Sample records for statistical regression analysis

  1. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    PubMed

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value

  2. Two Paradoxes in Linear Regression Analysis.

    PubMed

    Feng, Ge; Peng, Jing; Tu, Dongke; Zheng, Julia Z; Feng, Changyong

    2016-12-25

    Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection.

  3. Applying Regression Analysis to Problems in Institutional Research.

    ERIC Educational Resources Information Center

    Bohannon, Tom R.

    1988-01-01

    Regression analysis is one of the most frequently used statistical techniques in institutional research. Principles of least squares, model building, residual analysis, influence statistics, and multi-collinearity are described and illustrated. (Author/MSE)

  4. Two Paradoxes in Linear Regression Analysis

    PubMed Central

    FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong

    2016-01-01

    Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214

  5. [Regression on order statistics and its application in estimating nondetects for food exposure assessment].

    PubMed

    Yu, Xiaojin; Liu, Pei; Min, Jie; Chen, Qiguang

    2009-01-01

    To explore the application of regression on order statistics (ROS) in estimating nondetects for food exposure assessment. Regression on order statistics was adopted in analysis of cadmium residual data set from global food contaminant monitoring, the mean residual was estimated basing SAS programming and compared with the results from substitution methods. The results show that ROS method performs better obviously than substitution methods for being robust and convenient for posterior analysis. Regression on order statistics is worth to adopt,but more efforts should be make for details of application of this method.

  6. CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions

    EPA Pesticide Factsheets

    Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.

  7. Quantile regression for the statistical analysis of immunological data with many non-detects.

    PubMed

    Eilers, Paul H C; Röder, Esther; Savelkoul, Huub F J; van Wijk, Roy Gerth

    2012-07-07

    Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.

  8. Applications of statistics to medical science, III. Correlation and regression.

    PubMed

    Watanabe, Hiroshi

    2012-01-01

    In this third part of a series surveying medical statistics, the concepts of correlation and regression are reviewed. In particular, methods of linear regression and logistic regression are discussed. Arguments related to survival analysis will be made in a subsequent paper.

  9. Efficiency Analysis: Enhancing the Statistical and Evaluative Power of the Regression-Discontinuity Design.

    ERIC Educational Resources Information Center

    Madhere, Serge

    An analytic procedure, efficiency analysis, is proposed for improving the utility of quantitative program evaluation for decision making. The three features of the procedure are explained: (1) for statistical control, it adopts and extends the regression-discontinuity design; (2) for statistical inferences, it de-emphasizes hypothesis testing in…

  10. Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.

    PubMed

    Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias

    2016-01-01

    To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.

  11. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  12. Image-analysis library

    NASA Technical Reports Server (NTRS)

    1980-01-01

    MATHPAC image-analysis library is collection of general-purpose mathematical and statistical routines and special-purpose data-analysis and pattern-recognition routines for image analysis. MATHPAC library consists of Linear Algebra, Optimization, Statistical-Summary, Densities and Distribution, Regression, and Statistical-Test packages.

  13. Regression: The Apple Does Not Fall Far From the Tree.

    PubMed

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  14. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    ERIC Educational Resources Information Center

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  15. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    DTIC Science & Technology

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  16. Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.

    PubMed

    Ritz, Christian; Van der Vliet, Leana

    2009-09-01

    The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.

  17. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    PubMed

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  18. Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa

    NASA Technical Reports Server (NTRS)

    Dalsted, K. J.; Harlan, J. C.

    1983-01-01

    Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.

  19. CADDIS Volume 4. Data Analysis: Basic Analyses

    EPA Pesticide Factsheets

    Use of statistical tests to determine if an observation is outside the normal range of expected values. Details of CART, regression analysis, use of quantile regression analysis, CART in causal analysis, simplifying or pruning resulting trees.

  20. Assessing the Lexico-Grammatical Characteristics of a Corpus of College-Level Statistics Textbooks: Implications for Instruction and Practice

    ERIC Educational Resources Information Center

    Wagler, Amy E.; Lesser, Lawrence M.; González, Ariel I.; Leal, Luis

    2015-01-01

    A corpus of current editions of statistics textbooks was assessed to compare aspects and levels of readability for the topics of "measures of center," "line of fit," "regression analysis," and "regression inference." Analysis with lexical software of these text selections revealed that the large corpus can…

  1. Patterns of medicinal plant use: an examination of the Ecuadorian Shuar medicinal flora using contingency table and binomial analyses.

    PubMed

    Bennett, Bradley C; Husby, Chad E

    2008-03-28

    Botanical pharmacopoeias are non-random subsets of floras, with some taxonomic groups over- or under-represented. Moerman [Moerman, D.E., 1979. Symbols and selectivity: a statistical analysis of Native American medical ethnobotany, Journal of Ethnopharmacology 1, 111-119] introduced linear regression/residual analysis to examine these patterns. However, regression, the commonly-employed analysis, suffers from several statistical flaws. We use contingency table and binomial analyses to examine patterns of Shuar medicinal plant use (from Amazonian Ecuador). We first analyzed the Shuar data using Moerman's approach, modified to better meet requirements of linear regression analysis. Second, we assessed the exact randomization contingency table test for goodness of fit. Third, we developed a binomial model to test for non-random selection of plants in individual families. Modified regression models (which accommodated assumptions of linear regression) reduced R(2) to from 0.59 to 0.38, but did not eliminate all problems associated with regression analyses. Contingency table analyses revealed that the entire flora departs from the null model of equal proportions of medicinal plants in all families. In the binomial analysis, only 10 angiosperm families (of 115) differed significantly from the null model. These 10 families are largely responsible for patterns seen at higher taxonomic levels. Contingency table and binomial analyses offer an easy and statistically valid alternative to the regression approach.

  2. Regression Analysis and the Sociological Imagination

    ERIC Educational Resources Information Center

    De Maio, Fernando

    2014-01-01

    Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.

  3. Principal component regression analysis with SPSS.

    PubMed

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  4. Quality of life in breast cancer patients--a quantile regression analysis.

    PubMed

    Pourhoseingholi, Mohamad Amin; Safaee, Azadeh; Moghimi-Dehkordi, Bijan; Zeighami, Bahram; Faghihzadeh, Soghrat; Tabatabaee, Hamid Reza; Pourhoseingholi, Asma

    2008-01-01

    Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.

  5. Examination of influential observations in penalized spline regression

    NASA Astrophysics Data System (ADS)

    Türkan, Semra

    2013-10-01

    In parametric or nonparametric regression models, the results of regression analysis are affected by some anomalous observations in the data set. Thus, detection of these observations is one of the major steps in regression analysis. These observations are precisely detected by well-known influence measures. Pena's statistic is one of them. In this study, Pena's approach is formulated for penalized spline regression in terms of ordinary residuals and leverages. The real data and artificial data are used to see illustrate the effectiveness of Pena's statistic as to Cook's distance on detecting influential observations. The results of the study clearly reveal that the proposed measure is superior to Cook's Distance to detect these observations in large data set.

  6. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    DTIC Science & Technology

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  7. Functional Relationships and Regression Analysis.

    ERIC Educational Resources Information Center

    Preece, Peter F. W.

    1978-01-01

    Using a degenerate multivariate normal model for the distribution of organismic variables, the form of least-squares regression analysis required to estimate a linear functional relationship between variables is derived. It is suggested that the two conventional regression lines may be considered to describe functional, not merely statistical,…

  8. General Nature of Multicollinearity in Multiple Regression Analysis.

    ERIC Educational Resources Information Center

    Liu, Richard

    1981-01-01

    Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)

  9. A consistent framework for Horton regression statistics that leads to a modified Hack's law

    USGS Publications Warehouse

    Furey, P.R.; Troutman, B.M.

    2008-01-01

    A statistical framework is introduced that resolves important problems with the interpretation and use of traditional Horton regression statistics. The framework is based on a univariate regression model that leads to an alternative expression for Horton ratio, connects Horton regression statistics to distributional simple scaling, and improves the accuracy in estimating Horton plot parameters. The model is used to examine data for drainage area A and mainstream length L from two groups of basins located in different physiographic settings. Results show that confidence intervals for the Horton plot regression statistics are quite wide. Nonetheless, an analysis of covariance shows that regression intercepts, but not regression slopes, can be used to distinguish between basin groups. The univariate model is generalized to include n > 1 dependent variables. For the case where the dependent variables represent ln A and ln L, the generalized model performs somewhat better at distinguishing between basin groups than two separate univariate models. The generalized model leads to a modification of Hack's law where L depends on both A and Strahler order ??. Data show that ?? plays a statistically significant role in the modified Hack's law expression. ?? 2008 Elsevier B.V.

  10. Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle

    USGS Publications Warehouse

    Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.

    2015-09-28

    Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.

  11. Interpreting Bivariate Regression Coefficients: Going beyond the Average

    ERIC Educational Resources Information Center

    Halcoussis, Dennis; Phillips, G. Michael

    2010-01-01

    Statistics, econometrics, investment analysis, and data analysis classes often review the calculation of several types of averages, including the arithmetic mean, geometric mean, harmonic mean, and various weighted averages. This note shows how each of these can be computed using a basic regression framework. By recognizing when a regression model…

  12. Regression Commonality Analysis: A Technique for Quantitative Theory Building

    ERIC Educational Resources Information Center

    Nimon, Kim; Reio, Thomas G., Jr.

    2011-01-01

    When it comes to multiple linear regression analysis (MLR), it is common for social and behavioral science researchers to rely predominately on beta weights when evaluating how predictors contribute to a regression model. Presenting an underutilized statistical technique, this article describes how organizational researchers can use commonality…

  13. Statistical model to perform error analysis of curve fits of wind tunnel test data using the techniques of analysis of variance and regression analysis

    NASA Technical Reports Server (NTRS)

    Alston, D. W.

    1981-01-01

    The considered research had the objective to design a statistical model that could perform an error analysis of curve fits of wind tunnel test data using analysis of variance and regression analysis techniques. Four related subproblems were defined, and by solving each of these a solution to the general research problem was obtained. The capabilities of the evolved true statistical model are considered. The least squares fit is used to determine the nature of the force, moment, and pressure data. The order of the curve fit is increased in order to delete the quadratic effect in the residuals. The analysis of variance is used to determine the magnitude and effect of the error factor associated with the experimental data.

  14. Statistical Tutorial | Center for Cancer Research

    Cancer.gov

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data.  ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018.  The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean differences, simple and multiple linear regression, ANOVA tests, and Chi-Squared distribution.

  15. Differential gene expression detection and sample classification using penalized linear regression models.

    PubMed

    Wu, Baolin

    2006-02-15

    Differential gene expression detection and sample classification using microarray data have received much research interest recently. Owing to the large number of genes p and small number of samples n (p > n), microarray data analysis poses big challenges for statistical analysis. An obvious problem owing to the 'large p small n' is over-fitting. Just by chance, we are likely to find some non-differentially expressed genes that can classify the samples very well. The idea of shrinkage is to regularize the model parameters to reduce the effects of noise and produce reliable inferences. Shrinkage has been successfully applied in the microarray data analysis. The SAM statistics proposed by Tusher et al. and the 'nearest shrunken centroid' proposed by Tibshirani et al. are ad hoc shrinkage methods. Both methods are simple, intuitive and prove to be useful in empirical studies. Recently Wu proposed the penalized t/F-statistics with shrinkage by formally using the (1) penalized linear regression models for two-class microarray data, showing good performance. In this paper we systematically discussed the use of penalized regression models for analyzing microarray data. We generalize the two-class penalized t/F-statistics proposed by Wu to multi-class microarray data. We formally derive the ad hoc shrunken centroid used by Tibshirani et al. using the (1) penalized regression models. And we show that the penalized linear regression models provide a rigorous and unified statistical framework for sample classification and differential gene expression detection.

  16. Obscure phenomena in statistical analysis of quantitative structure-activity relationships. Part 1: Multicollinearity of physicochemical descriptors.

    PubMed

    Mager, P P; Rothe, H

    1990-10-01

    Multicollinearity of physicochemical descriptors leads to serious consequences in quantitative structure-activity relationship (QSAR) analysis, such as incorrect estimators and test statistics of regression coefficients of the ordinary least-squares (OLS) model applied usually to QSARs. Beside the diagnosis of the known simple collinearity, principal component regression analysis (PCRA) also allows the diagnosis of various types of multicollinearity. Only if the absolute values of PCRA estimators are order statistics that decrease monotonically, the effects of multicollinearity can be circumvented. Otherwise, obscure phenomena may be observed, such as good data recognition but low predictive model power of a QSAR model.

  17. Statistical methods for astronomical data with upper limits. II - Correlation and regression

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Nelson, P. I.

    1986-01-01

    Statistical methods for calculating correlations and regressions in bivariate censored data where the dependent variable can have upper or lower limits are presented. Cox's regression and the generalization of Kendall's rank correlation coefficient provide significant levels of correlations, and the EM algorithm, under the assumption of normally distributed errors, and its nonparametric analog using the Kaplan-Meier estimator, give estimates for the slope of a regression line. Monte Carlo simulations demonstrate that survival analysis is reliable in determining correlations between luminosities at different bands. Survival analysis is applied to CO emission in infrared galaxies, X-ray emission in radio galaxies, H-alpha emission in cooling cluster cores, and radio emission in Seyfert galaxies.

  18. Partial Least Squares Regression Can Aid in Detecting Differential Abundance of Multiple Features in Sets of Metagenomic Samples

    PubMed Central

    Libiger, Ondrej; Schork, Nicholas J.

    2015-01-01

    It is now feasible to examine the composition and diversity of microbial communities (i.e., “microbiomes”) that populate different human organs and orifices using DNA sequencing and related technologies. To explore the potential links between changes in microbial communities and various diseases in the human body, it is essential to test associations involving different species within and across microbiomes, environmental settings and disease states. Although a number of statistical techniques exist for carrying out relevant analyses, it is unclear which of these techniques exhibit the greatest statistical power to detect associations given the complexity of most microbiome datasets. We compared the statistical power of principal component regression, partial least squares regression, regularized regression, distance-based regression, Hill's diversity measures, and a modified test implemented in the popular and widely used microbiome analysis methodology “Metastats” across a wide range of simulated scenarios involving changes in feature abundance between two sets of metagenomic samples. For this purpose, simulation studies were used to change the abundance of microbial species in a real dataset from a published study examining human hands. Each technique was applied to the same data, and its ability to detect the simulated change in abundance was assessed. We hypothesized that a small subset of methods would outperform the rest in terms of the statistical power. Indeed, we found that the Metastats technique modified to accommodate multivariate analysis and partial least squares regression yielded high power under the models and data sets we studied. The statistical power of diversity measure-based tests, distance-based regression and regularized regression was significantly lower. Our results provide insight into powerful analysis strategies that utilize information on species counts from large microbiome data sets exhibiting skewed frequency distributions obtained on a small to moderate number of samples. PMID:26734061

  19. Upgrade Summer Severe Weather Tool

    NASA Technical Reports Server (NTRS)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  20. Common pitfalls in statistical analysis: Linear regression analysis

    PubMed Central

    Aggarwal, Rakesh; Ranganathan, Priya

    2017-01-01

    In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis. PMID:28447022

  1. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

    PubMed

    Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg

    2009-11-01

    G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

  2. Statistical analysis and interpretation of prenatal diagnostic imaging studies, Part 2: descriptive and inferential statistical methods.

    PubMed

    Tuuli, Methodius G; Odibo, Anthony O

    2011-08-01

    The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.

  3. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  4. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  5. Logistic regression applied to natural hazards: rare event logistic regression with replications

    NASA Astrophysics Data System (ADS)

    Guns, M.; Vanacker, V.

    2012-06-01

    Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.

  6. [A SAS marco program for batch processing of univariate Cox regression analysis for great database].

    PubMed

    Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin

    2015-02-01

    To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.

  7. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

    PubMed

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.

  8. Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models

    PubMed Central

    2014-01-01

    Background Meta-regression is becoming increasingly used to model study level covariate effects. However this type of statistical analysis presents many difficulties and challenges. Here two methods for calculating confidence intervals for the magnitude of the residual between-study variance in random effects meta-regression models are developed. A further suggestion for calculating credible intervals using informative prior distributions for the residual between-study variance is presented. Methods Two recently proposed and, under the assumptions of the random effects model, exact methods for constructing confidence intervals for the between-study variance in random effects meta-analyses are extended to the meta-regression setting. The use of Generalised Cochran heterogeneity statistics is extended to the meta-regression setting and a Newton-Raphson procedure is developed to implement the Q profile method for meta-analysis and meta-regression. WinBUGS is used to implement informative priors for the residual between-study variance in the context of Bayesian meta-regressions. Results Results are obtained for two contrasting examples, where the first example involves a binary covariate and the second involves a continuous covariate. Intervals for the residual between-study variance are wide for both examples. Conclusions Statistical methods, and R computer software, are available to compute exact confidence intervals for the residual between-study variance under the random effects model for meta-regression. These frequentist methods are almost as easily implemented as their established counterparts for meta-analysis. Bayesian meta-regressions are also easily performed by analysts who are comfortable using WinBUGS. Estimates of the residual between-study variance in random effects meta-regressions should be routinely reported and accompanied by some measure of their uncertainty. Confidence and/or credible intervals are well-suited to this purpose. PMID:25196829

  9. Multiple linear regression analysis

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  10. Assessing landslide susceptibility by statistical data analysis and GIS: the case of Daunia (Apulian Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ceppi, C.; Mancini, F.; Ritrovato, G.

    2009-04-01

    This study aim at the landslide susceptibility mapping within an area of the Daunia (Apulian Apennines, Italy) by a multivariate statistical method and data manipulation in a Geographical Information System (GIS) environment. Among the variety of existing statistical data analysis techniques, the logistic regression was chosen to produce a susceptibility map all over an area where small settlements are historically threatened by landslide phenomena. By logistic regression a best fitting between the presence or absence of landslide (dependent variable) and the set of independent variables is performed on the basis of a maximum likelihood criterion, bringing to the estimation of regression coefficients. The reliability of such analysis is therefore due to the ability to quantify the proneness to landslide occurrences by the probability level produced by the analysis. The inventory of dependent and independent variables were managed in a GIS, where geometric properties and attributes have been translated into raster cells in order to proceed with the logistic regression by means of SPSS (Statistical Package for the Social Sciences) package. A landslide inventory was used to produce the bivariate dependent variable whereas the independent set of variable concerned with slope, aspect, elevation, curvature, drained area, lithology and land use after their reductions to dummy variables. The effect of independent parameters on landslide occurrence was assessed by the corresponding coefficient in the logistic regression function, highlighting a major role played by the land use variable in determining occurrence and distribution of phenomena. Once the outcomes of the logistic regression are determined, data are re-introduced in the GIS to produce a map reporting the proneness to landslide as predicted level of probability. As validation of results and regression model a cell-by-cell comparison between the susceptibility map and the initial inventory of landslide events was performed and an agreement at 75% level achieved.

  11. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    PubMed

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  12. Use of statistical study methods for the analysis of the results of the imitation modeling of radiation transfer

    NASA Astrophysics Data System (ADS)

    Alekseenko, M. A.; Gendrina, I. Yu.

    2017-11-01

    Recently, due to the abundance of various types of observational data in the systems of vision through the atmosphere and the need for their processing, the use of various methods of statistical research in the study of such systems as correlation-regression analysis, dynamic series, variance analysis, etc. is actual. We have attempted to apply elements of correlation-regression analysis for the study and subsequent prediction of the patterns of radiation transfer in these systems same as in the construction of radiation models of the atmosphere. In this paper, we present some results of statistical processing of the results of numerical simulation of the characteristics of vision systems through the atmosphere obtained with the help of a special software package.1

  13. Using "Excel" for White's Test--An Important Technique for Evaluating the Equality of Variance Assumption and Model Specification in a Regression Analysis

    ERIC Educational Resources Information Center

    Berenson, Mark L.

    2013-01-01

    There is consensus in the statistical literature that severe departures from its assumptions invalidate the use of regression modeling for purposes of inference. The assumptions of regression modeling are usually evaluated subjectively through visual, graphic displays in a residual analysis but such an approach, taken alone, may be insufficient…

  14. Regression Analysis: Instructional Resource for Cost/Managerial Accounting

    ERIC Educational Resources Information Center

    Stout, David E.

    2015-01-01

    This paper describes a classroom-tested instructional resource, grounded in principles of active learning and a constructivism, that embraces two primary objectives: "demystify" for accounting students technical material from statistics regarding ordinary least-squares (OLS) regression analysis--material that students may find obscure or…

  15. Advanced Statistics for Exotic Animal Practitioners.

    PubMed

    Hodsoll, John; Hellier, Jennifer M; Ryan, Elizabeth G

    2017-09-01

    Correlation and regression assess the association between 2 or more variables. This article reviews the core knowledge needed to understand these analyses, moving from visual analysis in scatter plots through correlation, simple and multiple linear regression, and logistic regression. Correlation estimates the strength and direction of a relationship between 2 variables. Regression can be considered more general and quantifies the numerical relationships between an outcome and 1 or multiple variables in terms of a best-fit line, allowing predictions to be made. Each technique is discussed with examples and the statistical assumptions underlying their correct application. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Newer classification and regression tree techniques: Bagging and Random Forests for ecological prediction

    Treesearch

    Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw

    2006-01-01

    We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.

  17. USAF (United States Air Force) Stability and Control DATCOM (Data Compendium)

    DTIC Science & Technology

    1978-04-01

    regression analysis involves the study of a group of variables to determine their effect on a given parameter. Because of the empirical nature of this...regression analysis of mathematical statistics. In general, a regression analysis involves the study of a group of variables to determine their effect on a...Excperiment, OSR TN 58-114, MIT Fluid Dynamics Research Group Rapt. 57-5, 1957. (U) 90. Kennet, H., and Ashley, H.: Review of Unsteady Aerodynamic Studies in

  18. Regression modeling of ground-water flow

    USGS Publications Warehouse

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  19. Cognition of and Demand for Education and Teaching in Medical Statistics in China: A Systematic Review and Meta-Analysis

    PubMed Central

    Li, Gaoming; Yi, Dali; Wu, Xiaojiao; Liu, Xiaoyu; Zhang, Yanqi; Liu, Ling; Yi, Dong

    2015-01-01

    Background Although a substantial number of studies focus on the teaching and application of medical statistics in China, few studies comprehensively evaluate the recognition of and demand for medical statistics. In addition, the results of these various studies differ and are insufficiently comprehensive and systematic. Objectives This investigation aimed to evaluate the general cognition of and demand for medical statistics by undergraduates, graduates, and medical staff in China. Methods We performed a comprehensive database search related to the cognition of and demand for medical statistics from January 2007 to July 2014 and conducted a meta-analysis of non-controlled studies with sub-group analysis for undergraduates, graduates, and medical staff. Results There are substantial differences with respect to the cognition of theory in medical statistics among undergraduates (73.5%), graduates (60.7%), and medical staff (39.6%). The demand for theory in medical statistics is high among graduates (94.6%), undergraduates (86.1%), and medical staff (88.3%). Regarding specific statistical methods, the cognition of basic statistical methods is higher than of advanced statistical methods. The demand for certain advanced statistical methods, including (but not limited to) multiple analysis of variance (ANOVA), multiple linear regression, and logistic regression, is higher than that for basic statistical methods. The use rates of the Statistical Package for the Social Sciences (SPSS) software and statistical analysis software (SAS) are only 55% and 15%, respectively. Conclusion The overall statistical competence of undergraduates, graduates, and medical staff is insufficient, and their ability to practically apply their statistical knowledge is limited, which constitutes an unsatisfactory state of affairs for medical statistics education. Because the demand for skills in this area is increasing, the need to reform medical statistics education in China has become urgent. PMID:26053876

  20. Cognition of and Demand for Education and Teaching in Medical Statistics in China: A Systematic Review and Meta-Analysis.

    PubMed

    Wu, Yazhou; Zhou, Liang; Li, Gaoming; Yi, Dali; Wu, Xiaojiao; Liu, Xiaoyu; Zhang, Yanqi; Liu, Ling; Yi, Dong

    2015-01-01

    Although a substantial number of studies focus on the teaching and application of medical statistics in China, few studies comprehensively evaluate the recognition of and demand for medical statistics. In addition, the results of these various studies differ and are insufficiently comprehensive and systematic. This investigation aimed to evaluate the general cognition of and demand for medical statistics by undergraduates, graduates, and medical staff in China. We performed a comprehensive database search related to the cognition of and demand for medical statistics from January 2007 to July 2014 and conducted a meta-analysis of non-controlled studies with sub-group analysis for undergraduates, graduates, and medical staff. There are substantial differences with respect to the cognition of theory in medical statistics among undergraduates (73.5%), graduates (60.7%), and medical staff (39.6%). The demand for theory in medical statistics is high among graduates (94.6%), undergraduates (86.1%), and medical staff (88.3%). Regarding specific statistical methods, the cognition of basic statistical methods is higher than of advanced statistical methods. The demand for certain advanced statistical methods, including (but not limited to) multiple analysis of variance (ANOVA), multiple linear regression, and logistic regression, is higher than that for basic statistical methods. The use rates of the Statistical Package for the Social Sciences (SPSS) software and statistical analysis software (SAS) are only 55% and 15%, respectively. The overall statistical competence of undergraduates, graduates, and medical staff is insufficient, and their ability to practically apply their statistical knowledge is limited, which constitutes an unsatisfactory state of affairs for medical statistics education. Because the demand for skills in this area is increasing, the need to reform medical statistics education in China has become urgent.

  1. Online Statistical Modeling (Regression Analysis) for Independent Responses

    NASA Astrophysics Data System (ADS)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  2. Security of statistical data bases: invasion of privacy through attribute correlational modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palley, M.A.

    This study develops, defines, and applies a statistical technique for the compromise of confidential information in a statistical data base. Attribute Correlational Modeling (ACM) recognizes that the information contained in a statistical data base represents real world statistical phenomena. As such, ACM assumes correlational behavior among the database attributes. ACM proceeds to compromise confidential information through creation of a regression model, where the confidential attribute is treated as the dependent variable. The typical statistical data base may preclude the direct application of regression. In this scenario, the research introduces the notion of a synthetic data base, created through legitimate queriesmore » of the actual data base, and through proportional random variation of responses to these queries. The synthetic data base is constructed to resemble the actual data base as closely as possible in a statistical sense. ACM then applies regression analysis to the synthetic data base, and utilizes the derived model to estimate confidential information in the actual database.« less

  3. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression

    PubMed Central

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271

  4. Is math anxiety in the secondary classroom limiting physics mastery? A study of math anxiety and physics performance

    NASA Astrophysics Data System (ADS)

    Mercer, Gary J.

    This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.

  5. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  6. Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.

  7. Assessing risk factors for periodontitis using regression

    NASA Astrophysics Data System (ADS)

    Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa

    2013-10-01

    Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.

  8. A Review of the Study Designs and Statistical Methods Used in the Determination of Predictors of All-Cause Mortality in HIV-Infected Cohorts: 2002–2011

    PubMed Central

    Otwombe, Kennedy N.; Petzold, Max; Martinson, Neil; Chirwa, Tobias

    2014-01-01

    Background Research in the predictors of all-cause mortality in HIV-infected people has widely been reported in literature. Making an informed decision requires understanding the methods used. Objectives We present a review on study designs, statistical methods and their appropriateness in original articles reporting on predictors of all-cause mortality in HIV-infected people between January 2002 and December 2011. Statistical methods were compared between 2002–2006 and 2007–2011. Time-to-event analysis techniques were considered appropriate. Data Sources Pubmed/Medline. Study Eligibility Criteria Original English-language articles were abstracted. Letters to the editor, editorials, reviews, systematic reviews, meta-analysis, case reports and any other ineligible articles were excluded. Results A total of 189 studies were identified (n = 91 in 2002–2006 and n = 98 in 2007–2011) out of which 130 (69%) were prospective and 56 (30%) were retrospective. One hundred and eighty-two (96%) studies described their sample using descriptive statistics while 32 (17%) made comparisons using t-tests. Kaplan-Meier methods for time-to-event analysis were commonly used in the earlier period (n = 69, 76% vs. n = 53, 54%, p = 0.002). Predictors of mortality in the two periods were commonly determined using Cox regression analysis (n = 67, 75% vs. n = 63, 64%, p = 0.12). Only 7 (4%) used advanced survival analysis methods of Cox regression analysis with frailty in which 6 (3%) were used in the later period. Thirty-two (17%) used logistic regression while 8 (4%) used other methods. There were significantly more articles from the first period using appropriate methods compared to the second (n = 80, 88% vs. n = 69, 70%, p-value = 0.003). Conclusion Descriptive statistics and survival analysis techniques remain the most common methods of analysis in publications on predictors of all-cause mortality in HIV-infected cohorts while prospective research designs are favoured. Sophisticated techniques of time-dependent Cox regression and Cox regression with frailty are scarce. This motivates for more training in the use of advanced time-to-event methods. PMID:24498313

  9. Reporting quality of statistical methods in surgical observational studies: protocol for systematic review.

    PubMed

    Wu, Robert; Glen, Peter; Ramsay, Tim; Martel, Guillaume

    2014-06-28

    Observational studies dominate the surgical literature. Statistical adjustment is an important strategy to account for confounders in observational studies. Research has shown that published articles are often poor in statistical quality, which may jeopardize their conclusions. The Statistical Analyses and Methods in the Published Literature (SAMPL) guidelines have been published to help establish standards for statistical reporting.This study will seek to determine whether the quality of statistical adjustment and the reporting of these methods are adequate in surgical observational studies. We hypothesize that incomplete reporting will be found in all surgical observational studies, and that the quality and reporting of these methods will be of lower quality in surgical journals when compared with medical journals. Finally, this work will seek to identify predictors of high-quality reporting. This work will examine the top five general surgical and medical journals, based on a 5-year impact factor (2007-2012). All observational studies investigating an intervention related to an essential component area of general surgery (defined by the American Board of Surgery), with an exposure, outcome, and comparator, will be included in this systematic review. Essential elements related to statistical reporting and quality were extracted from the SAMPL guidelines and include domains such as intent of analysis, primary analysis, multiple comparisons, numbers and descriptive statistics, association and correlation analyses, linear regression, logistic regression, Cox proportional hazard analysis, analysis of variance, survival analysis, propensity analysis, and independent and correlated analyses. Each article will be scored as a proportion based on fulfilling criteria in relevant analyses used in the study. A logistic regression model will be built to identify variables associated with high-quality reporting. A comparison will be made between the scores of surgical observational studies published in medical versus surgical journals. Secondary outcomes will pertain to individual domains of analysis. Sensitivity analyses will be conducted. This study will explore the reporting and quality of statistical analyses in surgical observational studies published in the most referenced surgical and medical journals in 2013 and examine whether variables (including the type of journal) can predict high-quality reporting.

  10. Beyond Multiple Regression: Using Commonality Analysis to Better Understand R[superscript 2] Results

    ERIC Educational Resources Information Center

    Warne, Russell T.

    2011-01-01

    Multiple regression is one of the most common statistical methods used in quantitative educational research. Despite the versatility and easy interpretability of multiple regression, it has some shortcomings in the detection of suppressor variables and for somewhat arbitrarily assigning values to the structure coefficients of correlated…

  11. SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *

    PubMed Central

    Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.

    2014-01-01

    The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844

  12. Determining the Statistical Significance of Relative Weights

    ERIC Educational Resources Information Center

    Tonidandel, Scott; LeBreton, James M.; Johnson, Jeff W.

    2009-01-01

    Relative weight analysis is a procedure for estimating the relative importance of correlated predictors in a regression equation. Because the sampling distribution of relative weights is unknown, researchers using relative weight analysis are unable to make judgments regarding the statistical significance of the relative weights. J. W. Johnson…

  13. Bootstrap Methods: A Very Leisurely Look.

    ERIC Educational Resources Information Center

    Hinkle, Dennis E.; Winstead, Wayland H.

    The Bootstrap method, a computer-intensive statistical method of estimation, is illustrated using a simple and efficient Statistical Analysis System (SAS) routine. The utility of the method for generating unknown parameters, including standard errors for simple statistics, regression coefficients, discriminant function coefficients, and factor…

  14. [Design and implementation of online statistical analysis function in information system of air pollution and health impact monitoring].

    PubMed

    Lü, Yiran; Hao, Shuxin; Zhang, Guoqing; Liu, Jie; Liu, Yue; Xu, Dongqun

    2018-01-01

    To implement the online statistical analysis function in information system of air pollution and health impact monitoring, and obtain the data analysis information real-time. Using the descriptive statistical method as well as time-series analysis and multivariate regression analysis, SQL language and visual tools to implement online statistical analysis based on database software. Generate basic statistical tables and summary tables of air pollution exposure and health impact data online; Generate tendency charts of each data part online and proceed interaction connecting to database; Generate butting sheets which can lead to R, SAS and SPSS directly online. The information system air pollution and health impact monitoring implements the statistical analysis function online, which can provide real-time analysis result to its users.

  15. Evaluation of Regression Models of Balance Calibration Data Using an Empirical Criterion

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert; Volden, Thomas R.

    2012-01-01

    An empirical criterion for assessing the significance of individual terms of regression models of wind tunnel strain gage balance outputs is evaluated. The criterion is based on the percent contribution of a regression model term. It considers a term to be significant if its percent contribution exceeds the empirical threshold of 0.05%. The criterion has the advantage that it can easily be computed using the regression coefficients of the gage outputs and the load capacities of the balance. First, a definition of the empirical criterion is provided. Then, it is compared with an alternate statistical criterion that is widely used in regression analysis. Finally, calibration data sets from a variety of balances are used to illustrate the connection between the empirical and the statistical criterion. A review of these results indicated that the empirical criterion seems to be suitable for a crude assessment of the significance of a regression model term as the boundary between a significant and an insignificant term cannot be defined very well. Therefore, regression model term reduction should only be performed by using the more universally applicable statistical criterion.

  16. Review and statistical analysis of the use of ultrasonic velocity for estimating the porosity fraction in polycrystalline materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.

    1991-01-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semiempirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produces predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis of fully-dense materials are in good agreement with those calculated from elastic properties.

  17. Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.

    1990-01-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.

  18. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    ERIC Educational Resources Information Center

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  19. Conjoint Analysis: A Study of the Effects of Using Person Variables.

    ERIC Educational Resources Information Center

    Fraas, John W.; Newman, Isadore

    Three statistical techniques--conjoint analysis, a multiple linear regression model, and a multiple linear regression model with a surrogate person variable--were used to estimate the relative importance of five university attributes for students in the process of selecting a college. The five attributes include: availability and variety of…

  20. What Happens to Students Placed into Developmental Education? A Meta-Analysis of Regression Discontinuity Studies

    ERIC Educational Resources Information Center

    Valentine, Jeffrey C.; Konstantopoulos, Spyros; Goldrick-Rab, Sara

    2017-01-01

    This article reports a systematic review and meta-analysis of studies that use regression discontinuity to examine the effects of placement into developmental education. Results suggest that placement into developmental education is associated with effects that are negative, statistically significant, and substantively large for three outcomes:…

  1. Weighted analysis methods for mapped plot forest inventory data: Tables, regressions, maps and graphs

    Treesearch

    Paul C. Van Deusen; Linda S. Heath

    2010-01-01

    Weighted estimation methods for analysis of mapped plot forest inventory data are discussed. The appropriate weighting scheme can vary depending on the type of analysis and graphical display. Both statistical issues and user expectations need to be considered in these methods. A weighting scheme is proposed that balances statistical considerations and the logical...

  2. Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation

    NASA Technical Reports Server (NTRS)

    Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.

    1998-01-01

    The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.

  3. Neither fixed nor random: weighted least squares meta-regression.

    PubMed

    Stanley, T D; Doucouliagos, Hristos

    2017-03-01

    Our study revisits and challenges two core conventional meta-regression estimators: the prevalent use of 'mixed-effects' or random-effects meta-regression analysis and the correction of standard errors that defines fixed-effects meta-regression analysis (FE-MRA). We show how and explain why an unrestricted weighted least squares MRA (WLS-MRA) estimator is superior to conventional random-effects (or mixed-effects) meta-regression when there is publication (or small-sample) bias that is as good as FE-MRA in all cases and better than fixed effects in most practical applications. Simulations and statistical theory show that WLS-MRA provides satisfactory estimates of meta-regression coefficients that are practically equivalent to mixed effects or random effects when there is no publication bias. When there is publication selection bias, WLS-MRA always has smaller bias than mixed effects or random effects. In practical applications, an unrestricted WLS meta-regression is likely to give practically equivalent or superior estimates to fixed-effects, random-effects, and mixed-effects meta-regression approaches. However, random-effects meta-regression remains viable and perhaps somewhat preferable if selection for statistical significance (publication bias) can be ruled out and when random, additive normal heterogeneity is known to directly affect the 'true' regression coefficient. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. The Malpractice of Statistical Interpretation

    ERIC Educational Resources Information Center

    Fraas, John W.; Newman, Isadore

    1978-01-01

    Problems associated with the use of gain scores, analysis of covariance, multicollinearity, part and partial correlation, and the lack of rectilinearity in regression are discussed. Particular attention is paid to the misuse of statistical techniques. (JKS)

  5. How Statistics "Excel" Online.

    ERIC Educational Resources Information Center

    Chao, Faith; Davis, James

    2000-01-01

    Discusses the use of Microsoft Excel software and provides examples of its use in an online statistics course at Golden Gate University in the areas of randomness and probability, sampling distributions, confidence intervals, and regression analysis. (LRW)

  6. New robust statistical procedures for the polytomous logistic regression models.

    PubMed

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  7. General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies

    PubMed Central

    Lee, Seunggeun; Teslovich, Tanya M.; Boehnke, Michael; Lin, Xihong

    2013-01-01

    We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels. PMID:23768515

  8. Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost-effectiveness analysis.

    PubMed

    Hoch, Jeffrey S; Briggs, Andrew H; Willan, Andrew R

    2002-07-01

    Economic evaluation is often seen as a branch of health economics divorced from mainstream econometric techniques. Instead, it is perceived as relying on statistical methods for clinical trials. Furthermore, the statistic of interest in cost-effectiveness analysis, the incremental cost-effectiveness ratio is not amenable to regression-based methods, hence the traditional reliance on comparing aggregate measures across the arms of a clinical trial. In this paper, we explore the potential for health economists undertaking cost-effectiveness analysis to exploit the plethora of established econometric techniques through the use of the net-benefit framework - a recently suggested reformulation of the cost-effectiveness problem that avoids the reliance on cost-effectiveness ratios and their associated statistical problems. This allows the formulation of the cost-effectiveness problem within a standard regression type framework. We provide an example with empirical data to illustrate how a regression type framework can enhance the net-benefit method. We go on to suggest that practical advantages of the net-benefit regression approach include being able to use established econometric techniques, adjust for imperfect randomisation, and identify important subgroups in order to estimate the marginal cost-effectiveness of an intervention. Copyright 2002 John Wiley & Sons, Ltd.

  9. Regional Regression Equations to Estimate Flow-Duration Statistics at Ungaged Stream Sites in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2010-01-01

    Multiple linear regression equations for determining flow-duration statistics were developed to estimate select flow exceedances ranging from 25- to 99-percent for six 'bioperiods'-Salmonid Spawning (November), Overwinter (December-February), Habitat Forming (March-April), Clupeid Spawning (May), Resident Spawning (June), and Rearing and Growth (July-October)-in Connecticut. Regression equations also were developed to estimate the 25- and 99-percent flow exceedances without reference to a bioperiod. In total, 32 equations were developed. The predictive equations were based on regression analyses relating flow statistics from streamgages to GIS-determined basin and climatic characteristics for the drainage areas of those streamgages. Thirty-nine streamgages (and an additional 6 short-term streamgages and 28 partial-record sites for the non-bioperiod 99-percent exceedance) in Connecticut and adjacent areas of neighboring States were used in the regression analysis. Weighted least squares regression analysis was used to determine the predictive equations; weights were assigned based on record length. The basin characteristics-drainage area, percentage of area with coarse-grained stratified deposits, percentage of area with wetlands, mean monthly precipitation (November), mean seasonal precipitation (December, January, and February), and mean basin elevation-are used as explanatory variables in the equations. Standard errors of estimate of the 32 equations ranged from 10.7 to 156 percent with medians of 19.2 and 55.4 percent to predict the 25- and 99-percent exceedances, respectively. Regression equations to estimate high and median flows (25- to 75-percent exceedances) are better predictors (smaller variability of the residual values around the regression line) than the equations to estimate low flows (less than 75-percent exceedance). The Habitat Forming (March-April) bioperiod had the smallest standard errors of estimate, ranging from 10.7 to 20.9 percent. In contrast, the Rearing and Growth (July-October) bioperiod had the largest standard errors, ranging from 30.9 to 156 percent. The adjusted coefficient of determination of the equations ranged from 77.5 to 99.4 percent with medians of 98.5 and 90.6 percent to predict the 25- and 99-percent exceedances, respectively. Descriptive information on the streamgages used in the regression, measured basin and climatic characteristics, and estimated flow-duration statistics are provided in this report. Flow-duration statistics and the 32 regression equations for estimating flow-duration statistics in Connecticut are stored on the U.S. Geological Survey World Wide Web application ?StreamStats? (http://water.usgs.gov/osw/streamstats/index.html). The regression equations developed in this report can be used to produce unbiased estimates of select flow exceedances statewide.

  10. An Analysis of COLA (Cost of Living Adjustment) Allocation within the United States Coast Guard.

    DTIC Science & Technology

    1983-09-01

    books Applied Linear Regression [Ref. 39], and Statistical Methods in Research and Production [Ref. 40], or any other book on regression. In the event...Indexes, Master’s Thesis, Air Force Institute of Technology, Wright-Patterson AFB, 1976. 39. Weisberg, Stanford, Applied Linear Regression , Wiley, 1980. 40

  11. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies

    PubMed Central

    Vatcheva, Kristina P.; Lee, MinJae; McCormick, Joseph B.; Rahbar, Mohammad H.

    2016-01-01

    The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis. PMID:27274911

  12. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.

    PubMed

    Vatcheva, Kristina P; Lee, MinJae; McCormick, Joseph B; Rahbar, Mohammad H

    2016-04-01

    The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.

  13. Progress of statistical analysis in biomedical research through the historical review of the development of the Framingham score.

    PubMed

    Ignjatović, Aleksandra; Stojanović, Miodrag; Milošević, Zoran; Anđelković Apostolović, Marija

    2017-12-02

    The interest in developing risk models in medicine not only is appealing, but also associated with many obstacles in different aspects of predictive model development. Initially, the association of biomarkers or the association of more markers with the specific outcome was proven by statistical significance, but novel and demanding questions required the development of new and more complex statistical techniques. Progress of statistical analysis in biomedical research can be observed the best through the history of the Framingham study and development of the Framingham score. Evaluation of predictive models comes from a combination of the facts which are results of several metrics. Using logistic regression and Cox proportional hazards regression analysis, the calibration test, and the ROC curve analysis should be mandatory and eliminatory, and the central place should be taken by some new statistical techniques. In order to obtain complete information related to the new marker in the model, recently, there is a recommendation to use the reclassification tables by calculating the net reclassification index and the integrated discrimination improvement. Decision curve analysis is a novel method for evaluating the clinical usefulness of a predictive model. It may be noted that customizing and fine-tuning of the Framingham risk score initiated the development of statistical analysis. Clinically applicable predictive model should be a trade-off between all abovementioned statistical metrics, a trade-off between calibration and discrimination, accuracy and decision-making, costs and benefits, and quality and quantity of patient's life.

  14. Passing the Test: Ecological Regression Analysis in the Los Angeles County Case and Beyond.

    ERIC Educational Resources Information Center

    Lichtman, Allan J.

    1991-01-01

    Statistical analysis of racially polarized voting prepared for the Garza v County of Los Angeles (California) (1990) voting rights case is reviewed to demonstrate that ecological regression is a flexible, robust technique that illuminates the reality of ethnic voting, and superior to the neighborhood model supported by the defendants. (SLD)

  15. Correlation and simple linear regression.

    PubMed

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  16. Classical Statistics and Statistical Learning in Imaging Neuroscience

    PubMed Central

    Bzdok, Danilo

    2017-01-01

    Brain-imaging research has predominantly generated insight by means of classical statistics, including regression-type analyses and null-hypothesis testing using t-test and ANOVA. Throughout recent years, statistical learning methods enjoy increasing popularity especially for applications in rich and complex data, including cross-validated out-of-sample prediction using pattern classification and sparsity-inducing regression. This concept paper discusses the implications of inferential justifications and algorithmic methodologies in common data analysis scenarios in neuroimaging. It is retraced how classical statistics and statistical learning originated from different historical contexts, build on different theoretical foundations, make different assumptions, and evaluate different outcome metrics to permit differently nuanced conclusions. The present considerations should help reduce current confusion between model-driven classical hypothesis testing and data-driven learning algorithms for investigating the brain with imaging techniques. PMID:29056896

  17. Length bias correction in gene ontology enrichment analysis using logistic regression.

    PubMed

    Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H

    2012-01-01

    When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

  18. Valid Statistical Analysis for Logistic Regression with Multiple Sources

    NASA Astrophysics Data System (ADS)

    Fienberg, Stephen E.; Nardi, Yuval; Slavković, Aleksandra B.

    Considerable effort has gone into understanding issues of privacy protection of individual information in single databases, and various solutions have been proposed depending on the nature of the data, the ways in which the database will be used and the precise nature of the privacy protection being offered. Once data are merged across sources, however, the nature of the problem becomes far more complex and a number of privacy issues arise for the linked individual files that go well beyond those that are considered with regard to the data within individual sources. In the paper, we propose an approach that gives full statistical analysis on the combined database without actually combining it. We focus mainly on logistic regression, but the method and tools described may be applied essentially to other statistical models as well.

  19. Detection of outliers in the response and explanatory variables of the simple circular regression model

    NASA Astrophysics Data System (ADS)

    Mahmood, Ehab A.; Rana, Sohel; Hussin, Abdul Ghapor; Midi, Habshah

    2016-06-01

    The circular regression model may contain one or more data points which appear to be peculiar or inconsistent with the main part of the model. This may be occur due to recording errors, sudden short events, sampling under abnormal conditions etc. The existence of these data points "outliers" in the data set cause lot of problems in the research results and the conclusions. Therefore, we should identify them before applying statistical analysis. In this article, we aim to propose a statistic to identify outliers in the both of the response and explanatory variables of the simple circular regression model. Our proposed statistic is robust circular distance RCDxy and it is justified by the three robust measurements such as proportion of detection outliers, masking and swamping rates.

  20. Two-Year versus One-Year Head Start Program Impact: Addressing Selection Bias by Comparing Regression Modeling with Propensity Score Analysis

    ERIC Educational Resources Information Center

    Leow, Christine; Wen, Xiaoli; Korfmacher, Jon

    2015-01-01

    This article compares regression modeling and propensity score analysis as different types of statistical techniques used in addressing selection bias when estimating the impact of two-year versus one-year Head Start on children's school readiness. The analyses were based on the national Head Start secondary dataset. After controlling for…

  1. Low-Level Stratus Prediction Using Binary Statistical Regression: A Progress Report Using Moffett Field Data.

    DTIC Science & Technology

    1983-12-01

    analysis; such work is not reported here. It seems pos- sible that a robust principle component analysis may he informa- tive (see Gnanadesikan (1977...Statistics in Atmospheric Sciences, American Meteorological Soc., Boston, Mass. (1979) pp. 46-48. a Gnanadesikan , R., Methods for Statistical Data...North Carolina Chapel Hill, NC 20742 Dr. R. Gnanadesikan Bell Telephone Lab Murray Hill, NJ 07733 -%.. *5%a: *1 *15 I ,, - . . , ,, ... . . . . . . NO

  2. Effects of measurement errors on psychometric measurements in ergonomics studies: Implications for correlations, ANOVA, linear regression, factor analysis, and linear discriminant analysis.

    PubMed

    Liu, Yan; Salvendy, Gavriel

    2009-05-01

    This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.

  3. Applications of statistics to medical science, II overview of statistical procedures for general use.

    PubMed

    Watanabe, Hiroshi

    2012-01-01

    Procedures of statistical analysis are reviewed to provide an overview of applications of statistics for general use. Topics that are dealt with are inference on a population, comparison of two populations with respect to means and probabilities, and multiple comparisons. This study is the second part of series in which we survey medical statistics. Arguments related to statistical associations and regressions will be made in subsequent papers.

  4. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water.

    PubMed

    Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil

    2015-12-07

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.

  5. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water

    PubMed Central

    Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil

    2015-01-01

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190

  6. Evaluating the utility of companion animal tick surveillance practices for monitoring spread and occurrence of human Lyme disease in West Virginia, 2014-2016.

    PubMed

    Hendricks, Brian; Mark-Carew, Miguella; Conley, Jamison

    2017-11-13

    Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS) and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran's I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, P<0.001) and spatial lag (β=12.0, P=0.002) regression. No significant associations were identified for cats in either regression model. Statistically significant (P≤0.05) spatial dependence was identified in all regression models. Local Moran's I maps produced for spatial lag regression residuals indicated a decrease in model over- and under-estimation, but identified a higher number of statistically significant outliers than OLS regression. Results support previous conclusions that dogs are effective sentinel populations for monitoring risk of human exposure to Lyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia's unique position within the eastern United States in regards to Lyme disease occurrence.

  7. Development of LACIE CCEA-1 weather/wheat yield models. [regression analysis

    NASA Technical Reports Server (NTRS)

    Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.; Umberger, D. E. (Principal Investigator)

    1979-01-01

    The advantages and disadvantages of the casual (phenological, dynamic, physiological), statistical regression, and analog approaches to modeling for grain yield are examined. Given LACIE's primary goal of estimating wheat production for the large areas of eight major wheat-growing regions, the statistical regression approach of correlating historical yield and climate data offered the Center for Climatic and Environmental Assessment the greatest potential return within the constraints of time and data sources. The basic equation for the first generation wheat-yield model is given. Topics discussed include truncation, trend variable, selection of weather variables, episodic events, strata selection, operational data flow, weighting, and model results.

  8. Association between Stereotactic Radiotherapy and Death from Brain Metastases of Epithelial Ovarian Cancer: a Gliwice Data Re-Analysis with Penalization

    PubMed

    Tukiendorf, Andrzej; Mansournia, Mohammad Ali; Wydmański, Jerzy; Wolny-Rokicka, Edyta

    2017-04-01

    Background: Clinical datasets for epithelial ovarian cancer brain metastatic patients are usually small in size. When adequate case numbers are lacking, resulting estimates of regression coefficients may demonstrate bias. One of the direct approaches to reduce such sparse-data bias is based on penalized estimation. Methods: A re- analysis of formerly reported hazard ratios in diagnosed patients was performed using penalized Cox regression with a popular SAS package providing additional software codes for a statistical computational procedure. Results: It was found that the penalized approach can readily diminish sparse data artefacts and radically reduce the magnitude of estimated regression coefficients. Conclusions: It was confirmed that classical statistical approaches may exaggerate regression estimates or distort study interpretations and conclusions. The results support the thesis that penalization via weak informative priors and data augmentation are the safest approaches to shrink sparse data artefacts frequently occurring in epidemiological research. Creative Commons Attribution License

  9. Individual risk factors for deep infection and compromised fracture healing after intramedullary nailing of tibial shaft fractures: a single centre experience of 480 patients.

    PubMed

    Metsemakers, W-J; Handojo, K; Reynders, P; Sermon, A; Vanderschot, P; Nijs, S

    2015-04-01

    Despite modern advances in the treatment of tibial shaft fractures, complications including nonunion, malunion, and infection remain relatively frequent. A better understanding of these injuries and its complications could lead to prevention rather than treatment strategies. A retrospective study was performed to identify risk factors for deep infection and compromised fracture healing after intramedullary nailing (IMN) of tibial shaft fractures. Between January 2000 and January 2012, 480 consecutive patients with 486 tibial shaft fractures were enrolled in the study. Statistical analysis was performed to determine predictors of deep infection and compromised fracture healing. Compromised fracture healing was subdivided in delayed union and nonunion. The following independent variables were selected for analysis: age, sex, smoking, obesity, diabetes, American Society of Anaesthesiologists (ASA) classification, polytrauma, fracture type, open fractures, Gustilo type, primary external fixation (EF), time to nailing (TTN) and reaming. As primary statistical evaluation we performed a univariate analysis, followed by a multiple logistic regression model. Univariate regression analysis revealed similar risk factors for delayed union and nonunion, including fracture type, open fractures and Gustilo type. Factors affecting the occurrence of deep infection in this model were primary EF, a prolonged TTN, open fractures and Gustilo type. Multiple logistic regression analysis revealed polytrauma as the single risk factor for nonunion. With respect to delayed union, no risk factors could be identified. In the same statistical model, deep infection was correlated with primary EF. The purpose of this study was to evaluate risk factors of poor outcome after IMN of tibial shaft fractures. The univariate regression analysis showed that the nature of complications after tibial shaft nailing could be multifactorial. This was not confirmed in a multiple logistic regression model, which only revealed polytrauma and primary EF as risk factors for nonunion and deep infection, respectively. Future strategies should focus on prevention in high-risk populations such as polytrauma patients treated with EF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Measuring the statistical validity of summary meta-analysis and meta-regression results for use in clinical practice.

    PubMed

    Willis, Brian H; Riley, Richard D

    2017-09-20

    An important question for clinicians appraising a meta-analysis is: are the findings likely to be valid in their own practice-does the reported effect accurately represent the effect that would occur in their own clinical population? To this end we advance the concept of statistical validity-where the parameter being estimated equals the corresponding parameter for a new independent study. Using a simple ('leave-one-out') cross-validation technique, we demonstrate how we may test meta-analysis estimates for statistical validity using a new validation statistic, Vn, and derive its distribution. We compare this with the usual approach of investigating heterogeneity in meta-analyses and demonstrate the link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q statistic are compared for univariate random effects meta-analysis and a tailored meta-regression model, where information from the setting (included as model covariates) is used to calibrate the summary estimate to the setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are also shown to depend on the within-study variance, between-study variance, study sample size, and the number of studies in the meta-analysis. Finally, we apply Vn to two published meta-analyses and conclude that it usefully augments standard methods when deciding upon the likely validity of summary meta-analysis estimates in clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  11. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    PubMed

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.

  12. Logistic regression for risk factor modelling in stuttering research.

    PubMed

    Reed, Phil; Wu, Yaqionq

    2013-06-01

    To outline the uses of logistic regression and other statistical methods for risk factor analysis in the context of research on stuttering. The principles underlying the application of a logistic regression are illustrated, and the types of questions to which such a technique has been applied in the stuttering field are outlined. The assumptions and limitations of the technique are discussed with respect to existing stuttering research, and with respect to formulating appropriate research strategies to accommodate these considerations. Finally, some alternatives to the approach are briefly discussed. The way the statistical procedures are employed are demonstrated with some hypothetical data. Research into several practical issues concerning stuttering could benefit if risk factor modelling were used. Important examples are early diagnosis, prognosis (whether a child will recover or persist) and assessment of treatment outcome. After reading this article you will: (a) Summarize the situations in which logistic regression can be applied to a range of issues about stuttering; (b) Follow the steps in performing a logistic regression analysis; (c) Describe the assumptions of the logistic regression technique and the precautions that need to be checked when it is employed; (d) Be able to summarize its advantages over other techniques like estimation of group differences and simple regression. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation to be more reliable and precise with a proper statistical estimation. Proper confidence intervals are necessary for unambiguous prediction of trangene copy number. The four different statistical methods are compared for their advantages and disadvantages. Moreover, the statistical methods can also be applied for other real-time PCR-based quantification assays including transfection efficiency analysis and pathogen quantification.

  14. Replica analysis of overfitting in regression models for time-to-event data

    NASA Astrophysics Data System (ADS)

    Coolen, A. C. C.; Barrett, J. E.; Paga, P.; Perez-Vicente, C. J.

    2017-09-01

    Overfitting, which happens when the number of parameters in a model is too large compared to the number of data points available for determining these parameters, is a serious and growing problem in survival analysis. While modern medicine presents us with data of unprecedented dimensionality, these data cannot yet be used effectively for clinical outcome prediction. Standard error measures in maximum likelihood regression, such as p-values and z-scores, are blind to overfitting, and even for Cox’s proportional hazards model (the main tool of medical statisticians), one finds in literature only rules of thumb on the number of samples required to avoid overfitting. In this paper we present a mathematical theory of overfitting in regression models for time-to-event data, which aims to increase our quantitative understanding of the problem and provide practical tools with which to correct regression outcomes for the impact of overfitting. It is based on the replica method, a statistical mechanical technique for the analysis of heterogeneous many-variable systems that has been used successfully for several decades in physics, biology, and computer science, but not yet in medical statistics. We develop the theory initially for arbitrary regression models for time-to-event data, and verify its predictions in detail for the popular Cox model.

  15. Learning investment indicators through data extension

    NASA Astrophysics Data System (ADS)

    Dvořák, Marek

    2017-07-01

    Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.

  16. An Analytical Investigation of the Robustness and Power of ANCOVA with the Presence of Heterogeneous Regression Slopes.

    ERIC Educational Resources Information Center

    Hollingsworth, Holly H.

    This study shows that the test statistic for Analysis of Covariance (ANCOVA) has a noncentral F-districution with noncentrality parameter equal to zero if and only if the regression planes are homogeneous and/or the vector of overall covariate means is the null vector. The effect of heterogeneous regression slope parameters is to either increase…

  17. Analysis and Interpretation of Findings Using Multiple Regression Techniques

    ERIC Educational Resources Information Center

    Hoyt, William T.; Leierer, Stephen; Millington, Michael J.

    2006-01-01

    Multiple regression and correlation (MRC) methods form a flexible family of statistical techniques that can address a wide variety of different types of research questions of interest to rehabilitation professionals. In this article, we review basic concepts and terms, with an emphasis on interpretation of findings relevant to research questions…

  18. Identifying the Factors That Influence Change in SEBD Using Logistic Regression Analysis

    ERIC Educational Resources Information Center

    Camilleri, Liberato; Cefai, Carmel

    2013-01-01

    Multiple linear regression and ANOVA models are widely used in applications since they provide effective statistical tools for assessing the relationship between a continuous dependent variable and several predictors. However these models rely heavily on linearity and normality assumptions and they do not accommodate categorical dependent…

  19. The use of segmented regression in analysing interrupted time series studies: an example in pre-hospital ambulance care.

    PubMed

    Taljaard, Monica; McKenzie, Joanne E; Ramsay, Craig R; Grimshaw, Jeremy M

    2014-06-19

    An interrupted time series design is a powerful quasi-experimental approach for evaluating effects of interventions introduced at a specific point in time. To utilize the strength of this design, a modification to standard regression analysis, such as segmented regression, is required. In segmented regression analysis, the change in intercept and/or slope from pre- to post-intervention is estimated and used to test causal hypotheses about the intervention. We illustrate segmented regression using data from a previously published study that evaluated the effectiveness of a collaborative intervention to improve quality in pre-hospital ambulance care for acute myocardial infarction (AMI) and stroke. In the original analysis, a standard regression model was used with time as a continuous variable. We contrast the results from this standard regression analysis with those from segmented regression analysis. We discuss the limitations of the former and advantages of the latter, as well as the challenges of using segmented regression in analysing complex quality improvement interventions. Based on the estimated change in intercept and slope from pre- to post-intervention using segmented regression, we found insufficient evidence of a statistically significant effect on quality of care for stroke, although potential clinically important effects for AMI cannot be ruled out. Segmented regression analysis is the recommended approach for analysing data from an interrupted time series study. Several modifications to the basic segmented regression analysis approach are available to deal with challenges arising in the evaluation of complex quality improvement interventions.

  20. New insights into old methods for identifying causal rare variants.

    PubMed

    Wang, Haitian; Huang, Chien-Hsun; Lo, Shaw-Hwa; Zheng, Tian; Hu, Inchi

    2011-11-29

    The advance of high-throughput next-generation sequencing technology makes possible the analysis of rare variants. However, the investigation of rare variants in unrelated-individuals data sets faces the challenge of low power, and most methods circumvent the difficulty by using various collapsing procedures based on genes, pathways, or gene clusters. We suggest a new way to identify causal rare variants using the F-statistic and sliced inverse regression. The procedure is tested on the data set provided by the Genetic Analysis Workshop 17 (GAW17). After preliminary data reduction, we ranked markers according to their F-statistic values. Top-ranked markers were then subjected to sliced inverse regression, and those with higher absolute coefficients in the most significant sliced inverse regression direction were selected. The procedure yields good false discovery rates for the GAW17 data and thus is a promising method for future study on rare variants.

  1. Implementing informative priors for heterogeneity in meta-analysis using meta-regression and pseudo data.

    PubMed

    Rhodes, Kirsty M; Turner, Rebecca M; White, Ian R; Jackson, Dan; Spiegelhalter, David J; Higgins, Julian P T

    2016-12-20

    Many meta-analyses combine results from only a small number of studies, a situation in which the between-study variance is imprecisely estimated when standard methods are applied. Bayesian meta-analysis allows incorporation of external evidence on heterogeneity, providing the potential for more robust inference on the effect size of interest. We present a method for performing Bayesian meta-analysis using data augmentation, in which we represent an informative conjugate prior for between-study variance by pseudo data and use meta-regression for estimation. To assist in this, we derive predictive inverse-gamma distributions for the between-study variance expected in future meta-analyses. These may serve as priors for heterogeneity in new meta-analyses. In a simulation study, we compare approximate Bayesian methods using meta-regression and pseudo data against fully Bayesian approaches based on importance sampling techniques and Markov chain Monte Carlo (MCMC). We compare the frequentist properties of these Bayesian methods with those of the commonly used frequentist DerSimonian and Laird procedure. The method is implemented in standard statistical software and provides a less complex alternative to standard MCMC approaches. An importance sampling approach produces almost identical results to standard MCMC approaches, and results obtained through meta-regression and pseudo data are very similar. On average, data augmentation provides closer results to MCMC, if implemented using restricted maximum likelihood estimation rather than DerSimonian and Laird or maximum likelihood estimation. The methods are applied to real datasets, and an extension to network meta-analysis is described. The proposed method facilitates Bayesian meta-analysis in a way that is accessible to applied researchers. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  2. Categorical data processing for real estate objects valuation using statistical analysis

    NASA Astrophysics Data System (ADS)

    Parygin, D. S.; Malikov, V. P.; Golubev, A. V.; Sadovnikova, N. P.; Petrova, T. M.; Finogeev, A. G.

    2018-05-01

    Theoretical and practical approaches to the use of statistical methods for studying various properties of infrastructure objects are analyzed in the paper. Methods of forecasting the value of objects are considered. A method for coding categorical variables describing properties of real estate objects is proposed. The analysis of the results of modeling the price of real estate objects using regression analysis and an algorithm based on a comparative approach is carried out.

  3. Feminist identity as a predictor of eating disorder diagnostic status.

    PubMed

    Green, Melinda A; Scott, Norman A; Riopel, Cori M; Skaggs, Anna K

    2008-06-01

    Passive Acceptance (PA) and Active Commitment (AC) subscales of the Feminist Identity Development Scale (FIDS) were examined as predictors of eating disorder diagnostic status as assessed by the Questionnaire for Eating Disorder Diagnoses (Q-EDD). Results of a hierarchical regression analysis revealed PA and AC scores were not statistically significant predictors of ED diagnostic status after controlling for diagnostic subtype. Results of a multiple regression analysis revealed FIDS as a statistically significant predictor of ED diagnostic status when failing to control for ED diagnostic subtype. Discrepancies suggest ED diagnostic subtype may serve as a moderator variable in the relationship between ED diagnostic status and FIDS. (c) 2008 Wiley Periodicals, Inc.

  4. Measuring the statistical validity of summary meta‐analysis and meta‐regression results for use in clinical practice

    PubMed Central

    Riley, Richard D.

    2017-01-01

    An important question for clinicians appraising a meta‐analysis is: are the findings likely to be valid in their own practice—does the reported effect accurately represent the effect that would occur in their own clinical population? To this end we advance the concept of statistical validity—where the parameter being estimated equals the corresponding parameter for a new independent study. Using a simple (‘leave‐one‐out’) cross‐validation technique, we demonstrate how we may test meta‐analysis estimates for statistical validity using a new validation statistic, Vn, and derive its distribution. We compare this with the usual approach of investigating heterogeneity in meta‐analyses and demonstrate the link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q statistic are compared for univariate random effects meta‐analysis and a tailored meta‐regression model, where information from the setting (included as model covariates) is used to calibrate the summary estimate to the setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are also shown to depend on the within‐study variance, between‐study variance, study sample size, and the number of studies in the meta‐analysis. Finally, we apply Vn to two published meta‐analyses and conclude that it usefully augments standard methods when deciding upon the likely validity of summary meta‐analysis estimates in clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28620945

  5. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.

    2008-04-01

    Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.

  6. Binary Logistic Regression Analysis for Detecting Differential Item Functioning: Effectiveness of R[superscript 2] and Delta Log Odds Ratio Effect Size Measures

    ERIC Educational Resources Information Center

    Hidalgo, Mª Dolores; Gómez-Benito, Juana; Zumbo, Bruno D.

    2014-01-01

    The authors analyze the effectiveness of the R[superscript 2] and delta log odds ratio effect size measures when using logistic regression analysis to detect differential item functioning (DIF) in dichotomous items. A simulation study was carried out, and the Type I error rate and power estimates under conditions in which only statistical testing…

  7. A global goodness-of-fit statistic for Cox regression models.

    PubMed

    Parzen, M; Lipsitz, S R

    1999-06-01

    In this paper, a global goodness-of-fit test statistic for a Cox regression model, which has an approximate chi-squared distribution when the model has been correctly specified, is proposed. Our goodness-of-fit statistic is global and has power to detect if interactions or higher order powers of covariates in the model are needed. The proposed statistic is similar to the Hosmer and Lemeshow (1980, Communications in Statistics A10, 1043-1069) goodness-of-fit statistic for binary data as well as Schoenfeld's (1980, Biometrika 67, 145-153) statistic for the Cox model. The methods are illustrated using data from a Mayo Clinic trial in primary billiary cirrhosis of the liver (Fleming and Harrington, 1991, Counting Processes and Survival Analysis), in which the outcome is the time until liver transplantation or death. The are 17 possible covariates. Two Cox proportional hazards models are fit to the data, and the proposed goodness-of-fit statistic is applied to the fitted models.

  8. The value of a statistical life: a meta-analysis with a mixed effects regression model.

    PubMed

    Bellavance, François; Dionne, Georges; Lebeau, Martin

    2009-03-01

    The value of a statistical life (VSL) is a very controversial topic, but one which is essential to the optimization of governmental decisions. We see a great variability in the values obtained from different studies. The source of this variability needs to be understood, in order to offer public decision-makers better guidance in choosing a value and to set clearer guidelines for future research on the topic. This article presents a meta-analysis based on 39 observations obtained from 37 studies (from nine different countries) which all use a hedonic wage method to calculate the VSL. Our meta-analysis is innovative in that it is the first to use the mixed effects regression model [Raudenbush, S.W., 1994. Random effects models. In: Cooper, H., Hedges, L.V. (Eds.), The Handbook of Research Synthesis. Russel Sage Foundation, New York] to analyze studies on the value of a statistical life. We conclude that the variability found in the values studied stems in large part from differences in methodologies.

  9. Statistical approaches to account for missing values in accelerometer data: Applications to modeling physical activity.

    PubMed

    Yue Xu, Selene; Nelson, Sandahl; Kerr, Jacqueline; Godbole, Suneeta; Patterson, Ruth; Merchant, Gina; Abramson, Ian; Staudenmayer, John; Natarajan, Loki

    2018-04-01

    Physical inactivity is a recognized risk factor for many chronic diseases. Accelerometers are increasingly used as an objective means to measure daily physical activity. One challenge in using these devices is missing data due to device nonwear. We used a well-characterized cohort of 333 overweight postmenopausal breast cancer survivors to examine missing data patterns of accelerometer outputs over the day. Based on these observed missingness patterns, we created psuedo-simulated datasets with realistic missing data patterns. We developed statistical methods to design imputation and variance weighting algorithms to account for missing data effects when fitting regression models. Bias and precision of each method were evaluated and compared. Our results indicated that not accounting for missing data in the analysis yielded unstable estimates in the regression analysis. Incorporating variance weights and/or subject-level imputation improved precision by >50%, compared to ignoring missing data. We recommend that these simple easy-to-implement statistical tools be used to improve analysis of accelerometer data.

  10. Trend Analysis Using Microcomputers.

    ERIC Educational Resources Information Center

    Berger, Carl F.

    A trend analysis statistical package and additional programs for the Apple microcomputer are presented. They illustrate strategies of data analysis suitable to the graphics and processing capabilities of the microcomputer. The programs analyze data sets using examples of: (1) analysis of variance with multiple linear regression; (2) exponential…

  11. BrightStat.com: free statistics online.

    PubMed

    Stricker, Daniel

    2008-10-01

    Powerful software for statistical analysis is expensive. Here I present BrightStat, a statistical software running on the Internet which is free of charge. BrightStat's goals, its main capabilities and functionalities are outlined. Three different sample runs, a Friedman test, a chi-square test, and a step-wise multiple regression are presented. The results obtained by BrightStat are compared with results computed by SPSS, one of the global leader in providing statistical software, and VassarStats, a collection of scripts for data analysis running on the Internet. Elementary statistics is an inherent part of academic education and BrightStat is an alternative to commercial products.

  12. Statistics for nuclear engineers and scientists. Part 1. Basic statistical inference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beggs, W.J.

    1981-02-01

    This report is intended for the use of engineers and scientists working in the nuclear industry, especially at the Bettis Atomic Power Laboratory. It serves as the basis for several Bettis in-house statistics courses. The objectives of the report are to introduce the reader to the language and concepts of statistics and to provide a basic set of techniques to apply to problems of the collection and analysis of data. Part 1 covers subjects of basic inference. The subjects include: descriptive statistics; probability; simple inference for normally distributed populations, and for non-normal populations as well; comparison of two populations; themore » analysis of variance; quality control procedures; and linear regression analysis.« less

  13. Using Multilevel Modeling in Language Assessment Research: A Conceptual Introduction

    ERIC Educational Resources Information Center

    Barkaoui, Khaled

    2013-01-01

    This article critiques traditional single-level statistical approaches (e.g., multiple regression analysis) to examining relationships between language test scores and variables in the assessment setting. It highlights the conceptual, methodological, and statistical problems associated with these techniques in dealing with multilevel or nested…

  14. ASURV: Astronomical SURVival Statistics

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.

    2014-06-01

    ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

  15. Modeling Longitudinal Data Containing Non-Normal Within Subject Errors

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan; Glenn, Nancy L.

    2013-01-01

    The mission of the National Aeronautics and Space Administration’s (NASA) human research program is to advance safe human spaceflight. This involves conducting experiments, collecting data, and analyzing data. The data are longitudinal and result from a relatively few number of subjects; typically 10 – 20. A longitudinal study refers to an investigation where participant outcomes and possibly treatments are collected at multiple follow-up times. Standard statistical designs such as mean regression with random effects and mixed–effects regression are inadequate for such data because the population is typically not approximately normally distributed. Hence, more advanced data analysis methods are necessary. This research focuses on four such methods for longitudinal data analysis: the recently proposed linear quantile mixed models (lqmm) by Geraci and Bottai (2013), quantile regression, multilevel mixed–effects linear regression, and robust regression. This research also provides computational algorithms for longitudinal data that scientists can directly use for human spaceflight and other longitudinal data applications, then presents statistical evidence that verifies which method is best for specific situations. This advances the study of longitudinal data in a broad range of applications including applications in the sciences, technology, engineering and mathematics fields.

  16. [Application of SAS macro to evaluated multiplicative and additive interaction in logistic and Cox regression in clinical practices].

    PubMed

    Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q

    2016-05-01

    Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions.

  17. Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma

    USGS Publications Warehouse

    Esralew, Rachel A.; Smith, S. Jerrod

    2010-01-01

    Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage-basin characteristics by using a k-means cluster analysis. Three regions were identified for Oklahoma on the basis of the clustering of gaging stations and a manual delineation of distinguishable hydrologic and geologic boundaries: Region 1 (western Oklahoma excluding the Oklahoma and Texas Panhandles), Region 2 (north- and south-central Oklahoma), and Region 3 (eastern and central Oklahoma). A total of 228 regression equations (225 flow-duration regressions and three annual mean-flow regressions) were developed using ordinary least-squares and left-censored (Tobit) multiple-regression techniques. These equations can be used to estimate 75 flow-duration statistics and annual mean-flow for ungaged streams in the three regions. Drainage-basin characteristics that were statistically significant independent variables in the regression analyses were (1) contributing drainage area; (2) station elevation; (3) mean drainage-basin elevation; (4) channel slope; (5) percentage of forested canopy; (6) mean drainage-basin hillslope; (7) soil permeability; and (8) mean annual, seasonal, and monthly precipitation. The accuracy of flow-duration regression equations generally decreased from high-flow exceedance (low-exceedance probability) to low-flow exceedance (high-exceedance probability) . This decrease may have happened because a greater uncertainty exists for low-flow estimates and low-flow is largely affected by localized geology that was not quantified by the drainage-basin characteristics selected. The standard errors of estimate of regression equations for Region 1 (western Oklahoma) were substantially larger than those standard errors for other regions, especially for low-flow exceedances. These errors may be a result of greater variability in low flow because of increased irrigation activities in this region. Regression equations may not be reliable for sites where the drainage-basin characteristics are outside the range of values of independent vari

  18. The impact of mother's literacy on child dental caries: Individual data or aggregate data analysis?

    PubMed

    Haghdoost, Ali-Akbar; Hessari, Hossein; Baneshi, Mohammad Reza; Rad, Maryam; Shahravan, Arash

    2017-01-01

    To evaluate the impact of mother's literacy on child dental caries based on a national oral health survey in Iran and to investigate the possibility of ecological fallacy in aggregate data analysis. Existing data were from second national oral health survey that was carried out in 2004, which including 8725 6 years old participants. The association of mother's literacy with caries occurrence (DMF (Decayed, Missing, Filling) total score >0) of her child was assessed using individual data by logistic regression model. Then the association of the percentages of mother's literacy and the percentages of decayed teeth in each 30 provinces of Iran was assessed using aggregated data retrieved from the data of second national oral health survey of Iran and alternatively from census of "Statistical Center of Iran" using linear regression model. The significance level was set at 0.05 for all analysis. Individual data analysis showed a statistically significant association between mother's literacy and decayed teeth of children ( P = 0.02, odds ratio = 0.83). There were not statistical significant association between mother's literacy and child dental caries in aggregate data analysis of oral health survey ( P = 0.79, B = 0.03) and census of "Statistical Center of Statistics" ( P = 0.60, B = 0.14). Literate mothers have a preventive effect on occurring dental caries of children. According to the high percentage of illiterate parents in Iran, it's logical to consider suitable methods of oral health education which do not need reading or writing. Aggregate data analysis and individual data analysis had completely different results in this study.

  19. Comparative Research of Navy Voluntary Education at Operational Commands

    DTIC Science & Technology

    2017-03-01

    return on investment, ROI, logistic regression, multivariate analysis, descriptive statistics, Markov, time-series, linear programming 15. NUMBER...21  B.  DESCRIPTIVE STATISTICS TABLES ...............................................25  C.  PRIVACY CONSIDERATIONS...THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1.  Variables and Descriptions . Adapted from NETC (2016). .......................21

  20. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  1. Web 2.0 Articles: Content Analysis and a Statistical Model to Predict Recognition of the Need for New Instructional Design Strategies

    ERIC Educational Resources Information Center

    Liu, Leping; Maddux, Cleborne D.

    2008-01-01

    This article presents a study of Web 2.0 articles intended to (a) analyze the content of what is written and (b) develop a statistical model to predict whether authors' write about the need for new instructional design strategies and models. Eighty-eight technology articles were subjected to lexical analysis and a logistic regression model was…

  2. Building information for systematic improvement of the prevention of hospital-acquired pressure ulcers with statistical process control charts and regression.

    PubMed

    Padula, William V; Mishra, Manish K; Weaver, Christopher D; Yilmaz, Taygan; Splaine, Mark E

    2012-06-01

    To demonstrate complementary results of regression and statistical process control (SPC) chart analyses for hospital-acquired pressure ulcers (HAPUs), and identify possible links between changes and opportunities for improvement between hospital microsystems and macrosystems. Ordinary least squares and panel data regression of retrospective hospital billing data, and SPC charts of prospective patient records for a US tertiary-care facility (2004-2007). A prospective cohort of hospital inpatients at risk for HAPUs was the study population. There were 337 HAPU incidences hospital wide among 43 844 inpatients. A probit regression model predicted the correlation of age, gender and length of stay on HAPU incidence (pseudo R(2)=0.096). Panel data analysis determined that for each additional day in the hospital, there was a 0.28% increase in the likelihood of HAPU incidence. A p-chart of HAPU incidence showed a mean incidence rate of 1.17% remaining in statistical control. A t-chart showed the average time between events for the last 25 HAPUs was 13.25 days. There was one 57-day period between two incidences during the observation period. A p-chart addressing Braden scale assessments showed that 40.5% of all patients were risk stratified for HAPUs upon admission. SPC charts complement standard regression analysis. SPC amplifies patient outcomes at the microsystem level and is useful for guiding quality improvement. Macrosystems should monitor effective quality improvement initiatives in microsystems and aid the spread of successful initiatives to other microsystems, followed by system-wide analysis with regression. Although HAPU incidence in this study is below the national mean, there is still room to improve HAPU incidence in this hospital setting since 0% incidence is theoretically achievable. Further assessment of pressure ulcer incidence could illustrate improvement in the quality of care and prevent HAPUs.

  3. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics

    USGS Publications Warehouse

    Lee, L.; Helsel, D.

    2005-01-01

    Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.

  4. Optimizing methods for linking cinematic features to fMRI data.

    PubMed

    Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia

    2015-04-15

    One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.

  5. Estimating sunspot number

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Reichmann, E. J.; Teuber, D. L.

    1984-01-01

    An empirical method is developed to predict certain parameters of future solar activity cycles. Sunspot cycle statistics are examined, and curve fitting and linear regression analysis techniques are utilized.

  6. Improved spatial regression analysis of diffusion tensor imaging for lesion detection during longitudinal progression of multiple sclerosis in individual subjects

    NASA Astrophysics Data System (ADS)

    Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui

    2016-03-01

    Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.

  7. An Analysis of San Diego's Housing Market Using a Geographically Weighted Regression Approach

    NASA Astrophysics Data System (ADS)

    Grant, Christina P.

    San Diego County real estate transaction data was evaluated with a set of linear models calibrated by ordinary least squares and geographically weighted regression (GWR). The goal of the analysis was to determine whether the spatial effects assumed to be in the data are best studied globally with no spatial terms, globally with a fixed effects submarket variable, or locally with GWR. 18,050 single-family residential sales which closed in the six months between April 2014 and September 2014 were used in the analysis. Diagnostic statistics including AICc, R2, Global Moran's I, and visual inspection of diagnostic plots and maps indicate superior model performance by GWR as compared to both global regressions.

  8. Statistical Evaluation of Time Series Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Benignus, V. A.

    1973-01-01

    The performance of a modified version of NASA's multivariate spectrum analysis program is discussed. A multiple regression model was used to make the revisions. Performance improvements were documented and compared to the standard fast Fourier transform by Monte Carlo techniques.

  9. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  10. Quantitative investigation of inappropriate regression model construction and the importance of medical statistics experts in observational medical research: a cross-sectional study.

    PubMed

    Nojima, Masanori; Tokunaga, Mutsumi; Nagamura, Fumitaka

    2018-05-05

    To investigate under what circumstances inappropriate use of 'multivariate analysis' is likely to occur and to identify the population that needs more support with medical statistics. The frequency of inappropriate regression model construction in multivariate analysis and related factors were investigated in observational medical research publications. The inappropriate algorithm of using only variables that were significant in univariate analysis was estimated to occur at 6.4% (95% CI 4.8% to 8.5%). This was observed in 1.1% of the publications with a medical statistics expert (hereinafter 'expert') as the first author, 3.5% if an expert was included as coauthor and in 12.2% if experts were not involved. In the publications where the number of cases was 50 or less and the study did not include experts, inappropriate algorithm usage was observed with a high proportion of 20.2%. The OR of the involvement of experts for this outcome was 0.28 (95% CI 0.15 to 0.53). A further, nation-level, analysis showed that the involvement of experts and the implementation of unfavourable multivariate analysis are associated at the nation-level analysis (R=-0.652). Based on the results of this study, the benefit of participation of medical statistics experts is obvious. Experts should be involved for proper confounding adjustment and interpretation of statistical models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy

    NASA Astrophysics Data System (ADS)

    Mancini, F.; Ceppi, C.; Ritrovato, G.

    2010-09-01

    This study focuses on landslide susceptibility mapping in the Daunia area (Apulian Apennines, Italy) and achieves this by using a multivariate statistical method and data processing in a Geographical Information System (GIS). The Logistic Regression (hereafter LR) method was chosen to produce a susceptibility map over an area of 130 000 ha where small settlements are historically threatened by landslide phenomena. By means of LR analysis, the tendency to landslide occurrences was, therefore, assessed by relating a landslide inventory (dependent variable) to a series of causal factors (independent variables) which were managed in the GIS, while the statistical analyses were performed by means of the SPSS (Statistical Package for the Social Sciences) software. The LR analysis produced a reliable susceptibility map of the investigated area and the probability level of landslide occurrence was ranked in four classes. The overall performance achieved by the LR analysis was assessed by local comparison between the expected susceptibility and an independent dataset extrapolated from the landslide inventory. Of the samples classified as susceptible to landslide occurrences, 85% correspond to areas where landslide phenomena have actually occurred. In addition, the consideration of the regression coefficients provided by the analysis demonstrated that a major role is played by the "land cover" and "lithology" causal factors in determining the occurrence and distribution of landslide phenomena in the Apulian Apennines.

  12. Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.

    PubMed

    Mi, Gu; Di, Yanming; Schafer, Daniel W

    2015-01-01

    This work is about assessing model adequacy for negative binomial (NB) regression, particularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq) data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.

  13. Using Recursive Regression to Explore Nonlinear Relationships and Interactions: A Tutorial Applied to a Multicultural Education Study

    ERIC Educational Resources Information Center

    Strang, Kenneth David

    2009-01-01

    This paper discusses how a seldom-used statistical procedure, recursive regression (RR), can numerically and graphically illustrate data-driven nonlinear relationships and interaction of variables. This routine falls into the family of exploratory techniques, yet a few interesting features make it a valuable compliment to factor analysis and…

  14. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. [How to fit and interpret multilevel models using SPSS].

    PubMed

    Pardo, Antonio; Ruiz, Miguel A; San Martín, Rafael

    2007-05-01

    Hierarchic or multilevel models are used to analyse data when cases belong to known groups and sample units are selected both from the individual level and from the group level. In this work, the multilevel models most commonly discussed in the statistic literature are described, explaining how to fit these models using the SPSS program (any version as of the 11 th ) and how to interpret the outcomes of the analysis. Five particular models are described, fitted, and interpreted: (1) one-way analysis of variance with random effects, (2) regression analysis with means-as-outcomes, (3) one-way analysis of covariance with random effects, (4) regression analysis with random coefficients, and (5) regression analysis with means- and slopes-as-outcomes. All models are explained, trying to make them understandable to researchers in health and behaviour sciences.

  16. 10 CFR 436.31 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... systems, building load simulation models, statistical regression analysis, or some combination of these..., excluding any cogeneration process for other than a federally owned building or buildings or other federally...

  17. Statistical Approaches to Interpretation of Local, Regional, and National Highway-Runoff and Urban-Stormwater Data

    USGS Publications Warehouse

    Tasker, Gary D.; Granato, Gregory E.

    2000-01-01

    Decision makers need viable methods for the interpretation of local, regional, and national-highway runoff and urban-stormwater data including flows, concentrations and loads of chemical constituents and sediment, potential effects on receiving waters, and the potential effectiveness of various best management practices (BMPs). Valid (useful for intended purposes), current, and technically defensible stormwater-runoff models are needed to interpret data collected in field studies, to support existing highway and urban-runoffplanning processes, to meet National Pollutant Discharge Elimination System (NPDES) requirements, and to provide methods for computation of Total Maximum Daily Loads (TMDLs) systematically and economically. Historically, conceptual, simulation, empirical, and statistical models of varying levels of detail, complexity, and uncertainty have been used to meet various data-quality objectives in the decision-making processes necessary for the planning, design, construction, and maintenance of highways and for other land-use applications. Water-quality simulation models attempt a detailed representation of the physical processes and mechanisms at a given site. Empirical and statistical regional water-quality assessment models provide a more general picture of water quality or changes in water quality over a region. All these modeling techniques share one common aspect-their predictive ability is poor without suitable site-specific data for calibration. To properly apply the correct model, one must understand the classification of variables, the unique characteristics of water-resources data, and the concept of population structure and analysis. Classifying variables being used to analyze data may determine which statistical methods are appropriate for data analysis. An understanding of the characteristics of water-resources data is necessary to evaluate the applicability of different statistical methods, to interpret the results of these techniques, and to use tools and techniques that account for the unique nature of water-resources data sets. Populations of data on stormwater-runoff quantity and quality are often best modeled as logarithmic transformations. Therefore, these factors need to be considered to form valid, current, and technically defensible stormwater-runoff models. Regression analysis is an accepted method for interpretation of water-resources data and for prediction of current or future conditions at sites that fit the input data model. Regression analysis is designed to provide an estimate of the average response of a system as it relates to variation in one or more known variables. To produce valid models, however, regression analysis should include visual analysis of scatterplots, an examination of the regression equation, evaluation of the method design assumptions, and regression diagnostics. A number of statistical techniques are described in the text and in the appendixes to provide information necessary to interpret data by use of appropriate methods. Uncertainty is an important part of any decisionmaking process. In order to deal with uncertainty problems, the analyst needs to know the severity of the statistical uncertainty of the methods used to predict water quality. Statistical models need to be based on information that is meaningful, representative, complete, precise, accurate, and comparable to be deemed valid, up to date, and technically supportable. To assess uncertainty in the analytical tools, the modeling methods, and the underlying data set, all of these components need be documented and communicated in an accessible format within project publications.

  18. A Data Analysis of Naval Air Systems Command Funding Documents

    DTIC Science & Technology

    2017-06-01

    Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management ...Business & Financial Managers 15. NUMBER OF PAGES 75 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY...Summary Statistics for Regressions with a Statistically Significant Relationship

  19. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    PubMed

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  20. Estimating current and future streamflow characteristics at ungaged sites, central and eastern Montana, with application to evaluating effects of climate change on fish populations

    USGS Publications Warehouse

    Sando, Roy; Chase, Katherine J.

    2017-03-23

    A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.

  1. Linear regression models and k-means clustering for statistical analysis of fNIRS data.

    PubMed

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

    2015-02-01

    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.

  2. Linear regression models and k-means clustering for statistical analysis of fNIRS data

    PubMed Central

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

    2015-01-01

    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets. PMID:25780751

  3. Meta-analysis of haplotype-association studies: comparison of methods and empirical evaluation of the literature

    PubMed Central

    2011-01-01

    Background Meta-analysis is a popular methodology in several fields of medical research, including genetic association studies. However, the methods used for meta-analysis of association studies that report haplotypes have not been studied in detail. In this work, methods for performing meta-analysis of haplotype association studies are summarized, compared and presented in a unified framework along with an empirical evaluation of the literature. Results We present multivariate methods that use summary-based data as well as methods that use binary and count data in a generalized linear mixed model framework (logistic regression, multinomial regression and Poisson regression). The methods presented here avoid the inflation of the type I error rate that could be the result of the traditional approach of comparing a haplotype against the remaining ones, whereas, they can be fitted using standard software. Moreover, formal global tests are presented for assessing the statistical significance of the overall association. Although the methods presented here assume that the haplotypes are directly observed, they can be easily extended to allow for such an uncertainty by weighting the haplotypes by their probability. Conclusions An empirical evaluation of the published literature and a comparison against the meta-analyses that use single nucleotide polymorphisms, suggests that the studies reporting meta-analysis of haplotypes contain approximately half of the included studies and produce significant results twice more often. We show that this excess of statistically significant results, stems from the sub-optimal method of analysis used and, in approximately half of the cases, the statistical significance is refuted if the data are properly re-analyzed. Illustrative examples of code are given in Stata and it is anticipated that the methods developed in this work will be widely applied in the meta-analysis of haplotype association studies. PMID:21247440

  4. Multivariate statistical analysis: Principles and applications to coorbital streams of meteorite falls

    NASA Technical Reports Server (NTRS)

    Wolf, S. F.; Lipschutz, M. E.

    1993-01-01

    Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.

  5. Validation of a heteroscedastic hazards regression model.

    PubMed

    Wu, Hong-Dar Isaac; Hsieh, Fushing; Chen, Chen-Hsin

    2002-03-01

    A Cox-type regression model accommodating heteroscedasticity, with a power factor of the baseline cumulative hazard, is investigated for analyzing data with crossing hazards behavior. Since the approach of partial likelihood cannot eliminate the baseline hazard, an overidentified estimating equation (OEE) approach is introduced in the estimation procedure. It by-product, a model checking statistic, is presented to test for the overall adequacy of the heteroscedastic model. Further, under the heteroscedastic model setting, we propose two statistics to test the proportional hazards assumption. Implementation of this model is illustrated in a data analysis of a cancer clinical trial.

  6. Clustering performance comparison using K-means and expectation maximization algorithms.

    PubMed

    Jung, Yong Gyu; Kang, Min Soo; Heo, Jun

    2014-11-14

    Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.

  7. Simulation of parametric model towards the fixed covariate of right censored lung cancer data

    NASA Astrophysics Data System (ADS)

    Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Ridwan Olaniran, Oyebayo; Enera Amran, Syahila

    2017-09-01

    In this study, simulation procedure was applied to measure the fixed covariate of right censored data by using parametric survival model. The scale and shape parameter were modified to differentiate the analysis of parametric regression survival model. Statistically, the biases, mean biases and the coverage probability were used in this analysis. Consequently, different sample sizes were employed to distinguish the impact of parametric regression model towards right censored data with 50, 100, 150 and 200 number of sample. R-statistical software was utilised to develop the coding simulation with right censored data. Besides, the final model of right censored simulation was compared with the right censored lung cancer data in Malaysia. It was found that different values of shape and scale parameter with different sample size, help to improve the simulation strategy for right censored data and Weibull regression survival model is suitable fit towards the simulation of survival of lung cancer patients data in Malaysia.

  8. The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihn T. Pham; Jeffrey J. Einerson

    2010-06-01

    This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automatedmore » processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.« less

  9. Automating approximate Bayesian computation by local linear regression.

    PubMed

    Thornton, Kevin R

    2009-07-07

    In several biological contexts, parameter inference often relies on computationally-intensive techniques. "Approximate Bayesian Computation", or ABC, methods based on summary statistics have become increasingly popular. A particular flavor of ABC based on using a linear regression to approximate the posterior distribution of the parameters, conditional on the summary statistics, is computationally appealing, yet no standalone tool exists to automate the procedure. Here, I describe a program to implement the method. The software package ABCreg implements the local linear-regression approach to ABC. The advantages are: 1. The code is standalone, and fully-documented. 2. The program will automatically process multiple data sets, and create unique output files for each (which may be processed immediately in R), facilitating the testing of inference procedures on simulated data, or the analysis of multiple data sets. 3. The program implements two different transformation methods for the regression step. 4. Analysis options are controlled on the command line by the user, and the program is designed to output warnings for cases where the regression fails. 5. The program does not depend on any particular simulation machinery (coalescent, forward-time, etc.), and therefore is a general tool for processing the results from any simulation. 6. The code is open-source, and modular.Examples of applying the software to empirical data from Drosophila melanogaster, and testing the procedure on simulated data, are shown. In practice, the ABCreg simplifies implementing ABC based on local-linear regression.

  10. Multinomial Logistic Regression Predicted Probability Map To Visualize The Influence Of Socio-Economic Factors On Breast Cancer Occurrence in Southern Karnataka

    NASA Astrophysics Data System (ADS)

    Madhu, B.; Ashok, N. C.; Balasubramanian, S.

    2014-11-01

    Multinomial logistic regression analysis was used to develop statistical model that can predict the probability of breast cancer in Southern Karnataka using the breast cancer occurrence data during 2007-2011. Independent socio-economic variables describing the breast cancer occurrence like age, education, occupation, parity, type of family, health insurance coverage, residential locality and socioeconomic status of each case was obtained. The models were developed as follows: i) Spatial visualization of the Urban- rural distribution of breast cancer cases that were obtained from the Bharat Hospital and Institute of Oncology. ii) Socio-economic risk factors describing the breast cancer occurrences were complied for each case. These data were then analysed using multinomial logistic regression analysis in a SPSS statistical software and relations between the occurrence of breast cancer across the socio-economic status and the influence of other socio-economic variables were evaluated and multinomial logistic regression models were constructed. iii) the model that best predicted the occurrence of breast cancer were identified. This multivariate logistic regression model has been entered into a geographic information system and maps showing the predicted probability of breast cancer occurrence in Southern Karnataka was created. This study demonstrates that Multinomial logistic regression is a valuable tool for developing models that predict the probability of breast cancer Occurrence in Southern Karnataka.

  11. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  12. 77 FR 13691 - Qualification of Drivers; Exemption Applications; Vision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ..., ocular hypertension, retinal detachment, cataracts and corneal scaring. In most cases, their eye... Application of Multiple Regression Analysis of a Poisson Process,'' Journal of American Statistical...

  13. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.

    PubMed

    Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula

    2011-01-01

    Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.

  14. Logistic regression analysis of conventional ultrasonography, strain elastosonography, and contrast-enhanced ultrasound characteristics for the differentiation of benign and malignant thyroid nodules

    PubMed Central

    Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Liu, Weixiang

    2017-01-01

    The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules’ 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively. PMID:29228030

  15. Logistic regression analysis of conventional ultrasonography, strain elastosonography, and contrast-enhanced ultrasound characteristics for the differentiation of benign and malignant thyroid nodules.

    PubMed

    Pang, Tiantian; Huang, Leidan; Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Gong, Xuehao; Liu, Weixiang

    2017-01-01

    The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules' 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively.

  16. Use of generalized ordered logistic regression for the analysis of multidrug resistance data.

    PubMed

    Agga, Getahun E; Scott, H Morgan

    2015-10-01

    Statistical analysis of antimicrobial resistance data largely focuses on individual antimicrobial's binary outcome (susceptible or resistant). However, bacteria are becoming increasingly multidrug resistant (MDR). Statistical analysis of MDR data is mostly descriptive often with tabular or graphical presentations. Here we report the applicability of generalized ordinal logistic regression model for the analysis of MDR data. A total of 1,152 Escherichia coli, isolated from the feces of weaned pigs experimentally supplemented with chlortetracycline (CTC) and copper, were tested for susceptibilities against 15 antimicrobials and were binary classified into resistant or susceptible. The 15 antimicrobial agents tested were grouped into eight different antimicrobial classes. We defined MDR as the number of antimicrobial classes to which E. coli isolates were resistant ranging from 0 to 8. Proportionality of the odds assumption of the ordinal logistic regression model was violated only for the effect of treatment period (pre-treatment, during-treatment and post-treatment); but not for the effect of CTC or copper supplementation. Subsequently, a partially constrained generalized ordinal logistic model was built that allows for the effect of treatment period to vary while constraining the effects of treatment (CTC and copper supplementation) to be constant across the levels of MDR classes. Copper (Proportional Odds Ratio [Prop OR]=1.03; 95% CI=0.73-1.47) and CTC (Prop OR=1.1; 95% CI=0.78-1.56) supplementation were not significantly associated with the level of MDR adjusted for the effect of treatment period. MDR generally declined over the trial period. In conclusion, generalized ordered logistic regression can be used for the analysis of ordinal data such as MDR data when the proportionality assumptions for ordered logistic regression are violated. Published by Elsevier B.V.

  17. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    PubMed Central

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (p<0.001) and integrated discrimination improvement (p=0.04). The HALT-C model had a c-statistic of 0.60 (95%CI 0.50-0.70) in the validation cohort and was outperformed by the machine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  18. Additive hazards regression and partial likelihood estimation for ecological monitoring data across space.

    PubMed

    Lin, Feng-Chang; Zhu, Jun

    2012-01-01

    We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregression in space and time. We develop statistical inference for the regression coefficients via partial likelihood. Asymptotic properties, including consistency and asymptotic normality, are established for parameter estimates under suitable regularity conditions. Feasible algorithms utilizing existing statistical software packages are developed for computation. We also consider a simpler additive hazards model with homogeneous baseline hazard and develop hypothesis testing for homogeneity. A simulation study demonstrates that the statistical inference using partial likelihood has sound finite-sample properties and offers a viable alternative to maximum likelihood estimation. For illustration, we analyze data from an ecological study that monitors bark beetle colonization of red pines in a plantation of Wisconsin.

  19. [Quantitative structure-gas chromatographic retention relationship of polycyclic aromatic sulfur heterocycles using molecular electronegativity-distance vector].

    PubMed

    Li, Zhenghua; Cheng, Fansheng; Xia, Zhining

    2011-01-01

    The chemical structures of 114 polycyclic aromatic sulfur heterocycles (PASHs) have been studied by molecular electronegativity-distance vector (MEDV). The linear relationships between gas chromatographic retention index and the MEDV have been established by a multiple linear regression (MLR) model. The results of variable selection by stepwise multiple regression (SMR) and the powerful predictive abilities of the optimization model appraised by leave-one-out cross-validation showed that the optimization model with the correlation coefficient (R) of 0.994 7 and the cross-validated correlation coefficient (Rcv) of 0.994 0 possessed the best statistical quality. Furthermore, when the 114 PASHs compounds were divided into calibration and test sets in the ratio of 2:1, the statistical analysis showed our models possesses almost equal statistical quality, the very similar regression coefficients and the good robustness. The quantitative structure-retention relationship (QSRR) model established may provide a convenient and powerful method for predicting the gas chromatographic retention of PASHs.

  20. Predicting Potential Changes in Suitable Habitat and Distribution by 2100 for Tree Species of the Eastern United States

    Treesearch

    Louis R Iverson; Anantha M. Prasad; Mark W. Schwartz; Mark W. Schwartz

    2005-01-01

    We predict current distribution and abundance for tree species present in eastern North America, and subsequently estimate potential suitable habitat for those species under a changed climate with 2 x CO2. We used a series of statistical models (i.e., Regression Tree Analysis (RTA), Multivariate Adaptive Regression Splines (MARS), Bagging Trees (...

  1. Application of Semiparametric Spline Regression Model in Analyzing Factors that In uence Population Density in Central Java

    NASA Astrophysics Data System (ADS)

    Sumantari, Y. D.; Slamet, I.; Sugiyanto

    2017-06-01

    Semiparametric regression is a statistical analysis method that consists of parametric and nonparametric regression. There are various approach techniques in nonparametric regression. One of the approach techniques is spline. Central Java is one of the most densely populated province in Indonesia. Population density in this province can be modeled by semiparametric regression because it consists of parametric and nonparametric component. Therefore, the purpose of this paper is to determine the factors that in uence population density in Central Java using the semiparametric spline regression model. The result shows that the factors which in uence population density in Central Java is Family Planning (FP) active participants and district minimum wage.

  2. Which Variables Associated with Data-Driven Instruction Are Believed to Best Predict Urban Student Achievement?

    ERIC Educational Resources Information Center

    Greer, Wil

    2013-01-01

    This study identified the variables associated with data-driven instruction (DDI) that are perceived to best predict student achievement. Of the DDI variables discussed in the literature, 51 of them had a sufficient enough research base to warrant statistical analysis. Of them, 26 were statistically significant. Multiple regression and an…

  3. Consistent Tolerance Bounds for Statistical Distributions

    NASA Technical Reports Server (NTRS)

    Mezzacappa, M. A.

    1983-01-01

    Assumption that sample comes from population with particular distribution is made with confidence C if data lie between certain bounds. These "confidence bounds" depend on C and assumption about distribution of sampling errors around regression line. Graphical test criteria using tolerance bounds are applied in industry where statistical analysis influences product development and use. Applied to evaluate equipment life.

  4. [Evaluation of using statistical methods in selected national medical journals].

    PubMed

    Sych, Z

    1996-01-01

    The paper covers the performed evaluation of frequency with which the statistical methods were applied in analyzed works having been published in six selected, national medical journals in the years 1988-1992. For analysis the following journals were chosen, namely: Klinika Oczna, Medycyna Pracy, Pediatria Polska, Polski Tygodnik Lekarski, Roczniki Państwowego Zakładu Higieny, Zdrowie Publiczne. Appropriate number of works up to the average in the remaining medical journals was randomly selected from respective volumes of Pol. Tyg. Lek. The studies did not include works wherein the statistical analysis was not implemented, which referred both to national and international publications. That exemption was also extended to review papers, casuistic ones, reviews of books, handbooks, monographies, reports from scientific congresses, as well as papers on historical topics. The number of works was defined in each volume. Next, analysis was performed to establish the mode of finding out a suitable sample in respective studies, differentiating two categories: random and target selections. Attention was also paid to the presence of control sample in the individual works. In the analysis attention was also focussed on the existence of sample characteristics, setting up three categories: complete, partial and lacking. In evaluating the analyzed works an effort was made to present the results of studies in tables and figures (Tab. 1, 3). Analysis was accomplished with regard to the rate of employing statistical methods in analyzed works in relevant volumes of six selected, national medical journals for the years 1988-1992, simultaneously determining the number of works, in which no statistical methods were used. Concurrently the frequency of applying the individual statistical methods was analyzed in the scrutinized works. Prominence was given to fundamental statistical methods in the field of descriptive statistics (measures of position, measures of dispersion) as well as most important methods of mathematical statistics such as parametric tests of significance, analysis of variance (in single and dual classifications). non-parametric tests of significance, correlation and regression. The works, in which use was made of either multiple correlation or multiple regression or else more complex methods of studying the relationship for two or more numbers of variables, were incorporated into the works whose statistical methods were constituted by correlation and regression as well as other methods, e.g. statistical methods being used in epidemiology (coefficients of incidence and morbidity, standardization of coefficients, survival tables) factor analysis conducted by Jacobi-Hotellng's method, taxonomic methods and others. On the basis of the performed studies it has been established that the frequency of employing statistical methods in the six selected national, medical journals in the years 1988-1992 was 61.1-66.0% of the analyzed works (Tab. 3), and they generally were almost similar to the frequency provided in English language medical journals. On a whole, no significant differences were disclosed in the frequency of applied statistical methods (Tab. 4) as well as in frequency of random tests (Tab. 3) in the analyzed works, appearing in the medical journals in respective years 1988-1992. The most frequently used statistical methods in analyzed works for 1988-1992 were the measures of position 44.2-55.6% and measures of dispersion 32.5-38.5% as well as parametric tests of significance 26.3-33.1% of the works analyzed (Tab. 4). For the purpose of increasing the frequency and reliability of the used statistical methods, the didactics should be widened in the field of biostatistics at medical studies and postgraduation training designed for physicians and scientific-didactic workers.

  5. To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis

    PubMed Central

    Guan, Yiqing; Wei, Jianhui; Zhang, Danrong; Zu, Mingjuan; Zhang, Liru

    2013-01-01

    Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents. PMID:23737715

  6. Wastewater-Based Epidemiology of Stimulant Drugs: Functional Data Analysis Compared to Traditional Statistical Methods.

    PubMed

    Salvatore, Stefania; Bramness, Jørgen Gustav; Reid, Malcolm J; Thomas, Kevin Victor; Harman, Christopher; Røislien, Jo

    2015-01-01

    Wastewater-based epidemiology (WBE) is a new methodology for estimating the drug load in a population. Simple summary statistics and specification tests have typically been used to analyze WBE data, comparing differences between weekday and weekend loads. Such standard statistical methods may, however, overlook important nuanced information in the data. In this study, we apply functional data analysis (FDA) to WBE data and compare the results to those obtained from more traditional summary measures. We analysed temporal WBE data from 42 European cities, using sewage samples collected daily for one week in March 2013. For each city, the main temporal features of two selected drugs were extracted using functional principal component (FPC) analysis, along with simpler measures such as the area under the curve (AUC). The individual cities' scores on each of the temporal FPCs were then used as outcome variables in multiple linear regression analysis with various city and country characteristics as predictors. The results were compared to those of functional analysis of variance (FANOVA). The three first FPCs explained more than 99% of the temporal variation. The first component (FPC1) represented the level of the drug load, while the second and third temporal components represented the level and the timing of a weekend peak. AUC was highly correlated with FPC1, but other temporal characteristic were not captured by the simple summary measures. FANOVA was less flexible than the FPCA-based regression, and even showed concordance results. Geographical location was the main predictor for the general level of the drug load. FDA of WBE data extracts more detailed information about drug load patterns during the week which are not identified by more traditional statistical methods. Results also suggest that regression based on FPC results is a valuable addition to FANOVA for estimating associations between temporal patterns and covariate information.

  7. Advanced statistics: linear regression, part I: simple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  8. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011

    USGS Publications Warehouse

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the detection of multiple potentially influential low outliers. Streamgage basin characteristics were determined using geographical information system techniques. Initial ordinary least squares regression simulations reduced the number of basin characteristics on the basis of such factors as statistical significance, coefficient of determination, Mallow’s Cp statistic, and ease of measurement of the explanatory variable. Application of generalized least squares regression techniques produced final predictive (regression) equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability flows for urban and small, rural ungaged basins for three hydrologic regions (HR1, Piedmont–Ridge and Valley; HR3, Sand Hills; and HR4, Coastal Plain), which previously had been defined from exploratory regression analysis in the Southeast rural flood-frequency investigation. Because of the limited availability of urban streamgages in the Coastal Plain of Georgia, South Carolina, and North Carolina, additional urban streamgages in Florida and New Jersey were used in the regression analysis for this region. Including the urban streamgages in New Jersey allowed for the expansion of the applicability of the predictive equations in the Coastal Plain from 3.5 to 53.5 square miles. Average standard error of prediction for the predictive equations, which is a measure of the average accuracy of the regression equations when predicting flood estimates for ungaged sites, range from 25.0 percent for the 10-percent annual exceedance probability regression equation for the Piedmont–Ridge and Valley region to 73.3 percent for the 0.2-percent annual exceedance probability regression equation for the Sand Hills region.

  9. Regression analysis for solving diagnosis problem of children's health

    NASA Astrophysics Data System (ADS)

    Cherkashina, Yu A.; Gerget, O. M.

    2016-04-01

    The paper includes results of scientific researches. These researches are devoted to the application of statistical techniques, namely, regression analysis, to assess the health status of children in the neonatal period based on medical data (hemostatic parameters, parameters of blood tests, the gestational age, vascular-endothelial growth factor) measured at 3-5 days of children's life. In this paper a detailed description of the studied medical data is given. A binary logistic regression procedure is discussed in the paper. Basic results of the research are presented. A classification table of predicted values and factual observed values is shown, the overall percentage of correct recognition is determined. Regression equation coefficients are calculated, the general regression equation is written based on them. Based on the results of logistic regression, ROC analysis was performed, sensitivity and specificity of the model are calculated and ROC curves are constructed. These mathematical techniques allow carrying out diagnostics of health of children providing a high quality of recognition. The results make a significant contribution to the development of evidence-based medicine and have a high practical importance in the professional activity of the author.

  10. Spatial analysis of relative humidity during ungauged periods in a mountainous region

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Kim, Yeonjoo

    2017-08-01

    Although atmospheric humidity influences environmental and agricultural conditions, thereby influencing plant growth, human health, and air pollution, efforts to develop spatial maps of atmospheric humidity using statistical approaches have thus far been limited. This study therefore aims to develop statistical approaches for inferring the spatial distribution of relative humidity (RH) for a mountainous island, for which data are not uniformly available across the region. A multiple regression analysis based on various mathematical models was used to identify the optimal model for estimating monthly RH by incorporating not only temperature but also location and elevation. Based on the regression analysis, we extended the monthly RH data from weather stations to cover the ungauged periods when no RH observations were available. Then, two different types of station-based data, the observational data and the data extended via the regression model, were used to form grid-based data with a resolution of 100 m. The grid-based data that used the extended station-based data captured the increasing RH trend along an elevation gradient. Furthermore, annual RH values averaged over the regions were examined. Decreasing temporal trends were found in most cases, with magnitudes varying based on the season and region.

  11. Multicollinearity and Regression Analysis

    NASA Astrophysics Data System (ADS)

    Daoud, Jamal I.

    2017-12-01

    In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.

  12. Regression Rates Following the Treatment of Aggressive Posterior Retinopathy of Prematurity with Bevacizumab Versus Laser: 8-Year Retrospective Analysis

    PubMed Central

    Nicoară, Simona D.; Ştefănuţ, Anne C.; Nascutzy, Constanta; Zaharie, Gabriela C.; Toader, Laura E.; Drugan, Tudor C.

    2016-01-01

    Background Retinopathy is a serious complication related to prematurity and a leading cause of childhood blindness. The aggressive posterior form of retinopathy of prematurity (APROP) has a worse anatomical and functional outcome following laser therapy, as compared with the classic form of the disease. The main outcome measures are the APROP regression rate, structural outcomes, and complications associated with intravitreal bevacizumab (IVB) versus laser photocoagulation in APROP. Material/Methods This is a retrospective case series that includes infants with APROP who received either IVB or laser photocoagulation and had a follow-up of at least 60 weeks (for the laser photocoagulation group) and 80 weeks (for the IVB group). In the first group, laser photocoagulation of the retina was carried out and in the second group, 1 bevacizumab injection was administered intravitreally. The following parameters were analyzed in each group: sex, gestational age, birth weight, postnatal age and postmenstrual age at treatment, APROP regression, sequelae, and complications. Statistical analysis was performed using Microsoft Excel and IBM SPSS (version 23.0). Results The laser photocoagulation group consisted of 6 premature infants (12 eyes) and the IVB group consisted of 17 premature infants (34 eyes). Within the laser photocoagulation group, the evolution was favorable in 9 eyes (75%) and unfavorable in 3 eyes (25%). Within the IVB group, APROP regressed in 29 eyes (85.29%) and failed to regress in 5 eyes (14.71%). These differences are statistically significant, as proved by the McNemar test (P<0.001). Conclusions The IVB group had a statistically significant better outcome compared with the laser photocoagulation group, in APROP in our series. PMID:27062023

  13. Reversed inverse regression for the univariate linear calibration and its statistical properties derived using a new methodology

    NASA Astrophysics Data System (ADS)

    Kang, Pilsang; Koo, Changhoi; Roh, Hokyu

    2017-11-01

    Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.

  14. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  15. Hypothesis testing in functional linear regression models with Neyman's truncation and wavelet thresholding for longitudinal data.

    PubMed

    Yang, Xiaowei; Nie, Kun

    2008-03-15

    Longitudinal data sets in biomedical research often consist of large numbers of repeated measures. In many cases, the trajectories do not look globally linear or polynomial, making it difficult to summarize the data or test hypotheses using standard longitudinal data analysis based on various linear models. An alternative approach is to apply the approaches of functional data analysis, which directly target the continuous nonlinear curves underlying discretely sampled repeated measures. For the purposes of data exploration, many functional data analysis strategies have been developed based on various schemes of smoothing, but fewer options are available for making causal inferences regarding predictor-outcome relationships, a common task seen in hypothesis-driven medical studies. To compare groups of curves, two testing strategies with good power have been proposed for high-dimensional analysis of variance: the Fourier-based adaptive Neyman test and the wavelet-based thresholding test. Using a smoking cessation clinical trial data set, this paper demonstrates how to extend the strategies for hypothesis testing into the framework of functional linear regression models (FLRMs) with continuous functional responses and categorical or continuous scalar predictors. The analysis procedure consists of three steps: first, apply the Fourier or wavelet transform to the original repeated measures; then fit a multivariate linear model in the transformed domain; and finally, test the regression coefficients using either adaptive Neyman or thresholding statistics. Since a FLRM can be viewed as a natural extension of the traditional multiple linear regression model, the development of this model and computational tools should enhance the capacity of medical statistics for longitudinal data.

  16. Introduction to the use of regression models in epidemiology.

    PubMed

    Bender, Ralf

    2009-01-01

    Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.

  17. Understanding poisson regression.

    PubMed

    Hayat, Matthew J; Higgins, Melinda

    2014-04-01

    Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

  18. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis

    Treesearch

    L.R. Iverson; A.M. Prasad; A. Liaw

    2004-01-01

    More and better machine learning tools are becoming available for landscape ecologists to aid in understanding species-environment relationships and to map probable species occurrence now and potentially into the future. To thal end, we evaluated three statistical models: Regression Tree Analybib (RTA), Bagging Trees (BT) and Random Forest (RF) for their utility in...

  19. Interpreting the Results of Weighted Least-Squares Regression: Caveats for the Statistical Consumer.

    ERIC Educational Resources Information Center

    Willett, John B.; Singer, Judith D.

    In research, data sets often occur in which the variance of the distribution of the dependent variable at given levels of the predictors is a function of the values of the predictors. In this situation, the use of weighted least-squares (WLS) or techniques is required. Weights suitable for use in a WLS regression analysis must be estimated. A…

  20. Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.

    2017-01-01

    A statewide study was conducted to develop regression equations for estimating six selected low-flow frequency statistics and harmonic mean flows for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include: the annual 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 5 years, and the seasonal (October 1 through December 31) 1- and 7-day mean low flows for a recurrence interval of 10 years. Estimation equations also were developed for the harmonic-mean-flow statistic. Estimates of these seven selected statistics are provided for 208 U.S. Geological Survey continuous-record streamgages using data through September 30, 2006. The study area comprises streamgages located within Iowa and 50 miles beyond the State's borders. Because trend analyses indicated statistically significant positive trends when considering the entire period of record for the majority of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. The median number of years of record used to compute each of these seven selected statistics was 35. Geographic information system software was used to measure 54 selected basin characteristics for each streamgage. Following the removal of two streamgages from the initial data set, data collected for 206 streamgages were compiled to investigate three approaches for regionalization of the seven selected statistics. Regionalization, a process using statistical regression analysis, provides a relation for efficiently transferring information from a group of streamgages in a region to ungaged sites in the region. The three regionalization approaches tested included statewide, regional, and region-of-influence regressions. For the regional regression, the study area was divided into three low-flow regions on the basis of hydrologic characteristics, landform regions, and soil regions. A comparison of root mean square errors and average standard errors of prediction for the statewide, regional, and region-of-influence regressions determined that the regional regression provided the best estimates of the seven selected statistics at ungaged sites in Iowa. Because a significant number of streams in Iowa reach zero flow as their minimum flow during low-flow years, four different types of regression analyses were used: left-censored, logistic, generalized-least-squares, and weighted-least-squares regression. A total of 192 streamgages were included in the development of 27 regression equations for the three low-flow regions. For the northeast and northwest regions, a censoring threshold was used to develop 12 left-censored regression equations to estimate the 6 low-flow frequency statistics for each region. For the southern region a total of 12 regression equations were developed; 6 logistic regression equations were developed to estimate the probability of zero flow for the 6 low-flow frequency statistics and 6 generalized least-squares regression equations were developed to estimate the 6 low-flow frequency statistics, if nonzero flow is estimated first by use of the logistic equations. A weighted-least-squares regression equation was developed for each region to estimate the harmonic-mean-flow statistic. Average standard errors of estimate for the left-censored equations for the northeast region range from 64.7 to 88.1 percent and for the northwest region range from 85.8 to 111.8 percent. Misclassification percentages for the logistic equations for the southern region range from 5.6 to 14.0 percent. Average standard errors of prediction for generalized least-squares equations for the southern region range from 71.7 to 98.9 percent and pseudo coefficients of determination for the generalized-least-squares equations range from 87.7 to 91.8 percent. Average standard errors of prediction for weighted-least-squares equations developed for estimating the harmonic-mean-flow statistic for each of the three regions range from 66.4 to 80.4 percent. The regression equations are applicable only to stream sites in Iowa with low flows not significantly affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. If the equations are used at ungaged sites on regulated streams, or on streams affected by water-supply and agricultural withdrawals, then the estimates will need to be adjusted by the amount of regulation or withdrawal to estimate the actual flow conditions if that is of interest. Caution is advised when applying the equations for basins with characteristics near the applicable limits of the equations and for basins located in karst topography. A test of two drainage-area ratio methods using 31 pairs of streamgages, for the annual 7-day mean low-flow statistic for a recurrence interval of 10 years, indicates a weighted drainage-area ratio method provides better estimates than regional regression equations for an ungaged site on a gaged stream in Iowa when the drainage-area ratio is between 0.5 and 1.4. These regression equations will be implemented within the U.S. Geological Survey StreamStats web-based geographic-information-system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the seven selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these seven selected statistics are provided for the streamgage.

  1. 75 FR 61136 - Notice of Proposed Information Collection Requests

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... EdFacts data as well as data from surveys of school principals and special education designees about their school improvement practices. The study will use descriptive statistics and regression analysis to...

  2. The Digital Shoreline Analysis System (DSAS) Version 4.0 - An ArcGIS extension for calculating shoreline change

    USGS Publications Warehouse

    Thieler, E. Robert; Himmelstoss, Emily A.; Zichichi, Jessica L.; Ergul, Ayhan

    2009-01-01

    The Digital Shoreline Analysis System (DSAS) version 4.0 is a software extension to ESRI ArcGIS v.9.2 and above that enables a user to calculate shoreline rate-of-change statistics from multiple historic shoreline positions. A user-friendly interface of simple buttons and menus guides the user through the major steps of shoreline change analysis. Components of the extension and user guide include (1) instruction on the proper way to define a reference baseline for measurements, (2) automated and manual generation of measurement transects and metadata based on user-specified parameters, and (3) output of calculated rates of shoreline change and other statistical information. DSAS computes shoreline rates of change using four different methods: (1) endpoint rate, (2) simple linear regression, (3) weighted linear regression, and (4) least median of squares. The standard error, correlation coefficient, and confidence interval are also computed for the simple and weighted linear-regression methods. The results of all rate calculations are output to a table that can be linked to the transect file by a common attribute field. DSAS is intended to facilitate the shoreline change-calculation process and to provide rate-of-change information and the statistical data necessary to establish the reliability of the calculated results. The software is also suitable for any generic application that calculates positional change over time, such as assessing rates of change of glacier limits in sequential aerial photos, river edge boundaries, land-cover changes, and so on.

  3. Genome-wide regression and prediction with the BGLR statistical package.

    PubMed

    Pérez, Paulino; de los Campos, Gustavo

    2014-10-01

    Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various parametric and nonparametric shrinkage and variable selection procedures in a unified and consistent manner. The BGLR R-package implements a large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and semiparametric procedures (Bayesian reproducing kernel Hilbert spaces regressions, RKHS). The software was originally developed for genomic applications; however, the methods implemented are useful for many nongenomic applications as well. The response can be continuous (censored or not) or categorical (either binary or ordinal). The algorithm is based on a Gibbs sampler with scalar updates and the implementation takes advantage of efficient compiled C and Fortran routines. In this article we describe the methods implemented in BGLR, present examples of the use of the package, and discuss practical issues emerging in real-data analysis. Copyright © 2014 by the Genetics Society of America.

  4. Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.

    PubMed

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei

    2016-02-01

    Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.

  5. Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions

    PubMed Central

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei

    2015-01-01

    Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979

  6. Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.

  7. Drug treatment rates with beta-blockers and ACE-inhibitors/angiotensin receptor blockers and recurrences in takotsubo cardiomyopathy: A meta-regression analysis.

    PubMed

    Brunetti, Natale Daniele; Santoro, Francesco; De Gennaro, Luisa; Correale, Michele; Gaglione, Antonio; Di Biase, Matteo

    2016-07-01

    In a recent paper Singh et al. analyzed the effect of drug treatment on recurrence of takotsubo cardiomyopathy (TTC) in a comprehensive meta-analysis. The study found that recurrence rates were independent of clinic utilization of BB prescription, but inversely correlated with ACEi/ARB prescription: authors therefore conclude that ACEi/ARB rather than BB may reduce risk of recurrence. We aimed to re-analyze data reported in the study, now weighted for populations' size, in a meta-regression analysis. After multiple meta-regression analysis, we found a significant regression between rates of prescription of ACEi and rates of recurrence of TTC; regression was not statistically significant for BBs. On the bases of our re-analysis, we confirm that rates of recurrence of TTC are lower in populations of patients with higher rates of treatment with ACEi/ARB. That could not necessarily imply that ACEi may prevent recurrence of TTC, but barely that, for example, rates of recurrence are lower in cohorts more compliant with therapy or more prescribed with ACEi because more carefully followed. Randomized prospective studies are surely warranted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Bias in logistic regression due to imperfect diagnostic test results and practical correction approaches.

    PubMed

    Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul

    2015-11-04

    Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.

  9. Detection of Cutting Tool Wear using Statistical Analysis and Regression Model

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin

    2010-10-01

    This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.

  10. Calibration and Data Analysis of the MC-130 Air Balance

    NASA Technical Reports Server (NTRS)

    Booth, Dennis; Ulbrich, N.

    2012-01-01

    Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.

  11. Using Social Network Analysis to Better Understand Compulsive Exercise Behavior Among a Sample of Sorority Members.

    PubMed

    Patterson, Megan S; Goodson, Patricia

    2017-05-01

    Compulsive exercise, a form of unhealthy exercise often associated with prioritizing exercise and feeling guilty when exercise is missed, is a common precursor to and symptom of eating disorders. College-aged women are at high risk of exercising compulsively compared with other groups. Social network analysis (SNA) is a theoretical perspective and methodology allowing researchers to observe the effects of relational dynamics on the behaviors of people. SNA was used to assess the relationship between compulsive exercise and body dissatisfaction, physical activity, and network variables. Descriptive statistics were conducted using SPSS, and quadratic assignment procedure (QAP) analyses were conducted using UCINET. QAP regression analysis revealed a statistically significant model (R 2 = .375, P < .0001) predicting compulsive exercise behavior. Physical activity, body dissatisfaction, and network variables were statistically significant predictor variables in the QAP regression model. In our sample, women who are connected to "important" or "powerful" people in their network are likely to have higher compulsive exercise scores. This result provides healthcare practitioners key target points for intervention within similar groups of women. For scholars researching eating disorders and associated behaviors, this study supports looking into group dynamics and network structure in conjunction with body dissatisfaction and exercise frequency.

  12. Tools for Basic Statistical Analysis

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Statistical Analysis Toolset is a collection of eight Microsoft Excel spreadsheet programs, each of which performs calculations pertaining to an aspect of statistical analysis. These programs present input and output data in user-friendly, menu-driven formats, with automatic execution. The following types of calculations are performed: Descriptive statistics are computed for a set of data x(i) (i = 1, 2, 3 . . . ) entered by the user. Normal Distribution Estimates will calculate the statistical value that corresponds to cumulative probability values, given a sample mean and standard deviation of the normal distribution. Normal Distribution from two Data Points will extend and generate a cumulative normal distribution for the user, given two data points and their associated probability values. Two programs perform two-way analysis of variance (ANOVA) with no replication or generalized ANOVA for two factors with four levels and three repetitions. Linear Regression-ANOVA will curvefit data to the linear equation y=f(x) and will do an ANOVA to check its significance.

  13. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Propellant Surveillance Report LGM-30 F and G Stage 1, Phase E, Series IV, TP-H1011.

    DTIC Science & Technology

    1978-02-01

    regression analysis. From the statistical analysis of all data tested to date (twelve and one half years for F and G), significant degradation of the propellant does not appear likely for at least two years past the oldest data point.

  15. The impact of meteorology on the occurrence of waterborne outbreaks of vero cytotoxin-producing Escherichia coli (VTEC): a logistic regression approach.

    PubMed

    O'Dwyer, Jean; Morris Downes, Margaret; Adley, Catherine C

    2016-02-01

    This study analyses the relationship between meteorological phenomena and outbreaks of waterborne-transmitted vero cytotoxin-producing Escherichia coli (VTEC) in the Republic of Ireland over an 8-year period (2005-2012). Data pertaining to the notification of waterborne VTEC outbreaks were extracted from the Computerised Infectious Disease Reporting system, which is administered through the national Health Protection Surveillance Centre as part of the Health Service Executive. Rainfall and temperature data were obtained from the national meteorological office and categorised as cumulative rainfall, heavy rainfall events in the previous 7 days, and mean temperature. Regression analysis was performed using logistic regression (LR) analysis. The LR model was significant (p < 0.001), with all independent variables: cumulative rainfall, heavy rainfall and mean temperature making a statistically significant contribution to the model. The study has found that rainfall, particularly heavy rainfall in the preceding 7 days of an outbreak, is a strong statistical indicator of a waterborne outbreak and that temperature also impacts waterborne VTEC outbreak occurrence.

  16. Landslide Hazard Mapping in Rwanda Using Logistic Regression

    NASA Astrophysics Data System (ADS)

    Piller, A.; Anderson, E.; Ballard, H.

    2015-12-01

    Landslides in the United States cause more than $1 billion in damages and 50 deaths per year (USGS 2014). Globally, figures are much more grave, yet monitoring, mapping and forecasting of these hazards are less than adequate. Seventy-five percent of the population of Rwanda earns a living from farming, mostly subsistence. Loss of farmland, housing, or life, to landslides is a very real hazard. Landslides in Rwanda have an impact at the economic, social, and environmental level. In a developing nation that faces challenges in tracking, cataloging, and predicting the numerous landslides that occur each year, satellite imagery and spatial analysis allow for remote study. We have focused on the development of a landslide inventory and a statistical methodology for assessing landslide hazards. Using logistic regression on approximately 30 test variables (i.e. slope, soil type, land cover, etc.) and a sample of over 200 landslides, we determine which variables are statistically most relevant to landslide occurrence in Rwanda. A preliminary predictive hazard map for Rwanda has been produced, using the variables selected from the logistic regression analysis.

  17. Railroad Classification Yard Technology Manual. Volume III. Freight Car Rollability

    DOT National Transportation Integrated Search

    1981-07-01

    The report presents a survey of rolling resistance research, histograms of rolling resistance from five yards, a statistical regression analysis of causal factors affecting rolling resistance, procedures for constructing a rolling resistance histogra...

  18. MANCOVA for one way classification with homogeneity of regression coefficient vectors

    NASA Astrophysics Data System (ADS)

    Mokesh Rayalu, G.; Ravisankar, J.; Mythili, G. Y.

    2017-11-01

    The MANOVA and MANCOVA are the extensions of the univariate ANOVA and ANCOVA techniques to multidimensional or vector valued observations. The assumption of a Gaussian distribution has been replaced with the Multivariate Gaussian distribution for the vectors data and residual term variables in the statistical models of these techniques. The objective of MANCOVA is to determine if there are statistically reliable mean differences that can be demonstrated between groups later modifying the newly created variable. When randomization assignment of samples or subjects to groups is not possible, multivariate analysis of covariance (MANCOVA) provides statistical matching of groups by adjusting dependent variables as if all subjects scored the same on the covariates. In this research article, an extension has been made to the MANCOVA technique with more number of covariates and homogeneity of regression coefficient vectors is also tested.

  19. Methods for estimating selected low-flow frequency statistics and mean annual flow for ungaged locations on streams in North Georgia

    USGS Publications Warehouse

    Gotvald, Anthony J.

    2017-01-13

    The U.S. Geological Survey, in cooperation with the Georgia Department of Natural Resources, Environmental Protection Division, developed regional regression equations for estimating selected low-flow frequency and mean annual flow statistics for ungaged streams in north Georgia that are not substantially affected by regulation, diversions, or urbanization. Selected low-flow frequency statistics and basin characteristics for 56 streamgage locations within north Georgia and 75 miles beyond the State’s borders in Alabama, Tennessee, North Carolina, and South Carolina were combined to form the final dataset used in the regional regression analysis. Because some of the streamgages in the study recorded zero flow, the final regression equations were developed using weighted left-censored regression analysis to analyze the flow data in an unbiased manner, with weights based on the number of years of record. The set of equations includes the annual minimum 1- and 7-day average streamflow with the 10-year recurrence interval (referred to as 1Q10 and 7Q10), monthly 7Q10, and mean annual flow. The final regional regression equations are functions of drainage area, mean annual precipitation, and relief ratio for the selected low-flow frequency statistics and drainage area and mean annual precipitation for mean annual flow. The average standard error of estimate was 13.7 percent for the mean annual flow regression equation and ranged from 26.1 to 91.6 percent for the selected low-flow frequency equations.The equations, which are based on data from streams with little to no flow alterations, can be used to provide estimates of the natural flows for selected ungaged stream locations in the area of Georgia north of the Fall Line. The regression equations are not to be used to estimate flows for streams that have been altered by the effects of major dams, surface-water withdrawals, groundwater withdrawals (pumping wells), diversions, or wastewater discharges. The regression equations should be used only for ungaged sites with drainage areas between 1.67 and 576 square miles, mean annual precipitation between 47.6 and 81.6 inches, and relief ratios between 0.146 and 0.607; these are the ranges of the explanatory variables used to develop the equations. An attempt was made to develop regional regression equations for the area of Georgia south of the Fall Line by using the same approach used during this study for north Georgia; however, the equations resulted with high average standard errors of estimates and poorly predicted flows below 0.5 cubic foot per second, which may be attributed to the karst topography common in that area.The final regression equations developed from this study are planned to be incorporated into the U.S. Geological Survey StreamStats program. StreamStats is a Web-based geographic information system that provides users with access to an assortment of analytical tools useful for water-resources planning and management, and for engineering design applications, such as the design of bridges. The StreamStats program provides streamflow statistics and basin characteristics for U.S. Geological Survey streamgage locations and ungaged sites of interest. StreamStats also can compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in Georgia.

  20. An operational definition of a statistically meaningful trend.

    PubMed

    Bryhn, Andreas C; Dimberg, Peter H

    2011-04-28

    Linear trend analysis of time series is standard procedure in many scientific disciplines. If the number of data is large, a trend may be statistically significant even if data are scattered far from the trend line. This study introduces and tests a quality criterion for time trends referred to as statistical meaningfulness, which is a stricter quality criterion for trends than high statistical significance. The time series is divided into intervals and interval mean values are calculated. Thereafter, r(2) and p values are calculated from regressions concerning time and interval mean values. If r(2) ≥ 0.65 at p ≤ 0.05 in any of these regressions, then the trend is regarded as statistically meaningful. Out of ten investigated time series from different scientific disciplines, five displayed statistically meaningful trends. A Microsoft Excel application (add-in) was developed which can perform statistical meaningfulness tests and which may increase the operationality of the test. The presented method for distinguishing statistically meaningful trends should be reasonably uncomplicated for researchers with basic statistics skills and may thus be useful for determining which trends are worth analysing further, for instance with respect to causal factors. The method can also be used for determining which segments of a time trend may be particularly worthwhile to focus on.

  1. Statistical analysis and application of quasi experiments to antimicrobial resistance intervention studies.

    PubMed

    Shardell, Michelle; Harris, Anthony D; El-Kamary, Samer S; Furuno, Jon P; Miller, Ram R; Perencevich, Eli N

    2007-10-01

    Quasi-experimental study designs are frequently used to assess interventions that aim to limit the emergence of antimicrobial-resistant pathogens. However, previous studies using these designs have often used suboptimal statistical methods, which may result in researchers making spurious conclusions. Methods used to analyze quasi-experimental data include 2-group tests, regression analysis, and time-series analysis, and they all have specific assumptions, data requirements, strengths, and limitations. An example of a hospital-based intervention to reduce methicillin-resistant Staphylococcus aureus infection rates and reduce overall length of stay is used to explore these methods.

  2. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2012-01-01

    Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950

  3. A Regression Framework for Effect Size Assessments in Longitudinal Modeling of Group Differences

    PubMed Central

    Feingold, Alan

    2013-01-01

    The use of growth modeling analysis (GMA)--particularly multilevel analysis and latent growth modeling--to test the significance of intervention effects has increased exponentially in prevention science, clinical psychology, and psychiatry over the past 15 years. Model-based effect sizes for differences in means between two independent groups in GMA can be expressed in the same metric (Cohen’s d) commonly used in classical analysis and meta-analysis. This article first reviews conceptual issues regarding calculation of d for findings from GMA and then introduces an integrative framework for effect size assessments that subsumes GMA. The new approach uses the structure of the linear regression model, from which effect sizes for findings from diverse cross-sectional and longitudinal analyses can be calculated with familiar statistics, such as the regression coefficient, the standard deviation of the dependent measure, and study duration. PMID:23956615

  4. Plant selection for ethnobotanical uses on the Amalfi Coast (Southern Italy).

    PubMed

    Savo, V; Joy, R; Caneva, G; McClatchey, W C

    2015-07-15

    Many ethnobotanical studies have investigated selection criteria for medicinal and non-medicinal plants. In this paper we test several statistical methods using different ethnobotanical datasets in order to 1) define to which extent the nature of the datasets can affect the interpretation of results; 2) determine if the selection for different plant uses is based on phylogeny, or other selection criteria. We considered three different ethnobotanical datasets: two datasets of medicinal plants and a dataset of non-medicinal plants (handicraft production, domestic and agro-pastoral practices) and two floras of the Amalfi Coast. We performed residual analysis from linear regression, the binomial test and the Bayesian approach for calculating under-used and over-used plant families within ethnobotanical datasets. Percentages of agreement were calculated to compare the results of the analyses. We also analyzed the relationship between plant selection and phylogeny, chorology, life form and habitat using the chi-square test. Pearson's residuals for each of the significant chi-square analyses were examined for investigating alternative hypotheses of plant selection criteria. The three statistical analysis methods differed within the same dataset, and between different datasets and floras, but with some similarities. In the two medicinal datasets, only Lamiaceae was identified in both floras as an over-used family by all three statistical methods. All statistical methods in one flora agreed that Malvaceae was over-used and Poaceae under-used, but this was not found to be consistent with results of the second flora in which one statistical result was non-significant. All other families had some discrepancy in significance across methods, or floras. Significant over- or under-use was observed in only a minority of cases. The chi-square analyses were significant for phylogeny, life form and habitat. Pearson's residuals indicated a non-random selection of woody species for non-medicinal uses and an under-use of plants of temperate forests for medicinal uses. Our study showed that selection criteria for plant uses (including medicinal) are not always based on phylogeny. The comparison of different statistical methods (regression, binomial and Bayesian) under different conditions led to the conclusion that the most conservative results are obtained using regression analysis.

  5. Eutrophication risk assessment in coastal embayments using simple statistical models.

    PubMed

    Arhonditsis, G; Eleftheriadou, M; Karydis, M; Tsirtsis, G

    2003-09-01

    A statistical methodology is proposed for assessing the risk of eutrophication in marine coastal embayments. The procedure followed was the development of regression models relating the levels of chlorophyll a (Chl) with the concentration of the limiting nutrient--usually nitrogen--and the renewal rate of the systems. The method was applied in the Gulf of Gera, Island of Lesvos, Aegean Sea and a surrogate for renewal rate was created using the Canberra metric as a measure of the resemblance between the Gulf and the oligotrophic waters of the open sea in terms of their physical, chemical and biological properties. The Chl-total dissolved nitrogen-renewal rate regression model was the most significant, accounting for 60% of the variation observed in Chl. Predicted distributions of Chl for various combinations of the independent variables, based on Bayesian analysis of the models, enabled comparison of the outcomes of specific scenarios of interest as well as further analysis of the system dynamics. The present statistical approach can be used as a methodological tool for testing the resilience of coastal ecosystems under alternative managerial schemes and levels of exogenous nutrient loading.

  6. [Methodology of the description of atmospheric air pollution by nitrogen dioxide by land use regression method in Ekaterinburg].

    PubMed

    Antropov, K M; Varaksin, A N

    2013-01-01

    This paper provides the description of Land Use Regression (LUR) modeling and the result of its application in the study of nitrogen dioxide air pollution in Ekaterinburg. The paper describes the difficulties of the modeling for air pollution caused by motor vehicles exhaust, and the ways to address these challenges. To create LUR model of the NO2 air pollution in Ekaterinburg, concentrations of NO2 were measured, data on factors affecting air pollution were collected, a statistical analysis of the data were held. A statistical model of NO2 air pollution (coefficient of determination R2 = 0.70) and a map of pollution were created.

  7. Advanced statistics: linear regression, part II: multiple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  8. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes.

    PubMed

    Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M

    2011-12-01

    This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy. © 2011 Society for Risk Analysis.

  9. Data Mining CMMSs: How to Convert Data into Knowledge.

    PubMed

    Fennigkoh, Larry; Nanney, D Courtney

    2018-01-01

    Although the healthcare technology management (HTM) community has decades of accumulated medical device-related maintenance data, little knowledge has been gleaned from these data. Finding and extracting such knowledge requires the use of the well-established, but admittedly somewhat foreign to HTM, application of inferential statistics. This article sought to provide a basic background on inferential statistics and describe a case study of their application, limitations, and proper interpretation. The research question associated with this case study involved examining the effects of ventilator preventive maintenance (PM) labor hours, age, and manufacturer on needed unscheduled corrective maintenance (CM) labor hours. The study sample included more than 21,000 combined PM inspections and CM work orders on 2,045 ventilators from 26 manufacturers during a five-year period (2012-16). A multiple regression analysis revealed that device age, manufacturer, and accumulated PM inspection labor hours all influenced the amount of CM labor significantly (P < 0.001). In essence, CM labor hours increased with increasing PM labor. However, and despite the statistical significance of these predictors, the regression analysis also indicated that ventilator age, manufacturer, and PM labor hours only explained approximately 16% of all variability in CM labor, with the remainder (84%) caused by other factors that were not included in the study. As such, the regression model obtained here is not suitable for predicting ventilator CM labor hours.

  10. Quantifying discrimination of Framingham risk functions with different survival C statistics.

    PubMed

    Pencina, Michael J; D'Agostino, Ralph B; Song, Linye

    2012-07-10

    Cardiovascular risk prediction functions offer an important diagnostic tool for clinicians and patients themselves. They are usually constructed with the use of parametric or semi-parametric survival regression models. It is essential to be able to evaluate the performance of these models, preferably with summaries that offer natural and intuitive interpretations. The concept of discrimination, popular in the logistic regression context, has been extended to survival analysis. However, the extension is not unique. In this paper, we define discrimination in survival analysis as the model's ability to separate those with longer event-free survival from those with shorter event-free survival within some time horizon of interest. This definition remains consistent with that used in logistic regression, in the sense that it assesses how well the model-based predictions match the observed data. Practical and conceptual examples and numerical simulations are employed to examine four C statistics proposed in the literature to evaluate the performance of survival models. We observe that they differ in the numerical values and aspects of discrimination that they capture. We conclude that the index proposed by Harrell is the most appropriate to capture discrimination described by the above definition. We suggest researchers report which C statistic they are using, provide a rationale for their selection, and be aware that comparing different indices across studies may not be meaningful. Copyright © 2012 John Wiley & Sons, Ltd.

  11. THE DISTRIBUTION OF COOK’S D STATISTIC

    PubMed Central

    Muller, Keith E.; Mok, Mario Chen

    2013-01-01

    Cook (1977) proposed a diagnostic to quantify the impact of deleting an observation on the estimated regression coefficients of a General Linear Univariate Model (GLUM). Simulations of models with Gaussian response and predictors demonstrate that his suggestion of comparing the diagnostic to the median of the F for overall regression captures an erratically varying proportion of the values. We describe the exact distribution of Cook’s statistic for a GLUM with Gaussian predictors and response. We also present computational forms, simple approximations, and asymptotic results. A simulation supports the accuracy of the results. The methods allow accurate evaluation of a single value or the maximum value from a regression analysis. The approximations work well for a single value, but less well for the maximum. In contrast, the cut-point suggested by Cook provides widely varying tail probabilities. As with all diagnostics, the data analyst must use scientific judgment in deciding how to treat highlighted observations. PMID:24363487

  12. Applying quantitative adiposity feature analysis models to predict benefit of bevacizumab-based chemotherapy in ovarian cancer patients

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; More, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin

    2016-03-01

    How to rationally identify epithelial ovarian cancer (EOC) patients who will benefit from bevacizumab or other antiangiogenic therapies is a critical issue in EOC treatments. The motivation of this study is to quantitatively measure adiposity features from CT images and investigate the feasibility of predicting potential benefit of EOC patients with or without receiving bevacizumab-based chemotherapy treatment using multivariate statistical models built based on quantitative adiposity image features. A dataset involving CT images from 59 advanced EOC patients were included. Among them, 32 patients received maintenance bevacizumab after primary chemotherapy and the remaining 27 patients did not. We developed a computer-aided detection (CAD) scheme to automatically segment subcutaneous fat areas (VFA) and visceral fat areas (SFA) and then extracted 7 adiposity-related quantitative features. Three multivariate data analysis models (linear regression, logistic regression and Cox proportional hazards regression) were performed respectively to investigate the potential association between the model-generated prediction results and the patients' progression-free survival (PFS) and overall survival (OS). The results show that using all 3 statistical models, a statistically significant association was detected between the model-generated results and both of the two clinical outcomes in the group of patients receiving maintenance bevacizumab (p<0.01), while there were no significant association for both PFS and OS in the group of patients without receiving maintenance bevacizumab. Therefore, this study demonstrated the feasibility of using quantitative adiposity-related CT image features based statistical prediction models to generate a new clinical marker and predict the clinical outcome of EOC patients receiving maintenance bevacizumab-based chemotherapy.

  13. Historical Data Analysis of Hospital Discharges Related to the Amerithrax Attack in Florida

    PubMed Central

    Burke, Lauralyn K.; Brown, C. Perry; Johnson, Tammie M.

    2016-01-01

    Interrupted time-series analysis (ITSA) can be used to identify, quantify, and evaluate the magnitude and direction of an event on the basis of time-series data. This study evaluates the impact of the bioterrorist anthrax attacks (“Amerithrax”) on hospital inpatient discharges in the metropolitan statistical area of Palm Beach, Broward, and Miami-Dade counties in the fourth quarter of 2001. Three statistical methods—standardized incidence ratio (SIR), segmented regression, and an autoregressive integrated moving average (ARIMA)—were used to determine whether Amerithrax influenced inpatient utilization. The SIR found a non–statistically significant 2 percent decrease in hospital discharges. Although the segmented regression test found a slight increase in the discharge rate during the fourth quarter, it was also not statistically significant; therefore, it could not be attributed to Amerithrax. Segmented regression diagnostics preparing for ARIMA indicated that the quarterly data time frame was not serially correlated and violated one of the assumptions for the use of the ARIMA method and therefore could not properly evaluate the impact on the time-series data. Lack of data granularity of the time frames hindered the successful evaluation of the impact by the three analytic methods. This study demonstrates that the granularity of the data points is as important as the number of data points in a time series. ITSA is important for the ability to evaluate the impact that any hazard may have on inpatient utilization. Knowledge of hospital utilization patterns during disasters offer healthcare and civic professionals valuable information to plan, respond, mitigate, and evaluate any outcomes stemming from biothreats. PMID:27843420

  14. Application of factor analysis of infrared spectra for quantitative determination of beta-tricalcium phosphate in calcium hydroxylapatite.

    PubMed

    Arsenyev, P A; Trezvov, V V; Saratovskaya, N V

    1997-01-01

    This work represents a method, which allows to determine phase composition of calcium hydroxylapatite basing on its infrared spectrum. The method uses factor analysis of the spectral data of calibration set of samples to determine minimal number of factors required to reproduce the spectra within experimental error. Multiple linear regression is applied to establish correlation between factor scores of calibration standards and their properties. The regression equations can be used to predict the property value of unknown sample. The regression model was built for determination of beta-tricalcium phosphate content in hydroxylapatite. Statistical estimation of quality of the model was carried out. Application of the factor analysis on spectral data allows to increase accuracy of beta-tricalcium phosphate determination and expand the range of determination towards its less concentration. Reproducibility of results is retained.

  15. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages.

    PubMed

    Choi, Youn-Kyung; Kim, Jinmi; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Kim, Yong-Il

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5-18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level.

  16. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages

    PubMed Central

    Choi, Youn-Kyung; Kim, Jinmi; Maki, Koutaro; Ko, Ching-Chang

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5–18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level. PMID:27340668

  17. Time Advice and Learning Questions in Computer Simulations

    ERIC Educational Resources Information Center

    Rey, Gunter Daniel

    2011-01-01

    Students (N = 101) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without time advice) x 3 (with learning questions and corrective feedback, with…

  18. Statistical considerations in the development of injury risk functions.

    PubMed

    McMurry, Timothy L; Poplin, Gerald S

    2015-01-01

    We address 4 frequently misunderstood and important statistical ideas in the construction of injury risk functions. These include the similarities of survival analysis and logistic regression, the correct scale on which to construct pointwise confidence intervals for injury risk, the ability to discern which form of injury risk function is optimal, and the handling of repeated tests on the same subject. The statistical models are explored through simulation and examination of the underlying mathematics. We provide recommendations for the statistically valid construction and correct interpretation of single-predictor injury risk functions. This article aims to provide useful and understandable statistical guidance to improve the practice in constructing injury risk functions.

  19. Predicting Success in Psychological Statistics Courses.

    PubMed

    Lester, David

    2016-06-01

    Many students perform poorly in courses on psychological statistics, and it is useful to be able to predict which students will have difficulties. In a study of 93 undergraduates enrolled in Statistical Methods (18 men, 75 women; M age = 22.0 years, SD = 5.1), performance was significantly associated with sex (female students performed better) and proficiency in algebra in a linear regression analysis. Anxiety about statistics was not associated with course performance, indicating that basic mathematical skills are the best correlate for performance in statistics courses and can usefully be used to stream students into classes by ability. © The Author(s) 2016.

  20. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    PubMed

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.

  1. Statistics 101 for Radiologists.

    PubMed

    Anvari, Arash; Halpern, Elkan F; Samir, Anthony E

    2015-10-01

    Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. © RSNA, 2015.

  2. Determinant of securitization asset pricing in Malaysia

    NASA Astrophysics Data System (ADS)

    Bakri, M. H.; Ali, R.; Ismail, S.; Sufian, F.; Baharom, A. H.

    2014-12-01

    Malaysian firms have been reported involve in Asset Back Securities since 1986s where Cagamas is a pioneer. This research aims to examine the factor influencing primary market spread. Least square method and regression analysis are applied for the study period 2004-2012. The result shows one determinants in internal regression model and three determinants in external regression influence or contribute to the primary market spread and are statistically significant in developing the securitization in Malaysia. It can be concluded that transaction size significantly contribute to the determinant primary market spread in internal regression model while liquidity, transaction size and crisis is significant in both regression model. From five hypotheses, three hypotheses support that the determinants have a relationship with primary market spread.

  3. Identifying Autocorrelation Generated by Various Error Processes in Interrupted Time-Series Regression Designs: A Comparison of AR1 and Portmanteau Tests

    ERIC Educational Resources Information Center

    Huitema, Bradley E.; McKean, Joseph W.

    2007-01-01

    Regression models used in the analysis of interrupted time-series designs assume statistically independent errors. Four methods of evaluating this assumption are the Durbin-Watson (D-W), Huitema-McKean (H-M), Box-Pierce (B-P), and Ljung-Box (L-B) tests. These tests were compared with respect to Type I error and power under a wide variety of error…

  4. Advanced statistical methods for improved data analysis of NASA astrophysics missions

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1992-01-01

    The investigators under this grant studied ways to improve the statistical analysis of astronomical data. They looked at existing techniques, the development of new techniques, and the production and distribution of specialized software to the astronomical community. Abstracts of nine papers that were produced are included, as well as brief descriptions of four software packages. The articles that are abstracted discuss analytical and Monte Carlo comparisons of six different linear least squares fits, a (second) paper on linear regression in astronomy, two reviews of public domain software for the astronomer, subsample and half-sample methods for estimating sampling distributions, a nonparametric estimation of survival functions under dependent competing risks, censoring in astronomical data due to nondetections, an astronomy survival analysis computer package called ASURV, and improving the statistical methodology of astronomical data analysis.

  5. SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.

    PubMed

    Chu, Annie; Cui, Jenny; Dinov, Ivo D

    2009-03-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.

  6. Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology.

    PubMed

    Bennett, Derrick A; Landry, Denise; Little, Julian; Minelli, Cosetta

    2017-09-19

    Several statistical approaches have been proposed to assess and correct for exposure measurement error. We aimed to provide a critical overview of the most common approaches used in nutritional epidemiology. MEDLINE, EMBASE, BIOSIS and CINAHL were searched for reports published in English up to May 2016 in order to ascertain studies that described methods aimed to quantify and/or correct for measurement error for a continuous exposure in nutritional epidemiology using a calibration study. We identified 126 studies, 43 of which described statistical methods and 83 that applied any of these methods to a real dataset. The statistical approaches in the eligible studies were grouped into: a) approaches to quantify the relationship between different dietary assessment instruments and "true intake", which were mostly based on correlation analysis and the method of triads; b) approaches to adjust point and interval estimates of diet-disease associations for measurement error, mostly based on regression calibration analysis and its extensions. Two approaches (multiple imputation and moment reconstruction) were identified that can deal with differential measurement error. For regression calibration, the most common approach to correct for measurement error used in nutritional epidemiology, it is crucial to ensure that its assumptions and requirements are fully met. Analyses that investigate the impact of departures from the classical measurement error model on regression calibration estimates can be helpful to researchers in interpreting their findings. With regard to the possible use of alternative methods when regression calibration is not appropriate, the choice of method should depend on the measurement error model assumed, the availability of suitable calibration study data and the potential for bias due to violation of the classical measurement error model assumptions. On the basis of this review, we provide some practical advice for the use of methods to assess and adjust for measurement error in nutritional epidemiology.

  7. Regression analysis of mixed recurrent-event and panel-count data with additive rate models.

    PubMed

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L

    2015-03-01

    Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007, The Statistical Analysis of Recurrent Events. New York: Springer-Verlag; Zhao et al., 2011, Test 20, 1-42). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013, Statistics in Medicine 32, 1954-1963). In this article, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. © 2014, The International Biometric Society.

  8. Assessment and prediction of inter-joint upper limb movement correlations based on kinematic analysis and statistical regression

    NASA Astrophysics Data System (ADS)

    Toth-Tascau, Mirela; Balanean, Flavia; Krepelka, Mircea

    2013-10-01

    Musculoskeletal impairment of the upper limb can cause difficulties in performing basic daily activities. Three dimensional motion analyses can provide valuable data of arm movement in order to precisely determine arm movement and inter-joint coordination. The purpose of this study was to develop a method to evaluate the degree of impairment based on the influence of shoulder movements in the amplitude of elbow flexion and extension based on the assumption that a lack of motion of the elbow joint will be compensated by an increased shoulder activity. In order to develop and validate a statistical model, one healthy young volunteer has been involved in the study. The activity of choice simulated blowing the nose, starting from a slight flexion of the elbow and raising the hand until the middle finger touches the tip of the nose and return to the start position. Inter-joint coordination between the elbow and shoulder movements showed significant correlation. Statistical regression was used to fit an equation model describing the influence of shoulder movements on the elbow mobility. The study provides a brief description of the kinematic analysis protocol and statistical models that may be useful in describing the relation between inter-joint movements of daily activities.

  9. A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams

    USGS Publications Warehouse

    Flynn, Robert H.

    2003-01-01

    The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.

  10. Methods for trend analysis: Examples with problem/failure data

    NASA Technical Reports Server (NTRS)

    Church, Curtis K.

    1989-01-01

    Statistics are emphasized as an important role in quality control and reliability. Consequently, Trend Analysis Techniques recommended a variety of statistical methodologies that could be applied to time series data. The major goal of the working handbook, using data from the MSFC Problem Assessment System, is to illustrate some of the techniques in the NASA standard, some different techniques, and to notice patterns of data. Techniques for trend estimation used are: regression (exponential, power, reciprocal, straight line) and Kendall's rank correlation coefficient. The important details of a statistical strategy for estimating a trend component are covered in the examples. However, careful analysis and interpretation is necessary because of small samples and frequent zero problem reports in a given time period. Further investigations to deal with these issues are being conducted.

  11. Using assemblage data in ecological indicators: A comparison and evaluation of commonly available statistical tools

    USGS Publications Warehouse

    Smith, Joseph M.; Mather, Martha E.

    2012-01-01

    Ecological indicators are science-based tools used to assess how human activities have impacted environmental resources. For monitoring and environmental assessment, existing species assemblage data can be used to make these comparisons through time or across sites. An impediment to using assemblage data, however, is that these data are complex and need to be simplified in an ecologically meaningful way. Because multivariate statistics are mathematical relationships, statistical groupings may not make ecological sense and will not have utility as indicators. Our goal was to define a process to select defensible and ecologically interpretable statistical simplifications of assemblage data in which researchers and managers can have confidence. For this, we chose a suite of statistical methods, compared the groupings that resulted from these analyses, identified convergence among groupings, then we interpreted the groupings using species and ecological guilds. When we tested this approach using a statewide stream fish dataset, not all statistical methods worked equally well. For our dataset, logistic regression (Log), detrended correspondence analysis (DCA), cluster analysis (CL), and non-metric multidimensional scaling (NMDS) provided consistent, simplified output. Specifically, the Log, DCA, CL-1, and NMDS-1 groupings were ≥60% similar to each other, overlapped with the fluvial-specialist ecological guild, and contained a common subset of species. Groupings based on number of species (e.g., Log, DCA, CL and NMDS) outperformed groupings based on abundance [e.g., principal components analysis (PCA) and Poisson regression]. Although the specific methods that worked on our test dataset have generality, here we are advocating a process (e.g., identifying convergent groupings with redundant species composition that are ecologically interpretable) rather than the automatic use of any single statistical tool. We summarize this process in step-by-step guidance for the future use of these commonly available ecological and statistical methods in preparing assemblage data for use in ecological indicators.

  12. Magnitude and Frequency of Rural Floods in the Southeastern United States, through 2006: Volume 2, North Carolina

    USGS Publications Warehouse

    Weaver, J. Curtis; Feaster, Toby D.; Gotvald, Anthony J.

    2009-01-01

    Reliable estimates of the magnitude and frequency of floods are required for the economical and safe design of transportation and water-conveyance structures. A multistate approach was used to update methods for estimating the magnitude and frequency of floods in rural, ungaged basins in North Carolina, South Carolina, and Georgia that are not substantially affected by regulation, tidal fluctuations, or urban development. In North Carolina, annual peak-flow data available through September 2006 were available for 584 sites; 402 of these sites had a total of 10 or more years of systematic record that is required for at-site, flood-frequency analysis. Following data reviews and the computation of 20 physical and climatic basin characteristics for each station as well as at-site flood-frequency statistics, annual peak-flow data were identified for 363 sites in North Carolina suitable for use in this analysis. Among these 363 sites, 19 sites had records that could be divided into unregulated and regulated/ channelized annual peak discharges, which means peak-flow records were identified for a total of 382 cases in North Carolina. Considering the 382 cases, at-site flood-frequency statistics are provided for 333 unregulated cases (also used for the regression database) and 49 regulated/channelized cases. The flood-frequency statistics for the 333 unregulated sites were combined with data for sites from South Carolina, Georgia, and adjacent parts of Alabama, Florida, Tennessee, and Virginia to create a database of 943 sites considered for use in the regional regression analysis. Flood-frequency statistics were computed by fitting logarithms (base 10) of the annual peak flows to a log-Pearson Type III distribution. As part of the computation process, a new generalized skew coefficient was developed by using a Bayesian generalized least-squares regression model. Exploratory regression analyses using ordinary least-squares regression completed on the initial database of 943 sites resulted in defining five hydrologic regions for North Carolina, South Carolina, and Georgia. Stations with drainage areas less than 1 square mile were removed from the database, and a procedure to examine for basin redundancy (based on drainage area and periods of record) also resulted in the removal of some stations from the regression database. Flood-frequency estimates and basin characteristics for 828 gaged stations were combined to form the final database that was used in the regional regression analysis. Regional regression analysis, using generalized least-squares regression, was used to develop a set of predictive equations that can be used for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent chance exceedance flows for rural ungaged, basins in North Carolina, South Carolina, and Georgia. The final predictive equations are all functions of drainage area and the percentage of drainage basin within each of the five hydrologic regions. Average errors of prediction for these regression equations range from 34.0 to 47.7 percent. Discharge estimates determined from the systematic records for the current study are, on average, larger in magnitude than those from a previous study for the highest percent chance exceedances (50 and 20 percent) and tend to be smaller than those from the previous study for the lower percent chance exceedances when all sites are considered as a group. For example, mean differences for sites in the Piedmont hydrologic region range from positive 0.5 percent for the 50-percent chance exceedance flow to negative 4.6 percent for the 0.2-percent chance exceedance flow when stations are grouped by hydrologic region. Similarly for the same hydrologic region, median differences range from positive 0.9 percent for the 50-percent chance exceedance flow to negative 7.1 percent for the 0.2-percent chance exceedance flow. However, mean and median percentage differences between the estimates from the previous and curre

  13. Research design and statistical methods in Pakistan Journal of Medical Sciences (PJMS).

    PubMed

    Akhtar, Sohail; Shah, Syed Wadood Ali; Rafiq, M; Khan, Ajmal

    2016-01-01

    This article compares the study design and statistical methods used in 2005, 2010 and 2015 of Pakistan Journal of Medical Sciences (PJMS). Only original articles of PJMS were considered for the analysis. The articles were carefully reviewed for statistical methods and designs, and then recorded accordingly. The frequency of each statistical method and research design was estimated and compared with previous years. A total of 429 articles were evaluated (n=74 in 2005, n=179 in 2010, n=176 in 2015) in which 171 (40%) were cross-sectional and 116 (27%) were prospective study designs. A verity of statistical methods were found in the analysis. The most frequent methods include: descriptive statistics (n=315, 73.4%), chi-square/Fisher's exact tests (n=205, 47.8%) and student t-test (n=186, 43.4%). There was a significant increase in the use of statistical methods over time period: t-test, chi-square/Fisher's exact test, logistic regression, epidemiological statistics, and non-parametric tests. This study shows that a diverse variety of statistical methods have been used in the research articles of PJMS and frequency improved from 2005 to 2015. However, descriptive statistics was the most frequent method of statistical analysis in the published articles while cross-sectional study design was common study design.

  14. Poisson Regression Analysis of Illness and Injury Surveillance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frome E.L., Watkins J.P., Ellis E.D.

    2012-12-12

    The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences duemore » to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson variation. The R open source software environment for statistical computing and graphics is used for analysis. Additional details about R and the data that were used in this report are provided in an Appendix. Information on how to obtain R and utility functions that can be used to duplicate results in this report are provided.« less

  15. Selected Streamflow Statistics and Regression Equations for Predicting Statistics at Stream Locations in Monroe County, Pennsylvania

    USGS Publications Warehouse

    Thompson, Ronald E.; Hoffman, Scott A.

    2006-01-01

    A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.

  16. Survival Data and Regression Models

    NASA Astrophysics Data System (ADS)

    Grégoire, G.

    2014-12-01

    We start this chapter by introducing some basic elements for the analysis of censored survival data. Then we focus on right censored data and develop two types of regression models. The first one concerns the so-called accelerated failure time models (AFT), which are parametric models where a function of a parameter depends linearly on the covariables. The second one is a semiparametric model, where the covariables enter in a multiplicative form in the expression of the hazard rate function. The main statistical tool for analysing these regression models is the maximum likelihood methodology and, in spite we recall some essential results about the ML theory, we refer to the chapter "Logistic Regression" for a more detailed presentation.

  17. Analysis strategies for longitudinal attachment loss data.

    PubMed

    Beck, J D; Elter, J R

    2000-02-01

    The purpose of this invited review is to describe and discuss methods currently in use to quantify the progression of attachment loss in epidemiological studies of periodontal disease, and to make recommendations for specific analytic methods based upon the particular design of the study and structure of the data. The review concentrates on the definition of incident attachment loss (ALOSS) and its component parts; measurement issues including thresholds and regression to the mean; methods of accounting for longitudinal change, including changes in means, changes in proportions of affected sites, incidence density, the effect of tooth loss and reversals, and repeated events; statistical models of longitudinal change, including the incorporation of the time element, use of linear, logistic or Poisson regression or survival analysis, and statistical tests; site vs person level of analysis, including statistical adjustment for correlated data; the strengths and limitations of ALOSS data. Examples from the Piedmont 65+ Dental Study are used to illustrate specific concepts. We conclude that incidence density is the preferred methodology to use for periodontal studies with more than one period of follow-up and that the use of studies not employing methods for dealing with complex samples, correlated data, and repeated measures does not take advantage of our current understanding of the site- and person-level variables important in periodontal disease and may generate biased results.

  18. [A Review on the Use of Effect Size in Nursing Research].

    PubMed

    Kang, Hyuncheol; Yeon, Kyupil; Han, Sang Tae

    2015-10-01

    The purpose of this study was to introduce the main concepts of statistical testing and effect size and to provide researchers in nursing science with guidance on how to calculate the effect size for the statistical analysis methods mainly used in nursing. For t-test, analysis of variance, correlation analysis, regression analysis which are used frequently in nursing research, the generally accepted definitions of the effect size were explained. Some formulae for calculating the effect size are described with several examples in nursing research. Furthermore, the authors present the required minimum sample size for each example utilizing G*Power 3 software that is the most widely used program for calculating sample size. It is noted that statistical significance testing and effect size measurement serve different purposes, and the reliance on only one side may be misleading. Some practical guidelines are recommended for combining statistical significance testing and effect size measure in order to make more balanced decisions in quantitative analyses.

  19. Application of statistical shape analysis for the estimation of bone and forensic age using the shapes of the 2nd, 3rd, and 4th cervical vertebrae in a young Japanese population.

    PubMed

    Rhee, Chang-Hoon; Shin, Sang Min; Choi, Yong-Seok; Yamaguchi, Tetsutaro; Maki, Koutaro; Kim, Yong-Il; Kim, Seong-Sik; Park, Soo-Byung; Son, Woo-Sung

    2015-12-01

    From computed tomographic images, the dentocentral synchondrosis can be identified in the second cervical vertebra. This can demarcate the border between the odontoid process and the body of the 2nd cervical vertebra and serve as a good model for the prediction of bone and forensic age. Nevertheless, until now, there has been no application of the 2nd cervical vertebra based on the dentocentral synchondrosis. In this study, statistical shape analysis was used to build bone and forensic age estimation regression models. Following the principles of statistical shape analysis and principal components analysis, we used cone-beam computed tomography (CBCT) to evaluate a Japanese population (35 males and 45 females, from 5 to 19 years old). The narrowest prediction intervals among the multivariate regression models were 19.63 for bone age and 2.99 for forensic age. There was no significant difference between form space and shape space in the bone and forensic age estimation models. However, for gender comparison, the bone and forensic age estimation models for males had the higher explanatory power. This study derived an improved objective and quantitative method for bone and forensic age estimation based on only the 2nd, 3rd and 4th cervical vertebral shapes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Bayesian correction for covariate measurement error: A frequentist evaluation and comparison with regression calibration.

    PubMed

    Bartlett, Jonathan W; Keogh, Ruth H

    2018-06-01

    Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of regression calibration and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.

  1. The median hazard ratio: a useful measure of variance and general contextual effects in multilevel survival analysis.

    PubMed

    Austin, Peter C; Wagner, Philippe; Merlo, Juan

    2017-03-15

    Multilevel data occurs frequently in many research areas like health services research and epidemiology. A suitable way to analyze such data is through the use of multilevel regression models (MLRM). MLRM incorporate cluster-specific random effects which allow one to partition the total individual variance into between-cluster variation and between-individual variation. Statistically, MLRM account for the dependency of the data within clusters and provide correct estimates of uncertainty around regression coefficients. Substantively, the magnitude of the effect of clustering provides a measure of the General Contextual Effect (GCE). When outcomes are binary, the GCE can also be quantified by measures of heterogeneity like the Median Odds Ratio (MOR) calculated from a multilevel logistic regression model. Time-to-event outcomes within a multilevel structure occur commonly in epidemiological and medical research. However, the Median Hazard Ratio (MHR) that corresponds to the MOR in multilevel (i.e., 'frailty') Cox proportional hazards regression is rarely used. Analogously to the MOR, the MHR is the median relative change in the hazard of the occurrence of the outcome when comparing identical subjects from two randomly selected different clusters that are ordered by risk. We illustrate the application and interpretation of the MHR in a case study analyzing the hazard of mortality in patients hospitalized for acute myocardial infarction at hospitals in Ontario, Canada. We provide R code for computing the MHR. The MHR is a useful and intuitive measure for expressing cluster heterogeneity in the outcome and, thereby, estimating general contextual effects in multilevel survival analysis. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  2. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes

    NASA Astrophysics Data System (ADS)

    Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A.

    2013-10-01

    In this study, the application of Artificial Neural Networks (ANN) and Multiple regression analysis (MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors. The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR Models is proposed to investigate the simultaneous effect of past values of these two major climate modes on long-term spring rainfall prediction. The MR models that did not violate the limits of statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error (MAE), Pearson correlation (r) and Willmott index of agreement (d). The developed MR and ANN models were tested on out-of-sample test sets; the MR models showed very poor generalisation ability for east Victoria with correlation coefficients of -0.99 to -0.90 compared to ANN with correlation coefficients of 0.42-0.93; ANN models also showed better generalisation ability for central and west Victoria with correlation coefficients of 0.68-0.85 and 0.58-0.97 respectively. The ability of multiple regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r = 0.92 and 0.67 respectively). The errors of the testing sets for ANN models are generally lower compared to multiple regression models. The statistical analysis suggest the potential of ANN over MR models for rainfall forecasting using large scale climate modes.

  3. Black Male Labor Force Participation.

    ERIC Educational Resources Information Center

    Baer, Roger K.

    This study attempts to test (via multiple regression analysis) hypothesized relationships between designated independent variables and age specific incidences of labor force participation for black male subpopulations in 54 Standard Metropolitan Statistical Areas. Leading independent variables tested include net migration, earnings, unemployment,…

  4. Ultrasound-enhanced bioscouring of greige cotton: regression analysis of process factors

    USDA-ARS?s Scientific Manuscript database

    Ultrasound-enhanced bioscouring process factors for greige cotton fabric are examined using custom experimental design utilizing statistical principles. An equation is presented which predicts bioscouring performance based upon percent reflectance values obtained from UV-Vis measurements of rutheniu...

  5. Supporting Regularized Logistic Regression Privately and Efficiently.

    PubMed

    Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei

    2016-01-01

    As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.

  6. Test anxiety and academic performance in chiropractic students.

    PubMed

    Zhang, Niu; Henderson, Charles N R

    2014-01-01

    Objective : We assessed the level of students' test anxiety, and the relationship between test anxiety and academic performance. Methods : We recruited 166 third-quarter students. The Test Anxiety Inventory (TAI) was administered to all participants. Total scores from written examinations and objective structured clinical examinations (OSCEs) were used as response variables. Results : Multiple regression analysis shows that there was a modest, but statistically significant negative correlation between TAI scores and written exam scores, but not OSCE scores. Worry and emotionality were the best predictive models for written exam scores. Mean total anxiety and emotionality scores for females were significantly higher than those for males, but not worry scores. Conclusion : Moderate-to-high test anxiety was observed in 85% of the chiropractic students examined. However, total test anxiety, as measured by the TAI score, was a very weak predictive model for written exam performance. Multiple regression analysis demonstrated that replacing total anxiety (TAI) with worry and emotionality (TAI subscales) produces a much more effective predictive model of written exam performance. Sex, age, highest current academic degree, and ethnicity contributed little additional predictive power in either regression model. Moreover, TAI scores were not found to be statistically significant predictors of physical exam skill performance, as measured by OSCEs.

  7. Supporting Regularized Logistic Regression Privately and Efficiently

    PubMed Central

    Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei

    2016-01-01

    As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738

  8. Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis.

    PubMed

    Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X

    2016-09-01

    The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.

  9. Applications of modern statistical methods to analysis of data in physical science

    NASA Astrophysics Data System (ADS)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.

  10. Local Linear Regression for Data with AR Errors.

    PubMed

    Li, Runze; Li, Yan

    2009-07-01

    In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.

  11. Instructional Advice, Time Advice and Learning Questions in Computer Simulations

    ERIC Educational Resources Information Center

    Rey, Gunter Daniel

    2010-01-01

    Undergraduate students (N = 97) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without instructional advice) x 2 (with or without time advice) x 2…

  12. The Effect of Missing Data Handling Methods on Goodness of Fit Indices in Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Köse, Alper

    2014-01-01

    The primary objective of this study was to examine the effect of missing data on goodness of fit statistics in confirmatory factor analysis (CFA). For this aim, four missing data handling methods; listwise deletion, full information maximum likelihood, regression imputation and expectation maximization (EM) imputation were examined in terms of…

  13. Understanding the Relationship between School-Based Management, Emotional Intelligence and Performance of Religious Upper Secondary School Principals in Banten Province

    ERIC Educational Resources Information Center

    Muslihah, Oleh Eneng

    2015-01-01

    The research examines the correlation between the understanding of school-based management, emotional intelligences and headmaster performance. Data was collected, using quantitative methods. The statistical analysis used was the Pearson Correlation, and multivariate regression analysis. The results of this research suggest firstly that there is…

  14. Modeling vertebrate diversity in Oregon using satellite imagery

    NASA Astrophysics Data System (ADS)

    Cablk, Mary Elizabeth

    Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.

  15. Development of a funding, cost, and spending model for satellite projects

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse P.

    1989-01-01

    The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.

  16. Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study.

    PubMed

    Lee, Poh Foong; Kan, Donica Pei Xin; Croarkin, Paul; Phang, Cheng Kar; Doruk, Deniz

    2018-01-01

    There is an unmet need for practical and reliable biomarkers for mood disorders in young adults. Identifying the brain activity associated with the early signs of depressive disorders could have important diagnostic and therapeutic implications. In this study we sought to investigate the EEG characteristics in young adults with newly identified depressive symptoms. Based on the initial screening, a total of 100 participants (n = 50 euthymic, n = 50 depressive) underwent 32-channel EEG acquisition. Simple logistic regression and C-statistic were used to explore if EEG power could be used to discriminate between the groups. The strongest EEG predictors of mood using multivariate logistic regression models. Simple logistic regression analysis with subsequent C-statistics revealed that only high-alpha and beta power originating from the left central cortex (C3) have a reliable discriminative value (ROC curve >0.7 (70%)) for differentiating the depressive group from the euthymic group. Multivariate regression analysis showed that the single most significant predictor of group (depressive vs. euthymic) is the high-alpha power over C3 (p = 0.03). The present findings suggest that EEG is a useful tool in the identification of neurophysiological correlates of depressive symptoms in young adults with no previous psychiatric history. Our results could guide future studies investigating the early neurophysiological changes and surrogate outcomes in depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Cytopathologic differential diagnosis of low-grade urothelial carcinoma and reactive urothelial proliferation in bladder washings: a logistic regression analysis.

    PubMed

    Cakir, Ebru; Kucuk, Ulku; Pala, Emel Ebru; Sezer, Ozlem; Ekin, Rahmi Gokhan; Cakmak, Ozgur

    2017-05-01

    Conventional cytomorphologic assessment is the first step to establish an accurate diagnosis in urinary cytology. In cytologic preparations, the separation of low-grade urothelial carcinoma (LGUC) from reactive urothelial proliferation (RUP) can be exceedingly difficult. The bladder washing cytologies of 32 LGUC and 29 RUP were reviewed. The cytologic slides were examined for the presence or absence of the 28 cytologic features. The cytologic criteria showing statistical significance in LGUC were increased numbers of monotonous single (non-umbrella) cells, three-dimensional cellular papillary clusters without fibrovascular cores, irregular bordered clusters, atypical single cells, irregular nuclear overlap, cytoplasmic homogeneity, increased N/C ratio, pleomorphism, nuclear border irregularity, nuclear eccentricity, elongated nuclei, and hyperchromasia (p ˂ 0.05), and the cytologic criteria showing statistical significance in RUP were inflammatory background, mixture of small and large urothelial cells, loose monolayer aggregates, and vacuolated cytoplasm (p ˂ 0.05). When these variables were subjected to a stepwise logistic regression analysis, four features were selected to distinguish LGUC from RUP: increased numbers of monotonous single (non-umbrella) cells, increased nuclear cytoplasmic ratio, hyperchromasia, and presence of small and large urothelial cells (p = 0.0001). By this logistic model of the 32 cases with proven LGUC, the stepwise logistic regression analysis correctly predicted 31 (96.9%) patients with this diagnosis, and of the 29 patients with RUP, the logistic model correctly predicted 26 (89.7%) patients as having this disease. There are several cytologic features to separate LGUC from RUP. Stepwise logistic regression analysis is a valuable tool for determining the most useful cytologic criteria to distinguish these entities. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  18. Combined statistical analyses for long-term stability data with multiple storage conditions: a simulation study.

    PubMed

    Almalik, Osama; Nijhuis, Michiel B; van den Heuvel, Edwin R

    2014-01-01

    Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear regression analysis combining all data from multiple storage conditions was recently proposed in the literature when variances are homogeneous across storage conditions. The combined analysis is expected to perform better than the separate analysis per storage condition, since pooling data would lead to an improved estimate of the variation and higher numbers of degrees of freedom, but this is not evident for shelf-life estimation. Indeed, the two approaches treat the observed initial batch results, the intercepts in the model, and poolability of batches differently, which may eliminate or reduce the expected advantage of the combined approach with respect to the separate approach. Therefore, a simulation study was performed to compare the distribution of simulated shelf-life estimates on several characteristics between the two approaches and to quantify the difference in shelf-life estimates. In general, the combined statistical analysis does estimate the true shelf life more consistently and precisely than the analysis per storage condition, but it did not outperform the separate analysis in all circumstances.

  19. Endpoint in plasma etch process using new modified w-multivariate charts and windowed regression

    NASA Astrophysics Data System (ADS)

    Zakour, Sihem Ben; Taleb, Hassen

    2017-09-01

    Endpoint detection is very important undertaking on the side of getting a good understanding and figuring out if a plasma etching process is done in the right way, especially if the etched area is very small (0.1%). It truly is a crucial part of supplying repeatable effects in every single wafer. When the film being etched has been completely cleared, the endpoint is reached. To ensure the desired device performance on the produced integrated circuit, the high optical emission spectroscopy (OES) sensor is employed. The huge number of gathered wavelengths (profiles) is then analyzed and pre-processed using a new proposed simple algorithm named Spectra peak selection (SPS) to select the important wavelengths, then we employ wavelet analysis (WA) to enhance the performance of detection by suppressing noise and redundant information. The selected and treated OES wavelengths are then used in modified multivariate control charts (MEWMA and Hotelling) for three statistics (mean, SD and CV) and windowed polynomial regression for mean. The employ of three aforementioned statistics is motivated by controlling mean shift, variance shift and their ratio (CV) if both mean and SD are not stable. The control charts show their performance in detecting endpoint especially W-mean Hotelling chart and the worst result is given by CV statistic. As the best detection of endpoint is given by the W-Hotelling mean statistic, this statistic will be used to construct a windowed wavelet Hotelling polynomial regression. This latter can only identify the window containing endpoint phenomenon.

  20. An open-access CMIP5 pattern library for temperature and precipitation: Description and methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Cary D.; Hartin, Corinne A.; Bond-Lamberty, Benjamin

    Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squared regression methods. We exploremore » the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90°N/S). Bias and mean errors between modeled and pattern predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5°C, but choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. As a result, this paper describes our library of least squared regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns.« less

  1. An open-access CMIP5 pattern library for temperature and precipitation: Description and methodology

    DOE PAGES

    Lynch, Cary D.; Hartin, Corinne A.; Bond-Lamberty, Benjamin; ...

    2017-05-15

    Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squared regression methods. We exploremore » the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90°N/S). Bias and mean errors between modeled and pattern predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5°C, but choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. As a result, this paper describes our library of least squared regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns.« less

  2. Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey.

    PubMed

    Erdogan, Saffet

    2009-10-01

    The aim of the study is to describe the inter-province differences in traffic accidents and mortality on roads of Turkey. Two different risk indicators were used to evaluate the road safety performance of the provinces in Turkey. These indicators are the ratios between the number of persons killed in road traffic accidents (1) and the number of accidents (2) (nominators) and their exposure to traffic risk (denominator). Population and the number of registered motor vehicles in the provinces were used as denominators individually. Spatial analyses were performed to the mean annual rate of deaths and to the number of fatal accidents that were calculated for the period of 2001-2006. Empirical Bayes smoothing was used to remove background noise from the raw death and accident rates because of the sparsely populated provinces and small number of accident and death rates of provinces. Global and local spatial autocorrelation analyses were performed to show whether the provinces with high rates of deaths-accidents show clustering or are located closer by chance. The spatial distribution of provinces with high rates of deaths and accidents was nonrandom and detected as clustered with significance of P<0.05 with spatial autocorrelation analyses. Regions with high concentration of fatal accidents and deaths were located in the provinces that contain the roads connecting the Istanbul, Ankara, and Antalya provinces. Accident and death rates were also modeled with some independent variables such as number of motor vehicles, length of roads, and so forth using geographically weighted regression analysis with forward step-wise elimination. The level of statistical significance was taken as P<0.05. Large differences were found between the rates of deaths and accidents according to denominators in the provinces. The geographically weighted regression analyses did significantly better predictions for both accident rates and death rates than did ordinary least regressions, as indicated by adjusted R(2) values. Geographically weighted regression provided values of 0.89-0.99 adjusted R(2) for death and accident rates, compared with 0.88-0.95, respectively, by ordinary least regressions. Geographically weighted regression has the potential to reveal local patterns in the spatial distribution of rates, which would be ignored by the ordinary least regression approach. The application of spatial analysis and modeling of accident statistics and death rates at provincial level in Turkey will help to identification of provinces with outstandingly high accident and death rates. This could help more efficient road safety management in Turkey.

  3. Generalized linear and generalized additive models in studies of species distributions: Setting the scene

    USGS Publications Warehouse

    Guisan, Antoine; Edwards, T.C.; Hastie, T.

    2002-01-01

    An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001. We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling. ?? 2002 Elsevier Science B.V. All rights reserved.

  4. Analysis of Sting Balance Calibration Data Using Optimized Regression Models

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Bader, Jon B.

    2010-01-01

    Calibration data of a wind tunnel sting balance was processed using a candidate math model search algorithm that recommends an optimized regression model for the data analysis. During the calibration the normal force and the moment at the balance moment center were selected as independent calibration variables. The sting balance itself had two moment gages. Therefore, after analyzing the connection between calibration loads and gage outputs, it was decided to choose the difference and the sum of the gage outputs as the two responses that best describe the behavior of the balance. The math model search algorithm was applied to these two responses. An optimized regression model was obtained for each response. Classical strain gage balance load transformations and the equations of the deflection of a cantilever beam under load are used to show that the search algorithm s two optimized regression models are supported by a theoretical analysis of the relationship between the applied calibration loads and the measured gage outputs. The analysis of the sting balance calibration data set is a rare example of a situation when terms of a regression model of a balance can directly be derived from first principles of physics. In addition, it is interesting to note that the search algorithm recommended the correct regression model term combinations using only a set of statistical quality metrics that were applied to the experimental data during the algorithm s term selection process.

  5. Regression Analysis as a Cost Estimation Model for Unexploded Ordnance Cleanup at Former Military Installations

    DTIC Science & Technology

    2002-06-01

    fits our actual data . To determine the goodness of fit, statisticians typically use the following four measures: R2 Statistic. The R2 statistic...reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of...mathematical model is developed to better estimate cleanup costs using historical cost data that could be used by the Defense Department prior to placing

  6. MetaComp: comprehensive analysis software for comparative meta-omics including comparative metagenomics.

    PubMed

    Zhai, Peng; Yang, Longshu; Guo, Xiao; Wang, Zhe; Guo, Jiangtao; Wang, Xiaoqi; Zhu, Huaiqiu

    2017-10-02

    During the past decade, the development of high throughput nucleic sequencing and mass spectrometry analysis techniques have enabled the characterization of microbial communities through metagenomics, metatranscriptomics, metaproteomics and metabolomics data. To reveal the diversity of microbial communities and interactions between living conditions and microbes, it is necessary to introduce comparative analysis based upon integration of all four types of data mentioned above. Comparative meta-omics, especially comparative metageomics, has been established as a routine process to highlight the significant differences in taxon composition and functional gene abundance among microbiota samples. Meanwhile, biologists are increasingly concerning about the correlations between meta-omics features and environmental factors, which may further decipher the adaptation strategy of a microbial community. We developed a graphical comprehensive analysis software named MetaComp comprising a series of statistical analysis approaches with visualized results for metagenomics and other meta-omics data comparison. This software is capable to read files generated by a variety of upstream programs. After data loading, analyses such as multivariate statistics, hypothesis testing of two-sample, multi-sample as well as two-group sample and a novel function-regression analysis of environmental factors are offered. Here, regression analysis regards meta-omic features as independent variable and environmental factors as dependent variables. Moreover, MetaComp is capable to automatically choose an appropriate two-group sample test based upon the traits of input abundance profiles. We further evaluate the performance of its choice, and exhibit applications for metagenomics, metaproteomics and metabolomics samples. MetaComp, an integrative software capable for applying to all meta-omics data, originally distills the influence of living environment on microbial community by regression analysis. Moreover, since the automatically chosen two-group sample test is verified to be outperformed, MetaComp is friendly to users without adequate statistical training. These improvements are aiming to overcome the new challenges under big data era for all meta-omics data. MetaComp is available at: http://cqb.pku.edu.cn/ZhuLab/MetaComp/ and https://github.com/pzhaipku/MetaComp/ .

  7. STATISTICAL METHOD FOR DETECTION OF A TREND IN ATMOSPHERIC SULFATE

    EPA Science Inventory

    Daily atmospheric concentrations of sulfate collected in northeastern Pennsylvania are regressed against meteorological factors, ozone, and time in order to determine if a significant trend in sulfate can be detected. he data used in this analysis were collected during the Sulfat...

  8. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    PubMed

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  9. Gender effects in gaming research: a case for regression residuals?

    PubMed

    Pfister, Roland

    2011-10-01

    Numerous recent studies have examined the impact of video gaming on various dependent variables, including the players' affective reactions, positive as well as detrimental cognitive effects, and real-world aggression. These target variables are typically analyzed as a function of game characteristics and player attributes-especially gender. However, findings on the uneven distribution of gaming experience between males and females, on the one hand, and the effect of gaming experience on several target variables, on the other hand, point at a possible confound when gaming experiments are analyzed with a standard analysis of variance. This study uses simulated data to exemplify analysis of regression residuals as a potentially beneficial data analysis strategy for such datasets. As the actual impact of gaming experience on each of the various dependent variables differs, the ultimate benefits of analysis of regression residuals entirely depend on the research question, but it offers a powerful statistical approach to video game research whenever gaming experience is a confounding factor.

  10. Simple estimation procedures for regression analysis of interval-censored failure time data under the proportional hazards model.

    PubMed

    Sun, Jianguo; Feng, Yanqin; Zhao, Hui

    2015-01-01

    Interval-censored failure time data occur in many fields including epidemiological and medical studies as well as financial and sociological studies, and many authors have investigated their analysis (Sun, The statistical analysis of interval-censored failure time data, 2006; Zhang, Stat Modeling 9:321-343, 2009). In particular, a number of procedures have been developed for regression analysis of interval-censored data arising from the proportional hazards model (Finkelstein, Biometrics 42:845-854, 1986; Huang, Ann Stat 24:540-568, 1996; Pan, Biometrics 56:199-203, 2000). For most of these procedures, however, one drawback is that they involve estimation of both regression parameters and baseline cumulative hazard function. In this paper, we propose two simple estimation approaches that do not need estimation of the baseline cumulative hazard function. The asymptotic properties of the resulting estimates are given, and an extensive simulation study is conducted and indicates that they work well for practical situations.

  11. Comparative study of contrast-enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps.

    PubMed

    Liu, Jian; Gao, Yun-Hua; Li, Ding-Dong; Gao, Yan-Chun; Hou, Ling-Mi; Xie, Ting

    2014-01-01

    To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

  12. On statistical analysis of factors affecting anthocyanin extraction from Ixora siamensis

    NASA Astrophysics Data System (ADS)

    Mat Nor, N. A.; Arof, A. K.

    2016-10-01

    This study focused on designing an experimental model in order to evaluate the influence of operative extraction parameters employed for anthocyanin extraction from Ixora siamensis on CIE color measurements (a*, b* and color saturation). Extractions were conducted at temperatures of 30, 55 and 80°C, soaking time of 60, 120 and 180 min using acidified methanol solvent with different trifluoroacetic acid (TFA) contents of 0.5, 1.75 and 3% (v/v). The statistical evaluation was performed by running analysis of variance (ANOVA) and regression calculation to investigate the significance of the generated model. Results show that the generated regression models adequately explain the data variation and significantly represented the actual relationship between the independent variables and the responses. Analysis of variance (ANOVA) showed high coefficient determination values (R2) of 0.9687 for a*, 0.9621 for b* and 0.9758 for color saturation, thus ensuring a satisfactory fit of the developed models with the experimental data. Interaction between TFA content and extraction temperature exhibited to the highest significant influence on CIE color parameter.

  13. Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Arnab; Karki, Vijay; Aggarwal, Suresh K.; Maurya, Gulab S.; Kumar, Rohit; Rai, Awadhesh K.; Mao, Xianglei; Russo, Richard E.

    2015-06-01

    Laser induced breakdown spectroscopy (LIBS) was applied for elemental characterization of high alloy steel using partial least squares regression (PLSR) with an objective to evaluate the analytical performance of this multivariate approach. The optimization of the number of principle components for minimizing error in PLSR algorithm was investigated. The effect of different pre-treatment procedures on the raw spectral data before PLSR analysis was evaluated based on several statistical (standard error of prediction, percentage relative error of prediction etc.) parameters. The pre-treatment with "NORM" parameter gave the optimum statistical results. The analytical performance of PLSR model improved by increasing the number of laser pulses accumulated per spectrum as well as by truncating the spectrum to appropriate wavelength region. It was found that the statistical benefit of truncating the spectrum can also be accomplished by increasing the number of laser pulses per accumulation without spectral truncation. The constituents (Co and Mo) present in hundreds of ppm were determined with relative precision of 4-9% (2σ), whereas the major constituents Cr and Ni (present at a few percent levels) were determined with a relative precision of ~ 2%(2σ).

  14. Statistical analysis of the factors that influenced the mechanical properties improvement of cassava starch films

    NASA Astrophysics Data System (ADS)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In order to obtain cassava starch films with improved mechanical properties in relation to the synthetic polymer in the packaging production, a complete factorial design 23 was carried out in order to investigate which factor significantly influences the tensile strength of the biofilm. The factors to be investigated were cassava starch, glycerol and modified clay contents. Modified bentonite clay was used as a filling material of the biofilm. Glycerol was the plasticizer used to thermoplastify cassava starch. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch film from the maximization of the tensile strength. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyse: Pareto graph. The modified clay was the factor of greater statistical significance on the observed response variable, being the factor that contributed most to the improvement of the mechanical property of the starch film. The factorial experiments showed that the interaction of glycerol with both modified clay and cassava starch was significant for the reduction of biofilm ductility. Modified clay and cassava starch contributed to the maximization of biofilm ductility, while glycerol contributed to the minimization.

  15. Estimating individual benefits of medical or behavioral treatments in severely ill patients.

    PubMed

    Diaz, Francisco J

    2017-01-01

    There is a need for statistical methods appropriate for the analysis of clinical trials from a personalized-medicine viewpoint as opposed to the common statistical practice that simply examines average treatment effects. This article proposes an approach to quantifying, reporting and analyzing individual benefits of medical or behavioral treatments to severely ill patients with chronic conditions, using data from clinical trials. The approach is a new development of a published framework for measuring the severity of a chronic disease and the benefits treatments provide to individuals, which utilizes regression models with random coefficients. Here, a patient is considered to be severely ill if the patient's basal severity is close to one. This allows the derivation of a very flexible family of probability distributions of individual benefits that depend on treatment duration and the covariates included in the regression model. Our approach may enrich the statistical analysis of clinical trials of severely ill patients because it allows investigating the probability distribution of individual benefits in the patient population and the variables that influence it, and we can also measure the benefits achieved in specific patients including new patients. We illustrate our approach using data from a clinical trial of the anti-depressant imipramine.

  16. HIV/AIDS information by African companies: an empirical analysis.

    PubMed

    Barako, Dulacha G; Taplin, Ross H; Brown, Alistair M

    2010-01-01

    This article investigates the extent of Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome Disclosures (HIV/AIDSD) in online annual reports by 200 listed companies from 10 African countries for the year ending 2006. Descriptive statistics reveal a very low level of overall HIV/AIDSD practices with a mean of 6 per cent disclosure, with half (100 out of 200) of the African companies making no disclosures at all. Logistic regression analysis reveals that company size and country are highly significant predictors of any disclosure of HIV/AIDS in annual reports. Profitability is also statistically significantly associated with the extent of disclosure.

  17. Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation.

    PubMed

    Hayes, Andrew F; Rockwood, Nicholas J

    2017-11-01

    There have been numerous treatments in the clinical research literature about various design, analysis, and interpretation considerations when testing hypotheses about mechanisms and contingencies of effects, popularly known as mediation and moderation analysis. In this paper we address the practice of mediation and moderation analysis using linear regression in the pages of Behaviour Research and Therapy and offer some observations and recommendations, debunk some popular myths, describe some new advances, and provide an example of mediation, moderation, and their integration as conditional process analysis using the PROCESS macro for SPSS and SAS. Our goal is to nudge clinical researchers away from historically significant but increasingly old school approaches toward modifications, revisions, and extensions that characterize more modern thinking about the analysis of the mechanisms and contingencies of effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    PubMed

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  19. Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Yun, Hyeseon; Jeong, Chang-Sam; Heo, Jun-Haeng

    2011-11-01

    SummaryIn this study, new factors that influence precipitation were extracted from geographic variables using factor analysis, which allow for an accurate estimation of orographic precipitation. Correlation analysis was also used to examine the relationship between nine topographic variables from digital elevation models (DEMs) and the precipitation in Jeju Island. In addition, a spatial analysis was performed in order to verify the validity of the regression model. From the results of the correlation analysis, it was found that all of the topographic variables had a positive correlation with the precipitation. The relations between the variables also changed in accordance with a change in the precipitation duration. However, upon examining the correlation matrix, no significant relationship between the latitude and the aspect was found. According to the factor analysis, eight topographic variables (latitude being the exception) were found to have a direct influence on the precipitation. Three factors were then extracted from the eight topographic variables. By directly comparing the multiple regression model with the factors (model 1) to the multiple regression model with the topographic variables (model 3), it was found that model 1 did not violate the limits of statistical significance and multicollinearity. As such, model 1 was considered to be appropriate for estimating the precipitation when taking into account the topography. In the study of model 1, the multiple regression model using factor analysis was found to be the best method for estimating the orographic precipitation on Jeju Island.

  20. Disconcordance in Statistical Models of Bisphenol A and Chronic Disease Outcomes in NHANES 2003-08

    PubMed Central

    Casey, Martin F.; Neidell, Matthew

    2013-01-01

    Background Bisphenol A (BPA), a high production chemical commonly found in plastics, has drawn great attention from researchers due to the substance’s potential toxicity. Using data from three National Health and Nutrition Examination Survey (NHANES) cycles, we explored the consistency and robustness of BPA’s reported effects on coronary heart disease and diabetes. Methods And Findings We report the use of three different statistical models in the analysis of BPA: (1) logistic regression, (2) log-linear regression, and (3) dose-response logistic regression. In each variation, confounders were added in six blocks to account for demographics, urinary creatinine, source of BPA exposure, healthy behaviours, and phthalate exposure. Results were sensitive to the variations in functional form of our statistical models, but no single model yielded consistent results across NHANES cycles. Reported ORs were also found to be sensitive to inclusion/exclusion criteria. Further, observed effects, which were most pronounced in NHANES 2003-04, could not be explained away by confounding. Conclusions Limitations in the NHANES data and a poor understanding of the mode of action of BPA have made it difficult to develop informative statistical models. Given the sensitivity of effect estimates to functional form, researchers should report results using multiple specifications with different assumptions about BPA measurement, thus allowing for the identification of potential discrepancies in the data. PMID:24223205

  1. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages.

    PubMed

    Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry

    2013-08-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.

  2. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages

    PubMed Central

    Kim, Yoonsang; Emery, Sherry

    2013-01-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415

  3. Support vector methods for survival analysis: a comparison between ranking and regression approaches.

    PubMed

    Van Belle, Vanya; Pelckmans, Kristiaan; Van Huffel, Sabine; Suykens, Johan A K

    2011-10-01

    To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently in a context of structural risk minimization and convex optimization techniques. In a second approach, one uses a regression approach, dealing with censoring by means of inequality constraints. The goal of this paper is then twofold: (i) introducing a new model combining the ranking and regression strategy, which retains the link with existing survival models such as the proportional hazards model via transformation models; and (ii) comparison of the three techniques on 6 clinical and 3 high-dimensional datasets and discussing the relevance of these techniques over classical approaches fur survival data. We compare svm-based survival models based on ranking constraints, based on regression constraints and models based on both ranking and regression constraints. The performance of the models is compared by means of three different measures: (i) the concordance index, measuring the model's discriminating ability; (ii) the logrank test statistic, indicating whether patients with a prognostic index lower than the median prognostic index have a significant different survival than patients with a prognostic index higher than the median; and (iii) the hazard ratio after normalization to restrict the prognostic index between 0 and 1. Our results indicate a significantly better performance for models including regression constraints above models only based on ranking constraints. This work gives empirical evidence that svm-based models using regression constraints perform significantly better than svm-based models based on ranking constraints. Our experiments show a comparable performance for methods including only regression or both regression and ranking constraints on clinical data. On high dimensional data, the former model performs better. However, this approach does not have a theoretical link with standard statistical models for survival data. This link can be made by means of transformation models when ranking constraints are included. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  5. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    PubMed

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of heat stress on age at first calving of Japanese Black cows in Okinawa.

    PubMed

    Oikawa, Takuro

    2017-03-01

    Calving records from birth certificates of cows were analyzed to investigate the effect of heat stress on age at first calving (AFC) of Japanese Black cows. The data set covered 20 years (1990-2009) of calving records. Total number of records was 9279. Daily weather information from weather stations in the vicinity of the farms was used. Temperature-humidity index (THI) fitted to a linear model covered 30 days pre-insemination to 61 days post-insemination. Statistical analysis was conducted with procedures of SAS/STAT. Preliminary analysis showed that THI of the lowest temperature and humidity was most conducive to AFC. Covariance analysis, including main effect of sire, farm and year of insemination and covariates of THI on days showed that regression coefficients of THI on day -7, day -2 and day +31 were statistically significant. The estimated piecewise regression line showed different responses of AFC to THI on days: roof-shasped downward trend on day -7, hockey-stick shaped upward trend on day -2 and day +31. The difference among the estimated regression lines may be caused by direct and indirect factors on reproduction: indirect effect of reduced feed intake, failure of conception at previous insemination, direct effect of heat stress on oocyte and embryo development. © 2016 Japanese Society of Animal Science.

  7. An investigation of correlation between pilot scanning behavior and workload using stepwise regression analysis

    NASA Technical Reports Server (NTRS)

    Waller, M. C.

    1976-01-01

    An electro-optical device called an oculometer which tracks a subject's lookpoint as a time function has been used to collect data in a real-time simulation study of instrument landing system (ILS) approaches. The data describing the scanning behavior of a pilot during the instrument approaches have been analyzed by use of a stepwise regression analysis technique. A statistically significant correlation between pilot workload, as indicated by pilot ratings, and scanning behavior has been established. In addition, it was demonstrated that parameters derived from the scanning behavior data can be combined in a mathematical equation to provide a good representation of pilot workload.

  8. MAGMA: Generalized Gene-Set Analysis of GWAS Data

    PubMed Central

    de Leeuw, Christiaan A.; Mooij, Joris M.; Heskes, Tom; Posthuma, Danielle

    2015-01-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn’s Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn’s Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn’s Disease data was found to be considerably faster as well. PMID:25885710

  9. MAGMA: generalized gene-set analysis of GWAS data.

    PubMed

    de Leeuw, Christiaan A; Mooij, Joris M; Heskes, Tom; Posthuma, Danielle

    2015-04-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn's Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn's Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn's Disease data was found to be considerably faster as well.

  10. Analysis of Sting Balance Calibration Data Using Optimized Regression Models

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert; Bader, Jon B.

    2009-01-01

    Calibration data of a wind tunnel sting balance was processed using a search algorithm that identifies an optimized regression model for the data analysis. The selected sting balance had two moment gages that were mounted forward and aft of the balance moment center. The difference and the sum of the two gage outputs were fitted in the least squares sense using the normal force and the pitching moment at the balance moment center as independent variables. The regression model search algorithm predicted that the difference of the gage outputs should be modeled using the intercept and the normal force. The sum of the two gage outputs, on the other hand, should be modeled using the intercept, the pitching moment, and the square of the pitching moment. Equations of the deflection of a cantilever beam are used to show that the search algorithm s two recommended math models can also be obtained after performing a rigorous theoretical analysis of the deflection of the sting balance under load. The analysis of the sting balance calibration data set is a rare example of a situation when regression models of balance calibration data can directly be derived from first principles of physics and engineering. In addition, it is interesting to see that the search algorithm recommended the same regression models for the data analysis using only a set of statistical quality metrics.

  11. A Regional Analysis of Non-Methane Hydrocarbons And Meteorology of The Rural Southeast United States

    DTIC Science & Technology

    1996-01-01

    Zt is an ARIMA time series. This is a typical regression model , except that it allows for autocorrelation in the error term Z. In this work, an ARMA...data=folder; var residual; run; II Statistical output of 1992 regression model on 1993 ozone data ARIMA Procedure Maximum Likelihood Estimation Approx...at each of the sites, and to show the effect of synoptic meteorology on high ozone by examining NOAA daily weather maps and climatic data

  12. [Factors associated with physical activity among Chinese immigrant women].

    PubMed

    Cho, Sung-Hye; Lee, Hyeonkyeong

    2013-12-01

    This study was done to assess the level of physical activity among Chinese immigrant women and to determine the relationships of physical activity with individual characteristics and behavior-specific cognition. A cross-sectional descriptive study was conducted with 161 Chinese immigrant women living in Busan. A health promotion model of physical activity adapted from Pender's Health Promotion Model was used. Self-administered questionnaires were used to collect data during the period from September 25 to November 20, 2012. Using SPSS 18.0 program, descriptive statistics, t-test, analysis of variance, correlation analysis, and multiple regression analysis were done. The average level of physical activity of the Chinese immigrant women was 1,050.06 ± 686.47 MET-min/week and the minimum activity among types of physical activity was most dominant (59.6%). As a result of multiple regression analysis, it was confirmed that self-efficacy and acculturation were statistically significant variables in the model (p<.001), with an explanatory power of 23.7%. The results indicate that the development and application of intervention strategies to increase acculturation and self-efficacy for immigrant women will aid in increasing the physical activity in Chinese immigrant women.

  13. Risk Driven Outcome-Based Command and Control (C2) Assessment

    DTIC Science & Technology

    2000-01-01

    shaping the risk ranking scores into more interpretable and statistically sound risk measures. Regression analysis was applied to determine what...Architecture Framework Implementation, AFCEA Coursebook 503J, February 8-11, 2000, San Diego, California. [Morgan and Henrion, 1990] M. Granger Morgan and

  14. Statistical correlations of crime with arrests

    NASA Astrophysics Data System (ADS)

    Kuelling, Albert C.

    1997-01-01

    Regression analysis shows that the overall crime rate correlates with the overall arrest rate. Violent crime only weakly correlates with the violent arrest rate, but strongly correlates with the property arrest rate. Contrary to common impressions, increasing arrest rates do not significantly increase loading on incarceration facilities.

  15. Quantitative structure-activity relationships by neural networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines

    NASA Astrophysics Data System (ADS)

    Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.

    1994-08-01

    Neural networks and inductive logic programming (ILP) have been compared to linear regression for modelling the QSAR of the inhibition of E. coli dihydrofolate reductase (DHFR) by 2,4-diamino-5-(substitured benzyl)pyrimidines, and, in the subsequent paper [Hirst, J.D., King, R.D. and Sternberg, M.J.E., J. Comput.-Aided Mol. Design, 8 (1994) 421], the inhibition of rodent DHFR by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazines. Cross-validation trials provide a statistically rigorous assessment of the predictive capabilities of the methods, with training and testing data selected randomly and all the methods developed using identical training data. For the ILP analysis, molecules are represented by attributes other than Hansch parameters. Neural networks and ILP perform better than linear regression using the attribute representation, but the difference is not statistically significant. The major benefit from the ILP analysis is the formulation of understandable rules relating the activity of the inhibitors to their chemical structure.

  16. Comparing statistical and machine learning classifiers: alternatives for predictive modeling in human factors research.

    PubMed

    Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann

    2003-01-01

    Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.

  17. Analysis and generation of groundwater concentration time series

    NASA Astrophysics Data System (ADS)

    Crăciun, Maria; Vamoş, Călin; Suciu, Nicolae

    2018-01-01

    Concentration time series are provided by simulated concentrations of a nonreactive solute transported in groundwater, integrated over the transverse direction of a two-dimensional computational domain and recorded at the plume center of mass. The analysis of a statistical ensemble of time series reveals subtle features that are not captured by the first two moments which characterize the approximate Gaussian distribution of the two-dimensional concentration fields. The concentration time series exhibit a complex preasymptotic behavior driven by a nonstationary trend and correlated fluctuations with time-variable amplitude. Time series with almost the same statistics are generated by successively adding to a time-dependent trend a sum of linear regression terms, accounting for correlations between fluctuations around the trend and their increments in time, and terms of an amplitude modulated autoregressive noise of order one with time-varying parameter. The algorithm generalizes mixing models used in probability density function approaches. The well-known interaction by exchange with the mean mixing model is a special case consisting of a linear regression with constant coefficients.

  18. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  19. Research design and statistical methods in Pakistan Journal of Medical Sciences (PJMS)

    PubMed Central

    Akhtar, Sohail; Shah, Syed Wadood Ali; Rafiq, M.; Khan, Ajmal

    2016-01-01

    Objective: This article compares the study design and statistical methods used in 2005, 2010 and 2015 of Pakistan Journal of Medical Sciences (PJMS). Methods: Only original articles of PJMS were considered for the analysis. The articles were carefully reviewed for statistical methods and designs, and then recorded accordingly. The frequency of each statistical method and research design was estimated and compared with previous years. Results: A total of 429 articles were evaluated (n=74 in 2005, n=179 in 2010, n=176 in 2015) in which 171 (40%) were cross-sectional and 116 (27%) were prospective study designs. A verity of statistical methods were found in the analysis. The most frequent methods include: descriptive statistics (n=315, 73.4%), chi-square/Fisher’s exact tests (n=205, 47.8%) and student t-test (n=186, 43.4%). There was a significant increase in the use of statistical methods over time period: t-test, chi-square/Fisher’s exact test, logistic regression, epidemiological statistics, and non-parametric tests. Conclusion: This study shows that a diverse variety of statistical methods have been used in the research articles of PJMS and frequency improved from 2005 to 2015. However, descriptive statistics was the most frequent method of statistical analysis in the published articles while cross-sectional study design was common study design. PMID:27022365

  20. Interrupted time series regression for the evaluation of public health interventions: a tutorial.

    PubMed

    Bernal, James Lopez; Cummins, Steven; Gasparrini, Antonio

    2017-02-01

    Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design.

  1. Interrupted time series regression for the evaluation of public health interventions: a tutorial

    PubMed Central

    Bernal, James Lopez; Cummins, Steven; Gasparrini, Antonio

    2017-01-01

    Abstract Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design. PMID:27283160

  2. Survival analysis in hematologic malignancies: recommendations for clinicians

    PubMed Central

    Delgado, Julio; Pereira, Arturo; Villamor, Neus; López-Guillermo, Armando; Rozman, Ciril

    2014-01-01

    The widespread availability of statistical packages has undoubtedly helped hematologists worldwide in the analysis of their data, but has also led to the inappropriate use of statistical methods. In this article, we review some basic concepts of survival analysis and also make recommendations about how and when to perform each particular test using SPSS, Stata and R. In particular, we describe a simple way of defining cut-off points for continuous variables and the appropriate and inappropriate uses of the Kaplan-Meier method and Cox proportional hazard regression models. We also provide practical advice on how to check the proportional hazards assumption and briefly review the role of relative survival and multiple imputation. PMID:25176982

  3. qFeature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-14

    This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.

  4. Visual Analysis of North Atlantic Hurricane Trends Using Parallel Coordinates and Statistical Techniques

    DTIC Science & Technology

    2008-07-07

    analyzing multivariate data sets. The system was developed using the Java Development Kit (JDK) version 1.5; and it yields interactive performance on a... script and captures output from the MATLAB’s “regress” and “stepwisefit” utilities that perform simple and stepwise regression, respectively. The MATLAB...Statistical Association, vol. 85, no. 411, pp. 664–675, 1990. [9] H. Hauser, F. Ledermann, and H. Doleisch, “ Angular brushing of extended parallel coordinates

  5. A FORTRAN technique for correlating a circular environmental variable with a linear physiological variable in the sugar maple.

    PubMed

    Pease, J M; Morselli, M F

    1987-01-01

    This paper deals with a computer program adapted to a statistical method for analyzing an unlimited quantity of binary recorded data of an independent circular variable (e.g. wind direction), and a linear variable (e.g. maple sap flow volume). Circular variables cannot be statistically analyzed with linear methods, unless they have been transformed. The program calculates a critical quantity, the acrophase angle (PHI, phi o). The technique is adapted from original mathematics [1] and is written in Fortran 77 for easier conversion between computer networks. Correlation analysis can be performed following the program or regression which, because of the circular nature of the independent variable, becomes periodic regression. The technique was tested on a file of approximately 4050 data pairs.

  6. Quasi-experimental Studies in the Fields of Infection Control and Antibiotic Resistance, Ten Years Later: A Systematic Review.

    PubMed

    Alsaggaf, Rotana; O'Hara, Lyndsay M; Stafford, Kristen A; Leekha, Surbhi; Harris, Anthony D

    2018-02-01

    OBJECTIVE A systematic review of quasi-experimental studies in the field of infectious diseases was published in 2005. The aim of this study was to assess improvements in the design and reporting of quasi-experiments 10 years after the initial review. We also aimed to report the statistical methods used to analyze quasi-experimental data. DESIGN Systematic review of articles published from January 1, 2013, to December 31, 2014, in 4 major infectious disease journals. METHODS Quasi-experimental studies focused on infection control and antibiotic resistance were identified and classified based on 4 criteria: (1) type of quasi-experimental design used, (2) justification of the use of the design, (3) use of correct nomenclature to describe the design, and (4) statistical methods used. RESULTS Of 2,600 articles, 173 (7%) featured a quasi-experimental design, compared to 73 of 2,320 articles (3%) in the previous review (P<.01). Moreover, 21 articles (12%) utilized a study design with a control group; 6 (3.5%) justified the use of a quasi-experimental design; and 68 (39%) identified their design using the correct nomenclature. In addition, 2-group statistical tests were used in 75 studies (43%); 58 studies (34%) used standard regression analysis; 18 (10%) used segmented regression analysis; 7 (4%) used standard time-series analysis; 5 (3%) used segmented time-series analysis; and 10 (6%) did not utilize statistical methods for comparisons. CONCLUSIONS While some progress occurred over the decade, it is crucial to continue improving the design and reporting of quasi-experimental studies in the fields of infection control and antibiotic resistance to better evaluate the effectiveness of important interventions. Infect Control Hosp Epidemiol 2018;39:170-176.

  7. Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors

    DTIC Science & Technology

    2015-07-15

    Long-term effects on cancer survivors’ quality of life of physical training versus physical training combined with cognitive-behavioral therapy ...COMPARISON OF NEURAL NETWORK AND LINEAR REGRESSION MODELS IN STATISTICALLY PREDICTING MENTAL AND PHYSICAL HEALTH STATUS OF BREAST...34Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors

  8. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.

  9. Common Scientific and Statistical Errors in Obesity Research

    PubMed Central

    George, Brandon J.; Beasley, T. Mark; Brown, Andrew W.; Dawson, John; Dimova, Rositsa; Divers, Jasmin; Goldsby, TaShauna U.; Heo, Moonseong; Kaiser, Kathryn A.; Keith, Scott; Kim, Mimi Y.; Li, Peng; Mehta, Tapan; Oakes, J. Michael; Skinner, Asheley; Stuart, Elizabeth; Allison, David B.

    2015-01-01

    We identify 10 common errors and problems in the statistical analysis, design, interpretation, and reporting of obesity research and discuss how they can be avoided. The 10 topics are: 1) misinterpretation of statistical significance, 2) inappropriate testing against baseline values, 3) excessive and undisclosed multiple testing and “p-value hacking,” 4) mishandling of clustering in cluster randomized trials, 5) misconceptions about nonparametric tests, 6) mishandling of missing data, 7) miscalculation of effect sizes, 8) ignoring regression to the mean, 9) ignoring confirmation bias, and 10) insufficient statistical reporting. We hope that discussion of these errors can improve the quality of obesity research by helping researchers to implement proper statistical practice and to know when to seek the help of a statistician. PMID:27028280

  10. Quantifying the statistical importance of utilizing regression over classic energy intensity calculations for tracking efficiency improvements in industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U.; Wenning, Thomas J.; Guo, Wei

    In the United States, manufacturing facilities account for about 32% of total domestic energy consumption in 2014. Robust energy tracking methodologies are critical to understanding energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the classic energy intensity method (i.e. the ratio of total energy use over total production) is the most widely adopted. However, the classic energy intensity method does not take into account the variation of other relevant parameters (i.e. product type, feed stock type, weather, etc.). Furthermore, the energy intensity method assumes that the facilities’ base energy consumption (energy use at zero production) is zero,more » which rarely holds true. Therefore, it is commonly recommended to utilize regression models rather than the energy intensity approach for tracking improvements at the facility level. Unfortunately, many energy managers have difficulties understanding why regression models are statistically better than utilizing the classic energy intensity method. While anecdotes and qualitative information may convince some, many have major reservations about the accuracy of regression models and whether it is worth the time and effort to gather data and build quality regression models. This paper will explain why regression models are theoretically and quantitatively more accurate for tracking energy performance improvements. Based on the analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative results on the importance of utilizing regression models over the energy intensity methodology. This paper will also document scenarios where regression models do not have significant relevance over the energy intensity method.« less

  11. WINPEPI updated: computer programs for epidemiologists, and their teaching potential

    PubMed Central

    2011-01-01

    Background The WINPEPI computer programs for epidemiologists are designed for use in practice and research in the health field and as learning or teaching aids. The programs are free, and can be downloaded from the Internet. Numerous additions have been made in recent years. Implementation There are now seven WINPEPI programs: DESCRIBE, for use in descriptive epidemiology; COMPARE2, for use in comparisons of two independent groups or samples; PAIRSetc, for use in comparisons of paired and other matched observations; LOGISTIC, for logistic regression analysis; POISSON, for Poisson regression analysis; WHATIS, a "ready reckoner" utility program; and ETCETERA, for miscellaneous other procedures. The programs now contain 122 modules, each of which provides a number, sometimes a large number, of statistical procedures. The programs are accompanied by a Finder that indicates which modules are appropriate for different purposes. The manuals explain the uses, limitations and applicability of the procedures, and furnish formulae and references. Conclusions WINPEPI is a handy resource for a wide variety of statistical routines used by epidemiologists. Because of its ready availability, portability, ease of use, and versatility, WINPEPI has a considerable potential as a learning and teaching aid, both with respect to practical procedures in the planning and analysis of epidemiological studies, and with respect to important epidemiological concepts. It can also be used as an aid in the teaching of general basic statistics. PMID:21288353

  12. Practical application of cure mixture model for long-term censored survivor data from a withdrawal clinical trial of patients with major depressive disorder.

    PubMed

    Arano, Ichiro; Sugimoto, Tomoyuki; Hamasaki, Toshimitsu; Ohno, Yuko

    2010-04-23

    Survival analysis methods such as the Kaplan-Meier method, log-rank test, and Cox proportional hazards regression (Cox regression) are commonly used to analyze data from randomized withdrawal studies in patients with major depressive disorder. However, unfortunately, such common methods may be inappropriate when a long-term censored relapse-free time appears in data as the methods assume that if complete follow-up were possible for all individuals, each would eventually experience the event of interest. In this paper, to analyse data including such a long-term censored relapse-free time, we discuss a semi-parametric cure regression (Cox cure regression), which combines a logistic formulation for the probability of occurrence of an event with a Cox proportional hazards specification for the time of occurrence of the event. In specifying the treatment's effect on disease-free survival, we consider the fraction of long-term survivors and the risks associated with a relapse of the disease. In addition, we develop a tree-based method for the time to event data to identify groups of patients with differing prognoses (cure survival CART). Although analysis methods typically adapt the log-rank statistic for recursive partitioning procedures, the method applied here used a likelihood ratio (LR) test statistic from a fitting of cure survival regression assuming exponential and Weibull distributions for the latency time of relapse. The method is illustrated using data from a sertraline randomized withdrawal study in patients with major depressive disorder. We concluded that Cox cure regression reveals facts on who may be cured, and how the treatment and other factors effect on the cured incidence and on the relapse time of uncured patients, and that cure survival CART output provides easily understandable and interpretable information, useful both in identifying groups of patients with differing prognoses and in utilizing Cox cure regression models leading to meaningful interpretations.

  13. Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis

    PubMed Central

    Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.

    2006-01-01

    In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709

  14. 75 FR 81999 - Notice of Submission for OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... comments which: (1) Evaluate whether the proposed collection of information is necessary for the proper...) Evaluate the accuracy of the agency's estimate of the burden of the proposed collection of information... study will use descriptive statistics and regression analysis to study how student outcomes and school...

  15. Challenges Associated with Estimating Utility in Wet Age-Related Macular Degeneration: A Novel Regression Analysis to Capture the Bilateral Nature of the Disease.

    PubMed

    Hodgson, Robert; Reason, Timothy; Trueman, David; Wickstead, Rose; Kusel, Jeanette; Jasilek, Adam; Claxton, Lindsay; Taylor, Matthew; Pulikottil-Jacob, Ruth

    2017-10-01

    The estimation of utility values for the economic evaluation of therapies for wet age-related macular degeneration (AMD) is a particular challenge. Previous economic models in wet AMD have been criticized for failing to capture the bilateral nature of wet AMD by modelling visual acuity (VA) and utility values associated with the better-seeing eye only. Here we present a de novo regression analysis using generalized estimating equations (GEE) applied to a previous dataset of time trade-off (TTO)-derived utility values from a sample of the UK population that wore contact lenses to simulate visual deterioration in wet AMD. This analysis allows utility values to be estimated as a function of VA in both the better-seeing eye (BSE) and worse-seeing eye (WSE). VAs in both the BSE and WSE were found to be statistically significant (p < 0.05) when regressed separately. When included without an interaction term, only the coefficient for VA in the BSE was significant (p = 0.04), but when an interaction term between VA in the BSE and WSE was included, only the constant term (mean TTO utility value) was significant, potentially a result of the collinearity between the VA of the two eyes. The lack of both formal model fit statistics from the GEE approach and theoretical knowledge to support the superiority of one model over another make it difficult to select the best model. Limitations of this analysis arise from the potential influence of collinearity between the VA of both eyes, and the use of contact lenses to reflect VA states to obtain the original dataset. Whilst further research is required to elicit more accurate utility values for wet AMD, this novel regression analysis provides a possible source of utility values to allow future economic models to capture the quality of life impact of changes in VA in both eyes. Novartis Pharmaceuticals UK Limited.

  16. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.

    PubMed

    García-Mozo, H; Yaezel, L; Oteros, J; Galán, C

    2014-03-01

    Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into account the internal fluctuations in time series. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. An Investigation of the Variety and Complexity of Statistical Methods Used in Current Internal Medicine Literature.

    PubMed

    Narayanan, Roshni; Nugent, Rebecca; Nugent, Kenneth

    2015-10-01

    Accreditation Council for Graduate Medical Education guidelines require internal medicine residents to develop skills in the interpretation of medical literature and to understand the principles of research. A necessary component is the ability to understand the statistical methods used and their results, material that is not an in-depth focus of most medical school curricula and residency programs. Given the breadth and depth of the current medical literature and an increasing emphasis on complex, sophisticated statistical analyses, the statistical foundation and education necessary for residents are uncertain. We reviewed the statistical methods and terms used in 49 articles discussed at the journal club in the Department of Internal Medicine residency program at Texas Tech University between January 1, 2013 and June 30, 2013. We collected information on the study type and on the statistical methods used for summarizing and comparing samples, determining the relations between independent variables and dependent variables, and estimating models. We then identified the typical statistics education level at which each term or method is learned. A total of 14 articles came from the Journal of the American Medical Association Internal Medicine, 11 from the New England Journal of Medicine, 6 from the Annals of Internal Medicine, 5 from the Journal of the American Medical Association, and 13 from other journals. Twenty reported randomized controlled trials. Summary statistics included mean values (39 articles), category counts (38), and medians (28). Group comparisons were based on t tests (14 articles), χ2 tests (21), and nonparametric ranking tests (10). The relations between dependent and independent variables were analyzed with simple regression (6 articles), multivariate regression (11), and logistic regression (8). Nine studies reported odds ratios with 95% confidence intervals, and seven analyzed test performance using sensitivity and specificity calculations. These papers used 128 statistical terms and context-defined concepts, including some from data analysis (56), epidemiology-biostatistics (31), modeling (24), data collection (12), and meta-analysis (5). Ten different software programs were used in these articles. Based on usual undergraduate and graduate statistics curricula, 64.3% of the concepts and methods used in these papers required at least a master's degree-level statistics education. The interpretation of the current medical literature can require an extensive background in statistical methods at an education level exceeding the material and resources provided to most medical students and residents. Given the complexity and time pressure of medical education, these deficiencies will be hard to correct, but this project can serve as a basis for developing a curriculum in study design and statistical methods needed by physicians-in-training.

  18. Multivariate analysis of cytokine profiles in pregnancy complications.

    PubMed

    Azizieh, Fawaz; Dingle, Kamaludin; Raghupathy, Raj; Johnson, Kjell; VanderPlas, Jacob; Ansari, Ali

    2018-03-01

    The immunoregulation to tolerate the semiallogeneic fetus during pregnancy includes a harmonious dynamic balance between anti- and pro-inflammatory cytokines. Several earlier studies reported significantly different levels and/or ratios of several cytokines in complicated pregnancy as compared to normal pregnancy. However, as cytokines operate in networks with potentially complex interactions, it is also interesting to compare groups with multi-cytokine data sets, with multivariate analysis. Such analysis will further examine how great the differences are, and which cytokines are more different than others. Various multivariate statistical tools, such as Cramer test, classification and regression trees, partial least squares regression figures, 2-dimensional Kolmogorov-Smirmov test, principal component analysis and gap statistic, were used to compare cytokine data of normal vs anomalous groups of different pregnancy complications. Multivariate analysis assisted in examining if the groups were different, how strongly they differed, in what ways they differed and further reported evidence for subgroups in 1 group (pregnancy-induced hypertension), possibly indicating multiple causes for the complication. This work contributes to a better understanding of cytokines interaction and may have important implications on targeting cytokine balance modulation or design of future medications or interventions that best direct management or prevention from an immunological approach. © 2018 The Authors. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.

  19. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models.

    PubMed

    Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei

    2017-06-01

    To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (P<0.05). In addition, a comparison of the area under receiver operating characteristic curves of the two models showed a statistically significant difference (P<0.05). The RBF ANNs model is more likely to predict the occurrence of PVT induced by AP than logistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. An open-access CMIP5 pattern library for temperature and precipitation: description and methodology

    NASA Astrophysics Data System (ADS)

    Lynch, Cary; Hartin, Corinne; Bond-Lamberty, Ben; Kravitz, Ben

    2017-05-01

    Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squares regression methods. We explore the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90° N/S). Bias and mean errors between modeled and pattern-predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5 °C, but the choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. This paper describes our library of least squares regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns. The dataset and netCDF data generation code are available at doi:10.5281/zenodo.495632.

  1. Age estimation using pulp/tooth area ratio in maxillary canines-A digital image analysis.

    PubMed

    Juneja, Manjushree; Devi, Yashoda B K; Rakesh, N; Juneja, Saurabh

    2014-09-01

    Determination of age of a subject is one of the most important aspects of medico-legal cases and anthropological research. Radiographs can be used to indirectly measure the rate of secondary dentine deposition which is depicted by reduction in the pulp area. In this study, 200 patients of Karnataka aged between 18-72 years were selected for the study. Panoramic radiographs were made and indirectly digitized. Radiographic images of maxillary canines (RIC) were processed using a computer-aided drafting program (ImageJ). The variables pulp/root length (p), pulp/tooth length (r), pulp/root width at enamel-cementum junction (ECJ) level (a), pulp/root width at mid-root level (c), pulp/root width at midpoint level between ECJ level and mid-root level (b) and pulp/tooth area ratio (AR) were recorded. All the morphological variables including gender were statistically analyzed to derive regression equation for estimation of age. It was observed that 2 variables 'AR' and 'b' contributed significantly to the fit and were included in the regression model, yielding the formula: Age = 87.305-480.455(AR)+48.108(b). Statistical analysis indicated that the regression equation with selected variables explained 96% of total variance with the median of the residuals of 0.1614 years and standard error of estimate of 3.0186 years. There is significant correlation between age and morphological variables 'AR' and 'b' and the derived population specific regression equation can be potentially used for estimation of chronological age of individuals of Karnataka origin.

  2. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  3. Generic Feature Selection with Short Fat Data

    PubMed Central

    Clarke, B.; Chu, J.-H.

    2014-01-01

    SUMMARY Consider a regression problem in which there are many more explanatory variables than data points, i.e., p ≫ n. Essentially, without reducing the number of variables inference is impossible. So, we group the p explanatory variables into blocks by clustering, evaluate statistics on the blocks and then regress the response on these statistics under a penalized error criterion to obtain estimates of the regression coefficients. We examine the performance of this approach for a variety of choices of n, p, classes of statistics, clustering algorithms, penalty terms, and data types. When n is not large, the discrimination over number of statistics is weak, but computations suggest regressing on approximately [n/K] statistics where K is the number of blocks formed by a clustering algorithm. Small deviations from this are observed when the blocks of variables are of very different sizes. Larger deviations are observed when the penalty term is an Lq norm with high enough q. PMID:25346546

  4. Mapping the Structure-Function Relationship in Glaucoma and Healthy Patients Measured with Spectralis OCT and Humphrey Perimetry

    PubMed Central

    Muñoz–Negrete, Francisco J.; Oblanca, Noelia; Rebolleda, Gema

    2018-01-01

    Purpose To study the structure-function relationship in glaucoma and healthy patients assessed with Spectralis OCT and Humphrey perimetry using new statistical approaches. Materials and Methods Eighty-five eyes were prospectively selected and divided into 2 groups: glaucoma (44) and healthy patients (41). Three different statistical approaches were carried out: (1) factor analysis of the threshold sensitivities (dB) (automated perimetry) and the macular thickness (μm) (Spectralis OCT), subsequently applying Pearson's correlation to the obtained regions, (2) nonparametric regression analysis relating the values in each pair of regions that showed significant correlation, and (3) nonparametric spatial regressions using three models designed for the purpose of this study. Results In the glaucoma group, a map that relates structural and functional damage was drawn. The strongest correlation with visual fields was observed in the peripheral nasal region of both superior and inferior hemigrids (r = 0.602 and r = 0.458, resp.). The estimated functions obtained with the nonparametric regressions provided the mean sensitivity that corresponds to each given macular thickness. These functions allowed for accurate characterization of the structure-function relationship. Conclusions Both maps and point-to-point functions obtained linking structure and function damage contribute to a better understanding of this relationship and may help in the future to improve glaucoma diagnosis. PMID:29850196

  5. The Prediction Properties of Inverse and Reverse Regression for the Simple Linear Calibration Problem

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Geoffrey, Vining G.; Wilson, Sara R.; Szarka, John L., III; Johnson, Nels G.

    2010-01-01

    The calibration of measurement systems is a fundamental but under-studied problem within industrial statistics. The origins of this problem go back to basic chemical analysis based on NIST standards. In today's world these issues extend to mechanical, electrical, and materials engineering. Often, these new scenarios do not provide "gold standards" such as the standard weights provided by NIST. This paper considers the classic "forward regression followed by inverse regression" approach. In this approach the initial experiment treats the "standards" as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to "reverse regression," which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it avoids the need for the inverse regression. However, it also violates some of the basic regression assumptions.

  6. An Update on Statistical Boosting in Biomedicine.

    PubMed

    Mayr, Andreas; Hofner, Benjamin; Waldmann, Elisabeth; Hepp, Tobias; Meyer, Sebastian; Gefeller, Olaf

    2017-01-01

    Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.

  7. Statistical analysis of subjective preferences for video enhancement

    NASA Astrophysics Data System (ADS)

    Woods, Russell L.; Satgunam, PremNandhini; Bronstad, P. Matthew; Peli, Eli

    2010-02-01

    Measuring preferences for moving video quality is harder than for static images due to the fleeting and variable nature of moving video. Subjective preferences for image quality can be tested by observers indicating their preference for one image over another. Such pairwise comparisons can be analyzed using Thurstone scaling (Farrell, 1999). Thurstone (1927) scaling is widely used in applied psychology, marketing, food tasting and advertising research. Thurstone analysis constructs an arbitrary perceptual scale for the items that are compared (e.g. enhancement levels). However, Thurstone scaling does not determine the statistical significance of the differences between items on that perceptual scale. Recent papers have provided inferential statistical methods that produce an outcome similar to Thurstone scaling (Lipovetsky and Conklin, 2004). Here, we demonstrate that binary logistic regression can analyze preferences for enhanced video.

  8. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling.

    PubMed

    Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall

    2016-01-01

    Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.

  9. SOCR Analyses – an Instructional Java Web-based Statistical Analysis Toolkit

    PubMed Central

    Chu, Annie; Cui, Jenny; Dinov, Ivo D.

    2011-01-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test. The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website. In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models. PMID:21546994

  10. Estimation of Total Length of Femur from its Proximal and Distal Segmental Measurements of Disarticulated Femur Bones of Nepalese Population using Regression Equation Method.

    PubMed

    Khanal, Laxman; Shah, Sandip; Koirala, Sarun

    2017-03-01

    Length of long bones is taken as an important contributor for estimating one of the four elements of forensic anthropology i.e., stature of the individual. Since physical characteristics of the individual differ among different groups of population, population specific studies are needed for estimating the total length of femur from its segment measurements. Since femur is not always recovered intact in forensic cases, it was the aim of this study to derive regression equations from measurements of proximal and distal fragments in Nepalese population. A cross-sectional study was done among 60 dry femora (30 from each side) without sex determination in anthropometry laboratory. Along with maximum femoral length, four proximal and four distal segmental measurements were measured following the standard method with the help of osteometric board, measuring tape and digital Vernier's caliper. Bones with gross defects were excluded from the study. Measured values were recorded separately for right and left side. Statistical Package for Social Science (SPSS version 11.5) was used for statistical analysis. The value of segmental measurements were different between right and left side but statistical difference was not significant except for depth of medial condyle (p=0.02). All the measurements were positively correlated and found to have linear relationship with the femoral length. With the help of regression equation, femoral length can be calculated from the segmental measurements; and then femoral length can be used to calculate the stature of the individual. The data collected may contribute in the analysis of forensic bone remains in study population.

  11. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis.

    PubMed

    Choi, Seung Hoan; Labadorf, Adam T; Myers, Richard H; Lunetta, Kathryn L; Dupuis, Josée; DeStefano, Anita L

    2017-02-06

    Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.

  12. Methods for estimating the magnitude and frequency of peak streamflows for unregulated streams in Oklahoma

    USGS Publications Warehouse

    Lewis, Jason M.

    2010-01-01

    Peak-streamflow regression equations were determined for estimating flows with exceedance probabilities from 50 to 0.2 percent for the state of Oklahoma. These regression equations incorporate basin characteristics to estimate peak-streamflow magnitude and frequency throughout the state by use of a generalized least squares regression analysis. The most statistically significant independent variables required to estimate peak-streamflow magnitude and frequency for unregulated streams in Oklahoma are contributing drainage area, mean-annual precipitation, and main-channel slope. The regression equations are applicable for watershed basins with drainage areas less than 2,510 square miles that are not affected by regulation. The resulting regression equations had a standard model error ranging from 31 to 46 percent. Annual-maximum peak flows observed at 231 streamflow-gaging stations through water year 2008 were used for the regression analysis. Gage peak-streamflow estimates were used from previous work unless 2008 gaging-station data were available, in which new peak-streamflow estimates were calculated. The U.S. Geological Survey StreamStats web application was used to obtain the independent variables required for the peak-streamflow regression equations. Limitations on the use of the regression equations and the reliability of regression estimates for natural unregulated streams are described. Log-Pearson Type III analysis information, basin and climate characteristics, and the peak-streamflow frequency estimates for the 231 gaging stations in and near Oklahoma are listed. Methodologies are presented to estimate peak streamflows at ungaged sites by using estimates from gaging stations on unregulated streams. For ungaged sites on urban streams and streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow magnitude and frequency.

  13. Magnitude, frequency, and trends of floods at gaged and ungaged sites in Washington, based on data through water year 2014

    USGS Publications Warehouse

    Mastin, Mark C.; Konrad, Christopher P.; Veilleux, Andrea G.; Tecca, Alison E.

    2016-09-20

    An investigation into the magnitude and frequency of floods in Washington State computed the annual exceedance probability (AEP) statistics for 648 U.S. Geological Survey unregulated streamgages in and near the borders of Washington using the recorded annual peak flows through water year 2014. This is an updated report from a previous report published in 1998 that used annual peak flows through the water year 1996. New in this report, a regional skew coefficient was developed for the Pacific Northwest region that includes areas in Oregon, Washington, Idaho and western Montana within the Columbia River drainage basin south of the United States-Canada border, the coastal areas of Oregon and western Washington, and watersheds draining into Puget Sound, Washington. The skew coefficient is an important term in the Log Pearson Type III equation used to define the distribution of the log-transformed annual peaks. The Expected Moments Algorithm was used to fit historical and censored peak-flow data to the log Pearson Type III distribution. A Multiple Grubb-Beck test was employed to censor low outliers of annual peak flows to improve on the frequency distribution. This investigation also includes a section on observed trends in annual peak flows that showed significant trends (p-value < 0.05) in 21 of 83 long-term sites, but with small magnitude Kendall tau values suggesting a limited monotonic trend in the time series of annual peaks. Most of the sites with a significant trend in western Washington were positive and all the sites with significant trends (three sites) in eastern Washington were negative.Multivariate regression analysis with measured basin characteristics and the AEP statistics at long-term, unregulated, and un-urbanized (defined as drainage basins with less than 5 percent impervious land cover for this investigation) streamgages within Washington and some in Idaho and Oregon that are near the Washington border was used to develop equations to estimate AEP statistics at ungaged basins. Washington was divided into four regions to improve the accuracy of the regression equations; a set of equations for eight selected AEPs and for each region were constructed. Selected AEP statistics included the annual peak flows that equaled or exceeded 50, 20, 10, 4, 2, 1, 0.5 and 0.2 percent of the time equivalent to peak flows for peaks with a 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively. Annual precipitation and drainage area were the significant basin characteristics in the regression equations for all four regression regions in Washington and forest cover was significant for the two regression regions in eastern Washington. Average standard error of prediction for the regional regression equations ranged from 70.19 to 125.72 percent for Regression Regions 1 and 2 on the eastern side of the Cascade Mountains and from 43.22 to 58.04 percent for Regression Regions 3 and 4 on the western side of the Cascade Mountains. The pseudo coefficient of determination (where a value of 100 signifies a perfect regression model) ranged from 68.39 to 90.68 for Regression Regions 1 and 2, and 92.35 to 95.44 for Regions 3 and 4.The calculated AEP statistics for the streamgages and the regional regression equations are expected to be incorporated into StreamStats after the publication of this report. StreamStats is the interactive Web-based map tool created by the U.S. Geological Survey to allow the user to choose a streamgage and obtain published statistics or choose ungaged locations where the program automatically applies the regional regression equations and computes the estimates of the AEP statistics.

  14. Symmetrized Nearest Neighbor Regression Estimates.

    DTIC Science & Technology

    1987-12-01

    TELEPHONE NUMBER 22C. OFFICE SYMBO0L (Inetude A me. Code) Major Brian Woodruff 1(202) 767-5026 1 Dr -’ 00 PORN 147,303- APR EDI1TION OF I JAN 73 IS...in tenth of a pence) in 1973. The data come from the Family Ex- penditure Survey, Annual Base Tapes 1968-198S, Department of Employment, Statistics...Statistics, 13, 1465- 1481. Hildenbrand, K. and Hildenbrand, W. (1986). On the mean income effect: a data analysis of the U.K. family expenditure

  15. Computing Science and Statistics: Volume 24. Graphics and Visualization

    DTIC Science & Technology

    1993-03-20

    r, is set to 3.569, the population examples include: kneading ingredients into a bread eventually oscillates about 16 fixed values. However the dough ...34fun statistics". My goal is to offer leagues I said in jest "After all, regression analysis is you the equivalent of a fortune cookie which clearly is... cookie of the night reads: One problem that statisticians traditionally seem to "You have good friends who will come to your aid in have is that they

  16. The Impact of Financial Sophistication on Adjustable Rate Mortgage Ownership

    ERIC Educational Resources Information Center

    Smith, Hyrum; Finke, Michael S.; Huston, Sandra J.

    2011-01-01

    The influence of a financial sophistication scale on adjustable-rate mortgage (ARM) borrowing is explored. Descriptive statistics and regression analysis using recent data from the Survey of Consumer Finances reveal that ARM borrowing is driven by both the least and most financially sophisticated households but for different reasons. Less…

  17. The problem of extreme events in paired-watershed studies

    Treesearch

    James W. Hornbeck

    1973-01-01

    In paired-watershed studies, the occurrence of an extreme event during the after-treatment period presents a problem: the effects of treatment must be determined by using greatly extrapolated regression statistics. Several steps are presented to help insure careful handling of extreme events during analysis and reporting of research results.

  18. The Effectiveness of Edgenuity When Used for Credit Recovery

    ERIC Educational Resources Information Center

    Eddy, Carri

    2013-01-01

    This quantitative study used descriptive statistics, logistic regression, and chi-square analysis to determine the impact of using Edgenuity (formerly Education 2020 Virtual Classroom) to assist students in the recovery of lost credits. The sample included a North Texas school district. The Skyward student management system provided archived…

  19. Statistical considerations in the analysis of data from replicated bioassays

    USDA-ARS?s Scientific Manuscript database

    Multiple-dose bioassay is generally the preferred method for characterizing virulence of insect pathogens. Linear regression of probit mortality on log dose enables estimation of LD50/LC50 and slope, the latter having substantial effect on LD90/95s (doses of considerable interest in pest management)...

  20. Artificial Neural Networks in Policy Research: A Current Assessment.

    ERIC Educational Resources Information Center

    Woelfel, Joseph

    1993-01-01

    Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…

  1. Child Mortality in a Developing Country: A Statistical Analysis

    ERIC Educational Resources Information Center

    Uddin, Md. Jamal; Hossain, Md. Zakir; Ullah, Mohammad Ohid

    2009-01-01

    This study uses data from the "Bangladesh Demographic and Health Survey (BDHS] 1999-2000" to investigate the predictors of child (age 1-4 years) mortality in a developing country like Bangladesh. The cross-tabulation and multiple logistic regression techniques have been used to estimate the predictors of child mortality. The…

  2. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  3. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  4. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  5. Which statistics should tropical biologists learn?

    PubMed

    Loaiza Velásquez, Natalia; González Lutz, María Isabel; Monge-Nájera, Julián

    2011-09-01

    Tropical biologists study the richest and most endangered biodiversity in the planet, and in these times of climate change and mega-extinctions, the need for efficient, good quality research is more pressing than in the past. However, the statistical component in research published by tropical authors sometimes suffers from poor quality in data collection; mediocre or bad experimental design and a rigid and outdated view of data analysis. To suggest improvements in their statistical education, we listed all the statistical tests and other quantitative analyses used in two leading tropical journals, the Revista de Biología Tropical and Biotropica, during a year. The 12 most frequent tests in the articles were: Analysis of Variance (ANOVA), Chi-Square Test, Student's T Test, Linear Regression, Pearson's Correlation Coefficient, Mann-Whitney U Test, Kruskal-Wallis Test, Shannon's Diversity Index, Tukey's Test, Cluster Analysis, Spearman's Rank Correlation Test and Principal Component Analysis. We conclude that statistical education for tropical biologists must abandon the old syllabus based on the mathematical side of statistics and concentrate on the correct selection of these and other procedures and tests, on their biological interpretation and on the use of reliable and friendly freeware. We think that their time will be better spent understanding and protecting tropical ecosystems than trying to learn the mathematical foundations of statistics: in most cases, a well designed one-semester course should be enough for their basic requirements.

  6. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool.

    PubMed

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-10-01

    Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.

  7. Quantile regression applied to spectral distance decay

    USGS Publications Warehouse

    Rocchini, D.; Cade, B.S.

    2008-01-01

    Remotely sensed imagery has long been recognized as a powerful support for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance allows us to quantitatively estimate the amount of turnover in species composition with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological data sets are characterized by a high number of zeroes that add noise to the regression model. Quantile regressions can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this letter, we used ordinary least squares (OLS) and quantile regressions to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.01), considering both OLS and quantile regressions. Nonetheless, the OLS regression estimate of the mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when the spectral distance approaches zero, was very low compared with the intercepts of the upper quantiles, which detected high species similarity when habitats are more similar. In this letter, we demonstrated the power of using quantile regressions applied to spectral distance decay to reveal species diversity patterns otherwise lost or underestimated by OLS regression. ?? 2008 IEEE.

  8. Spectral distance decay: Assessing species beta-diversity by quantile regression

    USGS Publications Warehouse

    Rocchinl, D.; Nagendra, H.; Ghate, R.; Cade, B.S.

    2009-01-01

    Remotely sensed data represents key information for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance may allow us to quantitatively estimate how beta-diversity in species changes with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological datasets are characterized by a high number of zeroes that can add noise to the regression model. Quantile regression can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this paper, we used ordinary least square (ols) and quantile regression to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.05) considering both ols and quantile regression. Nonetheless, ols regression estimate of mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when spectral distance approaches zero, was very low compared with the intercepts of upper quantiles, which detected high species similarity when habitats are more similar. In this paper we demonstrated the power of using quantile regressions applied to spectral distance decay in order to reveal species diversity patterns otherwise lost or underestimated by ordinary least square regression. ?? 2009 American Society for Photogrammetry and Remote Sensing.

  9. Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?

    USGS Publications Warehouse

    Archfield, Stacey A.; Pugliese, Alessio; Castellarin, Attilio; Skøien, Jon O.; Kiang, Julie E.

    2013-01-01

    In the United States, estimation of flood frequency quantiles at ungauged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e., flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, canonical kriging, CK (or physiographical-space-based interpolation, PSBI), and topological kriging, TK (or top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross-validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10, 50, 100 and 500 yr floods for 61 streamgauges in the southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatments of spatial correlation when using regression-based or spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS.

  10. Potential pitfalls when denoising resting state fMRI data using nuisance regression.

    PubMed

    Bright, Molly G; Tench, Christopher R; Murphy, Kevin

    2017-07-01

    In resting state fMRI, it is necessary to remove signal variance associated with noise sources, leaving cleaned fMRI time-series that more accurately reflect the underlying intrinsic brain fluctuations of interest. This is commonly achieved through nuisance regression, in which the fit is calculated of a noise model of head motion and physiological processes to the fMRI data in a General Linear Model, and the "cleaned" residuals of this fit are used in further analysis. We examine the statistical assumptions and requirements of the General Linear Model, and whether these are met during nuisance regression of resting state fMRI data. Using toy examples and real data we show how pre-whitening, temporal filtering and temporal shifting of regressors impact model fit. Based on our own observations, existing literature, and statistical theory, we make the following recommendations when employing nuisance regression: pre-whitening should be applied to achieve valid statistical inference of the noise model fit parameters; temporal filtering should be incorporated into the noise model to best account for changes in degrees of freedom; temporal shifting of regressors, although merited, should be achieved via optimisation and validation of a single temporal shift. We encourage all readers to make simple, practical changes to their fMRI denoising pipeline, and to regularly assess the appropriateness of the noise model used. By negotiating the potential pitfalls described in this paper, and by clearly reporting the details of nuisance regression in future manuscripts, we hope that the field will achieve more accurate and precise noise models for cleaning the resting state fMRI time-series. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Techniques for detecting effects of urban and rural land-use practices on stream-water chemistry in selected watersheds in Texas, Minnesota,and Illinois

    USGS Publications Warehouse

    Walker, J.F.

    1993-01-01

    Selected statistical techniques were applied to three urban watersheds in Texas and Minnesota and three rural watersheds in Illinois. For the urban watersheds, single- and paired-site data-collection strategies were considered. The paired-site strategy was much more effective than the singlesite strategy for detecting changes. Analysis of storm load regression residuals demonstrated the potential utility of regressions for variability reduction. For the rural watersheds, none of the selected techniques were effective at identifying changes, primarily due to a small degree of management-practice implementation, potential errors introduced through the estimation of storm load, and small sample sizes. A Monte Carlo sensitivity analysis was used to determine the percent change in water chemistry that could be detected for each watershed. In most instances, the use of regressions improved the ability to detect changes.

  12. Linear regression analysis for comparing two measurers or methods of measurement: but which regression?

    PubMed

    Ludbrook, John

    2010-07-01

    1. There are two reasons for wanting to compare measurers or methods of measurement. One is to calibrate one method or measurer against another; the other is to detect bias. Fixed bias is present when one method gives higher (or lower) values across the whole range of measurement. Proportional bias is present when one method gives values that diverge progressively from those of the other. 2. Linear regression analysis is a popular method for comparing methods of measurement, but the familiar ordinary least squares (OLS) method is rarely acceptable. The OLS method requires that the x values are fixed by the design of the study, whereas it is usual that both y and x values are free to vary and are subject to error. In this case, special regression techniques must be used. 3. Clinical chemists favour techniques such as major axis regression ('Deming's method'), the Passing-Bablok method or the bivariate least median squares method. Other disciplines, such as allometry, astronomy, biology, econometrics, fisheries research, genetics, geology, physics and sports science, have their own preferences. 4. Many Monte Carlo simulations have been performed to try to decide which technique is best, but the results are almost uninterpretable. 5. I suggest that pharmacologists and physiologists should use ordinary least products regression analysis (geometric mean regression, reduced major axis regression): it is versatile, can be used for calibration or to detect bias and can be executed by hand-held calculator or by using the loss function in popular, general-purpose, statistical software.

  13. Background stratified Poisson regression analysis of cohort data.

    PubMed

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  14. Women victims of intentional homicide in Italy: New insights comparing Italian trends to German and U.S. trends, 2008-2014.

    PubMed

    Terranova, Claudio; Zen, Margherita

    2018-01-01

    National statistics on female homicide could be a useful tool to evaluate the phenomenon and plan adequate strategies to prevent and reduce this crime. The aim of the study is to contribute to the analysis of intentional female homicides in Italy by comparing Italian trends to German and United States trends from 2008 to 2014. This is a population study based on data deriving primarily from national and European statistical institutes, from the U.S. Federal Bureau of Investigation's Uniform Crime Reporting and from the National Center for Health Statistics. Data were analyzed in relation to trends and age by Chi-square test, Student's t-test and linear regression. Results show that female homicides, unlike male homicides, remained stable in the three countries. Regression analysis showed a higher risk for female homicide in all age groups in the U.S. Middle-aged women result at higher risk, and the majority of murdered women are killed by people they know. These results confirm previous findings and suggest the need to focus also in Italy on preventive strategies to reduce those precipitating factors linked to violence and present in the course of a relationship or within the family. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Chronic atrophic gastritis in association with hair mercury level.

    PubMed

    Xue, Zeyun; Xue, Huiping; Jiang, Jianlan; Lin, Bing; Zeng, Si; Huang, Xiaoyun; An, Jianfu

    2014-11-01

    The objective of this study was to explore hair mercury level in association with chronic atrophic gastritis, a precancerous stage of gastric cancer (GC), and thus provide a brand new angle of view on the timely intervention of precancerous stage of GC. We recruited 149 healthy volunteers as controls and 152 patients suffering from chronic gastritis as cases. The controls denied upper gastrointestinal discomforts, and the cases were diagnosed as chronic superficial gastritis (n=68) or chronic atrophic gastritis (n=84). We utilized Mercury Automated Analyzer (NIC MA-3000) to detect hair mercury level of both healthy controls and cases of chronic gastritis. The statistic of measurement data was expressed as mean ± standard deviation, which was analyzed using Levene variance equality test and t test. Pearson correlation analysis was employed to determine associated factors affecting hair mercury levels, and multiple stepwise regression analysis was performed to deduce regression equations. Statistical significance is considered if p value is less than 0.05. The overall hair mercury level was 0.908949 ± 0.8844490 ng/g [mean ± standard deviation (SD)] in gastritis cases and 0.460198 ± 0.2712187 ng/g (mean±SD) in healthy controls; the former level was significantly higher than the latter one (p=0.000<0.01). The hair mercury level in chronic atrophic gastritis subgroup was 1.155220 ± 0.9470246 ng/g (mean ± SD) and that in chronic superficial gastritis subgroup was 0.604732 ± 0.6942509 ng/g (mean ± SD); the former level was significantly higher than the latter level (p<0.01). The hair mercury level in chronic superficial gastritis cases was significantly higher than that in healthy controls (p<0.05). The hair mercury level in chronic atrophic gastritis cases was significantly higher than that in healthy controls (p<0.01). Stratified analysis indicated that the hair mercury level in healthy controls with eating seafood was significantly higher than that in healthy controls without eating seafood (p<0.01) and that the hair mercury level in chronic atrophic gastritis cases was significantly higher than that in chronic superficial gastritis cases (p<0.01). Pearson correlation analysis indicated that eating seafood was most correlated with hair mercury level and positively correlated in the healthy controls and that the severity of gastritis was most correlated with hair mercury level and positively correlated in the gastritis cases. Multiple stepwise regression analysis indicated that the regression equation of hair mercury level in controls could be expressed as 0.262 multiplied the value of eating seafood plus 0.434, the model that was statistically significant (p<0.01). Multiple stepwise regression analysis also indicated that the regression equation of hair mercury level in gastritis cases could be expressed as 0.305 multiplied the severity of gastritis, the model that was also statistically significant (p<0.01). The graphs of regression standardized residual for both controls and cases conformed to normal distribution. The main positively correlated factor affecting the hair mercury level is eating seafood in healthy people whereas the predominant positively correlated factor affecting the hair mercury level is the severity of gastritis in chronic gastritis patients. That is to say, the severity of chronic gastritis is positively correlated with the level of hair mercury. The incessantly increased level of hair mercury possibly reflects the development of gastritis from normal stomach to superficial gastritis and to atrophic gastritis. The detection of hair mercury is potentially a means to predict the severity of chronic gastritis and possibly to insinuate the environmental mercury threat to human health in terms of gastritis or even carcinogenesis.

  16. Application of linear regression analysis in accuracy assessment of rolling force calculations

    NASA Astrophysics Data System (ADS)

    Poliak, E. I.; Shim, M. K.; Kim, G. S.; Choo, W. Y.

    1998-10-01

    Efficient operation of the computational models employed in process control systems require periodical assessment of the accuracy of their predictions. Linear regression is proposed as a tool which allows separate systematic and random prediction errors from those related to measurements. A quantitative characteristic of the model predictive ability is introduced in addition to standard statistical tests for model adequacy. Rolling force calculations are considered as an example for the application. However, the outlined approach can be used to assess the performance of any computational model.

  17. Time Series Analysis and Forecasting of Wastewater Inflow into Bandar Tun Razak Sewage Treatment Plant in Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Abunama, Taher; Othman, Faridah

    2017-06-01

    Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.

  18. Neck-focused panic attacks among Cambodian refugees; a logistic and linear regression analysis.

    PubMed

    Hinton, Devon E; Chhean, Dara; Pich, Vuth; Um, Khin; Fama, Jeanne M; Pollack, Mark H

    2006-01-01

    Consecutive Cambodian refugees attending a psychiatric clinic were assessed for the presence and severity of current--i.e., at least one episode in the last month--neck-focused panic. Among the whole sample (N=130), in a logistic regression analysis, the Anxiety Sensitivity Index (ASI; odds ratio=3.70) and the Clinician-Administered PTSD Scale (CAPS; odds ratio=2.61) significantly predicted the presence of current neck panic (NP). Among the neck panic patients (N=60), in the linear regression analysis, NP severity was significantly predicted by NP-associated flashbacks (beta=.42), NP-associated catastrophic cognitions (beta=.22), and CAPS score (beta=.28). Further analysis revealed the effect of the CAPS score to be significantly mediated (Sobel test [Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182]) by both NP-associated flashbacks and catastrophic cognitions. In the care of traumatized Cambodian refugees, NP severity, as well as NP-associated flashbacks and catastrophic cognitions, should be specifically assessed and treated.

  19. Long-term response of total ozone content at different latitudes of the Northern and Southern Hemispheres caused by solar activity during 1958-2006 (results of regression analysis)

    NASA Astrophysics Data System (ADS)

    Krivolutsky, Alexei A.; Nazarova, Margarita; Knyazeva, Galina

    Solar activity influences on atmospheric photochemical system via its changebale electromag-netic flux with eleven-year period and also by energetic particles during solar proton event (SPE). Energetic particles penetrate mostly into polar regions and induce additional produc-tion of NOx and HOx chemical compounds, which can destroy ozone in photochemical catalytic cycles. Solar irradiance variations cause in-phase variability of ozone in accordance with photo-chemical theory. However, real ozone response caused by these two factors, which has different physical nature, is not so clear on long-term time scale. In order to understand the situation multiply linear regression statistical method was used. Three data series, which covered the period 1958-2006, have been used to realize such analysis: yearly averaged total ozone at dif-ferent latitudes (World Ozone Data Centre, Canada, WMO); yearly averaged proton fluxes with E¿ 10 MeV ( IMP, GOES, METEOR satellites); yearly averaged numbers of solar spots (Solar Data). Then, before the analysis, the data sets of ozone deviations from the mean values for whole period (1958-2006) at each latitudinal belt were prepared. The results of multiply regression analysis (two factors) revealed rather complicated time-dependent behavior of ozone response with clear negative peaks for the years of strong SPEs. The magnitudes of such peaks on annual mean basis are not greater than 10 DU. The unusual effect -positive response of ozone to solar proton activity near both poles-was discovered by statistical analysis. The pos-sible photochemical nature of found effect is discussed. This work was supported by Russian Science Foundation for Basic Research (grant 09-05-009949) and by the contract 1-6-08 under Russian Sub-Program "Research and Investigation of Antarctica".

  20. Prognostic value of inflammation-based scores in patients with osteosarcoma

    PubMed Central

    Liu, Bangjian; Huang, Yujing; Sun, Yuanjue; Zhang, Jianjun; Yao, Yang; Shen, Zan; Xiang, Dongxi; He, Aina

    2016-01-01

    Systemic inflammation responses have been associated with cancer development and progression. C-reactive protein (CRP), Glasgow prognostic score (GPS), neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), lymphocyte-monocyte ratio (LMR), and neutrophil-platelet score (NPS) have been shown to be independent risk factors in various types of malignant tumors. This retrospective analysis of 162 osteosarcoma cases was performed to estimate their predictive value of survival in osteosarcoma. All statistical analyses were performed by SPSS statistical software. Receiver operating characteristic (ROC) analysis was generated to set optimal thresholds; area under the curve (AUC) was used to show the discriminatory abilities of inflammation-based scores; Kaplan-Meier analysis was performed to plot the survival curve; cox regression models were employed to determine the independent prognostic factors. The optimal cut-off points of NLR, PLR, and LMR were 2.57, 123.5 and 4.73, respectively. GPS and NLR had a markedly larger AUC than CRP, PLR and LMR. High levels of CRP, GPS, NLR, PLR, and low level of LMR were significantly associated with adverse prognosis (P < 0.05). Multivariate Cox regression analyses revealed that GPS, NLR, and occurrence of metastasis were top risk factors associated with death of osteosarcoma patients. PMID:28008988

  1. Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression.

    PubMed

    Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C

    2011-04-01

    The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF clusters. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Kepler AutoRegressive Planet Search: Motivation & Methodology

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian

    2015-08-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. We also illustrate the efficient coding in R.

  3. Survival analysis of postoperative nausea and vomiting in patients receiving patient-controlled epidural analgesia.

    PubMed

    Lee, Shang-Yi; Hung, Chih-Jen; Chen, Chih-Chieh; Wu, Chih-Cheng

    2014-11-01

    Postoperative nausea and vomiting as well as postoperative pain are two major concerns when patients undergo surgery and receive anesthetics. Various models and predictive methods have been developed to investigate the risk factors of postoperative nausea and vomiting, and different types of preventive managements have subsequently been developed. However, there continues to be a wide variation in the previously reported incidence rates of postoperative nausea and vomiting. This may have occurred because patients were assessed at different time points, coupled with the overall limitation of the statistical methods used. However, using survival analysis with Cox regression, and thus factoring in these time effects, may solve this statistical limitation and reveal risk factors related to the occurrence of postoperative nausea and vomiting in the following period. In this retrospective, observational, uni-institutional study, we analyzed the results of 229 patients who received patient-controlled epidural analgesia following surgery from June 2007 to December 2007. We investigated the risk factors for the occurrence of postoperative nausea and vomiting, and also assessed the effect of evaluating patients at different time points using the Cox proportional hazards model. Furthermore, the results of this inquiry were compared with those results using logistic regression. The overall incidence of postoperative nausea and vomiting in our study was 35.4%. Using logistic regression, we found that only sex, but not the total doses and the average dose of opioids, had significant effects on the occurrence of postoperative nausea and vomiting at some time points. Cox regression showed that, when patients consumed a higher average dose of opioids, this correlated with a higher incidence of postoperative nausea and vomiting with a hazard ratio of 1.286. Survival analysis using Cox regression showed that the average consumption of opioids played an important role in postoperative nausea and vomiting, a result not found by logistic regression. Therefore, the incidence of postoperative nausea and vomiting in patients cannot be reliably determined on the basis of a single visit at one point in time. Copyright © 2014. Published by Elsevier Taiwan.

  4. Analysis of Feature Intervisibility and Cumulative Visibility Using GIS, Bayesian and Spatial Statistics: A Study from the Mandara Mountains, Northern Cameroon

    PubMed Central

    Wright, David K.; MacEachern, Scott; Lee, Jaeyong

    2014-01-01

    The locations of diy-geδ-bay (DGB) sites in the Mandara Mountains, northern Cameroon are hypothesized to occur as a function of their ability to see and be seen from points on the surrounding landscape. A series of geostatistical, two-way and Bayesian logistic regression analyses were performed to test two hypotheses related to the intervisibility of the sites to one another and their visual prominence on the landscape. We determine that the intervisibility of the sites to one another is highly statistically significant when compared to 10 stratified-random permutations of DGB sites. Bayesian logistic regression additionally demonstrates that the visibility of the sites to points on the surrounding landscape is statistically significant. The location of sites appears to have also been selected on the basis of lower slope than random permutations of sites. Using statistical measures, many of which are not commonly employed in archaeological research, to evaluate aspects of visibility on the landscape, we conclude that the placement of DGB sites improved their conspicuousness for enhanced ritual, social cooperation and/or competition purposes. PMID:25383883

  5. Estimation of water table based on geomorphologic and geologic conditions using public database of geotechnical information over Japan

    NASA Astrophysics Data System (ADS)

    Koshigai, Masaru; Marui, Atsunao

    Water table provides important information for the evaluation of groundwater resource. Recently, the estimation of water table in wide area is required for effective evaluation of groundwater resources. However, evaluation process is met with difficulties due to technical and economic constraints. Regression analysis for the prediction of groundwater levels based on geomorphologic and geologic conditions is considered as a reliable tool for the estimation of water table of wide area. Data of groundwater levels were extracted from the public database of geotechnical information. It was observed that changes in groundwater level depend on climate conditions. It was also observed and confirmed that there exist variations of groundwater levels according to geomorphologic and geologic conditions. The objective variable of the regression analysis was groundwater level. And the explanatory variables were elevation and the dummy variable consisting of group number. The constructed regression formula was significant according to the determination coefficients and analysis of the variance. Therefore, combining the regression formula and mesh map, the statistical method to estimate the water table based on geomorphologic and geologic condition for the whole country could be established.

  6. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic.

    PubMed

    Bowden, Jack; Del Greco M, Fabiola; Minelli, Cosetta; Davey Smith, George; Sheehan, Nuala A; Thompson, John R

    2016-12-01

    : MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied. An adaptation of the I2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it IGX2 . The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example. In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of IGX2 ), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We demonstrate our proposed approach for a two-sample summary data MR analysis to estimate the causal effect of low-density lipoprotein on heart disease risk. A high value of IGX2 close to 1 indicates that dilution does not materially affect the standard MR-Egger analyses for these data. : Care must be taken to assess the NOME assumption via the IGX2 statistic before implementing standard MR-Egger regression in the two-sample summary data context. If IGX2 is sufficiently low (less than 90%), inferences from the method should be interpreted with caution and adjustment methods considered. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  7. Logistic regression analysis of factors associated with avascular necrosis of the femoral head following femoral neck fractures in middle-aged and elderly patients.

    PubMed

    Ai, Zi-Sheng; Gao, You-Shui; Sun, Yuan; Liu, Yue; Zhang, Chang-Qing; Jiang, Cheng-Hua

    2013-03-01

    Risk factors for femoral neck fracture-induced avascular necrosis of the femoral head have not been elucidated clearly in middle-aged and elderly patients. Moreover, the high incidence of screw removal in China and its effect on the fate of the involved femoral head require statistical methods to reflect their intrinsic relationship. Ninety-nine patients older than 45 years with femoral neck fracture were treated by internal fixation between May 1999 and April 2004. Descriptive analysis, interaction analysis between associated factors, single factor logistic regression, multivariate logistic regression, and detailed interaction analysis were employed to explore potential relationships among associated factors. Avascular necrosis of the femoral head was found in 15 cases (15.2 %). Age × the status of implants (removal vs. maintenance) and gender × the timing of reduction were interactive according to two-factor interactive analysis. Age, the displacement of fractures, the quality of reduction, and the status of implants were found to be significant factors in single factor logistic regression analysis. Age, age × the status of implants, and the quality of reduction were found to be significant factors in multivariate logistic regression analysis. In fine interaction analysis after multivariate logistic regression analysis, implant removal was the most important risk factor for avascular necrosis in 56-to-85-year-old patients, with a risk ratio of 26.00 (95 % CI = 3.076-219.747). The middle-aged and elderly have less incidence of avascular necrosis of the femoral head following femoral neck fractures treated by cannulated screws. The removal of cannulated screws can induce a significantly high incidence of avascular necrosis of the femoral head in elderly patients, while a high-quality reduction is helpful to reduce avascular necrosis.

  8. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

    ERIC Educational Resources Information Center

    Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza

    2014-01-01

    This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

  9. The human chromosomal fragile sites more often involved in constitutional deletions and duplications - A genetic and statistical assessment

    NASA Astrophysics Data System (ADS)

    Gomes, Dora Prata; Sequeira, Inês J.; Figueiredo, Carlos; Rueff, José; Brás, Aldina

    2016-12-01

    Human chromosomal fragile sites (CFSs) are heritable loci or regions of the human chromosomes prone to exhibit gaps, breaks and rearrangements. Determining the frequency of deletions and duplications in CFSs may contribute to explain the occurrence of human disease due to those rearrangements. In this study we analyzed the frequency of deletions and duplications in each human CFS. Statistical methods, namely data display, descriptive statistics and linear regression analysis were applied to analyze this dataset. We found that FRA15C, FRA16A and FRAXB are the most frequently involved CFSs in deletions and duplications occurring in the human genome.

  10. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.

    PubMed

    Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-04-01

    To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.

  11. Accounting for standard errors of vision-specific latent trait in regression models.

    PubMed

    Wong, Wan Ling; Li, Xiang; Li, Jialiang; Wong, Tien Yin; Cheng, Ching-Yu; Lamoureux, Ecosse L

    2014-07-11

    To demonstrate the effectiveness of Hierarchical Bayesian (HB) approach in a modeling framework for association effects that accounts for SEs of vision-specific latent traits assessed using Rasch analysis. A systematic literature review was conducted in four major ophthalmic journals to evaluate Rasch analysis performed on vision-specific instruments. The HB approach was used to synthesize the Rasch model and multiple linear regression model for the assessment of the association effects related to vision-specific latent traits. The effectiveness of this novel HB one-stage "joint-analysis" approach allows all model parameters to be estimated simultaneously and was compared with the frequently used two-stage "separate-analysis" approach in our simulation study (Rasch analysis followed by traditional statistical analyses without adjustment for SE of latent trait). Sixty-six reviewed articles performed evaluation and validation of vision-specific instruments using Rasch analysis, and 86.4% (n = 57) performed further statistical analyses on the Rasch-scaled data using traditional statistical methods; none took into consideration SEs of the estimated Rasch-scaled scores. The two models on real data differed for effect size estimations and the identification of "independent risk factors." Simulation results showed that our proposed HB one-stage "joint-analysis" approach produces greater accuracy (average of 5-fold decrease in bias) with comparable power and precision in estimation of associations when compared with the frequently used two-stage "separate-analysis" procedure despite accounting for greater uncertainty due to the latent trait. Patient-reported data, using Rasch analysis techniques, do not take into account the SE of latent trait in association analyses. The HB one-stage "joint-analysis" is a better approach, producing accurate effect size estimations and information about the independent association of exposure variables with vision-specific latent traits. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  12. Application of principal component regression and partial least squares regression in ultraviolet spectrum water quality detection

    NASA Astrophysics Data System (ADS)

    Li, Jiangtong; Luo, Yongdao; Dai, Honglin

    2018-01-01

    Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.

  13. Experimental Investigations of Non-Stationary Properties In Radiometer Receivers Using Measurements of Multiple Calibration References

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Lang, Roger; Zhang, Zhao-Nan; Zacharias, David; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Radiometers must be periodically calibrated because the receiver response fluctuates. Many techniques exist to correct for the time varying response of a radiometer receiver. An analytical technique has been developed that uses generalized least squares regression (LSR) to predict the performance of a wide variety of calibration algorithms. The total measurement uncertainty including the uncertainty of the calibration can be computed using LSR. The uncertainties of the calibration samples used in the regression are based upon treating the receiver fluctuations as non-stationary processes. Signals originating from the different sources of emission are treated as simultaneously existing random processes. Thus, the radiometer output is a series of samples obtained from these random processes. The samples are treated as random variables but because the underlying processes are non-stationary the statistics of the samples are treated as non-stationary. The statistics of the calibration samples depend upon the time for which the samples are to be applied. The statistics of the random variables are equated to the mean statistics of the non-stationary processes over the interval defined by the time of calibration sample and when it is applied. This analysis opens the opportunity for experimental investigation into the underlying properties of receiver non stationarity through the use of multiple calibration references. In this presentation we will discuss the application of LSR to the analysis of various calibration algorithms, requirements for experimental verification of the theory, and preliminary results from analyzing experiment measurements.

  14. AGR-1 Thermocouple Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Einerson

    2012-05-01

    This report documents an effort to analyze measured and simulated data obtained in the Advanced Gas Reactor (AGR) fuel irradiation test program conducted in the INL's Advanced Test Reactor (ATR) to support the Next Generation Nuclear Plant (NGNP) R&D program. The work follows up on a previous study (Pham and Einerson, 2010), in which statistical analysis methods were applied for AGR-1 thermocouple data qualification. The present work exercises the idea that, while recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, results of the numerical simulations can be used in combination with the statistical analysis methods tomore » further improve qualification of measured data. Additionally, the combined analysis of measured and simulation data can generate insights about simulation model uncertainty that can be useful for model improvement. This report also describes an experimental control procedure to maintain fuel target temperature in the future AGR tests using regression relationships that include simulation results. The report is organized into four chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program, AGR-1 test configuration and test procedure, overview of AGR-1 measured data, and overview of physics and thermal simulation, including modeling assumptions and uncertainties. A brief summary of statistical analysis methods developed in (Pham and Einerson 2010) for AGR-1 measured data qualification within NGNP Data Management and Analysis System (NDMAS) is also included for completeness. Chapters 2-3 describe and discuss cases, in which the combined use of experimental and simulation data is realized. A set of issues associated with measurement and modeling uncertainties resulted from the combined analysis are identified. This includes demonstration that such a combined analysis led to important insights for reducing uncertainty in presentation of AGR-1 measured data (Chapter 2) and interpretation of simulation results (Chapter 3). The statistics-based simulation-aided experimental control procedure described for the future AGR tests is developed and demonstrated in Chapter 4. The procedure for controlling the target fuel temperature (capsule peak or average) is based on regression functions of thermocouple readings and other relevant parameters and accounting for possible changes in both physical and thermal conditions and in instrument performance.« less

  15. Neuropsychometric tests in cross sectional and longitudinal studies - a regression analysis of ADAS - cog, SKT and MMSE.

    PubMed

    Ihl, R; Grass-Kapanke, B; Jänner, M; Weyer, G

    1999-11-01

    In clinical and drug studies, different neuropsychometric tests are used. So far, no empirical data have been published to compare studies using different tests. The purpose of this study was to calculate a regression formula allowing a comparison of cross-sectional and longitudinal data from three neuropsychometric tests that are frequently used in drug studies (Alzheimer's Disease Assessment Scale, ADAS-cog; Syndrom Kurz Test, SKT; Mini Mental State Examination, MMSE). 177 patients with dementia according to ICD10 criteria were studied for the cross sectional and 61 for the longitudinal analysis. Correlations and linear regressions were calculated between tests. Significance was proven with ANOVA and t-tests using the SPSS statistical package. Significant Spearman correlations and slopes in the regression occurred in the cross sectional analysis (ADAS-cog-SKT r(s) = 0.77, slope = 0.45, SKT-ADAS-cog slope = 1.3, r2 = 0.59; ADAS-cog-MMSE r2 = 0.76, slope = -0.42, MMSE-ADAS-cog slope = -1.5, r2 = 0.64; MMSE-SKT r(s) = -0.79, slope = -0.87, SKT-MMSE slope = -0.71, r2 = 0.62; p<0.001 after Bonferroni correction; N = 177) and in the longitudinal analysis (SKT-ADAS-cog, r(s) = 0.48, slope = 0.69, ADAS-cog-SKT slope = 0.69, p<0.001, r2 = 0.32, MMSE-SKT, r(s) = 0.44, slope = -0.41, SKT-MMSE, slope = -0.55, p<0.001, r2 = 0.21). The results allow calculation of ADAS-scores when SKT scores are given, and vice versa. In longitudinal studies or in the course of the disease, scores assessed with the ADAS-cog and the SKT may now be statistically compared. In all comparisons, bottom and ceiling effects of the tests have to be taken into account.

  16. Comparative Efficacy of Tongxinluo Capsule and Beta-Blockers in Treating Angina Pectoris: Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Jia, Yongliang; Leung, Siu-wai

    2015-11-01

    There have been no systematic reviews, let alone meta-analyses, of randomized controlled trials (RCTs) comparing tongxinluo capsule (TXL) and beta-blockers in treating angina pectoris. This study aimed to evaluate the efficacy of TXL and beta-blockers in treating angina pectoris by a meta-analysis of eligible RCTs. The RCTs comparing TXL with beta-blockers (including metoprolol) in treating angina pectoris were searched and retrieved from databases including PubMed, Chinese National Knowledge Infrastructure, and WanFang Data. Eligible RCTs were selected according to prespecified criteria. Meta-analysis was performed on the odds ratios (OR) of symptomatic and electrocardiographic (ECG) improvements after treatment. Subgroup analysis, sensitivity analysis, meta-regression, and publication biases analysis were conducted to evaluate the robustness of the results. Seventy-three RCTs published between 2000 and 2014 with 7424 participants were eligible. Overall ORs comparing TXL with beta-blockers were 3.40 (95% confidence interval [CI], 2.97-3.89; p<0.0001) for symptomatic improvement and 2.63 (95% CI, 2.29-3.02; p<0.0001) for ECG improvement. Subgroup analysis and sensitivity analysis found no statistically significant dependence of overall ORs on specific study characteristics except efficacy criteria. Meta-regression found no significant except sample sizes for data on symptomatic improvement. Publication biases were statistically significant. TXL seems to be more effective than beta-blockers in treating angina pectoris, on the basis of the eligible RCTs. Further RCTs are warranted to reduce publication bias and verify efficacy.

  17. A statistical method for predicting seizure onset zones from human single-neuron recordings

    NASA Astrophysics Data System (ADS)

    Valdez, André B.; Hickman, Erin N.; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.

    2013-02-01

    Objective. Clinicians often use depth-electrode recordings to localize human epileptogenic foci. To advance the diagnostic value of these recordings, we applied logistic regression models to single-neuron recordings from depth-electrode microwires to predict seizure onset zones (SOZs). Approach. We collected data from 17 epilepsy patients at the Barrow Neurological Institute and developed logistic regression models to calculate the odds of observing SOZs in the hippocampus, amygdala and ventromedial prefrontal cortex, based on statistics such as the burst interspike interval (ISI). Main results. Analysis of these models showed that, for a single-unit increase in burst ISI ratio, the left hippocampus was approximately 12 times more likely to contain a SOZ; and the right amygdala, 14.5 times more likely. Our models were most accurate for the hippocampus bilaterally (at 85% average sensitivity), and performance was comparable with current diagnostics such as electroencephalography. Significance. Logistic regression models can be combined with single-neuron recording to predict likely SOZs in epilepsy patients being evaluated for resective surgery, providing an automated source of clinically useful information.

  18. Predictors of effects of lifestyle intervention on diabetes mellitus type 2 patients.

    PubMed

    Jacobsen, Ramune; Vadstrup, Eva; Røder, Michael; Frølich, Anne

    2012-01-01

    The main aim of the study was to identify predictors of the effects of lifestyle intervention on diabetes mellitus type 2 patients by means of multivariate analysis. Data from a previously published randomised clinical trial, which compared the effects of a rehabilitation programme including standardised education and physical training sessions in the municipality's health care centre with the same duration of individual counseling in the diabetes outpatient clinic, were used. Data from 143 diabetes patients were analysed. The merged lifestyle intervention resulted in statistically significant improvements in patients' systolic blood pressure, waist circumference, exercise capacity, glycaemic control, and some aspects of general health-related quality of life. The linear multivariate regression models explained 45% to 80% of the variance in these improvements. The baseline outcomes in accordance to the logic of the regression to the mean phenomenon were the only statistically significant and robust predictors in all regression models. These results are important from a clinical point of view as they highlight the more urgent need for and better outcomes following lifestyle intervention for those patients who have worse general and disease-specific health.

  19. Goodness-Of-Fit Test for Nonparametric Regression Models: Smoothing Spline ANOVA Models as Example.

    PubMed

    Teran Hidalgo, Sebastian J; Wu, Michael C; Engel, Stephanie M; Kosorok, Michael R

    2018-06-01

    Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counter-parts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to smoothing spline ANOVA models. The test can consider two sources of lack-of-fit: whether covariates that are not currently in the model need to be included, and whether the current model fits the data well. The proposed method derives estimated residuals from the model. Then, statistical dependence is assessed between the estimated residuals and the covariates using the HSIC. If dependence exists, the model does not capture all the variability in the outcome associated with the covariates, otherwise the model fits the data well. The bootstrap is used to obtain p-values. Application of the method is demonstrated with a neonatal mental development data analysis. We demonstrate correct type I error as well as power performance through simulations.

  20. The Application of Censored Regression Models in Low Streamflow Analyses

    NASA Astrophysics Data System (ADS)

    Kroll, C.; Luz, J.

    2003-12-01

    Estimation of low streamflow statistics at gauged and ungauged river sites is often a daunting task. This process is further confounded by the presence of intermittent streamflows, where streamflow is sometimes reported as zero, within a region. Streamflows recorded as zero may be zero, or may be less than the measurement detection limit. Such data is often referred to as censored data. Numerous methods have been developed to characterize intermittent streamflow series. Logit regression has been proposed to develop regional models of the probability annual lowflows series (such as 7-day lowflows) are zero. In addition, Tobit regression, a method of regression that allows for censored dependent variables, has been proposed for lowflow regional regression models in regions where the lowflow statistic of interest estimated as zero at some sites in the region. While these methods have been proposed, their use in practice has been limited. Here a delete-one jackknife simulation is presented to examine the performance of Logit and Tobit models of 7-day annual minimum flows in 6 USGS water resource regions in the United States. For the Logit model, an assessment is made of whether sites are correctly classified as having at least 10% of 7-day annual lowflows equal to zero. In such a situation, the 7-day, 10-year lowflow (Q710), a commonly employed low streamflow statistic, would be reported as zero. For the Tobit model, a comparison is made between results from the Tobit model, and from performing either ordinary least squares (OLS) or principal component regression (PCR) after the zero sites are dropped from the analysis. Initial results for the Logit model indicate this method to have a high probability of correctly classifying sites into groups with Q710s as zero and non-zero. Initial results also indicate the Tobit model produces better results than PCR and OLS when more than 5% of the sites in the region have Q710 values calculated as zero.

  1. Likert scales, levels of measurement and the "laws" of statistics.

    PubMed

    Norman, Geoff

    2010-12-01

    Reviewers of research reports frequently criticize the choice of statistical methods. While some of these criticisms are well-founded, frequently the use of various parametric methods such as analysis of variance, regression, correlation are faulted because: (a) the sample size is too small, (b) the data may not be normally distributed, or (c) The data are from Likert scales, which are ordinal, so parametric statistics cannot be used. In this paper, I dissect these arguments, and show that many studies, dating back to the 1930s consistently show that parametric statistics are robust with respect to violations of these assumptions. Hence, challenges like those above are unfounded, and parametric methods can be utilized without concern for "getting the wrong answer".

  2. Methodological reporting of randomized trials in five leading Chinese nursing journals.

    PubMed

    Shi, Chunhu; Tian, Jinhui; Ren, Dan; Wei, Hongli; Zhang, Lihuan; Wang, Quan; Yang, Kehu

    2014-01-01

    Randomized controlled trials (RCTs) are not always well reported, especially in terms of their methodological descriptions. This study aimed to investigate the adherence of methodological reporting complying with CONSORT and explore associated trial level variables in the Chinese nursing care field. In June 2012, we identified RCTs published in five leading Chinese nursing journals and included trials with details of randomized methods. The quality of methodological reporting was measured through the methods section of the CONSORT checklist and the overall CONSORT methodological items score was calculated and expressed as a percentage. Meanwhile, we hypothesized that some general and methodological characteristics were associated with reporting quality and conducted a regression with these data to explore the correlation. The descriptive and regression statistics were calculated via SPSS 13.0. In total, 680 RCTs were included. The overall CONSORT methodological items score was 6.34 ± 0.97 (Mean ± SD). No RCT reported descriptions and changes in "trial design," changes in "outcomes" and "implementation," or descriptions of the similarity of interventions for "blinding." Poor reporting was found in detailing the "settings of participants" (13.1%), "type of randomization sequence generation" (1.8%), calculation methods of "sample size" (0.4%), explanation of any interim analyses and stopping guidelines for "sample size" (0.3%), "allocation concealment mechanism" (0.3%), additional analyses in "statistical methods" (2.1%), and targeted subjects and methods of "blinding" (5.9%). More than 50% of trials described randomization sequence generation, the eligibility criteria of "participants," "interventions," and definitions of the "outcomes" and "statistical methods." The regression analysis found that publication year and ITT analysis were weakly associated with CONSORT score. The completeness of methodological reporting of RCTs in the Chinese nursing care field is poor, especially with regard to the reporting of trial design, changes in outcomes, sample size calculation, allocation concealment, blinding, and statistical methods.

  3. Time Series Expression Analyses Using RNA-seq: A Statistical Approach

    PubMed Central

    Oh, Sunghee; Song, Seongho; Grabowski, Gregory; Zhao, Hongyu; Noonan, James P.

    2013-01-01

    RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis. PMID:23586021

  4. Statistical Optimality in Multipartite Ranking and Ordinal Regression.

    PubMed

    Uematsu, Kazuki; Lee, Yoonkyung

    2015-05-01

    Statistical optimality in multipartite ranking is investigated as an extension of bipartite ranking. We consider the optimality of ranking algorithms through minimization of the theoretical risk which combines pairwise ranking errors of ordinal categories with differential ranking costs. The extension shows that for a certain class of convex loss functions including exponential loss, the optimal ranking function can be represented as a ratio of weighted conditional probability of upper categories to lower categories, where the weights are given by the misranking costs. This result also bridges traditional ranking methods such as proportional odds model in statistics with various ranking algorithms in machine learning. Further, the analysis of multipartite ranking with different costs provides a new perspective on non-smooth list-wise ranking measures such as the discounted cumulative gain and preference learning. We illustrate our findings with simulation study and real data analysis.

  5. Time series expression analyses using RNA-seq: a statistical approach.

    PubMed

    Oh, Sunghee; Song, Seongho; Grabowski, Gregory; Zhao, Hongyu; Noonan, James P

    2013-01-01

    RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis.

  6. Using Statistics and Data Mining Approaches to Analyze Male Sexual Behaviors and Use of Erectile Dysfunction Drugs Based on Large Questionnaire Data.

    PubMed

    Qiao, Zhi; Li, Xiang; Liu, Haifeng; Zhang, Lei; Cao, Junyang; Xie, Guotong; Qin, Nan; Jiang, Hui; Lin, Haocheng

    2017-01-01

    The prevalence of erectile dysfunction (ED) has been extensively studied worldwide. Erectile dysfunction drugs has shown great efficacy in preventing male erectile dysfunction. In order to help doctors know drug taken preference of patients and better prescribe, it is crucial to analyze who actually take erectile dysfunction drugs and the relation between sexual behaviors and drug use. Existing clinical studies usually used descriptive statistics and regression analysis based on small volume of data. In this paper, based on big volume of data (48,630 questionnaires), we use data mining approaches besides statistics and regression analysis to comprehensively analyze the relation between male sexual behaviors and use of erectile dysfunction drugs for unravelling the characteristic of patients who take erectile dysfunction drugs. We firstly analyze the impact of multiple sexual behavior factors on whether to use the erectile dysfunction drugs. Then, we explore to mine the Decision Rules for Stratification to discover patients who are more likely to take drugs. Based on the decision rules, the patients can be partitioned into four potential groups for use of erectile dysfunction: high potential group, intermediate potential-1 group, intermediate potential-2 group and low potential group. Experimental results show 1) the sexual behavior factors, erectile hardness and time length to prepare (how long to prepares for sexual behaviors ahead of time), have bigger impacts both in correlation analysis and potential drug taking patients discovering; 2) odds ratio between patients identified as low potential and high potential was 6.098 (95% confidence interval, 5.159-7.209) with statistically significant differences in taking drug potential detected between all potential groups.

  7. Explaining nitrate pollution pressure on the groundwater resource in Kinshasa using a multivariate statistical modelling approach

    NASA Astrophysics Data System (ADS)

    Mfumu Kihumba, Antoine; Vanclooster, Marnik

    2013-04-01

    Drinking water in Kinshasa, the capital of the Democratic Republic of Congo, is provided by extracting groundwater from the local aquifer, particularly in peripheral areas. The exploited groundwater body is mainly unconfined and located within a continuous detrital aquifer, primarily composed of sedimentary formations. However, the aquifer is subjected to an increasing threat of anthropogenic pollution pressure. Understanding the detailed origin of this pollution pressure is important for sustainable drinking water management in Kinshasa. The present study aims to explain the observed nitrate pollution problem, nitrate being considered as a good tracer for other pollution threats. The analysis is made in terms of physical attributes that are readily available using a statistical modelling approach. For the nitrate data, use was made of a historical groundwater quality assessment study, for which the data were re-analysed. The physical attributes are related to the topography, land use, geology and hydrogeology of the region. Prior to the statistical modelling, intrinsic and specific vulnerability for nitrate pollution was assessed. This vulnerability assessment showed that the alluvium area in the northern part of the region is the most vulnerable area. This area consists of urban land use with poor sanitation. Re-analysis of the nitrate pollution data demonstrated that the spatial variability of nitrate concentrations in the groundwater body is high, and coherent with the fragmented land use of the region and the intrinsic and specific vulnerability maps. For the statistical modeling use was made of multiple regression and regression tree analysis. The results demonstrated the significant impact of land use variables on the Kinshasa groundwater nitrate pollution and the need for a detailed delineation of groundwater capture zones around the monitoring stations. Key words: Groundwater , Isotopic, Kinshasa, Modelling, Pollution, Physico-chemical.

  8. Assessing the Effectiveness of Statistical Classification Techniques in Predicting Future Employment of Participants in the Temporary Assistance for Needy Families Program

    ERIC Educational Resources Information Center

    Montoya, Isaac D.

    2008-01-01

    Three classification techniques (Chi-square Automatic Interaction Detection [CHAID], Classification and Regression Tree [CART], and discriminant analysis) were tested to determine their accuracy in predicting Temporary Assistance for Needy Families program recipients' future employment. Technique evaluation was based on proportion of correctly…

  9. Electronic Resource Expenditure and the Decline in Reference Transaction Statistics in Academic Libraries

    ERIC Educational Resources Information Center

    Dubnjakovic, Ana

    2012-01-01

    The current study investigates factors influencing increase in reference transactions in a typical week in academic libraries across the United States of America. Employing multiple regression analysis and general linear modeling, variables of interest from the "Academic Library Survey (ALS) 2006" survey (sample size 3960 academic libraries) were…

  10. Predicting Knowledge Workers' Participation in Voluntary Learning with Employee Characteristics and Online Learning Tools

    ERIC Educational Resources Information Center

    Hicks, Catherine

    2018-01-01

    Purpose: This paper aims to explore predicting employee learning activity via employee characteristics and usage for two online learning tools. Design/methodology/approach: Statistical analysis focused on observational data collected from user logs. Data are analyzed via regression models. Findings: Findings are presented for over 40,000…

  11. Estimating Flow-Duration and Low-Flow Frequency Statistics for Unregulated Streams in Oregon

    USGS Publications Warehouse

    Risley, John; Stonewall, Adam J.; Haluska, Tana

    2008-01-01

    Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological habitat assessment, infrastructure design, and water-supply planning and management. The flow statistics, which included annual and monthly period of record flow durations (5th, 10th, 25th, 50th, and 95th percent exceedances) and annual and monthly 7-day, 10-year (7Q10) and 7-day, 2-year (7Q2) low flows, were computed at 466 streamflow-gaging stations at sites with unregulated flow conditions throughout Oregon and adjacent areas of neighboring States. Regression equations, created from the flow statistics and basin characteristics of the stations, can be used to estimate flow statistics at ungaged stream sites in Oregon. The study area was divided into 10 regression modeling regions based on ecological, topographic, geologic, hydrologic, and climatic criteria. In total, 910 annual and monthly regression equations were created to predict the 7 flow statistics in the 10 regions. Equations to predict the five flow-duration exceedance percentages and the two low-flow frequency statistics were created with Ordinary Least Squares and Generalized Least Squares regression, respectively. The standard errors of estimate of the equations created to predict the 5th and 95th percent exceedances had medians of 42.4 and 64.4 percent, respectively. The standard errors of prediction of the equations created to predict the 7Q2 and 7Q10 low-flow statistics had medians of 51.7 and 61.2 percent, respectively. Standard errors for regression equations for sites in western Oregon were smaller than those in eastern Oregon partly because of a greater density of available streamflow-gaging stations in western Oregon than eastern Oregon. High-flow regression equations (such as the 5th and 10th percent exceedances) also generally were more accurate than the low-flow regression equations (such as the 95th percent exceedance and 7Q10 low-flow statistic). The regression equations predict unregulated flow conditions in Oregon. Flow estimates need to be adjusted if they are used at ungaged sites that are regulated by reservoirs or affected by water-supply and agricultural withdrawals if actual flow conditions are of interest. The regression equations are installed in the USGS StreamStats Web-based tool (http://water.usgs.gov/osw/streamstats/index.html, accessed July 16, 2008). StreamStats provides users with a set of annual and monthly flow-duration and low-flow frequency estimates for ungaged sites in Oregon in addition to the basin characteristics for the sites. Prediction intervals at the 90-percent confidence level also are automatically computed.

  12. Mapping Quantitative Traits in Unselected Families: Algorithms and Examples

    PubMed Central

    Dupuis, Josée; Shi, Jianxin; Manning, Alisa K.; Benjamin, Emelia J.; Meigs, James B.; Cupples, L. Adrienne; Siegmund, David

    2009-01-01

    Linkage analysis has been widely used to identify from family data genetic variants influencing quantitative traits. Common approaches have both strengths and limitations. Likelihood ratio tests typically computed in variance component analysis can accommodate large families but are highly sensitive to departure from normality assumptions. Regression-based approaches are more robust but their use has primarily been restricted to nuclear families. In this paper, we develop methods for mapping quantitative traits in moderately large pedigrees. Our methods are based on the score statistic which in contrast to the likelihood ratio statistic, can use nonparametric estimators of variability to achieve robustness of the false positive rate against departures from the hypothesized phenotypic model. Because the score statistic is easier to calculate than the likelihood ratio statistic, our basic mapping methods utilize relatively simple computer code that performs statistical analysis on output from any program that computes estimates of identity-by-descent. This simplicity also permits development and evaluation of methods to deal with multivariate and ordinal phenotypes, and with gene-gene and gene-environment interaction. We demonstrate our methods on simulated data and on fasting insulin, a quantitative trait measured in the Framingham Heart Study. PMID:19278016

  13. A quantitative study of factors influencing quality of life in rural Mexican women diagnosed with HIV.

    PubMed

    Holtz, Carol; Sowell, Richard; VanBrackle, Lewis; Velasquez, Gabriela; Hernandez-Alonso, Virginia

    2014-01-01

    This quantitative study explored the level of Quality of Life (QoL) in indigenous Mexican women and identified psychosocial factors that significantly influenced their QoL, using face-to-face interviews with 101 women accessing care in an HIV clinic in Oaxaca, Mexico. Variables included demographic characteristics, levels of depression, coping style, family functioning, HIV-related beliefs, and QoL. Descriptive statistics were used to analyze participant characteristics, and women's scores on data collection instruments. Pearson's R correlational statistics were used to determine the level of significance between study variables. Multiple regression analysis examined all variables that were significantly related to QoL. Pearson's correlational analysis of relationships between Spirituality, Educating Self about HIV, Family Functioning, Emotional Support, Physical Care, and Staying Positive demonstrated positive correlation to QoL. Stigma, depression, and avoidance coping were significantly and negatively associated with QoL. The final regression model indicated that depression and avoidance coping were the best predictor variables for QoL. Copyright © 2014 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  14. Improved Statistics for Genome-Wide Interaction Analysis

    PubMed Central

    Ueki, Masao; Cordell, Heather J.

    2012-01-01

    Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new “joint effects” statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al.'s originally-proposed statistics, on account of the inflated error rate that can result. PMID:22496670

  15. Substituting values for censored data from Texas, USA, reservoirs inflated and obscured trends in analyses commonly used for water quality target development.

    PubMed

    Grantz, Erin; Haggard, Brian; Scott, J Thad

    2018-06-12

    We calculated four median datasets (chlorophyll a, Chl a; total phosphorus, TP; and transparency) using multiple approaches to handling censored observations, including substituting fractions of the quantification limit (QL; dataset 1 = 1QL, dataset 2 = 0.5QL) and statistical methods for censored datasets (datasets 3-4) for approximately 100 Texas, USA reservoirs. Trend analyses of differences between dataset 1 and 3 medians indicated percent difference increased linearly above thresholds in percent censored data (%Cen). This relationship was extrapolated to estimate medians for site-parameter combinations with %Cen > 80%, which were combined with dataset 3 as dataset 4. Changepoint analysis of Chl a- and transparency-TP relationships indicated threshold differences up to 50% between datasets. Recursive analysis identified secondary thresholds in dataset 4. Threshold differences show that information introduced via substitution or missing due to limitations of statistical methods biased values, underestimated error, and inflated the strength of TP thresholds identified in datasets 1-3. Analysis of covariance identified differences in linear regression models relating transparency-TP between datasets 1, 2, and the more statistically robust datasets 3-4. Study findings identify high-risk scenarios for biased analytical outcomes when using substitution. These include high probability of median overestimation when %Cen > 50-60% for a single QL, or when %Cen is as low 16% for multiple QL's. Changepoint analysis was uniquely vulnerable to substitution effects when using medians from sites with %Cen > 50%. Linear regression analysis was less sensitive to substitution and missing data effects, but differences in model parameters for transparency cannot be discounted and could be magnified by log-transformation of the variables.

  16. Multivariate meta-analysis for non-linear and other multi-parameter associations

    PubMed Central

    Gasparrini, A; Armstrong, B; Kenward, M G

    2012-01-01

    In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043

  17. Quality Reporting of Multivariable Regression Models in Observational Studies: Review of a Representative Sample of Articles Published in Biomedical Journals.

    PubMed

    Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M

    2016-05-01

    Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.

  18. Test data analysis for concentrating photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    Maish, A. B.; Cannon, J. E.

    A test data analysis approach for use with steady state efficiency measurements taken on concentrating photovoltaic arrays is presented. The analysis procedures can be used to identify based and erroneous data. The steps involved in analyzing the test data are screening the data, developing coefficients for the performance equation, analyzing statistics to ensure adequacy of the regression fit to the data, and plotting the data. In addition, this paper analyzes the sources and magnitudes of precision and bias errors that affect measurement accuracy are analyzed.

  19. Reliability Analysis of the Gradual Degradation of Semiconductor Devices.

    DTIC Science & Technology

    1983-07-20

    under the heading of linear models or linear statistical models . 3 ,4 We have not used this material in this report. Assuming catastrophic failure when...assuming a catastrophic model . In this treatment we first modify our system loss formula and then proceed to the actual analysis. II. ANALYSIS OF...Failure Time 1 Ti Ti 2 T2 T2 n Tn n and are easily analyzed by simple linear regression. Since we have assumed a log normal/Arrhenius activation

  20. The skeletal maturation status estimated by statistical shape analysis: axial images of Japanese cervical vertebra.

    PubMed

    Shin, S M; Kim, Y-I; Choi, Y-S; Yamaguchi, T; Maki, K; Cho, B-H; Park, S-B

    2015-01-01

    To evaluate axial cervical vertebral (ACV) shape quantitatively and to build a prediction model for skeletal maturation level using statistical shape analysis for Japanese individuals. The sample included 24 female and 19 male patients with hand-wrist radiographs and CBCT images. Through generalized Procrustes analysis and principal components (PCs) analysis, the meaningful PCs were extracted from each ACV shape and analysed for the estimation regression model. Each ACV shape had meaningful PCs, except for the second axial cervical vertebra. Based on these models, the smallest prediction intervals (PIs) were from the combination of the shape space PCs, age and gender. Overall, the PIs of the male group were smaller than those of the female group. There was no significant correlation between centroid size as a size factor and skeletal maturation level. Our findings suggest that the ACV maturation method, which was applied by statistical shape analysis, could confirm information about skeletal maturation in Japanese individuals as an available quantifier of skeletal maturation and could be as useful a quantitative method as the skeletal maturation index.

  1. The skeletal maturation status estimated by statistical shape analysis: axial images of Japanese cervical vertebra

    PubMed Central

    Shin, S M; Choi, Y-S; Yamaguchi, T; Maki, K; Cho, B-H; Park, S-B

    2015-01-01

    Objectives: To evaluate axial cervical vertebral (ACV) shape quantitatively and to build a prediction model for skeletal maturation level using statistical shape analysis for Japanese individuals. Methods: The sample included 24 female and 19 male patients with hand–wrist radiographs and CBCT images. Through generalized Procrustes analysis and principal components (PCs) analysis, the meaningful PCs were extracted from each ACV shape and analysed for the estimation regression model. Results: Each ACV shape had meaningful PCs, except for the second axial cervical vertebra. Based on these models, the smallest prediction intervals (PIs) were from the combination of the shape space PCs, age and gender. Overall, the PIs of the male group were smaller than those of the female group. There was no significant correlation between centroid size as a size factor and skeletal maturation level. Conclusions: Our findings suggest that the ACV maturation method, which was applied by statistical shape analysis, could confirm information about skeletal maturation in Japanese individuals as an available quantifier of skeletal maturation and could be as useful a quantitative method as the skeletal maturation index. PMID:25411713

  2. [Again review of research design and statistical methods of Chinese Journal of Cardiology].

    PubMed

    Kong, Qun-yu; Yu, Jin-ming; Jia, Gong-xian; Lin, Fan-li

    2012-11-01

    To re-evaluate and compare the research design and the use of statistical methods in Chinese Journal of Cardiology. Summary the research design and statistical methods in all of the original papers in Chinese Journal of Cardiology all over the year of 2011, and compared the result with the evaluation of 2008. (1) There is no difference in the distribution of the design of researches of between the two volumes. Compared with the early volume, the use of survival regression and non-parameter test are increased, while decreased in the proportion of articles with no statistical analysis. (2) The proportions of articles in the later volume are significant lower than the former, such as 6(4%) with flaws in designs, 5(3%) with flaws in the expressions, 9(5%) with the incomplete of analysis. (3) The rate of correction of variance analysis has been increased, so as the multi-group comparisons and the test of normality. The error rate of usage has been decreased form 17% to 25% without significance in statistics due to the ignorance of the test of homogeneity of variance. Many improvements showed in Chinese Journal of Cardiology such as the regulation of the design and statistics. The homogeneity of variance should be paid more attention in the further application.

  3. Social network type and morale in old age.

    PubMed

    Litwin, H

    2001-08-01

    The aim of this research was to derive network types among an elderly population and to examine the relationship of network type to morale. Secondary analysis of data compiled by the Israeli Central Bureau of Statistics (n = 2,079) was employed, and network types were derived through K-means cluster analysis. Respondents' morale scores were regressed on network types, controlling for background and health variables. Five network types were derived. Respondents in diverse or friends networks reported the highest morale; those in exclusively family or restricted networks had the lowest. Multivariate regression analysis underscored that certain network types were second among the study variables in predicting respondents' morale, preceded only by disability level (Adjusted R(2) =.41). Classification of network types allows consideration of the interpersonal environments of older people in relation to outcomes of interest. The relative effects on morale of elective versus obligated social ties, evident in the current analysis, is a case in point.

  4. Quantitative analysis of aircraft multispectral-scanner data and mapping of water-quality parameters in the James River in Virginia

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Bahn, G. S.

    1977-01-01

    Statistical analysis techniques were applied to develop quantitative relationships between in situ river measurements and the remotely sensed data that were obtained over the James River in Virginia on 28 May 1974. The remotely sensed data were collected with a multispectral scanner and with photographs taken from an aircraft platform. Concentration differences among water quality parameters such as suspended sediment, chlorophyll a, and nutrients indicated significant spectral variations. Calibrated equations from the multiple regression analysis were used to develop maps that indicated the quantitative distributions of water quality parameters and the dispersion characteristics of a pollutant plume entering the turbid river system. Results from further analyses that use only three preselected multispectral scanner bands of data indicated that regression coefficients and standard errors of estimate were not appreciably degraded compared with results from the 10-band analysis.

  5. Which sociodemographic factors are important on smoking behaviour of high school students? The contribution of classification and regression tree methodology in a broad epidemiological survey.

    PubMed

    Ozge, C; Toros, F; Bayramkaya, E; Camdeviren, H; Sasmaz, T

    2006-08-01

    The purpose of this study is to evaluate the most important sociodemographic factors on smoking status of high school students using a broad randomised epidemiological survey. Using in-class, self administered questionnaire about their sociodemographic variables and smoking behaviour, a representative sample of total 3304 students of preparatory, 9th, 10th, and 11th grades, from 22 randomly selected schools of Mersin, were evaluated and discriminative factors have been determined using appropriate statistics. In addition to binary logistic regression analysis, the study evaluated combined effects of these factors using classification and regression tree methodology, as a new statistical method. The data showed that 38% of the students reported lifetime smoking and 16.9% of them reported current smoking with a male predominancy and increasing prevalence by age. Second hand smoking was reported at a 74.3% frequency with father predominance (56.6%). The significantly important factors that affect current smoking in these age groups were increased by household size, late birth rank, certain school types, low academic performance, increased second hand smoking, and stress (especially reported as separation from a close friend or because of violence at home). Classification and regression tree methodology showed the importance of some neglected sociodemographic factors with a good classification capacity. It was concluded that, as closely related with sociocultural factors, smoking was a common problem in this young population, generating important academic and social burden in youth life and with increasing data about this behaviour and using new statistical methods, effective coping strategies could be composed.

  6. Across-Platform Imputation of DNA Methylation Levels Incorporating Nonlocal Information Using Penalized Functional Regression.

    PubMed

    Zhang, Guosheng; Huang, Kuan-Chieh; Xu, Zheng; Tzeng, Jung-Ying; Conneely, Karen N; Guan, Weihua; Kang, Jian; Li, Yun

    2016-05-01

    DNA methylation is a key epigenetic mark involved in both normal development and disease progression. Recent advances in high-throughput technologies have enabled genome-wide profiling of DNA methylation. However, DNA methylation profiling often employs different designs and platforms with varying resolution, which hinders joint analysis of methylation data from multiple platforms. In this study, we propose a penalized functional regression model to impute missing methylation data. By incorporating functional predictors, our model utilizes information from nonlocal probes to improve imputation quality. Here, we compared the performance of our functional model to linear regression and the best single probe surrogate in real data and via simulations. Specifically, we applied different imputation approaches to an acute myeloid leukemia dataset consisting of 194 samples and our method showed higher imputation accuracy, manifested, for example, by a 94% relative increase in information content and up to 86% more CpG sites passing post-imputation filtering. Our simulated association study further demonstrated that our method substantially improves the statistical power to identify trait-associated methylation loci. These findings indicate that the penalized functional regression model is a convenient and valuable imputation tool for methylation data, and it can boost statistical power in downstream epigenome-wide association study (EWAS). © 2016 WILEY PERIODICALS, INC.

  7. Statistical downscaling modeling with quantile regression using lasso to estimate extreme rainfall

    NASA Astrophysics Data System (ADS)

    Santri, Dewi; Wigena, Aji Hamim; Djuraidah, Anik

    2016-02-01

    Rainfall is one of the climatic elements with high diversity and has many negative impacts especially extreme rainfall. Therefore, there are several methods that required to minimize the damage that may occur. So far, Global circulation models (GCM) are the best method to forecast global climate changes include extreme rainfall. Statistical downscaling (SD) is a technique to develop the relationship between GCM output as a global-scale independent variables and rainfall as a local- scale response variable. Using GCM method will have many difficulties when assessed against observations because GCM has high dimension and multicollinearity between the variables. The common method that used to handle this problem is principal components analysis (PCA) and partial least squares regression. The new method that can be used is lasso. Lasso has advantages in simultaneuosly controlling the variance of the fitted coefficients and performing automatic variable selection. Quantile regression is a method that can be used to detect extreme rainfall in dry and wet extreme. Objective of this study is modeling SD using quantile regression with lasso to predict extreme rainfall in Indramayu. The results showed that the estimation of extreme rainfall (extreme wet in January, February and December) in Indramayu could be predicted properly by the model at quantile 90th.

  8. Computed statistics at streamgages, and methods for estimating low-flow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri

    USGS Publications Warehouse

    Southard, Rodney E.

    2013-01-01

    The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical estimates on one of these streams can be calculated at an ungaged location that has a drainage area that is between 40 percent of the drainage area of the farthest upstream streamgage and within 150 percent of the drainage area of the farthest downstream streamgage along the stream of interest. The second method may be used on any stream with a streamgage that has operated for 10 years or longer and for which anthropogenic effects have not changed the low-flow characteristics at the ungaged location since collection of the streamflow data. A ratio of drainage area of the stream at the ungaged location to the drainage area of the stream at the streamgage was computed to estimate the statistic at the ungaged location. The range of applicability is between 40- and 150-percent of the drainage area of the streamgage, and the ungaged location must be located on the same stream as the streamgage. The third method uses regional regression equations to estimate selected low-flow frequency statistics for unregulated streams in Missouri. This report presents regression equations to estimate frequency statistics for the 10-year recurrence interval and for the N-day durations of 1, 2, 3, 7, 10, 30, and 60 days. Basin and climatic characteristics were computed using geographic information system software and digital geospatial data. A total of 35 characteristics were computed for use in preliminary statewide and regional regression analyses based on existing digital geospatial data and previous studies. Spatial analyses for geographical bias in the predictive accuracy of the regional regression equations defined three low-flow regions with the State representing the three major physiographic provinces in Missouri. Region 1 includes the Central Lowlands, Region 2 includes the Ozark Plateaus, and Region 3 includes the Mississippi Alluvial Plain. A total of 207 streamgages were used in the regression analyses for the regional equations. Of the 207 U.S. Geological Survey streamgages, 77 were located in Region 1, 120 were located in Region 2, and 10 were located in Region 3. Streamgages located outside of Missouri were selected to extend the range of data used for the independent variables in the regression analyses. Streamgages included in the regression analyses had 10 or more years of record and were considered to be affected minimally by anthropogenic activities or trends. Regional regression analyses identified three characteristics as statistically significant for the development of regional equations. For Region 1, drainage area, longest flow path, and streamflow-variability index were statistically significant. The range in the standard error of estimate for Region 1 is 79.6 to 94.2 percent. For Region 2, drainage area and streamflow variability index were statistically significant, and the range in the standard error of estimate is 48.2 to 72.1 percent. For Region 3, drainage area and streamflow-variability index also were statistically significant with a range in the standard error of estimate of 48.1 to 96.2 percent. Limitations on the use of estimating low-flow frequency statistics at ungaged locations are dependent on the method used. The first method outlined for use in Missouri, power curve equations, were developed to estimate the selected statistics for ungaged locations on 28 selected streams with multiple streamgages located on the same stream. A second method uses a drainage-area ratio to compute statistics at an ungaged location using data from a single streamgage on the same stream with 10 or more years of record. Ungaged locations on these streams may use the ratio of the drainage area at an ungaged location to the drainage area at a streamgage location to scale the selected statistic value from the streamgage location to the ungaged location. This method can be used if the drainage area of the ungaged location is within 40 to 150 percent of the streamgage drainage area. The third method is the use of the regional regression equations. The limits for the use of these equations are based on the ranges of the characteristics used as independent variables and that streams must be affected minimally by anthropogenic activities.

  9. Methods for estimating selected spring and fall low-flow frequency statistics for ungaged stream sites in Iowa, based on data through June 2014

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.

    2016-09-19

    A statewide study was led to develop regression equations for estimating three selected spring and three selected fall low-flow frequency statistics for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include spring (April through June) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and fall (October through December) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years. Estimates of the three selected spring statistics are provided for 241 U.S. Geological Survey continuous-record streamgages, and estimates of the three selected fall statistics are provided for 238 of these streamgages, using data through June 2014. Because only 9 years of fall streamflow record were available, three streamgages included in the development of the spring regression equations were not included in the development of the fall regression equations. Because of regulation, diversion, or urbanization, 30 of the 241 streamgages were not included in the development of the regression equations. The study area includes Iowa and adjacent areas within 50 miles of the Iowa border. Because trend analyses indicated statistically significant positive trends when considering the period of record for most of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. Geographic information system software was used to measure 63 selected basin characteristics for each of the 211streamgages used to develop the regional regression equations. The study area was divided into three low-flow regions that were defined in a previous study for the development of regional regression equations.Because several streamgages included in the development of regional regression equations have estimates of zero flow calculated from observed streamflow for selected spring and fall low-flow frequency statistics, the final equations for the three low-flow regions were developed using two types of regression analyses—left-censored and generalized-least-squares regression analyses. A total of 211 streamgages were included in the development of nine spring regression equations—three equations for each of the three low-flow regions. A total of 208 streamgages were included in the development of nine fall regression equations—three equations for each of the three low-flow regions. A censoring threshold was used to develop 15 left-censored regression equations to estimate the three fall low-flow frequency statistics for each of the three low-flow regions and to estimate the three spring low-flow frequency statistics for the southern and northwest regions. For the northeast region, generalized-least-squares regression was used to develop three equations to estimate the three spring low-flow frequency statistics. For the northeast region, average standard errors of prediction range from 32.4 to 48.4 percent for the spring equations and average standard errors of estimate range from 56.4 to 73.8 percent for the fall equations. For the northwest region, average standard errors of estimate range from 58.9 to 62.1 percent for the spring equations and from 83.2 to 109.4 percent for the fall equations. For the southern region, average standard errors of estimate range from 43.2 to 64.0 percent for the spring equations and from 78.1 to 78.7 percent for the fall equations.The regression equations are applicable only to stream sites in Iowa with low flows not substantially affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. The regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system application. StreamStats allows users to click on any ungaged stream site and compute estimates of the six selected spring and fall low-flow statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged site are provided. StreamStats also allows users to click on any Iowa streamgage to obtain computed estimates for the six selected spring and fall low-flow statistics.

  10. Synthesis of linear regression coefficients by recovering the within-study covariance matrix from summary statistics.

    PubMed

    Yoneoka, Daisuke; Henmi, Masayuki

    2017-06-01

    Recently, the number of regression models has dramatically increased in several academic fields. However, within the context of meta-analysis, synthesis methods for such models have not been developed in a commensurate trend. One of the difficulties hindering the development is the disparity in sets of covariates among literature models. If the sets of covariates differ across models, interpretation of coefficients will differ, thereby making it difficult to synthesize them. Moreover, previous synthesis methods for regression models, such as multivariate meta-analysis, often have problems because covariance matrix of coefficients (i.e. within-study correlations) or individual patient data are not necessarily available. This study, therefore, proposes a brief explanation regarding a method to synthesize linear regression models under different covariate sets by using a generalized least squares method involving bias correction terms. Especially, we also propose an approach to recover (at most) threecorrelations of covariates, which is required for the calculation of the bias term without individual patient data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. A Method of Trigonometric Modelling of Seasonal Variation Demonstrated with Multiple Sclerosis Relapse Data.

    PubMed

    Spelman, Tim; Gray, Orla; Lucas, Robyn; Butzkueven, Helmut

    2015-12-09

    This report describes a novel Stata-based application of trigonometric regression modelling to 55 years of multiple sclerosis relapse data from 46 clinical centers across 20 countries located in both hemispheres. Central to the success of this method was the strategic use of plot analysis to guide and corroborate the statistical regression modelling. Initial plot analysis was necessary for establishing realistic hypotheses regarding the presence and structural form of seasonal and latitudinal influences on relapse probability and then testing the performance of the resultant models. Trigonometric regression was then necessary to quantify these relationships, adjust for important confounders and provide a measure of certainty as to how plausible these associations were. Synchronization of graphing techniques with regression modelling permitted a systematic refinement of models until best-fit convergence was achieved, enabling novel inferences to be made regarding the independent influence of both season and latitude in predicting relapse onset timing in MS. These methods have the potential for application across other complex disease and epidemiological phenomena suspected or known to vary systematically with season and/or geographic location.

  12. Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M-quantile random-effects regression.

    PubMed

    Tzavidis, Nikos; Salvati, Nicola; Schmid, Timo; Flouri, Eirini; Midouhas, Emily

    2016-02-01

    Multilevel modelling is a popular approach for longitudinal data analysis. Statistical models conventionally target a parameter at the centre of a distribution. However, when the distribution of the data is asymmetric, modelling other location parameters, e.g. percentiles, may be more informative. We present a new approach, M -quantile random-effects regression, for modelling multilevel data. The proposed method is used for modelling location parameters of the distribution of the strengths and difficulties questionnaire scores of children in England who participate in the Millennium Cohort Study. Quantile mixed models are also considered. The analyses offer insights to child psychologists about the differential effects of risk factors on children's outcomes.

  13. Methods for estimating annual exceedance-probability discharges for streams in Iowa, based on data through water year 2010

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; Veilleux, Andrea G.

    2013-01-01

    A statewide study was performed to develop regional regression equations for estimating selected annual exceedance-probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedance-probability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized least-squares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.

  14. Estimating flood magnitude and frequency at gaged and ungaged sites on streams in Alaska and conterminous basins in Canada, based on data through water year 2012

    USGS Publications Warehouse

    Curran, Janet H.; Barth, Nancy A.; Veilleux, Andrea G.; Ourso, Robert T.

    2016-03-16

    Estimates of the magnitude and frequency of floods are needed across Alaska for engineering design of transportation and water-conveyance structures, flood-insurance studies, flood-plain management, and other water-resource purposes. This report updates methods for estimating flood magnitude and frequency in Alaska and conterminous basins in Canada. Annual peak-flow data through water year 2012 were compiled from 387 streamgages on unregulated streams with at least 10 years of record. Flood-frequency estimates were computed for each streamgage using the Expected Moments Algorithm to fit a Pearson Type III distribution to the logarithms of annual peak flows. A multiple Grubbs-Beck test was used to identify potentially influential low floods in the time series of peak flows for censoring in the flood frequency analysis.For two new regional skew areas, flood-frequency estimates using station skew were computed for stations with at least 25 years of record for use in a Bayesian least-squares regression analysis to determine a regional skew value. The consideration of basin characteristics as explanatory variables for regional skew resulted in improvements in precision too small to warrant the additional model complexity, and a constant model was adopted. Regional Skew Area 1 in eastern-central Alaska had a regional skew of 0.54 and an average variance of prediction of 0.45, corresponding to an effective record length of 22 years. Regional Skew Area 2, encompassing coastal areas bordering the Gulf of Alaska, had a regional skew of 0.18 and an average variance of prediction of 0.12, corresponding to an effective record length of 59 years. Station flood-frequency estimates for study sites in regional skew areas were then recomputed using a weighted skew incorporating the station skew and regional skew. In a new regional skew exclusion area outside the regional skew areas, the density of long-record streamgages was too sparse for regional analysis and station skew was used for all estimates. Final station flood frequency estimates for all study streamgages are presented for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities.Regional multiple-regression analysis was used to produce equations for estimating flood frequency statistics from explanatory basin characteristics. Basin characteristics, including physical and climatic variables, were updated for all study streamgages using a geographical information system and geospatial source data. Screening for similar-sized nested basins eliminated hydrologically redundant sites, and screening for eligibility for analysis of explanatory variables eliminated regulated peaks, outburst peaks, and sites with indeterminate basin characteristics. An ordinary least‑squares regression used flood-frequency statistics and basin characteristics for 341 streamgages (284 in Alaska and 57 in Canada) to determine the most suitable combination of basin characteristics for a flood-frequency regression model and to explore regional grouping of streamgages for explaining variability in flood-frequency statistics across the study area. The most suitable model for explaining flood frequency used drainage area and mean annual precipitation as explanatory variables for the entire study area as a region. Final regression equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability discharge in Alaska and conterminous basins in Canada were developed using a generalized least-squares regression. The average standard error of prediction for the regression equations for the various annual exceedance probabilities ranged from 69 to 82 percent, and the pseudo-coefficient of determination (pseudo-R2) ranged from 85 to 91 percent.The regional regression equations from this study were incorporated into the U.S. Geological Survey StreamStats program for a limited area of the State—the Cook Inlet Basin. StreamStats is a national web-based geographic information system application that facilitates retrieval of streamflow statistics and associated information. StreamStats retrieves published data for gaged sites and, for user-selected ungaged sites, delineates drainage areas from topographic and hydrographic data, computes basin characteristics, and computes flood frequency estimates using the regional regression equations.

  15. Statistical Techniques for Assessing water‐quality effects of BMPs

    USGS Publications Warehouse

    Walker, John F.

    1994-01-01

    Little has been published on the effectiveness of various management practices in small rural lakes and streams at the watershed scale. In this study, statistical techniques were used to test for changes in water‐quality data from watersheds where best management practices (BMPs) were implemented. Reductions in data variability due to climate and seasonality were accomplished through the use of regression methods. This study discusses the merits of using storm‐mass‐transport data as a means of improving the ability to detect BMP effects on stream‐water quality. Statistical techniques were applied to suspended‐sediment records from three rural watersheds in Illinois for the period 1981–84. None of the techniques identified changes in suspended sediment, primarily because of the small degree of BMP implementation and because of potential errors introduced through the estimation of storm‐mass transport. A Monte Carlo sensitivity analysis was used to determine the level of discrete change that could be detected for each watershed. In all cases, the use of regressions improved the ability to detect trends.Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9437(1994)120:2(334)

  16. Robust mislabel logistic regression without modeling mislabel probabilities.

    PubMed

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  17. Rapid analysis of pharmaceutical drugs using LIBS coupled with multivariate analysis.

    PubMed

    Tiwari, P K; Awasthi, S; Kumar, R; Anand, R K; Rai, P K; Rai, A K

    2018-02-01

    Type 2 diabetes drug tablets containing voglibose having dose strengths of 0.2 and 0.3 mg of various brands have been examined, using laser-induced breakdown spectroscopy (LIBS) technique. The statistical methods such as the principal component analysis (PCA) and the partial least square regression analysis (PLSR) have been employed on LIBS spectral data for classifying and developing the calibration models of drug samples. We have developed the ratio-based calibration model applying PLSR in which relative spectral intensity ratios H/C, H/N and O/N are used. Further, the developed model has been employed to predict the relative concentration of element in unknown drug samples. The experiment has been performed in air and argon atmosphere, respectively, and the obtained results have been compared. The present model provides rapid spectroscopic method for drug analysis with high statistical significance for online control and measurement process in a wide variety of pharmaceutical industrial applications.

  18. A Critical Examination of Figure of Merit (FOM). Assessing the Goodness-of-Fit in Gamma/X-ray Peak Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, S.; Favalli, Andrea; Weaver, Brian Phillip

    2015-10-06

    In this paper we develop and investigate several criteria for assessing how well a proposed spectral form fits observed spectra. We consider the classical improved figure of merit (FOM) along with several modifications, as well as criteria motivated by Poisson regression from the statistical literature. We also develop a new FOM that is based on the statistical idea of the bootstrap. A spectral simulator has been developed to assess the performance of these different criteria under multiple data configurations.

  19. Analysis of cost regression and post-accident absence

    NASA Astrophysics Data System (ADS)

    Wojciech, Drozd

    2017-07-01

    The article presents issues related with costs of work safety. It proves the thesis that economic aspects cannot be overlooked in effective management of occupational health and safety and that adequate expenditures on safety can bring tangible benefits to the company. Reliable analysis of this problem is essential for the description the problem of safety the work. In the article attempts to carry it out using the procedures of mathematical statistics [1, 2, 3].

  20. An Introduction to Macro- Level Spatial Nonstationarity: a Geographically Weighted Regression Analysis of Diabetes and Poverty

    PubMed Central

    Siordia, Carlos; Saenz, Joseph; Tom, Sarah E.

    2014-01-01

    Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity—variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes PMID:25414731

  1. An Introduction to Macro- Level Spatial Nonstationarity: a Geographically Weighted Regression Analysis of Diabetes and Poverty.

    PubMed

    Siordia, Carlos; Saenz, Joseph; Tom, Sarah E

    2012-01-01

    Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity-variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes.

  2. An empirical study of statistical properties of variance partition coefficients for multi-level logistic regression models

    USGS Publications Warehouse

    Li, Ji; Gray, B.R.; Bates, D.M.

    2008-01-01

    Partitioning the variance of a response by design levels is challenging for binomial and other discrete outcomes. Goldstein (2003) proposed four definitions for variance partitioning coefficients (VPC) under a two-level logistic regression model. In this study, we explicitly derived formulae for multi-level logistic regression model and subsequently studied the distributional properties of the calculated VPCs. Using simulations and a vegetation dataset, we demonstrated associations between different VPC definitions, the importance of methods for estimating VPCs (by comparing VPC obtained using Laplace and penalized quasilikehood methods), and bivariate dependence between VPCs calculated at different levels. Such an empirical study lends an immediate support to wider applications of VPC in scientific data analysis.

  3. The microbiological profile and presence of bloodstream infection influence mortality rates in necrotizing fasciitis

    PubMed Central

    2011-01-01

    Introduction Necrotizing fasciitis (NF) is a life threatening infectious disease with a high mortality rate. We carried out a microbiological characterization of the causative pathogens. We investigated the correlation of mortality in NF with bloodstream infection and with the presence of co-morbidities. Methods In this retrospective study, we analyzed 323 patients who presented with necrotizing fasciitis at two different institutions. Bloodstream infection (BSI) was defined as a positive blood culture result. The patients were categorized as survivors and non-survivors. Eleven clinically important variables which were statistically significant by univariate analysis were selected for multivariate regression analysis and a stepwise logistic regression model was developed to determine the association between BSI and mortality. Results Univariate logistic regression analysis showed that patients with hypotension, heart disease, liver disease, presence of Vibrio spp. in wound cultures, presence of fungus in wound cultures, and presence of Streptococcus group A, Aeromonas spp. or Vibrio spp. in blood cultures, had a significantly higher risk of in-hospital mortality. Our multivariate logistic regression analysis showed a higher risk of mortality in patients with pre-existing conditions like hypotension, heart disease, and liver disease. Multivariate logistic regression analysis also showed that presence of Vibrio spp in wound cultures, and presence of Streptococcus Group A in blood cultures were associated with a high risk of mortality while debridement > = 3 was associated with improved survival. Conclusions Mortality in patients with necrotizing fasciitis was significantly associated with the presence of Vibrio in wound cultures and Streptococcus group A in blood cultures. PMID:21693053

  4. Linear regression analysis of Hospital Episode Statistics predicts a large increase in demand for elective hand surgery in England.

    PubMed

    Bebbington, Emily; Furniss, Dominic

    2015-02-01

    We integrated two factors, demographic population shifts and changes in prevalence of disease, to predict future trends in demand for hand surgery in England, to facilitate workforce planning. We analysed Hospital Episode Statistics data for Dupuytren's disease, carpal tunnel syndrome, cubital tunnel syndrome, and trigger finger from 1998 to 2011. Using linear regression, we estimated trends in both diagnosis and surgery until 2030. We integrated this regression with age specific population data from the Office for National Statistics in order to estimate how this will contribute to a change in workload over time. There has been a significant increase in both absolute numbers of diagnoses and surgery for all four conditions. Combined with future population data, we calculate that the total operative burden for these four conditions will increase from 87,582 in 2011 to 170,166 (95% confidence interval 144,517-195,353) in 2030. The prevalence of these diseases in the ageing population, and increasing prevalence of predisposing factors such as obesity and diabetes, may account for the predicted increase in workload. The most cost effective treatments must be sought, which requires high quality clinical trials. Our methodology can be applied to other sub-specialties to help anticipate the need for future service provision. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. A model for predicting sulcus-to-sulcus diameter in posterior chamber phakic intraocular lens candidates: correlation between ocular biometric parameters.

    PubMed

    Ghoreishi, Mohammad; Abdi-Shahshahani, Mehdi; Peyman, Alireza; Pourazizi, Mohsen

    2018-02-21

    The aim of this study was to determine the correlation between ocular biometric parameters and sulcus-to-sulcus (STS) diameter. This was a cross-sectional study of preoperative ocular biometry data of patients who were candidates for phakic intraocular lens (IOL) surgery. Subjects underwent ocular biometry analysis, including refraction error evaluation using an autorefractor and Orbscan topography for white-to-white (WTW) corneal diameter and measurement. Pentacam was used to perform WTW corneal diameter and measurements of minimum and maximum keratometry (K). Measurements of STS and angle-to-angle (ATA) were obtained using a 50-MHz B-mode ultrasound device. Anterior optical coherence tomography was performed for anterior chamber depth measurement. Pearson's correlation test and stepwise linear regression analysis were used to find a model to predict STS. Fifty-eight eyes of 58 patients were enrolled. Mean age ± standard deviation of sample was 28.95 ± 6.04 years. The Pearson's correlation coefficient between STS with WTW, ATA, mean K was 0.383, 0.492, and - 0.353, respectively, which was statistically significant (all P < 0.001). Using stepwise linear regression analysis, there is a statistically significant association between STS with WTW (P = 0.011) and mean K (P = 0.025). The standardized coefficient was 0.323 and - 0.284 for WTW and mean K, respectively. The stepwise linear regression analysis equation was: (STS = 9.549 + 0.518 WTW - 0.083 mean K). Based on our result, given the correlation of STS with WTW and mean K and potential of direct and essay measurement of WTW and mean K, it seems that current IOL sizing protocols could be estimating with WTW and mean K.

  6. The Impact of Aortic Occlusion Balloon on Mortality After Endovascular Repair of Ruptured Abdominal Aortic Aneurysms: A Meta-analysis and Meta-regression Analysis.

    PubMed

    Karkos, Christos D; Papadimitriou, Christina T; Chatzivasileiadis, Theodoros N; Kapsali, Nikoletta S; Kalogirou, Thomas E; Giagtzidis, Ioakeim T; Papazoglou, Konstantinos O

    2015-12-01

    We aimed to investigate whether the use of aortic occlusion balloon (AOB) has an impact on mortality of patients undergoing endovascular repair of ruptured abdominal aortic aneurysms (RAAAs). A meta-analysis of the English-language literature was undertaken through February 2013. Articles reporting data on outcome after endovascular repair of RAAAs were identified and information regarding the use of AOB was sought. Included in this meta-analysis were 39 eligible studies reporting 1277 patients. The pooled perioperative mortality was 21.6% (95% CI 18.1-25.1%). There was significant within-study heterogeneity (I(2) 50.2%, P < 0.001). A total of 200 patients required AOB with an estimated pooled proportion of 14.1% (8.9-19.3%). Individual random-effects meta-regression investigating the effect of AOB and other risk factors on mortality revealed a significant linear association of hemodynamic instability, bifurcated endograft approach, and primary conversion to open repair with mortality and a nonlinear (second degree polynomial) association of AOB with mortality. On multivariable meta-regression models, both hemodynamic instability and AOB were found to be statistically significant, independent predictors of mortality. In particular, there was a statistically significant negative correlation between AOB and mortality and a positive effect of hemodynamic instability on mortality. In practical terms, mortality was significantly higher in studies with a higher proportion of hemodynamically unstable patients and lower in studies with a higher rate of AOB use. This study provides meta-analytical evidence that the use of an AOB in unstable RAAA patients undergoing endovascular repair may improve the results.

  7. Chordee and Penile Shortening Rather Than Voiding Function Are Associated With Patient Dissatisfaction After Urethroplasty.

    PubMed

    Maciejewski, Conrad C; Haines, Trevor; Rourke, Keith F

    2017-05-01

    To identify factors that predict patient satisfaction after urethroplasty by prospectively examining patient-reported quality of life scores using 3 validated instruments. A 3-part prospective survey consisting of the International Prostate Symptom Score (IPSS), the International Index of Erectile Function (IIEF) score, and a urethroplasty quality of life survey was completed by patients who underwent urethroplasty preoperatively and at 6 months postoperatively. The quality of life score included questions on genitourinary pain, urinary tract infection (UTI), postvoid dribbling, chordee, shortening, overall satisfaction, and overall health. Data were analyzed using descriptive statistics, paired t test, univariate and multivariate logistic regression analyses, and Wilcoxon signed-rank analysis. Patients were enrolled in the study from February 2011 to December 2014, and a total of 94 patients who underwent a total of 102 urethroplasties completed the study. Patients reported statistically significant improvements in IPSS (P < .001). Ordinal linear regression analysis revealed no association between age, IPSS, or IIEF score and patient satisfaction. Wilcoxon signed-rank analysis revealed significant improvements in pain scores (P = .02), UTI (P < .001), perceived overall health (P = .01), and satisfaction (P < .001). Univariate logistic regression identified a length >4 cm and the absence of UTI, pain, shortening, and chordee as predictors of patient satisfaction. Multivariate analysis of quality of life domain scores identified absence of shortening and absence of chordee as independent predictors of patient satisfaction following urethroplasty (P < .01). Patient voiding function and quality of life improve significantly following urethroplasty, but improvement in voiding function is not associated with patient satisfaction. Chordee status and perceived penile shortening impact patient satisfaction, and should be included in patient-reported outcome measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    PubMed

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  9. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North at Fargo and Grand Forks, North Dakota, 2003-12

    USGS Publications Warehouse

    Galloway, Joel M.

    2014-01-01

    The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time component also was a statistically significant explanatory variable for estimating chloride. The regression equations for chloride at the Red River at Fargo provided a fair relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.66 and the equation for the Red River at Grand Forks provided a relatively good relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.77. Turbidity and streamflow were statistically significant explanatory variables for estimating nitrate plus nitrite concentrations at the Red River at Fargo and turbidity was the only statistically significant explanatory variable for estimating nitrate plus nitrite concentrations at Grand Forks. The regression equation for the Red River at Fargo provided a relatively poor relation between nitrate plus nitrite concentrations, turbidity, and streamflow, with an adjusted coefficient of determination of 0.46. The regression equation for the Red River at Grand Forks provided a fair relation between nitrate plus nitrite concentrations and turbidity, with an adjusted coefficient of determination of 0.73. Some of the variability that was not explained by the equations might be attributed to different sources contributing nitrates to the stream at different times. Turbidity, streamflow, and a seasonal component were statistically significant explanatory variables for estimating total phosphorus at the Red River at Fargo and Grand Forks. The regression equation for the Red River at Fargo provided a relatively fair relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.74. The regression equation for the Red River at Grand Forks provided a good relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.87. For the Red River at Fargo, turbidity and streamflow were statistically significant explanatory variables for estimating suspended-sediment concentrations. For the Red River at Grand Forks, turbidity was the only statistically significant explanatory variable for estimating suspended-sediment concentration. The regression equation at the Red River at Fargo provided a good relation between suspended-sediment concentration, turbidity, and streamflow, with an adjusted coefficient of determination of 0.95. The regression equation for the Red River at Grand Forks provided a good relation between suspended-sediment concentration and turbidity, with an adjusted coefficient of determination of 0.96.

  10. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing

    PubMed Central

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-01-01

    Aims A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R2), using R2 as the primary metric of assay agreement. However, the use of R2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. Methods We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Results Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. Conclusions The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. PMID:28747393

  11. Innovating patient care delivery: DSRIP's interrupted time series analysis paradigm.

    PubMed

    Shenoy, Amrita G; Begley, Charles E; Revere, Lee; Linder, Stephen H; Daiger, Stephen P

    2017-12-08

    Adoption of Medicaid Section 1115 waiver is one of the many ways of innovating healthcare delivery system. The Delivery System Reform Incentive Payment (DSRIP) pool, one of the two funding pools of the waiver has four categories viz. infrastructure development, program innovation and redesign, quality improvement reporting and lastly, bringing about population health improvement. A metric of the fourth category, preventable hospitalization (PH) rate was analyzed in the context of eight conditions for two time periods, pre-reporting years (2010-2012) and post-reporting years (2013-2015) for two hospital cohorts, DSRIP participating and non-participating hospitals. The study explains how DSRIP impacted Preventable Hospitalization (PH) rates of eight conditions for both hospital cohorts within two time periods. Eight PH rates were regressed as the dependent variable with time, intervention and post-DSRIP Intervention as independent variables. PH rates of eight conditions were then consolidated into one rate for regressing with the above independent variables to evaluate overall impact of DSRIP. An interrupted time series regression was performed after accounting for auto-correlation, stationarity and seasonality in the dataset. In the individual regression model, PH rates showed statistically significant coefficients for seven out of eight conditions in DSRIP participating hospitals. In the combined regression model, the coefficient of the PH rate showed a statistically significant decrease with negative p-values for regression coefficients in DSRIP participating hospitals compared to positive/increased p-values for regression coefficients in DSRIP non-participating hospitals. Several macro- and micro-level factors may have likely contributed DSRIP hospitals outperforming DSRIP non-participating hospitals. Healthcare organization/provider collaboration, support from healthcare professionals, DSRIP's design, state reimbursement and coordination in care delivery methods may have led to likely success of DSRIP. IV, a retrospective cohort study based on longitudinal data. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Intermediate and advanced topics in multilevel logistic regression analysis.

    PubMed

    Austin, Peter C; Merlo, Juan

    2017-09-10

    Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  13. Evaluating differential effects using regression interactions and regression mixture models

    PubMed Central

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903

  14. The mediating effect of calling on the relationship between medical school students' academic burnout and empathy.

    PubMed

    Chae, Su Jin; Jeong, So Mi; Chung, Yoon-Sok

    2017-09-01

    This study is aimed at identifying the relationships between medical school students' academic burnout, empathy, and calling, and determining whether their calling has a mediating effect on the relationship between academic burnout and empathy. A mixed method study was conducted. One hundred twenty-seven medical students completed a survey. Scales measuring academic burnout, medical students' empathy, and calling were utilized. For statistical analysis, correlation analysis, descriptive statistics analysis, and hierarchical multiple regression analyses were conducted. For qualitative approach, eight medical students participated in a focus group interview. The study found that empathy has a statistically significant, negative correlation with academic burnout, while having a significant, positive correlation with calling. Sense of calling proved to be an effective mediator of the relationship between academic burnout and empathy. This result demonstrates that calling is a key variable that mediates the relationship between medical students' academic burnout and empathy. As such, this study provides baseline data for an education that could improve medical students' empathy skills.

  15. Prediction of rainfall anomalies during the dry to wet transition season over the Southern Amazonia using machine learning tools

    NASA Astrophysics Data System (ADS)

    Shan, X.; Zhang, K.; Zhuang, Y.; Fu, R.; Hong, Y.

    2017-12-01

    Seasonal prediction of rainfall during the dry-to-wet transition season in austral spring (September-November) over southern Amazonia is central for improving planting crops and fire mitigation in that region. Previous studies have identified the key large-scale atmospheric dynamic and thermodynamics pre-conditions during the dry season (June-August) that influence the rainfall anomalies during the dry to wet transition season over Southern Amazonia. Based on these key pre-conditions during dry season, we have evaluated several statistical models and developed a Neural Network based statistical prediction system to predict rainfall during the dry to wet transition for Southern Amazonia (5-15°S, 50-70°W). Multivariate Empirical Orthogonal Function (EOF) Analysis is applied to the following four fields during JJA from the ECMWF Reanalysis (ERA-Interim) spanning from year 1979 to 2015: geopotential height at 200 hPa, surface relative humidity, convective inhibition energy (CIN) index and convective available potential energy (CAPE), to filter out noise and highlight the most coherent spatial and temporal variations. The first 10 EOF modes are retained for inputs to the statistical models, accounting for at least 70% of the total variance in the predictor fields. We have tested several linear and non-linear statistical methods. While the regularized Ridge Regression and Lasso Regression can generally capture the spatial pattern and magnitude of rainfall anomalies, we found that that Neural Network performs best with an accuracy greater than 80%, as expected from the non-linear dependence of the rainfall on the large-scale atmospheric thermodynamic conditions and circulation. Further tests of various prediction skill metrics and hindcasts also suggest this Neural Network prediction approach can significantly improve seasonal prediction skill than the dynamic predictions and regression based statistical predictions. Thus, this statistical prediction system could have shown potential to improve real-time seasonal rainfall predictions in the future.

  16. Time series regression-based pairs trading in the Korean equities market

    NASA Astrophysics Data System (ADS)

    Kim, Saejoon; Heo, Jun

    2017-07-01

    Pairs trading is an instance of statistical arbitrage that relies on heavy quantitative data analysis to profit by capitalising low-risk trading opportunities provided by anomalies of related assets. A key element in pairs trading is the rule by which open and close trading triggers are defined. This paper investigates the use of time series regression to define the rule which has previously been identified with fixed threshold-based approaches. Empirical results indicate that our approach may yield significantly increased excess returns compared to ones obtained by previous approaches on large capitalisation stocks in the Korean equities market.

  17. Combining synthetic controls and interrupted time series analysis to improve causal inference in program evaluation.

    PubMed

    Linden, Ariel

    2018-04-01

    Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied over time and the intervention is expected to "interrupt" the level and/or trend of the outcome. The internal validity is strengthened considerably when the treated unit is contrasted with a comparable control group. In this paper, we introduce a robust evaluation framework that combines the synthetic controls method (SYNTH) to generate a comparable control group and ITSA regression to assess covariate balance and estimate treatment effects. We evaluate the effect of California's Proposition 99 for reducing cigarette sales, by comparing California to other states not exposed to smoking reduction initiatives. SYNTH is used to reweight nontreated units to make them comparable to the treated unit. These weights are then used in ITSA regression models to assess covariate balance and estimate treatment effects. Covariate balance was achieved for all but one covariate. While California experienced a significant decrease in the annual trend of cigarette sales after Proposition 99, there was no statistically significant treatment effect when compared to synthetic controls. The advantage of using this framework over regression alone is that it ensures that a comparable control group is generated. Additionally, it offers a common set of statistical measures familiar to investigators, the capability for assessing covariate balance, and enhancement of the evaluation with a comprehensive set of postestimation measures. Therefore, this robust framework should be considered as a primary approach for evaluating treatment effects in multiple group time series analysis. © 2018 John Wiley & Sons, Ltd.

  18. Predicting recreational water quality advisories: A comparison of statistical methods

    USGS Publications Warehouse

    Brooks, Wesley R.; Corsi, Steven R.; Fienen, Michael N.; Carvin, Rebecca B.

    2016-01-01

    Epidemiological studies indicate that fecal indicator bacteria (FIB) in beach water are associated with illnesses among people having contact with the water. In order to mitigate public health impacts, many beaches are posted with an advisory when the concentration of FIB exceeds a beach action value. The most commonly used method of measuring FIB concentration takes 18–24 h before returning a result. In order to avoid the 24 h lag, it has become common to ”nowcast” the FIB concentration using statistical regressions on environmental surrogate variables. Most commonly, nowcast models are estimated using ordinary least squares regression, but other regression methods from the statistical and machine learning literature are sometimes used. This study compares 14 regression methods across 7 Wisconsin beaches to identify which consistently produces the most accurate predictions. A random forest model is identified as the most accurate, followed by multiple regression fit using the adaptive LASSO.

  19. Nonparametric methods for drought severity estimation at ungauged sites

    NASA Astrophysics Data System (ADS)

    Sadri, S.; Burn, D. H.

    2012-12-01

    The objective in frequency analysis is, given extreme events such as drought severity or duration, to estimate the relationship between that event and the associated return periods at a catchment. Neural networks and other artificial intelligence approaches in function estimation and regression analysis are relatively new techniques in engineering, providing an attractive alternative to traditional statistical models. There are, however, few applications of neural networks and support vector machines in the area of severity quantile estimation for drought frequency analysis. In this paper, we compare three methods for this task: multiple linear regression, radial basis function neural networks, and least squares support vector regression (LS-SVR). The area selected for this study includes 32 catchments in the Canadian Prairies. From each catchment drought severities are extracted and fitted to a Pearson type III distribution, which act as observed values. For each method-duration pair, we use a jackknife algorithm to produce estimated values at each site. The results from these three approaches are compared and analyzed, and it is found that LS-SVR provides the best quantile estimates and extrapolating capacity.

  20. Association factor analysis between osteoporosis with cerebral artery disease: The STROBE study.

    PubMed

    Jin, Eun-Sun; Jeong, Je Hoon; Lee, Bora; Im, Soo Bin

    2017-03-01

    The purpose of this study was to determine the clinical association factors between osteoporosis and cerebral artery disease in Korean population. Two hundred nineteen postmenopausal women and men undergoing cerebral computed tomography angiography were enrolled in this study to evaluate the cerebral artery disease by cross-sectional study. Cerebral artery disease was diagnosed if there was narrowing of 50% higher diameter in one or more cerebral vessel artery or presence of vascular calcification. History of osteoporotic fracture was assessed using medical record, and radiographic data such as simple radiography, MRI, and bone scan. Bone mineral density was checked by dual-energy x-ray absorptiometry. We reviewed clinical characteristics in all patients and also performed subgroup analysis for total or extracranial/ intracranial cerebral artery disease group retrospectively. We performed statistical analysis by means of chi-square test or Fisher's exact test for categorical variables and Student's t-test or Wilcoxon's rank sum test for continuous variables. We also used univariate and multivariate logistic regression analyses were conducted to assess the factors associated with the prevalence of cerebral artery disease. A two-tailed p-value of less than 0.05 was considered as statistically significant. All statistical analyses were performed using R (version 3.1.3; The R Foundation for Statistical Computing, Vienna, Austria) and SPSS (version 14.0; SPSS, Inc, Chicago, Ill, USA). Of the 219 patients, 142 had cerebral artery disease. All vertebral fracture was observed in 29 (13.24%) patients. There was significant difference in hip fracture according to the presence or absence of cerebral artery disease. In logistic regression analysis, osteoporotic hip fracture was significantly associated with extracranial cerebral artery disease after adjusting for multiple risk factors. Females with osteoporotic hip fracture were associated with total calcified cerebral artery disease. Some clinical factors such as age, hypertension, and osteoporotic hip fracture, smoking history and anti-osteoporosis drug use were associated with cerebral artery disease.

  1. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data

    PubMed Central

    Ying, Gui-shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-01-01

    Purpose To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. Methods We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field data in the elderly. Results When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI −0.03 to 0.32D, P=0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, P=0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller P-values, while analysis of the worse eye provided larger P-values than mixed effects models and marginal models. Conclusion In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision. PMID:28102741

  2. Statistical learning and selective inference.

    PubMed

    Taylor, Jonathan; Tibshirani, Robert J

    2015-06-23

    We describe the problem of "selective inference." This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have "cherry-picked"--searched for the strongest associations--means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis.

  3. Career Technical Education Adjunct Faculty Teacher Readiness: An Investigation of Teacher Excellence and Variables of Preparedness

    ERIC Educational Resources Information Center

    Guerra, Jorge

    2012-01-01

    The purpose of this research was to examine the relationship between teaching readiness and teaching excellence with three variables of preparedness of adjunct professors teaching career technical education courses through student surveys using a correlational design of two statistical techniques; least-squares regression and one-way analysis of…

  4. Using Regression Analysis To Determine If Faculty Salaries Are Overly Compressed. AIR 1997 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Toutkoushian, Robert K.

    This paper proposes a five-step process by which to analyze whether the salary ratio between junior and senior college faculty exhibits salary compression, a term used to describe an unusually small differential between faculty with different levels of experience. The procedure utilizes commonly used statistical techniques (multiple regression…

  5. Finding and Developing Moderators and Directional Keys by Regression Analysis.

    ERIC Educational Resources Information Center

    Kokosh, John

    A procedure for rapid screening of variables as potential moderators is presented and discussed. A moderator is defined as any variable which can be used to identify differentially predictable persons; or defined statistically by stating that if a predictor and a moderator are each divided into three or more categories and used as independent…

  6. The Effect of Attending Tutoring on Course Grades in Calculus I

    ERIC Educational Resources Information Center

    Rickard, Brian; Mills, Melissa

    2018-01-01

    Tutoring centres are common in universities in the United States, but there are few published studies that statistically examine the effects of tutoring on student success. This study utilizes multiple regression analysis to model the effect of tutoring attendance on final course grades in Calculus I. Our model predicted that every three visits to…

  7. Modeling Outcomes with Floor or Ceiling Effects: An Introduction to the Tobit Model

    ERIC Educational Resources Information Center

    McBee, Matthew

    2010-01-01

    In gifted education research, it is common for outcome variables to exhibit strong floor or ceiling effects due to insufficient range of measurement of many instruments when used with gifted populations. Common statistical methods (e.g., analysis of variance, linear regression) produce biased estimates when such effects are present. In practice,…

  8. Faculty Salary Equity: Issues in Regression Model Selection. AIR 1992 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Moore, Nelle

    This paper discusses the determination of college faculty salary inequity and identifies the areas in which human judgment must be used in order to conduct a statistical analysis of salary equity. In addition, it provides some informed guidelines for making those judgments. The paper provides a framework for selecting salary equity models, based…

  9. Learner Characteristics Predict Performance and Confidence in E-Learning: An Analysis of User Behavior and Self-Evaluation

    ERIC Educational Resources Information Center

    Jeske, Debora; Roßnagell, Christian Stamov; Backhaus, Joy

    2014-01-01

    We examined the role of learner characteristics as predictors of four aspects of e-learning performance, including knowledge test performance, learning confidence, learning efficiency, and navigational effectiveness. We used both self reports and log file records to compute the relevant statistics. Regression analyses showed that both need for…

  10. The Cost of a Tuition Tax Credit Reconsidered in the Light of New Evidence.

    ERIC Educational Resources Information Center

    Frey, Donald E.

    1982-01-01

    Using regression analysis on 1976-78 data from the National Center for Education Statistics, the author estimates demand and supply elasticities for nonpublic school tuition and enrollment. Application of the elasticities to data from a 1978 study indicates that federal tuition tax credits would be more costly than previously projected. (Author/RW)

  11. Predicting Body Fat Using Data on the BMI

    ERIC Educational Resources Information Center

    Mills, Terence C.

    2005-01-01

    A data set contained in the "Journal of Statistical Education's" data archive provides a way of exploring regression analysis at a variety of teaching levels. An appropriate functional form for the relationship between percentage body fat and the BMI is shown to be the semi-logarithmic, with variation in the BMI accounting for a little over half…

  12. Helping Students Assess the Relative Importance of Different Intermolecular Interactions

    ERIC Educational Resources Information Center

    Jasien, Paul G.

    2008-01-01

    A semi-quantitative model has been developed to estimate the relative effects of dispersion, dipole-dipole interactions, and H-bonding on the normal boiling points ("T[subscript b]") for a subset of simple organic systems. The model is based upon a statistical analysis using multiple linear regression on a series of straight-chain organic…

  13. Do clinical and translational science graduate students understand linear regression? Development and early validation of the REGRESS quiz.

    PubMed

    Enders, Felicity

    2013-12-01

    Although regression is widely used for reading and publishing in the medical literature, no instruments were previously available to assess students' understanding. The goal of this study was to design and assess such an instrument for graduate students in Clinical and Translational Science and Public Health. A 27-item REsearch on Global Regression Expectations in StatisticS (REGRESS) quiz was developed through an iterative process. Consenting students taking a course on linear regression in a Clinical and Translational Science program completed the quiz pre- and postcourse. Student results were compared to practicing statisticians with a master's or doctoral degree in statistics or a closely related field. Fifty-two students responded precourse, 59 postcourse , and 22 practicing statisticians completed the quiz. The mean (SD) score was 9.3 (4.3) for students precourse and 19.0 (3.5) postcourse (P < 0.001). Postcourse students had similar results to practicing statisticians (mean (SD) of 20.1(3.5); P = 0.21). Students also showed significant improvement pre/postcourse in each of six domain areas (P < 0.001). The REGRESS quiz was internally reliable (Cronbach's alpha 0.89). The initial validation is quite promising with statistically significant and meaningful differences across time and study populations. Further work is needed to validate the quiz across multiple institutions. © 2013 Wiley Periodicals, Inc.

  14. Fresh Biomass Estimation in Heterogeneous Grassland Using Hyperspectral Measurements and Multivariate Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.

    2014-12-01

    Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.

  15. The role of enamel thickness and refractive index on human tooth colour.

    PubMed

    Oguro, Rena; Nakajima, Masatoshi; Seki, Naoko; Sadr, Alireza; Tagami, Junji; Sumi, Yasunori

    2016-08-01

    To investigate the role of enamel thickness and refractive index (n) on tooth colour. The colour and enamel thickness of fifteen extracted human central incisors were determined according to CIELab colour scale using spectrophotometer (Crystaleye) and swept-source optical coherence tomography (SS-OCT), respectively. Subsequently, labial enamel was trimmed by approximately 100μm, and the colour and remaining enamel thickness were investigated again. This cycle was repeated until dentin appeared. Enamel blocks were prepared from the same teeth and their n were obtained using SS-OCT. Multiple regression analysis was performed to reveal any effects of enamel thickness and n on colour difference (ΔE00) and differences in colour parameters with CIELCh and CIELab colour scales. Multiple regression analysis revealed that enamel thickness (p=0.02) and n of enamel (p<0.001) were statistically significant predictors of ΔE00 after complete enamel trimming. The n was also a significant predictor of ΔH' (p=0.01). Enamel thickness and n were not statistically significant predictors of ΔL', ΔC', Δa* and Δb*. Enamel affected tooth colour, in which n was a statistically significant predictor for tooth colour change. Understanding the role of enamel in tooth colour could contribute to development of aesthetic restorative materials that mimic the colour of natural tooth with minimal reduction of the existing enamel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Czeisler, C. A.

    1992-01-01

    Accurate estimation of the phases and amplitude of the endogenous circadian pacemaker from constant-routine core-temperature series is crucial for making inferences about the properties of the human biological clock from data collected under this protocol. This paper presents a set of statistical methods based on a harmonic-regression-plus-correlated-noise model for estimating the phases and the amplitude of the endogenous circadian pacemaker from constant-routine core-temperature data. The methods include a Bayesian Monte Carlo procedure for computing the uncertainty in these circadian functions. We illustrate the techniques with a detailed study of a single subject's core-temperature series and describe their relationship to other statistical methods for circadian data analysis. In our laboratory, these methods have been successfully used to analyze more than 300 constant routines and provide a highly reliable means of extracting phase and amplitude information from core-temperature data.

  17. Prediction of maximal surface electromyographically based voluntary contractions of erector spinae muscles from sonographic measurements during isometric contractions.

    PubMed

    Cuesta-Vargas, Antonio I; González-Sánchez, Manuel

    2014-03-01

    Currently, there are no studies combining electromyography (EMG) and sonography to estimate the absolute and relative strength values of erector spinae (ES) muscles in healthy individuals. The purpose of this study was to establish whether the maximum voluntary contraction (MVC) of the ES during isometric contractions could be predicted from the changes in surface EMG as well as in fiber pennation and thickness as measured by sonography. Thirty healthy adults performed 3 isometric extensions at 45° from the vertical to calculate the MVC force. Contractions at 33% and 100% of the MVC force were then used during sonographic and EMG recordings. These measurements were used to observe the architecture and function of the muscles during contraction. Statistical analysis was performed using bivariate regression and regression equations. The slope for each regression equation was statistically significant (P < .001) with R(2) values of 0.837 and 0.986 for the right and left ES, respectively. The standard error estimate between the sonographic measurements and the regression-estimated pennation angles for the right and left ES were 0.10 and 0.02, respectively. Erector spinae muscle activation can be predicted from the changes in fiber pennation during isometric contractions at 33% and 100% of the MVC force. These findings could be essential for developing a regression equation that could estimate the level of muscle activation from changes in the muscle architecture.

  18. Beyond logistic regression: structural equations modelling for binary variables and its application to investigating unobserved confounders.

    PubMed

    Kupek, Emil

    2006-03-15

    Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.

  19. Multiple regression for physiological data analysis: the problem of multicollinearity.

    PubMed

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  20. Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning.

    PubMed

    Formisano, Elia; De Martino, Federico; Valente, Giancarlo

    2008-09-01

    Machine learning and pattern recognition techniques are being increasingly employed in functional magnetic resonance imaging (fMRI) data analysis. By taking into account the full spatial pattern of brain activity measured simultaneously at many locations, these methods allow detecting subtle, non-strictly localized effects that may remain invisible to the conventional analysis with univariate statistical methods. In typical fMRI applications, pattern recognition algorithms "learn" a functional relationship between brain response patterns and a perceptual, cognitive or behavioral state of a subject expressed in terms of a label, which may assume discrete (classification) or continuous (regression) values. This learned functional relationship is then used to predict the unseen labels from a new data set ("brain reading"). In this article, we describe the mathematical foundations of machine learning applications in fMRI. We focus on two methods, support vector machines and relevance vector machines, which are respectively suited for the classification and regression of fMRI patterns. Furthermore, by means of several examples and applications, we illustrate and discuss the methodological challenges of using machine learning algorithms in the context of fMRI data analysis.

  1. Estimating the impact of mineral aerosols on crop yields in food insecure regions using statistical crop models

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Forest, C. E.; Kemanian, A.

    2016-12-01

    A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with traditional crop models, but likely at the cost of removing climate information. Our random forest models consistently discover the positive trend without removing any additional data. The application of random forests as a statistical crop model provides insight into understanding the impact of dust on yields in marginal food producing regions.

  2. Schooling mediates brain reserve in Alzheimer's disease: findings of fluoro-deoxy-glucose-positron emission tomography.

    PubMed

    Perneczky, R; Drzezga, A; Diehl-Schmid, J; Schmid, G; Wohlschläger, A; Kars, S; Grimmer, T; Wagenpfeil, S; Monsch, A; Kurz, A

    2006-09-01

    Functional imaging studies report that higher education is associated with more severe pathology in patients with Alzheimer's disease, controlling for disease severity. Therefore, schooling seems to provide brain reserve against neurodegeneration. To provide further evidence for brain reserve in a large sample, using a sensitive technique for the indirect assessment of brain abnormality (18F-fluoro-deoxy-glucose-positron emission tomography (FDG-PET)), a comprehensive measure of global cognitive impairment to control for disease severity (total score of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery) and an approach unbiased by predefined regions of interest for the statistical analysis (statistical parametric mapping (SPM)). 93 patients with mild Alzheimer's disease and 16 healthy controls underwent 18F-FDG-PET imaging of the brain. A linear regression analysis with education as independent and glucose utilisation as dependent variables, adjusted for global cognitive status and demographic variables, was conducted in SPM2. The regression analysis showed a marked inverse association between years of schooling and glucose metabolism in the posterior temporo-occipital association cortex and the precuneus in the left hemisphere. In line with previous reports, the findings suggest that education is associated with brain reserve and that people with higher education can cope with brain damage for a longer time.

  3. Quantitative assessment of cervical vertebral maturation using cone beam computed tomography in Korean girls.

    PubMed

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6-18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R (2) had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.

  4. A comparison of three methods of assessing differential item functioning (DIF) in the Hospital Anxiety Depression Scale: ordinal logistic regression, Rasch analysis and the Mantel chi-square procedure.

    PubMed

    Cameron, Isobel M; Scott, Neil W; Adler, Mats; Reid, Ian C

    2014-12-01

    It is important for clinical practice and research that measurement scales of well-being and quality of life exhibit only minimal differential item functioning (DIF). DIF occurs where different groups of people endorse items in a scale to different extents after being matched by the intended scale attribute. We investigate the equivalence or otherwise of common methods of assessing DIF. Three methods of measuring age- and sex-related DIF (ordinal logistic regression, Rasch analysis and Mantel χ(2) procedure) were applied to Hospital Anxiety Depression Scale (HADS) data pertaining to a sample of 1,068 patients consulting primary care practitioners. Three items were flagged by all three approaches as having either age- or sex-related DIF with a consistent direction of effect; a further three items identified did not meet stricter criteria for important DIF using at least one method. When applying strict criteria for significant DIF, ordinal logistic regression was slightly less sensitive. Ordinal logistic regression, Rasch analysis and contingency table methods yielded consistent results when identifying DIF in the HADS depression and HADS anxiety scales. Regardless of methods applied, investigators should use a combination of statistical significance, magnitude of the DIF effect and investigator judgement when interpreting the results.

  5. A retrospective analysis of the role of proton pump inhibitors in colorectal cancer disease survival

    PubMed Central

    Graham, C.; Orr, C.; Bricks, C.S.; Hopman, W.M.; Hammad, N.; Ramjeesingh, R.

    2016-01-01

    Background Proton pump inhibitors (ppis) are a commonly used medication. A limited number of studies have identified a weak-to-moderate association between ppi use and colorectal cancer (crc) risk, but none to date have identified an effect of ppi use on crc survival. We therefore postulated that an association between ppi use and crc survival might potentially exist. Methods We performed a retrospective chart review of 1304 crc patients diagnosed from January 2005 to December 2011 and treated at the Cancer Centre of Southeastern Ontario. Kaplan–Meier analysis and Cox proportional hazards regression models were used to evaluate overall survival (os). Results We identified 117 patients (9.0%) who were taking ppis at the time of oncology consult. Those taking a ppi were also more often taking asa or statins (or both) and had a statistically significantly increased rate of cardiac disease. No identifiable difference in tumour characteristics was evident in the two groups, including tumour location, differentiation, lymph node status, and stage. Univariate analysis identified a statistically nonsignificant difference in survival, with those taking a ppi experiencing lesser 1-year (82.1% vs. 86.7%, p = 0.161), 2-year (70.1% vs. 76.8%, p = 0.111), and 5-year os (55.2% vs. 62.9%, p = 0.165). When controlling for patient demographics and tumour characteristics, multivariate Cox regression analysis identified a statistically significant effect of ppi in our patient population (hazard ratio: 1.343; 95% confidence interval: 1.011 to 1.785; p = 0.042). Conclusions Our results suggest a potential adverse effect of ppi use on os in crc patients. These results need further evaluation in prospective analyses. PMID:28050148

  6. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.

  7. Improved statistical power with a sparse shape model in detecting an aging effect in the hippocampus and amygdala

    NASA Astrophysics Data System (ADS)

    Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.

    2014-03-01

    The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.

  8. [Effect of occupational stress on mental health].

    PubMed

    Yu, Shan-fa; Zhang, Rui; Ma, Liang-qing; Gu, Gui-zhen; Yang, Yan; Li, Kui-rong

    2003-02-01

    To study the effect of job psychological demands and job control on mental health and their interaction. 93 male freight train dispatchers were evaluated by using revised Job Demand-Control Scale and 7 strain scales. Stepwise regression analysis, Univariate ANOVA, Kruskal-Wallis H and Modian methods were used in statistic analysis. Kruskal-Wallis H and Modian methods analysis revealed the difference in mental health scores among groups of decision latitude (mean rank 55.57, 47.95, 48.42, 33.50, P < 0.05), the differences in scores of mental health (37.45, 40.01, 58.35), job satisfaction (53.18, 46.91, 32.43), daily life strains (33.00, 44.96, 56.12) and depression (36.45, 42.25, 53.61) among groups of job time demands (P < 0.05) were all statistically significant. ANOVA showed that job time demands and decision latitude had interaction effects on physical complains (R(2) = 0.24), state-anxiety (R(2) = 0.26), and daytime fatigue (R(2) = 0.28) (P < 0.05). Regression analysis revealed a significant job time demands and job decision latitude interaction effect as well as significant main effects of the some independent variables on different job strains (R(2) > 0.05). Job time demands and job decision latitude have direct and interactive effects on psychosomatic health, the more time demands, the more psychological strains, the effect of job time demands is greater than that of job decision latitude.

  9. Granger causality--statistical analysis under a configural perspective.

    PubMed

    von Eye, Alexander; Wiedermann, Wolfgang; Mun, Eun-Young

    2014-03-01

    The concept of Granger causality can be used to examine putative causal relations between two series of scores. Based on regression models, it is asked whether one series can be considered the cause for the second series. In this article, we propose extending the pool of methods available for testing hypotheses that are compatible with Granger causation by adopting a configural perspective. This perspective allows researchers to assume that effects exist for specific categories only or for specific sectors of the data space, but not for other categories or sectors. Configural Frequency Analysis (CFA) is proposed as the method of analysis from a configural perspective. CFA base models are derived for the exploratory analysis of Granger causation. These models are specified so that they parallel the regression models used for variable-oriented analysis of hypotheses of Granger causation. An example from the development of aggression in adolescence is used. The example shows that only one pattern of change in aggressive impulses over time Granger-causes change in physical aggression against peers.

  10. A refined method for multivariate meta-analysis and meta-regression

    PubMed Central

    Jackson, Daniel; Riley, Richard D

    2014-01-01

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects’ standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:23996351

  11. Associated factors of radiation pneumonitis induced by precise radiotherapy in 186 elderly patients with esophageal cancer.

    PubMed

    Cui, Zhen; Tian, Ye; He, Bin; Li, Hongwei; Li, Duojie; Liu, Jingjing; Cai, Hanfei; Lou, Jianjun; Jiang, Hao; Shen, Xueming; Peng, Kaigui

    2015-01-01

    Radiation pneumonitis is one of the most severe complications of esophageal cancer. To explore the factors correlated to radiation pneumonitis induced by precise radiotherapy for elderly patients with esophageal cancer. The retrospective analysis was used to collect clinical data from 186 elderly patients with esophageal cancer. The incidence of radiation pneumonitis was observed, followed by statistical analysis through ANVON or multiple regression analysis. 27 in 186 cases of esophageal cancer suffered from radiation pneumonitis, with incidence of 14.52%. The single factor analysis showed that, Karnofsky performance status (KPS) score, chronic obstructive pulmonary disease, concurrent chemoradiotherapy, gross tumor volume (GTV) dose, lung V20, mean lung dose (MLD) and planning target volume (PTV) were associated with radiation pneumonitis. The logistic regression analysis indicated that, concurrent chemoradiotherapy, GTV dose, lung V20 and PTV were the independent factors of radiation pneumonitis. The concurrent chemoradiotherapy, GTV dose, lung V20, MLD and PTV are the major risk factors of radiation pneumonitis for elderly patients with esophageal cancer.

  12. [Visual field progression in glaucoma: cluster analysis].

    PubMed

    Bresson-Dumont, H; Hatton, J; Foucher, J; Fonteneau, M

    2012-11-01

    Visual field progression analysis is one of the key points in glaucoma monitoring, but distinction between true progression and random fluctuation is sometimes difficult. There are several different algorithms but no real consensus for detecting visual field progression. The trend analysis of global indices (MD, sLV) may miss localized deficits or be affected by media opacities. Conversely, point-by-point analysis makes progression difficult to differentiate from physiological variability, particularly when the sensitivity of a point is already low. The goal of our study was to analyse visual field progression with the EyeSuite™ Octopus Perimetry Clusters algorithm in patients with no significant changes in global indices or worsening of the analysis of pointwise linear regression. We analyzed the visual fields of 162 eyes (100 patients - 58 women, 42 men, average age 66.8 ± 10.91) with ocular hypertension or glaucoma. For inclusion, at least six reliable visual fields per eye were required, and the trend analysis (EyeSuite™ Perimetry) of visual field global indices (MD and SLV), could show no significant progression. The analysis of changes in cluster mode was then performed. In a second step, eyes with statistically significant worsening of at least one of their clusters were analyzed point-by-point with the Octopus Field Analysis (OFA). Fifty four eyes (33.33%) had a significant worsening in some clusters, while their global indices remained stable over time. In this group of patients, more advanced glaucoma was present than in stable group (MD 6.41 dB vs. 2.87); 64.82% (35/54) of those eyes in which the clusters progressed, however, had no statistically significant change in the trend analysis by pointwise linear regression. Most software algorithms for analyzing visual field progression are essentially trend analyses of global indices, or point-by-point linear regression. This study shows the potential role of analysis by clusters trend. However, for best results, it is preferable to compare the analyses of several tests in combination with morphologic exam. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Discrimination of serum Raman spectroscopy between normal and colorectal cancer

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Yang, Tianyue; Yu, Ting; Li, Siqi

    2011-07-01

    Raman spectroscopy of tissues has been widely studied for the diagnosis of various cancers, but biofluids were seldom used as the analyte because of the low concentration. Herein, serum of 30 normal people, 46 colon cancer, and 44 rectum cancer patients were measured Raman spectra and analyzed. The information of Raman peaks (intensity and width) and that of the fluorescence background (baseline function coefficients) were selected as parameters for statistical analysis. Principal component regression (PCR) and partial least square regression (PLSR) were used on the selected parameters separately to see the performance of the parameters. PCR performed better than PLSR in our spectral data. Then linear discriminant analysis (LDA) was used on the principal components (PCs) of the two regression method on the selected parameters, and a diagnostic accuracy of 88% and 83% were obtained. The conclusion is that the selected features can maintain the information of original spectra well and Raman spectroscopy of serum has the potential for the diagnosis of colorectal cancer.

  14. [The Influence of Subjective Health Status, Post-Traumatic Growth, and Social Support on Successful Aging in Middle-Aged Women].

    PubMed

    Lee, Seung Hee; Jang, Hyung Suk; Yang, Young Hee

    2016-10-01

    This study was done to investigate factors influencing successful aging in middle-aged women. A convenience sample of 103 middle-aged women was selected from the community. Data were collected using a structured questionnaire and analyzed using descriptive statistics, two-sample t-test, one-way ANOVA, Kruskal Wallis test, Pearson correlations, Spearman correlations and multiple regression analysis with the SPSS/WIN 22.0 program. Results of regression analysis showed that significant factors influencing successful aging were post-traumatic growth and social support. This regression model explained 48% of the variance in successful aging. Findings show that the concept 'post-traumatic growth' is an important factor influencing successful aging in middle-aged women. In addition, social support from friends/co-workers had greater influence on successful aging than social support from family. Thus, we need to consider the positive impact of post-traumatic growth and increase the chances of social participation in a successful aging program for middle-aged women.

  15. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation

    NASA Astrophysics Data System (ADS)

    Reis, D. S.; Stedinger, J. R.; Martins, E. S.

    2005-10-01

    This paper develops a Bayesian approach to analysis of a generalized least squares (GLS) regression model for regional analyses of hydrologic data. The new approach allows computation of the posterior distributions of the parameters and the model error variance using a quasi-analytic approach. Two regional skew estimation studies illustrate the value of the Bayesian GLS approach for regional statistical analysis of a shape parameter and demonstrate that regional skew models can be relatively precise with effective record lengths in excess of 60 years. With Bayesian GLS the marginal posterior distribution of the model error variance and the corresponding mean and variance of the parameters can be computed directly, thereby providing a simple but important extension of the regional GLS regression procedures popularized by Tasker and Stedinger (1989), which is sensitive to the likely values of the model error variance when it is small relative to the sampling error in the at-site estimator.

  16. Complexities and potential pitfalls of clinical study design and data analysis in assisted reproduction.

    PubMed

    Patounakis, George; Hill, Micah J

    2018-06-01

    The purpose of the current review is to describe the common pitfalls in design and statistical analysis of reproductive medicine studies. It serves to guide both authors and reviewers toward reducing the incidence of spurious statistical results and erroneous conclusions. The large amount of data gathered in IVF cycles leads to problems with multiplicity, multicollinearity, and over fitting of regression models. Furthermore, the use of the word 'trend' to describe nonsignificant results has increased in recent years. Finally, methods to accurately account for female age in infertility research models are becoming more common and necessary. The pitfalls of study design and analysis reviewed provide a framework for authors and reviewers to approach clinical research in the field of reproductive medicine. By providing a more rigorous approach to study design and analysis, the literature in reproductive medicine will have more reliable conclusions that can stand the test of time.

  17. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing.

    PubMed

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-02-01

    A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less

  19. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less

  20. Statistical analysis of regulatory ecotoxicity tests.

    PubMed

    Isnard, P; Flammarion, P; Roman, G; Babut, M; Bastien, P; Bintein, S; Esserméant, L; Férard, J F; Gallotti-Schmitt, S; Saouter, E; Saroli, M; Thiébaud, H; Tomassone, R; Vindimian, E

    2001-11-01

    ANOVA-type data analysis, i.e.. determination of lowest-observed-effect concentrations (LOECs), and no-observed-effect concentrations (NOECs), has been widely used for statistical analysis of chronic ecotoxicity data. However, it is more and more criticised for several reasons, among which the most important is probably the fact that the NOEC depends on the choice of test concentrations and number of replications and rewards poor experiments, i.e., high variability, with high NOEC values. Thus, a recent OECD workshop concluded that the use of the NOEC should be phased out and that a regression-based estimation procedure should be used. Following this workshop, a working group was established at the French level between government, academia and industry representatives. Twenty-seven sets of chronic data (algae, daphnia, fish) were collected and analysed by ANOVA and regression procedures. Several regression models were compared and relations between NOECs and ECx, for different values of x, were established in order to find an alternative summary parameter to the NOEC. Biological arguments are scarce to help in defining a negligible level of effect x for the ECx. With regard to their use in the risk assessment procedures, a convenient methodology would be to choose x so that ECx are on average similar to the present NOEC. This would lead to no major change in the risk assessment procedure. However, experimental data show that the ECx depend on the regression models and that their accuracy decreases in the low effect zone. This disadvantage could probably be reduced by adapting existing experimental protocols but it could mean more experimental effort and higher cost. ECx (derived with existing test guidelines, e.g., regarding the number of replicates) whose lowest bounds of the confidence interval are on average similar to present NOEC would improve this approach by a priori encouraging more precise experiments. However, narrow confidence intervals are not only linked to good experimental practices, but also depend on the distance between the best model fit and experimental data. At least, these approaches still use the NOEC as a reference although this reference is statistically not correct. On the contrary, EC50 are the most precise values to estimate on a concentration response curve, but they are clearly different from the NOEC and their use would require a modification of existing assessment factors.

Top