametric statistical weights in CAD imaging systems
NASA Astrophysics Data System (ADS)
Galperin, Michael
2005-04-01
PURPOSE: To propose a method for Parametric Statistical Weights (PSW) estimations and analyze its statistical impact in Computer-Aided Diagnosis Imaging Systems based on a Relative Similarity (CADIRS) classification approach. MATERIALS AND METHODS: A Multifactor statistical method was developed and applied for Parametric Statistical Weights calculations in CADIRS. The implemented PSW method was used for statistical estimations of PSW impact when applied to a clinically validated breast ultrasound digital database of 332 patients' cases with biopsy proven findings. The method is based on the assumption that each parameter used in Relative Similarity (RS) classifier contributes to the deviation of the diagnostic prediction proportionally to the normalized value of its coefficient of multiple regression. The calculated by CADIRS Relative Similarity values with and without PSW were statistically estimated, compared and analyzed (on subset of cases) using classic Receiver Operator Characteristic (ROC) analysis methods. RESULTS: When CADIRS classification scheme was augmented with PSW the Relative Similarity the calculated values were 2-5% higher in average. Numeric estimations of PSW allowed decomposition of statistical significance for each component (factor) and its impact on similarity to the diagnostic results (biopsy proven). CONCLUSION: Parametric Statistical Weights in Computer-Aided Diagnosis Imaging Systems based on a Relative Similarity classification approach can be successfully applied in an effort to enhance overall classification (including scoring) outcomes. For the analyzed cohort of 332 cases the application of PSW increased Relative Similarity to the retrieved templates with known findings by 2-5% in average.
Two-parametric fractional statistics models for anyons
NASA Astrophysics Data System (ADS)
Rovenchak, Andrij
2014-08-01
In the paper, two-parametric models of fractional statistics are proposed in order to determine the functional form of the distribution function of free anyons. From the expressions of the second and third virial coefficients, an approximate correspondence is shown to hold for three models, namely, the nonadditive Polychronakos statistics and both the incomplete and the nonadditive modifications of the Haldane-Wu statistics. The difference occurs only in the fourth virial coefficient leading to a small correction in the equation of state. For the two generalizations of the Haldane-Wu statistics, the solutions for the statistics parameters g, q exist in the whole domain of the anyonic parameter α ∈ [0; 1], unlike the nonadditive Polychronakos statistics. It is suggested that the search for the expression of the anyonic distribution function should be made within some modifications of the Haldane-Wu statistics.
Quantum statistics of optical parametric processes with squeezed reservoirs
NASA Astrophysics Data System (ADS)
Peřina, Jan; Křepelka, Jaromír
2013-11-01
Quantum statistics including joint photon-number and integrated-intensity probability distributions are derived in time evolution of general optical parametric process involving processes of frequency conversion, parametric amplification and subharmonic generation taking into account losses and noise described by squeezed reservoirs. Using these tools quantum entanglement of modes is considered and the other nonclassical properties of the process under discussion are demonstrated by means of conditional probability distributions and their Fano factors, difference-number probability distributions, quantum oscillations, squeezing of vacuum fluctuations and negative values of the joint and difference wave probability quasidistributions. Nonclassical properties are illustrated for spontaneous process as well as stimulated process by means of chaotic light and squeezed vacuum field. Multimode processes are investigated in the spirit of the Mandel-Rice photocount formula.
One-dimensional statistical parametric mapping in Python.
Pataky, Todd C
2012-01-01
Statistical parametric mapping (SPM) is a topological methodology for detecting field changes in smooth n-dimensional continua. Many classes of biomechanical data are smooth and contained within discrete bounds and as such are well suited to SPM analyses. The current paper accompanies release of 'SPM1D', a free and open-source Python package for conducting SPM analyses on a set of registered 1D curves. Three example applications are presented: (i) kinematics, (ii) ground reaction forces and (iii) contact pressure distribution in probabilistic finite element modelling. In addition to offering a high-level interface to a variety of common statistical tests like t tests, regression and ANOVA, SPM1D also emphasises fundamental concepts of SPM theory through stand-alone example scripts. Source code and documentation are available at: www.tpataky.net/spm1d/.
Aversi-Ferreira, Roqueline A. G. M. F.; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre
2015-01-01
Various statistical methods have been published for comparative anatomy. However, few studies compared parametric and nonparametric statistical methods. Moreover, some previous studies using statistical method for comparative anatomy (SMCA) proposed the formula for comparison of groups of anatomical structures (multiple structures) among different species. The present paper described the usage of SMCA and compared the results by SMCA with those by parametric test (t-test) and nonparametric analyses (cladistics) of anatomical data. In conclusion, the SMCA can offer a more exact and precise way to compare single and multiple anatomical structures across different species, which requires analyses of nominal features in comparative anatomy. PMID:26413553
Aversi-Ferreira, Roqueline A G M F; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre
2015-01-01
Various statistical methods have been published for comparative anatomy. However, few studies compared parametric and nonparametric statistical methods. Moreover, some previous studies using statistical method for comparative anatomy (SMCA) proposed the formula for comparison of groups of anatomical structures (multiple structures) among different species. The present paper described the usage of SMCA and compared the results by SMCA with those by parametric test (t-test) and nonparametric analyses (cladistics) of anatomical data. In conclusion, the SMCA can offer a more exact and precise way to compare single and multiple anatomical structures across different species, which requires analyses of nominal features in comparative anatomy.
A Parametric Cumulative Sum Statistic for Person Fit
ERIC Educational Resources Information Center
Armstrong, Ronald D.; Shi, Min
2009-01-01
This article develops a new cumulative sum (CUSUM) statistic to detect aberrant item response behavior. Shifts in behavior are modeled with quadratic functions and a series of likelihood ratio tests are used to detect aberrancy. The new CUSUM statistic is compared against another CUSUM approach as well as traditional person-fit statistics. A…
Statistical properties of light from optical parametric oscillators
Vyas, Reeta; Singh, Surendra
2009-12-15
Coherence properties of light beams generated by optical parametric oscillators (OPOs) are discussed in the region of threshold. Analytic expressions, that are valid throughout the threshold region, for experimentally measurable quantities such as the mean and variance of photon number fluctuations, squeezing of field quadratures, and photon counting distributions are derived. These expressions describe non-Gaussian fluctuations of light in the region of threshold and reproduce Gaussian fluctuations below and above threshold, thus providing a bridge between below and above threshold regimes of operation. They are used to study the transformation of fluctuation properties of light as the OPOs make a transition from below to above threshold. The results for the OPOs are compared to those for the single-mode and two-mode lasers and their similarities and differences are discussed.
Shiraishi, Hideaki; Stufflebeam, Steven M; Knake, Susanne; Ahlfors, Seppo P; Sudo, Akira; Asahina, Naoko; Egawa, Kiyoshi; Hatanaka, Keisaku; Kohsaka, Shinobu; Saitoh, Shinji; Grant, P Ellen; Dale, Anders M; Halgren, Eric
2005-04-01
Our current purpose is to evaluate the applicability of dynamic statistical parametric mapping, a novel method for localizing epileptiform activity recorded with magnetoencephalography in patients with epilepsy. We report four pediatric patients with focal epilepsies. Magnetoencephalographic data were collected with a 306-channel whole-head helmet-shaped sensor array. We calculated equivalent current dipoles and dynamic statistical parametric mapping movies of the interictal epileptiform discharges that were based in the minimum-L2 norm estimate, minimizing the square sum of the dipole element amplitudes. The dynamic statistical parametric mapping analysis of interictal epileptiform discharges can demonstrate the rapid change and propagation of interical epileptiform discharges. According to these findings, specific epileptogenic lesion-focal cortical dysplasia could be found and patients could be operated on successfully. The presurgical analysis of interictal epileptiform discharges using dynamic statistical parametric mapping seems to be promising in patients with a possible underlying focal cortical dysplasia and might help to guide the placement of invasive electrodes.
Robinson, Mark A; Vanrenterghem, Jos; Pataky, Todd C
2015-02-01
Multi-muscle EMG time-series are highly correlated and time dependent yet traditional statistical analysis of scalars from an EMG time-series fails to account for such dependencies. This paper promotes the use of SPM vector-field analysis for the generalised analysis of EMG time-series. We reanalysed a publicly available dataset of Young versus Adult EMG gait data to contrast scalar and SPM vector-field analysis. Independent scalar analyses of EMG data between 35% and 45% stance phase showed no statistical differences between the Young and Adult groups. SPM vector-field analysis did however identify statistical differences within this time period. As scalar analysis failed to consider the multi-muscle and time dependence of the EMG time-series it exhibited Type II error. SPM vector-field analysis on the other hand accounts for both dependencies whilst tightly controlling for Type I and Type II error making it highly applicable to EMG data analysis. Additionally SPM vector-field analysis is generalizable to linear and non-linear parametric and non-parametric statistical models, allowing its use under constraints that are common to electromyography and kinesiology.
Davatzikos, Christos; Zacharaki, Evangelia I; Gooya, Ali; Clark, Vanessa
2011-01-01
We discuss computer-based image analysis algorithms of multi-parametric MRI of brain tumors, aiming to assist in early diagnosis of infiltrating brain tumors, and to construct statistical atlases summarizing population-based characteristics of brain tumors. These methods combine machine learning, deformable registration, multi-parametric segmentation, and biophysical modeling of brain tumors.
Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.
Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman
2013-10-21
In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study
Statistical structuring theory in parametrically excitable dynamical systems with a Gaussian pump
NASA Astrophysics Data System (ADS)
Klyatskin, V. I.; Koshel, K. V.
2016-03-01
Based on the idea of the statistical topography, we analyze the problem of emergence of stochastic structure formation in linear and quasilinear problems described by first-order partial differential equations. The appearance of a parametric excitation on the background of a Gaussian pump is a specific feature of these problems. We obtain equations for the probability density of the solutions of these equations, whence it follows that the stochastic structure formation emerges with probability one, i.e., for almost every realization of the random parameters of the medium.
Tanaka, Naoaki; Cole, Andrew J.; von Pechmann, Deidre; Wakeman, Daniel G.; Hämäläinen, Matti S.; Liu, Hesheng; Madsen, Joseph R.; Bourgeois, Blaise F.; Stufflebeam, Steven M.
2009-01-01
The purpose of this study is to assess the clinical value of spatiotemporal source analysis for analyzing ictal magnetoencephalography (MEG). Ictal MEG and simultaneous scalp EEG was recorded in five patients with medically intractable frontal lobe epilepsy. Dynamic statistical parametric maps (dSPMs) were calculated at the peak of early ictal spikes for the purpose of estimating the spatiotemporal cortical source distribution. DSPM solutions were mapped onto a cortical surface, which was derived from each patient's MRI. Equivalent current dipoles (ECDs) were calculated using a single-dipole model for comparison with dSPMs. In all patients, dSPMs tended to have a localized activation, consistent with the clinically-determined ictal onset zone, whereas most ECDs were considered to be inappropriate sources according to their goodness-of-fit values. Analyzing ictal MEG spikes by using dSPMs may provide useful information in presurgical evaluation of epilepsy. PMID:19394198
Tanaka, Naoaki; Cole, Andrew J; von Pechmann, Deidre; Wakeman, Daniel G; Hämäläinen, Matti S; Liu, Hesheng; Madsen, Joseph R; Bourgeois, Blaise F; Stufflebeam, Steven M
2009-08-01
The purpose of this study is to assess the clinical value of spatiotemporal source analysis for analyzing ictal magnetoencephalography (MEG). Ictal MEG and simultaneous scalp EEG was recorded in five patients with medically intractable frontal lobe epilepsy. Dynamic statistical parametric maps (dSPMs) were calculated at the peak of early ictal spikes for the purpose of estimating the spatiotemporal cortical source distribution. DSPM solutions were mapped onto a cortical surface, which was derived from each patient's MRI. Equivalent current dipoles (ECDs) were calculated using a single-dipole model for comparison with dSPMs. In all patients, dSPMs tended to have a localized activation, consistent with the clinically determined ictal onset zone, whereas most ECDs were considered to be inappropriate sources according to their goodness-of-fit values. Analyzing ictal MEG spikes by using dSPMs may provide useful information in presurgical evaluation of epilepsy.
Klein, Katelyn F; Hu, Jingwen; Reed, Matthew P; Hoff, Carrie N; Rupp, Jonathan D
2015-10-01
Statistical models were developed that predict male and female femur geometry as functions of age, body mass index (BMI), and femur length as part of an effort to develop lower-extremity finite element models with geometries that are parametric with subject characteristics. The process for developing these models involved extracting femur geometry from clinical CT scans of 62 men and 36 women, fitting a template finite element femur mesh to the surface geometry of each patient, and then programmatically determining thickness at each nodal location. Principal component analysis was then performed on the thickness and geometry nodal coordinates, and linear regression models were developed to predict principal component scores as functions of age, BMI, and femur length. The average absolute errors in male and female external surface geometry model predictions were 4.57 and 4.23 mm, and the average absolute errors in male and female thickness model predictions were 1.67 and 1.74 mm. The average error in midshaft cortical bone areas between the predicted geometries and the patient geometries was 4.4%. The average error in cortical bone area between the predicted geometries and a validation set of cadaver femur geometries across 5 shaft locations was 2.9%.
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon
2013-07-01
This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.
Frepoli, Cesare; Oriani, Luca
2006-07-01
In recent years, non-parametric or order statistics methods have been widely used to assess the impact of the uncertainties within Best-Estimate LOCA evaluation models. The bounding of the uncertainties is achieved with a direct Monte Carlo sampling of the uncertainty attributes, with the minimum trial number selected to 'stabilize' the estimation of the critical output values (peak cladding temperature (PCT), local maximum oxidation (LMO), and core-wide oxidation (CWO A non-parametric order statistics uncertainty analysis was recently implemented within the Westinghouse Realistic Large Break LOCA evaluation model, also referred to as 'Automated Statistical Treatment of Uncertainty Method' (ASTRUM). The implementation or interpretation of order statistics in safety analysis is not fully consistent within the industry. This has led to an extensive public debate among regulators and researchers which can be found in the open literature. The USNRC-approved Westinghouse method follows a rigorous implementation of the order statistics theory, which leads to the execution of 124 simulations within a Large Break LOCA analysis. This is a solid approach which guarantees that a bounding value (at 95% probability) of the 95{sup th} percentile for each of the three 10 CFR 50.46 ECCS design acceptance criteria (PCT, LMO and CWO) is obtained. The objective of this paper is to provide additional insights on the ASTRUM statistical approach, with a more in-depth analysis of pros and cons of the order statistics and of the Westinghouse approach in the implementation of this statistical methodology. (authors)
Statistical properties of squeezed beams of light generated in parametric interactions
NASA Technical Reports Server (NTRS)
Vyas, Reeta
1992-01-01
Fluctuation properties of squeezed photon beams generated in three wave mixing processes such as second harmonic generation, degenerate and nondegenerate parametric oscillations, and homodyne detection are studied in terms of photon sequences recorded by a photodetector.
Spatial-Temporal Change Detection in NDVI Data Through Statistical Parametric Mapping
NASA Astrophysics Data System (ADS)
McKenna, S. A.; Yadav, V.; Gutierrez, K.
2011-12-01
Detection of significant changes in vegetation patterns provides a quantitative means of defining phenological response to changing climate. These changes may be indicative of long-term trends or shorter-duration conditions. In either case, quantifying the significance of the change patterns is critical in order to better understand the underlying processes. Spatial and temporal correlation within imaged data sets complicates change detection and must be taken into account. We apply a novel approach, Statistical Parametric Mapping (SPM), to change detection in Normalized Difference Vegetation Index (NDVI) data. SPM has been developed for identification of regions of anomalous activation in human brain imaging given functional magnetic resonance imaging (fMRI) data. Here, we adapt SPM to work on identifying anomalous regions of vegetation density within 30 years of weekly NDVI imagery. Significant change in any given image pixel is defined as a deviation from the expected value. Expected values are calculated using sinusoidal regression models fit to previous data at that location. The amount of deviation of an observation from the expected value is calculated using a modified t-test that accounts for temporal correlation in the regression data. The t-tests are applied independently to each pixel to create a t-statistic map for every time step. For a given time step, the probability that the maximum t-value exceeds a given threshold can be calculated to determine times with significant deviations, but standard techniques are not applicable due to the large number of pixels searched to find the maximum. SPM takes into account the spatial correlation of the t-statistic map to determine the significance of the maximum observed t-value. Theory developed for truncated Gaussian fields as part of SPM provides the expected number and size of regions within the t-statistic map that exceed a given threshold. The significance of the excursion regions can be assessed and then
Ginestet, Cedric E; Simmons, Andrew
2011-03-15
Network analysis has become a tool of choice for the study of functional and structural Magnetic Resonance Imaging (MRI) data. Little research, however, has investigated connectivity dynamics in relation to varying cognitive load. In fMRI, correlations among slow (<0.1 Hz) fluctuations of blood oxygen level dependent (BOLD) signal can be used to construct functional connectivity networks. Using an anatomical parcellation scheme, we produced undirected weighted graphs linking 90 regions of the brain representing major cortical gyri and subcortical nuclei, in a population of healthy adults (n=43). Topological changes in these networks were investigated under different conditions of a classical working memory task - the N-back paradigm. A mass-univariate approach was adopted to construct statistical parametric networks (SPNs) that reflect significant modifications in functional connectivity between N-back conditions. Our proposed method allowed the extraction of 'lost' and 'gained' functional networks, providing concise graphical summaries of whole-brain network topological changes. Robust estimates of functional networks are obtained by pooling information about edges and vertices over subjects. Graph thresholding is therefore here supplanted by inference. The analysis proceeds by firstly considering changes in weighted cost (i.e. mean between-region correlation) over the different N-back conditions and secondly comparing small-world topological measures integrated over network cost, thereby controlling for differences in mean correlation between conditions. The results are threefold: (i) functional networks in the four conditions were all found to satisfy the small-world property and cost-integrated global and local efficiency levels were approximately preserved across the different experimental conditions; (ii) weighted cost considerably decreased as working memory load increased; and (iii) subject-specific weighted costs significantly predicted behavioral
ERIC Educational Resources Information Center
Ferrando, Pere J.; Lorenzo, Urbano
2000-01-01
Describes a program for computing different person-fit measures under different parametric item response models for binary items. The indexes can be computed for the Rasch model and the two- and three-parameter logistic models. The program can plot person response curves to allow the researchers to investigate the nonfitting response behavior of…
System Availability: Time Dependence and Statistical Inference by (Semi) Non-Parametric Methods
1988-08-01
Technical FROM -TO 1988 August T 42 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block...availability in finite time (not steady-state or long -run), and to non-parametric estimates. 20 DISTRIBUTION, AVAILABILITY OF ABSTRACT 21 ABSTRACT...productivity of commercial nuclear power plants; in that arena it is quantified by probabilistic risk assessment (PRA). Relaued finite state
Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne
2017-01-01
Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with ‘no or minor gait deviations’ (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with ‘no or minor gait deviations’ differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus
The application of non-parametric statistical techniques to an ALARA programme.
Moon, J H; Cho, Y H; Kang, C S
2001-01-01
For the cost-effective reduction of occupational radiation dose (ORD) at nuclear power plants, it is necessary to identify what are the processes of repetitive high ORD during maintenance and repair operations. To identify the processes, the point values such as mean and median are generally used, but they sometimes lead to misjudgment since they cannot show other important characteristics such as dose distributions and frequencies of radiation jobs. As an alternative, the non-parametric analysis method is proposed, which effectively identifies the processes of repetitive high ORD. As a case study, the method is applied to ORD data of maintenance and repair processes at Kori Units 3 and 4 that are pressurised water reactors with 950 MWe capacity and have been operating since 1986 and 1987 respectively, in Korea and the method is demonstrated to be an efficient way of analysing the data.
Abdalla, M. Sebawe Khalil, E.M. Obada, A.S.-F.
2007-11-15
A Hamiltonian model that includes two-photon interaction with a two-level atom and a degenerate parametric amplifier is considered. By invoking a canonical transformation an exact solution of the wave function in the Schroedinger picture is obtained. The result presented in this context is employed to discuss the purity, the entropy squeezing, and the variance squeezing, in addition to the normal squeezing. It has been shown that the existence of the second harmonic generation leads to reduction in the squeezing amount for all quadrature variances and we found that as the value of the coupling parameter {lambda}{sub 2} increases the squeezing phenomenon gets more apparent. Further we have also considered the Q-function as an example of the quasi-probability distribution.
Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy
NASA Astrophysics Data System (ADS)
Gil, D.; Garcia-Barnes, J.; Hernández-Sabate, A.; Marti, E.
2010-03-01
Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.
NASA Astrophysics Data System (ADS)
Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien
2006-03-01
Subdivision surfaces and parameterization are desirable for many algorithms that are commonly used in Medical Image Analysis. However, extracting an accurate surface and parameterization can be difficult for many anatomical objects of interest, due to noisy segmentations and the inherent variability of the object. The thin cartilages of the knee are an example of this, especially after damage is incurred from injuries or conditions like osteoarthritis. As a result, the cartilages can have different topologies or exist in multiple pieces. In this paper we present a topology preserving (genus 0) subdivision-based parametric deformable model that is used to extract the surfaces of the patella and tibial cartilages in the knee. These surfaces have minimal thickness in areas without cartilage. The algorithm inherently incorporates several desirable properties, including: shape based interpolation, sub-division remeshing and parameterization. To illustrate the usefulness of this approach, the surfaces and parameterizations of the patella cartilage are used to generate a 3D statistical shape model.
Bogaerts, Louisa; Siegelman, Noam; Frost, Ram
2016-08-01
What determines individuals' efficacy in detecting regularities in visual statistical learning? Our theoretical starting point assumes that the variance in performance of statistical learning (SL) can be split into the variance related to efficiency in encoding representations within a modality and the variance related to the relative computational efficiency of detecting the distributional properties of the encoded representations. Using a novel methodology, we dissociated encoding from higher-order learning factors, by independently manipulating exposure duration and transitional probabilities in a stream of visual shapes. Our results show that the encoding of shapes and the retrieving of their transitional probabilities are not independent and additive processes, but interact to jointly determine SL performance. The theoretical implications of these findings for a mechanistic explanation of SL are discussed.
Panagiotopoulou, Olga; Pataky, Todd C; Hill, Zoe; Hutchinson, John R
2012-05-01
Foot pressure distributions during locomotion have causal links with the anatomical and structural configurations of the foot tissues and the mechanics of locomotion. Elephant feet have five toes bound in a flexible pad of fibrous tissue (digital cushion). Does this specialized foot design control peak foot pressures in such giant animals? And how does body size, such as during ontogenetic growth, influence foot pressures? We addressed these questions by studying foot pressure distributions in elephant feet and their correlation with body mass and centre of pressure trajectories, using statistical parametric mapping (SPM), a neuro-imaging technology. Our results show a positive correlation between body mass and peak pressures, with the highest pressures dominated by the distal ends of the lateral toes (digits 3, 4 and 5). We also demonstrate that pressure reduction in the elephant digital cushion is a complex interaction of its viscoelastic tissue structure and its centre of pressure trajectories, because there is a tendency to avoid rear 'heel' contact as an elephant grows. Using SPM, we present a complete map of pressure distributions in elephant feet during ontogeny by performing statistical analysis at the pixel level across the entire plantar/palmar surface. We hope that our study will build confidence in the potential clinical and scaling applications of mammalian foot pressures, given our findings in support of a link between regional peak pressures and pathogenesis in elephant feet.
Fujita, André; Takahashi, Daniel Y; Patriota, Alexandre G; Sato, João R
2014-12-10
Statistical inference of functional magnetic resonance imaging (fMRI) data is an important tool in neuroscience investigation. One major hypothesis in neuroscience is that the presence or not of a psychiatric disorder can be explained by the differences in how neurons cluster in the brain. Therefore, it is of interest to verify whether the properties of the clusters change between groups of patients and controls. The usual method to show group differences in brain imaging is to carry out a voxel-wise univariate analysis for a difference between the mean group responses using an appropriate test and to assemble the resulting 'significantly different voxels' into clusters, testing again at cluster level. In this approach, of course, the primary voxel-level test is blind to any cluster structure. Direct assessments of differences between groups at the cluster level seem to be missing in brain imaging. For this reason, we introduce a novel non-parametric statistical test called analysis of cluster structure variability (ANOCVA), which statistically tests whether two or more populations are equally clustered. The proposed method allows us to compare the clustering structure of multiple groups simultaneously and also to identify features that contribute to the differential clustering. We illustrate the performance of ANOCVA through simulations and an application to an fMRI dataset composed of children with attention deficit hyperactivity disorder (ADHD) and controls. Results show that there are several differences in the clustering structure of the brain between them. Furthermore, we identify some brain regions previously not described to be involved in the ADHD pathophysiology, generating new hypotheses to be tested. The proposed method is general enough to be applied to other types of datasets, not limited to fMRI, where comparison of clustering structures is of interest.
Identify fracture-critical regions inside the proximal femur using statistical parametric mapping
Li, Wenjun; Kornak, John; Harris, Tamara; Keyak, Joyce; Li, Caixia; Lu, Ying; Cheng, Xiaoguang; Lang, Thomas
2009-01-01
We identified regions inside the proximal femur that are most strongly associated with hip fracture. Bone densitometry based on such fracture-critical regions showed improved power in discriminating fracture patients from controls. Introduction Hip fractures typically occur in lateral falls, with focal mechanical failure of the sub-volumes of tissue in which the applied stress exceeds the strength. In this study, we describe a new methodology to identify proximal femoral tissue elements with highest association with hip fracture. We hypothesize that bone mineral density (BMD) measured in such sub-volumes discriminates hip fracture risk better than BMD in standard anatomic regions such as the femoral neck and trochanter. Materials and Methods We employed inter-subject registration to transform hip QCT images of 37 patients with hip fractures and 38 age-matched controls into a voxel-based statistical atlas. Within voxels, we performed t-tests between the two groups to identify the regions which differed most. We then randomly divided the 75 scans into a training set and a test set. From the training set, we derived a fracture-driven region of interest (ROI) based on association with fracture. In the test set, we measured BMD in this ROI to determine fracture discrimination efficacy using ROC analysis. Additionally, we compared the BMD distribution differences between the 29 patients with neck fractures and the 8 patients with trochanteric fractures. Results By evaluating fracture discrimination power based on ROC analysis, the fracture-driven ROI had an AUC (area under curve) of 0.92, while anatomic ROIs (including the entire proximal femur, the femoral neck, trochanter and their cortical and trabecular compartments) had AUC values between 0.78 and 0.87. We also observed that the neck fracture patients had lower BMD (p=0.014) in a small region near the femoral neck and the femoral head, and patients with trochanteric fractures had lower BMD in trochanteric regions
NASA Astrophysics Data System (ADS)
Zhu, Xiaowei; Iungo, G. Valerio; Leonardi, Stefano; Anderson, William
2017-02-01
For a horizontally homogeneous, neutrally stratified atmospheric boundary layer (ABL), aerodynamic roughness length, z_0, is the effective elevation at which the streamwise component of mean velocity is zero. A priori prediction of z_0 based on topographic attributes remains an open line of inquiry in planetary boundary-layer research. Urban topographies - the topic of this study - exhibit spatial heterogeneities associated with variability of building height, width, and proximity with adjacent buildings; such variability renders a priori, prognostic z_0 models appealing. Here, large-eddy simulation (LES) has been used in an extensive parametric study to characterize the ABL response (and z_0) to a range of synthetic, urban-like topographies wherein statistical moments of the topography have been systematically varied. Using LES results, we determined the hierarchical influence of topographic moments relevant to setting z_0. We demonstrate that standard deviation and skewness are important, while kurtosis is negligible. This finding is reconciled with a model recently proposed by Flack and Schultz (J Fluids Eng 132:041203-1-041203-10, 2010), who demonstrate that z_0 can be modelled with standard deviation and skewness, and two empirical coefficients (one for each moment). We find that the empirical coefficient related to skewness is not constant, but exhibits a dependence on standard deviation over certain ranges. For idealized, quasi-uniform cubic topographies and for complex, fully random urban-like topographies, we demonstrate strong performance of the generalized Flack and Schultz model against contemporary roughness correlations.
Long, Xiaojing; Zhang, Lijuan; Liao, Weiqi; Jiang, Chunxiang; Qiu, Bensheng
2013-12-01
Laterality of human brain varies under healthy aging and diseased conditions. The alterations in hemispheric asymmetry may embed distinct biomarkers linked to the disease dynamics. Statistical parametric mapping based on high-resolution magnetic resonance imaging (MRI) and image processing techniques have allowed automated characterization of morphological features across the entire brain. In this study, 149 subjects grouped in healthy young, healthy elderly, mild cognitive impairment (MCI), and Alzheimer's disease (AD) were investigated using multivariate analysis for regional cerebral laterality indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume measured on high-resolution MR images. Asymmetry alteration of MCI and AD were characterized by marked region-specific reduction, while healthy elderly featured a distinct laterality shift in the limbic system in addition to regional asymmetry loss. Lack of the laterality shift in limbic system and early loss of asymmetry in entorhinal cortex may be biomarkers to identify preclinical AD among other dementia. Multivariate analysis of hemispheric asymmetry may provide information helpful for monitoring the disease progress and improving the management of MCI and AD.
Fein, George; Landman, Bennett; Tran, Hoang; Barakos, Jerome; Moon, Kirk; Di Sclafani, Victoria; Shumway, Robert
2007-01-01
A major attraction of voxel-based morphometry (VBM) is that it allows researchers to explore large datasets with minimal human intervention. However, the validity and sensitivity of the Statistical Parametric Mapping (SPM2) approach to VBM is the subject of considerable debate. We visually inspected the SPM2 gray matter segmentations for 101 research participants and found a gross inclusion of non-brain tissue surrounding the entire brain as gray matter in five subjects, and focal areas bordering the brain in which non-brain tissue was classified as gray matter in many other subjects. We also found many areas in which the cortical grey matter was incorrectly excluded from the segmentation of the brain. The major source of these errors was the misregistration of individual brain images with the reference T1-weighted brain template. These errors could be eliminated if SPM2 operated on images from which non-brain tissues (scalp, skull, and meninges) are removed (brain-extracted images). We developed a modified SPM2 processing pipeline that used brain-extracted images as inputs to test this hypothesis. We describe the modifications to the SPM2 pipeline that allow analysis of brain-extracted inputs. Using brain-extracted inputs eliminated the non-brain matter inclusions and the cortical gray matter exclusions noted above, reducing the residual mean square errors (RMSEs, the error term of the SPM2 statistical analyses) by over thirty percent. We show how this reduction in the RMSEs profoundly affects power analyses. SPM2 analyses of brain-extracted images may require sample sizes only half as great as analyses of non-brain extracted images. PMID:16442817
Fein, George; Landman, Bennett; Tran, Hoang; Barakos, Jerome; Moon, Kirk; Di Sclafani, Victoria; Shumway, Robert
2006-05-01
A major attraction of voxel-based morphometry (VBM) is that it allows researchers to explore large datasets with minimal human intervention. However, the validity and sensitivity of the Statistical Parametric Mapping (SPM2) approach to VBM are the subject of considerable debate. We visually inspected the SPM2 gray matter segmentations for 101 research participants and found a gross inclusion of non-brain tissue surrounding the entire brain as gray matter in five subjects and focal areas bordering the brain in which non-brain tissue was classified as gray matter in many other subjects. We also found many areas in which the cortical gray matter was incorrectly excluded from the segmentation of the brain. The major source of these errors was the misregistration of individual brain images with the reference T1-weighted brain template. These errors could be eliminated if SPM2 operated on images from which non-brain tissues (scalp, skull, and meninges) are removed (brain-extracted images). We developed a modified SPM2 processing pipeline that used brain-extracted images as inputs to test this hypothesis. We describe the modifications to the SPM2 pipeline that allow analysis of brain-extracted inputs. Using brain-extracted inputs eliminated the non-brain matter inclusions and the cortical gray matter exclusions noted above, reducing the residual mean square errors (RMSEs, the error term of the SPM2 statistical analyses) by over 30%. We show how this reduction in the RMSEs profoundly affects power analyses. SPM2 analyses of brain-extracted images may require sample sizes only half as great as analyses of non-brain-extracted images.
Vieira, Marcus Fraga; de Brito, Ademir Alves; Lehnen, Georgia Cristina; Rodrigues, Fábio Barbosa
2017-02-27
This study analyzed gait initiation (GI) on inclined surfaces with 68 young adult subjects of both sexes. Ground reaction forces and moments were collected using two AMTI force platforms, of which one was in a horizontal position and the other was inclined by 8% in relation to the horizontal plane. Departing from a standing position, each participant executed three trials in the following conditions: horizontal position (HOR), inclined position at ankle dorsi-flexion (UP), and inclined position at ankle plantar-flexion (DOWN). Statistical parametric mapping analysis was performed over the entire center of pressure (COP) and center of mass (COM) time series. COP excursion did not show significant differences in the medial-lateral (ML) direction in both inclined conditions, but it was greater in the anterior-posterior (AP) direction for both inclined conditions. COP velocities are smaller in discrete portions of GI for the UP and DOWN conditions. COM displacement was greater in the ML direction during anticipatory postural adjustments (APA) in the UP condition, and COM moves faster in the ML direction during APA in the UP condition but slower at the end of GI for both the UP and the DOWN conditions. The COP-COM vector showed a greater angle in the DOWN condition. We observed changes for COP and COM in GI in both the UP and the DOWN conditions, with the latter showing changes for a great extent of the task. Both the UP and the DOWN conditions showed increased COM displacement and velocity. The predominant characteristic during GI on inclined surfaces, including APA, appears to be the displacement of the COM.
Scarpazza, Cristina; Nichols, Thomas E; Seramondi, Donato; Maumet, Camille; Sartori, Giuseppe; Mechelli, Andrea
2016-01-01
In recent years, an increasing number of studies have used Voxel Based Morphometry (VBM) to compare a single patient with a psychiatric or neurological condition of interest against a group of healthy controls. However, the validity of this approach critically relies on the assumption that the single patient is drawn from a hypothetical population with a normal distribution and variance equal to that of the control group. In a previous investigation, we demonstrated that family-wise false positive error rate (i.e., the proportion of statistical comparisons yielding at least one false positive) in single case VBM are much higher than expected (Scarpazza et al., 2013). Here, we examine whether the use of non-parametric statistics, which does not rely on the assumptions of normal distribution and equal variance, would enable the investigation of single subjects with good control of false positive risk. We empirically estimated false positive rates (FPRs) in single case non-parametric VBM, by performing 400 statistical comparisons between a single disease-free individual and a group of 100 disease-free controls. The impact of smoothing (4, 8, and 12 mm) and type of pre-processing (Modulated, Unmodulated) was also examined, as these factors have been found to influence FPRs in previous investigations using parametric statistics. The 400 statistical comparisons were repeated using two independent, freely available data sets in order to maximize the generalizability of the results. We found that the family-wise error rate was 5% for increases and 3.6% for decreases in one data set; and 5.6% for increases and 6.3% for decreases in the other data set (5% nominal). Further, these results were not dependent on the level of smoothing and modulation. Therefore, the present study provides empirical evidence that single case VBM studies with non-parametric statistics are not susceptible to high false positive rates. The critical implication of this finding is that VBM can be used
Ito, K; Morrish, P; Rakshi, J; Uema, T; Ashburner, J; Bailey, D; Friston, K; Brooks, D
1999-01-01
OBJECTIVE—To apply statistical parametric mapping to 18F-dopa PET data sets, to examine the regional distribution of changes in dopaminergic metabolism in early asymmetric Parkinson's disease. METHODS—Thirteen normal volunteers (age 57.7 (SD 16.5) years; four women, nine men ) and six patients (age 50.3 (SD 13.5) years; three women, three men) with asymmetric (right sided) Parkinson's disease were studied. Images from each dynamic dopa PET dataset were aligned and parametric images of 18F-dopa influx (Ki) were created for each subject. The Ki images were transformed into standard stereotactic space. The Ki values of the caudate and putamen on spatially normalised images were compared with the Ki values before normalisation. The application of statistical parametric mapping (SPM) allowed statistical comparison of regional Ki values on a voxel by voxel basis between healthy volunteers and patients with Parkinson's disease. RESULTS—There was a strong correlation between the Ki values before and after spatial normalisation (r=0.898, p=0.0001). Significant decreases in the Ki values were found for the Parkinson's desease group throughout the entire left putamen (p< 0.001) and focally in the dorsal right putamen (p< 0.001). Decreased Ki values were also shown bilaterally in the substantia nigra (p< 0.01). CONCLUSION—Using (SPM) and 18F-dopa PET, reductions in both striatal and nigral brain dopaminergic function could be demonstrated in early Parkinson's disease. PMID:10329749
Carballido-Gamio, Julio; Bonaretti, Serena; Kazakia, Galateia J; Khosla, Sundeep; Majumdar, Sharmila; Lang, Thomas F; Burghardt, Andrew J
2017-04-01
HR-pQCT enables in vivo multi-parametric assessments of bone microstructure in the distal radius and distal tibia. Conventional HR-pQCT image analysis approaches summarize bone parameters into global scalars, discarding relevant spatial information. In this work, we demonstrate the feasibility and reliability of statistical parametric mapping (SPM) techniques for HR-pQCT studies, which enable population-based local comparisons of bone properties. We present voxel-based morphometry (VBM) to assess trabecular and cortical bone voxel-based features, and a surface-based framework to assess cortical bone features both in cross-sectional and longitudinal studies. In addition, we present tensor-based morphometry (TBM) to assess trabecular and cortical bone structural changes. The SPM techniques were evaluated based on scan-rescan HR-pQCT acquisitions with repositioning of the distal radius and distal tibia of 30 subjects. For VBM and surface-based SPM purposes, all scans were spatially normalized to common radial and tibial templates, while for TBM purposes, rescans (follow-up) were spatially normalized to their corresponding scans (baseline). VBM was evaluated based on maps of local bone volume fraction (BV/TV), homogenized volumetric bone mineral density (vBMD), and homogenized strain energy density (SED) derived from micro-finite element analysis; while the cortical bone framework was evaluated based on surface maps of cortical bone thickness, vBMD, and SED. Voxel-wise and vertex-wise comparisons of bone features were done between the groups of baseline and follow-up scans. TBM was evaluated based on mean square errors of determinants of Jacobians at baseline bone voxels. In both anatomical sites, voxel- and vertex-wise uni- and multi-parametric comparisons yielded non-significant differences, and TBM showed no artefactual bone loss or apposition. The presented SPM techniques demonstrated robust specificity thus warranting their application in future clinical HR
NASA Astrophysics Data System (ADS)
Gallego, A.; Benavent-Climent, A.; Romo-Melo, L.
2015-08-01
The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper.
Jamalabadi, Hamidreza; Alizadeh, Sarah; Schönauer, Monika; Leibold, Christian; Gais, Steffen
2016-05-01
Multivariate pattern analysis (MVPA) has recently become a popular tool for data analysis. Often, classification accuracy as quantified by correct classification rate (CCR) is used to illustrate the size of the effect under investigation. However, we show that in low sample size (LSS), low effect size (LES) data, which is typical in neuroscience, the distribution of CCRs from cross-validation of linear MVPA is asymmetric and can show classification rates considerably below what would be expected from chance classification. Conversely, the mode of the distribution in these cases is above expected chance levels, leading to a spuriously high number of above chance CCRs. This unexpected distribution has strong implications when using MVPA for hypothesis testing. Our analyses warrant the conclusion that CCRs do not well reflect the size of the effect under investigation. Moreover, the skewness of the null-distribution precludes the use of many standard parametric tests to assess significance of CCRs. We propose that MVPA results should be reported in terms of P values, which are estimated using randomization tests. Also, our results show that cross-validation procedures using a low number of folds, e.g. twofold, are generally more sensitive, even though the average CCRs are often considerably lower than those obtained using a higher number of folds. Hum Brain Mapp 37:1842-1855, 2016. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Valotto, Gabrio; Varin, Cristiano
2016-01-01
An additive modeling approach is employed to provide a statistical description of hourly variation in concentrations of NOx measured in proximity of the Venice "Marco Polo" International Airport, Italy. Differently from several previous studies on airport emissions based on daily time series, the paper analyzes hourly data because variations of NOx concentrations during the day are informative about the prevailing emission source. The statistical analysis is carried out using a one-year time series. Confounder effects due to seasonality, meteorology and airport traffic volume are accounted for by suitable covariates. Four different model specifications of increasing complexity are considered. The model with the aircraft source expressed as the NOx emitted near the airport is found to have the best predictive quality. Although the aircraft source is statistically significant, the comparison of model-based predictions suggests that the relative impact of aircraft emissions to ambient NOx concentrations is limited and the road traffic is the likely dominant source near the sampling point.
Hyun, Y; Lee, J S; Rha, J H; Lee, I K; Ha, C K; Lee, D S
2001-02-01
The purpose of this study was to investigate the differences between technetium-99m ethyl cysteinate dimer (99mTc-ECD) and technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO) uptake in the same brains by means of statistical parametric mapping (SPM) analysis. We examined 20 patients (9 male, 11 female, mean age 62+/-12 years) using 99mTc-ECD and 99mTc-HMPAO single-photon emission tomography (SPET) and magnetic resonance imaging (MRI) of the brain less than 7 days after onset of stroke. MRI showed no cortical infarctions. Infarctions in the pons (6 patients) and medulla (1), ischaemic periventricular white matter lesions (13) and lacunar infarction (7) were found on MRI. Split-dose and sequential SPET techniques were used for 99mTc-ECD and 99mTc-HMPAO brain SPET, without repositioning of the patient. All of the SPET images were spatially transformed to standard space, smoothed and globally normalized. The differences between the 99mTc-ECD and 99mTc-HMPAO SPET images were statistically analysed using statistical parametric mapping (SPM) 96 software. The difference between two groups was considered significant at a threshold of uncorrected P values less than 0.01. Visual analysis showed no hypoperfused areas on either 99mTc-ECD or 99mTc-HMPAO SPET images. SPM analysis revealed significantly different uptake of 99mTc-ECD and 99mTc-HMPAO in the same brains. On the 99mTc-ECD SPET images, relatively higher uptake was observed in the frontal, parietal and occipital lobes, in the left superior temporal lobe and in the superior region of the cerebellum. On the 99mTc-HMPAO SPET images, relatively higher uptake was observed in the medial temporal lobes, thalami, periventricular white matter and brain stem. These differences in uptake of the two tracers in the same brains on SPM analysis suggest that interpretation of cerebral perfusion is possible using SPET with 99mTc-ECD and 99mTc-HMPAO.
Korany, Mohamed A; Maher, Hadir M; Galal, Shereen M; Ragab, Marwa A A
2013-05-01
This manuscript discusses the application and the comparison between three statistical regression methods for handling data: parametric, nonparametric, and weighted regression (WR). These data were obtained from different chemometric methods applied to the high-performance liquid chromatography response data using the internal standard method. This was performed on a model drug Acyclovir which was analyzed in human plasma with the use of ganciclovir as internal standard. In vivo study was also performed. Derivative treatment of chromatographic response ratio data was followed by convolution of the resulting derivative curves using 8-points sin x i polynomials (discrete Fourier functions). This work studies and also compares the application of WR method and Theil's method, a nonparametric regression (NPR) method with the least squares parametric regression (LSPR) method, which is considered the de facto standard method used for regression. When the assumption of homoscedasticity is not met for analytical data, a simple and effective way to counteract the great influence of the high concentrations on the fitted regression line is to use WR method. WR was found to be superior to the method of LSPR as the former assumes that the y-direction error in the calibration curve will increase as x increases. Theil's NPR method was also found to be superior to the method of LSPR as the former assumes that errors could occur in both x- and y-directions and that might not be normally distributed. Most of the results showed a significant improvement in the precision and accuracy on applying WR and NPR methods relative to LSPR.
NASA Astrophysics Data System (ADS)
Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo
2016-03-01
Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.
Breitling, Rainer; Herzyk, Pawel
2005-10-01
We have recently introduced a rank-based test statistic, RankProducts (RP), as a new non-parametric method for detecting differentially expressed genes in microarray experiments. It has been shown to generate surprisingly good results with biological datasets. The basis for this performance and the limits of the method are, however, little understood. Here we explore the performance of such rank-based approaches under a variety of conditions using simulated microarray data, and compare it with classical Wilcoxon rank sums and t-statistics, which form the basis of most alternative differential gene expression detection techniques. We show that for realistic simulated microarray datasets, RP is more powerful and accurate for sorting genes by differential expression than t-statistics or Wilcoxon rank sums - in particular for replicate numbers below 10, which are most commonly used in biological experiments. Its relative performance is particularly strong when the data are contaminated by non-normal random noise or when the samples are very inhomogenous, e.g. because they come from different time points or contain a mixture of affected and unaffected cells. However, RP assumes equal measurement variance for all genes and tends to give overly optimistic p-values when this assumption is violated. It is therefore essential that proper variance stabilizing normalization is performed on the data before calculating the RP values. Where this is impossible, another rank-based variant of RP (average ranks) provides a useful alternative with very similar overall performance. The Perl scripts implementing the simulation and evaluation are available upon request. Implementations of the RP method are available for download from the authors website (http://www.brc.dcs.gla.ac.uk/glama).
Marchand, Paul J.; Bouwens, Arno; Bolmont, Tristan; Shamaei, Vincent K.; Nguyen, David; Szlag, Daniel; Extermann, Jérôme; Lasser, Theo
2016-01-01
Functional magnetic resonance (fMRI) imaging is the current gold-standard in neuroimaging. fMRI exploits local changes in blood oxygenation to map neuronal activity over the entire brain. However, its spatial resolution is currently limited to a few hundreds of microns. Here we use extended-focus optical coherence microscopy (xfOCM) to quantitatively measure changes in blood flow velocity during functional hyperaemia at high spatio-temporal resolution in the somatosensory cortex of mice. As optical coherence microscopy acquires hundreds of depth slices simultaneously, blood flow velocity measurements can be performed over several vessels in parallel. We present the proof-of-principle of an optimised statistical parametric mapping framework to analyse quantitative blood flow timetraces acquired with xfOCM using the general linear model. We demonstrate the feasibility of generating maps of cortical hemodynamic reactivity at the capillary level with optical coherence microscopy. To validate our method, we exploited 3 stimulation paradigms, covering different temporal dynamics and stimulated limbs, and demonstrated its repeatability over 2 trials, separated by a week. PMID:28101397
Colloby, Sean J; Fenwick, John D; Williams, E David; Paling, Sean M; Lobotesis, Kyriakos; Ballard, Clive; McKeith, Ian; O'Brien, John T
2002-05-01
Differences in regional cerebral blood flow (rCBF) between subjects with Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and healthy volunteers were investigated using statistical parametric mapping (SPM99). Forty-eight AD, 23 DLB and 20 age-matched control subjects participated. Technetium-99m hexamethylpropylene amine oxime (HMPAO) brain single-photon emission tomography (SPET) scans were acquired for each subject using a single-headed rotating gamma camera (IGE CamStar XR/T). The SPET images were spatially normalised and group comparison was performed by SPM99. In addition, covariate analysis was undertaken on the standardised images taking the Mini Mental State Examination (MMSE) scores as a variable. Applying a height threshold of P < or = 0.001 uncorrected, significant perfusion deficits in the parietal and frontal regions of the brain were observed in both AD and DLB groups compared with the control subjects. In addition, significant temporoparietal perfusion deficits were identified in the AD subjects, whereas the DLB patients had deficits in the occipital region. Comparison of dementia groups (height threshold of P < or = 0.01 uncorrected) yielded hypoperfusion in both the parietal [Brodmann area (BA) 7] and occipital (BA 17, 18) regions of the brain in DLB compared with AD. Abnormalities in these areas, which included visual cortex and several areas involved in higher visual processing and visuospatial function, may be important in understanding the visual hallucinations and visuospatial deficits which are characteristic of DLB. Covariate analysis indicated group differences between AD and DLB in terms of a positive correlation between cognitive test score and temporoparietal blood flow. In conclusion, we found evidence of frontal and parietal hypoperfusion in both AD and DLB, while temporal perfusion deficits were observed exclusively in AD and parieto-occipital deficits in DLB.
Asano, Yoshitaka; Shinoda, Jun; Okumura, Ayumi; Aki, Tatsuki; Takenaka, Shunsuke; Miwa, Kazuhiro; Yamada, Mikito; Ito, Takeshi; Yokoyama, Kazutoshi
2012-01-01
Diffusion tensor imaging (DTI) has recently evolved as valuable technique to investigate diffuse axonal injury (DAI). This study examined whether fractional anisotropy (FA) images analyzed by statistical parametric mapping (FA-SPM images) are superior to T(2)*-weighted gradient recalled echo (T2*GRE) images or fluid-attenuated inversion recovery (FLAIR) images for detecting minute lesions in traumatic brain injury (TBI) patients. DTI was performed in 25 patients with cognitive impairments in the chronic stage after mild or moderate TBI. The FA maps obtained from the DTI were individually compared with those from age-matched healthy control subjects using voxel-based analysis and FA-SPM images (p < 0.001). Abnormal low-intensity areas on T2*GRE images (T2* lesions) were found in 10 patients (40.0%), abnormal high-intensity areas on FLAIR images in 4 patients (16.0%), and areas with significantly decreased FA on FA-SPM image in 16 patients (64.0%). Nine of 10 patients with T2* lesions had FA-SPM lesions. FA-SPM lesions topographically included most T2* lesions in the white matter and the deep brain structures, but did not include T2* lesions in the cortex/near-cortex or lesions containing substantial hemosiderin regardless of location. All 4 patients with abnormal areas on FLAIR images had FA-SPM lesions. FA-SPM imaging is useful for detecting minute lesions because of DAI in the white matter and the deep brain structures, which may not be visualized on T2*GRE or FLAIR images, and may allow the detection of minute brain lesions in patients with post-traumatic cognitive impairment.
NASA Astrophysics Data System (ADS)
Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong
2017-03-01
We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
Jang, Jae-Won; Youn, Young Chul; Seok, Ju-Won; Ha, Sam-Yeol; Shin, Hae-Won; Ahan, Suk-Won; Park, Kwang-Yeol; Kwon, Oh-Sang
2011-08-01
Charles Bonnet syndrome (CBS) is characterized by the occurrence of complex visual hallucinations in visually impaired patients who understand that what they see is unreal. The pathophysiologic mechanism of CBS is poorly understood. However, hypermetabolism of the thalamocortical pathway as a result of deafferentation was recently proposed as a possible mechanism. A 69-year-old patient with CBS presented with a 5-year history of visual hallucinations after bilateral visual impairment, which had progressed to troublesome images of many unreal people and animals. Positron emission tomography-statistical parametric mapping (PET-SPM) imaging studies initially revealed hypermetabolism in the right inferior temporal area and left thalamus, which disappeared after treatment with valproic acid. This case, using PET-SPM analysis, supports the thalamic hypermetabolism theory of CBS.
Feng, Dagan; Wang, Zhizhong . Basser Dept. of Computer Science); Huang, Sung Cheng . Dept. of Radiological Sciences)
1993-06-01
With the advent of positron emission tomography (PET), a variety of techniques have been developed to measure local cerebral blood flow (LCBF) noninvasively in humans. It is essential that the techniques developed should be statistically reliable and computationally efficient. A potential class of techniques, which includes linear least squares (LS), linear weighted least squares (WLS), linear generalized least squares (GLS), and linear generalized weighted least squares (GWLS), is proposed. The statistical characteristics of the new methods were examined by computer simulation. The authors present a comparison of these four methods with two other rapid estimation techniques developed by Huang et al. and Alpert, and two classical methods, the unweighted and weighted nonlinear least squares regression which are supposed to have optimal statistical properties. The results show that the new methods can take full advantage of the contribution from the fine temporal sampling data of modern tomographs, and thus provide statistically reliable estimates that are comparable to those obtained from nonlinear least squares regression. The new methods also have high computational efficiency, and the parameters can be estimated directly from operational equations in one single step. Therefore, they can potentially be used in image-wide estimation of local cerebral blood flow and distribution volume with positron emission tomography.
NASA Astrophysics Data System (ADS)
Chen, Kewei; Ge, Xiaolin; Yao, Li; Bandy, Dan; Alexander, Gene E.; Prouty, Anita; Burns, Christine; Zhao, Xiaojie; Wen, Xiaotong; Korn, Ronald; Lawson, Michael; Reiman, Eric M.
2006-03-01
Having approved fluorodeoxyglucose positron emission tomography (FDG PET) for the diagnosis of Alzheimer's disease (AD) in some patients, the Centers for Medicare and Medicaid Services suggested the need to develop and test analysis techniques to optimize diagnostic accuracy. We developed an automated computer package comparing an individual's FDG PET image to those of a group of normal volunteers. The normal control group includes FDG-PET images from 82 cognitively normal subjects, 61.89+/-5.67 years of age, who were characterized demographically, clinically, neuropsychologically, and by their apolipoprotein E genotype (known to be associated with a differential risk for AD). In addition, AD-affected brain regions functionally defined as based on a previous study (Alexander, et al, Am J Psychiatr, 2002) were also incorporated. Our computer package permits the user to optionally select control subjects, matching the individual patient for gender, age, and educational level. It is fully streamlined to require minimal user intervention. With one mouse click, the program runs automatically, normalizing the individual patient image, setting up a design matrix for comparing the single subject to a group of normal controls, performing the statistics, calculating the glucose reduction overlap index of the patient with the AD-affected brain regions, and displaying the findings in reference to the AD regions. In conclusion, the package automatically contrasts a single patient to a normal subject database using sound statistical procedures. With further validation, this computer package could be a valuable tool to assist physicians in decision making and communicating findings with patients and patient families.
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1995-01-01
Parametric cost analysis is a mathematical approach to estimating cost. Parametric cost analysis uses non-cost parameters, such as quality characteristics, to estimate the cost to bring forth, sustain, and retire a product. This paper reviews parametric cost analysis and shows how it can be used within the cost deployment process.
PHAZE. Parametric Hazard Function Estimation
Atwood, C.L.
1990-09-01
Phaze performs statistical inference calculations on a hazard function ( also called a failure rate or intensity function) based on reported failure times of components that are repaired and restored to service. Three parametric models are allowed: the exponential, linear, and Weibull hazard models. The inference includes estimation (maximum likelihood estimators and confidence regions) of the parameters and of the hazard function itself, testing of hypotheses such as increasing failure rate, and checking of the model assumptions.
Parametrically defined differential equations
NASA Astrophysics Data System (ADS)
Polyanin, A. D.; Zhurov, A. I.
2017-01-01
The paper deals with nonlinear ordinary differential equations defined parametrically by two relations. It proposes techniques to reduce such equations, of the first or second order, to standard systems of ordinary differential equations. It obtains the general solution to some classes of nonlinear parametrically defined ODEs dependent on arbitrary functions. It outlines procedures for the numerical solution of the Cauchy problem for parametrically defined differential equations.
Parametric Resonance Revisited
NASA Astrophysics Data System (ADS)
van den Broeck, C.; Bena, I.
The phenomenon of parametric resonance is revisited. Several physical examples are reviewed and an exactly solvable model is discussed. A mean field theory is presented for globally coupled parametric oscillators with randomly distributed phases. A new type of collective instability appears, which is similar in nature to that of noise induced phase transitions.
Penalized Likelihood for General Semi-Parametric Regression Models.
1985-05-01
should be stressed that q, while it may be somewhat less than n, will still be ’large’, and parametric estimation of £ will not be appropriate...Partial spline models for the semi- parametric estimation of functions of several variables, in Statistical Analysis of Time Series, Tokyo: Institute of
Measurement selection for parametric IC fault diagnosis
NASA Technical Reports Server (NTRS)
Wu, A.; Meador, J.
1991-01-01
Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.
Parametric resonance in tunable superconducting cavities
NASA Astrophysics Data System (ADS)
Wustmann, Waltraut; Shumeiko, Vitaly
2013-05-01
We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra, second-order coherence, and two-mode entanglement.
NASA Astrophysics Data System (ADS)
Khan, Shahjahan
Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden "jewels" in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model
NASA Astrophysics Data System (ADS)
Khan, Shahjahan
Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden “jewels” in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model
Multiple Frequency Parametric Sonar
2015-09-28
300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...beams. However, the multiple nonlinear interactions are not taken advantage of in order to generate additional efficiencies, bandwidth, and SNR...array. [0050] It will be understood that many additional changes in details, materials , steps, and arrangements of parts which have been described
Parametric Differentiation and Integration
ERIC Educational Resources Information Center
Chen, Hongwei
2009-01-01
Parametric differentiation and integration under the integral sign constitutes a powerful technique for calculating integrals. However, this topic is generally not included in the undergraduate mathematics curriculum. In this note, we give a comprehensive review of this approach, and show how it can be systematically used to evaluate most of the…
Microprocessors as an Adjunct to Statistics Instruction.
ERIC Educational Resources Information Center
Miller, William G.
Examinations of costs and acquisition of facilities indicate that an Altair 8800A microcomputer with a program library of parametric, non-parametric, mathematical, and teaching programs can be used effectively for teaching college-level statistics. Statistical packages presently in use require extensive computing knowledge beyond the students' and…
Heat Transfer Parametric System Identification
1993-06-01
Transfer Parametric System Identification 6. AUTHOR(S Parker, Gregory K. 7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING ORGANIZATION...distribution is unlimited. Heat Transfer Parametric System Identification by Gregory K. Parker Lieutenant, United States Navy BS., DeVry Institute of...Modeling Concept ........ ........... 3 2. Lumped Parameter Approach ...... ......... 4 3. Parametric System Identification ....... 4 B. BASIC MODELING
Parametric Explosion Spectral Model
Ford, S R; Walter, W R
2012-01-19
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
Chalcogenide optical parametric oscillator.
Ahmad, Raja; Rochette, Martin
2012-04-23
We demonstrate the first optical parametric oscillator (OPO) based on chalcogenide glass. The parametric gain medium is an As(2)Se(3) chalcogenide microwire coated with a layer of polymer. The doubly-resonant OPO oscillates simultaneously at a Stokes and an anti Stokes wavelength shift of >50 nm from the pump wavelength that lies at λ(P) = 1,552 nm. The oscillator has a peak power threshold of 21.6 dBm and a conversion efficiency of >19%. This OPO experiment provides an additional application of the chalcogenide microwire technology; and considering the transparency of As(2)Se(3) glass extending far in the mid-infrared (mid-IR) wavelengths, the device holds promise for realizing mid-IR OPOs utilizing existing optical sources in the telecommunications wavelength region.
NASA Astrophysics Data System (ADS)
Kakadiaris, Ioannis A.; Konstantinidis, Ioannis; Papadakis, Manos; Ding, Wei; Shen, Lixin
2005-08-01
Three dimensional (3D) surfaces can be sampled parametrically in the form of range image data. Smoothing/denoising of such raw data is usually accomplished by adapting techniques developed for intensity image processing, since both range and intensity images comprise parametrically sampled geometry and appearance measurements, respectively. We present a transform-based algorithm for surface denoising, motivated by our previous work on intensity image denoising, which utilizes a non-separable Parseval frame and an ensemble thresholding scheme. The frame is constructed from separable (tensor) products of a piecewise linear spline tight frame and incorporates the weighted average operator and the Sobel operators in directions that are integer multiples of 45°. We compare the performance of this algorithm with other transform-based methods from the recent literature. Our results indicate that such transform methods are suited to the task of smoothing range images.
ERIC Educational Resources Information Center
Osler, James Edward
2014-01-01
This monograph provides an epistemological rational for the design of a novel post hoc statistical measure called "Tri-Center Analysis". This new statistic is designed to analyze the post hoc outcomes of the Tri-Squared Test. In Tri-Center Analysis trichotomous parametric inferential parametric statistical measures are calculated from…
Optical parametric loop mirror
NASA Astrophysics Data System (ADS)
Mori, K.; Morioka, T.; Saruwatari, M.
1995-06-01
A novel configuration for four-wave mixing (FWM) is proposed that offers the remarkable feature of inherently separating the FWM wave from the input pump and signal waves and suppressing their background amplified stimulated emission without optical filtering. In the proposed configuration, an optical parametric loop mirror, two counterpropagating FWM waves generated in a Sagnac interferometer interfere with a relative phase difference that is introduced deliberately. FWM frequency-conversion experiments in a polarization-maintaining fiber achieved more than 35 dB of input-wave suppression against the FWM wave.
NASA Technical Reports Server (NTRS)
Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)
2014-01-01
A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.
Progress in optical parametric oscillators
NASA Technical Reports Server (NTRS)
Fan, Y. X.; Byer, R. L.
1984-01-01
It is pointed out that tunable coherent sources are very useful for many applications, including spectroscopy, chemistry, combustion diagnostics, and remote sensing. Compared with other tunable sources, optical parametric oscillators (OPO) offer the potential advantage of a wide wavelength operating range, which extends from 0.2 micron to 25 microns. The current status of OPO is examined, taking into account mainly advances made during the last decade. Attention is given to early LiNbO3 parametric oscillators, problems which have prevented wide use of parametric oscillators, the demonstration of OPO's using urea and AgGaS2, progress related to picosecond OPO's, a breakthrough in nanosecond parametric oscillators, the first demonstration of a waveguide and fiber parametric amplification and generation, the importance of chalcopyrite crystals, and theoretical work performed with the aim to understand the factors affecting the parametric oscillator performance.
Wey, Andrew; Connett, John; Rudser, Kyle
2015-07-01
For estimating conditional survival functions, non-parametric estimators can be preferred to parametric and semi-parametric estimators due to relaxed assumptions that enable robust estimation. Yet, even when misspecified, parametric and semi-parametric estimators can possess better operating characteristics in small sample sizes due to smaller variance than non-parametric estimators. Fundamentally, this is a bias-variance trade-off situation in that the sample size is not large enough to take advantage of the low bias of non-parametric estimation. Stacked survival models estimate an optimally weighted combination of models that can span parametric, semi-parametric, and non-parametric models by minimizing prediction error. An extensive simulation study demonstrates that stacked survival models consistently perform well across a wide range of scenarios by adaptively balancing the strengths and weaknesses of individual candidate survival models. In addition, stacked survival models perform as well as or better than the model selected through cross-validation. Finally, stacked survival models are applied to a well-known German breast cancer study.
Monolithic optical parametric oscillators
NASA Astrophysics Data System (ADS)
Breunig, Ingo; Beckmann, Tobias; Buse, Karsten
2012-02-01
Stability and footprint of optical parametric oscillators (OPOs) strongly depend on the cavity used. Monolithic OPOs tend to be most stable and compact since they do not require external mirrors that have to be aligned. The most straightforward way to get rid of the mirrors is to coat the end faces of the nonlinear crystal. Whispering gallery resonators (WGRs) are a more advanced solution since they provide ultra-high reflectivity over a wide spectral range without any coating. Furthermore, they can be fabricated out of nonlinear-optical materials like lithium niobate. Thus, they are ideally suited to serve as a monolithic OPO cavity. We present the experimental realization of optical parametric oscillators based on whispering gallery resonators. Pumped at 1 μm wavelength, they generate signal and idler fields tunable between 1.8 and 2.5 μm wavelength. We explore different schemes, how to phase match the nonlinear interaction in a WGR. In particular, we show improvements in the fabrication of quasi-phase-matching structures. They enable great flexibility for the tuning and for the choice of the pump laser.
Signal-to-noise ratio in parametrically driven oscillators.
Batista, Adriano A; Moreira, Raoni S N
2011-12-01
We report a theoretical model based on Green's functions and averaging techniques that gives analytical estimates to the signal-to-noise ratio (SNR) near the first parametric instability zone in parametrically driven oscillators in the presence of added ac drive and added thermal noise. The signal term is given by the response of the parametrically driven oscillator to the added ac drive, while the noise term has two different measures: one is dc and the other is ac. The dc measure of noise is given by a time average of the statistically averaged fluctuations of the displacement from equilibrium in the parametric oscillator due to thermal noise. The ac measure of noise is given by the amplitude of the statistically averaged fluctuations at the frequency of the parametric pump. We observe a strong dependence of the SNR on the phase between the external drive and the parametric pump. For some range of the phase there is a high SNR, while for other values of phase the SNR remains flat or decreases with increasing pump amplitude. Very good agreement between analytical estimates and numerical results is achieved.
A unified framework for weighted parametric multiple test procedures.
Xi, Dong; Glimm, Ekkehard; Maurer, Willi; Bretz, Frank
2017-03-29
We describe a general framework for weighted parametric multiple test procedures based on the closure principle. We utilize general weighting strategies that can reflect complex study objectives and include many procedures in the literature as special cases. The proposed weighted parametric tests bridge the gap between rejection rules using either adjusted significance levels or adjusted p-values. This connection is made by allowing intersection hypotheses of the underlying closed test procedure to be tested at level smaller than α. This may be also necessary to take certain study situations into account. For such cases we introduce a subclass of exact α-level parametric tests that satisfy the consonance property. When the correlation is known only for certain subsets of the test statistics, a new procedure is proposed to fully utilize this knowledge within each subset. We illustrate the proposed weighted parametric tests using a clinical trial example and conduct a simulation study to investigate its operating characteristics.
Mechanical Parametric Oscillations and Waves
ERIC Educational Resources Information Center
Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.
2013-01-01
Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…
NASA Astrophysics Data System (ADS)
Acomi, Nicoleta; Ancuţa, Cristian; Andrei, Cristian; Boştinǎ, Alina; Boştinǎ, Aurel
2016-12-01
Ships are mainly built to sail and transport cargo at sea. Environmental conditions and state of the sea are communicated to vessels through periodic weather forecasts. Despite officers being aware of the sea state, their sea time experience is a decisive factor when the vessel encounters severe environmental conditions. Another important factor is the loading condition of the vessel, which triggers different behaviour in similar marine environmental conditions. This paper aims to analyse the behaviour of a port container vessel in severe environmental conditions and to estimate the potential conditions of parametric roll resonance. Octopus software simulation is employed to simulate vessel motions under certain conditions of the sea, with possibility to analyse the behaviour of ships and the impact of high waves on ships due to specific wave encounter situations. The study should be regarded as a supporting tool during the decision making process.
Nanoscale electromechanical parametric amplifier
Aleman, Benjamin Jose; Zettl, Alexander
2016-09-20
This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.
Ebrahimzadeh, M
2003-12-15
Since its invention more than 40 years ago, the laser has become an indispensable optical tool, capable of transforming light from its naturally incoherent state to a highly coherent state in space and time. Yet, due to fundamental limitations, operation of the laser remains confined to restricted spectral and temporal regions. Nonlinear optics can overcome this limitation by allowing access to new spectral and temporal regimes through the exploitation of suitable dielectric materials in combination with the laser. In particular, optical parametric oscillators are versatile coherent light sources with unique flexibility that can provide optical radiation across an entire spectral range from the ultraviolet to the far-infrared and over all temporal scales from continuous wave to the ultrafast femtosecond domain.
Ground-Based Telescope Parametric Cost Model
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes
2004-01-01
A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.
White-light parametric instabilities in plasmas.
Santos, J E; Silva, L O; Bingham, R
2007-06-08
Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.
Vivancos, E; Healy, C; Mueller, F; Whalley, D
2001-05-09
Embedded systems often have real-time constraints. Traditional timing analysis statically determines the maximum execution time of a task or a program in a real-time system. These systems typically depend on the worst-case execution time of tasks in order to make static scheduling decisions so that tasks can meet their deadlines. Static determination of worst-case execution times imposes numerous restrictions on real-time programs, which include that the maximum number of iterations of each loop must be known statically. These restrictions can significantly limit the class of programs that would be suitable for a real-time embedded system. This paper describes work-in-progress that uses static timing analysis to aid in making dynamic scheduling decisions. For instance, different algorithms with varying levels of accuracy may be selected based on the algorithm's predicted worst-case execution time and the time allotted for the task. We represent the worst-case execution time of a function or a loop as a formula, where the unknown values affecting the execution time are parameterized. This parametric timing analysis produces formulas that can then be quickly evaluated at run-time so dynamic scheduling decisions can be made with little overhead. Benefits of this work include expanding the class of applications that can be used in a real-time system, improving the accuracy of dynamic scheduling decisions, and more effective utilization of system resources. This paper describes how static timing analysis can be used to aid in making dynamic scheduling decisions. The WCET of a function or a loop is represented as a formula, where the values affecting the execution time are parameterized. Such formulas can then be quickly evaluated at run-time so dynamic scheduling decisions can be made when scheduling a task or choosing algorithms within a task. Benefits of this parametric timing analysis include expanding the class of applications that can be used in a real-time system
Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum
2011-01-01
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Parametric Transformation Analysis
NASA Technical Reports Server (NTRS)
Gary, G. Allan
2003-01-01
Because twisted coronal features are important proxies for predicting solar eruptive events, and, yet not clearly understood, we present new results to resolve the complex, non-potential magnetic field configurations of active regions. This research uses free-form deformation mathematics to generate the associated coronal magnetic field. We use a parametric representation of the magnetic field lines such that the field lines can be manipulated to match the structure of EUV and SXR coronal loops. The objective is to derive sigmoidal magnetic field solutions which allows the beta greater than 1 regions to be included, aligned and non-aligned electric currents to be calculated, and the Lorentz force to be determined. The advantage of our technique is that the solution is independent of the unknown upper and side boundary conditions, allows non-vanishing magnetic forces, and provides a global magnetic field solution, which contains high- and low-beta regimes and is consistent with all the coronal images of the region. We show that the mathematical description is unique and physical.
Parametric Mass Reliability Study
NASA Technical Reports Server (NTRS)
Holt, James P.
2014-01-01
The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.
NASA Astrophysics Data System (ADS)
Choi, Jongseong
The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.
Parametric Equations, Maple, and Tubeplots.
ERIC Educational Resources Information Center
Feicht, Louis
1997-01-01
Presents an activity that establishes a graphical foundation for parametric equations by using a graphing output form called tubeplots from the computer program Maple. Provides a comprehensive review and exploration of many previously learned topics. (ASK)
Parametric Resonance for Material Characterization
NASA Astrophysics Data System (ADS)
Adler, Laszlo; Rokhlin, Stanislav I.
2009-03-01
While studying finite amplitude ultrasonic wave resonance in a one dimensional liquid filled cavity, formed by a narrow band transducer and a plane reflector, fractional harmonics of the driver's frequency were observed in addition to the expected high harmonics. Subsequently it was realized that the system was one of the many examples where parametric resonance takes place and the observed fractional harmonics are parametrically generated. Parametric resonance occurs in any physical system which has a periodically modulated natural frequency. The generation mechanism also requires a sufficiently high threshold value of the driving amplitude and the system becomes nonlinear. Further increase of the driving amplitude above the threshold produces additional fractional harmonics and at a certain value an almost continuous spectrum is produced and the phenomenon becomes chaotic. Our recently developed frequency modulated angle beam ultrasonic method for adhesive bond evaluation is an additional example of the use of a resonance parametric system. The acoustic resonator is formed by an adhesive layer with the resonance frequency affected by the bond quality between the adhesive and the substrates. In this case the interfacial stresses (due to an external low frequency excitation) may or may not produce parametric shift of the resonance depending on the quality of the interfacial bond.
Further Research into a Non-Parametric Statistical Screening System.
1979-12-14
Goldstein and Dillon (1977) present an example that demon- strates the inappropriateness of the LDF for qualitative variables: L0 if birth weight is low...Let X = V if birth weight is high X2 = 0 if gestation length is short V2 if gestation length is long Normal babies have high birth weight and long...gestation length or low birth weight and short gestation length. Abnormal babies have either of the other two combinations ((0, 1) or (1, 0)). The LDF
Parametric study of statistical bias in laser Doppler velocimetry
NASA Technical Reports Server (NTRS)
Gould, Richard D.; Stevenson, Warren H.; Thompson, H. Doyle
1989-01-01
Analytical studies have often assumed that LDV velocity bias depends on turbulence intensity in conjunction with one or more characteristic time scales, such as the time between validated signals, the time between data samples, and the integral turbulence time-scale. These parameters are presently varied independently, in an effort to quantify the biasing effect. Neither of the post facto correction methods employed is entirely accurate. The mean velocity bias error is found to be nearly independent of data validation rate.
Parametric infrared tunable laser system
NASA Technical Reports Server (NTRS)
Garbuny, M.; Henningsen, T.; Sutter, J. R.
1980-01-01
A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.
Polarization mixing optical parametric oscillator.
Pearl, Shaul; Smith, Arlee Virgil; Arie, Ady; Blau, Pinhas; Kalmani, Gal
2005-05-01
We report the experimental realization of a new type of optical parametric oscillator in which oscillation is achieved by polarization rotation in a linear retarder, followed by nonlinear polarization mixing. The mixing is performed by a type II degenerate parametric downconversion in a periodically poled KTP crystal pumped by a 1064 nm pulsed Nd:YAG pump. A single, linearly polarized beam, precisely at the degenerate wavelength is generated. The output spectrum has a narrow linewidth (below the instrumentation bandwidth of 1 nm) and is highly stable with respect to variations in the crystal temperature.
Large-scale parametric survival analysis.
Mittal, Sushil; Madigan, David; Cheng, Jerry Q; Burd, Randall S
2013-10-15
Survival analysis has been a topic of active statistical research in the past few decades with applications spread across several areas. Traditional applications usually consider data with only a small numbers of predictors with a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation power have led to considerable interest in analyzing very-high-dimensional data where the number of predictor variables and the number of observations range between 10(4) and 10(6). In this paper, we present a tool for performing large-scale regularized parametric survival analysis using a variant of the cyclic coordinate descent method. Through our experiments on two real data sets, we show that application of regularized models to high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over corresponding low-dimensional models.
Parametric modeling of quantile regression coefficient functions.
Frumento, Paolo; Bottai, Matteo
2016-03-01
Estimating the conditional quantiles of outcome variables of interest is frequent in many research areas, and quantile regression is foremost among the utilized methods. The coefficients of a quantile regression model depend on the order of the quantile being estimated. For example, the coefficients for the median are generally different from those of the 10th centile. In this article, we describe an approach to modeling the regression coefficients as parametric functions of the order of the quantile. This approach may have advantages in terms of parsimony, efficiency, and may expand the potential of statistical modeling. Goodness-of-fit measures and testing procedures are discussed, and the results of a simulation study are presented. We apply the method to analyze the data that motivated this work. The described method is implemented in the qrcm R package.
Graphical functions in parametric space
NASA Astrophysics Data System (ADS)
Golz, Marcel; Panzer, Erik; Schnetz, Oliver
2016-12-01
Graphical functions are positive functions on the punctured complex plane Csetminus {0,1} which arise in quantum field theory. We generalize a parametric integral representation for graphical functions due to Lam, Lebrun and Nakanishi, which implies the real analyticity of graphical functions. Moreover, we prove a formula that relates graphical functions of planar dual graphs.
Parametric Identification of Systems Via Linear Operators.
1978-09-01
A general parametric identification /approximation model is developed for the black box identification of linear time invariant systems in terms of... parametric identification techniques derive from the general model as special cases associated with a particular linear operator. Some possible
Small-window parametric imaging based on information entropy for ultrasound tissue characterization
NASA Astrophysics Data System (ADS)
Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean
2017-01-01
Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging.
Small-window parametric imaging based on information entropy for ultrasound tissue characterization
Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean
2017-01-01
Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging. PMID:28106118
Parametric Model Checking with VerICS
NASA Astrophysics Data System (ADS)
Knapik, Michał; Niewiadomski, Artur; Penczek, Wojciech; Półrola, Agata; Szreter, Maciej; Zbrzezny, Andrzej
The paper presents the verification system verICS, extended with the three new modules aimed at parametric verification of Elementary Net Systems, Distributed Time Petri Nets, and a subset of UML. All the modules exploit Bounded Model Checking for verifying parametric reachability and the properties specified in the logic PRTECTL - the parametric extension of the existential fragment of CTL.
Schuitemaker, Alie; van Berckel, Bart N M; Kropholler, Marc A; Veltman, Dick J; Scheltens, Philip; Jonker, Cees; Lammertsma, Adriaan A; Boellaard, Ronald
2007-05-01
(R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).
Parametric sonars for seafloor characterization
NASA Astrophysics Data System (ADS)
Caiti, Andrea; Bergem, Oddbjorn; Dybedal, Johnny
1999-12-01
Parametric sonars are instruments capable of transmitting acoustic signals in the water with a very narrow beam and almost no sidelobes. These features are exploited in this paper to define a methodology for quantitative estimation of the geo-acoustic and morphological properties of the uppermost seafloor sediment layer. The three major components of the approach are the parametric instrument itself; the modelling of the forward-propagation problem, with the use of the Kirchhoff approximation for surface scattering and of the small-perturbation theory for the volume scattering; and the definition of a criterion for comparison between data and model predictions, which is accomplished by a generalized time-frequency analysis. In this way the estimation becomes one of a model-based identification, or a model-based inverse problem. Results from a field trial in a shallow water area of the Mediterranean are shown, and compared with independently gathered ground truth.
Frequency domain optical parametric amplification
Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François
2014-01-01
Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968
Experience with parametric binary dissection
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1993-01-01
Parametric Binary Dissection (PBD) is a new algorithm that can be used for partitioning graphs embedded in 2- or 3-dimensional space. It partitions explicitly on the basis of nodes + (lambda)x(edges cut), where lambda is the ratio of time to communicate over an edge to the time to compute at a node. The new algorithm is faster than the original binary dissection algorithm and attempts to obtain better partitions than the older algorithm, which only takes nodes into account. The performance of parametric dissection with plain binary dissection on 3 large unstructured 3-d meshes obtained from computational fluid dynamics and on 2 random graphs were compared. It was showm that the new algorithm can usually yield partitions that are substantially superior, but that its performance is heavily dependent on the input data.
System and Method of Use for Non-parametric Circular Autocorrelation for Signal Processing
2012-07-30
0012] Wald , A. and J. Wolfowitz , An exact test for randomness in the non–Parametric case based on serial correlation, Annals of Mathematical...Statistics Vol. 14, No. 4, pages 378–388, 1943, (hereinafter “ Wald and Wolfowitz ”) provides a non-parametric permutations method such that if n is...present disclosure models accurately and efficiently. 8 [0015] Wald and Wolfowitz generally describe the properties of hxxR , in the context
Parametric Modeling for Fluid Systems
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Martinez, Jonathan
2013-01-01
Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.
Parametric methods for estimating covariate-dependent reference limits.
Virtanen, Arja; Kairisto, Veli; Uusipaikka, Esa
2004-01-01
Age-specific reference limits are required for many clinical laboratory measurements. Statistical assessment of calculated intervals must be performed to obtain reliable reference limits. When parametric, covariate-dependent limits are derived, normal distribution theory usually is applied due to its mathematical simplicity and relative ease of fitting. However, it is not always possible to transform data and achieve a normal distribution. Therefore, models other than those based on normal distribution theory are needed. Generalized linear model theory offers one such alternative. Regardless of the statistical model used, the assumptions behind the model should always be examined.
Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A
2015-05-01
Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories.
Whispering gallery optical parametric oscillators
NASA Astrophysics Data System (ADS)
Breunig, Ingo; Buse, Karsten
2013-12-01
Whispering gallery optical parametric oscillators (WGR OPOs) are monolithic sources for tunable coherent and non-classical light. They are based on total internal reflection. Since reflection losses are negligible, their oscillation threshold can be far below one milliwatt. With sub-millimeter diameters, they are the most compact OPOs demonstrated so far. Recent experimental results demonstrate that WGR OPOs emit coherent light tunable over hundreds of nanometers. Operation in the visible as well as in the near-infrared has been demonstrated with up to 30 % conversion efficiency. These results indicate a great potential of WGR OPOs for spectroscopic and sensing applications.
Stimulated Parametric Emission Microscope Systems
NASA Astrophysics Data System (ADS)
Itoh, Kazuyoshi; Isobe, Keisuke
2006-10-01
We present a novel microscopy technique based on the fourwave mixing (FWM) process that is enhanced by two-photon electronic resonance induced by a pump pulse along with stimulated emission induced by a dump pulse. A Ti:sapphire laser and an optical parametric oscillator are used as light sources for the pump and dump pulses, respectively. We demonstrate that our FWM technique can be used to obtain two-dimensional microscopic images of an unstained leaf of Camellia sinensis and an unlabeled tobacco BY2 Cell.
Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation
NASA Astrophysics Data System (ADS)
Pentaris, Fragkiskos P.; Fouskitakis, George N.
2014-05-01
]. Preliminary results indicate that parametric methods are capable of sufficiently providing the structural/modal characteristics such as natural frequencies and damping ratios. The study also aims - at a further level of investigation - to provide a reliable statistically-based methodology for structural health monitoring after major seismic events which potentially cause harming consequences in structures. Acknowledgments This work was supported by the State Scholarships Foundation of Hellas. References [1] J. S. Sakellariou and S. D. Fassois, "Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation," Journal of Sound and Vibration, vol. 297, pp. 1048-1067, 2006. [2] G. Hloupis, I. Papadopoulos, J. P. Makris, and F. Vallianatos, "The South Aegean seismological network - HSNC," Adv. Geosci., vol. 34, pp. 15-21, 2013. [3] F. P. Pentaris, J. Stonham, and J. P. Makris, "A review of the state-of-the-art of wireless SHM systems and an experimental set-up towards an improved design," presented at the EUROCON, 2013 IEEE, Zagreb, 2013. [4] S. D. Fassois, "Parametric Identification of Vibrating Structures," in Encyclopedia of Vibration, S. G. Braun, D. J. Ewins, and S. S. Rao, Eds., ed London: Academic Press, London, 2001. [5] S. D. Fassois and J. S. Sakellariou, "Time-series methods for fault detection and identification in vibrating structures," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, pp. 411-448, February 15 2007.
Parametric nanomechanical amplification at very high frequency.
Karabalin, R B; Feng, X L; Roukes, M L
2009-09-01
Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.
Rosetta stone for parametrized tests of gravity
NASA Astrophysics Data System (ADS)
Sampson, Laura; Yunes, Nicolás; Cornish, Neil
2013-09-01
Several model-independent parametrizations of deviations from general relativity have been developed to test Einstein’s theory. Although these different parametrizations were developed for different gravitational observables, they ultimately all test the same underlying physics. In this paper, we develop connections between the parametrized post-Newtonian, parametrized post-Keplerian, and the parametrized post-Einsteinian frameworks, developed to carry out tests of general relativity with Solar System, binary pulsar, and gravitational wave observations, respectively. These connections, although only valid under certain assumptions such as energy/momentum conservation, allow us to use knowledge gained from one framework to inform and guide tests using the others. Relating these parametrizations and combining the results from each approach strengthens our tests of general relativity.
Bayesian non parametric modelling of Higgs pair production
NASA Astrophysics Data System (ADS)
Scarpa, Bruno; Dorigo, Tommaso
2017-03-01
Statistical classification models are commonly used to separate a signal from a background. In this talk we face the problem of isolating the signal of Higgs pair production using the decay channel in which each boson decays into a pair of b-quarks. Typically in this context non parametric methods are used, such as Random Forests or different types of boosting tools. We remain in the same non-parametric framework, but we propose to face the problem following a Bayesian approach. A Dirichlet process is used as prior for the random effects in a logit model which is fitted by leveraging the Polya-Gamma data augmentation. Refinements of the model include the insertion in the simple model of P-splines to relate explanatory variables with the response and the use of Bayesian trees (BART) to describe the atoms in the Dirichlet process.
Stellar parametrization from Gaia RVS spectra
NASA Astrophysics Data System (ADS)
Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.
2016-01-01
found for A-type stars, while the log(g) derivation is more accurate (errors of 0.07 and 0.12 dex at GRVS = 12.6 and 13.4, respectively). For the faintest stars, with GRVS≳ 13-14, a Teff input from the spectrophotometric-derived parameters will allow the final GSP-Spec parametrization to be improved. Conclusions: The reported results, while neglecting possible mismatches between synthetic and real spectra, show that the contribution of the RVS-based stellar parameters will be unique in the brighter part of the Gaia survey, which allows for crucial age estimations and accurate chemical abundances. This will constitute a unique and precious sample, providing many pieces of the Milky Way history puzzle with unprecedented precision and statistical relevance.
A THEORY FOR BROADBAND VARACTOR PARAMETRIC AMPLIFIERS
This thesis is concerned with the development of a general and rigorous broadbanding theory for varactor parametric amplifiers . Fundamental gain...bandwidth limitations of a varactor parametric amplifier are obtained which are independent of the equalizer. Results obtained in this theory lead to the...design and synthesis of broadband varactor parametric amplifiers . The circuit considered in this thesis is that of linear variable capacitors embedded
Acceleration of the direct reconstruction of linear parametric images using nested algorithms.
Wang, Guobao; Qi, Jinyi
2010-03-07
Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.
Software for Managing Parametric Studies
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; DeVivo, Adrian
2003-01-01
The Information Power Grid Virtual Laboratory (ILab) is a Practical Extraction and Reporting Language (PERL) graphical-user-interface computer program that generates shell scripts to facilitate parametric studies performed on the Grid. (The Grid denotes a worldwide network of supercomputers used for scientific and engineering computations involving data sets too large to fit on desktop computers.) Heretofore, parametric studies on the Grid have been impeded by the need to create control language scripts and edit input data files painstaking tasks that are necessary for managing multiple jobs on multiple computers. ILab reflects an object-oriented approach to automation of these tasks: All data and operations are organized into packages in order to accelerate development and debugging. A container or document object in ILab, called an experiment, contains all the information (data and file paths) necessary to define a complex series of repeated, sequenced, and/or branching processes. For convenience and to enable reuse, this object is serialized to and from disk storage. At run time, the current ILab experiment is used to generate required input files and shell scripts, create directories, copy data files, and then both initiate and monitor the execution of all computational processes.
Why preferring parametric forecasting to nonparametric methods?
Jabot, Franck
2015-05-07
A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting.
Pump noise cancellation in parametric wavelength converters.
Ataie, Vahid; Myslivets, Evgeny; Wiberg, Andereas O J; Alic, Nikola; Radic, Stojan
2012-12-10
A novel technique for pump noise effect mitigation in parametric wavelength converters is introduced. The method relies on digital signal processing and effectively takes advantage of the correlation property between the pump and idler, imposed by the parametric interaction. A 4 dB improvement in receiver performance is demonstrated experimentally for the conventional 10 Gbps OOK signal converted over 20 nm.
Shi, Runhua; McLarty, Jerry W
2009-10-01
In this article, we introduced basic concepts of statistics, type of distributions, and descriptive statistics. A few examples were also provided. The basic concepts presented herein are only a fraction of the concepts related to descriptive statistics. Also, there are many commonly used distributions not presented herein, such as Poisson distributions for rare events and exponential distributions, F distributions, and logistic distributions. More information can be found in many statistics books and publications.
ERIC Educational Resources Information Center
Callamaras, Peter
1983-01-01
This buyer's guide to seven major types of statistics software packages for microcomputers reviews Edu-Ware Statistics 3.0; Financial Planning; Speed Stat; Statistics with DAISY; Human Systems Dynamics package of Stats Plus, ANOVA II, and REGRESS II; Maxistat; and Moore-Barnes' MBC Test Construction and MBC Correlation. (MBR)
ERIC Educational Resources Information Center
Petocz, Peter; Sowey, Eric
2008-01-01
As a branch of knowledge, Statistics is ubiquitous and its applications can be found in (almost) every field of human endeavour. In this article, the authors track down the possible source of the link between the "Siren song" and applications of Statistics. Answers to their previous five questions and five new questions on Statistics are presented.
Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier
NASA Astrophysics Data System (ADS)
Stuart, N. H.; Bigourd, D.; Hill, R. W.; Robinson, T. S.; Mecseki, K.; Patankar, S.; New, G. H. C.; Smith, R. A.
2015-02-01
The temporal intensity contrast of high-power lasers based on optical parametric amplification (OPA) can be limited by parametric fluorescence from the non-linear gain stages. Here we present a spectroscopic method for direct measurement of unwanted parametric fluorescence widely applicable from unseeded to fully seeded and saturated OPA operation. Our technique employs simultaneous spectroscopy of fluorescence photons slightly outside the seed bandwidth and strongly attenuated light at the seed central wavelength. To demonstrate its applicability we have characterised the performance of a two-stage picosecond OPA pre-amplifier with 2.8×105 gain, delivering 335 μJ pulses at 1054 nm. We show that fluorescence from a strongly seeded OPA is reduced by ~500× from the undepleted to full pump depletion regimes. We also determine the vacuum fluctuation driven noise term seeding this OPA fluorescence to be 0.7±0.4 photons ps-1 nm-1 bandwidth. The resulting shot-to-shot statistics highlights a 1.5% probability of a five-fold and 0.3% probability of a ten-fold increase of fluorescence above the average value. Finally, we show that OPA fluorescence can be limited to a few-ps pedestal with 3×10-9 temporal intensity contrast 1.3 ps ahead of an intense laser pulse, a level highly attractive for large scale chirped-pulse OPA laser systems.
Multivariable Parametric Cost Model for Ground Optical Telescope Assembly
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia
2005-01-01
A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.
Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia
2004-01-01
A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.
Single-variable parametric cost models for space telescopes
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; Henrichs, Todd; Smart, Christian; Prince, Frank A.
2010-07-01
Parametric cost models are routinely used to plan missions, compare concepts, and justify technology investments. Unfortunately, there is no definitive space telescope cost model. For example, historical cost estimating relationships (CERs) based on primary mirror diameter vary by an order of magnitude. We present new single-variable cost models for space telescope optical telescope assembly (OTA). They are based on data collected from 30 different space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models
Quantiles, parametric-select density estimation, and bi-information parameter estimators
NASA Technical Reports Server (NTRS)
Parzen, E.
1982-01-01
A quantile-based approach to statistical analysis and probability modeling of data is presented which formulates statistical inference problems as functional inference problems in which the parameters to be estimated are density functions. Density estimators can be non-parametric (computed independently of model identified) or parametric-select (approximated by finite parametric models that can provide standard models whose fit can be tested). Exponential models and autoregressive models are approximating densities which can be justified as maximum entropy for respectively the entropy of a probability density and the entropy of a quantile density. Applications of these ideas are outlined to the problems of modeling: (1) univariate data; (2) bivariate data and tests for independence; and (3) two samples and likelihood ratios. It is proposed that bi-information estimation of a density function can be developed by analogy to the problem of identification of regression models.
Characteristics of stereo reproduction with parametric loudspeakers
NASA Astrophysics Data System (ADS)
Aoki, Shigeaki; Toba, Masayoshi; Tsujita, Norihisa
2012-05-01
A parametric loudspeaker utilizes nonlinearity of a medium and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear ultrasonics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station and street etc. In this paper, we discussed characteristics of stereo reproduction with two parametric loudspeakers by comparing with those with two ordinary dynamic loudspeakers. In subjective tests, three typical listening positions were selected to investigate the possibility of correct sound localization in a wide listening area. The binaural information was ILD (Interaural Level Difference) or ITD (Interaural Time Delay). The parametric loudspeaker was an equilateral hexagon. The inner and outer diameters were 99 and 112 mm, respectively. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. Three young males listened to test signals 10 times in each listening condition. Subjective test results showed that listeners at the three typical listening positions perceived correct sound localization of all signals using the parametric loudspeakers. It was almost similar to those using the ordinary dynamic loudspeakers, however, except for the case of sinusoidal waves with ITD. It was determined the parametric loudspeaker could exclude the contradiction between the binaural information ILD and ITD that occurred in stereo reproduction with ordinary dynamic loudspeakers because the super directivity of parametric loudspeaker suppressed the cross talk components.
Ionization Cooling using Parametric Resonances
Johnson, Rolland P.
2008-06-07
Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been
Self-seeding ring optical parametric oscillator
Smith, Arlee V.; Armstrong, Darrell J.
2005-12-27
An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.
Airy beam optical parametric oscillator
NASA Astrophysics Data System (ADS)
Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.
2016-05-01
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).
Airy beam optical parametric oscillator.
Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K
2016-05-04
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).
Airy beam optical parametric oscillator
Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.
2016-01-01
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582
Parametric display of myocardial function.
Eusemann, C D; Ritman, E L; Bellemann, M E; Robb, R A
2001-01-01
Quantitative assessment of regional heart motion has significant potential to provide more specific diagnosis of cardiac disease and cardiac malfunction than currently possible. Local heart motion may be captured from various medical imaging scanners. In this study, 3-D reconstructions of pre-infarct and post-infarct hearts were obtained from the Dynamic Spatial Reconstructor (DSR)[Ritman EL, Robb RA, Harris LD. Imaging physiological functions: experience with DSR. Philadelphia: Praeger, 1985; Robb RA, Lent AH, Gilbert BK, Chu A. The dynamic spatial reconstructor: a computed tomography system for high-speed simultaneous scanning of multiple cross sections of the heart. J Med Syst 1980;4(2):253-88; Jorgensen SM, Whitlock SV, Thomas PJ, Roessler RW, Ritman EL. The dynamic spatial reconstructor: a high speed, stop action, 3-D, digital radiographic imager of moving internal organs and blood. Proceedings of SPIE, Ultrahigh- and High-speed Photography, Videography, Photonics, and Velocimetry 1990;1346:180-91.] (DSR). Using functional parametric mapping of disturbances in regional contractility and relaxation, regional myocardial motion during a cardiac cycle is color mapped onto a deformable heart model to facilitate appreciation of the structure-to-function relationships in the myocardium, such as occurs in regional patterns of akinesis or dyskinesis associated with myocardial ischemia or infarction resulting from coronary artery occlusion.
ERIC Educational Resources Information Center
Petocz, Peter; Sowey, Eric
2008-01-01
In this article, the authors focus on hypothesis testing--that peculiarly statistical way of deciding things. Statistical methods for testing hypotheses were developed in the 1920s and 1930s by some of the most famous statisticians, in particular Ronald Fisher, Jerzy Neyman and Egon Pearson, who laid the foundations of almost all modern methods of…
Validation of two (parametric vs non-parametric) daily weather generators
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Skalak, P.
2015-12-01
As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed-like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30-years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series
Generating Entangled State with Parametric Amplifier
NASA Astrophysics Data System (ADS)
Huang, Jian
2017-04-01
We present a scheme for generating entangled state with parametric amplifier with different initial states. Its shown that the entangled state is always generated except some special cases by adjusting the coupling strength and the total number of photons.
Parametrically disciplined operation of a vibratory gyroscope
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)
2008-01-01
Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.
Conformally covariant parametrizations for relativistic initial data
NASA Astrophysics Data System (ADS)
Delay, Erwann
2017-01-01
We revisit the Lichnerowicz-York method, and an alternative method of York, in order to obtain some conformally covariant systems. This type of parametrization is certainly more natural for non constant mean curvature initial data.
NON-PARAMETRIC ESTIMATION UNDER STRONG DEPENDENCE
Zhao, Zhibiao; Zhang, Yiyun; Li, Runze
2014-01-01
We study non-parametric regression function estimation for models with strong dependence. Compared with short-range dependent models, long-range dependent models often result in slower convergence rates. We propose a simple differencing-sequence based non-parametric estimator that achieves the same convergence rate as if the data were independent. Simulation studies show that the proposed method has good finite sample performance. PMID:25018572
Chaos control of parametric driven Duffing oscillators
Jin, Leisheng; Mei, Jie; Li, Lijie
2014-03-31
Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.
Chaos control of parametric driven Duffing oscillators
NASA Astrophysics Data System (ADS)
Jin, Leisheng; Mei, Jie; Li, Lijie
2014-03-01
Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.
NON-PARAMETRIC ESTIMATION UNDER STRONG DEPENDENCE.
Zhao, Zhibiao; Zhang, Yiyun; Li, Runze
2014-01-01
We study non-parametric regression function estimation for models with strong dependence. Compared with short-range dependent models, long-range dependent models often result in slower convergence rates. We propose a simple differencing-sequence based non-parametric estimator that achieves the same convergence rate as if the data were independent. Simulation studies show that the proposed method has good finite sample performance.
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James
2014-01-01
Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.
On Topological Structures of Fuzzy Parametrized Soft Sets
Zorlutuna, İdris
2014-01-01
We introduce the topological structure of fuzzy parametrized soft sets and fuzzy parametrized soft mappings. We define the notion of quasi-coincidence for fuzzy parametrized soft sets and investigated its basic properties. We study the closure, interior, base, continuity, and compactness and properties of these concepts in fuzzy parametrized soft topological spaces. PMID:24955386
... population, or about 25 million Americans, has experienced tinnitus lasting at least five minutes in the past ... by NIDCD Epidemiology and Statistics Program staff: (1) tinnitus prevalence was obtained from the 2008 National Health ...
Trend Analysis of Golestan's Rivers Discharges Using Parametric and Non-parametric Methods
NASA Astrophysics Data System (ADS)
Mosaedi, Abolfazl; Kouhestani, Nasrin
2010-05-01
One of the major problems in human life is climate changes and its problems. Climate changes will cause changes in rivers discharges. The aim of this research is to investigate the trend analysis of seasonal and yearly rivers discharges of Golestan province (Iran). In this research four trend analysis method including, conjunction point, linear regression, Wald-Wolfowitz and Mann-Kendall, for analyzing of river discharges in seasonal and annual periods in significant level of 95% and 99% were applied. First, daily discharge data of 12 hydrometrics stations with a length of 42 years (1965-2007) were selected, after some common statistical tests such as, homogeneity test (by applying G-B and M-W tests), the four mentioned trends analysis tests were applied. Results show that in all stations, for summer data time series, there are decreasing trends with a significant level of 99% according to Mann-Kendall (M-K) test. For autumn time series data, all four methods have similar results. For other periods, the results of these four tests were more or less similar together. While, for some stations the results of tests were different. Keywords: Trend Analysis, Discharge, Non-parametric methods, Wald-Wolfowitz, The Mann-Kendall test, Golestan Province.
Lan, Ling; Datta, Somnath
2010-04-01
As a type of multivariate survival data, multistate models have a wide range of applications, notably in cancer and infectious disease progression studies. In this article, we revisit the problem of estimation of state occupation, entry and exit times in a multistate model where various estimators have been proposed in the past under a variety of parametric and non-parametric assumptions. We focus on two non-parametric approaches, one using a product limit formula as recently proposed in Datta and Sundaram(1) and a novel approach using a fractional risk set calculation followed by a subtraction formula to calculate the state occupation probability of a transient state. A numerical comparison between the two methods is presented using detailed simulation studies. We show that the new estimators have lower statistical errors of estimation of state occupation probabilities for the distant states. We illustrate the two methods using a pubertal development data set obtained from the NHANES III.(2).
Parametric wavelength conversion in photonic crystal fibers
NASA Astrophysics Data System (ADS)
Yang, Sigang; Wu, Zhaohui; Yang, Yi; Chen, Minghua; Xie, Shizhong
2016-11-01
Nonlinear wavelength conversion provides flexible solutions for generating wideband tunable radiation in novel wavelength band. Parametric process in photonic crystal fibers (PCFs) has attracted comprehensive interests since it can act as broadband tunable light sources in non-conventional wavelength bands. The current state-of-the-art photonic crystal fibers can provide more freedom for customizing the dispersion and nonlinearity which is critical to the nonlinear process, such as four wave mixing (FWM), compared with the traditional fibers fabricated with doping techniques. Here we demonstrate broadband parametric wavelength conversion in our homemade photonic crystal fibers. The zero dispersion wavelength (ZDW) of PCFs is critical for the requirement of phase matching condition in the parametric four wave mixing process. Firstly a procedure of the theoretical design of PCF with the ZDW at 1060 nm is proposed through our homemade simulation software. A group of PCF samples with gradually variable parameters are fabricated according to the theoretical design. The broadband parametric gain around 1060 nm band is demonstrated pumped with our homemade mode locked fiber laser in the anomalous dispersion region. Also a narrow gain band with very large wavelength detune with the pump wavelength in the normal dispersion region is realized. Wavelength conversion with a span of 194 nm is realized. Furthermore a fiber optical parametric oscillator based on the fabricated PCF is built up. A wavelength tunable range as high as 340 nm is obtained. This report demonstrates a systematic procedure to realize wide band wavelength conversion based on PCFs.
Grating lobe elimination in steerable parametric loudspeaker.
Shi, Chuang; Gan, Woon-Seng
2011-02-01
In the past two decades, the majority of research on the parametric loudspeaker has concentrated on the nonlinear modeling of acoustic propagation and pre-processing techniques to reduce nonlinear distortion in sound reproduction. There are, however, very few studies on directivity control of the parametric loudspeaker. In this paper, we propose an equivalent circular Gaussian source array that approximates the directivity characteristics of the linear ultrasonic transducer array. By using this approximation, the directivity of the sound beam from the parametric loudspeaker can be predicted by the product directivity principle. New theoretical results, which are verified through measurements, are presented to show the effectiveness of the delay-and-sum beamsteering structure for the parametric loudspeaker. Unlike the conventional loudspeaker array, where the spacing between array elements must be less than half the wavelength to avoid spatial aliasing, the parametric loudspeaker can take advantage of grating lobe elimination to extend the spacing of ultrasonic transducer array to more than 1.5 wavelengths in a typical application.
Parametric instability of pressurized propellant tanks
NASA Astrophysics Data System (ADS)
Albus, Jochen; Dieker, Stefan; Őry, Huba; Rittweger, Andreas
2008-01-01
Pressurized propellant tanks might become dynamically unstable with detrimental dynamic responses if a dynamic excitation leads to a coupling of pressure oscillations (especially due to the response of axisymmetric modes) with very low damped ovalizing modes. This phenomenon can be described and identified as the so-called parametric instability. During the dynamic qualification test campaign of the new Ariane 5 Cryogenic Upper Stage ESC-A, a parametric instability was observed for sinusoidal tests under certain test conditions with low static pressure in the propellant tank. The parametric instability was identified and an analytical simulation was performed that confirmed the instability. During flight, harmonic excitations might occur due to pressure oscillations within the solid rocket booster. However, the application of the analytical model on flight conditions indicates that the flight behaviour will be stable. This was confirmed by results from additional tests. This paper describes the phenomenon of the parametric instability of pressurized propellant tanks and presents an analytical methodology to assess the risk of the occurrence of a parametric instability.
Phase noise suppression through parametric filtering
NASA Astrophysics Data System (ADS)
Cassella, Cristian; Strachan, Scott; Shaw, Steven W.; Piazza, Gianluca
2017-02-01
In this work, we introduce and experimentally demonstrate a parametric phase noise suppression technique, which we call "parametric phase noise filtering." This technique is based on the use of a solid-state parametric amplifier operating in its instability region and included in a non-autonomous feedback loop connected at the output of a noisy oscillator. We demonstrate that such a system behaves as a parametrically driven Duffing resonator and can operate at special points where it becomes largely immune to the phase fluctuations that affect the oscillator output signal. A prototype of a parametric phase noise filter (PFIL) was designed and fabricated to operate in the very-high-frequency range. The PFIL prototype allowed us to significantly reduce the phase noise at the output of a commercial signal generator operating around 220 MHz. Noise reduction of 16 dB (40×) and 13 dB (20×) were obtained, respectively, at 1 and 10 kHz offsets from the carrier frequency. The demonstration of this phase noise suppression technique opens up scenarios in the development of passive and low-cost phase noise cancellation circuits for any application demanding high quality frequency generation.
Non-parametric morphologies of mergers in the Illustris simulation
NASA Astrophysics Data System (ADS)
Bignone, L. A.; Tissera, P. B.; Sillero, E.; Pedrosa, S. E.; Pellizza, L. J.; Lambas, D. G.
2017-02-01
We study non-parametric morphologies of mergers events in a cosmological context, using the Illustris project. We produce mock g-band images comparable to observational surveys from the publicly available Illustris simulation idealized mock images at z = 0. We then measure non-parametric indicators: asymmetry, Gini, M20, clumpiness, and concentration for a set of galaxies with M* > 1010 M⊙. We correlate these automatic statistics with the recent merger history of galaxies and with the presence of close companions. Our main contribution is to assess in a cosmological framework, the empirically derived non-parametric demarcation line and average time-scales used to determine the merger rate observationally. We found that 98 per cent of galaxies above the demarcation line have a close companion or have experienced a recent merger event. On average, merger signatures obtained from the G-M20 criterion anti-correlate clearly with the elapsing time to the last merger event. We also find that the asymmetry correlates with galaxy pair separation and relative velocity, exhibiting the larger enhancements for those systems with pair separations d < 50 h-1 kpc and relative velocities V < 350 km s-1. We find that the G-M20 is most sensitive to recent mergers (∼0.14 Gyr) and to ongoing mergers with stellar mass ratios greater than 0.1. For this indicator, we compute a merger average observability time-scale of ∼0.2 Gyr, in agreement with previous results and demonstrate that the morphologically derived merger rate recovers the intrinsic total merger rate of the simulation and the merger rate as a function of stellar mass.
Adaptive Parametric Spectral Estimation with Kalman Smoothing for Online Early Seizure Detection
Park, Yun S.; Hochberg, Leigh R.; Eskandar, Emad N.; Cash, Sydney S.; Truccolo, Wilson
2014-01-01
Tracking spectral changes in neural signals, such as local field potentials (LFPs) and scalp or intracranial electroencephalograms (EEG, iEEG), is an important problem in early detection and prediction of seizures. Most approaches have focused on either parametric or nonparametric spectral estimation methods based on moving time windows. Here, we explore an adaptive (time-varying) parametric ARMA approach for tracking spectral changes in neural signals based on the fixed-interval Kalman smoother. We apply the method to seizure detection based on spectral features of intracortical LFPs recorded from a person with pharmacologically intractable focal epilepsy. We also devise and test an approach for real-time tracking of spectra based on the adaptive parametric method with the fixed-interval Kalman smoother. The order of ARMA models is determined via the AIC computed in moving time windows. We quantitatively demonstrate the advantages of using the adaptive parametric estimation method in seizure detection over nonparametric alternatives based exclusively on moving time windows. Overall, the adaptive parametric approach significantly improves the statistical separability of interictal and ictal epochs. PMID:24663686
ERIC Educational Resources Information Center
Chicot, Katie; Holmes, Hilary
2012-01-01
The use, and misuse, of statistics is commonplace, yet in the printed format data representations can be either over simplified, supposedly for impact, or so complex as to lead to boredom, supposedly for completeness and accuracy. In this article the link to the video clip shows how dynamic visual representations can enliven and enhance the…
Parametric plate-bridge dynamic filter model of violin radiativity.
Bissinger, George
2012-07-01
A hybrid, deterministic-statistical, parametric "dynamic filter" model of the violin's radiativity profile [characterized by an averaged-over-sphere, mean-square radiativity (R(ω)(2))] is developed based on the premise that acoustic radiation depends on (1) how strongly it vibrates [characterized by the averaged-over-corpus, mean-square mobility (Y(ω)(2))] and (2) how effectively these vibrations are turned into sound, characterized by the radiation efficiency, which is proportional to (R(ω)(2))/(Y(ω)(2)). Two plate mode frequencies were used to compute 1st corpus bending mode frequencies using empirical trend lines; these corpus bending modes in turn drive cavity volume flows to excite the two lowest cavity modes A0 and A1. All widely-separated, strongly-radiating corpus and cavity modes in the low frequency deterministic region are then parameterized in a dual-Helmholtz resonator model. Mid-high frequency statistical regions are parameterized with the aid of a distributed-excitation statistical mobility function (no bridge) to help extract bridge filter effects associated with (a) bridge rocking mode frequency changes and (b) bridge-corpus interactions from 14-violin-average, excited-via-bridge (Y(ω)(2)) and (R(ω)(2)). Deterministic-statistical regions are rejoined at ~630 Hz in a mobility-radiativity "trough" where all violin quality classes had a common radiativity. Simulations indicate that typical plate tuning has a significantly weaker effect on radiativity profile trends than bridge tuning.
Modeling personnel turnover in the parametric organization
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1991-01-01
A model is developed for simulating the dynamics of a newly formed organization, credible during all phases of organizational development. The model development process is broken down into the activities of determining the tasks required for parametric cost analysis (PCA), determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the model, implementing the model, and testing it. The model, parameterized by the likelihood of job function transition, has demonstrated by the capability to represent the transition of personnel across functional boundaries within a parametric organization using a linear dynamical system, and the ability to predict required staffing profiles to meet functional needs at the desired time. The model can be extended by revisions of the state and transition structure to provide refinements in functional definition for the parametric and extended organization.
Ku band low noise parametric amplifier
NASA Technical Reports Server (NTRS)
1976-01-01
A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.
Parametric modelling of a knee joint prosthesis.
Khoo, L P; Goh, J C; Chow, S L
1993-01-01
This paper presents an approach for the establishment of a parametric model of knee joint prosthesis. Four different sizes of a commercial prosthesis are used as an example in the study. A reverse engineering technique was employed to reconstruct the prosthesis on CATIA, a CAD (computer aided design) system. Parametric models were established as a result of the analysis. Using the parametric model established and the knee data obtained from a clinical study on 21 pairs of cadaveric Asian knees, the development of a prototype prosthesis that suits a patient with a very small knee joint is presented. However, it was found that modification to certain parameters may be inevitable due to the uniqueness of the Asian knee. An avenue for rapid modelling and eventually economical production of a customized knee joint prosthesis for patients is proposed and discussed.
Huang, Xinrui; Zhou, Yun; Bao, Shangliang; Huang, Sung-Cheng
2007-01-01
Parametric images generated from dynamic positron emission tomography (PET) studies are useful for presenting functional/biological information in the 3-dimensional space, but usually suffer from their high sensitivity to image noise. To improve the quality of these images, we proposed in this study a modified linear least square (LLS) fitting method named cLLS that incorporates a clustering-based spatial constraint for generation of parametric images from dynamic PET data of high noise levels. In this method, the combination of K-means and hierarchical cluster analysis was used to classify dynamic PET data. Compared with conventional LLS, cLLS can achieve high statistical reliability in the generated parametric images without incurring a high computational burden. The effectiveness of the method was demonstrated both with computer simulation and with a human brain dynamic FDG PET study. The cLLS method is expected to be useful for generation of parametric images from dynamic FDG PET study. PMID:18273393
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
Use of robust estimators in parametric classifiers
NASA Technical Reports Server (NTRS)
Safavian, S. Rasoul; Landgrebe, David A.
1989-01-01
The parametric approach to density estimation and classifier design is a well studied subject. The parametric approach is desirable because basically it reduces the problem of classifier design to that of estimating a few parameters for each of the pattern classes. The class parameters are usually estimated using maximum-likelihood (ML) estimators. ML estimators are, however, very sensitive to the presence of outliers. Several robust estimators of mean and covariance matrix and their effect on the probability of error in classification are examined. Comments are made about alpha-ranked (alpha-trimmed) estimators.
Statistical description for survival data
2016-01-01
Statistical description is always the first step in data analysis. It gives investigator a general impression of the data at hand. Traditionally, data are described as central tendency and deviation. However, this framework does not fit to the survival data (also termed time-to-event data). Such data type contains two components. One is the survival time and the other is the status. Researchers are usually interested in the probability of event at a given survival time point. Hazard function, cumulative hazard function and survival function are commonly used to describe survival data. Survival function can be estimated using Kaplan-Meier estimator, which is also the default method in most statistical packages. Alternatively, Nelson-Aalen estimator is available to estimate survival function. Survival functions of subgroups can be compared using log-rank test. Furthermore, the article also introduces how to describe time-to-event data with parametric modeling. PMID:27867953
Statistical Methods for Cardiovascular Researchers
Moyé, Lem
2016-01-01
Rationale Biostatistics continues to play an essential role in contemporary cardiovascular investigations, but successful implementation of biostatistical methods can be complex. Objective To present the rationale behind statistical applications and to review useful tools for cardiology research. Methods and Results Prospective declaration of the research question, clear methodology, and study execution that adheres to the protocol together serve as the critical foundation of a research endeavor. Both parametric and distribution-free measures of central tendency and dispersion are presented. T-testing, analysis of variance, and regression analyses are reviewed. Survival analysis, logistic regression, and interim monitoring are also discussed. Finally, common weaknesses in statistical analyses are considered. Conclusion Biostatistics can be productively applied to cardiovascular research if investigators 1) develop and rely on a well-written protocol and analysis plan, 2) consult with a biostatistician when necessary, and 3) write results clearly, differentiating confirmatory from exploratory findings. PMID:26846639
NASA Astrophysics Data System (ADS)
Prakash, Gyan; Raman, Arvind; Rhoads, Jeffrey; Reifenberger, Ronald G.
2012-06-01
In this work, parametric noise squeezing and parametric resonance are realized through the use of an electronic feedback circuit to excite a microcantilever with a signal proportional to the product of the microcantilever's displacement and a harmonic signal. The cantilever's displacement is monitored using an optical lever technique. By adjusting the gain of an amplifier in the feedback circuit, regimes of parametric noise squeezing/amplification and the principal and secondary parametric resonances of fundamental and higher order eigenmodes can be easily accessed. The exceptionally symmetric amplitude response of the microcantilever in the narrow frequency bandwidth is traced to a nonlinear parametric excitation term that arises due to the cubic nonlinearity in the output of the position-sensitive photodiode. The feedback circuit, working in both the regimes of parametric resonance and noise squeezing, allows an enhancement of the microcantilever's effective quality-factor (Q-factor) by two orders of magnitude under ambient conditions, extending the mass sensing capabilities of a conventional microcantilever into the sub-picogram regime. Likewise, experiments designed to parametrically oscillate a microcantilever in water using electronic feedback also show an increase in the microcantilever's effective Q-factor by two orders of magnitude, opening the field to high-sensitivity mass sensing in liquid environments.
Prakash, Gyan; Raman, Arvind; Rhoads, Jeffrey; Reifenberger, Ronald G
2012-06-01
In this work, parametric noise squeezing and parametric resonance are realized through the use of an electronic feedback circuit to excite a microcantilever with a signal proportional to the product of the microcantilever's displacement and a harmonic signal. The cantilever's displacement is monitored using an optical lever technique. By adjusting the gain of an amplifier in the feedback circuit, regimes of parametric noise squeezing/amplification and the principal and secondary parametric resonances of fundamental and higher order eigenmodes can be easily accessed. The exceptionally symmetric amplitude response of the microcantilever in the narrow frequency bandwidth is traced to a nonlinear parametric excitation term that arises due to the cubic nonlinearity in the output of the position-sensitive photodiode. The feedback circuit, working in both the regimes of parametric resonance and noise squeezing, allows an enhancement of the microcantilever's effective quality-factor (Q-factor) by two orders of magnitude under ambient conditions, extending the mass sensing capabilities of a conventional microcantilever into the sub-picogram regime. Likewise, experiments designed to parametrically oscillate a microcantilever in water using electronic feedback also show an increase in the microcantilever's effective Q-factor by two orders of magnitude, opening the field to high-sensitivity mass sensing in liquid environments.
Shaikh, Masood Ali
2016-04-01
Statistical tests help infer meaningful conclusions from studies conducted and data collected. This descriptive study analyzed the type of statistical tests used and the statistical software utilized for analysis reported in the original articles published in 2014 by the three Medline-indexed journals of Pakistan. Cumulatively, 466 original articles were published in 2014. The most frequently reported statistical tests for original articles by all three journals were bivariate parametric and non-parametric tests i.e. involving comparisons between two groups e.g. Chi-square test, t-test, and various types of correlations. Cumulatively, 201 (43.1%) articles used these tests. SPSS was the primary choice for statistical analysis, as it was exclusively used in 374 (80.3%) original articles. There has been a substantial increase in the number of articles published, and in the sophistication of statistical tests used in the articles published in the Pakistani Medline indexed journals in 2014, compared to 2007.
Rendón-Macías, Mario Enrique; Villasís-Keever, Miguel Ángel; Miranda-Novales, María Guadalupe
2016-01-01
Descriptive statistics is the branch of statistics that gives recommendations on how to summarize clearly and simply research data in tables, figures, charts, or graphs. Before performing a descriptive analysis it is paramount to summarize its goal or goals, and to identify the measurement scales of the different variables recorded in the study. Tables or charts aim to provide timely information on the results of an investigation. The graphs show trends and can be histograms, pie charts, "box and whiskers" plots, line graphs, or scatter plots. Images serve as examples to reinforce concepts or facts. The choice of a chart, graph, or image must be based on the study objectives. Usually it is not recommended to use more than seven in an article, also depending on its length.
Order Statistics and Nonparametric Statistics.
2014-09-26
Topics investigated include the following: Probability that a fuze will fire; moving order statistics; distribution theory and properties of the...problem posed by an Army Scientist: A fuze will fire when at least n-i (or n-2) of n detonators function within time span t. What is the probability of
NASA Astrophysics Data System (ADS)
Goodman, Joseph W.
2000-07-01
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
Noise figure of hybrid optical parametric amplifiers.
Marhic, Michel E
2012-12-17
Following a fiber optical parametric amplifier, used as a wavelength converter or in the phase-sensitive mode, by a phase-insensitive amplifier (PIA) can significantly reduce four-wave mixing between signals in broadband systems. We derive the quantum mechanical noise figures (NF) for these two hybrid configurations, and show that adding the PIA only leads to a moderate increase in NF.
Robustness analysis for real parametric uncertainty
NASA Technical Reports Server (NTRS)
Sideris, Athanasios
1989-01-01
Some key results in the literature in the area of robustness analysis for linear feedback systems with structured model uncertainty are reviewed. Some new results are given. Model uncertainty is described as a combination of real uncertain parameters and norm bounded unmodeled dynamics. Here the focus is on the case of parametric uncertainty. An elementary and unified derivation of the celebrated theorem of Kharitonov and the Edge Theorem is presented. Next, an algorithmic approach for robustness analysis in the cases of multilinear and polynomic parametric uncertainty (i.e., the closed loop characteristic polynomial depends multilinearly and polynomially respectively on the parameters) is given. The latter cases are most important from practical considerations. Some novel modifications in this algorithm which result in a procedure of polynomial time behavior in the number of uncertain parameters is outlined. Finally, it is shown how the more general problem of robustness analysis for combined parametric and dynamic (i.e., unmodeled dynamics) uncertainty can be reduced to the case of polynomic parametric uncertainty, and thus be solved by means of the algorithm.
Holographic Dark Energy Density and JBP Parametrization
NASA Astrophysics Data System (ADS)
Saadat, Hassan; Mousavi, S. N.; Saadat, A. M.
2011-09-01
In this article we consider the holographic dark energy density. We study dark energy density in Universe with arbitrary spatially curvature described by the Friedmann-Robertson-Walker metric. We use Jassal-Bagla-Padmanabhan parametrization to specify dark energy density.
New Logic Circuit with DC Parametric Excitation
NASA Astrophysics Data System (ADS)
Sugahara, Masanori; Kaneda, Hisayoshi
1982-12-01
It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.
The fast parametric slantlet transform with applications
NASA Astrophysics Data System (ADS)
Agaian, Sos S.; Tourshan, Khaled; Noonan, Joseph P.
2004-05-01
Transform methods have played an important role in signal and image processing applications. Recently, Selesnick has constructed the new orthogonal discrete wavelet transform, called the slantlet wavelet, with two zero moments and with improved time localization. The discrete slantlet wavelet transform is carried out by an existing filterbank which lacks a tree structure and has a complexity problem. The slantlet wavelet has been successfully applied in compression and denoising. In this paper, we present a new class of orthogonal parametric fast Haar slantlet transform system where the slantlet wavelet and Haar transforms are special cases of it. We propose designing the slantlet wavelet transform using Haar slantlet transform matrix. A new class of parametric filterbanks is developed. The behavior of the parametric Haar slantlet transforms in signal and image denoising is presented. We show that the new technique performs better than the slantlet wavelet transform in denoising for piecewise constant signals. We also show that the parametric Haar slantlet transform performs better than the cosine and Fourier transforms for grey level images.
Parametric acoustic arrays: A state of the art review
NASA Technical Reports Server (NTRS)
Fenlon, F. H.
1976-01-01
Following a brief introduction to the concept of parametric acoustic interactions, the basic properties of parametric transmitting and receiving arrays are considered in the light of conceptual advances resulting from experimental and theoretical investigations that have taken place since 1963.
Using scientifically and statistically sufficient statistics in comparing image segmentations.
Chi, Yueh-Yun; Muller, Keith E
2010-01-01
Automatic computer segmentation in three dimensions creates opportunity to reduce the cost of three-dimensional treatment planning of radiotherapy for cancer treatment. Comparisons between human and computer accuracy in segmenting kidneys in CT scans generate distance values far larger in number than the number of CT scans. Such high dimension, low sample size (HDLSS) data present a grand challenge to statisticians: how do we find good estimates and make credible inference? We recommend discovering and using scientifically and statistically sufficient statistics as an additional strategy for overcoming the curse of dimensionality. First, we reduced the three-dimensional array of distances for each image comparison to a histogram to be modeled individually. Second, we used non-parametric kernel density estimation to explore distributional patterns and assess multi-modality. Third, a systematic exploratory search for parametric distributions and truncated variations led to choosing a Gaussian form as approximating the distribution of a cube root transformation of distance. Fourth, representing each histogram by an individually estimated distribution eliminated the HDLSS problem by reducing on average 26,000 distances per histogram to just 2 parameter estimates. In the fifth and final step we used classical statistical methods to demonstrate that the two human observers disagreed significantly less with each other than with the computer segmentation. Nevertheless, the size of all disagreements was clinically unimportant relative to the size of a kidney. The hierarchal modeling approach to object-oriented data created response variables deemed sufficient by both the scientists and statisticians. We believe the same strategy provides a useful addition to the imaging toolkit and will succeed with many other high throughput technologies in genetics, metabolomics and chemical analysis.
Parametrization of the precipitation in the Northern Hemisphere and its verification in Mexico
NASA Astrophysics Data System (ADS)
Mendoza, V. M.; Oda, B.; Adem, J.
1998-07-01
To improve results in monthly rainfall prediction, a parametrization of precipitation has been developed. The thermodynamic energy equation used in the Adem thermodynamic model (ATM) and the Clausius and Clapeyron equation, were used to obtain a linear parametrization of the precipitation anomalies as a function of the surface temperature and the 700 mb temperature anomalies. The observed rainfall in Mexico over 36 months, from January 1981 to December 1983, was compared with the results obtained of the heat released by condensation, which is proportional to precipitation, using our theoretical formula, and those obtained using a statistical formula, which was derived for the ATM using 12 years of hemispheric real data. The verification using our formula in Mexico, showed better results than the one using the statistical formula.
Hyperbolic and semi-parametric models in finance
NASA Astrophysics Data System (ADS)
Bingham, N. H.; Kiesel, Rüdiger
2001-02-01
The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.
Parametric Acoustic Receiving Array (Parray) Research and Experiments.
1980-02-06
AD-AC83 704 TEXAS UNIV AT AUSTIN APPLIED RESEARCH LABS FIG 17/1 PARAMETRIC ACOUSTIC RECEIVING ARRAY ( PARRAY ) RESEARCH AND EXPER-CTC(U) FEB 80 T G...TITLE anld Subtitle) ,__t, I -1rilUl tT :. 40441" ,APT19* .... ,. L PARAMETRIC ACOUSTIC RECEIVING ARRAY ( PARRAY ) inal technical re. m , LIESEARCH AND...WORDS (Continue on reverse side it necaesary and Identify by block number) PARRAY parametric acoustic receiver nonlinear acoustics parametric acoustic
NASA Astrophysics Data System (ADS)
Paine, Gregory Harold
1982-03-01
The primary objective of the thesis is to explore the dynamical properties of small nerve networks by means of the methods of statistical mechanics. To this end, a general formalism is developed and applied to elementary groupings of model neurons which are driven by either constant (steady state) or nonconstant (nonsteady state) forces. Neuronal models described by a system of coupled, nonlinear, first-order, ordinary differential equations are considered. A linearized form of the neuronal equations is studied in detail. A Lagrange function corresponding to the linear neural network is constructed which, through a Legendre transformation, provides a constant of motion. By invoking the Maximum-Entropy Principle with the single integral of motion as a constraint, a probability distribution function for the network in a steady state can be obtained. The formalism is implemented for some simple networks driven by a constant force; accordingly, the analysis focuses on a study of fluctuations about the steady state. In particular, a network composed of N noninteracting neurons, termed Free Thinkers, is considered in detail, with a view to interpretation and numerical estimation of the Lagrange multiplier corresponding to the constant of motion. As an archetypical example of a net of interacting neurons, the classical neural oscillator, consisting of two mutually inhibitory neurons, is investigated. It is further shown that in the case of a network driven by a nonconstant force, the Maximum-Entropy Principle can be applied to determine a probability distribution functional describing the network in a nonsteady state. The above examples are reconsidered with nonconstant driving forces which produce small deviations from the steady state. Numerical studies are performed on simplified models of two physical systems: the starfish central nervous system and the mammalian olfactory bulb. Discussions are given as to how statistical neurodynamics can be used to gain a better
Non-parametric three-way mixed ANOVA with aligned rank tests.
Oliver-Rodríguez, Juan C; Wang, X T
2015-02-01
Research problems that require a non-parametric analysis of multifactor designs with repeated measures arise in the behavioural sciences. There is, however, a lack of available procedures in commonly used statistical packages. In the present study, a generalization of the aligned rank test for the two-way interaction is proposed for the analysis of the typical sources of variation in a three-way analysis of variance (ANOVA) with repeated measures. It can be implemented in the usual statistical packages. Its statistical properties are tested by using simulation methods with two sample sizes (n = 30 and n = 10) and three distributions (normal, exponential and double exponential). Results indicate substantial increases in power for non-normal distributions in comparison with the usual parametric tests. Similar levels of Type I error for both parametric and aligned rank ANOVA were obtained with non-normal distributions and large sample sizes. Degrees-of-freedom adjustments for Type I error control in small samples are proposed. The procedure is applied to a case study with 30 participants per group where it detects gender differences in linguistic abilities in blind children not shown previously by other methods.
Parametric amplification of a superconducting plasma wave
NASA Astrophysics Data System (ADS)
Rajasekaran, S.; Casandruc, E.; Laplace, Y.; Nicoletti, D.; Gu, G. D.; Clark, S. R.; Jaksch, D.; Cavalleri, A.
2016-11-01
Many applications in photonics require all-optical manipulation of plasma waves, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation, superconductor-metal oscillations and soliton formation. Here, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Parametric amplification is sensitive to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations or terahertz single-photon devices.
Parametric amplification of a superconducting plasma wave
Rajasekaran, S.; Casandruc, E.; Laplace, Y.; Nicoletti, D.; Gu, G. D.; Clark, S. R.; Jaksch, D.; Cavalleri, A.
2016-07-11
Many applications in photonics require all-optical manipulation of plasma waves, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation, superconductor–metal oscillations and soliton formation. In this paper, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Finally, parametric amplification is sensitive to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations or terahertz single-photon devices.
Parametric amplification by coupled flux qubits
Rehák, M.; Neilinger, P.; Grajcar, M.; Oelsner, G.; Hübner, U.; Meyer, H.-G.; Il'ichev, E.
2014-04-21
We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3 × 10{sup −3}) and a measured gain of about 20 dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.
Revisiting Parametric Types and Virtual Classes
NASA Astrophysics Data System (ADS)
Madsen, Anders Bach; Ernst, Erik
This paper presents a conceptually oriented updated view on the relationship between parametric types and virtual classes. The traditional view is that parametric types excel at structurally oriented composition and decomposition, and virtual classes excel at specifying mutually recursive families of classes whose relationships are preserved in derived families. Conversely, while class families can be specified using a large number of F-bounded type parameters, this approach is complex and fragile; and it is difficult to use traditional virtual classes to specify object composition in a structural manner, because virtual classes are closely tied to nominal typing. This paper adds new insight about the dichotomy between these two approaches; it illustrates how virtual constraints and type refinements, as recently introduced in gbeta and Scala, enable structural treatment of virtual types; finally, it shows how a novel kind of dynamic type check can detect compatibility among entire families of classes.
Pattern Generation by Dissipative Parametric Instability
NASA Astrophysics Data System (ADS)
Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.
2016-01-01
Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems.
Diode-pumped optical parametric oscillator
Geiger, A.R.; Hemmati, H.; Farr, W.H.
1996-02-01
Diode-pumped optical parametric oscillation has been demonstrated for the first time to our knowledge in a single Nd:MgO:LiNbO{sub 3} nonlinear crystal. The crystal is pumped by a semiconductor diode laser array at 812 nm. The Nd{sup 3+} ions absorb the 812-nm radiation to generate 1084-nm laser oscillation. On internal {ital Q} switching the 1084-nm radiation pumps the LiNbO{sub 3} host crystal that is angle cut at 46.5{degree} and generates optical parametric oscillation. The oscillation threshold that is due to the 1084-nm laser pump with a pulse length of 80 ns in a 1-mm-diameter beam was measured to be {approx_equal}1 mJ and produced 0.5-mJ output at 3400-nm signal wavelength. {copyright} {ital 1996 Optical Society of America.}
Phase shielding soliton in parametrically driven systems.
Clerc, Marcel G; Garcia-Ñustes, Mónica A; Zárate, Yair; Coulibaly, Saliya
2013-05-01
Parametrically driven extended systems exhibit dissipative localized states. Analytical solutions of these states are characterized by a uniform phase and a bell-shaped modulus. Recently, a type of dissipative localized state with a nonuniform phase structure has been reported: the phase shielding solitons. Using the parametrically driven and damped nonlinear Schrödinger equation, we investigate the main properties of this kind of solution in one and two dimensions and develop an analytical description for its structure and dynamics. Numerical simulations are consistent with our analytical results, showing good agreement. A numerical exploration conducted in an anisotropic ferromagnetic system in one and two dimensions indicates the presence of phase shielding solitons. The structure of these dissipative solitons is well described also by our analytical results. The presence of corrective higher-order terms is relevant in the description of the observed phase dynamical behavior.
Rayleigh-type parametric chemical oscillation
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Rayleigh-type parametric chemical oscillation
NASA Astrophysics Data System (ADS)
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-01
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Nondegenerate optical parametric chirped pulse amplifier
Jovanovic, Igor; Ebbers, Christopher A.
2005-03-22
A system provides an input pump pulse and a signal pulse. A first dichroic beamsplitter is highly reflective for the input signal pulse and highly transmissive for the input pump pulse. A first optical parametric amplifier nonlinear crystal transfers part of the energy from the input pump pulse to the input signal pulse resulting in a first amplified signal pulse and a first depleted pump pulse. A second dichroic beamsplitter is highly reflective for the first amplified signal pulse and highly transmissive for the first depleted pump pulse. A second optical parametric amplifier nonlinear crystal transfers part of the energy from the first depleted pump pulse to the first amplified signal pulse resulting in a second amplified signal pulse and a second depleted pump pulse. A third dichroic beamsplitter receives the second amplified signal pulse and the second depleted pump pulse. The second depleted pump pulse is discarded.
Parametric Model of an Aerospike Rocket Engine
NASA Technical Reports Server (NTRS)
Korte, J. J.
2000-01-01
A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHTI multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.
Parametric Model of an Aerospike Rocket Engine
NASA Technical Reports Server (NTRS)
Korte, J. J.
2000-01-01
A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHT multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.
Parametric amplification of a superconducting plasma wave
Rajasekaran, S.; Casandruc, E.; Laplace, Y.; ...
2016-07-11
Many applications in photonics require all-optical manipulation of plasma waves, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation, superconductor–metal oscillations and soliton formation. In this paper, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Finally, parametric amplification is sensitivemore » to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations or terahertz single-photon devices.« less
Intersection of parametric surfaces using lookup tables
NASA Technical Reports Server (NTRS)
Hanna, S. L.; Abel, J. F.; Greenberg, D. P.
1984-01-01
When primitive structures in the form of parametric surfaces are combined and modified interactively to form complex intersecting surfaces, it becomes important to find the curves of intersection. One must distinguish between finding the shape of the intersection curve, which may only be useful for display purposes, and finding an accurate mathematical representation of the curve, which is important for any meaningful geometric modeling, analysis, design, or manufacturing involving the intersection. The intersection curve between two or more parametric surfaces is important in a variety of computer-aided design and manufacture areas. A few examples are shape design, analysis of groins, design of fillets, and computation of numerically controlled tooling paths. The algorithm presented here provides a mathematical representation of the intersection curve to a specified accuracy. It also provides the database that can simplify operations such as hidden-surface removal, surface rendering, profile identification, and interference or clearance computations.
Energy and momentum entanglement in parametric downconversion
NASA Astrophysics Data System (ADS)
Saldanha, Pablo L.; Monken, C. H.
2013-01-01
We present a simple treatment of the phenomenon of spontaneous parametric downconversion consisting of the coherent scattering of a single pump photon into an entangled photon pair inside a nonlinear crystal. The energy and momentum entanglement of the quantum state of the generated twin photons are seen as a consequence of the fundamental indistinguishability of the time and the position in which the photon pair is created inside the crystal. We also discuss some consequences of photon entanglement.
Parametric instabilities in large nonuniform laser plasmas
Baldis, H.A.; Montgomery, D.S.; Moody, J.D.; Estabrook, K.G.; Berger, R.L.; Kruer, W.L.; Labaune, C.; Batha, S.H.
1992-09-01
The study of parametric instabilities in laser plasmas is of vital importance for inertial confinement fusion (ICF). The long scale-length plasma encountered in the corona of an ICF target provides ideal conditions for the growth of instabilities such as stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), and filamentation. These instabilities can have detrimental effects in ICF and their characterization and understanding is of importance. Scattering instabilities are driven through a feedback loop by which the beating between the electromagnetic EM fields of the laser and the scattered light matches the frequency of a local longitudinal mode of the plasma. Any process which interferes with the coherence of this mechanism can substantially alter the behavior of the instability. Of particular interest is the study of laser beam smoothing techniques on parametric instabilities. These techniques are used to improve irradiation uniformity which can suppress hydrodynamic instabilities. Laser beam smoothing techniques have the potential to control the scattering level from parametric instabilities since they provide not only a smoother laser intensity distribution, but also reduced coherence. Beam smoothing techniques that affect the growth of parametric instabilities include spatial smoothing and temporal smoothing by laser bandwidth. Spatial smoothing modifies the phase fronts and temporal distribution of intensities in the focal volume. The transverse intensity spectrum is shifted towards higher spatial wavenumber and can significantly limit the growth of filamentation. Temporal smoothing reduces the coherence time and consequently limits the growth time. Laser bandwidth is required for most smoothing techniques, and can have an independent effect on the instabilities as well.
Sen, Tanaji
2016-06-01
We discuss the generation of parametric X-rays (PXR) in the photoinjector at the new FAST facility at Fermilab. Detailed calculations of the intensity spectrum, energy and angular widths and spectral brilliance with a diamond crystal are presented. We also report on expected results with PXR generated while the beam is channeling. The low emittance electron beam makes this facility a promising source for creating brilliant X-rays.
Degeneracies in parametrized modified gravity models
Hojjati, Alireza
2013-01-01
We study degeneracies between parameters in some of the widely used parametrized modified gravity models. We investigate how different observables from a future photometric weak lensing survey such as LSST, correlate the effects of these parameters and to what extent the degeneracies are broken. We also study the impact of other degenerate effects, namely massive neutrinos and some of the weak lensing systematics, on the correlations.
Semi-Parametric Generalized Linear Models.
1985-08-01
is nonsingular, upper triangular, and of full rank r. It is known (Dongarra et al., 1979) that G-1 FT is the Moore - Penrose inverse of L . Therefore... GENERALIZED LINEAR pq Mathematics Research Center University of Wisconsin-Madison 610 Walnut Street Madison, Wisconsin 53705 TI C August 1985 E T NOV 7 8...North Carolina 27709 -. -.. . - -.-. g / 6 O5’o UNIVERSITY OF WISCONSIN-MADISON MATHD4ATICS RESEARCH CENTER SD4I-PARAMETRIC GENERALIZED LINEAR MODELS
Parametric study of laser photovoltaic energy converters
NASA Technical Reports Server (NTRS)
Walker, G. H.; Heinbockel, J. H.
1987-01-01
Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.
Wavelength-doubling optical parametric oscillator
Armstrong, Darrell J.; Smith, Arlee V.
2007-07-24
A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.
SEC sensor parametric test and evaluation system
NASA Technical Reports Server (NTRS)
1978-01-01
This system provides the necessary automated hardware required to carry out, in conjunction with the existing 70 mm SEC television camera, the sensor evaluation tests which are described in detail. The Parametric Test Set (PTS) was completed and is used in a semiautomatic data acquisition and control mode to test the development of the 70 mm SEC sensor, WX 32193. Data analysis of raw data is performed on the Princeton IBM 360-91 computer.
Parametric identification of human operator models
NASA Technical Reports Server (NTRS)
Ninz, N. R.
1982-01-01
The accurate and efficient identification of the human operator is still a need in human factors engineering especially concerning multivariable control. Control theoretic identification methods need to be tested with human operator models under realistic boundary conditons. The requirements and criteria for the use of parametric methods, selected models as well as the Maximum Likelihood Method and the Extended Kalman Filter are displayed. The experiments and results are comparatively discussed from the point of practical engineering.
Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney
2010-01-01
Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.
A variable parameter parametric snake method
NASA Astrophysics Data System (ADS)
Marouf, A.; Houacine, A.
2015-12-01
In this paper, we introduce a new approach to parametric snake method by using variable snake parameters. Adopting fixed parameter values for all points of the snake, as usual, constitutes by itself a limitation that leads to poor performances in terms of convergence and tracking properties. A more adapted choice should be the one that allows selection depending on the image region properties as on the contour shape and position. However, such variability is not an easy task in general and a precise method need to be defined to assure contour point dependent tuning at iterations. We were particularly interested in applying this idea to the recently presented parametric method [1]. In the work mentioned, an attraction term is used to improve the convergence of the standard parametric snake without a significant increase in computational load. We show here, that improved performances can ensue from applying variable parameter concepts. For this purpose, the method is first analyzed and then a procedure is developed to assure an automatic variable parameter tuning. The interest of our approach is illustrated through object segmentation results.
Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems
NASA Astrophysics Data System (ADS)
Katsoulakis, Markos A.; Plecháč, Petr
2013-08-01
In this paper, we focus on the development of new methods suitable for efficient and reliable coarse-graining of non-equilibrium molecular systems. In this context, we propose error estimation and controlled-fidelity model reduction methods based on Path-Space Information Theory, combined with statistical parametric estimation of rates for non-equilibrium stationary processes. The approach we propose extends the applicability of existing information-based methods for deriving parametrized coarse-grained models to Non-Equilibrium systems with Stationary States. In the context of coarse-graining it allows for constructing optimal parametrized Markovian coarse-grained dynamics within a parametric family, by minimizing information loss (due to coarse-graining) on the path space. Furthermore, we propose an asymptotically equivalent method—related to maximum likelihood estimators for stochastic processes—where the coarse-graining is obtained by optimizing the information content in path space of the coarse variables, with respect to the projected computational data from a fine-scale simulation. Finally, the associated path-space Fisher Information Matrix can provide confidence intervals for the corresponding parameter estimators. We demonstrate the proposed coarse-graining method in (a) non-equilibrium systems with diffusing interacting particles, driven by out-of-equilibrium boundary conditions, as well as (b) multi-scale diffusions and the corresponding stochastic averaging limits, comparing them to our proposed methodologies.
Heating and thermal squeezing in parametrically driven oscillators with added noise.
Batista, Adriano A
2012-11-01
In this paper we report a theoretical model based on Green's functions, Floquet theory, and averaging techniques up to second order that describes the dynamics of parametrically driven oscillators with added thermal noise. Quantitative estimates for heating and quadrature thermal noise squeezing near and below the transition line of the first parametric instability zone of the oscillator are given. Furthermore, we give an intuitive explanation as to why heating and thermal squeezing occur. For small amplitudes of the parametric pump the Floquet multipliers are complex conjugate of each other with a constant magnitude. As the pump amplitude is increased past a threshold value in the stable zone near the first parametric instability, the two Floquet multipliers become real and have different magnitudes. This creates two different effective dissipation rates (one smaller and the other larger than the real dissipation rate) along the stable manifolds of the first-return Poincaré map. We also show that the statistical average of the input power due to thermal noise is constant and independent of the pump amplitude and frequency. The combination of these effects causes most of heating and thermal squeezing. Very good agreement between analytical and numerical estimates of the thermal fluctuations is achieved.
Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations.
Kitsios, V; Frederiksen, J S; Zidikheri, M J
2014-06-28
Parametrizations of the subgrid eddy-eddy and eddy-meanfield interactions are developed for the simulation of baroclinic ocean circulations representative of an idealized Antarctic Circumpolar Current. Benchmark simulations are generated using a spectral spherical harmonic quasi-geostrophic model with maximum truncation wavenumber of T=504, which is equivalent to a resolution of 0.24° globally. A stochastic parametrization is used for the eddy-eddy interactions, and a linear deterministic parametrization for the eddy-meanfield interactions. The parametrization coefficients are determined from the statistics of benchmark simulations truncated back to the large eddy simulation (LES) truncation wavenumber, TR
Parametric-Studies and Data-Plotting Modules for the SOAP
NASA Technical Reports Server (NTRS)
2008-01-01
"Parametric Studies" and "Data Table Plot View" are the names of software modules in the Satellite Orbit Analysis Program (SOAP). Parametric Studies enables parameterization of as many as three satellite or ground-station attributes across a range of values and computes the average, minimum, and maximum of a specified metric, the revisit time, or 21 other functions at each point in the parameter space. This computation produces a one-, two-, or three-dimensional table of data representing statistical results across the parameter space. Inasmuch as the output of a parametric study in three dimensions can be a very large data set, visualization is a paramount means of discovering trends in the data (see figure). Data Table Plot View enables visualization of the data table created by Parametric Studies or by another data source: this module quickly generates a display of the data in the form of a rotatable three-dimensional-appearing plot, making it unnecessary to load the SOAP output data into a separate plotting program. The rotatable three-dimensionalappearing plot makes it easy to determine which points in the parameter space are most desirable. Both modules provide intuitive user interfaces for ease of use.
NASA Astrophysics Data System (ADS)
Bueno, A.; Velasco, J.
1996-02-01
Available high energy data for both pp and overlinepp total cross sections ( f GeV < s < 1.8 TeV ) are described by means of two well-known distinct parametrizations, characteristic of theoretical (“Regge-like” expression) and experimental (“Froissart-Martin-like” expression) practices, respectively. Both are compared from the statistical point of view. For the whole set of present data statistical analysis ( χ2/d.o.f.) seems to favour a “Froissart-like” ((ln s) γ≈2 ) rise of the total cross section rather than a “Regge-like” ( sɛ) one.
Tellinghuisen, Joel
2008-01-01
The method of least squares is probably the most powerful data analysis tool available to scientists. Toward a fuller appreciation of that power, this work begins with an elementary review of statistics fundamentals, and then progressively increases in sophistication as the coverage is extended to the theory and practice of linear and nonlinear least squares. The results are illustrated in application to data analysis problems important in the life sciences. The review of fundamentals includes the role of sampling and its connection to probability distributions, the Central Limit Theorem, and the importance of finite variance. Linear least squares are presented using matrix notation, and the significance of the key probability distributions-Gaussian, chi-square, and t-is illustrated with Monte Carlo calculations. The meaning of correlation is discussed, including its role in the propagation of error. When the data themselves are correlated, special methods are needed for the fitting, as they are also when fitting with constraints. Nonlinear fitting gives rise to nonnormal parameter distributions, but the 10% Rule of Thumb suggests that such problems will be insignificant when the parameter is sufficiently well determined. Illustrations include calibration with linear and nonlinear response functions, the dangers inherent in fitting inverted data (e.g., Lineweaver-Burk equation), an analysis of the reliability of the van't Hoff analysis, the problem of correlated data in the Guggenheim method, and the optimization of isothermal titration calorimetry procedures using the variance-covariance matrix for experiment design. The work concludes with illustrations on assessing and presenting results.
Parametric and non-parametric estimation of speech formants: application to infant cry.
Fort, A; Ismaelli, A; Manfredi, C; Bruscaglioni, P
1996-12-01
The present paper addresses the issue of correctly estimating the peaks in the speech envelope (formants) occurring in newborn infant cry. Clinical studies have shown that the analysis of such spectral characteristics is a helpful noninvasive diagnostic tool. In fact it can be applied to explore brain function at very early stage of child development, for a timely diagnosis of neonatal disease and malformation. The paper focuses on the performance comparison between some classical parametric and non-parametric estimation techniques particularly well suited for the present application, specifically the LP, ARX and cepstrum approaches. It is shown that, if the model order is correctly chosen, parametric methods are in general more reliable and robust against noise, but exhibit a less uniform behaviour than cepstrum. The methods are compared also in terms of tracking capability, since the signals under study are nonstationary. Both simulated and real signals are used in order to outline the relevant features of the proposed approaches.
Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.
2016-01-01
In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration
... PRS GO PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the ... Plastic Surgery Statistics 2005 Plastic Surgery Statistics 2016 Plastic Surgery Statistics Stats Report 2016 National Clearinghouse of ...
Eisenbrey, John R; Dave, Jaydev K; Merton, Daniel A; Palazzo, Juan P; Hall, Anne L; Forsberg, Flemming
2011-01-01
Parametric maps showing perfusion of contrast media can be useful tools for characterizing lesions in breast tissue. In this study we show the feasibility of parametric subharmonic imaging (SHI), which allows imaging of a vascular marker (the ultrasound contrast agent) while providing near complete tissue suppression. Digital SHI clips of 16 breast lesions from 14 women were acquired. Patients were scanned using a modified LOGIQ 9 scanner (GE Healthcare, Waukesha, WI) transmitting/receiving at 4.4/2.2 MHz. Using motion-compensated cumulative maximum intensity (CMI) sequences, parametric maps were generated for each lesion showing the time to peak (TTP), estimated perfusion (EP), and area under the time-intensity curve (AUC). Findings were grouped and compared according to biopsy results as benign lesions (n = 12, including 5 fibroadenomas and 3 cysts) and carcinomas (n = 4). For each lesion CMI, TTP, EP, and AUC parametric images were generated. No significant variations were detected with CMI (P = .80), TTP (P = .35), or AUC (P = .65). A statistically significant variation was detected for the average pixel EP (P = .002). Especially, differences were seen between carcinoma and benign lesions (mean ± SD, 0.10 ± 0.03 versus 0.05 ± 0.02 intensity units [IU]/s; P = .0014) and between carcinoma and fibroadenoma (0.10 ± 0.03 versus 0.04 ± 0.01 IU/s; P = .0044), whereas differences between carcinomas and cysts were found to be nonsignificant. In conclusion, a parametric imaging method for characterization of breast lesions using the high contrast to tissue signal provided by SHI has been developed. While the preliminary sample size was limited, results show potential for breast lesion characterization based on perfusion flow parameters.
Interpretation and use of statistics in nursing research.
Giuliano, Karen K; Polanowicz, Michelle
2008-01-01
A working understanding of the major fundamentals of statistical analysis is required to incorporate the findings of empirical research into nursing practice. The primary focus of this article is to describe common statistical terms, present some common statistical tests, and explain the interpretation of results from inferential statistics in nursing research. An overview of major concepts in statistics, including the distinction between parametric and nonparametric statistics, different types of data, and the interpretation of statistical significance, is reviewed. Examples of some of the most common statistical techniques used in nursing research, such as the Student independent t test, analysis of variance, and regression, are also discussed. Nursing knowledge based on empirical research plays a fundamental role in the development of evidence-based nursing practice. The ability to interpret and use quantitative findings from nursing research is an essential skill for advanced practice nurses to ensure provision of the best care possible for our patients.
Multicutter machining of compound parametric surfaces
NASA Astrophysics Data System (ADS)
Hatna, Abdelmadjid; Grieve, R. J.; Broomhead, P.
2000-10-01
Parametric free forms are used in industries as disparate as footwear, toys, sporting goods, ceramics, digital content creation, and conceptual design. Optimizing tool path patterns and minimizing the total machining time is a primordial issue in numerically controlled (NC) machining of free form surfaces. We demonstrate in the present work that multi-cutter machining can achieve as much as 60% reduction in total machining time for compound sculptured surfaces. The given approach is based upon the pre-processing as opposed to the usual post-processing of surfaces for the detection and removal of interference followed by precise tracking of unmachined areas.
Lottery spending: a non-parametric analysis.
Garibaldi, Skip; Frisoli, Kayla; Ke, Li; Lim, Melody
2015-01-01
We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales.
SIMULATIONS OF PARAMETRIC-RESONANCE IONIZATION COOLING
David Newsham; Richard Sah; Alex Bogacz; Yu-Chiu Chao; Yaroslav Derbenev
2007-06-01
Parametric-resonance ionization cooling (PIC) is a muon-cooling technique that is useful for low-emittance muon colliders. This method requires a well-tuned focusing channel that is free of chromatic and spherical aberrations. In order to be of practical use in a muon collider, it also necessary that the focusing channel be as short as possible to minimize muon loss due to decay. G4Beamline numerical simulations are presented of a compact PIC focusing channel in which spherical aberrations are minimized by using design symmetry.
A computer application for parametric aircraft design
NASA Astrophysics Data System (ADS)
Fraqueiro, Filipe R.; Albuquerque, Pedro F.; Gamboa, Pedro V.
2016-11-01
The present work describes the development and final result of a graphical user interface tailored for a mission-based parametric aircraft design optimization code which targets the preliminary design phase of unmanned aerial vehicles. This development was built from the XFLR5 open source platform and further benefits from two-dimensional aerodynamic data obtained from XFOIL. For a better understanding, the most important graphical windows are shown. In order to demonstrate the graphical user interface interaction with the aircraft designer, the results of a case study which maximizes payload are presented.
Parametric uncertain identification of a robotic system
NASA Astrophysics Data System (ADS)
Angel, L.; Viola, J.; Hernández, C.
2016-07-01
This paper presents the parametric uncertainties identification of a robotic system of one degree of freedom. A MSC-ADAMS / MATLAB co-simulation model was built to simulate the uncertainties that affect the robotic system. For a desired trajectory, a set of dynamic models of the system was identified in presence of variations in the mass, length and friction of the system employing least squares method. Using the input-output linearization technique a linearized model plant was defined. Finally, the maximum multiplicative uncertainty of the system was modelled giving the controller desired design conditions to achieve a robust stability and performance of the closed loop system.
Automatic Parametric Testing Of Integrated Circuits
NASA Technical Reports Server (NTRS)
Jennings, Glenn A.; Pina, Cesar A.
1989-01-01
Computer program for parametric testing saves time and effort in research and development of integrated circuits. Software system automatically assembles various types of test structures and lays them out on silicon chip, generates sequency of test instructions, and interprets test data. Employs self-programming software; needs minimum of human intervention. Adapted to needs of different laboratories and readily accommodates new test structures. Program codes designed to be adaptable to most computers and test equipment now in use. Written in high-level languages to enhance transportability.
Lottery Spending: A Non-Parametric Analysis
Garibaldi, Skip; Frisoli, Kayla; Ke, Li; Lim, Melody
2015-01-01
We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales. PMID:25642699
Parametric study of modern airship productivity
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Flaig, K.
1980-01-01
A method for estimating the specific productivity of both hybrid and fully buoyant airships is developed. Various methods of estimating structural weight of deltoid hybrids are discussed and a derived weight estimating relationship is presented. Specific productivity is used as a figure of merit in a parametric study of fully buoyant ellipsoidal and deltoid hybrid semi-buoyant vehicles. The sensitivity of results as a function of assumptions is also determined. No airship configurations were found to have superior specific productivity to transport airplanes.
Detecting Atlantic herring by parametric sonar.
Godo, Olav Rune; Foote, Kenneth G; Dybedal, Johnny; Tenningen, Eirik; Patel, Ruben
2010-04-01
The difference-frequency band of the Kongsberg TOPAS PS18 parametric sub-bottom profiling sonar, nominally 1-6 kHz, is being used to observe Atlantic herring. Representative TOPAS echograms of herring layers and schools observed in situ in December 2008 and November 2009 are presented. These agree well with echograms of volume backscattering strength derived simultaneously with the narrowband Simrad EK60/18- and 38-kHz scientific echo sounder, also giving insight into herring avoidance behavior in relation to survey vessel passage. Progress in rendering the TOPAS echograms quantitative is described.
A Cartesian parametrization for the numerical analysis of material instability
Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.; Ostien, Jakob T.; Lai, Zhengshou
2016-02-25
We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, the performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.
A Cartesian parametrization for the numerical analysis of material instability
Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.; ...
2016-02-25
We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less
Quantiles, Parametric-Select Density Estimations, and Bi-Information Parameter Estimators.
1982-06-01
A non- parametric estimation method forms estimators which are not based on parametric models. Important examples of non-parametric estimators of a...raw descriptive functions F, f, Q, q, fQ. One distinguishes between parametric and non-parametric methods of estimating smooth functions. A parametric ... estimation method : (1) assumes a family F8, fo’ Q0, qo’ foQ8 of functions, called parametric models, which are indexed by a parameter 6 = ( l
The role of parametric linkage methods in complex trait analyses using microsatellites
Badzioch, Michael D; Goode, Ellen L; Jarvik, Gail P
2005-01-01
Many investigators of complexly inherited familial traits bypass classical segregation analysis to perform model-free genome-wide linkage scans. Because model-based or parametric linkage analysis may be the most powerful means to localize genes when a model can be approximated, model-free statistics may result in a loss of power to detect linkage. We performed limited segregation analyses on the electrophysiological measurements that have been collected for the Collaborative Study on the Genetics of Alcoholism. The resulting models are used in whole-genome scans. Four genomic regions provided a model-based LOD > 2 and only 3 of these were detected (p < 0.05) by a model-free approach. We conclude that parametric methods, using even over-simplified models of complex phenotypes, may complement nonparametric methods and decrease false positives. PMID:16451659
Parametric reduced models for the nonlinear Schrödinger equation.
Harlim, John; Li, Xiantao
2015-05-01
Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.
Parametric interactions in presence of different size colloids in semiconductor quantum plasmas
Vanshpal, R. Sharma, Uttam; Dubey, Swati
2015-07-31
Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction is determined which is found to be equal to the lattice spacing of the crystal.
Characterization of a multimode coplanar waveguide parametric amplifier
Simoen, M. Krantz, P.; Bylander, Jonas; Shumeiko, V.; Delsing, P.; Chang, C. W. S.; Wilson, C. M.; Wustmann, W.
2015-10-21
We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.
Second order parametric processes in nonlinear silica microspheres.
Xu, Yong; Han, Ming; Wang, Anbo; Liu, Zhiwen; Heflin, James R
2008-04-25
We analyze second order parametric processes in a silica microsphere coated with radially aligned nonlinear optical molecules. In a high-Q nonlinear microsphere, we discover that it is possible to achieve ultralow threshold parametric oscillation that obeys the rule of angular momentum conservation. Based on symmetry considerations, one can also implement parametric processes that naturally generate quantum entangled photon pairs. Practical issues regarding implementation of the nonlinear microsphere are also discussed.
Cascade frequency generation regime in an optical parametric oscillator
Kolker, D B; Dmitriev, Aleksandr K; Gorelik, P; Vong, Franko; Zondy, J J
2009-05-31
In a parametric oscillator of a special two-sectional design based on a lithium niobate periodic structure, a cascade frequency generation regime was observed in which a signal wave pumped a secondary parametric oscillator, producing secondary signal and idler waves. The secondary parametric oscillator can be tuned in a broad range of {approx}200 nm with respect to a fixed wavelength of the primary idler wave. (nonlinear optical phenomena)
Study of Vertical Sound Image Control Using Parametric Loudspeakers
NASA Astrophysics Data System (ADS)
Shimizu, Kazuhiro; Itou, Kouki; Aoki, Shigeaki
A parametric loudspeaker is known as a super-directivity loudspeaker. So far, the applications have been limited monaural reproduction sound system. We had discussed characteristics of stereo reproduction with two parametric loudspeakers. In this paper, the sound localization in the vertical direction using the parametric loudspeakers was confirmed. The direction of sound localization was able to be controlled. The results were similar as in using ordinary loudspeakers. However, by setting the parametric loudspeaker 5 degrees rightward, the direction of sound localization moved about 20 degrees rightward. The measured ILD (Interaural Level Difference) using a dummy head were analyzed.
Parametric robust control and system identification: Unified approach
NASA Technical Reports Server (NTRS)
Keel, Leehyun
1994-01-01
Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.
Effects of dispersion on mode locking in optical parametric oscillators
NASA Astrophysics Data System (ADS)
Longhi, S.
1995-08-01
We discuss the role that group-velocity dispersion and cavity detuning play in the onset of mode locking in synchronously pumped optical parametric oscillators. Because of the phase-sensitive character of the parametric gain, it is shown for the degenerate case that dispersion effects associated with off-resonance operation can lead to subpulse structures and spectral splitting of the parametric pulses. This behavior is interpreted on the basis of a dispersion-induced interference phenomenon between the two nearly degenerate parametric photons produced by the conversion of one pump photon in the nonlinear medium.
Quantum transformation limits in multiwave parametric interactions
NASA Astrophysics Data System (ADS)
Saygin, M. Yu
2016-10-01
The possibility to realize multiple nonlinear optical processes in a single crystal as means to produce multicolor quantum states favours stability and compactness of optical settings. Hence, this approach can be advantageous compared to the traditional one based on cascaded arrangement of optical elements. However, it comes with an obstacle—the class of accessible quantum states is narrower than that of the cascade counterpart. In this letter, we study this task using an example of three coupled nonlinear optical processes, namely, one parametric down-conversion and two of sum-frequency generation. To this end, the singular value decomposition has been applied to find the cascade representation of the compound field evolution. We have found the link between the parameters of the multiwave processes and the relevant cascade parameters—beam-splitting and squeezing parameters, by means of which the generated quantum states have been characterized. The relation between the squeezing parameters that has been found in the course of this work shows that the squeezing resource, produced in the parametric down-conversion, is shared among the modes involved in the compound interactions. Moreover, we have shown that the degree of two-mode entanglement carried by the up-converted frequencies cannot exceed that of the down-converted frequencies.
Ab initio based polarizable force field parametrization
NASA Astrophysics Data System (ADS)
Masia, Marco
2008-05-01
Experimental and simulation studies of anion-water systems have pointed out the importance of molecular polarization for many phenomena ranging from hydrogen-bond dynamics to water interfaces structure. The study of such systems at molecular level is usually made with classical molecular dynamics simulations. Structural and dynamical features are deeply influenced by molecular and ionic polarizability, which parametrization in classical force field has been an object of long-standing efforts. Although when classical models are compared to ab initio calculations at condensed phase, it is found that the water dipole moments are underestimated by ˜30%, while the anion shows an overpolarization at short distances. A model for chloride-water polarizable interaction is parametrized here, making use of Car-Parrinello simulations at condensed phase. The results hint to an innovative approach in polarizable force fields development, based on ab initio simulations, which do not suffer for the mentioned drawbacks. The method is general and can be applied to the modeling of different systems ranging from biomolecular to solid state simulations.
Quantum metrology with unitary parametrization processes.
Liu, Jing; Jing, Xiao-Xing; Wang, Xiaoguang
2015-02-24
Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator H. Utilizing this representation, quantum Fisher information is only determined by H and the initial state. Furthermore, H can be expressed in an expanded form. The highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians owning recursive commutations with their partial derivative. We apply this representation in a collective spin system and show the specific expression of H. For a simple case, a spin-half system, the quantum Fisher information is given and the optimal states to access maximum quantum Fisher information are found. Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information by H operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this representation.
Parametric uncertainty in nanoscale optical dimensional measurements.
Potzick, James; Marx, Egon
2012-06-10
Image modeling establishes the relation between an object and its image when an optical microscope is used to measure the dimensions of an object of size comparable to the illumination wavelength. It accounts for the influence of all of the parameters that can affect the image and relates the apparent feature width (FW) in the image to the true FW of the object. The values of these parameters, however, have uncertainties, and these uncertainties propagate through the model and lead to parametric uncertainty in the FW measurement, a key component of the combined measurement uncertainty. The combined uncertainty is required in order to decide if the result is adequate for its intended purpose and to ascertain if it is consistent with other results. The parametric uncertainty for optical photomask measurements derived using an edge intensity threshold approach has been described previously; this paper describes an image library approach to this issue and shows results for optical photomask metrology over a FW range of 10 nm to 8 µm using light of wavelength 365 nm. The principles will be described; a one-dimensional image library will be used; the method of comparing images, along with a simple interpolation method, will be explained; and results will be presented. This method is easily extended to any kind of imaging microscope and to more dimensions in parameter space. It is more general than the edge threshold method and leads to markedly different uncertainties for features smaller than the wavelength.
Supramodal parametric working memory processing in humans.
Spitzer, Bernhard; Blankenburg, Felix
2012-03-07
Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory.
Parametric Symmetry Breaking in a Nonlinear Resonator
NASA Astrophysics Data System (ADS)
Leuch, Anina; Papariello, Luca; Zilberberg, Oded; Degen, Christian L.; Chitra, R.; Eichler, Alexander
2016-11-01
Much of the physical world around us can be described in terms of harmonic oscillators in thermodynamic equilibrium. At the same time, the far-from-equilibrium behavior of oscillators is important in many aspects of modern physics. Here, we investigate a resonating system subject to a fundamental interplay between intrinsic nonlinearities and a combination of several driving forces. We have constructed a controllable and robust realization of such a system using a macroscopic doubly clamped string. We experimentally observe a hitherto unseen double hysteresis in both the amplitude and the phase of the resonator's response function and present a theoretical model that is in excellent agreement with the experiment. Our work unveils that the double hysteresis is a manifestation of an out-of-equilibrium symmetry breaking between parametric phase states. Such a fundamental phenomenon, in the most ubiquitous building block of nature, paves the way for the investigation of new dynamical phases of matter in parametrically driven many-body systems and motivates applications ranging from ultrasensitive force detection to low-energy computing memory units.
Brain Signal Variability is Parametrically Modifiable
Garrett, Douglas D.; McIntosh, Anthony R.; Grady, Cheryl L.
2014-01-01
Moment-to-moment brain signal variability is a ubiquitous neural characteristic, yet remains poorly understood. Evidence indicates that heightened signal variability can index and aid efficient neural function, but it is not known whether signal variability responds to precise levels of environmental demand, or instead whether variability is relatively static. Using multivariate modeling of functional magnetic resonance imaging-based parametric face processing data, we show here that within-person signal variability level responds to incremental adjustments in task difficulty, in a manner entirely distinct from results produced by examining mean brain signals. Using mixed modeling, we also linked parametric modulations in signal variability with modulations in task performance. We found that difficulty-related reductions in signal variability predicted reduced accuracy and longer reaction times within-person; mean signal changes were not predictive. We further probed the various differences between signal variance and signal means by examining all voxels, subjects, and conditions; this analysis of over 2 million data points failed to reveal any notable relations between voxel variances and means. Our results suggest that brain signal variability provides a systematic task-driven signal of interest from which we can understand the dynamic function of the human brain, and in a way that mean signals cannot capture. PMID:23749875
Quantum dynamics of the parametric oscillator
NASA Astrophysics Data System (ADS)
Kinsler, P.; Drummond, P. D.
1991-06-01
We present dynamical calculations for the quantum parametric oscillator using both number-state and coherent-state bases. The coherent-state methods use the positive-P representation, which has a nonclassical phase space-an essential requirement in obtaining an exact stochastic representation of this nonlinear problem. This also provides a way to directly simulate quantum tunneling between the two above-threshold stable states of the oscillator. The coherent-state methods provide both analytic results at large photon numbers, and numerical results for any photon number, while our number-state calculations are restricted to numerical results in the low-photon-number regime. The number-state and coherent-state methods give precise agreement within the accuracy of the numerical calculations. We also compare our results with methods based on a truncated Wigner representation equivalent to stochastic electrodynamics, and find that these are unable to correctly predict the tunneling rate given by the other methods. An interesting feature of the results is the much faster tunneling predicted by the exact quantum-theory methods compared with earlier semiclassical calculations using an approximate potential barrier. This is similar to the faster tunneling found when comparing quantum penetration of a barrier to classical thermal activation. The quantum parametric oscillator, which has an exact steady-state solution, therefore provides a useful and accessible system in which nonlinear quantum effects can be studied far from thermal equilibrium.
Modeling Personnel Turnover in the Parametric Organization
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1991-01-01
A primary issue in organizing a new parametric cost analysis function is to determine the skill mix and number of personnel required. The skill mix can be obtained by a functional decomposition of the tasks required within the organization and a matrixed correlation with educational or experience backgrounds. The number of personnel is a function of the skills required to cover all tasks, personnel skill background and cross training, the intensity of the workload for each task, migration through various tasks by personnel along a career path, personnel hiring limitations imposed by management and the applicant marketplace, personnel training limitations imposed by management and personnel capability, and the rate at which personnel leave the organization for whatever reason. Faced with the task of relating all of these organizational facets in order to grow a parametric cost analysis (PCA) organization from scratch, it was decided that a dynamic model was required in order to account for the obvious dynamics of the forming organization. The challenge was to create such a simple model which would be credible during all phases of organizational development. The model development process was broken down into the activities of determining the tasks required for PCA, determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the dynamic model, implementing the dynamic model, and testing the dynamic model.
Degenerate parametric oscillation in quantum membrane optomechanics
NASA Astrophysics Data System (ADS)
Benito, Mónica; Sánchez Muñoz, Carlos; Navarrete-Benlloch, Carlos
2016-02-01
The promise of innovative applications has triggered the development of many modern technologies capable of exploiting quantum effects. But in addition to future applications, such quantum technologies have already provided us with the possibility of accessing quantum-mechanical scenarios that seemed unreachable just a few decades ago. With this spirit, in this work we show that modern optomechanical setups are mature enough to implement one of the most elusive models in the field of open system dynamics: degenerate parametric oscillation. Introduced in the eighties and motivated by its alleged implementability in nonlinear optical resonators, it rapidly became a paradigm for the study of dissipative phase transitions whose corresponding spontaneously broken symmetry is discrete. However, it was found that the intrinsic multimode nature of optical cavities makes it impossible to experimentally study the model all the way through its phase transition. In contrast, here we show that this long-awaited model can be implemented in the motion of a mechanical object dispersively coupled to the light contained in a cavity, when the latter is properly driven with multichromatic laser light. We focus on membranes as the mechanical element, showing that the main signatures of the degenerate parametric oscillation model can be studied in state-of-the-art setups, thus opening the possibility of analyzing spontaneous symmetry breaking and enhanced metrology in one of the cleanest dissipative phase transitions. In addition, the ideas put forward in this work would allow for the dissipative preparation of squeezed mechanical states.
... Standards Act and Program MQSA Insights MQSA National Statistics Share Tweet Linkedin Pin it More sharing options ... but should level off with time. Archived Scorecard Statistics 2017 Scorecard Statistics 2016 Scorecard Statistics (Archived) 2015 ...
A Methodology for the Parametric Reconstruction of Non-Steady and Noisy Meteorological Time Series
NASA Astrophysics Data System (ADS)
Rovira, F.; Palau, J. L.; Millán, M.
2009-09-01
Climatic and meteorological time series often show some persistence (in time) in the variability of certain features. One could regard annual, seasonal and diurnal time variability as trivial persistence in the variability of some meteorological magnitudes (as, e.g., global radiation, air temperature above surface, etc.). In these cases, the traditional Fourier transform into frequency space will show the principal harmonics as the components with the largest amplitude. Nevertheless, meteorological measurements often show other non-steady (in time) variability. Some fluctuations in measurements (at different time scales) are driven by processes that prevail on some days (or months) of the year but disappear on others. By decomposing a time series into time-frequency space through the continuous wavelet transformation, one is able to determine both the dominant modes of variability and how those modes vary in time. This study is based on a numerical methodology to analyse non-steady principal harmonics in noisy meteorological time series. This methodology combines both the continuous wavelet transform and the development of a parametric model that includes the time evolution of the principal and the most statistically significant harmonics of the original time series. The parameterisation scheme proposed in this study consists of reproducing the original time series by means of a statistically significant finite sum of sinusoidal signals (waves), each defined by using the three usual parameters: amplitude, frequency and phase. To ensure the statistical significance of the parametric reconstruction of the original signal, we propose a standard statistical t-student analysis of the confidence level of the amplitude in the parametric spectrum for the different wave components. Once we have assured the level of significance of the different waves composing the parametric model, we can obtain the statistically significant principal harmonics (in time) of the original
Photon Statistics of Propagating Thermal Microwaves
NASA Astrophysics Data System (ADS)
Goetz, J.; Pogorzalek, S.; Deppe, F.; Fedorov, K. G.; Eder, P.; Fischer, M.; Wulschner, F.; Xie, E.; Marx, A.; Gross, R.
2017-03-01
In experiments with superconducting quantum circuits, characterizing the photon statistics of propagating microwave fields is a fundamental task. We quantify the n2+n photon number variance of thermal microwave photons emitted from a blackbody radiator for mean photon numbers, 0.05 ≲n ≲1.5 . We probe the fields using either correlation measurements or a transmon qubit coupled to a microwave resonator. Our experiments provide a precise quantitative characterization of weak microwave states and information on the noise emitted by a Josephson parametric amplifier.
Statistical properties of cosmological billiards
NASA Astrophysics Data System (ADS)
Damour, Thibault; Lecian, Orchidea Maria
2011-02-01
Belinski, Khalatnikov, and Lifshitz pioneered the study of the statistical properties of the never-ending oscillatory behavior (among successive Kasner epochs) of the geometry near a spacelike singularity. We show how the use of a “cosmological billiard” description allows one to refine and deepen the understanding of these statistical properties. Contrary to previous treatments, we do not quotient the dynamics by its discrete symmetry group (of order 6), thereby uncovering new phenomena, such as correlations between the successive billiard corners in which the oscillations take place. Starting from the general integral invariants of Hamiltonian systems, we show how to construct invariant measures for various projections of the cosmological-billiard dynamics. In particular, we exhibit, for the first time, a (non-normalizable) invariant measure on the “Kasner circle” which parametrizes the exponents of successive Kasner epochs. Finally, we discuss the relation between: (i) the unquotiented dynamics of the Bianchi-IX (a, b, c or mixmaster) model; (ii) its quotienting by the group of permutations of (a, b, c); and (iii) the billiard dynamics that arose in recent studies suggesting the hidden presence of Kac-Moody symmetries in cosmological billiards.
Statistical variation in progressive scrambling
NASA Astrophysics Data System (ADS)
Clark, Robert D.; Fox, Peter C.
2004-07-01
The two methods most often used to evaluate the robustness and predictivity of partial least squares (PLS) models are cross-validation and response randomization. Both methods may be overly optimistic for data sets that contain redundant observations, however. The kinds of perturbation analysis widely used for evaluating model stability in the context of ordinary least squares regression are only applicable when the descriptors are independent of each other and errors are independent and normally distributed; neither assumption holds for QSAR in general and for PLS in particular. Progressive scrambling is a novel, non-parametric approach to perturbing models in the response space in a way that does not disturb the underlying covariance structure of the data. Here, we introduce adjustments for two of the characteristic values produced by a progressive scrambling analysis - the deprecated predictivity (Q_s^{ast^2}) and standard error of prediction (SDEP s * ) - that correct for the effect of introduced perturbation. We also explore the statistical behavior of the adjusted values (Q_0^{ast^2} and SDEP 0 * ) and the sensitivity to perturbation (d q 2/d r yy ' 2). It is shown that the three statistics are all robust for stable PLS models, in terms of the stochastic component of their determination and of their variation due to sampling effects involved in training set selection.
Bifurcations and sensitivity in parametric nonlinear programming
NASA Technical Reports Server (NTRS)
Lundberg, Bruce N.; Poore, Aubrey B.
1990-01-01
The parametric nonlinear programming problem is that of determining the behavior of solution(s) as a parameter or vector of parameters alpha belonging to R(sup r) varies over a region of interest for the problem: Minimize over x the set f(x, alpha):h(x, alpha) = 0, g(x, alpha) is greater than or equal to 0, where f:R(sup (n+r)) approaches R, h:R(sup (n+r)) approaches R(sup q) and g:R(sup (n+r)) approaches R(sup p) are assumed to be at least twice continuously differentiable. Some of these parameters may be fixed but not known precisely and others may be varied to enhance the performance of the system. In both cases a fundamentally important problem in the investigation of global sensitivity of the system is to determine the stability boundaries of the regions in parameter space which define regions of qualitatively similar solutions. The objective is to explain how numerical continuation and bifurcation techniques can be used to investigate the parametric nonlinear programming problem in a global sense. Thus, first the problem is converted to a closed system of parameterized nonlinear equations whose solution set contains all local minimizers of the original problem. This system, which will be represented as F(z,alpha) = O, will include all Karush-Kuhn-Tucker and Fritz John points, both feasible and infeasible solutions, and relative minima, maxima, and saddle points of the problem. The local existence and uniqueness of a solution path (z(alpha), alpha) of this system as well as the solution type persist as long as a singularity in the Jacobian D(sub z)F(z,alpha) is not encountered. Thus the nonsingularity of this Jacobian is characterized in terms of conditions on the problem itself. Then, a class of efficient predictor-corrector continuation procedures for tracing solution paths of the system F(z,alpha) = O which are tailored specifically to the parametric programming problem are described. Finally, these procedures and the obtained information are illustrated
Semiautomated Workflow for Clinically Streamlined Glioma Parametric Response Mapping
Keith, Lauren; Ross, Brian D.; Galbán, Craig J.; Luker, Gary D.; Galbán, Stefanie; Zhao, Binsheng; Guo, Xiaotao; Chenevert, Thomas L.; Hoff, Benjamin A.
2017-01-01
Management of glioblastoma multiforme remains a challenging problem despite recent advances in targeted therapies. Timely assessment of therapeutic agents is hindered by the lack of standard quantitative imaging protocols for determining targeted response. Clinical response assessment for brain tumors is determined by volumetric changes assessed at 10 weeks post-treatment initiation. Further, current clinical criteria fail to use advanced quantitative imaging approaches, such as diffusion and perfusion magnetic resonance imaging. Development of the parametric response mapping (PRM) applied to diffusion-weighted magnetic resonance imaging has provided a sensitive and early biomarker of successful cytotoxic therapy in brain tumors while maintaining a spatial context within the tumor. Although PRM provides an earlier readout than volumetry and sometimes greater sensitivity compared with traditional whole-tumor diffusion statistics, it is not routinely used for patient management; an automated and standardized software for performing the analysis and for the generation of a clinical report document is required for this. We present a semiautomated and seamless workflow for image coregistration, segmentation, and PRM classification of glioblastoma multiforme diffusion-weighted magnetic resonance imaging scans. The software solution can be integrated using local hardware or performed remotely in the cloud while providing connectivity to existing picture archive and communication systems. This is an important step toward implementing PRM analysis of solid tumors in routine clinical practice. PMID:28286871
Parametric estimation of the orientation of textured planar surfaces.
Francos, J M; Permuter, H H
2001-01-01
This paper presents a parametric solution to the problem of estimating the orientation in space of a planar textured surface, from a single, noisy, observed image of it. The coordinate transformation from surface to image coordinates, due to the perspective projection, transforms each homogeneous sinusoidal component of the surface texture into a sinusoid whose frequency is a function of location. The functional dependence of the sinusoid phase in location is uniquely determined by the tilt and slant angles of the surface. Using the phase differencing algorithm we fit a polynomial phase model to a sinusoidal component of the observed texture. Assuming the estimated polynomial coefficients are the coefficients of a Taylor series expansion of the phase, we establish a linear recursive relation between the model parameters and the unknown slant and tilt. A linear least squares solution of the resulting system provides the slant and tilt estimates. To improve accuracy, an iterative refinement procedure is applied in a small neighborhood of these estimates. The performance of the proposed algorithms is evaluated by applying them to images of different planar surfaces, and by comparing their statistical performance with the Cramer-Rao bound. The combined two-stage algorithm is shown to produce estimates that are close to the bound.
A parametric estimation approach to instantaneous spectral imaging.
Oktem, Figen S; Kamalabadi, Farzad; Davila, Joseph M
2014-12-01
Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is a fundamental diagnostic technique in the physical sciences with widespread application. Due to the intrinsic limitation of two-dimensional (2D) detectors in capturing inherently three-dimensional (3D) data, spectral imaging techniques conventionally rely on a spatial or spectral scanning process, which renders them unsuitable for dynamic scenes. In this paper, we present a nonscanning (instantaneous) spectral imaging technique that estimates the physical parameters of interest by combining measurements with a parametric model and solving the resultant inverse problem computationally. The associated inverse problem, which can be viewed as a multiframe semiblind deblurring problem (with shift-variant blur), is formulated as a maximum a posteriori (MAP) estimation problem since in many such experiments prior statistical knowledge of the physical parameters can be well estimated. Subsequently, an efficient dynamic programming algorithm is developed to find the global optimum of the nonconvex MAP problem. Finally, the algorithm and the effectiveness of the spectral imaging technique are illustrated for an application in solar spectral imaging. Numerical simulation results indicate that the physical parameters can be estimated with the same order of accuracy as state-of-the-art slit spectroscopy but with the added benefit of an instantaneous, 2D field-of-view. This technique will be particularly useful for studying the spectra of dynamic scenes encountered in space remote sensing.
Comparison of Three Statistical Classification Techniques for Maser Identification
NASA Astrophysics Data System (ADS)
Manning, Ellen M.; Holland, Barbara R.; Ellingsen, Simon P.; Breen, Shari L.; Chen, Xi; Humphries, Melissa
2016-04-01
We applied three statistical classification techniques-linear discriminant analysis (LDA), logistic regression, and random forests-to three astronomical datasets associated with searches for interstellar masers. We compared the performance of these methods in identifying whether specific mid-infrared or millimetre continuum sources are likely to have associated interstellar masers. We also discuss the interpretability of the results of each classification technique. Non-parametric methods have the potential to make accurate predictions when there are complex relationships between critical parameters. We found that for the small datasets the parametric methods logistic regression and LDA performed best, for the largest dataset the non-parametric method of random forests performed with comparable accuracy to parametric techniques, rather than any significant improvement. This suggests that at least for the specific examples investigated here accuracy of the predictions obtained is not being limited by the use of parametric models. We also found that for LDA, transformation of the data to match a normal distribution led to a significant improvement in accuracy. The different classification techniques had significant overlap in their predictions; further astronomical observations will enable the accuracy of these predictions to be tested.
Using a Parametric Solid Modeler as an Instructional Tool
ERIC Educational Resources Information Center
Devine, Kevin L.
2008-01-01
This paper presents the results of a quasi-experimental study that brought 3D constraint-based parametric solid modeling technology into the high school mathematics classroom. This study used two intact groups; a control group and an experimental group, to measure the extent to which using a parametric solid modeler during instruction affects…
Schwinger-type parametrization of open string worldsheets
NASA Astrophysics Data System (ADS)
Playle, Sam; Sciuto, Stefano
2017-03-01
A parametrization of (super) moduli space near the corners corresponding to bosonic or Neveu-Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the α‧ → 0 limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form.
Injection-seeded optical parametric oscillator and system
Lucht, Robert P.; Kulatilaka, Waruna D.; Anderson, Thomas N.; Bougher, Thomas L.
2007-10-09
Optical parametric oscillators (OPO) and systems are provided. The OPO has a non-linear optical material located between two optical elements where the product of the reflection coefficients of the optical elements are higher at the output wavelength than at either the pump or idler wavelength. The OPO output may be amplified using an additional optical parametric amplifier (OPA) stage.
Parametrization of the SCC-DFTB Method for Halogens.
Kubař, Tomáš; Bodrog, Zoltán; Gaus, Michael; Köhler, Christof; Aradi, Bálint; Frauenheim, Thomas; Elstner, Marcus
2013-07-09
Parametrization of the approximative DFT method SCC-DFTB for halogen elements is presented. The new parameter set is intended to describe halogenated organic as well as inorganic molecules, and it is compatible with the established parametrization of SCC-DFTB for carbon, hydrogen, oxygen, and nitrogen. The performance of the parameter set is tested on a representative set of molecules and discussed.
Parametric Equations: Push 'Em Back, Push 'Em Back, Way Back!
ERIC Educational Resources Information Center
Cieply, Joseph F.
1993-01-01
Stresses using the features of graphing calculators to teach parametric equations much earlier in the curriculum than is presently done. Examples using parametric equations to teach slopes and lines in beginning algebra, inverse functions in advanced algebra, the wrapping function, and simulations of physical phenomena are presented. (MAZ)
Mechanism for an absolute parametric instability of an inhomogeneous plasma
NASA Astrophysics Data System (ADS)
Arkhipenko, V. I.; Budnikov, V. N.; Gusakov, E. Z.; Romanchuk, I. A.; Simonchik, L. V.
1984-05-01
The structure of plasma oscillations in a region of parametric spatial amplification has been studied experimentally for the first time. A new mechanism for an absolute parametric instability has been observed. This mechanism operates when a pump wave with a spatial structure more complicated than a plane wave propagates through a plasma which is inhomogeneous along more than one dimension.
Concomitant information in bioassay and semi-parametric estimation.
Kim, Peter T; Lee, Christine H
2005-05-15
This paper presents a flexible modern approach to handling concomitant information for estimating the relative potency parameter in quantitative bioassays. This is accomplished in a semi-parametric framework where the concomitant variable is included non-parametrically. Estimation is then performed using smoothing splines where the point and interval estimators of the relative potency parameter exhibits desirable asymptotic properties.
Scaling of preferential flow in biopores by parametric or non parametric transfer functions
NASA Astrophysics Data System (ADS)
Zehe, E.; Hartmann, N.; Klaus, J.; Palm, J.; Schroeder, B.
2009-04-01
Rapid flow in connected macropores - often worm burrows or sometimes shrinkage cracks - is today accepted to play a key role for transport of agro chemicals in cohesive soils. Nevertheless, we still struggle to come up with reliable predictions at the field or even the catchment scale, also because crucial information on the spatial distribution of connected subsurface structures is most difficult to access. Assessing the environmental risk of pesticides transport in earthworm burrows requires the development of an integrated eco-hydrological model that allows predictions of a) the spatiotemporal distribution and population dynamics of anecic earthworms, b) the related pattern of connective preferential flow pathways (i.e., earthworm burrows), and c) the space-time pattern of infiltration and travel times distribution of solutes considering short and long term feedbacks. The suggested paper will present the first steps towards this long term goal of the so called BIOPORE project. The first step is to assess statistical data on the spatial distribution of worm burrows in the study area. Deep digging earthworms create mainly vertical semi-permanent burrows of moderate tortuosity down to a depth of 3m (Shipitalo and Butt, 1999). Data on the spatial density of worm burrows and their depth is gathered by preparing horizontal soil profiles (Zehe and Fluehler, 2001). Hydraulic properties of worm burrows are straightforward to measure either by means of a special permeameter (Shipitalo and Butt, 1999) or by taking macroporous samples to the lab. The next step is to establish a link between the distribution of travel depths of a tracer/pesticide that occurs during events and the depth distribution of connected flow paths that link the surface continuously to the subsoils. To this end we generate a population of macropores using a Poisson process for the number of macropores per model element, a normal process compared with an anisotropic random walk for pore lengths and
Compact, flexible, frequency agile parametric wavelength converter
Velsko, Stephan P.; Yang, Steven T.
2002-01-01
This improved Frequency Agile Optical Parametric Oscillator provides near on-axis pumping of a single QPMC with a tilted periodically poled grating to overcome the necessity to find a particular crystal that will permit collinear birefringence in order to obtain a desired tuning range. A tilted grating design and the elongation of the transverse profile of the pump beam in the angle tuning plane of the FA-OPO reduces the rate of change of the overlap between the pumped volume in the crystal and the resonated and non-resonated wave mode volumes as the pump beam angle is changed. A folded mirror set relays the pivot point for beam steering from a beam deflector to the center of the FA-OPO crystal. This reduces the footprint of the device by as much as a factor of two over that obtained when using the refractive telescope design.
mu analysis with real parametric uncertainty
NASA Technical Reports Server (NTRS)
Young, Peter M.; Newlin, Matthew P.; Doyle, John C.
1991-01-01
The authors give a broad overview, from a LFT (linear fractional transformation)/mu perspective, of some of the theoretical and practical issues associated with robustness in the presence of real parametric uncertainty, with a focus on computation. Recent results on the properties of mu in the mixed case are reviewed, including issues of NP completeness, continuity, computation of bounds, the equivalence of mu and its bounds, and some direct comparisons with Kharitonov-type analysis methods. In addition, some advances in the computational aspects of the problem, including a novel branch and bound algorithm, are briefly presented together with numerical results. The results suggest that while the mixed mu problem may have inherently combinatoric worst-case behavior, practical algorithms with modest computational requirements can be developed for problems of medium size (less than 100 parameters) that are of engineering interest.
uvmcmcfit: Parametric models to interferometric data fitter
NASA Astrophysics Data System (ADS)
Bussmann, Shane; Leung, Tsz Kuk (Daisy); Conley, Alexander
2016-06-01
Uvmcmcfit fits parametric models to interferometric data. It is ideally suited to extract the maximum amount of information from marginally resolved observations with interferometers like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer (PdBI). uvmcmcfit uses emcee (ascl:1303.002) to do Markov Chain Monte Carlo (MCMC) and can measure the goodness of fit from visibilities rather than deconvolved images, an advantage when there is strong gravitational lensing and in other situations. uvmcmcfit includes a pure-Python adaptation of Miriad’s (ascl:1106.007) uvmodel task to generate simulated visibilities given observed visibilities and a model image and a simple ray-tracing routine that allows it to account for both strongly lensed systems (where multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed galaxy is detected).
Ultrafast Airy beam optical parametric oscillator.
Apurv Chaitanya, N; Kumar, S Chaitanya; Aadhi, A; Samanta, G K; Ebrahim-Zadeh, M
2016-08-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.
Normal dispersion femtosecond fiber optical parametric oscillator.
Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N
2013-09-15
We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60 mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3 ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.
Parametric systems analysis for tandem mirror hybrids
Lee, J.D.; Chapin, D.L.; Chi, J.W.H.
1980-09-01
Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.
Parametric thermal evaluations of waste package emplacement
Bahney, R.H. III; Doering, T.W.
1996-02-01
Parametric thermal evaluations of spent nuclear fuel (SNF) waste packages (WPs) emplaced in the potential repository were performed to determine the impact of thermal loading, WP spacing, drift diameter, SNF aging, backfill, and relocation on the design of the Engineered Barrier System. Temperatures in the WP and near-field host rock are key to radionuclide containment, as they directly affect oxidation rates of the metal barriers and the ability of the rock to impede particle movement which must be demonstrated for a safe and licensable repository. Maximum allowable temperatures are based on material performance criteria and are specified as the following design goals for the WP/EBS design: SNF cladding 350{degrees}C, drift wall 200{degrees}C, and TSw3 rock 115{degrees}C.
Ultrafast Airy beam optical parametric oscillator
Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.
2016-01-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910
Parametric phase diffusion analysis of irregular oscillations
NASA Astrophysics Data System (ADS)
Schwabedal, Justus T. C.
2014-09-01
Parametric phase diffusion analysis (ΦDA), a method to determine variability of irregular oscillations, is presented. ΦDA is formulated as an analysis technique for sequences of Poincaré return times found in numerous applications. The method is unbiased by the arbitrary choice of Poincaré section, i.e. isophase, which causes a spurious component in the Poincaré return times. Other return-time variability measures can be biased drastically by these spurious return times, as shown for the Fano factor of chaotic oscillations in the Rössler system. The empirical use of ΦDA is demonstrated in an application to heart rate data from the Fantasia Database, for which ΦDA parameters successfully classify heart rate variability into groups of age and gender.
Multidimensional Scaling Visualization Using Parametric Entropy
NASA Astrophysics Data System (ADS)
Lopes, António M.; Tenreiro Machado, J. A.; Galhano, Alexandra M.
2015-12-01
This paper studies complex systems using a generalized multidimensional scaling (MDS) technique. Complex systems are characterized by time-series responses, interpreted as a manifestation of their dynamics. Two types of time-series are analyzed, namely 18 stock markets and the gross domestic product per capita of 18 countries. For constructing the MDS charts, indices based on parametric entropies are adopted. Multiparameter entropies allow the variation of the parameters leading to alternative sets of charts. The final MDS maps are then assembled by means of Procrustes’ method that maximizes the fit between the individual charts. Therefore, the proposed method can be interpreted as a generalization to higher dimensions of the standard technique that represents (and discretizes) items by means of single “points” (i.e. zero-dimensional “objects”). The MDS plots, involving one-, two- and three-dimensional “objects”, reveal a good performance in capturing the correlations between data.
Parametric reconstruction method in optical tomography.
Gu, Xuejun; Ren, Kui; Masciotti, James; Hielscher, Andreas H
2006-01-01
Optical tomography consists of reconstructing the spatial of a medium's optical properties from measurements of transmitted light on the boundary of the medium. Mathematically this problem amounts to parameter identification for the radiative transport equation (ERT) or diffusion approximation (DA). However, this type of boundary-value problem is highly ill-posed and the image reconstruction process is often unstable and non-unique. To overcome this problem, we present a parametric inverse method that considerably reduces the number of variables being reconstructed. In this way the amount of measured data is equal or larger than the number of unknowns. Using synthetic data, we show examples that demonstrate how this approach leads to improvements in imaging quality.
Hybrid-free Josephson Parametric Converter
NASA Astrophysics Data System (ADS)
Frattini, N. E.; Narla, A.; Sliwa, K. M.; Shankar, S.; Hatridge, M.; Devoret, M. H.
A necessary component for any quantum computation architecture is the ability to perform efficient quantum operations. In the microwave regime of superconducting qubits, these quantum-limited operations can be realized with a non-degenerate Josephson junction based three-wave mixer, the Josephson Parametric Converter (JPC). Currently, the quantum signal of interest must pass through a lossy 180 degree hybrid to be presented as a differential drive to the JPC. This hybrid therefore places a limit on the quantum efficiency of the system and also increases the device footprint. We present a new design for the JPC eliminating the need for any external hybrid. We also show that this design has nominally identical performance to the conventional JPC. Work supported by ARO, AFOSR and YINQE.
Simplifying the circuit of Josephson parametric converters
NASA Astrophysics Data System (ADS)
Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George
Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results
Parametric analysis of open plan offices
NASA Astrophysics Data System (ADS)
Nogueira, Flavia F.; Viveiros, Elvira B.
2002-11-01
The workspace has been undergoing many changes. Open plan offices are being favored instead of ones of traditional design. In such offices, workstations are separated by partial height barriers, which allow a certain degree of visual privacy and some sound insulation. The challenge in these offices is to provide acoustic privacy for the workstations. Computer simulation was used as a tool for this investigation. Two simple models were generated and their results compared to experimental data measured in two real offices. After validating the approach, models with increasing complexity were generated. Lastly, an ideal office with 64 workstations was created and a parametric survey performed. Nine design parameters were taken as variables and the results are discussed in terms of sound pressure level, in octave bands, and intelligibility index.
Spherical parametrization of the Higgs boson candidate.
Gainer, James S; Lykken, Joseph; Matchev, Konstantin T; Mrenna, Stephen; Park, Myeonghun
2013-07-26
The latest results from the ATLAS and CMS experiments at the CERN Large Hadron Collider unequivocally confirm the existence of a resonance X with mass near 125 GeV which could be the Higgs boson of the standard model. Measuring the properties (quantum numbers and couplings) of this resonance is of paramount importance. Initial analyses by the LHC Collaborations disfavor specific alternative benchmark hypotheses, e.g., pure pseudoscalars or gravitons. However, this is just the first step in a long-term program of detailed measurements. We consider the most general set of operators in the decay channels X→ZZ, WW, Zγ, γγ, and derive the constraint implied by the measured rate. This allows us to provide a useful parametrization of the orthogonal independent Higgs coupling degrees of freedom as coordinates on a suitably defined sphere.
Ultrafast Airy beam optical parametric oscillator
NASA Astrophysics Data System (ADS)
Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.
2016-08-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.
Evaluation of Two Energy Balance Closure Parametrizations
NASA Astrophysics Data System (ADS)
Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias
2014-05-01
A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.
Application of Transformations in Parametric Inference
ERIC Educational Resources Information Center
Brownstein, Naomi; Pensky, Marianna
2008-01-01
The objective of the present paper is to provide a simple approach to statistical inference using the method of transformations of variables. We demonstrate performance of this powerful tool on examples of constructions of various estimation procedures, hypothesis testing, Bayes analysis and statistical inference for the stress-strength systems.…
Time reversal of parametrical driving and the stability of the parametrically excited pendulum
NASA Astrophysics Data System (ADS)
Stannarius, Ralf
2009-02-01
It is well known that the periodic driving of a parametrically excited pendulum can stabilize or destabilize its stationary states, depending upon the frequency, wave form, and amplitude of the parameter modulations. We discuss the effect of time reversal of the periodic driving function for the parametric pendulum at small elongations. Such a time reversal usually leads to different solutions of the equations of motion and to different stability properties of the system. Two interesting exceptions are discussed, and two conditions are formulated for which the character of the solutions of the system is not influenced by a time reversal of the driving function, even though the trajectories of the dynamic variables are different.
Aniolek, K W; Schmitt, R L; Kulp, T J; Richman, B A; Bisson, S E; Powers, P E
2000-04-15
For what is believed to be the first time, a single-longitudinal-mode passively Q-switched Nd:YAG microlaser is used to pump a narrow-bandwidth periodically poled lithium niobate (PPLN) optical parametric generator-optical parametric amplifier (OPG-OPA). Before amplification in the OPA, the output of the OPG stage was spectrally filtered with an air-spaced etalon, resulting in spectroscopically useful radiation (bandwidth, ~0.05 cm(-1) FWHM) that was tunable in 15-cm(-1) segments anywhere in the signal range 6820-6220 cm(-1) and the idler range 2580-3180 cm(-1). The ability to pump an OPG-OPA with compact, high-repetition-rate, intrinsically narrow-bandwidth microlasers is made possible by the high gain of PPLN. The result is a tunable light source that is well suited for use in portable spectroscopic gas sensors.
Tatarinova, Tatiana; Neely, Michael; Bartroff, Jay; van Guilder, Michael; Yamada, Walter; Bayard, David; Jelliffe, Roger; Leary, Robert; Chubatiuk, Alyona; Schumitzky, Alan
2013-04-01
Population pharmacokinetic (PK) modeling methods can be statistically classified as either parametric or nonparametric (NP). Each classification can be divided into maximum likelihood (ML) or Bayesian (B) approaches. In this paper we discuss the nonparametric case using both maximum likelihood and Bayesian approaches. We present two nonparametric methods for estimating the unknown joint population distribution of model parameter values in a pharmacokinetic/pharmacodynamic (PK/PD) dataset. The first method is the NP Adaptive Grid (NPAG). The second is the NP Bayesian (NPB) algorithm with a stick-breaking process to construct a Dirichlet prior. Our objective is to compare the performance of these two methods using a simulated PK/PD dataset. Our results showed excellent performance of NPAG and NPB in a realistically simulated PK study. This simulation allowed us to have benchmarks in the form of the true population parameters to compare with the estimates produced by the two methods, while incorporating challenges like unbalanced sample times and sample numbers as well as the ability to include the covariate of patient weight. We conclude that both NPML and NPB can be used in realistic PK/PD population analysis problems. The advantages of one versus the other are discussed in the paper. NPAG and NPB are implemented in R and freely available for download within the Pmetrics package from www.lapk.org.
Neely, Michael; Bartroff, Jay; van Guilder, Michael; Yamada, Walter; Bayard, David; Jelliffe, Roger; Leary, Robert; Chubatiuk, Alyona; Schumitzky, Alan
2013-01-01
Population pharmacokinetic (PK) modeling methods can be statistically classified as either parametric or nonparametric (NP). Each classification can be divided into maximum likelihood (ML) or Bayesian (B) approazches. In this paper we discuss the nonparametric case using both maximum likelihood and Bayesian approaches. We present two nonparametric methods for estimating the unknown joint population distribution of model parameter values in a pharmacokinetic/pharmacodynamic (PK/PD) dataset. The first method is the NP Adaptive Grid (NPAG). The second is the NP Bayesian (NPB) algorithm with a stick-breaking process to construct a Dirichlet prior. Our objective is to compare the performance of these two methods using a simulated PK/PD dataset. Our results showed excellent performance of NPAG and NPB in a realistically simulated PK study. This simulation allowed us to have benchmarks in the form of the true population parameters to compare with the estimates produced by the two methods, while incorporating challenges like unbalanced sample times and sample numbers as well as the ability to include the covariate of patient weight. We conclude that both NPML and NPB can be used in realistic PK/PD population analysis problems. The advantages of one versus the other are discussed in the paper. NPAG and NPB are implemented in R and freely available for download within the Pmetrics package from www.lapk.org. PMID:23404393
NASA Technical Reports Server (NTRS)
Coverse, G. L.
1984-01-01
A turbine modeling technique has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. This technique is applicable to both axial and radial flow turbine with flow sizes ranging from about one pound per second to several hundred pounds per second. The axial flow turbines may or may not include variable geometry in the first stage nozzle. A user-specified option will also permit the calculation of design point cooling flow levels and corresponding changes in efficiency for the axial flow turbines. The modeling technique has been incorporated into a time-sharing program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual. This report is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulation Flow Fan).
Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin.
Low, K H; Chong, C W
2010-12-01
In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-01-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882
NASA Astrophysics Data System (ADS)
Doutriaux-Boucher, M.; Quaas, J.
2004-03-01
Realistic simulations of clouds are of uppermost importance for climate modelling using general circulation models. Satellite data are well suited to evaluate model parametrizations. In this study we use the Laboratoire de Météorologie Dynamique general circulation model (LMDZ). We evaluate the current LMDZ cloud phase parametrization, in which the repartition of condensed cloud water between liquid and ice is a function of the local temperature. Three parameters are used to derive a relation between liquid cloud water content and temperature, two of which are not physically based. We use the POLDER-1 satellite data to infer more realistic parameters by establishing statistical relationships between cloud top thermodynamical phase and cloud top temperature, consistently in both satellite data and model results. We then perform a multitude of short model integrations and derive a best estimate for the lowest local temperature where liquid water can exist in a cloud (Tice = -32°C in our parametrization). The other parameter which describes the shape of the transition between ice and liquid water is also estimated. A longer simulation has then been performed with the new parameters, resulting in an improvement in the representation of the shortwave cloud radiative forcing.
Statistics Poker: Reinforcing Basic Statistical Concepts
ERIC Educational Resources Information Center
Leech, Nancy L.
2008-01-01
Learning basic statistical concepts does not need to be tedious or dry; it can be fun and interesting through cooperative learning in the small-group activity of Statistics Poker. This article describes a teaching approach for reinforcing basic statistical concepts that can help students who have high anxiety and makes learning and reinforcing…
Predict! Teaching Statistics Using Informational Statistical Inference
ERIC Educational Resources Information Center
Makar, Katie
2013-01-01
Statistics is one of the most widely used topics for everyday life in the school mathematics curriculum. Unfortunately, the statistics taught in schools focuses on calculations and procedures before students have a chance to see it as a useful and powerful tool. Researchers have found that a dominant view of statistics is as an assortment of tools…
Reduction of non-native accents through statistical parametric articulatory synthesis.
Aryal, Sandesh; Gutierrez-Osuna, Ricardo
2015-01-01
This paper presents an articulatory synthesis method to transform utterances from a second language (L2) learner to appear as if they had been produced by the same speaker but with a native (L1) accent. The approach consists of building a probabilistic articulatory synthesizer (a mapping from articulators to acoustics) for the L2 speaker, then driving the model with articulatory gestures from a reference L1 speaker. To account for differences in the vocal tract of the two speakers, a Procrustes transform is used to bring their articulatory spaces into registration. In a series of listening tests, accent conversions were rated as being more intelligible and less accented than L2 utterances while preserving the voice identity of the L2 speaker. No significant effect was found between the intelligibility of accent-converted utterances and the proportion of phones outside the L2 inventory. Because the latter is a strong predictor of pronunciation variability in L2 speech, these results suggest that articulatory resynthesis can decouple those aspects of an utterance that are due to the speaker's physiology from those that are due to their linguistic gestures.
Multi-Channel and Multi-Dimensional Sensors Parametric Statistics Estimation
2009-06-01
other variations such as OQPSK , MSK, GMSK, etc. 8.2.5 Least Squares Approach An intuitive approach was used in deriving the alphaCAF method in Section...interference 151 Name Definition MCT Monte Carlo testing ML Maximum Likelihood MSK Minimum shift keyed OQPSK Offset quadrature phase shift keyed PHAT
Evaluation of cerebral 31-P chemical shift images utilizing statistical parametric mapping
NASA Astrophysics Data System (ADS)
Riehemann, Stefan; Gaser, Christian; Volz, Hans-Peter; Sauer, Heinrich
1999-05-01
We present an evaluation technique of two dimensional (2D) nuclear magnetic resonance (NMR) chemical shift images (CSI) to analyze spatial differences of metabolite distributions and/or concentrations between groups of probands. Thus, chemical shift imaging is not only used as localization technique for NMR-spectroscopy, but the information of the complete spectroscopic image is used for the evaluation process. 31P CSI of the human brain were acquired with a Philips Gyroscan ACSII whole-body scanner at 1.5 T. CSI for different phosphorus metabolites were generated, all representing the same anatomical location. For each metabolite the CSI of two groups of subjects were compared with each other using the general linear model implemented in the widely distributed SPM96 software package. With this approach, even covariates or confounding variables like age or medication can be considered. As an example for the application of this technique, variations in the distribution of the 31P metabolite phosphocreatin between unmedicated schizophrenic patients and healthy controls were visualized. To our knowledge, this is the first approach to analyze spatial variations in metabolite concentrations between groups of subjects on the basis of chemical shift images. The presented technique opens a new perspective in the evaluation of 2D NMR spectroscopic data.
Statistical aspects of the 1980 solar flares. Part 3: Parametric comparison and final comments
NASA Technical Reports Server (NTRS)
Wilson, R. M.
1983-01-01
The 1349 study flares are considered addressing relationships between pairs of specific study paremeters; namely, H alpha rise time versus H alpha importance, X-ray class and H alpha decay time; H alpha decay time versus H alpha importance and X-ray class; and H alpha importance versus X-ray class. Mean H alpha rise time and decay time versus X-ray class and H alpha importance will also be discussed, and some final comments regarding the study flares are given.
Applications of non-parametric statistics and analysis of variance on sample variances
NASA Technical Reports Server (NTRS)
Myers, R. H.
1981-01-01
Nonparametric methods that are available for NASA-type applications are discussed. An attempt will be made here to survey what can be used, to attempt recommendations as to when each would be applicable, and to compare the methods, when possible, with the usual normal-theory procedures that are avavilable for the Gaussion analog. It is important here to point out the hypotheses that are being tested, the assumptions that are being made, and limitations of the nonparametric procedures. The appropriateness of doing analysis of variance on sample variances are also discussed and studied. This procedure is followed in several NASA simulation projects. On the surface this would appear to be reasonably sound procedure. However, difficulties involved center around the normality problem and the basic homogeneous variance assumption that is mase in usual analysis of variance problems. These difficulties discussed and guidelines given for using the methods.
Statistical detection of systematic election irregularities
Klimek, Peter; Yegorov, Yuri; Hanel, Rudolf; Thurner, Stefan
2012-01-01
Democratic societies are built around the principle of free and fair elections, and that each citizen’s vote should count equally. National elections can be regarded as large-scale social experiments, where people are grouped into usually large numbers of electoral districts and vote according to their preferences. The large number of samples implies statistical consequences for the polling results, which can be used to identify election irregularities. Using a suitable data representation, we find that vote distributions of elections with alleged fraud show a kurtosis substantially exceeding the kurtosis of normal elections, depending on the level of data aggregation. As an example, we show that reported irregularities in recent Russian elections are, indeed, well-explained by systematic ballot stuffing. We develop a parametric model quantifying the extent to which fraudulent mechanisms are present. We formulate a parametric test detecting these statistical properties in election results. Remarkably, this technique produces robust outcomes with respect to the resolution of the data and therefore, allows for cross-country comparisons. PMID:23010929
Statistical detection of systematic election irregularities.
Klimek, Peter; Yegorov, Yuri; Hanel, Rudolf; Thurner, Stefan
2012-10-09
Democratic societies are built around the principle of free and fair elections, and that each citizen's vote should count equally. National elections can be regarded as large-scale social experiments, where people are grouped into usually large numbers of electoral districts and vote according to their preferences. The large number of samples implies statistical consequences for the polling results, which can be used to identify election irregularities. Using a suitable data representation, we find that vote distributions of elections with alleged fraud show a kurtosis substantially exceeding the kurtosis of normal elections, depending on the level of data aggregation. As an example, we show that reported irregularities in recent Russian elections are, indeed, well-explained by systematic ballot stuffing. We develop a parametric model quantifying the extent to which fraudulent mechanisms are present. We formulate a parametric test detecting these statistical properties in election results. Remarkably, this technique produces robust outcomes with respect to the resolution of the data and therefore, allows for cross-country comparisons.
Parametric Studies of Flow Separation using Air Injection
NASA Technical Reports Server (NTRS)
Zhang, Wei
2004-01-01
Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as
Neuroendocrine Tumor: Statistics
... Tumor > Neuroendocrine Tumor: Statistics Request Permissions Neuroendocrine Tumor: Statistics Approved by the Cancer.Net Editorial Board , 11/ ... the body. It is important to remember that statistics on how many people survive this type of ...
Adrenal Gland Tumors: Statistics
... Gland Tumor: Statistics Request Permissions Adrenal Gland Tumor: Statistics Approved by the Cancer.Net Editorial Board , 03/ ... primary adrenal gland tumor is very uncommon. Exact statistics are not available for this type of tumor ...
Parametric generation of quadrature squeezing of mirrors in cavity optomechanics
Liao, Jie-Qiao; Law, C. K.
2011-03-15
We propose a method to generate quadrature-squeezed states of a moving mirror in a Fabry-Perot cavity. This is achieved by exploiting the fact that when the cavity is driven by an external field with a large detuning, the moving mirror behaves as a parametric oscillator. We show that parametric resonance can be reached approximately by modulating the driving field amplitude at a frequency matching the frequency shift of the mirror. The parametric resonance leads to an efficient generation of squeezing, which is limited by the thermal noise of the environment.
Nonlinear cross-talk mitigation in polychromatic parametric sampling gate.
Ataie, Vahid; Wiberg, Andreas O J; Alic, Nikola; Radic, Stojan
2013-02-25
New technique for cancellation of nonlinear cross-talk in polychromatic parametric sampling gate is described and quantified. The method relies on a newly derived look-up table method that achieves equalization and suppresses nonlinear response associated with parametric sampling operation. The new cancellation scheme is implemented in a framework of a specific parametric photonics assisted analog-to-digital conversion (ADC) copy-and-sample-all (CaSA) architecture. A 20 dB improvement in total harmonic distortion is demonstrated experimentally.
NASA Astrophysics Data System (ADS)
Reed, P. M.; Urban, R. L.; Wagener, T.; van Werkhoven, K. L.
2009-12-01
This study uses interactive visualization to investigate the common assumption that parametric screening using sensitivity analysis simplifies hydrologic calibration. Put simply, do we make calibration easier by eliminating model parameters from the optimization problem? Traditional approaches for parametric screening focus on model evaluation metrics that seek to minimize statistical error. We demonstrate in this study that additional hydrology relevant metrics (e.g., water balance) are essential to properly screening parameters and producing search problems that do not degenerate into random walks (a severe case of equifinality). This work highlights that we should move beyond a focus on optimality in a traditional error sense and instead focus on enhancing our evaluative metrics and formulations to include hydrology relevant information. Building on the prior work by van Werkhoven et al. 2009, this study utilizes parameter screening results based on Sobol sensitivity analysis to reduce the size of hydrologic calibration problems for the Sacramento Soil Moisture Accounting model (SAC SMA). Our study was conducted across four hydroclimatically diverse watersheds, and we distinguish various sets of parametric screenings, including a full parameter search, as well as parameter screenings based on 5%, 10%, 20%, and 30% Sobol sensitivity levels. For each Sobol sensitivity level there are two subcases: (1) parameters are screened based on statistical metrics alone, and (2) parameters are screened based on statistical and hydrological metrics. The reduced parameter sets were searched using a multiobjective evolutionary algorithm to determine the tradeoff surfaces of optimal parameter settings. Our results contribute detailed interactive visualizations of the 4-objective tradeoff surfaces for all of the parametric screening cases evaluated. For almost all of problem formulations that result from parametric screening, the combined use of statistical and hydrological
Speckle Statistics of Multiple Overlapping Beams Propagating in Inhomogeneous Plasmas
NASA Astrophysics Data System (ADS)
Afeyan, Bedros B.; Schmitt, A. J.; Lehmberg, R. H.
1999-11-01
We have calculated the electric field of RPP, SSD and ISI beams propagating in inhomogeneous plasmas. We have studied the intensity statistics of these beams as well as those generated when a number of such beams overlap. Changes in the geometry and statistical properties of the resulting hot spots will be presented as a function of angles of incidence, spot sizes and density scale length. Analytic, semi-analytic (quadrature using Green's functions) and numerical simulation results will be shown. The degree to which vacuum electrodynamics is inappropriate to model multiple overlapping beams in inhomogeneous plasmas will be demonstrated. These results are crucial to the study of plasma phenomena in the coronas of direct drive targets including laser imprinting and parametric instabilities. Parametric instabilities at the LEH of indirect drive targets must also take into account overlapping beam physics issues discussed here.
Optical parametric oscillators for medical applications
NASA Astrophysics Data System (ADS)
Gloster, Lawrie A. W.; Golding, Paul S.; King, Terence A.
1996-04-01
In recent years optical parametric oscillators (OPOs) have undergone a renaissance largely due to the discovery of new nonlinear materials capable of wide continuous tuning ranges spanning from the UV to the near-infrared spectral regions. To date, however, OPOs have not been exploited in the medical field despite their advantages over the dye laser in terms of tuning range and solid state structure. We consider the development of an OPO based on barium borate (BBO) which can be tailored to suit applications in medicine. Converting the maximum number of pump photons to tunable signal and idler photons is of great importance to secure high-fluence radiation necessary for many treatments. With this in mind, we report on an all- solid-state system using BBO which has been optimized by computer modeling with the potential of delivering amplification factors of typically up to 20 over a continuous tuning range of 700 nm to 1000 nm. As an example of its biomedical application, we describe the selective excitation of biomolecules and chromophores for cell destruction using malachite green isothiocyanate labelled bacteria. The potential for development is reviewed towards other medical applications such as diagnostic sensing and phototherapy.
Parametric approach to linear induction accelerator design
Bresie, D.A.; Andrews, J.A.; Ingram, S.W. . Center for Electromechanics)
1991-01-01
Past work on the design of linear induction accelerators has centered on the development of computer codes to analyze accelerator designs, using the current filament method. While these filament models are a very valuable tool for evaluating the performance of an induction launcher design, they provide little insight into the selection of dimensions, materials, and operation points for accelerators with interesting performance. Described in this paper is a parametric approach to defining effective accelerator designs. This method uses a computer optimization routine to iteratively seek out effective designs. The optimization routine is forced to search within a parameter space restricted to interesting and realistic parameters such as size, weight, voltage, and temperature rises. A filament model is used as the filter for the optimizer. Several linear induction accelerators have been designed using this method. The accelerators designed all used a switched capacitor power supply. While the run time of this code on The University of Texas' CRAY XMP-24 computer is moderately long, the resulting designs have good predicted performance. With realistic power supplies and materials, accelerator efficiencies in the 20 to 40% range were easily obtained. This paper describes the effect of armature diameter, length-to-diameter ratio, and weight, as well as other parameters, on the optimum accelerator design.
Design criteria for ultrafast optical parametric amplifiers
NASA Astrophysics Data System (ADS)
Manzoni, C.; Cerullo, G.
2016-10-01
Optical parametric amplifiers (OPAs) exploit second-order nonlinearity to transfer energy from a fixed frequency pump pulse to a variable frequency signal pulse, and represent an easy way of tuning over a broad range the frequency of an otherwise fixed femtosecond laser system. OPAs can also act as broadband amplifiers, transferring energy from a narrowband pump to a broadband signal and thus considerably shortening the duration of the pump pulse. Due to these unique properties, OPAs are nowadays ubiquitous in ultrafast laser laboratories, and are employed by many users, such as solid state physicists, atomic/molecular physicists, chemists and biologists, who are not experts in ultrafast optics. This tutorial paper aims at providing the non-specialist reader with a self-consistent guide to the physical foundations of OPAs, deriving the main equations describing their performance and discussing how they can be used to understand their most important working parameters (frequency tunability, bandwidth, pulse energy/repetition rate scalability, control over the carrier-envelope phase of the generated pulses). Based on this analysis, we derive practical design criteria for OPAs, showing how their performance depends on the type of the nonlinear interaction (crystal type, phase-matching configuration, crystal length), on the characteristics of the pump pulse (frequency, duration, energy, repetition rate) and on the OPA architecture.
Selected Parametric Effects on Materials Flammability Limits
NASA Technical Reports Server (NTRS)
Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.
2011-01-01
NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.
Program Predicts Performance of Optical Parametric Oscillators
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Bowers, Mark
2006-01-01
A computer program predicts the performances of solid-state lasers that operate at wavelengths from ultraviolet through mid-infrared and that comprise various combinations of stable and unstable resonators, optical parametric oscillators (OPOs), and sum-frequency generators (SFGs), including second-harmonic generators (SHGs). The input to the program describes the signal, idler, and pump beams; the SFG and OPO crystals; and the laser geometry. The program calculates the electric fields of the idler, pump, and output beams at three locations (inside the laser resonator, just outside the input mirror, and just outside the output mirror) as functions of time for the duration of the pump beam. For each beam, the electric field is used to calculate the fluence at the output mirror, plus summary parameters that include the centroid location, the radius of curvature of the wavefront leaving through the output mirror, the location and size of the beam waist, and a quantity known, variously, as a propagation constant or beam-quality factor. The program provides a typical Windows interface for entering data and selecting files. The program can include as many as six plot windows, each containing four graphs.
Parametric Study of Variable Emissivity Radiator Surfaces
NASA Technical Reports Server (NTRS)
Grob, Lisa M.; Swanson, Theodore D.
2000-01-01
The goal of spacecraft thermal design is to accommodate a high function satellite in a low weight and real estate package. The extreme environments that the satellite is exposed during its orbit are handled using passive and active control techniques. Heritage passive heat rejection designs are sized for the hot conditions and augmented for the cold end with heaters. The active heat rejection designs to date are heavy, expensive and/or complex. Incorporating an active radiator into the design that is lighter, cheaper and more simplistic will allow designers to meet the previously stated goal of thermal spacecraft design Varying the radiator's surface properties without changing the radiating area (as with VCHP), or changing the radiators' views (traditional louvers) is the objective of the variable emissivity (vary-e) radiator technologies. A parametric evaluation of the thermal performance of three such technologies is documented in this paper. Comparisons of the Micro-Electromechanical Systems (MEMS), Electrochromics, and Electrophoretics radiators to conventional radiators, both passive and active are quantified herein. With some noted limitations, the vary-e radiator surfaces provide significant advantages over traditional radiators and a promising alternative design technique for future spacecraft thermal systems.
Parametric Cost Analysis: A Design Function
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1989-01-01
Parametric cost analysis uses equations to map measurable system attributes into cost. The measures of the system attributes are called metrics. The equations are called cost estimating relationships (CER's), and are obtained by the analysis of cost and technical metric data of products analogous to those to be estimated. Examples of system metrics include mass, power, failure_rate, mean_time_to_repair, energy _consumed, payload_to_orbit, pointing_accuracy, manufacturing_complexity, number_of_fasteners, and percent_of_electronics_weight. The basic assumption is that a measurable relationship exists between system attributes and the cost of the system. If a function exists, the attributes are cost drivers. Candidates for metrics include system requirement metrics and engineering process metrics. Requirements are constraints on the engineering process. From optimization theory we know that any active constraint generates cost by not permitting full optimization of the objective. Thus, requirements are cost drivers. Engineering processes reflect a projection of the requirements onto the corporate culture, engineering technology, and system technology. Engineering processes are an indirect measure of the requirements and, hence, are cost drivers.
Optical parametric osicllators with improved beam quality
Smith, Arlee V.; Alford, William J.
2003-11-11
An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Parametric probability distributions for anomalous change detection
Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C
2010-01-01
The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.
Parametric optimization of inverse trapezoid oleophobic surfaces.
Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin
2012-12-18
In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure, and mechanical robustness (Im, M.; Im, H:; Lee, J.H.; Yoon, J.B.; Choi, Y.K. A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter 2010, 6, 1401-1404; Im, M.; Im, H:; Lee, J.H.; Yoon, J.B.; Choi, Y.K. Analytical Modeling and Thermodynamic Analysis of Robust Superhydrophobic Surfaces with Inverse-Trapezoidal Microstructures. Langmuir 2010, 26, 17389-17397). We find that each of these parameters, if considered alone, would give trivial optima, while their interplay provides a well-defined optimal shape and aspect ratio. The inclusion of mechanical robustness in combination with conventional performance characteristics favors solutions relevant for practical applications, as mechanical stability is a critical issue not often addressed in idealized models.
Parametric Testing of Launch Vehicle FDDR Models
NASA Technical Reports Server (NTRS)
Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar
2011-01-01
For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.
Action Quantization, Energy Quantization, and Time Parametrization
NASA Astrophysics Data System (ADS)
Floyd, Edward R.
2017-03-01
The additional information within a Hamilton-Jacobi representation of quantum mechanics is extra, in general, to the Schrödinger representation. This additional information specifies the microstate of ψ that is incorporated into the quantum reduced action, W. Non-physical solutions of the quantum stationary Hamilton-Jacobi equation for energies that are not Hamiltonian eigenvalues are examined to establish Lipschitz continuity of the quantum reduced action and conjugate momentum. Milne quantization renders the eigenvalue J. Eigenvalues J and E mutually imply each other. Jacobi's theorem generates a microstate-dependent time parametrization t-τ =partial _E W even where energy, E, and action variable, J, are quantized eigenvalues. Substantiating examples are examined in a Hamilton-Jacobi representation including the linear harmonic oscillator numerically and the square well in closed form. Two byproducts are developed. First, the monotonic behavior of W is shown to ease numerical and analytic computations. Second, a Hamilton-Jacobi representation, quantum trajectories, is shown to develop the standard energy quantization formulas of wave mechanics.
Parametric instabilities in picosecond time scales
Baldis, H.A.; Rozmus, W.; Labaune, C.; Mounaix, Ph.; Pesme, D.; Baton, S.; Tikhonchuk, V.T.
1993-03-01
The coupling of intense laser light with plasmas is a rich field of plasma physics, with many applications. Among these are inertial confinement fusion (ICF), x-ray lasers, particle acceleration, and x-ray sources. Parametric instabilities have been studied for many years because of their importance to ICF; with laser pulses with duration of approximately a nanosecond, and laser intensities in the range 10{sup 14}--10{sup 15}W/cm{sup 2} these instabilities are of crucial concern because of a number of detrimental effects. Although the laser pulse duration of interest for these studies are relatively long, it has been evident in the past years that to reach an understanding of these instabilities requires their characterization and analysis in picosecond time scales. At the laser intensities of interest, the growth rate for stimulated Brillouin scattering (SBS) is of the order of picoseconds, and of an order of magnitude shorter for stimulated Raman scattering (SRS). In this paper the authors discuss SBS and SRS in the context of their evolution in picosecond time scales. They describe the fundamental concepts associated with their growth and saturation, and recent work on the nonlinear treatment required for the modeling of these instabilities at high laser intensities.
A Parametric Study of Spur Gear Dynamics
NASA Technical Reports Server (NTRS)
Lin, Hsiang Hsi; Liou, Chuen-Huei
1998-01-01
A parametric study of a spur gear system was performed through a numerical analysis approach. This study used the gear dynamic program DANST, a computer simulator, to determine the dynamic behavior of a spur gear system. The analytical results have taken the deflection of shafts and bearings into consideration for static analysis, and the influence of these deflections on gear dynamics was investigated. Damping in the gear system usually is an unknown quantity, but it has an important effect in resonance vibration. Typical values as reported in the literature were used in the present analysis. The dynamic response due to different damping factors was evaluated and compared. The effect of the contact ratio on spur gear dynamic load and dynamic stress was investigated through a parameter study. The contact ratio was varied over the range of 1.26 to 2.46 by adjusting the tooth addendum. Gears with contact ratio near 2.0 were found to have the most favorable dynamic performance.
Assessing the fit of parametric cure models.
Wileyto, E Paul; Li, Yimei; Chen, Jinbo; Heitjan, Daniel F
2013-04-01
Survival data can contain an unknown fraction of subjects who are "cured" in the sense of not being at risk of failure. We describe such data with cure-mixture models, which separately model cure status and the hazard of failure among non-cured subjects. No diagnostic currently exists for evaluating the fit of such models; the popular Schoenfeld residual (Schoenfeld, 1982. Partial residuals for the proportional hazards regression-model. Biometrika 69, 239-241) is not applicable to data with cures. In this article, we propose a pseudo-residual, modeled on Schoenfeld's, to assess the fit of the survival regression in the non-cured fraction. Unlike Schoenfeld's approach, which tests the validity of the proportional hazards (PH) assumption, our method uses the full hazard and is thus also applicable to non-PH models. We derive the asymptotic distribution of the residuals and evaluate their performance by simulation in a range of parametric models. We apply our approach to data from a smoking cessation drug trial.
Parametric study on mass loss of penetrators
NASA Astrophysics Data System (ADS)
He, Li-Ling; Chen, Xiao-Wei; He, Xiang
2010-08-01
Earth penetration weapon (EPW) is applicable for attacking underground targets protected by reinforced concrete and rocks. With increasing impact velocity, the mass loss/abrasion of penetrator increases, which significantly decreases the penetration efficiency due to the change of nose shape. The abrasion may induce instability of the penetrator, and lead to failure of its structure. A common disadvantage, i.e. dependence on corresponding experimental results, exists in all the available formulae, which limits their ranges of application in estimating the mass loss of penetrator. In this paper, we conduct a parametric study on the mass loss of penetrator, and indicate that the mass loss of penetrator can be determined by seven variables, i.e., the initial impact velocity, initial nose shape, melting heat, shank diameter of projectile and density and strength of target as well as the aggregate hardness of target. Further discussion on factors dominant in the mass abrasion of penetrator are given, which may be helpful for optimizing the target or the projectile for defensive or offensive objectives, respectively.
STATISTICAL ANALYSIS, REPORTS), (*PROBABILITY, REPORTS), INFORMATION THEORY, DIFFERENTIAL EQUATIONS, STATISTICAL PROCESSES, STOCHASTIC PROCESSES, MULTIVARIATE ANALYSIS, DISTRIBUTION THEORY , DECISION THEORY, MEASURE THEORY, OPTIMIZATION
NASA Astrophysics Data System (ADS)
Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, Jan G. P. W.; Camps-Valls, Gustau; Moreno, José
2015-10-01
Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC), collected at the agricultural site of Barrax (Spain), was used to evaluate different retrieval methods on their ability to estimate leaf area index (LAI). With regard to parametric methods, all possible band combinations for several two-band and three-band index formulations and a linear regression fitting function have been evaluated. From a set of over ten thousand indices evaluated, the best performing one was an optimized three-band combination according to (ρ560 -ρ1610 -ρ2190) / (ρ560 +ρ1610 +ρ2190) with a 10-fold cross-validation RCV2 of 0.82 (RMSECV : 0.62). This family of methods excel for their fast processing speed, e.g., 0.05 s to calibrate and validate the regression function, and 3.8 s to map a simulated S2 image. With regard to non-parametric methods, 11 machine learning regression algorithms (MLRAs) have been evaluated. This methodological family has the advantage of making use of the full optical spectrum as well as flexible, nonlinear fitting. Particularly kernel-based MLRAs lead to excellent results, with variational heteroscedastic (VH) Gaussian Processes regression (GPR) as the best performing method, with a RCV2 of 0.90 (RMSECV : 0.44). Additionally, the model is trained and validated relatively fast (1.70 s) and the processed image (taking 73.88 s) includes associated uncertainty estimates. More challenging is the inversion of a PROSAIL based radiative transfer model (RTM). After the generation of a look-up table (LUT), a multitude of cost functions and regularization options were evaluated. The best performing cost function is Pearson's χ -square. It led to a R2 of 0.74 (RMSE: 0.80) against the validation dataset. While its validation went fast
Statistical Analysis of the Exchange Rate of Bitcoin
Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen
2015-01-01
Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate. PMID:26222702
Statistical Analysis of the Exchange Rate of Bitcoin.
Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen
2015-01-01
Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate.
Optimal Parametric Discrete Event Control: Problem and Solution
Griffin, Christopher H
2008-01-01
We present a novel optimization problem for discrete event control, similar in spirit to the optimal parametric control problem common in statistical process control. In our problem, we assume a known finite state machine plant model $G$ defined over an event alphabet $\\Sigma$ so that the plant model language $L = \\LanM(G)$ is prefix closed. We further assume the existence of a \\textit{base control structure} $M_K$, which may be either a finite state machine or a deterministic pushdown machine. If $K = \\LanM(M_K)$, we assume $K$ is prefix closed and that $K \\subseteq L$. We associate each controllable transition of $M_K$ with a binary variable $X_1,\\dots,X_n$ indicating whether the transition is enabled or not. This leads to a function $M_K(X_1,\\dots,X_n)$, that returns a new control specification depending upon the values of $X_1,\\dots,X_n$. We exhibit a branch-and-bound algorithm to solve the optimization problem $\\min_{X_1,\\dots,X_n}\\max_{w \\in K} C(w)$ such that $M_K(X_1,\\dots,X_n) \\models \\Pi$ and $\\LanM(M_K(X_1,\\dots,X_n)) \\in \\Con(L)$. Here $\\Pi$ is a set of logical assertions on the structure of $M_K(X_1,\\dots,X_n)$, and $M_K(X_1,\\dots,X_n) \\models \\Pi$ indicates that $M_K(X_1,\\dots,X_n)$ satisfies the logical assertions; and, $\\Con(L)$ is the set of controllable sublanguages of $L$.
Forecasting Marine Corps Enlisted Attrition Through Parametric Modeling
2009-03-01
OF PAGES 85 14. SUBJECT TERMS Forecasting, Attrition, Marine Corps NEAS losses, Gompertz Model, Survival Analysis 16. PRICE CODE 17. SECURITY...18 1. Parametric Proportional Hazards Models ......................................18 2. Gompertz Models...19 a. Gompertz Hazard Function....................................................19 b. Gompertz Cumulative
Non-Parametric Bayesian Registration (NParBR) of Body Tumors in DCE-MRI Data.
Pilutti, David; Strumia, Maddalena; Buchert, Martin; Hadjidemetriou, Stathis
2016-04-01
The identification of tumors in the internal organs of chest, abdomen, and pelvis anatomic regions can be performed with the analysis of Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) data. The contrast agent is accumulated differently by pathologic and healthy tissues and that results in a temporally varying contrast in an image series. The internal organs are also subject to potentially extensive movements mainly due to breathing, heart beat, and peristalsis. This contributes to making the analysis of DCE-MRI datasets challenging as well as time consuming. To address this problem we propose a novel pairwise non-rigid registration method with a Non-Parametric Bayesian Registration (NParBR) formulation. The NParBR method uses a Bayesian formulation that assumes a model for the effect of the distortion on the joint intensity statistics, a non-parametric prior for the restored statistics, and also applies a spatial regularization for the estimated registration with Gaussian filtering. A minimally biased intra-dataset atlas is computed for each dataset and used as reference for the registration of the time series. The time series registration method has been tested with 20 datasets of liver, lungs, intestines, and prostate. It has been compared to the B-Splines and to the SyN methods with results that demonstrate that the proposed method improves both accuracy and efficiency.
Finding Rational Parametric Curves of Relative Degree One or Two
ERIC Educational Resources Information Center
Boyles, Dave
2010-01-01
A plane algebraic curve, the complete set of solutions to a polynomial equation: f(x, y) = 0, can in many cases be drawn using parametric equations: x = x(t), y = y(t). Using algebra, attempting to parametrize by means of rational functions of t, one discovers quickly that it is not the degree of f but the "relative degree," that describes how…
Parametric distribution approach for flow availability in small hydro potential analysis
NASA Astrophysics Data System (ADS)
Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel
2016-10-01
Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.
Statistical Reference Datasets
National Institute of Standards and Technology Data Gateway
Statistical Reference Datasets (Web, free access) The Statistical Reference Datasets is also supported by the Standard Reference Data Program. The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software.
Peterson, James T.
1999-12-01
Natural resource professionals are increasingly required to develop rigorous statistical models that relate environmental data to categorical responses data. Recent advances in the statistical and computing sciences have led to the development of sophisticated methods for parametric and nonparametric analysis of data with categorical responses. The statistical software package CATDAT was designed to make some of these relatively new and powerful techniques available to scientists. The CATDAT statistical package includes 4 analytical techniques: generalized logit modeling; binary classification tree; extended K-nearest neighbor classification; and modular neural network.
Explorations in statistics: statistical facets of reproducibility.
Curran-Everett, Douglas
2016-06-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This eleventh installment of Explorations in Statistics explores statistical facets of reproducibility. If we obtain an experimental result that is scientifically meaningful and statistically unusual, we would like to know that our result reflects a general biological phenomenon that another researcher could reproduce if (s)he repeated our experiment. But more often than not, we may learn this researcher cannot replicate our result. The National Institutes of Health and the Federation of American Societies for Experimental Biology have created training modules and outlined strategies to help improve the reproducibility of research. These particular approaches are necessary, but they are not sufficient. The principles of hypothesis testing and estimation are inherent to the notion of reproducibility in science. If we want to improve the reproducibility of our research, then we need to rethink how we apply fundamental concepts of statistics to our science.
CFD Parametric Study of Consortium Impeller
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.
1993-01-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform
CFD parametric study of consortium impeller
NASA Astrophysics Data System (ADS)
Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.
1993-07-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform
Parametric Wave Transformation Models on Natural Beaches
NASA Astrophysics Data System (ADS)
Apotsos, A. A.; Raubenheimer, B.; Elgar, S.; Guza, R. T.
2006-12-01
Seven parametric models for wave height transformation across the surf zone [e.g., Thornton and Guza, 1983] are tested with observations collected between the shoreline and about 5-m water depth during 2 experiments on a barred beach near Duck, NC, and between the shoreline and about 3.5-m water depth during 2 experiments on unbarred beaches near La Jolla, CA. Offshore wave heights ranged from about 0.1 to 3.0 m. Beach profiles were surveyed approximately every other day. The models predict the observations well. Root-mean-square errors between observed and simulated wave heights are small in water depths h > 2 m (average rms errors < 10%), and increase with decreasing depth for h < 2 m (average rms errors > 20%). The lowest rms errors (i.e., the most accurate predictions) are achieved by tuning a free parameter, γ, in each model. To tune the models accurately to the data considered here, observations are required at 3 to 5 locations, and must span the surf zone. No tuned or untuned model provides the best predictions for all data records in any one experiment. The best fit γ's for each model-experiment pair are represented well with an empirical hyperbolic tangent curve based on the inverse Iribarren number. In 3 of the 4 data sets, estimating γ for each model using an average curve based on the predictions and observations from all 4 experiments typically improves model-data agreement relative to using a constant or previously determined empirical γ. The best fit γ's at the 4th experiment (conducted off La Jolla, CA) are roughly 20% smaller than the γ's for the other 3 experiments, and thus using the experiment-averaged curve increases prediction errors. Possible causes for the smaller γ's at the 4th experiment will be discussed. Funded by ONR and NSF.
Optical Parametric Technology for Methane Measurements
NASA Technical Reports Server (NTRS)
Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris
2015-01-01
Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).
Parametric Decay Instability Control By Nonmonochromatic Pumps
NASA Astrophysics Data System (ADS)
Arkhipenko, V.,; Gusakov, E.; Simonchik, L.
2010-07-01
The results of comprehensive experimental and theoretical investigations of the last decade are reviewed, revealing a complicated and interesting behavior of nonlinear inhomogeneous wave system. It is shown that the wide variety of physical effects is accompanying the parametric decay instability (PDI) driven by the frequency modulated pump. The experiment is carried out in the linear plasma device "Granit", where the PDI l ? l' + s is excited at the microwave power less than 20 mW. It is shown that pump frequency modulation does not influence the PDI when the modulation frequency is much faster than the decay wave transient time in the interaction region. In the case of slower modulation, the PDI resonant enhancement and suppression may take place instead. The physical reason for the observed PDI resonant enhancement is provided by suppression of convective losses of the daughter wave from the decay region, drifting due to the slow pump frequency modulation at the ion acoustic velosity. The strong resonant suppression of the most dangerous absolute PDI is observed at a minimal frequency deviation (less than 1%) when the modulation frequency is equal to frequency separation of the stable lines observed in the backscattering spectrum which correspond to ion acoustic wave eigen modes excited in plasma by the absolute PDI. Based on this effect a scheme of active PDI feed-back control is proposed. A possibility of deep PDI suppression by launching of an additional (small power) pump wave possessing a frequency shifted by the value equal to the frequency separation of ion acoustic eigen modes is demonstrated as well. The recovery of microwave power absorption at the PDI suppression is shown using measurements of the plasma luminosity and fluxes of accelerated electrons.
Optical parametric technology for methane measurements
NASA Astrophysics Data System (ADS)
Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris
2015-09-01
Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 μJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).
Interacting parametrized post-Friedmann method
NASA Astrophysics Data System (ADS)
Richarte, Martín G.; Xu, Lixin
2016-04-01
We apply the interacting parametrized post-Friedmann (IPPF) method to coupled dark energy models where the interaction is proportional to dark matter density at background level. In the first case, the dark components are treated as fluids and the growth of dark matter perturbations only feel the interaction via the modification of background quantities provided dark matter follows geodesic. We also perform a Markov Chain Monte-Carlo analysis which combines several cosmological probes including the cosmic microwave background (WMAP9+Planck) data, baryon acoustic oscillation (BAO) measurements, JLA sample of supernovae, Hubble constant (HST), and redshift-space distortion (RSD) measurements through the fσ 8(z) data points. The joint observational analysis of Planck+WP+JLA+BAO+HST+ RSD data leads to a coupling parameter, ξ c=0.00140_{-0.00080}^{+0.00079} at 1σ level for vanishing momentum transfer potential. On the other hand, we deal with a coupled quintessence model which exhibits a violation of the equivalence principle coming form a coupling term in the modified Euler equation; as a result of that the local Hubble expansion rate and the effective gravitational coupling are both enhanced. Provided that the interaction is parallel to scalar field velocity the momentum transfer potential is switched on, leading to a lower interaction coupling ξ c=0.00136_{-0.00073}^{+0.00080} at 1σ level when Planck+WP+JLA+BAO+HST+RSD data are combined. Besides, the CMB power spectrum shows up a correlation between the coupling parameter ξ c and the position of acoustic peaks or their amplitudes. The first peak's height increases when ξ c takes larger values and its position is shifted. We also obtain the matter power spectrum may be affected by the strength of interaction coupling over scales bigger than 10^{-2} h Mpc^{-1}, reducing its amplitude in relation to the vanilla model.
Scene Parsing With Integration of Parametric and Non-Parametric Models
NASA Astrophysics Data System (ADS)
Shuai, Bing; Zuo, Zhen; Wang, Gang; Wang, Bing
2016-05-01
We adopt Convolutional Neural Networks (CNNs) to be our parametric model to learn discriminative features and classifiers for local patch classification. Based on the occurrence frequency distribution of classes, an ensemble of CNNs (CNN-Ensemble) are learned, in which each CNN component focuses on learning different and complementary visual patterns. The local beliefs of pixels are output by CNN-Ensemble. Considering that visually similar pixels are indistinguishable under local context, we leverage the global scene semantics to alleviate the local ambiguity. The global scene constraint is mathematically achieved by adding a global energy term to the labeling energy function, and it is practically estimated in a non-parametric framework. A large margin based CNN metric learning method is also proposed for better global belief estimation. In the end, the integration of local and global beliefs gives rise to the class likelihood of pixels, based on which maximum marginal inference is performed to generate the label prediction maps. Even without any post-processing, we achieve state-of-the-art results on the challenging SiftFlow and Barcelona benchmarks.
Scene Parsing With Integration of Parametric and Non-Parametric Models.
Shuai, Bing; Zuo, Zhen; Wang, Gang; Wang, Bing
2016-05-01
We adopt convolutional neural networks (CNNs) to be our parametric model to learn discriminative features and classifiers for local patch classification. Based on the occurrence frequency distribution of classes, an ensemble of CNNs (CNN-Ensemble) are learned, in which each CNN component focuses on learning different and complementary visual patterns. The local beliefs of pixels are output by CNN-Ensemble. Considering that visually similar pixels are indistinguishable under local context, we leverage the global scene semantics to alleviate the local ambiguity. The global scene constraint is mathematically achieved by adding a global energy term to the labeling energy function, and it is practically estimated in a non-parametric framework. A large margin-based CNN metric learning method is also proposed for better global belief estimation. In the end, the integration of local and global beliefs gives rise to the class likelihood of pixels, based on which maximum marginal inference is performed to generate the label prediction maps. Even without any post-processing, we achieve the state-of-the-art results on the challenging SiftFlow and Barcelona benchmarks.
Parametric Characterization of SGP4 Theory and TLE Positional Accuracy
NASA Astrophysics Data System (ADS)
Oltrogge, D.; Ramrath, J.
2014-09-01
Two-Line Elements, or TLEs, contain mean element state vectors compatible with General Perturbations (GP) singly-averaged semi-analytic orbit theory. This theory, embodied in the SGP4 orbit propagator, provides sufficient accuracy for some (but perhaps not all) orbit operations and SSA tasks. For more demanding tasks, higher accuracy orbit and force model approaches (i.e. Special Perturbations numerical integration or SP) may be required. In recent times, the suitability of TLEs or GP theory for any SSA analysis has been increasingly questioned. Meanwhile, SP is touted as being of high quality and well-suited for most, if not all, SSA applications. Yet the lack of truth or well-known reference orbits that haven't already been adopted for radar and optical sensor network calibration has typically prevented a truly unbiased assessment of such assertions. To gain better insight into the practical limits of applicability for TLEs, SGP4 and the underlying GP theory, the native SGP4 accuracy is parametrically examined for the statistically-significant range of RSO orbit inclinations experienced as a function of all orbit altitudes from LEO through GEO disposal altitude. For each orbit altitude, reference or truth orbits were generated using full force modeling, time-varying space weather, and AGIs HPOP numerical integration orbit propagator. Then, TLEs were optimally fit to these truth orbits. The resulting TLEs were then propagated and positionally differenced with the truth orbits to determine how well the GP theory was able to fit the truth orbits. Resultant statistics characterizing these empirically-derived accuracies are provided. This TLE fit process of truth orbits was intentionally designed to be similar to the JSpOC process operationally used to generate Enhanced GP TLEs for debris objects. This allows us to draw additional conclusions of the expected accuracies of EGP TLEs. In the real world, Orbit Determination (OD) programs aren't provided with dense optical
NASA Technical Reports Server (NTRS)
Converse, G. L.
1984-01-01
A modeling technique for single stage flow modulating fans or centrifugal compressors has been developed which will enable the user to obtain consistent and rapid off-design performnce from design point input. The fan flow modulation may be obtained by either a VIGV (variable inlet guide vane) or a VPF (variable pitch rotor) option. Only the VIGV option is available for the centrifugal compressor. The modeling technique has been incorporated into a time-sharing program to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and examples cases, it is suitable as a user's manual. This report is the last of a three volume set describing the parametric representation of compressor fans, and turbines. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulating Flow Fan).
Physics-based statistical model and simulation method of RF propagation in urban environments
Pao, Hsueh-Yuan; Dvorak, Steven L.
2010-09-14
A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.
Rabeson, H; Ratiney, H; van Ormondt, D; Graveron-Demilly, D
2007-01-01
Semi-parametric disentanglement of parametric parts from non-parametric parts of a signal is a universal problem. This study concerns estimation of metabolite concentrations from in vivo Magnetic Resonance Spectroscopy (MRS) signals. Due to in vivo conditions, so-called macro-molecules contribute non-parametric components to the signals. Disentanglement is achieved by exploiting prior knowledge about the parametric and non-parametric parts directly in the measurement domain. Moreover, Cramér-Rao bounds on the non-parametric part are derived. These expressions are used to automate the disentanglement procedure.
Central limit theorem: the cornerstone of modern statistics
2017-01-01
According to the central limit theorem, the means of a random sample of size, n, from a population with mean, µ, and variance, σ2, distribute normally with mean, µ, and variance, σ2n. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding. PMID:28367284
NASA Astrophysics Data System (ADS)
Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David
2009-02-01
This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.
Ruiz-Sanchez, Eduardo
2015-12-01
The Neotropical woody bamboo genus Otatea is one of five genera in the subtribe Guaduinae. Of the eight described Otatea species, seven are endemic to Mexico and one is also distributed in Central and South America. Otatea acuminata has the widest geographical distribution of the eight species, and two of its recently collected populations do not match the known species morphologically. Parametric and non-parametric methods were used to delimit the species in Otatea using five chloroplast markers, one nuclear marker, and morphological characters. The parametric coalescent method and the non-parametric analysis supported the recognition of two distinct evolutionary lineages. Molecular clock estimates were used to estimate divergence times in Otatea. The results for divergence time in Otatea estimated the origin of the speciation events from the Late Miocene to Late Pleistocene. The species delimitation analyses (parametric and non-parametric) identified that the two populations of O. acuminata from Chiapas and Hidalgo are from two separate evolutionary lineages and these new species have morphological characters that separate them from O. acuminata s.s. The geological activity of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec may have isolated populations and limited the gene flow between Otatea species, driving speciation. Based on the results found here, I describe Otatea rzedowskiorum and Otatea victoriae as two new species, morphologically different from O. acuminata.
Statistical error model for a solar electric propulsion thrust subsystem
NASA Technical Reports Server (NTRS)
Bantell, M. H.
1973-01-01
The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.
Statistical circuit design for yield improvement in CMOS circuits
NASA Technical Reports Server (NTRS)
Kamath, H. J.; Purviance, J. E.; Whitaker, S. R.
1990-01-01
This paper addresses the statistical design of CMOS integrated circuits for improved parametric yield. The work uses the Monte Carlo technique of circuit simulation to obtain an unbiased estimation of the yield. A simple graphical analysis tool, the yield factor histogram, is presented. The yield factor histograms are generated by a new computer program called SPICENTER. Using the yield factor histograms, the most sensitive circuit parameters are noted, and their nominal values are changed to improve the yield. Two basic CMOS example circuits, one analog and one digital, are chosen and their designs are 'centered' to illustrate the use of the yield factor histograms for statistical circuit design.
Ray, Amrita; Weeks, Daniel E
2008-05-01
Linkage analysis programs invariably assume that the stated familial relationships are correct. Thus, it is common practice to resolve relationship errors by either discarding individuals with erroneous relationships or using an inferred alternative pedigree structure. These approaches are less than ideal because discarding data is wasteful and using inferred data can be statistically unsound. We have developed two linkage statistics that model relationship uncertainty by weighting over the possible true relationships. Simulations of data containing relationship errors were used to assess our statistics and compare them to the maximum-likelihood statistic (MLS) and the Sall non-parametric LOD score using true and discarded (where problematic individuals with erroneous relationships are discarded from the pedigree) structures. We simulated both small pedigree (SP) and large pedigree (LP) data sets typed genome-wide. Both data sets have several underlying true relationships; SP has one apparent relationship--full sibling--and LP has several different apparent relationship types. The results show that for both SP and LP, our relationship uncertainty linkage statistics (RULS) have power nearly as high as the MLS and Sall using the true structure. Also, the RULS have greater power to detect linkage than the MLS and Sall using the discarded structure. For example, for the SP data set and a dominant disease model, both the RULS had power of about 93%, while Sall and MLS have 90% and 83% power on the discarded structure. Thus, our RULS provide a statistically sound and powerful approach to the commonly encountered problem of relationship errors.
Group Parametrized Tunneling and Local Symmetry Conditions
NASA Astrophysics Data System (ADS)
Harter, William; Mitchell, Justin
2010-06-01
Recently, Hougen showed an ad hoc symmetry-based parameterization scheme for analyzing tunneling dynamics and high resolution spectra of fluxional molecular structure similar to S-parameter analysis of superfine structure in SF_6 or NH_3 maser inversion dynamics by Feynman et.al. The problem is that ad hoc parametrization, like path integration in general, can lead to logjams of parameters or ``paths'' with no way to pick out the relevant ones. We show a way to identify and use relevant parameters for a tunneling Hamiltonian H having global G-symmetry-defined bases by first expressing H as a linear combination bar γ ^i {bar g}_i of operators in dual symmetry group bar G. The coefficients bar γ ^i are parameters that define a complete set of allowed paths for any H with G-symmetry and are related thru spectral decomposition of G to eigensolutions of H. Quantum G vs.bar G duality generalizes lab -vs. -body and state -vs. -particle. The number of relevant bar γ ^i-parameters is reduced if a system tends to stick in states of a local symmetry subgroup LsubsetG so the H spectrum forms level clusters labeled by induced representations d(ℓ)(L)\\uparrowG. A cluster-(ℓ) has one E(epsilon)-level labeled by G species (epsilon) for each L species (ℓ) in Depsilon(G)downarrowL by Frobenius reciprocity. Then we apply local symmetry conditions to each irrep Depsilon(bar γ ^i {bar g}_i) that has already been reduced with respect to local symmetry L. This amounts to setting each off-diagonal component Dj,kepsilon(H) to zero. Local symmetry conditions may tell which bar γ ^i-parameters are redundant or zero and directly determine d(ℓ)\\uparrowG tunneling matrix eigenvalues that give E(epsilon)-levels as well as eigenvectors. Otherwise one may need to choose a particular localizing subgroup chain LsubsetL_1subsetL_2...G and further reduce the number of path parameters to facilitate spectral fitting. J.T. Hougen, 2009 MSS RJ01, {J Mol Spect 123, 197 (1987) W.G. Harter and
Mixing parametrizations for ocean climate modelling
NASA Astrophysics Data System (ADS)
Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir
2016-04-01
The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model
Physiological responses at short distances from a parametric speaker.
Lee, Soomin; Shimomura, Yoshihiro; Katsuura, Tetsuo
2012-06-13
In recent years, parametric speakers have been used in various circumstances. In our previous studies, we verified that the physiological burden of the sound of parametric speaker set at 2.6 m from the subjects was lower than that of the general speaker. However, nothing has yet been demonstrated about the effects of the sound of a parametric speaker at the shorter distance between parametric speakers the human body. Therefore, we studied this effect on physiological functions and task performance. Nine male subjects participated in this study. They completed three consecutive sessions: a 20-minute quiet period as a baseline, a 30-minute mental task period with general speakers or parametric speakers, and a 20-minute recovery period. We measured electrocardiogram (ECG) photoplethysmogram (PTG), electroencephalogram (EEG), systolic and diastolic blood pressure. Four experiments, one with a speaker condition (general speaker and parametric speaker), the other with a distance condition (0.3 m and 1.0 m), were conducted respectively at the same time of day on separate days. To examine the effects of the speaker and distance, three-way repeated measures ANOVA (speaker factor x distance factor x time factor) were conducted. In conclusion, we found that the physiological responses were not significantly different between the speaker condition and the distance condition. Meanwhile, it was shown that the physiological burdens increased with progress in time independently of speaker condition and distance condition. In summary, the effects of the parametric speaker at the 2.6 m distance were not obtained at the distance of 1 m or less.
NASA Astrophysics Data System (ADS)
Aliabadi, Amir A.; Staebler, Ralf M.; Liu, Michael; Herber, Andreas
2016-10-01
Aircraft measurements are used to characterize properties of clear-air turbulence in the lower Arctic troposphere. For typical vertical resolutions in general circulation models, there is evidence for both downgradient and countergradient vertical turbulent transport of momentum and heat in the mostly statically stable conditions within both the boundary layer and the free troposphere. Countergradient transport is enhanced in the free troposphere compared to the boundary layer. Three parametrizations are suggested to formulate the turbulent heat flux and are evaluated using the observations. The parametrization that accounts for the anisotropic nature of turbulence and buoyancy flux predicts both observed downgradient and countergradient transport of heat more accurately than those that do not. The inverse turbulent Prandtl number is found to only weakly decrease with increasing gradient Richardson number in a statistically significant way, but with large scatter in the data. The suggested parametrizations can potentially improve the performance of regional and global atmospheric models.
Johnson, H.O.; Gupta, S.C.; Vecchia, A.V.; Zvomuya, F.
2009-01-01
Excessive loading of sediment and nutrients to rivers is a major problem in many parts of the United States. In this study, we tested the non-parametric Seasonal Kendall (SEAKEN) trend model and the parametric USGS Quality of Water trend program (QWTREND) to quantify trends in water quality of the Minnesota River at Fort Snelling from 1976 to 2003. Both methods indicated decreasing trends in flow-adjusted concentrations of total suspended solids (TSS), total phosphorus (TP), and orthophosphorus (OP) and a generally increasing trend in flow-adjusted nitrate plus nitrite-nitrogen (NO3-N) concentration. The SEAKEN results were strongly influenced by the length of the record as well as extreme years (dry or wet) earlier in the record. The QWTREND results, though influenced somewhat by the same factors, were more stable. The magnitudes of trends between the two methods were somewhat different and appeared to be associated with conceptual differences between the flow-adjustment processes used and with data processing methods. The decreasing trends in TSS, TP, and OP concentrations are likely related to conservation measures implemented in the basin. However, dilution effects from wet climate or additional tile drainage cannot be ruled out. The increasing trend in NO3-N concentrations was likely due to increased drainage in the basin. Since the Minnesota River is the main source of sediments to the Mississippi River, this study also addressed the rapid filling of Lake Pepin on the Mississippi River and found the likely cause to be increased flow due to recent wet climate in the region. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Semi-parametric and non-parametric methods for clinical trials with incomplete data.
O'Brien, Peter C; Zhang, David; Bailey, Kent R
2005-02-15
Last observation carried forward (LOCF) and analysis using only data from subjects who complete a trial (Completers) are commonly used techniques for analysing data in clinical trials with incomplete data when the endpoint is change from baseline at last scheduled visit. We propose two alternative methods. The semi-parametric method, which cumulates changes observed between consecutive time points, is conceptually similar to the familiar life-table method and corresponding Kaplan-Meier estimation when the primary endpoint is time to event. A non-parametric analogue of LOCF is obtained by carrying forward, not the observed value, but the rank of the change from baseline at the last observation for each subject. We refer to this method as the LRCF method. Both procedures retain the simplicity of LOCF and Completers analyses and, like these methods, do not require data imputation or modelling assumptions. In the absence of any incomplete data they reduce to the usual two-sample tests. In simulations intended to reflect chronic diseases that one might encounter in practice, LOCF was observed to produce markedly biased estimates and markedly inflated type I error rates when censoring was unequal in the two treatment arms. These problems did not arise with the Completers, Cumulative Change, or LRCF methods. Cumulative Change and LRCF were more powerful than Completers, and the Cumulative Change test provided more efficient estimates than the Completers analysis, in all simulations. We conclude that the Cumulative Change and LRCF methods are preferable to LOCF and Completers analyses. Mixed model repeated measures (MMRM) performed similarly to Cumulative Change and LRCF and makes somewhat less restrictive assumptions about missingness mechanisms, so that it is also a reasonable alternative to LOCF and Completers analyses.
Mathematical and statistical analysis
NASA Technical Reports Server (NTRS)
Houston, A. Glen
1988-01-01
The goal of the mathematical and statistical analysis component of RICIS is to research, develop, and evaluate mathematical and statistical techniques for aerospace technology applications. Specific research areas of interest include modeling, simulation, experiment design, reliability assessment, and numerical analysis.
... Research AMIGAS Fighting Cervical Cancer Worldwide Stay Informed Statistics for Other Kinds of Cancer Breast Cervical Colorectal ( ... Skin Vaginal and Vulvar Cancer Home Uterine Cancer Statistics Language: English Español (Spanish) Recommend on Facebook Tweet ...
Experiment in Elementary Statistics
ERIC Educational Resources Information Center
Fernando, P. C. B.
1976-01-01
Presents an undergraduate laboratory exercise in elementary statistics in which students verify empirically the various aspects of the Gaussian distribution. Sampling techniques and other commonly used statistical procedures are introduced. (CP)
Avoiding negative reviewer comments: common statistical errors in anesthesia journals.
Lee, Sangseok
2016-06-01
Manuscripts submitted to journals should be understandable even to those who are not experts in a particular field. Moreover, they should use publicly available materials and the results should be verifiable and reproducible. Readers and reviewers will want to check the strengths and weaknesses of the research study design, and ways to make this determination should be clear through proper analysis methods. Studies should be described in detail so as to help readers understand the results. Statistical analysis is one of the key methods by which to do this. The inappropriate application of statistical methods could be misleading to readers and clinicians. While many researchers describe their general research methods in detail, statistical methods tend to be described briefly, with certain omissions or errors or other incorrect aspects. For instance, researchers should describe whether the median or mean was used, whether parametric or nonparametric tests were used, whether the data meet the normality test, whether confounding factors were corrected, and whether stratification or matching methods were used. Statistical analysis regardless of the program should be reported correctly. The results may be less reliable if the statistical assumptions before applying the statistical method are not met. These common errors in statistical methods originate from the researcher's lack of knowledge of statistics and/or from the lack of any statistical consultation. The aim of this work is to help researchers know what is important statistically and how to present it in papers.
Avoiding negative reviewer comments: common statistical errors in anesthesia journals
2016-01-01
Manuscripts submitted to journals should be understandable even to those who are not experts in a particular field. Moreover, they should use publicly available materials and the results should be verifiable and reproducible. Readers and reviewers will want to check the strengths and weaknesses of the research study design, and ways to make this determination should be clear through proper analysis methods. Studies should be described in detail so as to help readers understand the results. Statistical analysis is one of the key methods by which to do this. The inappropriate application of statistical methods could be misleading to readers and clinicians. While many researchers describe their general research methods in detail, statistical methods tend to be described briefly, with certain omissions or errors or other incorrect aspects. For instance, researchers should describe whether the median or mean was used, whether parametric or nonparametric tests were used, whether the data meet the normality test, whether confounding factors were corrected, and whether stratification or matching methods were used. Statistical analysis regardless of the program should be reported correctly. The results may be less reliable if the statistical assumptions before applying the statistical method are not met. These common errors in statistical methods originate from the researcher's lack of knowledge of statistics and/or from the lack of any statistical consultation. The aim of this work is to help researchers know what is important statistically and how to present it in papers. PMID:27274365
Marginally specified priors for non-parametric Bayesian estimation.
Kessler, David C; Hoff, Peter D; Dunson, David B
2015-01-01
Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables.
Impacts of advanced manufacturing technology on parametric estimating
NASA Astrophysics Data System (ADS)
Hough, Paul G.
1989-12-01
The introduction of advanced manufacturing technology in the aerospace industry poses serious challenges for government cost analysts. Traditionally, the analysts have relied on parametric estimating techniques for both planning and budgeting. Despite its problems, this approach has proven to be a remarkably useful and robust tool for estimating new weapon system costs. However, rapid improvements in both product and process technology could exacerbate current difficulties, and diminish the utility of the parametric approach. This paper reviews some weakness associated with parametrics, then proceeds to examine how specific aspects of the factory of the future may further impact parametric estimating, and suggests avenues of research for their resolution. This paper is an extended version of Cost Estimating for the Factory of the Future. Parametric estimating is a method by which aggregated costs are derived as a function of high-level product characteristics or parameters. The resulting equations are known as cost estimating relationships (CERs). Such equations are particularly useful when detailed technical specifications are not available.
Distributed parametric effect in long lines and its applications
NASA Astrophysics Data System (ADS)
Shestopaloff, Yuri K.
2011-10-01
The article considers a parametric effect which takes place when the velocity of signal propagation in a long line changes. We found the analytical solution describing the form of the transformed signal for a line with losses, when line parameters change symmetrically. We also considered lines without losses, with asymmetrical change of parameters. Our theoretical results comply with experimental data. In certain conditions, such a line can be used as an amplifier. The parametric effect in optics is described by Maxwell's equations, while in case of a long line, the analysis is based on telegrapher's equations. However, it turns out that in the end, both in optics and electronics, the parametric effect is described by wave equations that are mathematically similar. This is because fundamentally, when the parameters of the propagating medium change, the parametric effect is physically based on energy interchange between the controlling (pump) signal and the transformed one. So, the obtained results can be used for analysis of parametric effects in optics and electronics.
Optimization of output power in a fiber optical parametric oscillator.
Jin, Lei; Martinez, Amos; Yamashita, Shinji
2013-09-23
Fiber optical parametric oscillators (FOPOs) are coherent sources that can provide ultra-broadband tunability and high output power levels and are been considered for applications such as medical imaging and sensing. While most recent literature has focused on advancing the performance of these devices experimentally, theoretical studies are still scarce. In contrast, ordinary laser theory is very mature, has been thoroughly studied and is now well understood from the point of view of fundamental physics. In this work, we present a theoretical study of OPOs and in particular we theoretically discuss the process of gain saturation in optical parametric amplifiers. In order to emphasize the significant difference between the two coherent sources, we compare the optimized coupling ratios for maximum output powers of the ordinary laser and the optical parametric oscillator and demonstrate that in contrast to ordinary lasers, highest output powers in optical parametric oscillators are achieved with output coupling ratios close to 1. We confirm experimentally our theoretical studies by building a narrowband fiber optical parametric oscillator at 1450nm with multi-watt output power. We show that the device is robust to intracavity losses and achieve peak power as high as 2.4W.
Incorporating parametric uncertainty into population viability analysis models
McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.
2011-01-01
Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.
Towards an Empirically Based Parametric Explosion Spectral Model
Ford, S R; Walter, W R; Ruppert, S; Matzel, E; Hauk, T; Gok, R
2009-08-31
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before been tested. The focus of our work is on the local and regional distances (< 2000 km) and phases (Pn, Pg, Sn, Lg) necessary to see small explosions. We are developing a parametric model of the nuclear explosion seismic source spectrum that is compatible with the earthquake-based geometrical spreading and attenuation models developed using the Magnitude Distance Amplitude Correction (MDAC) techniques (Walter and Taylor, 2002). The explosion parametric model will be particularly important in regions without any prior explosion data for calibration. The model is being developed using the available body of seismic data at local and regional distances for past nuclear explosions at foreign and domestic test sites. Parametric modeling is a simple and practical approach for widespread monitoring applications, prior to the capability to carry out fully deterministic modeling. The achievable goal of our parametric model development is to be able to predict observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
ERIC Educational Resources Information Center
Lenard, Christopher; McCarthy, Sally; Mills, Terence
2014-01-01
There are many different aspects of statistics. Statistics involves mathematics, computing, and applications to almost every field of endeavour. Each aspect provides an opportunity to spark someone's interest in the subject. In this paper we discuss some ethical aspects of statistics, and describe how an introduction to ethics has been…
Teaching Statistics Using SAS.
ERIC Educational Resources Information Center
Mandeville, Garrett K.
The Statistical Analysis System (SAS) is presented as the single most appropriate statistical package to use as an aid in teaching statistics. A brief review of literature in which SAS is compared to SPSS, BMDP, and other packages is followed by six examples which demonstrate features unique to SAS which have pedagogical utility. Of particular…
Minnesota Health Statistics 1988.
ERIC Educational Resources Information Center
Minnesota State Dept. of Health, St. Paul.
This document comprises the 1988 annual statistical report of the Minnesota Center for Health Statistics. After introductory technical notes on changes in format, sources of data, and geographic allocation of vital events, an overview is provided of vital health statistics in all areas. Thereafter, separate sections of the report provide tables…
Robust non-parametric tests for complex-repeated measures problems in ophthalmology.
Brombin, Chiara; Midena, Edoardo; Salmaso, Luigi
2013-12-01
The NonParametric Combination methodology (NPC) of dependent permutation tests allows the experimenter to face many complex multivariate testing problems and represents a convincing and powerful alternative to standard parametric methods. The main advantage of this approach lies in its flexibility in handling any type of variable (categorical and quantitative, with or without missing values) while at the same time taking dependencies among those variables into account without the need of modelling them. NPC methodology enables to deal with repeated measures, paired data, restricted alternative hypotheses, missing data (completely at random or not), high-dimensional and small sample size data. Hence, NPC methodology can offer a significant contribution to successful research in biomedical studies with several endpoints, since it provides reasonably efficient solutions and clear interpretations of inferential results. Pesarin F. Multivariate permutation tests: with application in biostatistics. Chichester-New York: John Wiley &Sons, 2001; Pesarin F, Salmaso L. Permutation tests for complex data: theory, applications and software. Chichester, UK: John Wiley &Sons, 2010. We focus on non-parametric permutation solutions to two real-case studies in ophthalmology, concerning complex-repeated measures problems. For each data set, different analyses are presented, thus highlighting characteristic aspects of the data structure itself. Our goal is to present different solutions to multivariate complex case studies, guiding researchers/readers to choose, from various possible interpretations of a problem, the one that has the highest flexibility and statistical power under a set of less stringent assumptions. MATLAB code has been implemented to carry out the analyses.
A Comparison of Boundary-Layer Characteristics Simulated Using Different Parametrization Schemes
NASA Astrophysics Data System (ADS)
Wang, Weiguo; Shen, Xinyong; Huang, Wenyan
2016-11-01
We compare daytime planetary boundary-layer (PBL) characteristics under fair-weather conditions simulated using a single column version of the Weather Research and Forecasting model with different PBL parametrization schemes. The model is driven only by prescribed surface heat fluxes and horizontal pressure gradient forcing. Parametrizations for all physical processes except for turbulence and transport in the PBL are turned off in the simulations to ensure the discrepancies in the simulated PBL flow are due only to differences in the PBL schemes. A large-eddy simulation (LES) of the evolution of a daytime PBL is performed as a benchmark to examine how well a PBL parametrization scheme reproduces the LES results, and performance statistics are compared to rank those schemes. In general, hybrid local and non-local schemes such as the Yonsei University and Asymmetrical Convective Model (version 2) schemes perform better in reproducing the LES results, particularly well-mixed features, than do local schemes. Among local schemes, the University of Washington scheme produces the results closest to the LES. Local schemes, such as those of Mellor-Yamada-Janjic and Mellor-Yamada-Nakanishi-Niino, simulate too low an entrainment flux, while PBL heights diagnosed from the simulations using local schemes are lower than those from the LES results. Hybrid local and non-local schemes are more sensitive to vertical grid resolution than local schemes. With a higher vertical resolution in the PBL, the schemes using the eddy-diffusivity and mass-flux methods perform better. Differences in the values of eddy diffusivity, length scale, and turbulence kinetic energy and their vertical distributions are large.
NASA Astrophysics Data System (ADS)
Takara, K. T.
2015-12-01
This paper describes a non-parametric frequency analysis method for hydrological extreme-value samples with a size larger than 100, verifying the estimation accuracy with a computer intensive statistics (CIS) resampling such as the bootstrap. Probable maximum values are also incorporated into the analysis for extreme events larger than a design level of flood control. Traditional parametric frequency analysis methods of extreme values include the following steps: Step 1: Collecting and checking extreme-value data; Step 2: Enumerating probability distributions that would be fitted well to the data; Step 3: Parameter estimation; Step 4: Testing goodness of fit; Step 5: Checking the variability of quantile (T-year event) estimates by the jackknife resampling method; and Step_6: Selection of the best distribution (final model). The non-parametric method (NPM) proposed here can skip Steps 2, 3, 4 and 6. Comparing traditional parameter methods (PM) with the NPM, this paper shows that PM often underestimates 100-year quantiles for annual maximum rainfall samples with records of more than 100 years. Overestimation examples are also demonstrated. The bootstrap resampling can do bias correction for the NPM and can also give the estimation accuracy as the bootstrap standard error. This NPM has advantages to avoid various difficulties in above-mentioned steps in the traditional PM. Probable maximum events are also incorporated into the NPM as an upper bound of the hydrological variable. Probable maximum precipitation (PMP) and probable maximum flood (PMF) can be a new parameter value combined with the NPM. An idea how to incorporate these values into frequency analysis is proposed for better management of disasters that exceed the design level. The idea stimulates more integrated approach by geoscientists and statisticians as well as encourages practitioners to consider the worst cases of disasters in their disaster management planning and practices.
Statistical Methods for Astronomy
NASA Astrophysics Data System (ADS)
Feigelson, Eric D.; Babu, G. Jogesh
Statistical methodology, with deep roots in probability theory, providesquantitative procedures for extracting scientific knowledge from astronomical dataand for testing astrophysical theory. In recent decades, statistics has enormouslyincreased in scope and sophistication. After a historical perspective, this reviewoutlines concepts of mathematical statistics, elements of probability theory,hypothesis tests, and point estimation. Least squares, maximum likelihood, andBayesian approaches to statistical inference are outlined. Resampling methods,particularly the bootstrap, provide valuable procedures when distributionsfunctions of statistics are not known. Several approaches to model selection andgoodness of fit are considered.
Statistics: Notes and Examples. Study Guide for the Doctor of Arts in Computer-Based Learning.
ERIC Educational Resources Information Center
MacFarland, Thomas W.
This study guide presents lessons on hand calculating various statistics: Central Tendency and Dispersion; Tips on Data Presentation; Two-Tailed and One-Tailed Tests of Significance; Error Types; Standard Scores; Non-Parametric Tests such as Chi-square, Spearman Rho, Sign Test, Wilcoxon Matched Pairs, Mann-Whitney U, Kruskal-Wallis, and Rank Sums;…
THz-wave parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2004-12-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We have also developed a novel basic technology for THz imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral trasillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
Feedback-Enhanced Parametric Squeezing of Mechanical Motion
NASA Astrophysics Data System (ADS)
Vinante, A.; Falferi, P.
2013-11-01
We present a single-quadrature feedback scheme able to overcome the conventional 3 dB limit on parametric squeezing. The method is experimentally demonstrated in a micromechanical system based on a cantilever with a magnetic tip. The cantilever is detected at low temperature by a SQUID susceptometer, while parametric pumping is obtained by modulating the magnetic field gradient at twice the cantilever frequency. A maximum squeezing of 11.5 dB and 11.3 dB is observed, respectively, in the response to a sinusoidal test signal and in the thermomechanical noise. So far, the maximum squeezing factor is limited only by the maximum achievable parametric modulation. The proposed technique might be used to squeeze one quadrature of a mechanical resonator below the quantum noise level, even without the need for a quantum limited detector.
A quadratic-shaped-finger comb parametric resonator
NASA Astrophysics Data System (ADS)
Guo, Congzhong; Fedder, Gary K.
2013-09-01
A large-stroke (8 µm) parametric resonator excited by an in-plane ‘shaped-finger’ electrostatic comb drive is fabricated using a 15 µm thick silicon-on-insulator microelectromechanical systems (SOI-MEMS) process. A quadratic capacitance-engagement response is synthesized by engineering a custom-shaped comb finger profile. A folded-flexure suspension allows lateral motion while constraining rotational modes. The excitation of the nonlinear parametric resonance is realized by selecting an appropriate combination of the linear and cubic electrostatic stiffness coefficients through a specific varying-gap comb-finger design. The large-amplitude parametric resonance promotes high signal-to-noise ratio for potential use in sensitive chemical gravimetric sensors, strain gauges, and mode-matched gyroscope applications.
Cosmic slowing down of acceleration for several dark energy parametrizations
Magaña, Juan; Cárdenas, Víctor H.; Motta, Verónica E-mail: victor.cardenas@uv.cl
2014-10-01
We further investigate slowing down of acceleration of the universe scenario for five parametrizations of the equation of state of dark energy using four sets of Type Ia supernovae data. In a maximal probability analysis we also use the baryon acoustic oscillation and cosmic microwave background observations. We found the low redshift transition of the deceleration parameter appears, independently of the parametrization, using supernovae data alone except for the Union 2.1 sample. This feature disappears once we combine the Type Ia supernovae data with high redshift data. We conclude that the rapid variation of the deceleration parameter is independent of the parametrization. We also found more evidence for a tension among the supernovae samples, as well as for the low and high redshift data.
Epicyclic helical channels for parametric resonance ionization cooling
Johson, Rolland Paul; Derbenev, Yaroslav
2015-08-23
Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.
Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1998-01-01
A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.
Coupled parametric design of flow control and duct shape
NASA Technical Reports Server (NTRS)
Florea, Razvan (Inventor); Bertuccioli, Luca (Inventor)
2009-01-01
A method for designing gas turbine engine components using a coupled parametric analysis of part geometry and flow control is disclosed. Included are the steps of parametrically defining the geometry of the duct wall shape, parametrically defining one or more flow control actuators in the duct wall, measuring a plurality of performance parameters or metrics (e.g., flow characteristics) of the duct and comparing the results of the measurement with desired or target parameters, and selecting the optimal duct geometry and flow control for at least a portion of the duct, the selection process including evaluating the plurality of performance metrics in a pareto analysis. The use of this method in the design of inter-turbine transition ducts, serpentine ducts, inlets, diffusers, and similar components provides a design which reduces pressure losses and flow profile distortions.
Semi-parametric estimation in failure time mixture models.
Taylor, J M
1995-09-01
A mixture model is an attractive approach for analyzing failure time data in which there are thought to be two groups of subjects, those who could eventually develop the endpoint and those who could not develop the endpoint. The proposed model is a semi-parametric generalization of the mixture model of Farewell (1982). A logistic regression model is proposed for the incidence part of the model, and a Kaplan-Meier type approach is used to estimate the latency part of the model. The estimator arises naturally out of the EM algorithm approach for fitting failure time mixture models as described by Larson and Dinse (1985). The procedure is applied to some experimental data from radiation biology and is evaluated in a Monte Carlo simulation study. The simulation study suggests the semi-parametric procedure is almost as efficient as the correct fully parametric procedure for estimating the regression coefficient in the incidence, but less efficient for estimating the latency distribution.
The impact of parametrized convection on cloud feedback.
Webb, Mark J; Lock, Adrian P; Bretherton, Christopher S; Bony, Sandrine; Cole, Jason N S; Idelkadi, Abderrahmane; Kang, Sarah M; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D; Zhao, Ming
2015-11-13
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback
The impact of parametrized convection on cloud feedback
Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming
2015-01-01
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud
Rönnegård, Lars; Valdar, William
2012-07-24
A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.
The binned bispectrum estimator: template-based and non-parametric CMB non-Gaussianity searches
NASA Astrophysics Data System (ADS)
Bucher, Martin; Racine, Benjamin; van Tent, Bartjan
2016-05-01
We describe the details of the binned bispectrum estimator as used for the official 2013 and 2015 analyses of the temperature and polarization CMB maps from the ESA Planck satellite. The defining aspect of this estimator is the determination of a map bispectrum (3-point correlation function) that has been binned in harmonic space. For a parametric determination of the non-Gaussianity in the map (the so-called fNL parameters), one takes the inner product of this binned bispectrum with theoretically motivated templates. However, as a complementary approach one can also smooth the binned bispectrum using a variable smoothing scale in order to suppress noise and make coherent features stand out above the noise. This allows one to look in a model-independent way for any statistically significant bispectral signal. This approach is useful for characterizing the bispectral shape of the galactic foreground emission, for which a theoretical prediction of the bispectral anisotropy is lacking, and for detecting a serendipitous primordial signal, for which a theoretical template has not yet been put forth. Both the template-based and the non-parametric approaches are described in this paper.
Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.
2013-10-20
We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048{sup 3} dark matter particles, 2048{sup 3} gas cells, and 17 billion adaptive rays in a L = 100 Mpc h {sup –1} box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h {sup –1}). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h {sup –1}) in order to make mock observations and theoretical predictions.
NASA Astrophysics Data System (ADS)
Blom, Philip S.; Marcillo, Omar E.
2017-03-01
A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. In order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.
Estimating the loss in expectation of life due to cancer using flexible parametric survival models.
Andersson, Therese M-L; Dickman, Paul W; Eloranta, Sandra; Lambe, Mats; Lambert, Paul C
2013-12-30
A useful summary measure for survival data is the expectation of life, which is calculated by obtaining the area under a survival curve. The loss in expectation of life due to a certain type of cancer is the difference between the expectation of life in the general population and the expectation of life among the cancer patients. This measure is used little in practice as its estimation generally requires extrapolation of both the expected and observed survival. A parametric distribution can be used for extrapolation of the observed survival, but it is difficult to find a distribution that captures the underlying shape of the survival function after the end of follow-up. In this paper, we base our extrapolation on relative survival, because it is more stable and reliable. Relative survival is defined as the observed survival divided by the expected survival, and the mortality analogue is excess mortality. Approaches have been suggested for extrapolation of relative survival within life-table data, by assuming that the excess mortality has reached zero (statistical cure) or has stabilized to a constant. We propose the use of flexible parametric survival models for relative survival, which enables estimating the loss in expectation of life on individual level data by making these assumptions or by extrapolating the estimated linear trend at the end of follow-up. We have evaluated the extrapolation from this model using data on four types of cancer, and the results agree well with observed data.
Parametric regression model for survival data: Weibull regression model as an example
2016-01-01
Weibull regression model is one of the most popular forms of parametric regression model that it provides estimate of baseline hazard function, as well as coefficients for covariates. Because of technical difficulties, Weibull regression model is seldom used in medical literature as compared to the semi-parametric proportional hazard model. To make clinical investigators familiar with Weibull regression model, this article introduces some basic knowledge on Weibull regression model and then illustrates how to fit the model with R software. The SurvRegCensCov package is useful in converting estimated coefficients to clinical relevant statistics such as hazard ratio (HR) and event time ratio (ETR). Model adequacy can be assessed by inspecting Kaplan-Meier curves stratified by categorical variable. The eha package provides an alternative method to model Weibull regression model. The check.dist() function helps to assess goodness-of-fit of the model. Variable selection is based on the importance of a covariate, which can be tested using anova() function. Alternatively, backward elimination starting from a full model is an efficient way for model development. Visualization of Weibull regression model after model development is interesting that it provides another way to report your findings. PMID:28149846
Non-parametric estimation and doubly-censored data: general ideas and applications to AIDS.
Jewell, N P
In many epidemiologic studies of human immunodeficiency virus (HIV) disease, interest focuses on the distribution of the length of the interval of time between two events. In many such cases, statistical estimation of properties of this distribution is complicated by the fact that observation of the times of both events is subject to intervalcensoring so that the length of time between the events is never observed exactly. Following DeGruttola and Lagakos, we call such data doubly-censored. Jewell, Malani and Vittinghoff showed that, with certain assumptions and for a particular doubly-censored data structure, non-parametric maximum likelihood estimation of the interval length distribution is equivalent to non-parametric estimation of a mixing distribution. Here, we extend these ideas to various other kinds of doubly-censored data. We consider application of the methods to various studies generated by investigations into the natural history of HIV disease with particular attention given to estimation of the distribution of time between infection of an individual (an index case) and transmission of HIV to their sexual partner.
Non-parametric estimation of a time-dependent predictive accuracy curve.
Saha-Chaudhuri, P; Heagerty, P J
2013-01-01
A major biomedical goal associated with evaluating a candidate biomarker or developing a predictive model score for event-time outcomes is to accurately distinguish between incident cases from the controls surviving beyond t throughout the entire study period. Extensions of standard binary classification measures like time-dependent sensitivity, specificity, and receiver operating characteristic (ROC) curves have been developed in this context (Heagerty, P. J., and others, 2000. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56, 337-344). We propose a direct, non-parametric method to estimate the time-dependent Area under the curve (AUC) which we refer to as the weighted mean rank (WMR) estimator. The proposed estimator performs well relative to the semi-parametric AUC curve estimator of Heagerty and Zheng (2005. Survival model predictive accuracy and ROC curves. Biometrics 61, 92-105). We establish the asymptotic properties of the proposed estimator and show that the accuracy of markers can be compared very simply using the difference in the WMR statistics. Estimators of pointwise standard errors are provided.
Kvist, Kajsa; Gerster, Mette; Andersen, Per Kragh; Kessing, Lars Vedel
2007-12-30
For recurrent events there is evidence that misspecification of the frailty distribution can cause severe bias in estimated regression coefficients (Am. J. Epidemiol 1998; 149:404-411; Statist. Med. 2006; 25:1672-1684). In this paper we adapt a procedure originally suggested in (Biometrika 1999; 86:381-393) for parallel data for checking the gamma frailty to recurrent events. To apply the model checking procedure, a consistent non-parametric estimator for the marginal gap time distributions is needed. This is in general not possible due to induced dependent censoring in the recurrent events setting, however, in (Biometrika 1999; 86:59-70) a non-parametric estimator for the joint gap time distributions based on the principle of inverse probability of censoring weights is suggested. Here, we attempt to apply this estimator in the model checking procedure and the performance of the method is investigated with simulations and applied to Danish registry data. The method is further investigated using the usual Kaplan-Meier estimator and a marginalized estimator for the marginal gap time distributions. We conclude that the procedure only works when the recurrent event is common and when the intra-individual association between gap times is weak.
Dickie, David A; Mikhael, Shadia; Job, Dominic E; Wardlaw, Joanna M; Laidlaw, David H; Bastin, Mark E
2015-12-01
Permutation testing has been widely implemented in voxel-based morphometry (VBM) tools. However, this type of non-parametric inference has yet to be thoroughly compared with traditional parametric inference in VBM studies of brain structure. Here we compare both types of inference and investigate what influence the number of permutations in permutation testing has on results in an exemplar study of how gray matter proportion changes with age in a group of working age adults. High resolution T1-weighted volume scans were acquired from 80 healthy adults aged 25-64years. Using a validated VBM procedure and voxel-based permutation testing for Pearson product-moment coefficient, the effect sizes of changes in gray matter proportion with age were assessed using traditional parametric and permutation testing inference with 100, 500, 1000, 5000, 10000 and 20000 permutations. The statistical significance was set at P<0.05 and false discovery rate (FDR) was used to correct for multiple comparisons. Clusters of voxels with statistically significant (PFDR<0.05) declines in gray matter proportion with age identified with permutation testing inference (N≈6000) were approximately twice the size of those identified with parametric inference (N=3221voxels). Permutation testing with 10000 (N=6251voxels) and 20000 (N=6233voxels) permutations produced clusters that were generally consistent with each other. However, with 1000 permutations there were approximately 20% more statistically significant voxels (N=7117voxels) than with ≥10000 permutations. Permutation testing inference may provide a more sensitive method than traditional parametric inference for identifying age-related differences in gray matter proportion. Based on the results reported here, at least 10000 permutations should be used in future univariate VBM studies investigating age related changes in gray matter to avoid potential false findings. Additional studies using permutation testing in large imaging databanks
Dickie, David A.; Mikhael, Shadia; Job, Dominic E.; Wardlaw, Joanna M.; Laidlaw, David H.; Bastin, Mark E.
2015-01-01
Permutation testing has been widely implemented in voxel-based morphometry (VBM) tools. However, this type of non-parametric inference has yet to be thoroughly compared with traditional parametric inference in VBM studies of brain structure. Here we compare both types of inference and investigate what influence the number of permutations in permutation testing has on results in an exemplar study of how grey matter proportion changes with age in a group of working age adults. High resolution T1-weighted volume scans were acquired from 80 healthy adults aged 25–64 years. Using a validated VBM procedure and voxel-based permutation testing for Pearson product-moment coefficient, the effect sizes of changes in grey matter proportion with age were assessed using traditional parametric and permutation testing inference with 100, 500, 1000, 5000, 10000 and 20000 permutations. The statistical significance was set at P < 0.05 and false discovery rate (FDR) used to correct for multiple comparisons. Clusters of voxels with statistically significant (PFDR < 0.05) declines in grey matter proportion with age identified with permutation testing inference (N ≈ 6000) were approximately twice the size of those identified with parametric inference (N = 3221 voxels). Permutation testing with 10000 (N = 6251 voxels) and 20000 (N = 6233 voxels) permutations produced clusters that were generally consistent with each other. However, with ≥ 1000 permutations there were approximately 20% more statistically significant voxels (N = 7117 voxels) than with 10000 permutations. Permutation testing inference may provide a more sensitive method than traditional parametric inference for identifying age-related differences in grey matter proportion. Based on the results reported here, at least 10000 permutations should be used in future univariate VBM studies investigating age related changes in grey matter to avoid potential false findings. Additional studies using permutation testing in large
Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers
2014-10-06
Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers Kevin O’Brien,1 Chris Macklin,2 Irfan Siddiqi,2 and Xiang Zhang1,3...overcome phase mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using “resonant...achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of −98 dBm. Such an amplifier is well suited to cryogenic
Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier
NASA Technical Reports Server (NTRS)
Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)
2014-01-01
A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.
Enhancement of entanglement in distant micromechanical mirrors using parametric interactions
NASA Astrophysics Data System (ADS)
Hu, Chang-Sheng; Huang, Xi-Rong; Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2017-02-01
We theoretically investigate the stability of a two cascaded cavity optomechanical system with optical parametric amplifiers (OPAs) inside the two coupled cavities, and study the steady-state entanglement between two distant mechanical resonators. We show that the parameter regime where the system is unstable without OPAs, such as relatively high laser intensity and blue detuning, can be exploited to build the steady-state mechanical entanglement by modulating the parametric gain. The application of OPAs is helpful to preserve the mechanical entanglement suffered from the dissipation at some finite temperature. The scheme provides an alternative way for improving and engineering the quantum entanglement of two distant mechanical oscillators.
Photon number amplification/duplication through parametric conversion
NASA Technical Reports Server (NTRS)
Dariano, G. M.; Macchiavello, C.; Paris, M.
1993-01-01
The performance of parametric conversion in achieving number amplification and duplication is analyzed. It is shown that the effective maximum gains G(sub *) remain well below their integer ideal values, even for large signals. Correspondingly, one has output Fano factors F(sub *) which are increasing functions of the input photon number. On the other hand, in the inverse (deamplifier/recombiner) operating mode quasi-ideal gains G(sub *) and small factors F(sub *) approximately equal to 10 percent are obtained. Output noise and non-ideal gains are ascribed to spontaneous parametric emission.
Electro-optically spectrum tailorable intracavity optical parametric oscillator.
Chung, H P; Chang, W K; Tseng, C H; Geiss, R; Pertsch, T; Chen, Y H
2015-11-15
We report a unique, pulsed intracavity optical parametric oscillator (IOPO) whose output spectrum is electro-optically (EO) tailorable based on an aperiodically poled lithium niobate (APPLN) working simultaneously as an optical parametric gain medium and an active gain spectrum filter in the system. We have successfully obtained from the IOPO the emission of single to multiple narrow-line signal spectral peaks in a near-infrared (1531 nm) band simply by electro-optic control. The power spectral density of the EO tailored signal can be enhanced by up to 10 times over the original (nontailored) signal.
Optimal feedback in efficient single-cavity optical parametric oscillators
Petnikova, V M; Shuvalov, Vladimir V
2010-09-10
An approach based on the description of competition of quadratic processes of merging and decomposition of quanta resulting in the formation of cnoidal waves on an effective cascade cubic Kerr-type nonlinearity is used to optimise the scheme of a single-cavity optical parametric oscillator. It is shown that the use of a feedback circuit (cavity) decreases the period of cnoidal waves produced in a nonlinear crystal, while the optimisation procedure of the transfer constant of this circuit (reflectivity of the output mirror of the cavity) is reduced to matching this period with the nonlinear crystal length. (optical parametric oscillators)
Parametric-Resonance Ionization Cooling in Twin-Helix.
V.S. Morozov, Ya.S. Derbenev, A. Afanasev, R.P. Johnson, Erdelyi. B., J.A. Maloney
2011-09-01
Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we developed an epicyclic twin-helix channel with correlated optics. Wedge-shaped absorbers immediately followed by short rf cavities are placed into the twin-helix channel. Parametric resonances are induced in both planes using helical quadrupole harmonics. We demonstrate resonant dynamics and cooling with stochastic effects off using GEANT4/G4beamline. We illustrate compensation of spherical aberrations and benchmark COSY Infinity, a powerful tool for aberration analysis and compensation.
Extreme prepulse contrast utilizing cascaded-optical parametric amplification
Jovanovic, I; Haefner, C; Wattellier, B; Barty, C J
2006-06-15
It has been shown recently that an optical parametric chirped-pulse amplifier can be easily reconfigured into a cascaded-optical parametric amplifier (COPA), enabling complete prepulse removal and optical switching with a window defined by the pump pulse duration. We have demonstrated instrument-limited measurement of the COPA prepulse contrast >1.4 x 10{sup 11} using 30-mJ pulses. The COPA technique is applicable to all energy ranges and pulse durations. A convenient millijoule-scale implementation of this technique is presented using a single, large-aspect-ratio quasi-phase-matched nonlinear crystal.
Parametric oscillatory instability in a signal-recycled LIGO interferometer
Vyatchanin, S P; Strigin, S E
2007-12-31
The undesirable effect of parametric oscillatory instability in a LIGO (Laser Interferometer Gravitational-Wave Observatory) laser gravitational-wave antenna with a signal-recirculation mirror is analysed in detail. The instability is manifested in excitation of the Stokes optical mode and elastic mechanical mode of the mirror. It is shown that, if the eigenfrequencies of Fabry-Perot resonators in the interferometer arms are different, the parametric instability is quite small due to a small passband band width. (fifth seminar in memory of d.n. klyshko)
Parametric Resonance of Magnetization Excited by Electric Field.
Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan A; Barsukov, Igor; Tiberkevich, Vasil; Xiao, John Q; Slavin, Andrei N; Krivorotov, Ilya N
2017-01-11
Manipulation of magnetization by electric field is a central goal of spintronics because it enables energy-efficient operation of spin-based devices. Spin wave devices are promising candidates for low-power information processing, but a method for energy-efficient excitation of short-wavelength spin waves has been lacking. Here we show that spin waves in nanoscale magnetic tunnel junctions can be generated via parametric resonance induced by electric field. Parametric excitation of magnetization is a versatile method of short-wavelength spin wave generation, and thus, our results pave the way toward energy-efficient nanomagnonic devices.
Epicyclic Helical Channels for Parametric Resonance Ionization Cooling
Andrei Afanaciev, Alex Bogacz, Yaroslav Derbenev, Kevin Beard, Valentin Ivanov, Rolland Johnson, Guimei Wang, Katsuya Yonehara
2009-05-01
In order to achieve cooling of muons in addition to 6D helical cooling channel (HCC) [1], we develop a technique based on a parametric resonance. The use of parametric resonances requires alternating dispersion, minimized at locations of thin absorbers, but maximized in between in order to compensate for chromatic aberrations [2]. These solutions can be combined in an Epicyclic Helical Cooling Channel (EHCC) that meets requirements of alternating dispersion of beam periodic orbit with best conditions for maintenance of stable beam transport in a continuous solenoid-type field [3]. We discuss here basic features and new simulation results for EHCC.
Generalized parametric down conversion, many particle interferometry, and Bell's theorem
NASA Technical Reports Server (NTRS)
Choi, Hyung Sup
1992-01-01
A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.
Traveling pulse on a periodic background in parametrically driven systems.
León, Alejandro O; Clerc, Marcel G; Coulibaly, Saliya
2015-05-01
Macroscopic systems with dissipation and time-modulated injection of energy, parametrically driven systems, can self-organize into localized states and/or patterns. We investigate a pulse that travels over a one-dimensional pattern in parametrically driven systems. Based on a minimal prototype model, we show that the pulses emerge through a subcritical Andronov-Hopf bifurcation of the underlying pattern. We describe a simple physical system, a magnetic wire forced with a transverse oscillatory magnetic field, which displays these traveling pulses.
BIAZA statistics guidelines: toward a common application of statistical tests for zoo research.
Plowman, Amy B
2008-05-01
Zoo research presents many statistical challenges, mostly arising from the need to work with small sample sizes. Efforts to overcome these often lead to the misuse of statistics including pseudoreplication, inappropriate pooling, assumption violation or excessive Type II errors because of using tests with low power to avoid assumption violation. To tackle these issues and make some general statistical recommendations for zoo researchers, the Research Group of the British and Irish Association of Zoos and Aquariums (BIAZA) conducted a workshop. Participants included zoo-based researchers, university academics with zoo interests and three statistical experts. The result was a BIAZA publication Zoo Research Guidelines: Statistics for Typical Zoo Datasets (Plowman [2006] Zoo research guidelines: statistics for zoo datasets. London: BIAZA), which provides advice for zoo researchers on study design and analysis to ensure appropriate and rigorous use of statistics. The main recommendations are: (1) that many typical zoo investigations should be conducted as single case/small N randomized designs, analyzed with randomization tests, (2) that when comparing complete time budgets across conditions in behavioral studies, G tests and their derivatives are the most appropriate statistical tests and (3) that in studies involving multiple dependent and independent variables there are usually no satisfactory alternatives to traditional parametric tests and, despite some assumption violations, it is better to use these tests with careful interpretation, than to lose information through not testing at all. The BIAZA guidelines were recommended by American Association of Zoos and Aquariums (AZA) researchers at the AZA Annual Conference in Tampa, FL, September 2006, and are free to download from www.biaza.org.uk.
Simultaneous statistical inference for epigenetic data.
Schildknecht, Konstantin; Olek, Sven; Dickhaus, Thorsten
2015-01-01
Epigenetic research leads to complex data structures. Since parametric model assumptions for the distribution of epigenetic data are hard to verify we introduce in the present work a nonparametric statistical framework for two-group comparisons. Furthermore, epigenetic analyses are often performed at various genetic loci simultaneously. Hence, in order to be able to draw valid conclusions for specific loci, an appropriate multiple testing correction is necessary. Finally, with technologies available for the simultaneous assessment of many interrelated biological parameters (such as gene arrays), statistical approaches also need to deal with a possibly unknown dependency structure in the data. Our statistical approach to the nonparametric comparison of two samples with independent multivariate observables is based on recently developed multivariate multiple permutation tests. We adapt their theory in order to cope with families of hypotheses regarding relative effects. Our results indicate that the multivariate multiple permutation test keeps the pre-assigned type I error level for the global null hypothesis. In combination with the closure principle, the family-wise error rate for the simultaneous test of the corresponding locus/parameter-specific null hypotheses can be controlled. In applications we demonstrate that group differences in epigenetic data can be detected reliably with our methodology.
Statistical properties of ionospheric stimulated electromagnetic emissions
NASA Astrophysics Data System (ADS)
Karlsson, R. L.; Carozzi, T. D.; Norin, L.; Bergman, J. E. S.; Thidé, B.
2006-08-01
We have analysed the statistical properties of the stimulated electromagnetic emissions (SEE) spectral features in the steady state, reached after a long period of continuous HF pumping of the ionosphere in experiments performed at the Sura ionospheric radio research facility in Russia. Using a digital filter bank method, we have been able to analyse complex valued signals within narrow frequency bands. Each of the SEE spectral features are thereby separated into a number of narrow spectral components. Statistical tests were performed for all these spectral components and the distributions of the spectral amplitudes and phases were evaluated. Also, a test for sinusoidal components was performed. These tests showed that all observed SEE features were indistinguishable from coloured Gaussian noise. The test results exclude that the SEE features can be the result of a single isolated coherent process, but does not rule out that there could be many statistically independent parametric wave-wave processes taking place simultaneously at various parts of the HF-pumped ionosphere, as long as the superposition from all these is incoherent. Furthermore, from the test results, we cannot exclude the possibility that the waveforms of some, or all, of the SEE features may be chaotic.
Statistical design of a uranium corrosion experiment
Wendelberger, Joanne R; Moore, Leslie M
2009-01-01
This work supports an experiment being conducted by Roland Schulze and Mary Ann Hill to study hydride formation, one of the most important forms of corrosion observed in uranium and uranium alloys. The study goals and objectives are described in Schulze and Hill (2008), and the work described here focuses on development of a statistical experiment plan being used for the study. The results of this study will contribute to the development of a uranium hydriding model for use in lifetime prediction models. A parametric study of the effect of hydrogen pressure, gap size and abrasion on hydride initiation and growth is being planned where results can be analyzed statistically to determine individual effects as well as multi-variable interactions. Input to ESC from this experiment will include expected hydride nucleation, size, distribution, and volume on various uranium surface situations (geometry) as a function of age. This study will also address the effect of hydrogen threshold pressure on corrosion nucleation and the effect of oxide abrasion/breach on hydriding processes. Statistical experiment plans provide for efficient collection of data that aids in understanding the impact of specific experiment factors on initiation and growth of corrosion. The experiment planning methods used here also allow for robust data collection accommodating other sources of variation such as the density of inclusions, assumed to vary linearly along the cast rods from which samples are obtained.
Fanjoux, Gil; Lantz, Eric; Michaud, Jérémy; Sylvestre, Thibaut
2012-11-19
In a way analogous to a light pulse that can be optically delayed via slow light propagation in Kerr-type nonlinear media, we theoretically demonstrate that beam steering and spatial walk-off compensation can be achieved in noncollinear optical parametric amplification. We identify this effect as a result of the quadratic phase shift induced by parametric amplification that leads to the cancellation of the spatial walk-off and collinear propagation of all beams though they have different wavevectors. Experimental evidence is reported of a soliton array steering in a Kerr slab waveguide.
... Naloxone Pain Prevention Treatment Trends & Statistics Women and Drugs Publications Funding Funding Opportunities Clinical Research Post-Award Concerns General Information Grant & Contract Application ...
Statistical distribution sampling
NASA Technical Reports Server (NTRS)
Johnson, E. S.
1975-01-01
Determining the distribution of statistics by sampling was investigated. Characteristic functions, the quadratic regression problem, and the differential equations for the characteristic functions are analyzed.
NASA's X-Plane Database and Parametric Cost Model v 2.0
NASA Technical Reports Server (NTRS)
Sterk, Steve; Ogluin, Anthony; Greenberg, Marc
2016-01-01
The NASA Armstrong Cost Engineering Team with technical assistance from NASA HQ (SID)has gone through the full process in developing new CERs from Version #1 to Version #2 CERs. We took a step backward and reexamined all of the data collected, such as dependent and independent variables, cost, dry weight, length, wingspan, manned versus unmanned, altitude, Mach number, thrust, and skin. We used a well- known statistical analysis tool called CO$TAT instead of using "R" multiple linear or the "Regression" tool found in Microsoft Excel(TradeMark). We setup an "array of data" by adding 21" dummy variables;" we analyzed the standard error (SE) and then determined the "best fit." We have parametrically priced-out several future X-planes and compared our results to those of other resources. More work needs to be done in getting "accurate and traceable cost data" from historical X-plane records!
Assessing T cell clonal size distribution: a non-parametric approach.
Bolkhovskaya, Olesya V; Zorin, Daniil Yu; Ivanchenko, Mikhail V
2014-01-01
Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.
Zerzucha, Piotr; Boguszewska, Dominika; Zagdańska, Barbara; Walczak, Beata
2012-03-16
Spot detection is a mandatory step in all available software packages dedicated to the analysis of 2D gel images. As the majority of spots do not represent individual proteins, spot detection can obscure the results of data analysis significantly. This problem can be overcome by a pixel-level analysis of 2D images. Differences between the spot and the pixel-level approaches are demonstrated by variance analysis for real data sets (part of a larger research project initiated to investigate the molecular mechanism of the response of the potato to drought stress). As the method of choice for the analysis of data variation, the non-parametric MANOVA was chosen. NP-MANOVA is recommended as a flexible and very fast tool for the evaluation of the statistical significance of the factor(s) studied.
Time-varying linear and nonlinear parametric model for Granger causality analysis.
Li, Yang; Wei, Hua-Liang; Billings, Steve A; Liao, Xiao-Feng
2012-04-01
Statistical measures such as coherence, mutual information, or correlation are usually applied to evaluate the interactions between two or more signals. However, these methods cannot distinguish directions of flow between two signals. The capability to detect causalities is highly desirable for understanding the cooperative nature of complex systems. The main objective of this work is to present a linear and nonlinear time-varying parametric modeling and identification approach that can be used to detect Granger causality, which may change with time and may not be detected by traditional methods. A numerical example, in which the exact causal influences relationships, is presented to illustrate the performance of the method for time-varying Granger causality detection. The approach is applied to EEG signals to track and detect hidden potential causalities. One advantage of the proposed model, compared with traditional Granger causality, is that the results are easier to interpret and yield additional insights into the transient directed dynamical Granger causality interactions.
Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube
NASA Technical Reports Server (NTRS)
Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.
2005-01-01
A parametric investigation has been made of thrust augmentation of a 1 inch diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentations for each ejector were fitted using a polynomial response surface, from which the optimum ejector diameters, and nose radius, were found. Thrust augmentations above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.
ANSYS PARAMETRIC MODEL FOR TANK DST-AY
JULYK, L.J.; MACKEY, T.C.
2003-06-19
This report documents the parametric ANSYS models developed for dome load analyses of double-shell tanks. The default model parameters are specific to the AY tanks but can be easily modified for tank-specific analysis of AN, AW, AP, AZ or SY tanks. Both axisymmetric slice and full 360 degree models are provided. The purpose of this calculation is to develop a parametric finite element analysis model of the Hanford Site underground waste storage tanks. This is not an analysis. Instead, the present calculation develops a parametric model of the double shell tank DST-AY, which is based on Buyer-supplied as-built drawings and information for the analyses of record (AOR) for Double-Shell Tanks (DSTs), encompassing the existing tank load conditions. The computer model has various parameters that can be either changed directly or easily added by a knowledgeable ANSYS user. These parameters are modified to consider field conditions, such as in-situ wall thickness of primary steel tank, dead and live loads, moving loads, berm loads, soil overburden depth plus surrounding soil, internal waste level and waste specific gravity, internal vapor pressure, and thermal loads within the tank. This document contains sample calculations that demonstrate how various aspects of the parametric model function. These sample calculations in this document are not to be used for assessing the structural integrity of the DST-AY tanks at the Hanford Site.
Soil Analysis using the semi-parametric NAA technique
Zamboni, C. B.; Silveira, M. A. G.; Medina, N. H.
2007-10-26
The semi-parametric Neutron Activation Analysis technique, using Au as a flux monitor, was applied to measure element concentrations of Br, Ca, Cl, K, Mn and Na for soil characterization. The results were compared with those using the Instrumental Neutron Activation Analysis technique and they found to be compatible. The viability, advantages, and limitations of using these two analytic methodologies are discussed.
A new parametric method of estimating the joint probability density
NASA Astrophysics Data System (ADS)
Alghalith, Moawia
2017-04-01
We present simple parametric methods that overcome major limitations of the literature on joint/marginal density estimation. In doing so, we do not assume any form of marginal or joint distribution. Furthermore, using our method, a multivariate density can be easily estimated if we know only one of the marginal densities. We apply our methods to financial data.
Infra-red parametric generation: Phase mismatch condition
NASA Astrophysics Data System (ADS)
Ghosh, S.; Dubey, Swati; Jain, Kamal
2015-07-01
An analytical investigation is made for the Infrared parametric generation in doped semiconductor plasma under phase mismatch condition. Theoretical formulations are undertaken to determine induced polarization and threshold pump field for the onset of parametric generation in semiconductor plasma medium. The origin of this nonlinear interaction lies in the second order optical susceptibility arising due to the induced nonlinear current density in piezoelectric medium. Numerical estimations are made for n- type InSb at 77 K duly irradiated by a pulsed 10.6µm CO2 laser. It is very difficult to attain exact phase matching in experimental frame so we have considered a tolerable small phase mismatch in order to attain a new result. Its effect on the Infrared parametric generation in compound semiconductor is examined through induced polarization. Transmitted intensity is determined to have an idea about conversion efficiency of the said process. Phase mismatch tends to raise the required pump field to stimulate the parametric generation. Transmitted intensity is found to decrease with coherence length lc and increase carrier concentration n0, which is favorable for improved conversion efficiency.
Optical parametric oscillation in one-dimensional microcavities
NASA Astrophysics Data System (ADS)
Lecomte, Timothée; Ardizzone, Vincenzo; Abbarchi, Marco; Diederichs, Carole; Miard, Audrey; Lemaitre, Aristide; Sagnes, Isabelle; Senellart, Pascale; Bloch, Jacqueline; Delalande, Claude; Tignon, Jerome; Roussignol, Philippe
2013-04-01
We present a comprehensive investigation of optical parametric oscillation in resonantly excited one-dimensional semiconductor microcavities with embedded quantum wells. Such solid-state structures feature a fine control over light-matter coupling and produce a photonic/polaritonic mode fan that is exploited for the efficient emission of parametric beams. We implement an energy-degenerate optical parametric oscillator with balanced signal and idler intensities via a polarization-inverting mechanism. In this paper, we (i) precisely review the multimode photonic/polaritonic structure of individual emitters, (ii) provide a thorough comparison between experiment and theory, focusing on the power and the threshold dependence on the exciton-photon detuning, (iii) discuss the influence of inhomogeneous broadening of the excitonic transition and finite size, and (iv) find that a large exciton-photon detuning is a key parameter to reach a high output power and a high conversion efficiency. Our study highlights the predictive character of the polariton interaction theory and the flexibility of one-dimensional semiconductor microcavities as a platform to study parametric phenomena.
Update on Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl. H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda
2011-01-01
Since the June 2010 Astronomy Conference, an independent review of our cost data base discovered some inaccuracies and inconsistencies which can modify our previously reported results. This paper will review changes to the data base, our confidence in those changes and their effect on various parametric cost models
Infra-red parametric generation: Phase mismatch condition
Ghosh, S.; Dubey, Swati; Jain, Kamal
2015-07-31
An analytical investigation is made for the Infrared parametric generation in doped semiconductor plasma under phase mismatch condition. Theoretical formulations are undertaken to determine induced polarization and threshold pump field for the onset of parametric generation in semiconductor plasma medium. The origin of this nonlinear interaction lies in the second order optical susceptibility arising due to the induced nonlinear current density in piezoelectric medium. Numerical estimations are made for n- type InSb at 77 K duly irradiated by a pulsed 10.6µm CO{sub 2} laser. It is very difficult to attain exact phase matching in experimental frame so we have considered a tolerable small phase mismatch in order to attain a new result. Its effect on the Infrared parametric generation in compound semiconductor is examined through induced polarization. Transmitted intensity is determined to have an idea about conversion efficiency of the said process. Phase mismatch tends to raise the required pump field to stimulate the parametric generation. Transmitted intensity is found to decrease with coherence length lc and increase carrier concentration n{sub 0}, which is favorable for improved conversion efficiency.
Dark energy parametrization motivated by scalar field dynamics
NASA Astrophysics Data System (ADS)
de la Macorra, Axel
2016-05-01
We propose a new dark energy (DE) parametrization motivated by the dynamics of a scalar field ϕ. We use an equation of state w parametrized in terms of two functions L and y, closely related to the dynamics of scalar fields, which is exact and has no approximation. By choosing an appropriate ansatz for L we obtain a wide class of behavior for the evolution of DE without the need to specify the scalar potential V. We parametrize L and y in terms of only four parameters, giving w a rich structure and allowing for a wide class of DE dynamics. Our w can either grow and later decrease, or it can happen the other way around; the steepness of the transition is not fixed and it contains the ansatz w={w}o+{w}a(1-a). Our parametrization follows closely the dynamics of a scalar field, and the function L allows us to connect it with the scalar potential V(φ ). While the Universe is accelerating and the slow roll approximation is valid, we get L≃ {({V}\\prime /V)}2. To determine the dynamics of DE we also calculate the background evolution and its perturbations, since they are important to discriminate between different DE models.
Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier
Fu, Xuelei; Guo, Xiaojie; Shu, Chester
2016-01-01
Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available. PMID:26830136
Rotary bistable and Parametrically Excited Vibration Energy Harvesting
NASA Astrophysics Data System (ADS)
Kurmann, L.; Jia, Y.; Hoffmann, D.; Manoli, Y.; Woias, P.
2016-11-01
Parametric resonance is a type of nonlinear vibration phenomenon [1], [2] induced from the periodic modulation of at least one of the system parameters and has the potential to exhibit interesting higher order nonlinear behaviour [3]. Parametrically excited vibration energy harvesters have been previously shown to enhance both the power amplitude [4] and the frequency bandwidth [5] when compared to the conventional direct resonant approach. However, to practically activate the more profitable regions of parametric resonance, additional design mechanisms [6], [7] are required to overcome a critical initiation threshold amplitude. One route is to establish an autoparametric system where external direct excitation is internally coupled to parametric excitation [8]. For a coupled two degrees of freedom (DoF) oscillatory system, principal autoparametric resonance can be achieved when the natural frequency of the first DoF f1 is twice that of the second DoF f2 and the external excitation is in the vicinity of f1. This paper looks at combining rotary and translatory motion and use autoparametric resonance phenomena.
Parametric resonance induced chaos in magnetic damped driven pendulum
NASA Astrophysics Data System (ADS)
Khomeriki, Giorgi
2016-07-01
A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.
AgGaS2 infrared parametric oscillator
NASA Technical Reports Server (NTRS)
Fan, Y. X.; Eckardt, R. C.; Byer, R. L.; Route, R. K.; Feigelson, R. S.
1984-01-01
A report is presented of the first operation of an optical parametric oscillator in a chalcopyrite crystal, AgGaS2. Tuning from 1.4 to 4.0 microns is demonstrated for 1.06-micron Nd:yttrium aluminum garnet pumping. The potential tuning range extends to the 12-micron transparency limit of the crystal.
Acoustic attenuation design requirements established through EPNL parametric trades
NASA Technical Reports Server (NTRS)
Veldman, H. F.
1972-01-01
An optimization procedure for the provision of an acoustic lining configuration that is balanced with respect to engine performance losses and lining attenuation characteristics was established using a method which determined acoustic attenuation design requirements through parametric trade studies using the subjective noise unit of effective perceived noise level (EPNL).
Connecting the Dots Parametrically: An Alternative to Cubic Splines.
ERIC Educational Resources Information Center
Hildebrand, Wilbur J.
1990-01-01
Discusses a method of cubic splines to determine a curve through a series of points and a second method for obtaining parametric equations for a smooth curve that passes through a sequence of points. Procedures for determining the curves and results of each of the methods are compared. (YP)
Parametric Design Studies on a Direct Liquid Feed Fuel Cell
NASA Technical Reports Server (NTRS)
Frank, H. A.; Narayanan, S. R.; Nakamura, B.; Surampudi, S.; Halpert, G.
1995-01-01
Parametric design studies were carried out on a direct methanol liquid feed fuel cell employing 1 M MeOH fuel, air and oxygen as oxidant in a 2 inch x 2 inch cell employing polymeric electrolyte membranes. Measurements include voltage-current output parameters, methanol crossover rate, and impedance as a function of several design and operational variables. Design variables are described.
Steady States of the Parametric Rotator and Pendulum
ERIC Educational Resources Information Center
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Generation of ultra-low-noise optical parametric combs
NASA Astrophysics Data System (ADS)
Kuo, Ping P.; Radic, Stojan
2016-03-01
Generation of wideband optical frequency combs requires precise balance between nonlinear photon interaction and parasitic effects. While near-octave combs can be generated in both silica and silicon waveguides, it is not always possible to suppress the noise across the operational bandwidth. Principles and challenges of noiseinhibited, tunable frequency comb generation in cavity-free parametric mixers are described and discussed.
Parametric resonance in the early Universe—a fitting analysis
NASA Astrophysics Data System (ADS)
Figueroa, Daniel G.; Torrentí, Francisco
2017-02-01
Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.
Spacelab mission dependent training parametric resource requirements study
NASA Technical Reports Server (NTRS)
Ogden, D. H.; Watters, H.; Steadman, J.; Conrad, L.
1976-01-01
Training flows were developed for typical missions, resource relationships analyzed, and scheduling optimization algorithms defined. Parametric analyses were performed to study the effect of potential changes in mission model, mission complexity and training time required on the resource quantities required to support training of payload or mission specialists. Typical results of these analyses are presented both in graphic and tabular form.
Universal parametrization of thermal photon rates in hadronic matter
NASA Astrophysics Data System (ADS)
Heffernan, Matthew; Hohler, Paul; Rapp, Ralf
2015-02-01
Electromagnetic (EM) radiation off strongly interacting matter created in high-energy heavy-ion collisions (HICs) encodes information on the high-temperature phases of nuclear matter. Microscopic calculations of thermal EM emission rates are usually rather involved and not readily accessible to broad applications in models of the fireball evolution which are required to compare with experimental data. An accurate and universal parametrization of the microscopic calculations is thus key to honing the theory behind the EM spectra. Here we provide such a parametrization for photon emission rates from hadronic matter, including the contributions from in-medium ρ mesons (which incorporate effects from baryons and antibaryons), as well as bremsstrahlung from π π scattering. Individual parametrizations for each contribution are numerically determined through nested fitting functions for photon energies from 0.2 to 5 GeV in chemically equilibrated matter of temperatures 100-180 MeV and baryon chemical potentials 0-400 MeV. Special care is taken to extent the parametrizations to chemical off-equilibrium as encountered in HICs after chemical freeze-out. This provides a functional description of thermal photon rates within a 20% variation of the microscopically calculated values.
Aircraft conceptual design - an adaptable parametric sizing methodology
NASA Astrophysics Data System (ADS)
Coleman, Gary John, Jr.
Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to
Parametric perfusion imaging based on low-cost ultrasound platform.
Gu, Xiaolin; Zhong, Hui; Wan, Mingxi; Hu, Xiaowen; Lv, Dan; Shen, Liang; Zhang, Xiaomei
2010-01-01
In this study, we attempted to implement parametric perfusion imaging to quantify blood perfusion based on modified low-cost ultrasound platform. A novel ultrasound contrast-specific imaging method called pulse-inversion harmonic sum-squared-differences (PIHSSD) was proposed for improving the sensitivity for detecting contrast agents and the accuracy of parametric perfusion imaging, which combined pulse-inversion harmonic (PIH) with pulse-inversion sum-squared-differences (PISSD) threshold-based decision. PIHSSD method just involved simple operations including addition and multiplication and was easy to realize. The sequences of contrast images without logarithmic compression were used to acquire time intensity curves (TICs) from numerous equal-sized regions-of-interest (ROI) covering the entire image plane. Parametric perfusion images were obtained based on the parameters extracted from the TICs, including peak value (PV), area under curve (AUC), mean transit time (MTT), peak value time (PVT), peak width (PW) and climbing rate (CR). Flow phantom was used for validation and the results suggested that PIHSSD method provided 9.6 to 20.3 dB higher contrast-to-tissue ratio (CTR) than PIH method. The results of the experiments of rabbit kidney also showed that the CTR of PIHSSD images was higher than that of PIH images, and the parametric perfusion images based on PIHSSD method provided more accurate quantification of blood perfusion compared with those based on PIH and PISSD methods. It demonstrated that the parametric perfusion imaging achieved good performance though implemented on low-cost ultrasound platform. (E-mail: mxwan@mail.xjtu.edu.cn).
Explorations in Statistics: Power
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2010-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fifth installment of "Explorations in Statistics" revisits power, a concept fundamental to the test of a null hypothesis. Power is the probability that we reject the null hypothesis when it is false. Four…
Teaching Statistics without Sadistics.
ERIC Educational Resources Information Center
Forte, James A.
1995-01-01
Five steps designed to take anxiety out of statistics for social work students are outlined. First, statistics anxiety is identified as an educational problem. Second, instructional objectives and procedures to achieve them are presented and methods and tools for evaluating the course are explored. Strategies for, and obstacles to, making…
STATSIM: Exercises in Statistics.
ERIC Educational Resources Information Center
Thomas, David B.; And Others
A computer-based learning simulation was developed at Florida State University which allows for high interactive responding via a time-sharing terminal for the purpose of demonstrating descriptive and inferential statistics. The statistical simulation (STATSIM) is comprised of four modules--chi square, t, z, and F distribution--and elucidates the…
Understanding Undergraduate Statistical Anxiety
ERIC Educational Resources Information Center
McKim, Courtney
2014-01-01
The purpose of this study was to understand undergraduate students' views of statistics. Results reveal that students with less anxiety have a higher interest in statistics and also believe in their ability to perform well in the course. Also students who have a more positive attitude about the class tend to have a higher belief in their…
ERIC Educational Resources Information Center
Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain
2004-01-01
Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…
Towards Statistically Undetectable Steganography
2011-06-30
Statistically Undciectable Steganography 5a. CONTRACT NUMBER FA9550-08-1-0084 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Prof. Jessica...approved for public release: distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fundamental asymptotic laws for imperfect steganography ...formats. 15. SUBJECT TERMS Steganography . covert communication, statistical detectability. asymptotic performance, secure pay load, minimum
Explorations in Statistics: Regression
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2011-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This seventh installment of "Explorations in Statistics" explores regression, a technique that estimates the nature of the relationship between two things for which we may only surmise a mechanistic or predictive…
ERIC Educational Resources Information Center
Singer, Arlene
This guide outlines a one semester Option Y course, which has seven learner objectives. The course is designed to provide students with an introduction to the concerns and methods of statistics, and to equip them to deal with the many statistical matters of importance to society. Topics covered include graphs and charts, collection and…
ERIC Educational Resources Information Center
Huberty, Carl J.
An approach to statistical testing, which combines Neyman-Pearson hypothesis testing and Fisher significance testing, is recommended. The use of P-values in this approach is discussed in some detail. The author also discusses some problems which are often found in introductory statistics textbooks. The problems involve the definitions of…
Croarkin, M. Carroll
2001-01-01
For more than 50 years, the Statistical Engineering Division (SED) has been instrumental in the success of a broad spectrum of metrology projects at NBS/NIST. This paper highlights fundamental contributions of NBS/NIST statisticians to statistics and to measurement science and technology. Published methods developed by SED staff, especially during the early years, endure as cornerstones of statistics not only in metrology and standards applications, but as data-analytic resources used across all disciplines. The history of statistics at NBS/NIST began with the formation of what is now the SED. Examples from the first five decades of the SED illustrate the critical role of the division in the successful resolution of a few of the highly visible, and sometimes controversial, statistical studies of national importance. A review of the history of major early publications of the division on statistical methods, design of experiments, and error analysis and uncertainty is followed by a survey of several thematic areas. The accompanying examples illustrate the importance of SED in the history of statistics, measurements and standards: calibration and measurement assurance, interlaboratory tests, development of measurement methods, Standard Reference Materials, statistical computing, and dissemination of measurement technology. A brief look forward sketches the expanding opportunity and demand for SED statisticians created by current trends in research and development at NIST. PMID:27500023
Pestana, Dinis
2013-01-01
Statistics is a privileged tool in building knowledge from information, since the purpose is to extract from a sample limited information conclusions to the whole population. The pervasive use of statistical software (that always provides an answer, the question being adequate or not), and the absence of statistics to confer a scientific flavour to so much bad science, has had a pernicious effect on some disbelief on statistical research. Would Lord Rutherford be alive today, it is almost certain that he would not condemn the use of statistics in research, as he did in the dawn of the 20th century. But he would indeed urge everyone to use statistics quantum satis, since to use bad data, too many data, and statistics to enquire on irrelevant questions, is a source of bad science, namely because with too many data we can establish statistical significance of irrelevant results. This is an important point that addicts of evidence based medicine should be aware of, since the meta analysis of two many data will inevitably establish senseless results.
Reform in Statistical Education
ERIC Educational Resources Information Center
Huck, Schuyler W.
2007-01-01
Two questions are considered in this article: (a) What should professionals in school psychology do in an effort to stay current with developments in applied statistics? (b) What should they do with their existing knowledge to move from surface understanding of statistics to deep understanding? Written for school psychologists who have completed…
Deconstructing Statistical Analysis
ERIC Educational Resources Information Center
Snell, Joel
2014-01-01
Using a very complex statistical analysis and research method for the sake of enhancing the prestige of an article or making a new product or service legitimate needs to be monitored and questioned for accuracy. 1) The more complicated the statistical analysis, and research the fewer the number of learned readers can understand it. This adds a…
Statistics 101 for Radiologists.
Anvari, Arash; Halpern, Elkan F; Samir, Anthony E
2015-10-01
Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced.
ERIC Educational Resources Information Center
Huizingh, Eelko K. R. E.
2007-01-01
Accessibly written and easy to use, "Applied Statistics Using SPSS" is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. What is unique about Eelko Huizingh's approach is that this book is based around the needs of undergraduate students embarking on their own research project, and its self-help style is designed to…
Vijayaraj, Veeraraghavan; Cheriyadat, Anil M; Bhaduri, Budhendra L; Vatsavai, Raju; Bright, Eddie A
2008-01-01
Statistical properties of high-resolution overhead images representing different land use categories are analyzed using various local and global statistical image properties based on the shape of the power spectrum, image gradient distributions, edge co-occurrence, and inter-scale wavelet coefficient distributions. The analysis was performed on a database of high-resolution (1 meter) overhead images representing a multitude of different downtown, suburban, commercial, agricultural and wooded exemplars. Various statistical properties relating to these image categories and their relationship are discussed. The categorical variations in power spectrum contour shapes, the unique gradient distribution characteristics of wooded categories, the similarity in edge co-occurrence statistics for overhead and natural images, and the unique edge co-occurrence statistics of downtown categories are presented in this work. Though previous work on natural image statistics has showed some of the unique characteristics for different categories, the relationships for overhead images are not well understood. The statistical properties of natural images were used in previous studies to develop prior image models, to predict and index objects in a scene and to improve computer vision models. The results from our research findings can be used to augment and adapt computer vision algorithms that rely on prior image statistics to process overhead images, calibrate the performance of overhead image analysis algorithms, and derive features for better discrimination of overhead image categories.
NASA Astrophysics Data System (ADS)
Vali Ahmadi, Mohammad; Doostparast, Mahdi; Ahmadi, Jafar
2015-04-01
In manufacturing industries, the lifetime of an item is usually characterised by a random variable X and considered to be satisfactory if X exceeds a given lower lifetime limit L. The probability of a satisfactory item is then ηL := P(X ≥ L), called conforming rate. In industrial companies, however, the lifetime performance index, proposed by Montgomery and denoted by CL, is widely used as a process capability index instead of the conforming rate. Assuming a parametric model for the random variable X, we show that there is a connection between the conforming rate and the lifetime performance index. Consequently, the statistical inferences about ηL and CL are equivalent. Hence, we restrict ourselves to statistical inference for CL based on generalised order statistics, which contains several ordered data models such as usual order statistics, progressively Type-II censored data and records. Various point and interval estimators for the parameter CL are obtained and optimal critical regions for the hypothesis testing problems concerning CL are proposed. Finally, two real data-sets on the lifetimes of insulating fluid and ball bearings, due to Nelson (1982) and Caroni (2002), respectively, and a simulated sample are analysed.
A parametric approach to kinship hypothesis testing using identity-by-descent parameters.
García-Magariños, Manuel; Egeland, Thore; López-de-Ullibarri, Ignacio; Hjort, Nils L; Salas, Antonio
2015-11-01
There is a large number of applications where family relationships need to be determined from DNA data. In forensic science, competing ideas are in general verbally formulated as the two hypotheses of a test. For the most common paternity case, the null hypothesis states that the alleged father is the true father against the alternative hypothesis that the father is an unrelated man. A likelihood ratio is calculated to summarize the evidence. We propose an alternative framework whereby a model and the hypotheses are formulated in terms of parameters representing identity-by-descent probabilities. There are several advantages to this approach. Firstly, the alternative hypothesis can be completely general. Specifically, the alternative does not need to specify an unrelated man. Secondly, the parametric formulation corresponds to the approach used in most other applications of statistical hypothesis testing and so there is a large theory of classical statistics that can be applied. Theoretical properties of the test statistic under the null hypothesis are studied. An extension to trios of individuals has been carried out. The methods are exemplified using simulations and a real dataset of 27 Spanish Romani individuals.
Structure of pump resonances during optical parametric oscillation in whispering gallery resonators.
Breunig, I; Sturman, B; Bückle, A; Werner, C S; Buse, K
2013-09-01
In optical parametric oscillators, the line shape of the pump resonance becomes strongly distorted above the oscillation threshold. We model this behavior and find good agreement with the literature data and our original experimental data. A fit of the model to the data provides valuable information about the loss mechanisms in the parametric process. In particular, the modal properties of the parametric waves can be gained, which is important for both classical and quantum aspects of optical parametric oscillation.
ERIC Educational Resources Information Center
Maydeu-Olivares, Albert
2005-01-01
Chernyshenko, Stark, Chan, Drasgow, and Williams (2001) investigated the fit of Samejima's logistic graded model and Levine's non-parametric MFS model to the scales of two personality questionnaires and found that the graded model did not fit well. We attribute the poor fit of the graded model to small amounts of multidimensionality present in…
Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah
2016-01-01
One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel “trick” concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available. PMID:27555865
Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah
2016-01-01
One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.
Revisiting the quark-lepton complementarity and triminimal parametrization of neutrino mixing matrix
Kang, Sin Kyu
2011-05-01
We examine how a parametrization of neutrino mixing matrix reflecting quark-lepton complementarity can be probed by considering phase-averaged oscillation probabilities, flavor composition of neutrino fluxes coming from atmospheric and astrophysical neutrinos and lepton flavor violating radiative decays. We discuss some distinct features of the parametrization by comparing the triminimal parametrization of perturbations to the tribimaximal neutrino mixing matrix.
Inverse counting statistics based on generalized factorial cumulants
NASA Astrophysics Data System (ADS)
Stegmann, Philipp; König, Jürgen
2017-02-01
We propose a procedure to reconstruct characteristic features of an unknown stochastic system from the long-time full counting statistics of some of the system’s transitions that are monitored by a detector. The full counting statistics is conveniently parametrized by so-called generalized factorial cumulants. Taking only a few of them as input information is sufficient to reconstruct important features such as the lower bound of the system dimension and the full spectrum of relaxation rates. The use of generalized factorial cumulants reveals system dimensions and rates that are hidden for ordinary cumulants. We illustrate the inverse counting-statistics procedure for two model systems: a single-level quantum dot in a Zeeman field and a single-electron box subjected to sequential and Andreev tunneling.
Statistical analyses for NANOGrav 5-year timing residuals
NASA Astrophysics Data System (ADS)
Wang, Yan; Cordes, James M.; Jenet, Fredrick A.; Chatterjee, Shami; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Lam, Michael T.; Madison, Dustin R.; McLaughlin, Maura A.; Perrodin, Delphine; Rankin, Joanna; Siemens, Xavier; Vallisneri, Michele
2017-02-01
In pulsar timing, timing residuals are the differences between the observed times of arrival and predictions from the timing model. A comprehensive timing model will produce featureless residuals, which are presumably composed of dominating noise and weak physical effects excluded from the timing model (e.g. gravitational waves). In order to apply optimal statistical methods for detecting weak gravitational wave signals, we need to know the statistical properties of noise components in the residuals. In this paper we utilize a variety of non-parametric statistical tests to analyze the whiteness and Gaussianity of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 5-year timing data, which are obtained from Arecibo Observatory and Green Bank Telescope from 2005 to 2010. We find that most of the data are consistent with white noise; many data deviate from Gaussianity at different levels, nevertheless, removing outliers in some pulsars will mitigate the deviations.
Ector, Hugo
2010-12-01
I still remember my first book on statistics: "Elementary statistics with applications in medicine and the biological sciences" by Frederick E. Croxton. For me, it has been the start of pursuing understanding statistics in daily life and in medical practice. It was the first volume in a long row of books. In his introduction, Croxton pretends that"nearly everyone involved in any aspect of medicine needs to have some knowledge of statistics". The reality is that for many clinicians, statistics are limited to a "P < 0.05 = ok". I do not blame my colleagues who omit the paragraph on statistical methods. They have never had the opportunity to learn concise and clear descriptions of the key features. I have experienced how some authors can describe difficult methods in a well understandable language. Others fail completely. As a teacher, I tell my students that life is impossible without a basic knowledge of statistics. This feeling has resulted in an annual seminar of 90 minutes. This tutorial is the summary of this seminar. It is a summary and a transcription of the best pages I have detected.
NASA Technical Reports Server (NTRS)
Young, M.; Koslovsky, M.; Schaefer, Caroline M.; Feiveson, A. H.
2017-01-01
Back by popular demand, the JSC Biostatistics Laboratory and LSAH statisticians are offering an opportunity to discuss your statistical challenges and needs. Take the opportunity to meet the individuals offering expert statistical support to the JSC community. Join us for an informal conversation about any questions you may have encountered with issues of experimental design, analysis, or data visualization. Get answers to common questions about sample size, repeated measures, statistical assumptions, missing data, multiple testing, time-to-event data, and when to trust the results of your analyses.
Commentary: statistics for biomarkers.
Lovell, David P
2012-05-01
This short commentary discusses Biomarkers' requirements for the reporting of statistical analyses in submitted papers. It is expected that submitters will follow the general instructions of the journal, the more detailed guidance given by the International Committee of Medical Journal Editors, the specific guidelines developed by the EQUATOR network, and those of various specialist groups. Biomarkers expects that the study design and subsequent statistical analyses are clearly reported and that the data reported can be made available for independent assessment. The journal recognizes that there is continuing debate about different approaches to statistical science. Biomarkers appreciates that the field continues to develop rapidly and encourages the use of new methodologies.
LED champing: statistically blessed?
Wang, Zhuo
2015-06-10
LED champing (smart mixing of individual LEDs to match the desired color and lumens) and color mixing strategies have been widely used to maintain the color consistency of light engines. Light engines with champed LEDs can easily achieve the color consistency of a couple MacAdam steps with widely distributed LEDs to begin with. From a statistical point of view, the distributions for the color coordinates and the flux after champing are studied. The related statistical parameters are derived, which facilitate process improvements such as Six Sigma and are instrumental to statistical quality control for mass productions.
A Bayesian statistical model for hybrid metrology to improve measurement accuracy
NASA Astrophysics Data System (ADS)
Silver, R. M.; Zhang, N. F.; Barnes, B. M.; Qin, J.; Zhou, H.; Dixson, R.
2011-05-01
We present a method to combine measurements from different techniques that reduces uncertainties and can improve measurement throughput. The approach directly integrates the measurement analysis of multiple techniques that can include different configurations or platforms. This approach has immediate application when performing model-based optical critical dimension (OCD) measurements. When modeling optical measurements, a library of curves is assembled through the simulation of a multi-dimensional parameter space. Parametric correlation and measurement noise lead to measurement uncertainty in the fitting process with fundamental limitations resulting from the parametric correlations. A strategy to decouple parametric correlation and reduce measurement uncertainties is described. We develop the rigorous underlying Bayesian statistical model and apply this methodology to OCD metrology. We then introduce an approach to damp the regression process to achieve more stable and rapid regression fitting. These methods that use a priori information are shown to reduce measurement uncertainty and improve throughput while also providing an improved foundation for comprehensive reference metrology.
Statistical Aspects of Tropical Cyclone Activity in the North Atlantic Basin, 1945-2010
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2012-01-01
Examined are statistical aspects of the 715 tropical cyclones that formed in the North Atlantic basin during the interval 1945-2010. These 715 tropical cyclones include 306 storms that attained only tropical storm strength, 409 hurricanes, 179 major or intense hurricanes, and 108 storms that struck the US coastline as hurricanes. Comparisons made using 10-year moving average (10-yma) values between tropical cyclone parametric values and surface air and ENSO-related parametric values indicate strong correlations to exist, in particular, against the Armagh Observatory (Northern Ireland) surface air temperature, the Atlantic Multi-decadal Oscillation (AMO) index, the Atlantic Meridional Mode (AMM) index, and the North Atlantic Oscillation (NAO) index, in addition to the Oceanic Ni o index (ONI) and Quasi-Biennial Oscillation (QBO) indices. Also examined are the decadal variations of the tropical cyclone parametric values and a look ahead towards the 2012 hurricane season and beyond.
Creating Efficient Instrumentation Networks to Support Parametric Risk Transfer
NASA Astrophysics Data System (ADS)
Rockett, P.
2009-04-01
The development and institutionalisation of Catastrophe modelling during the 1990s opened the way for Catastrophe risk securitization transactions in which catastrophe risk held by insurers is transferred to the capital markets in the form of a bond. Cat Bonds have been one of the few areas of the capital markets in which the risk modelling has remained secure and the returns on the bonds have held up well through the 2008 Credit Crunch. There are three ways of structuring the loss triggers on bonds: ‘indemnity triggers' - reflecting the actual losses to the issuers; ‘index triggers' reflecting the losses to some index such as reported insurance industry loss and ‘parametric triggers' reflecting the parameters of the underlying catastrophe event itself. Indemnity triggers require that the investors trust that the insurer is reporting all their underlying exposures, while both indemnity and index losses may take 1-2 years to settle before all the claims are reported and resolved. Therefore parametric structures have many advantages, in particular in that the bond can be settled rapidly after an event. The challenge is to create parametric indices that closely reflect the actual losses to the insurer - ie that minimise ‘basis risk'. First generation parametric indices had high basis risk as they were crudely based on the magnitude of an earthquake occurring within some defined geographical box, or the intensity of a hurricane relative to the distance of the storm from some location. Second generation triggers involve taking measurements of ground motion or windspeed or flood depths at many locations and weighting each value so that the overall index closely mimics insurance loss. Cat bonds with second generation parametric triggers have been successfully issued for European Windstorm, UK Flood and California and Japan Earthquake. However the spread of second generation parametric structures is limited by the availability of suitable networks of
Universal Parametrization of Thermal Photon Production in Hadronic Matter
NASA Astrophysics Data System (ADS)
Heffernan, Matthew; Hohler, Paul; Rapp, Ralf
2014-09-01
As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of thermal photon production largely within an unprecedented 20% of the calculated values from the spectral function, a significant reduction in error from available parametrizations. The contribution of photons and dileptons from pion-pion bremsstrahlung is evaluated for the importance of its contribution. The functional form, coupled with the comparison to the bremsstrahlung production of thermal photons, will provide a baseline for guiding future studies. As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of
Playing at Statistical Mechanics
ERIC Educational Resources Information Center
Clark, Paul M.; And Others
1974-01-01
Discussed are the applications of counting techniques of a sorting game to distributions and concepts in statistical mechanics. Included are the following distributions: Fermi-Dirac, Bose-Einstein, and most probable. (RH)
Hemophilia Data and Statistics
... Hemophilia Women Healthcare Providers Partners Media Policy Makers Data & Statistics Language: English Español (Spanish) Recommend on Facebook ... at a very young age. Based on CDC data, the median age at diagnosis is 36 months ...
Cooperative Learning in Statistics.
ERIC Educational Resources Information Center
Keeler, Carolyn M.; And Others
1994-01-01
Formal use of cooperative learning techniques proved effective in improving student performance and retention in a freshman level statistics course. Lectures interspersed with group activities proved effective in increasing conceptual understanding and overall class performance. (11 references) (Author)
NASA Astrophysics Data System (ADS)
Richfield, Jon; bookfeller
2016-07-01
In reply to Ralph Kenna and Pádraig Mac Carron's feature article “Maths meets myths” in which they describe how they are using techniques from statistical physics to characterize the societies depicted in ancient Icelandic sagas.
NASA Astrophysics Data System (ADS)
Grégoire, G.
2016-05-01
This chapter is devoted to two objectives. The first one is to answer the request expressed by attendees of the first Astrostatistics School (Annecy, October 2013) to be provided with an elementary vademecum of statistics that would facilitate understanding of the given courses. In this spirit we recall very basic notions, that is definitions and properties that we think sufficient to benefit from courses given in the Astrostatistical School. Thus we give briefly definitions and elementary properties on random variables and vectors, distributions, estimation and tests, maximum likelihood methodology. We intend to present basic ideas in a hopefully comprehensible way. We do not try to give a rigorous presentation, and due to the place devoted to this chapter, can cover only a rather limited field of statistics. The second aim is to focus on some statistical tools that are useful in classification: basic introduction to Bayesian statistics, maximum likelihood methodology, Gaussian vectors and Gaussian mixture models.
... and Statistics Recommend on Facebook Tweet Share Compartir Plague in the United States Plague was first introduced ... per year in the United States: 1900-2012. Plague Worldwide Plague epidemics have occurred in Africa, Asia, ...
Understanding Solar Flare Statistics
NASA Astrophysics Data System (ADS)
Wheatland, M. S.
2005-12-01
A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.
Titanic: A Statistical Exploration.
ERIC Educational Resources Information Center
Takis, Sandra L.
1999-01-01
Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)
Purposeful Statistical Investigations
ERIC Educational Resources Information Center
Day, Lorraine
2014-01-01
Lorraine Day provides us with a great range of statistical investigations using various resources such as maths300 and TinkerPlots. Each of the investigations link mathematics to students' lives and provide engaging and meaningful contexts for mathematical inquiry.
NASA Astrophysics Data System (ADS)
Testa, Massimo
2015-08-01
Starting with the basic principles of Relativistic Quantum Mechanics, we give a rigorous, but completely elementary proof of the relation between fundamental observables of a statistical system, when measured within two inertial reference frames, related by a Lorentz transformation.